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These notes reflect the content of a course in Risk Theory given at the Institute
of Mathematics and Statistics, UT. The course covers several basic topics related
to mathematical treatment of risks in financial and actuarial world. The first
major topic is ruin theory that analyzes certain random processes which model
the wealth process of an insurance company. Next we consider basic elements
of portfolio theory, including classical Markowitz model and CAPM model. The
third main issue is the measurement of financial risk. We focus on Value-at-Risk
(VaR) and related methodologies like expected shortfall.

Knowledge of basic concepts and facts of probability theory is a prerequisite
for this course. Some knowledge of stochastic processes, especially Poisson and
renewal processes, is also useful. Still, some more advanced results in these areas
will be given and explained in due course. Basic rules of calculus and some matrix
algebra are also used in this course.

This course is mainly based on following books:

e J. Grandell. Aspects of Risk Theory. Springer-Verlag, 1991.

e A.J. McNeil, R. Frey, P. Embrechts. Quantitative Risk Management: Con-
cepts, Techniques and Tools. Princeton University Press, 2005.

e E.J. Elton, M. J. Gruber. Modern Portfolio Theory and Investment Anal-
ysis. Wiley, 2003.



1 The Concept of Risk

1.1 The meaning of the word

Arabic word risq signifies "anything that has been given to you [by God| and
from which you draw profit” and has connotations of a fortuitous (random) and
favorable outcome.

The Latin risicum originally referred to the challenge that a barrier reef presents
to a sailor and has connotations of an equally fortuitous but unfavorable event.

In both cases, the randomness is essential.

Nowadays, English word "risk” has definite negative associations:

e run the risk of ...”

e 7 at risk” (= exposed to danger)

Webster’s Dictionary (1981): Risk is 'the possibility of loss, injury, disadvantage,
or destruction’

In more specialized literature 'risk’ is also used as a measure of bad outcome. We
can measure three aspects of a bad outcome:

e the chance (probability) of the bad (negative) outcome,
e its negativity (severity),

e or a combination of both.

Our definition: "Risk is the possibility of an unfavorable event”

In concrete fields 'risk’ has more specific meaning. In business, the risk often
means chance of loss of money. An investor loses money when the price of the
stock or currency he has invested decreases. In insurance business typical risk
is possibility of an big claim, or even possibility of the ruin (bankruptcy) of an
insurance company as a result of many big claims that can not be covered by an
insufficient premium flow. The study of ruin probabilities is our first major topic
in this course.

Nowadays in almost all fields people face with risks: medicine, industry, ecology,
security, defence, sports... It is not possible to avoid risks. The problem is not to
decide whether to take the risk or not, but rather which risk to take (should we
go from A to B by plane, train, car, or on foot...)

3



Risks are taken by individuals, organizations, and also by governments (e.g. na-
tionalization, privatization of big enterprises).

1.2 Risk analysis

‘Analysis is the separation of a whole into its component parts: an examination
of a complex, its elements and their relationships’ (Concise Oxford, 1976).

Purpose of risk analysis: find out all possible outcomes related to the decision
to be made.

The basic risk paradigm:

It is a decision problem in which there is a choice between just two options, one of
which will have only one possible outcome (X = no change or status quo), whilst
the other option has two possible outcomes (G = gain, L = loss).

Figure 1: The basic risk paradigm

Examples:

e Investor : to leave money in the bank account (safe option), or to invest
money in a new stock

e Doctor: to prescribe a known drug or to experiment with a new drug

e Advanced example: to marry or not to marry

Practical problems are much more complex, more outcomes (sometimes a contin-
uum of possible outcomes), many decisions and processes together. For example,
the design of a new chemical plant comprising numerous interconnected processes
each one of which could cause the whole plant to fail.
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1.3 Risk assessment

The evaluation and comparison of risks is often some form of cost-benefit analysis.
It assumes estimation of both probabilities of outcomes and also their severity
(magnitudes).

In the basic risk paradigm, when we decide in favor of A, the result will be
known exactly - it is X. If one decides in favor of B, then the expected value of
the outcome will be

Ep(V)=pG+(1—p) L

More generally, when we have more than just two possible outcomes, the expected
value will be

=1

The natural idea is to compare Fg(V') with X. If Eg(V) > X then it seems that
we should take the risk (option B). However, the expected value is not the only
valid argument here - in fact, it does not measure the size of the risk. Consider
an example to explain this. Suppose G = 1 euro and L = —1 euro with equal
probabilities 0,5 and 0,5 in the basic risk paradigm. Then Ez(V) = 0 and if you
take the risk, you can loose at most 1 euro, which is not a big problem. However,
if we replace 1 and -1 by 100 and -100, respectively, then Eg(V) = 0 as before,
but now real people are reluctant to choose option B (in order to avoid the big
negative outcome -100). Of course, this is the variance (denoted by D (V')) which
makes the difference between these two situations. Hence, also the variance of

the outcome should be taken into account when deciding between options A and
B.

The variance of the outcome is often used as a measure of risk (or even synonym
for 'risk’):

1.4 Risk management

Making practical decisions based on different risk measures.

Well-known financial risk management models:

e risk processes in insurance

e portfolio analysis



e value at risk methodologies
e credit scoring

e option pricing.



2 Risk processes

2.1 Stochastic processes

Definition 1. Stochastic process (or random process) is a family of random
variables {X (t) : t € T'}, where t is time parameter and T is the set of possible
values of t.

Usually 7' = {1,2, ...} (discrete time) or 7' = [0, 00) (continuous time). For each
value of t, X(T') is a random variable.

Counting process is a special case of stochastic processes. Let us consider an
event A that happens from time to time at random time points Si, 55, ... The
number of occurrences of the event A within the time interval [0,¢] is called a
counting process:

N@t)=2{i: S €[0,4]}.

Example: N(t) is the number of claims on the insurance company during the
time interval [0, ¢].

Let us denote waiting times of the events by
T, = 5; — Si-1.

Definition 2. A counting process N(t) is called Poisson process if its waiting
times Ty, T, ... are independent random variables having exponential distribution,
T; ~ Exp(«),Yi. The parameter « is called the intensity of the Poisson process.

Recall that the exponential distribution is defined by its density function

flx)=a-e* = >0.

The expected value of an waiting time is

ET; = 1/a.

It is a consequence of the definition above that for any fixed time ¢, the ran-
dom variable N(t) has Poisson distribution with parameter ot , i.e. N(t) ~
Possson(at), hence its mean (expected) value is

EN(t) =a-t.

It is seen that the higher the density «, the more times the event A happens (in
average) during the time interval [0, t].



2.2 Risk process

(general)

What is risk process? Safety loading. Some classical results in ruin theory

Risk process is a stochastic process for modeling the wealth of an insurance com-
pany.

Definition 3. Risk process is a stochastic process defined by

N ()
X(t)=ct—> Z
k=1

where

¢ > 0 - a constant called gross premium rate (the company receives ¢ units of
money per unit time),

N(t) - the number of claims on the company during (0,t],

Zy - the size of claim k.

At each time point S, Sy, ... (the points where N grows) the company has to pay
out a stochastic amount of money, and the company receives (deterministically)
¢ units of money per unit time.

X (t) is the profit of the company over the time interval (0, t].

Normally an insurance company starts operating with some initial capital u. Min-
imum amount of the initial capital is given by regulators.

Ruin of the company means that starting with initial capital u the wealth u-+X ()

becomes negative at some time point .

Ruin probability

U(u) = P{u+ X(t) < 0 for some t € (0,00)}.

Non-ruin probability: ®(u) =1 — U(u).

Calculation of the ruin probability is the main task of ruin theory.

In practice, companies are often interested in knowing ruin probability during
next 4-5 years. For a finite time horizon T the ruin probability is defined by

U(u,T) = P{u+ X(t) <0 for some t € (0,7])}.
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S So S3 time ¢

ruin
Figure 2: A trajectory of the risk process

Generally speaking, the finite time horizon case is more difficult to handle.

Study of collective risks (all risks of the portfolio of an insurance company are
pooled) started over 100 years ago:

F. Lundberg 1903
H. Cramér 1930

H. Biithlmann 1970
H. Gerber 1979

J. Grandell 1991

S. Asmussen 1980 -
H.-J. Albrecher 2010
et al.



2.3 Classical risk process

Here we specify a particularly simple case of risk processes which will be our main
subject in coming chapters 2-9.

Definition 4. The risk process X(t) = ct — Ziv:(tl) Zy is called classical risk
process if

o {Zy}2, are i.i.d. random wvariables having common distribution function
F(z) with F(0) =0 and mean value EZ), = p,

o N(t) is a homogenous Poisson process with intensity o and independent of
{Zx}.
NB! We will mainly be interested in this type of risk processes.

Sometimes reversed risk processes are of interest where ¢ < 0 and Z;, < 0 (e.g.
life annuity)

Let us calculate the expectation of the risk process.

Technical remark 1. (sum of random number of random variables):
Let Z1, Z5, ..., Zn be a random number of random variables with EZ, = u. If N
is independent of {Z.}, then

WE

E(Y " Z,) = u-EN.

k=1

The proof is elementary (condition on N).
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Assume now that the Poisson process N(t) has intensity «, i.e. in average «
claims arrive per unit time. Then N(¢) has Poisson distribution with parameter
at, hence EN(t) = at, and we have

EX(t) =ct —EN(t)-EZ, = (c — ap)t.

