Computational Finance, Fall 2017 Computer Lab 15

The aim of the lab is to learn to compute prices of Asian options.

Let us assume that the volatility σ in the Black-Scholes market model depends only on the current stock price S.

Let v(s, I, t) be the function giving the price of an Asian option (depending on arithmetic average) with exercise time T and payoff $p(s, A_T)$. For finding approximate option prices we introduce artificial boundaries I_{max}, S_{max} , choose natural numbers n_s, n_I, m and look for approximate values of v at points (s_i, I_j, t_k) , where

$$s_i = i\Delta s = i\frac{S_{max}}{n_s}, \ I_j = j\Delta I = j\frac{I_{max}}{n_I}, \ t_k = k\Delta t = k\frac{T}{m}.$$

Denote those approximate values by V_{ijk} . A finite difference approximation gives the following equations for the unknown values:

$$a_i V_{i-1,jk} + b_i V_{ijk} + c_i V_{i+1,jk} = \frac{s_i \Delta t}{\Delta I} V_{i,j+1,k} + V_{ij,k+1},$$

where $i=1,2,\ldots,n_s-1,\ j=0,1,\ldots,n_I-1,\ k=0,\ldots,m-1$ and (using the notation $\rho=\frac{\Delta t}{\Delta s^2}$)

$$\begin{split} a_i &= \frac{\rho}{2} (-s_i^2 \sigma^2(s_i) + (r-D) s_i \Delta s), \\ b_i &= \left(1 + \rho s_i^2 \sigma^2(s_i) + \frac{s_i \Delta t}{\Delta I} + r \Delta t \right), \\ c_i &= -\frac{\rho}{2} (s_i^2 \sigma^2(s_i) + (r-D) s_i \Delta s). \end{split}$$

The equations together with equations for V_{0jk} and $V_{n_s,j,k}$ (specified below) can be viewed as a three-diagonal system for finding the values of V_{ijk} , $i=0,\ldots,n_s$, if the values corresponding to the level $t=t_{k+1}$ and the values $V_{i,j+1,k}$, $i=0,\ldots,n_s$ have been found earlier. So we solve the system in backward direction with respect to k (for $k=m-1,m-2,\ldots,0$) for each k, we solve it for $j=n_I-1,n_I-2,\ldots,0$.

The values of V_{ijm} can be found from the final condition:

$$V_{ijm} = p(s_i, \frac{I_j}{T}), i = 0, \dots, n_s, j = 0, \dots, n_I.$$

At the boundary S=0 we have the exact boundary condition $v(0,I,t)=p(0,\frac{I}{T})e^{-r(T-t)}$, hence

$$V_{0jk} = p(0, \frac{I_j}{T})e^{-r(T-t_k)}, \ k = 0, \dots, m-1.$$

In order to determine all values of V_{ijk} uniquely, we have to specify boundary conditions for the boundary $I = I_{max}$ and the boundary $s = S_{max}$. Denote by $\phi_1(s,t)$ and $\phi_2(I,t)$ the functions describing the boundary conditions, then

$$V_{i,n_I,k} = \phi_1(s_i, t_k), \ V_{n_s,j,k} = \phi_2(I_j, t_k).$$

Exercise Let us consider an average price put option (payoff function $p(s, A_T) = \max(E - A_T, 0)$, where E is the exercise price specified in the option contract). Assume r = 0.05, D = 0, $\sigma = 0.5$, T = 0.5, E = 100, S(0) = 95. Define $I_{max} = ET$, $S_{max} = 190$, $\phi_1(s, t) = 0$,

$$\phi_2(I,t) = \max\{Ee^{-r(T-t)} + \frac{e^{-D(T-t)}}{(r-D)T}(e^{-(r-D)(T-t)} - 1)S_{max} - \frac{e^{-r(T-t)}}{T}I, 0\}.$$

Write a function, that for given values n_s, n_I, m finds an approximate option price at t = 0 using the finite difference method described above.

Let us discuss one possibility to specify suitable artificial boundary conditions ϕ_1 and ϕ_2 . Recall that the functions of the form

$$v(s, I, t) = C_1 e^{-r(T-t)} + e^{-D(T-t)} \left(C_2 - C_3 \frac{e^{-(r-D)(T-t)}}{r-D} \right) s + C_3 e^{-r(T-t)} I$$

are solutions of the Asian option pricing PDE in the case $r \neq D$; if r = D then corresponding special solutions are

$$v(s, I, t) = C_1 e^{-r(T-t)} + e^{-r(T-t)} (C_2 + C_3(T-t)) s + C_3 e^{-r(T-t)} I.$$

Consider payoff functions of the form

$$p(s, a) = \max\{k_1 + k_2 s + k_3 a, 0\}.$$

Let v_{spec} be the special solution satisfying $v_{spec}(s, I, T) = k_1 + k_2 s + k_3 I/T$ then we define

$$\phi_1(s,t)) = \max\{v_{spec}(s,I_{max},t),0\}$$

and

$$\phi_2(I,t) = \max\{v_{spec}(S_{max}, I, t), 0\}.$$

Practical Homework 7 (Deadline December 20, 2017) Let us consider the Asian option with the exercise time T=0.6 and payoff function

$$p(s, a) = \max(10 - 2s + 1.5a, 0),$$

so that the owner gets the payment $p(S(T), A_T)$ at the exercise time T = 0.6, where the average A_T is the arithmetic average over the interval [0, 0.6]. Assume r = 0.01, D = 0.02, $\sigma(s) = 0.6$, S(0) = 55. Define $I_{max} = 100$, $S_{max} = 165$. Find an approximate value of the option at time t = 0 by using the finite difference method described in this Lab with $n_s = 90$, $n_I = 50$, m = 100.