Simulation methods in mathematical finance Sample final examination

Consider an option which gives the owner the the payoff $\max(S(T) - 1.2 \cdot S(T_1), 0)$ at T = 0.5. Assume that the risk free interest rate is 0.1 and that the current value of the stock is S(0) = 20. Assume also that the option price at time t = 0 is given by the expected value

$$E[e^{-rT}\max(S(T) - 1.2S(T_1), 0)],$$

where S(t) follows a suitable market model specified later. Hint: Note that the Brownian motion values in the formulas for S(T) and $S(T_1)$ are not independent!

- 1. Assume BS model with constant volatility $\sigma = 0.5$ holds and that $T_1 = 0.2$. Compute the price of the option with accuracy 0.01 with standard MC method. The answer should be approximately 1.065
- 2. Use control variates method with the discounted payoff of the standard call option a the control variate to compute the price of the option considered in the previous exercise with accuracy 0.001.
- 3. Assume that the stock price satisfies the system of stochastic differential equations

$$dS(t) = S(t) \cdot (r dt + V(t)dB_1(t)),$$

$$dV(t) = (0.5 - V(t)) dt + 0.5 \cdot V(t) dB_2(t)$$

with the initial conditions S(0) = 20, V(0) = 0.3. Here B_1 and B_2 are independent standard Brownian motions. Let $T_1 = 0.2$. Find the price of the option by the standard MC method with Monte Carlo error less than 0.01 with the probability 0.95 by using Euler's method with m = 10 time steps for generating stock prices. The answer should be 0.527 ± 0.01 .

4. Modify the code of the third problem so that it works with any value of T_1 so that T_1 is one of time moments for which the stock price is computed. Derive a suitable vector v for stratified sampling for this option. Use optimal stratified sampling for computing the value of the option with m=77 and $T_1 = \frac{1}{\sqrt{7}}$ and allowed MC error 0.001.