The ratio

is called relative safety loading.

Relative safety loading is an important parameter of the risk process. Large value
of p means that the income flow (determined by ¢ ) significantly exceeds outgoing
flow (determined by « and p.)

e Normally p > 0 - the company is profitable in average.

e One can make p < 0 by reducing gross premium rate ¢, in order to win new
customers.

Limit behavior of the risk process

What happens with the path (trajectory) of the risk process when ¢ — co? The
cases p > 0 and p < 0 differ significantly.

Technical remark 2. (Strong Law of Large Numbers - SLLN)
Let X1, X5, ... be IID random variables having expectation EX; = a Then the

convergence
n
Zk:l Xy

n

— a

takes place almost surely (i.e. with probability 1).

Corollary. A simple consequence from SLLN is that if a« > 0 and n — oo, then
it must be that >, X} — +o0. (Similarly, if a < 0, then > ;_, X} — —o0.)

We now apply this to show that if £ — oo then the risk process X (t) — 400 or
X(t) — —oo, depending on whether p > 0 or p < 0. For that, consider first the

values of t which coincide with one of the claim times t = Sy, .5, .... Each such ¢
can be represented as an exact sum t = fj:(tl) Ty. Now the risk process can be

written as a sum of IID random variables

N(t) N(t)
Xt)y=ct—> Zy=> (T} — Z).
k=1 k=1
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Since the expected value of each summand is E(¢Ty — Z;) = ¢- ET, — EZ;, =
¢+ 1 —p = pp, the Corollary above applies showing that X () — 400 or — oo,
depending on whether p > 0 or p < 0. (Note that average claim size ;1 > 0 always.)

Some classical results

Filip Lundberg, Harald Cramér (1930’s)

1. Ruin probability in the case of zero initial capital

@m):T:; (1)

2. Exact formula for the case of exponentially distributed claims, Z, ~ Exzp(1/p),

—pu

Pyeem) (2)

U (u)

3. Cramér - Lundberg asymptotic formula

lim e®™W(u) = C, (3)

U—00

with constants R > 0 (Lundberg ezponent) and C' > 0, both depending on
W, a,c, and F.

4. Lundberg inequality

U(u) <e M (4)

We try to prove all these results.

Homework Simulation of the risk process (MS Excel, R)
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Technical remark 3. (Rules of conditioning)
Conditioning is a widely used toolkit in probabilistic reasoning. Its origin is the
formula of total probability.

1. If {By, By, ...} is a partition of Q such that P(B;) > 0 then

H@ZZPM@W@J

Form this one we deduce, step by step, the following formulae.

2. Conditional expectation w.r.t. a partition {By, Ba, ...}

EX =) E(X|B;)P(B)).

3. In particular, if the partition is induced by a discrete r.v. Y with values
y; then B; = {Y = y;} and we get the conditional expectation w.r.t. a
random variable Y

EX = ZE(X|Y =y)P(Y = yi),

which can be written shortly as
EX = E[E(X]Y)],
where E(X|Y) is conditional expectation of X given Y.

4. For continuous r.v. Y with density f(y)

Pay= [ ) )y

o0

5. For arbitrary r.v. Y with distribution function F'(y)

py= [ paRFG)

[e.e]

(Lebesgue-Stiltjes integral)

6. More generally, if Y and Z are two independent r.v. with d.f. F(y) and
G(z) then

P(A) = /_ " /_ T P(Aly. dF () dG ).

7. Similar formulae are valid for the expectation

B(X) = /_ o /_ Ry, ) dF ()G ().

13



3 Derivation of integral equation for ruin prob-
ability

We show here that the non-ruin probability ®(u) satisfies an integral equation.
To derive the equation, we will use the rule of conditioning, combined with a
"renewal” argument.

We condition upon S; and Z; - the time and the size of the first claim (see the
rule 6. of conditioning w.r.t. two random variables where A means non-ruin’).
Suppose S7 and Z; take values S; = s and Z; = z and calculate the conditional
non-ruin probability P(Als, z) needed in rule 6. First note that at time S; the
risk process equals u + X (S1) = u + ¢s — z. However, at time S; = s the risk
process starts anew, with the only difference that, instead of u, the initial capital
is u + ¢s — z. Since ruin can not occur before time S, the conditional non-ruin
probability is the same as the non-ruin probability with this new initial capital:
P(Als,z) = ®(u+ cs — z). Integrating over all possible values of S; and Z;, one
has:

() = / / B(u + cs — 2)dFs, (s)dF(2),
o Jo
where Fg, (s) and F(z) are distribution functions of S} and Z;, respectively.

Since the distribution of S is exponential, we can replace dFs, (s) = ae **ds,
and since a large first claim z > u + ¢s imply immediate ruin, we can restrict the
domain of integration

o] u-+tcs
O(u) = / ae_as/ O(u+cs — 2)dF(z)ds.

=0 =0

The change of variables x = u + ¢s = ds = dx/c leads to

(07

O(u) = —ea“/c/ ae_aw/c/ O(x — 2)dF(z)dz.
U 0

C

Consiquently @ is differentiable and differentation (using (fg) = f'g + fg¢' and
Uy f@)dz) = f(u)) leads to

O (u) = ~gea“/c/ aeo‘x/c/ O(x — 2)dF(z)dx
U 0

C

S o |2

o

B _eau/c . e—au/C/ (I)(u — Z)dF(Z)
0

The first term on the right hand side equals 2®(u) and hence we have
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() = Sd(u) — & /0 B(u — 2)dF(2). (5)

Replacing dF'(z) = —d(1 — F(z)) and integrating by parts ([ fdg = fg| — [ gdf)

we have

() = Z0(u) + % /Ou O(u— 2)d(1 — F(2))
_ %cp@) + % [@(0)(1 — F(u)) — ®(u)] + % /0 O'(u—z)(1 — F(2))dz
= 20(0)(1 - F(u)) + % /Ou O'(u—2)(1 - F(2))dz

Integrating over (0,t) yields

O(t) — d(0) = = %@(0)/0 (1— F(u))du + %/0 /0 O'(u — 2)(1 — F(2))dzdu

(now change the order of integration in the double integral)

_ %@(0) /Ot(1 — F(u))du + % /;0(1 —F(2)) /; O (u — 2)dudz

_ E<1>(0)/0 (1~ F(u)du+ 2 /_0(1 ~ F()[B(t — 2) — B(0)]d=

o

_ _/0 (1— F(2))(t — 2)dz

C

Thus we can write

O(u) = D(0) + % /Ou O(u — 2)[1 — F(z)|dz. (6)

This is an integral equation since the unknown function ®(u) stands under the
integral sign. We will see that this equation can be used for several purposes.
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4 Ruin probability with 0 capital

We assume that p > 0 i.e. the company is profitable. If the initial capital u is
zero, the ruin probability takes very simple form (see the ’classical’ result (1)).
To show that, we first recall a result from integration theory indicating when it
is possible to exchange the order of integration and limiting process.

Technical remark (Monotone Convergence Theorem)

Let 0 < fu.(x) 1 and let f,(z) be integrable, Vn = 1,2,.... Then there ex-
ists an integrable limit function f(z) = lim, f,(z) and the equality [ f(z)dx =
lim, [ f,.(z)dx holds.

By monotone convergence it follows from (6), as u — oo, that

D(c0) = 2(0) + —L(00). (7)
Show that ®(co) = 1. It suffices to show that for p > 0 the process X (¢) never
attains the value —oo, remaining always finite (then v + X (¢) > 0,V¢ and there
will not be ruin). First recall that for p > 0 the paths of the risk process tend
to infinity, lim; ., X () = 400 a.s. It follows that there exists time 7' = T'(w)
such that for all £ > T we have X (¢) > 0. Hence there cannot be ruin after
the time 7. On the other side, before the time T' (i.e. within the interval [0, T])
only a finite number of claims arrive a.s. (since N(T") has Poisson distribution).
Therefore, since each claim has finite size, the total sum to be payed out within
[0, 77 is finite. Hence, with infinite initial capital, the process cannot ruin before
the time 7" either. To conclude, the non-ruin probability ®(co) = 1. By inserting
this into (7) we get

a g

1=®0)+ —
0+,

which, together with the definition of p, gives the classical result (1):

1
U(0) = i, when ¢ > ap.
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5 Exponentially distributed claims

Consider the case when the claims are exponentially distributed, Z, ~ Exp(1/p).
Our aim is to prove the classical result (2):

—pu
e n(1+p)

W (u)

The starting point is the following equation, obtained in Section 3:

&' (1) = Sd(u) - 9/ O(u— 2)dF(2).
c ¢ Jo
Since the claims’ distribution F is exponential with mean value p, we can replace
dF(z) = ie_z/“dz to obtain

Q' (u) = g<I>(u) e /qu)(u — 2)e 1z

c cl

Change of variables u — z =: v, dz = —dv gives (using — ff =)

() = Lo _ﬁ/uq) ~(u=2)/ug
=200 = & [“ae v,
or

a ! “
O (u) = —P(u) — —6_“/“/ d(z)e*/ dz.
) =% ” i )

Differentiation by u (using rules (fg)' = f'g+ f¢’ and ([ h(z)dz), = h(u)) leads
to

") = o)+ (Yot — o) — by
V() = C¥w o (o) - V) - )

c c cp
a 1 p
e )
c p u(1+p)
From here we have (In ®'(u)) = (g,/((s)) = — i, and , hence,
pu
nd'(u)=————+0C
(u) pd+p)

from which
CI),(U) = C’Qe_u(lp:—p) = @(u) = Oge_ﬁ + 04'
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The constants C3 and Cy are defined by conditions ®(c0) = 1 (giving Cy = 1)
and ®(0) =1—1/(1+ p) (giving C3 = —1/(1 + p). Therefore,

(ID(u) =1 1 e n(+p)
1+p

which is equivalent to the classical result (2).

Exercise. An insurance company is earning EUR 13200 per day (netto). It
receives in average 20 claims per day with average claim size of EUR 600. Find
the relative safety loading. Assuming that the claims sizes are exponentially
distributed, calculate the ruin probability of the company at the time moment
when its wealth is equal to EUR 25 000. Find the wealth of the company such
that the probability of possible ruin in the future is less than 0,01%.
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6 Cramér-Lundberg approximation to the ruin
probability

Our aim here is to show the classical result (3), called Cramér-Lundberg approx-
imation. We assume that p > 0, or ¢ > au. The starting point is the equation

(6):

O(u) = (0) + % /Ou O(u — 2)[1 — F(2)]dz.
Form this and from classical result (1) we get the following:
- W) = 1— O‘—(f‘ +%/Ou(1 —U(u— 2))[1 — F(2)]dz
= 1-2 (u - /Ouu _ F(2)ds+ /Ou W — )1 - F(z)]dz)
or , by using = [;*[1 — F(z)]d,
U(u) = %/:0[1 ~ P(2)|dz + % /0 U(u— 2)[1 — F(2)]de. (8)

To solve for U(u) this 'renewal type’ equation, we rely on the following.

Technical remark (Key renewal theorem)
Let G(u) satisfy the following (‘renewal type’) equation:

G(u) = H(u) + /Ou G(u — x)dA(x), (9)

where H is known, A is a given distribution function. Then the asymptotic
solution is given by:

i = lim U i h u)du
lim G(u) = 1 H()+MA/O H (u)du, (10)

U— 00 U— 00

where 114 is the expectation of the distribution A, 0 < py < oo.

However, since [[°2[1 — F(z)]dz = £ < 1, equation (8) is not directly of type
(9) (for the function 2[1 — F(z)] to be regarded as a density of a distribution
A, this integral must be equal to 1.) W. Feller overcame the difficulty by mul-
tiplying both sides of the equation (8) by e®, where R > 0 is properly chosen
constant(Lundberg exponent). We therefore assume that there exists a constant

R > 0 such that
«Q

o /000 eRE1 = F(2)]dz = 1. (11)

C
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Then 2e#[1—F(2)] is the density of a proper density distribution. Multiplication
of (8) by ef™ yields

R (y) = %eR“ / T = F(2)ds + % /0 "R (y — 2)e R — F(2)]de.

which is a proper renewal equation. From the key renewal theorem it then follows
that

lim e (u) = % (12)
where - -
C) = g/ eR“/ (1= F(2))dzdu (13)
¢ Jo u
and -
Cy = %/ zef*(1 — F(2))dz (14)
0

provided that finite positive numbers R, C;, Cy exist.

(How the functions G(u), H(u) and A(x) should be specified when applying the
Key renewal theorem?)

Let us now calculate C; and C5.

Calculation of ;. Change of the order of integration in (13) gives

C = g/ (1-— F(z)/ e dudz.
0 0

C

e — L one obtains

: 2 _Ru _
Since [ e™du = =

1
R

a [ g a [ 1 ap 1 p
= — (1= F(2)dz — — 1—-F))dz=—=——=—= - ——.
@ RC/O e (2))dz Re J, ( (2))d R Rc R 1+p

(Here we used relationships (11) and [°(1 — F(2))dz = p.)
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Calculation of C,. First introduce the function h(r) = [;* e"dF(z) — 1. Then
we get from (11), using integration by parts, that

h(R)

¢ Rz L1 Rz
Z = 1—F - _— 4 = F(z) = 22
/0 e (2)]d=z 7 + R, edF (z) 7

and we see that the Lundberg exponent R is the positive solution of the equation

hr) =<, (15)

Q
Note also that #'(R) = [;~ ze"*dF(z). Now, using [ze*dz = (£ — z7)e*
(antiderivative of ze®*), we integrate by parts

Cy = %/OoozeRz(l—F(z))dz
= n-rel |G- ] <2 [T - e

C
a 1 o [F 2z 1 oR

_ 2,9 “dF
c R2+C/O(R e )

where we have used lim, o, [1 — F(2)]ef* = 0, lim, ,o[1— F(2)]z-ef* =0 (both
functions are integrable). Now, using expressions for h(R) and b’/ (R) above, we
get

o — & (L+ W(R) h(R)+1) _ % (h’(R) L)

R? R R? R aR
_04*11 o)=Y R~ era
= O WB) —efa) = e (H(R) — /).

Now it only remains to substitute C; and Cy into (12) to obtain the classical
result (3),

dim e (u) = W(R) —c/a’

called the "Cramér - Lundberg approximation formula”.

In practice, the formula can be used for estimation of ruin probabilities for large
values of u. In that case,
p:u —Ru
U(u)  ———e
() W(R)—c/a

We see that with unlimited growth of initial capital the ruin probability tends to
0 at exponential rate. However, one has to remember that Cramér - Lundberg
approximation works only if the claim distribution F satisfies the condition (11).
Such distributions can not have 'heavy tails’. We will take a closer look at this
condition in a later chapter.
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Exercise

Find the Lundberg constant R for the case when all claim sizes are equal to 1
(such claims can be interpreted as winnings in a lottery with fixed prizes).

Exercise
Cramér-Lundberg approximation is precise in the case of exponentially distributed
claims.

Suppose that the claims are exponentially distributed with mean p , Z; ~ Exp(1/p).
Prove that then the Cramér-Lundberg approximation is exact.

Hints:
1) show that h(r) = {4
2) show that the Lundberg exponent satisfies R = —-£

) w(1+p)
3) calculate h'(R) = p(1 + p)?
4) show that the right-hand term of Cramér-Lundberg formula verifies

pL 1
W(R)—c/a) 14p

5) Compare the result with the classical result (2). (Comment!)
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7 Lundberg exponent

The Lundberg exponent was defined by (11) as a positive number R > 0 such

that
«Q

- /OOO e[l — F(2)]dz = 1. (16)

C

From this it follows that ef**[1 — F(z)] — 0 as z — oo. Therefore, 1 — F(z) must
tend to 0 faster than e=7# i.e. the tail of F' must be light. A simple positive exam-
ple here is the exponential distribution. (In fact, our Homework showed that for
exponentially distributed claims the Lundberg exponent equals R = p/u(1 + p).
However, we now show that many standard distributions do not satisfy this con-
dition, e.g. Pareto, lognormal, or Weibull with shape parameter smaller than 1.

Three examples of heavy-tailed claim distributions

Example 1. The Pareto density is

a

f(z):aﬁ, z>f, a>0.

The tail of the Pareto distribution is 1 — F(z) = (g)a, which decreases with
power speed, i.e. too slowly, since

«
e[l — F(2)] = e (é) — oo for any R > 0.
z
Hence, for the Pareto distribution the Lundberg exponent does not exist. Note
that Pareto distribution is generally accepted as a good model for claim sizes in

fire insurance.

Example 2. By definition, Z has log-normal distribution, Z ~ LN (u,0), if
InZ ~ N(p, o). The log-normal density is

f(z) = L exp {—Unz—_w} :

2V 210 202

Let for simplicity 4 = 0, 0 = 1. ThenIn Z ~ N(0, 1) and the distribution function
of Z is obtained as

F(z)=P(Z<z)=P(InZ <Inz)=d(lnz),

where ®(-) is the distribution function of N (0, 1). Since for large z, 1 — ®(z) ~
1p(z), the tail

1 _(n z)2
2

1
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Therefore
eRz[l . F(Z)] ~ ;(BRZ*% > ;GRZ/Q
In 227 In 227
for z large enough. However, the latter tends to oo for any R > 0, when z — oo.
Hence, for the log-normal distribution the Lundberg exponent does not exist.
Note that log-normal distribution is generally accepted as a good model for claim
sizes in motor insurance.

Example 3. The Weibull distribution is defined by its density

f(z):%;:lexp {— <%>q, 0<z<oo, B>0, v>0.

Note that the case of 7 = 1 reduces to the exponential distribution. The tail of
the Weibull distribution is
~ v
1—F(z) =exp [— (—) }
(2) 5

P [l — F(2)] = efee=C/D = Re= (/A"

Therefore

which goes to +o00 for v < 1 and —oo for v > 1. Hence, the Lundberg exponent
exists only for v > 1.
O
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Now recall that R is the positive solution of the equation (15):

where h(r) = [~ e"*dF(z) — 1. Multiplying both sides of (15) by a, we easily get
the following equivalent condition:

a+cr:a/ e"*dF(z). (17)
0

Let us analyze the equation (17). At r = 0 both sides are equal to . The left
hand side (LHS) is a linear function with positive slope ¢ > 0. The right hand side
(RHS) is a continuous, monotonically increasing function (in r), with derivative
at r = 0 equal to

a/ 2e"dF(2)|r=0 = a/ 2dF(z) = ap < c,
0 0
due to p > 0. Since its second derivative
a/ 22e"*dF(z) >0 for each r,
0

the RHS is also a convex function. For there to have a positive solution R > 0
to (17), the graph of the RHS must intersect the straight line on the LHS at some
positive value of r. It can be ensured by the following assumption:

Assumption. We assume that there exists ro > 0 such that A(r) 1 +oco when
r 1 1o (we allow for the possibility ro = +00).

Warning! As evidenced by P. Embrechts (and others), claim sizes should rather
be modelled by heavy-tailed distributions. DBut then the moment generating
function [ e™*dF(z) of Z will no longer exist and we cannot use neither Cramér-
Lundberg approximation nor Lundberg inequality. There are some works on non-
exponential upper bounds for the ruin probability, and there is much literature
on the Cramér-Lundberg approximation when the claim sizes have heavy-tailed
distribution (Asmussen, Embrechts-Kliippelberg-Mikosch).
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8 Short overview of heavy-tailed distributions

As it has been mentioned above in several cases, good models for claim distribu-
tions encompasse heavy tails.

Heavy-tailed distributions are probability distributions whose tails are not expo-
nentially bounded: that is, they have heavier tails than the exponential distribu-
tion. In many applications it is the right tail of the distribution that is of interest,
but a distribution may have a heavy left tail, or both tails may be heavy.

There are three important subclasses of heavy-tailed distributions,

e the fat-tailed distributions,
e the long-tailed distributions,

e the subexponential distributions.

In practice, all commonly used heavy-tailed distributions belong to the subexpo-
nential class.

There is still some discrepancy over the use of the term heavy-tailed. There are
two other definitions in use. However, the definition given below is the most
general in use, and includes all distributions encompassed by the alternative def-
initions (e.g. log-normal that possess all their power moments, yet which are
generally acknowledged to be heavy-tailed.)

Definition of heavy-tailed distribution

The distribution of a random variable X with distribution function F' is said to
have a heavy right tail if

lim e Pr[X > ] = o0 forall A > 0.

T—00

This is also written in terms of the tail distribution function

F(x) = Pr[X > 7]

as
lim e*F(z) = oo for all A > 0.
T—>00

This is equivalent to the statement that the moment generating function of F,
MF(t) = E(e™), is infinite for all ¢ > 0.

The definitions of heavy-tailed for left-tailed or two tailed distributions are simi-
lar.
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Definition of fat-tailed distribution

The distribution of a random variable X is said to have a fat tail if

Pr[X > ] ~ 27" as o — o0, a> 0.

That is, if X has a probability density function, fx(z),

fx(@) ~ 2= ag 2 — oo, a > 0.

Here the notation ” ~” means the asymptotic equivalence of functions. Some
reserve the term "fat tail” for distributions only where 0 < o < 2 (i.e. only in
cases with infinite variance).

Definition of long-tailed distribution

The distribution of a random variable X with distribution function F is said to
have a long right tail if for all t > 0,

lim PriX >z + X >z] =1,

T—00

or equivalently

Fx+t)~F(x) asx— oc.

This has the intuitive interpretation for a right-tailed long-tailed distributed quan-
tity that if the long-tailed quantity exceeds some high level, the probability ap-
proaches 1 that it will exceed any other higher level: if you know the situation is
bad, it is probably worse than you think.

All long-tailed distributions are heavy-tailed, but the converse is false, and it is
possible to construct heavy-tailed distributions that are not long-tailed.

The class of long-tailed distributions is often denoted by L.
Subexponential distributions

Subexponentiality is defined in terms of convolutions of probability distributions.
For two independent, identically distributed random variables X, X5 with com-
mon distribution function F the convolution of F' with itself, F'*? is defined, using
Lebesgue—Stieltjes integration, by:

oo

PrX, + X, < 2] = F*(z) = / Flz —y)dF(y)

—0o0

The n-fold convolution F*" is defined in the same way. The tail distribution
function F is defined as F(z) = 1 — F(x).
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A distribution F' on the positive half-line is subexponential if

F*2(z) ~ 2F(z) as x — oo.
This implies that, for any n > 1,

F(x) ~nF(x) asx — oo. (18)
This condition has a rather simple interpretation. Note that nF'(x) is the tail of

the distribution of the maxima of n random variables X;,---,X,. Indeed, due
to (1 —a)" ~ 1 —na when a — 0, we have

Primax(Xy,..., X,) > 2] =1—-F"(z)=1- (1 - F(z))" ~ nF() (19)

Therefore, the probabilistic interpretation of (18) is that, for a sum of n indepen-
dent random variables X7,..., X, with common distribution F',
Pr[X; + -+ X, > 2] ~ Primax(Xy,...,X,) > ] asx — oc.

This is often known as the principle of the single big jump.
The class of subexponential distributions is often denoted by S.

All subexponential distributions are long-tailed, but examples can be constructed
of long-tailed distributions that are not subexponential.

Common heavy-tailed distributions
All commonly used heavy-tailed distributions are subexponential.

Those that are one-tailed include:

e the Pareto distribution;

e the Log-normal distribution;

e the Lévy distribution;

e the Weibull distribution with shape parameter less than 1;
e the Burr distribution;

e the log-gamma distribution;

e the log-Cauchy distribution, sometimes described as having a "super-heavy
tail” because it exhibits logarithmic decay producing a heavier tail than the
Pareto distribution.
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Those that are two-tailed include:

e The Cauchy distribution, itself a special case of both the stable distribution
and the t-distribution;

e The family of stable distributions, excepting the special case of the normal
distribution within that family. Some stable distributions are one-sided (or
supported by a half-line), see e.g. Lévy distribution. See also financial
models with long-tailed distributions and volatility clustering.

e The t-distribution.

e The skew lognormal cascade distribution.
References

1. Asmussen, S. (2003). Applied Probability and Queues. Berlin: Springer.

2. Rolski, Schmidli, Scmidt, Teugels, Stochastic Processes for Insurance and
Finance, 1999

3. Embrechts, P., Kliippelberg, C., Mikosch, T. (1997). Modelling Extremal
Events for Insurance and Finance. Berlin: Springer.

29



9 Lundberg inequality

The Lundberg exponent plays an important role in the ruin theory. We next
show the classical result (4).

Theorem 1. (Lundberg inequality) For the classical risk process the proba-
bility of ruin V(u) satisfies

U(u) < e ™ —0o < u < oo, (20)

where R > 0 s the Lundberg exponent.

Proof. Let A be the event that starting with the initial capital u the risk process
will ruin. Then U(u) = P(A). Let us denote

A, = {the ruin occurs as a result of first n claims},n = 1,2, ...

and
Ap = {the ruin occurs as a result of a negative initial capital}.

Let the corresponding probabilities be ¥, (u) = P(A,). Obviously, it is an in-
creasing sequence of events: A, C A,y1, n =0,1,2,.... Further on, as the ruin
means that at least one of the events A, occurs, then A = U, A,. By the conti-
nuity of probability we have P(A) = lim P(A,,), or ¥(u) = lim ¥, (u). Therefore,
it suffices to show that for each n > 0 the inequality

U, (u) < e B (21)

holds. For doing that, we use the method of mathematical induction. Show first
that the inequality holds for n = 0 (induction basis). Since Wo(u) = 1 for u < 0
(negative initial capital means the ruin) and Wo(u) = 0 for u > 0, the inequality
Uo(u) < e holds, as far as R > 0.

Show now that if the inequality (21) holds for an n — 1, then it also holds for
n. To do that, we condition upon S; and Z;, the time and the size of the first
claim. If the first claim arrived at time S; = s and its size was Z; = z, then
after paying out the first claim, the company’s capital is u + c¢s — z. Starting
with this new capital at time S; = s, the event A, defined above is equivalent
to the ruin due to next < n — 1 claims, and therefore the conditional probability
P(A,|S1=5,Z1 =2) =V, _1(u+cs—z). According to the rules of conditioning,
we now average (integrate) such conditional probabilities over all possible values
of S1 and Z;, while keeping in mind that S; has exponential distribution, S; ~
Ezxp(a), and that Z; has distribution F"

U, (1) = P(A,) = /0 h /0 T P(ALS: = 5, Z1 = 2) fs (5)dF(2)ds.
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As the exponential density is fg, (s) = ae™**, s > 0, we have, after substitution,
that

U, (u) = / ae_o‘s/ U, 1(u+cs — 2)dF(z)ds.
0 0

As we assume that W,,_;(u) satisfies (21), we have U,,_;(u+cs — z) < e~ filutes=2)
which gives

U, (u) S/ ae_o‘s/ e_R(“+CS_Z)dF(z)ds:e_R“-oz/ e_(a+RC)Sds-/ e dF (z).
0 0 0 0

Direct integration shows that

/Oo 6—(a+Rc)sd8 _ 1
0 a+ Re

(here it is necessary to take into account that a + Re > 0), which gives the
inequality

« oo
\Ijn < —Ru | deF .
(v) e a -+ Rc/o ‘ (2)

However, by the definition of the Lundberg exponent R, the second multiplier

satisfies —2=— [ e*dF(z) = 1, therefore we have shown that

U, (u) < e fv.

The proof is completed. [J

In order to use the Lundberg inequality, it would be good to have bounds for the
Lundberg exponent R.

Derivation of a lower bound for R.

Suppose that the claims are bounded above by some constant K, i.e. Z < K.
Then for z < K the inequality

e&<;%JM+41_fq. (22)

holds. Indeed, due to the well-known expansion formula

22 28
we have
2 R z z z 2z z R°K* 2z RPK?
— 1l-—)=1—-—4+ —+ —=—RK + — — ..
¢ 0% KT Tx™ Y2 T3 *
2,2
>1+zR+ 9] =+ ..
= el

31



Now recall the equation (17) which defines R, and apply (22):

a+cR= a/ e dF(2) = aE(ef?)
0

H Rk M)
< — 1——=).
_oz(Ke + K

From this we have:

or

Now a small "trick’ i.e. the inequality GJCT_I < €” can be used to obtain
K > 14 )

which gives

R > %ln(l—i—p).

Corollary. If the claims are bounded, Z < K, then the ruin probability satisfies

() < (14 p) /%, (23)

Example

An insurance company is running business under following conditions:

- it earns in average EUR 50 000 per day from selling insurance policies ,

- it receives in average 10 claims per day,

- the average claim is EUR 4 000.

- the claim size is bounded from above by EUR 100 000.

1) Assuming that all conditions of the classical risk process are fulfilled, estimate
the ruin probability for initial capitals EUR 10k, 100k, 1m, 5m, and 10m, using
the Lundberg inequality.

2) Draw a graph of the upper bound of the ruin probability (with initial capital
on the x-axis.)
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10 Simple approximations of ruin probabilities

It is natural to try to find “simple” and “good” approximations of W (u).

A “simple approximation” of a ruin probability is an approximation using only
some moments of the claim distribution and not the detailed tail behaviour of
that distribution. Such approximations may be based on more or less ad hoc
arguments and their merits can only be judged by numerical comparison. Others
are based on limit theorems, and the limit procedure may give hints on their
applicability. In that case numerical comparison may be needed in order to get
information about the speed of convergence and — which is almost the same —
their numerical accuracy.

The most successful simple approximation is certainly the De Vylder approrima-
tion, which is based on the idea to replace the risk process with a risk process
with exponentially distributed claims such that the three first moments coincide.
That approximation is known to work extremely well for “kind” claim distribu-
tions. The purpose of this chapter is to analyse the De Vylder approximation
and other simple approximations from a more mathematical point of view.

Several such approximations have been proposed. The most famous approxima-
tion is, of course, the Cramér—Lundberg approximation (3):

: Ru P
A =) o

This approximation, which goes back to Cramér (1930), works well in case of light
tail claim distributions, and is very accurate for large values of u. The approxi-
mation requires that the tail of F' decreases at least exponentially fast, and thus
for instance the lognormal and the Pareto distributions are excluded. In order to
include that last mentioned distributions it is usual to consider distributions F'
such that its itd F; belongs to the class S of subexponential distribution. Then,
as we have seen already,

does hold exactly. However, the latter approximation has a much slower speed of
convergence than that of Cramér-Lundberg ( see e.g. Grandell (1997, p. 222).

Both approximations above are practically somewhat difficult to apply, since they
require full knowledge of the claim distribution. Notice that they apply for fixed
values of p as u — oco. Thus those approximations may be looked upon as “large
deviation” results and it is seen that the asymptotic behaviour of ¥(u) is very
different.

We will concentrate on “simple” approximations, by which we mean that the
approximations only depend on some moments of F. The simplest such approxi-
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mation seems to be the diffusion approximation:
U(u) ~ Up(u) =€ .

where

G = E(Z7)

are the moments of the claim size distribution F'. (Note that {; = u.) This ap-
proxiamtion goes back to Hadwiger (1940). It is nowadays derived by application
of weak convergence of the compound Poisson process to a Wiener process, see
for instance Grandell (1991). It may be used if p is small and u is large in such
a way that u and p~! are of the same order. In queuing theory is known as the
“heavy traffic approximation”. The numerical accuracy of this approximation is
not very impressive. It is natural to regard the asymptotic behind the diffusion
approximation as a “central limit” situation in the sense that many claims “co-
operate” on almost equal terms. It seems that simple approximations can only
be expected to work well in such a case. Similarly as one shall apply the central
limit theorem with great care far out in the tails, one may suspect that simple
approximations ought to be used mainly when the ruin probability is not too
small.

De Vylder approximation

The De Vylder approximation, proposed by De Vylder (1978), is based on the
simple, but ingenious, idea to replace the risk process X with a risk process X
with exponentially distributed claims such that

E[X"(t)] = E[X*(t)] for k=1,2,3.

The risk process X is determined by the three parameters (&, ¢, fi) or (@&, j, ji).

We can calculate the three first moments (using characteristic function of X () ,
for example):

E[Xt)] = (c — ap)t = pa(it, (as we already know)
[X?(1)] = aGat + (patit)?,
[

E[X7(
X3(t)] = —ags + 3(patit)(alet) + (pagit)’.

E

Respective moments of the process X (t) can also be calculated:
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By equating the moments of the two processes we see that the parameters (&, p, fi)
must satisfy

paGit = pafi, aly =2aj°, als = 6ai’,

and we get
_ & 5 261G
3¢ 3¢3

Thus we are led to the De Vylder’s approximation

=

p.

___pPu__
e Al+p)

W(U) ~ ‘va<u) .

Many other approximations have been introduced. However, the De Vylder’s
approximation is considered as very simple and very often surprisingly precise.
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11 Further generalizations of the classical risk
processes

The classical risk process studied in the previous sections is a simplified model
of the wealth of an insurance company. Next some possible extensions are shown
that introduce more realistic features into the model.

A. The premiums may depend on the result of the insurance business. For
example, it is natural to make the safety loading smaller if the risk business
attains a large value.

B. Inflation and interest may be included in the model.

C. The claim arrival process may be described by a more general process than
the Poisson process:

1. Non-homogeneous Poisson processes

2. Cox processes

3. Renewal processes

The classical result (1) remains valid for all three cases 1) - 3). Classical results
(1)-(4) remain (basically) valid for renewal processes.

Also, the finite time horizon T < oo is of interest in many cases. Then the ruin
probability is defined as

U(u,T) = P{u+ X(t) <0 for some t € (0,T}.

However, then the formulae are more complex.
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12 Introduction to other financial risks

Financial institutions have become very sophisticated and scientific in their anal-
ysis, assessment and management of their financial risks. Banks and funds are
looking for quantitative risk analysts who are able to estimate risks numerically
and who also manage techniques for hedging the risks.

Types of financial risks:

e Credit risk estimates potential losses due to the inability of a counterparty
to meet its obligations. One has to account for credit risk when deciding
whether to give credit or whether to extend an existing credit.

e An operational risk is, as the name suggests, a risk arising from execution
of a company’s business functions. It is a very broad concept which focuses
on the risks arising from the people, systems and processes through which
a company operates. It also includes other categories such as fraud risks,
legal risks, physical or environmental risks. Most important tool to fight
with operational risk is to maintain tight control (keeping time schedule,
planned duration, budgeted costs).

e Liquidity risk is associated with the inability of a firm to fund illiquid assets.
(E.g. you can have a real estate property but nobody is ready to buy it -
you can not turn it into the money).

e Market risk involves the uncertainty of earnings resulting from changes in
market conditions such as the asset prices, exchange rates, interest
rates, volatility, and market liquidity. Market risk can be absolute or
relative. Absolute market risk estimates total loss expressed in currency
terms, e.g. Dollars at Risk. Trading managers focus on how much they
can lose over a relatively short time horizon such as one day. This is called
DEaR, Daily earnings at Risk. In some cases the investment horizon is
longer, such as a month. Then the term VaR (Value at Risk) is used for a
measure of potential losses. Relative market risk measures the potential
for under performance, i.e. estimated tracking error, against a benchmark.
The investment management industry (funds, investment banks etc.) uses
this version of market risk.

Of course, investors also have to face

o legal risks

e political risks.

37



12.1 The principle of diversification

Should we invest five millions into one single stock or five different stocks, one
million per stock?

Everybody has heard that

”Never put all eggs into one basket”.

But why?

Suppose 5 eggs are to be transported from one place to another.

Let us compare two strategies:

Strategy A: Put all eggs into one basket.

Strategy B: Put each egg into a new basket.

In financial terms, you have 5 millions to invest and there is a choice between
two strategies: to buy shares of one single stock, or to buy shares of five different
stocks.

To answer, we assume that any basket achieves the destination with probability
p and breaks down with probability ¢ = 1 — p. Also, assume that the baskets
behave independently from each other.

Let X be the number of ’successful’” eggs that reach the destination. We compare
strategies A and B via the expectation of X and its variance.
We see that the two strategies produce equal expected values of X:
E X = EgX = 5p.
However, the strategies differ in the variance of X:

DX =25p(1—p)

DpX =5p(1—p).
In case of strategy B, the variance is 5 times less. With strategy B, we also have
intermediate values 1,2, 3,4 that can be useful: in order to bake a cake, you do

not need all 5 eggs! We have less uncertainty (less risk) with strategy B. The risk
can be measured by the variance.
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13 Markowitz portfolio theory

Modern portfolio theory started after a paper by Harry M. Markowitz appeared
in 1956. His ideas were developed further on by Sharpe, Miller, Mossin, Lintner
a.0. (Nobel Prize in Economics 1990 - Markowitz, Miller, Sharpe). The aim is
to find an investment strategy that enables high return with a low risk. More
precisely, a suitable compromise between the expected return of the portfolio and
its risk should be found by an investor.

The following short overview of the modern portfolio theory is mainly based on:
S. Roman. Introduction to the Mathematics of Finance. Springer, 2004;

E. J. Gruber. Modern Portfolio Theory and Investment Analysis. 5th ed., Wiley,
1995.

13.1 Return

Consider a stock with its price P, at time ¢t. Most often, the time unit is a day,
or a year. The percent return (or simply, return) at time ¢ is the relative change

of the price of the stock:
_bh-Fa

"T TR
The logarithmic return is defined by

Rt = ln(l + ’f’t).
Since for small x, In(1+x) &~ z, we have that R, ~ r,. In practice, the percentage

return is calculated, but in theoretical developments both are used depending on
the problem and simplicity.

We start with the case of two stocks.

13.2 Portfolios with two stocks

Consider two stocks A and B.

Let their returns be r4 and rpg.

Expected returns are denoted by eq = E(r4), eg = E(rp).

The variances of the returns by 04 = D(r4) and 0% = D(rp).

The covariance of 74 and rp is cov(ra,rg) = E(ra —ea)(rg — ep).
The correlation coefficient between r4 and rp is

cov(ra,rp)
pAB = —————.
Oop-0OB
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Toolbox: The basic tool for further developments is the following simple formula
of the variance of the sum of two random variables:

D(aX +bY) = a*DX + b*DY + 2ab - cov(X,Y),
or
D(aX +bY) = a®’DX + DY + 2ab - poxoy,

where ox and oy are the standard deviations of X and Y, and p is the correlation
coefficient between X and Y.

Now consider a portfolio (denoted by p) consisting of the stocks A and B. Sup-
pose the investor has invested w4 percent of the money into the stock A and wg
percent into the stock B. The numbers w4, wp are called the weights of the stocks
in the portfolio. So the portfolio (p) itself is characterized by the weights w4, wg.

Class exercise

Show that the (percent) return of the portfolio satisfies
Tp = WaTs + WRTE,
i.e. the portfolio return is equal to the weighted average of the returns of its

composite assets.

Let us now calculate the expected return e, of the portfolio

e, = E(rp) = E(wara + wprpg) = waes + wpep

and its variance

2 2 9 2 2
0, = D(rp) = D(wara +wprp) = waoy + wyop + 2p Wawp 0A04.

Class exercise

Expected returns for stocks A and B are 10 percent and 20 percent (per year),
respectively. The standard deviations of the returns are 2 and 5 percent (resp.).
The correlation coefficient between the returns is -0,5. Find the expected returns
and standard deviations of returns for six portfolios composed from A and B
with weights of A as follows: ws = 0;0,2;0,4;0,6;0,8; 1. Draw the correspond-
ing graph with standard deviation on the x-axis and expected returns on the
y-axis.
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The analysis of the figure:

Portfolio frontier

Frontier portfolio is any portfolio on the portfolio line.

Short selling makes the graph ’longer’
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13.3 Portfolios consisting of n stocks

We generalize the portfolio analysis from the case of two stocks to the case of
arbitrary number (n) of stocks. Assume that short selling is allowed.

Let us introduce the following vector notation:

ro= (ry,...,m)%,
e = (en,...,en)T,
w = (wi,...,w,)",
1 = (1,...,1)7,
0 = (0,...,0)7,
Vo= (0y),

where 0;; = cov(r;,rj).

Similarly to Homework 3, the return of the portfolio is

T T
Tp =W1r1 + ... + WpTyp =W T =17 W.

Therefore, the expected return and the variance of the portfolio:

e, = FE(r,) =wie;+ ... +wpe, =w'e=clw, (24)
ag = D(rp) = D(wiry + ... + wyry) = Z ww;oi; = w Vw. (25)
'hj

Markowitz (1956) formulated the following portfolio optimization problem:

given a value of the expected return e, of the portfolio, find the weights (wy, . .., w,)
that minimize the variance o of the return of portfolio (risk of the portfolio).
Mathematically:

1 .
éwTVw — MIN,,
T _
we = e
wil = 1.

This optimization problem with two constraints can be solved by the method of
Lagrange multipliers. Firstly the Lagrange functional is composed:

1
L= §wTVw + Mep, —we) +y(1 —w'1),

where A and v are new variables (Lagrange multipliers.) Secondly, the partial
derivatives of L are equated to zero:

oL

__(D7
T
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Toolbox: Matrix derivatives

Let y = f(z) be a scalar function with the vector argument = = (z1,...,2,).
Define the vector of partial derivatives
dy Oy Jy

= (—= )T
dx oxy 0z,
Special cases:

1. Linear form

y:alxl—l—...—i—anxn:aT:c.
Then
dy
— =q
dx
2. Quadratic form
y =zl Az,

where A is an n x n matrix of constants, A = (a;;). Then

dy
— =2Ax.
dx v

O

Using the rules of matrix derivatives, we have

g—i = Vw—Xe—~1=0, (26)
oL

—a)\ = e, — wTe = 0’ (27)
oL

— = 1-w'1=0. 2
0 w 0 (28)

This is a system of n + 2 linear equations with the same number of unknowns (n
components of w, a, 7). To solve it, we assume that V' is positive definite, i.e.,
2TV > 0 for each x # 0. Then the inverse V! exists and multiplication (from
left) of both sides of (26) by V™! gives:

w=A\V"te+ V1. (29)
By substituting w into (37) and (28) one obtains:

AeTVole +4ef VT = ey,
MTVle + 41TV 1 = 1.
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or
AB + A = e,
M +~C =1,
with
A=e'Vv™1, B=€e"V e, C=1TV"'1.

This is a system of two linear equations and the substitution rule gives

Ce, — A

A= —2 =
D

B — Ae,

T Tp o

where D = BC' — A2, Finally, to get optimal weights of the portfolio, substitute
A and « into (29). The solution (denoted by w,) can be expressed in the form:

w, = g+ he,, (30)

where the vectors g, h are given by
1 -1 —1
g = E(BV 1— AV ™€) (31)

h = CV~le— AV~11). (32)

1
ok
Interpretation: ¢ is the weight vector of the portfolio whose expected return is
set to 0; h describes the change of the weight vector when the expected return e,
is increased by 1 unit.

Let us now calculate the variance of the return of the optimal portfolio, af). Due
to (25) we have
2

T
o, = w, Vw,,.

Substitution of w, from (30) gives (after simple calculations)
C AN? 1
2 _
i=5(2) *5 53)

Here one recognizes the equation of an hyperbola on the (0, €,)-plane (see next
Figure). This hyperbola is called portfolio frontier and each point on it corre-
sponds to an portfolio called frontier portfolio. Frontier portfolios on the upper
branch of the hyperbola are called efficient portfolios, on lower branch - inefficient
portfolios.

(check it!)
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Figure 3: The portfolio frontier is an hyperbola - a geometrical presentation of
the portfolios with minimum risk for a given expected return. The upper branch
contains efficient portfolios, the lower branch - inefficient portfolios. The interior
of the hyperbola is called "Markowitz bullet”.

Summary: After an investor has fixed his expected return e,, the formula (30)
shows how to compose the optimal portfolio which minimizes the variance of
return (risk). However, the investor may find the variance of the return, o,, too
large (or too small) for him. It leads to a different choice of e,. In fact, the
investor has to decide which combination of expected return and variance suits
him best. The choice depends on his level of risk-aversion.

Minimum variance portfolio (mvp)
From (33) it is seen that minimum portfolio variance is achieved when e, is taken
equal to e, = A/C. Then 02 = 1/C =: 0},

mup*

The covariance between two frontier portfolios
Let p and ¢ be two frontier portfolios. To calculate the covariance of returns of
the portfolios p and g we start from

cov(ry,rq) = w) V.

Applying (30), we have

COU<TP7 7nq) =(g+ hep)TV(g + heq)’

Exercise: Substitute g, h from (31) and (32), and show the equality

entr =S (e 2) (e 2) 4 o
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Note that in case of p = ¢ the formula (34) reduces to (33), as required.
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14 Introducing risk-free assets into the portfolio

The discussion in the previous section, the Markowitz portfolio theory, was based
upon the assumption that the portfolio can only be composed from risky assets
(stock, e.g.) In fact, there are always riskless assets available, e.g. short-term
government bills, bank account etc. The inclusion of a risk-free asset into the
model is the basic factor that turns the Markowitz theory into so called Capi-
tal Asset Pricing Model (CAPM). This innovation is generally regarded as the
contribution of William Sharpe, although Lintner and Mossin developed similar
theories at about the same time, in 1960’s.

14.1 Combination of risky portfolio and riskless asset

Interestingly, an investor can improve his or her risk/expected return balance by
investing partially in a portfolio of risky assets and partially in a risk-free asset.
Let us see why this is true.

Consider any portfolio A consisting of n risky assets available on the market of
interest. The portfolio A can be imagined as a point inside the Markowitz bullet
created by these assets. Let r4 be the return on the portfolio A, eq = E(r4) its
expected return, and ¢% the variance of the return (risk on A). Denote by r;
the return on an riskless asset. The term ’riskless’ means that r; is a constant.
Compose now a new portfolio ¢ (combined) by investing the fraction X of original
funds in the portfolio A and the fraction 1 — X in the riskless asset. We allow for
X to take any non-negative value. A value X > 1 corresponds to the borrowing
of additional money (at risk-free rate r) and investing it in the portfolio A. As
the return of the complete portfolio is r. = Xra + (1 — X)ry, its expected return

is
ec=Xesg+ (1 —X)ry (35)

and the risk of the combination, since 7 is a constant, is

02=D(r.) =D(Xra+ (1 - X)rs) = D(Xr4) = X?07.

c

Hence
.= Xoy.
Solving this for X gives
Oc
o4

Substituting this expression for X into (35) yields



Rearranging terms,

e.=rf+ er_A . Oe. (36)

Note that this is the equation of a straight line on (o, e)—plane. Therefore, all com-
binations of riskless lending (or borrowing) and the portfolio A lie on a straight
line in risk-expected return space. The intercept of the straight line is 7 and the
slope is (e4 — 77)/04. This line is shown in the Figure below. It starts from the
point (0,7) and passes through the point (04, e4) inside the Markowitz bullet.
Note that to the left of the point A we have combinations of lending money and
portfolio A, whereas to the right of the point A we have combinations of borrow-
ing money and portfolio A.

€p
]

3 Qlx

Figure 4: Capital Market Line. The symbol ‘m’ denotes the market portfolio.

Figure: The risk and expected return of combinations of an risky portfolio A and
a riskless asset. Highest expected return (given the risk) is obtained when A is
chosen as the tangency point m between the line and the efficient frontier.

It is understood that given a risk level o., any rational investor prefers the portfo-
lio which gives maximum expected return at that risk level. Therefore, the port-
folio A is outperformed by another portfolio A" which lies on the upper branch
of the portfolio frontier, has the same risk level o4 but possesses higher expected
return (see the figure). The portfolio A, in turn, is outperformed by a portfo-
lio A” which lies on the tangent line starting from the point (0,7) and passes
through the tangent point m. In our figure, A” is located on the right of the
tangent portfolio m, meaning that the portfolio A” is a combination of 1) the
portfolio m and 2) additional money borrowed at rate r; and invested in m. We
conclude that rational investors only invest in a portfolio from the tangent line
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and the investors only differ in fractions X and 1 — X they place in m and in
riskless asset.

The portfolio m is called market portfolio, and the tangent line is called Cap-
ital Market Line (CML). To repeat, the whole CML consists of portfolios that
can be combined from the portfolio m and risk-free asset by varying their frac-
tions X and 1 — X (note that X > 1 is allowed, corresponding to the borrowing
money at rate ry and investing in m).

The term 'market portfolio’ is well justified. Indeed, assuming that all investors
are rational and knowing that a rational investor only invests in m (and partly
in risk-free asset), the weights (wq, ..., w,) used for investing in n risky assets
are the same for all investors. Therefore the total money invested in the market
follows the same structure (ws,...,w,) i.e. m becomes proportional to market
capitalizations of n assets.

14.2 Derivation of the Capital Market Line

Our aim here is to derive the weights corresponding to the market portfolio m.
By definition, market portfolio maximizes the slope of the straight line (36).
Therefore we seek to find weights w = (wy, ..., w,) of n risky assets in A, subject
to the constraint that » .  w; = 1, which solves the following maximization
problem:
si=ATT MALy,
04
wll =1.

Since

and
oA = (wTVw)1/2,

the slope s can be expressed as

U)T(E—Tf

T W Vw)

Using Lagrange multipliers, we first define

wlhe —ry

L= ——— 1
(W Vw)l/2

+ A1 —w'1).
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Now take partial derivatives and set the results to zero. Rules of matrix derivation
give
oL e(wTVw)Y? — (wTVw)V2Vw(wre — ry)

9L _ M =0
ow wTVw ’

oL T
— = 1—-1=0.
B\ w 0

By substituting back w”e = e4 and (w”Vw)'/? = o4 into the first equation, it is
easy to obtain
ohe —Vw(es —rp) = o3 AL (37)

Multiplication both sides by w” from the left and using w’1 = 1 yields
ohes —o4(ea —rp) = a4\,
Hence
oAry = oS\,
from which we obtain

r
A= L.
0A

Substitute this expression for A into (37) to get

ohe —Vw(es —rp) = oqrsl.
Rearranging and multiplication of both sides by V! gives

Ay =vVe—r). (38)

2
0a

We can calculate the factor eAa;grf by multiplying (38) from the left by 17. As
A

17w = 1, we have
€A — T‘f
2

=1"V " e —r;1) = 4.
T4

Now, solving (38) for w gives

1
w==V"'(e—rsl).
1)
As this defines weights of the market portfolio m, we denote the solution by w,,:

1
Wy = SV_l(e —r¢l). (39)

We will use this formula of the market portfolio to derive the CAPM model.
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We obtain some further insight into (39) by considering a simple case of indepen-
dent assets. In such a case V! = diag(Zz) and hence

ei—rf
. 5

0;

SOl

w; =

showing that the higher the expected return of the asset i (normed by its risk
0?), the larger is its weight in the portfolio.

As we saw, rational investors only invest in the market portfolio m (and partly
in 7, the weights of m should track the market capitalization. In practise, how-
ever, it is not the case. There are several factors why investors are not always
‘rational’: 1) there are regulators, 2) investors can not afford trading all assets
available. Even big investors make choice of 20-40 assets among several hundreds.
3) Different investors use different estimates for the model parameters (means,
covariances,. ..).
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15 Capital asset pricing model

The models in the two preceding sections assume that the covariance matrix V is
known. However, financial institutions normally follow n=150 ... 250 securities,
and the number of parameters (covariances) to be estimated, n(n+1)/2 is about
20 thousand! Hence the models that simplify all analysis are welcome. Capital
asset pricing model was proposed independently by Sharpe, Lintner and Mossin
in 1960-s.

More on Market Portfolio

According to our theory all rational investors will invest in the market portfolio,
along with some amount of risk-free asset. This has some profound consequences
for this portfolio. First, the market portfolio must contain all assets on the mar-
ket for if an asset is not in the market portfolio, no one will want to purchase it
and so the asset will die out.

Since the market portfolio contains all assets, the portfolio has no specific risk-
this risk has been diversified out. Thus all risk associated with the market port-
folio is systematic risk.

In practice, the market portfolio can be approximated by a much smaller number
of assets. Studies have indicated that a portfolio can achieve a degree of diversi-
fication approaching to that of a true market portfolio if it contains a well-chose
set of perhaps 20-40 securities. We will use the term market portfolio to refer to
an unspecified portfolio that is highly diversified and thus can be considered as
essentially free of unsystematic risk.

The risk-return of an asset compared with the market portfolio.

Let us consider any particular asset k in the market portfolio. Our idea is to
use the best linear predictor to approximate the return r; on asset k by a linear
function on the return r,, of the entire market portfolio, i.e.

Ty = o + Berm + €,

where, as we know from the theory of simple linear regression analysis,

COU\TE, T
Bk = ( ];’ m)7
Um
ap = e — Brem,
€ = E(Tk>

and ¢ is the error of the model (residual random variable).
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Consider two different cases - large betas and small betas.

Figure 1. A large beta and different magnitudes of error.
The market risk is "magnified” in the asset risk.

Figure 2. A small beta and different magnitudes of error.
The asset risk is relatively insensitive with respect to the market risk, the market
risk is "demagnified” in the asset risk.

It is also seen from the graphs in the figures above that there is another factor
that contributes to the asset’s risk, a factor that has nothing to do with the mar-
ket risk - it is the error. The larger the error £ (measured, e.g., by its variance
0?), the larger the uncertainty in the asset’s expected return.

Now let us express this mathematically.

The risk

Recall, first, that the error term of linear regression is not correlated with the
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regressor. In our case it means that
cov(ry,, ) = 0.
Therefore the risk associated with the asset k is (since oy, is constant)

or = D(rx) = D(ay+ Bprm +e¢)
= D(Bkrm + 5)

2 2 2
= k0m+aa

Thus, the risk of the asset k consists of two components - quantity 8202, called
systematic risk, and quantity o2, called unsystematic or unique or idiosyn-
cratic risk. Systematic risk is proportional to the market risk, with a propor-
tionality factor of 3.

It turns out that, when adding an asset to a diversified portfolio, the unique risk
of that asset is canceled out by other assets in the portfolio. Hence, the unique
risk should not be considered when evaluating the risk-return performance of the
asset and so the asset’s beta becomes the crucial point for the risk-return analysis
of an asset. Next we will justify this viewpoint.

The expected return

Consider the expected return of the market portfolio

Cm = eTwm,

where e is the vector of expected returns on all n assets, e = (eq,...,e,).
The expected return on an individual asset k can be written as
ep = eT]lk,
where the vector 1; is defined as
1 =(0,...,0,1,0,...,0)".

To relate these two quantities, we need an expression for e.

Recall that, according to (39), the weights of the market portfolio m verify
Wy, = 6V e —rs1),
where ¢ is a constant. Solving for e gives

e = 0Vwy, + rl.
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We can now write

em =€ wy, = (Vwy, +r1) w,
5w77;LVwm + TfllTwm
= 5(Tr2n + Trf.
In the same way
er=e"ly = (6Vwn+ rfjl)le

5’[1137;‘/1],3 + T‘fﬂle
= 0-cou(ry,rm) + 1y
Therefore we can express the beta of asset k£ in terms of expected returns:
cov(ry,rm)  Oex —1Tf) e —1y

= - -

o2, em —TF) e —Ty

Finally, solving this for ej gives
ex = Brlem —rp) + 1y

These important formulae are collected in the following theorem.

Theorem. The expected return and risk of an asset k in the market portfolio is
related to the asset’s beta as follows:

ex = Pr(em —rf) + 1y (40)
and
0,% = ﬁzai + O'?. (41)

The most important observation here is that asset’s expected return depends
only on the asset’s systematic risk 8202, (through its beta) and not on its unique
risk o2. This justifies considering only the term 5202, in assessing the asset’s risk
relative to the market portfolio.

The graph of the line in equation (40) is called security market line (SML).
The equation shows that the expected return of an asset is equal to the return of
the risk-free asset plus the risk premium fy(e,, —rs) of the asset. The security
market line is shown in the figure below.

Under normal conditions the slope of SML, i.e. e, — ry is positive. Hence large
betas imply large expected returns and vice versa. This makes sense - the more
(systematic) risk in an asset, the higher should be its expected return under mar-
ket equilibrium.
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The security market line is shown in the following figure.

Figure. The security market line.

Under market equilibrium, all assets should ideally lie on the SML line. Recall
that this assumes rational investors, no investment restrictions, and other con-
ditions - the conditions that are never fulfilled entirely. Therefore, in practice
the assets are scattered around the SML, in accordance to their estimated risk
and returns. However, the SML has an ’attractive power’ which can be explained
as follows. If an asset is returning less than the market feels is reasonable with
respect to the asset’s perceived risk (the points below the SML), then no one
will buy that asset and its price will decline, thus increasing the asset’s future
return. Similarly, if the asset is returning more than the market feel is required
by the asset’s level of risk (the points above the SML), then more investors will
buy the asset, thus raising its price and lowering its expected return. Thus there
is a tendency for all assets to move closer to SML.

Example.Suppose that the riskfree rate is 3% and that the market portfolio’s
risk is 8%. Then the slope of SML is e, — ry = 0.08 — 0.03 = 0.05, and the
security market equation is

er = 0.058 + 0.03

We can now compute expected returns under market equilibrium. For example,
the value of beta 5; = 1 gives the expected return e; = 0.08, equal to that of
the market portfolio. Such an asset has the same systematic risk as the whole
market (or market portfolio). However, if the beta is less than 1, say 2 = 0.8 ,
then the asset has a smaller risk than the market portfolio. Therefore, the market
will sustain a lower expected return than that of the market portfolio, namely
es = 0.05 x 0.840.03 = 0.07 < 0.08 = e,,.
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16 Value at Risk methodology

Value at risk (VaR) has been called the "new science of risk management”. Here
we look at the idea behind VAR and the three basic methods of calculating it.

16.1 The idea behind VaR

The most popular and traditional measure of risk is volatility - the standard
deviation of the return of a financial instrument within a specific time horizon.
(Standard deviation of the return was used by us as risk measure in three previous
chapters devoted to portfolio theory.) The main problem with volatility, however,
is that it does not care about the direction of an investment’s movement: a stock
can be volatile because it suddenly jumps higher. However , if X — EX > 0 then it
is good news, and only X — EFX < 0 means bad news. Of course, investors are not
distressed by gains! Investors want to measure severity of possible unfavorable
developments.

For investors, risk is about the odds of losing money, and VaR is based on that
common-sense fact. When calculating VaR, on asks:

e What is the most I can - with a 95% or 99% level of confidence -
expect to lose in euros over the next month (year)?

VaR has become the most widely used risk measure in financial institutions, which
has also made its way into the Basel II capital- adequacy framework. VaR is one
possible approach to risk measurement and it is based on loss distributions. To
learn about the other approaches (notional amount approach, factor-sensitivity
measures, scenario-based risk measures), the reader can consult the book by
A .McNeil, R.Frey, P.Embrechts Quantitative Risk Management.

16.2 Definition of VaR

According to the idea to measure only unfavorable developments in the value of
assets we introduce the following definition.

Definition 5. The Value at Risk (VaR).

Given the confidence level a € (0,1], the VaR of the portfolio at the confidence
level a 1s given by a smallest number | such that the probability that the loss L
exceeds | is no larger than (1 — «). Formally,

VaR, =inf{lle R:P(L>1)<1—a}=inf{leR: Fr(l) > a},

where Fy, is the distribution function of loss.
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In probabilistic terms, VaR is a-quantile of the loss distribution.

Example

Methods of calculation of VaR:

1. Historical method (see additional .doc file)
2. Parametric approach (e.g. normality assumption)

3. Monte-Carlo method (a "machinery” needed to generate data)

16.3 Parametric VaR

16.3.1 One financial instrument (one risk factor)

Let us consider a financial instrument e.g. equity (typically, stocks). Let Vy, Vi, Vs, . ..

be the values of the instrument at time t = 1,2,.... Here the time unit can be

day, week, month, quarter, year etc., depending on our time horizon, A. Changes

in the values of the instrument are most often measured by relative changes, or

returns, defined as

V=V
Vi

Returns are very often expressed as percentages (in newspapers, TV, other me-
dia). Daily returns usually fluctuate within +1%, and only seldom exceed 3%.
Given the return r;, the next value of the asset can be obtained from the previous
one by the formula

Tt t:1,2,

Vi=Viea(1+ 1),

and the change of the asset’s value can be expressed as
Vi= Vi = Vi (42)

Naturally, an investor is concerned with possible maximum decrease of the asset’s
value (maximum loss). The formula (42) shows that given the previous value of
the asset, the loss depends directly on the return r; , and therefore it suffices to
find a critical value r* of the return such that the r; will be smaller than r* only
with a small probability.

Choice of VaR parameters When working with VaR, we have to choose an
appropriate time horizon A, and to decide on the confidence level . There are
no single 'right’ values for these parameters, but there are some considerations
that might influence the choice.

The time horizon A should reflect the time period over which a financial insti-
tution is committed to hold its portfolio. For instance, insurance companies are
typically bound to hold their portfolios for one year (mainly 1-year contracts).
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Hence, A = 1 year is also the appropriate time horizon for measuring the market
risk of the investment portfolio of such companies.

There are other more practical considerations which suggest thatA should be
relatively small: the use of simplified (linearized) loss formulas is justified if risk-
factor changes are small, which is more likely for small A. Also, the composition
of the portfolio remains unchanged only with small A. Moreover, we have more
data points for estimation of model parameters if A is small.

The confidence level « is given in advance and is often taken as 5%, or 1%, or
0,1% etc. However, there are no clear-cut recommendations for the choice of a.
For capital adequacy purposes a high confidence level is called for in order to
have sufficient safety margin. For instance, Basel Committee ! proposes the use
of VaR at the 99% level and A equal to 10 days for market risk. In order to set
limits for traders, a bank would typically take 95% and A equal to one day.

16.3.2 Two risk factors

Homework 6. (VaR)

1) An French investor is long (i.e. has a long position of) 200 000 EUR of shares
of a German stock company. The standard deviation of the return of this asset,
taken with respect to the time horizon of 10 days, is 1,22 4+ 0,1 -k % (here k is
the last digit of your student ID). Find the critical magnitude [ (in EUR) of the
loss of the position over a 10 days period, such that the probability that the loss
exceeds [ is not larger than 0,05 (find VaR).

2) Suppose that the same position is owned by a US investor. It is known that
the standard deviation of the return of the exchange rate USD/EUR is 0,35%
(w.r.t. the same time horizon). The correlation coefficient between the two re-
turns equals -0,1.

Find the critical magnitude [ (in USD) of the loss of the position over a 10 days
period, such that the probability that the loss exceeds [ is not larger than 0,05
(find VaR). Current exchange rate is 0,658 EUR/USD.

Comment the difference between the two answers. What is the cause of the dif-
ference?

!The Basel Committee on Banking Supervision (BCBS) is a committee of banking super-
visory authorities of 27 countries, whose mandate is to strengthen the regulation, supervision
and practices of banks worldwide.
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16.4 VaR of the portfolio

(covariances needed)

16.5 Expected shortfall

(as alternative to VaR)

16.6 Coherent risk measures

(with counter-example)
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