Lecture 2

September 10, 2018

Practical problem

- Practical problem
- Matematical model, assumptions

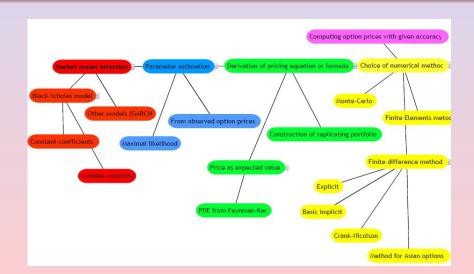
- Practical problem
- Matematical model, assumptions
- Theoretical answer

- Practical problem
- Matematical model, assumptions
- Theoretical answer
- Derivation of numerical methods

- Practical problem
- Matematical model, assumptions
- Theoretical answer
- Derivation of numerical methods
- Practical implementation: model fitting, implementation of num. method, intertpretation of the answer

- Practical problem
- Matematical model, assumptions
- Theoretical answer
- Derivation of numerical methods
- Practical implementation: model fitting, implementation of num. method, intertpretation of the answer
- Backtesting

- Practical problem
- Matematical model, assumptions
- Theoretical answer
- Derivation of numerical methods
- Practical implementation: model fitting, implementation of num. method, intertpretation of the answer
- Backtesting
- Main example: option pricing



• 7 practical assignments, up to 4 points each

- 7 practical assignments, up to 4 points each
- 3 theoretical assignments, up to 4 points each

- 7 practical assignments, up to 4 points each
- 3 theoretical assignments, up to 4 points each
- 20 points for homeworks needed to qualify for the final examination

- 7 practical assignments, up to 4 points each
- 3 theoretical assignments, up to 4 points each
- 20 points for homeworks needed to qualify for the final examination
- Final examination: 4 problems, 2 theoretical, 2 practical, 15 points each

- 7 practical assignments, up to 4 points each
- 3 theoretical assignments, up to 4 points each
- 20 points for homeworks needed to qualify for the final examination
- Final examination: 4 problems, 2 theoretical, 2 practical, 15 points each
- Final grade: \geq 90p -> A, 80-89.99p -> B, 70 79.99 points -> C and so on

Definition.

An option is a contract giving it's holder the right to receive in the future a payment which amount is determined by the behavior of the stock market up to the moment of executing the contract.

Definition.

An option is a contract giving it's holder the right to receive in the future a payment which amount is determined by the behavior of the stock market up to the moment of executing the contract.

Example. An European option is the right to receive the amount p(S(T)) at time T.

Definition.

An option is a contract giving it's holder the right to receive in the future a payment which amount is determined by the behavior of the stock market up to the moment of executing the contract.

Example. An European option is the right to receive the amount p(S(T)) at time T.

Example. European call option is the right to buy one share of stock at time T for the price E, ie $p(s) = \max(s - E, 0)$.

Options Black-Scholes market model Self-financing investment strategies No arbitrage condition Itö's formula

Conclusions

Conclusions

 Naive pricing approaches (based on the expected return and risk) do not work.

Conclusions

- Naive pricing approaches (based on the expected return and risk) do not work.
- In the case of some market models the option price is determined completely by the model and no arbitrage condition

Conclusions

- Naive pricing approaches (based on the expected return and risk) do not work.
- In the case of some market models the option price is determined completely by the model and no arbitrage condition
- There are market models, for which the option prices are not determined completely but prices of different options have to be consistent with each other.

$$dS(t) = S(t)(\mu(t) dt + \sigma(S(t), t) dB(t))$$

$$dS(t) = S(t)(\mu(t) dt + \sigma(S(t), t) dB(t))$$

 μ - trend

$$dS(t) = S(t)(\mu(t) dt + \sigma(S(t), t) dB(t))$$

 μ - trend

 σ - volatility

$$dS(t) = S(t)(\mu(t) dt + \sigma(S(t), t) dB(t))$$

 μ - trend

 σ - volatility

B(t)- the standard Brownian motion (Wiener process)

 $B(t_2)-B(t_1)$ is Normally distributed with mean 0 and standard deviation $\sqrt{t_2-t_1}$.

 BS market model is a stochastik differential equation. If we want to see the output of the model, we need to solve it

Euler-Maruyama method

- BS market model is a stochastik differential equation. If we want to see the output of the model, we need to solve it
- In most cases we have to solve approximately

- BS market model is a stochastik differential equation. If we want to see the output of the model, we need to solve it
- In most cases we have to solve approximately
- The simplest numerical method Euler-Maruyama method

- BS market model is a stochastik differential equation. If we want to see the output of the model, we need to solve it
- In most cases we have to solve approximately
- The simplest numerical method Euler-Maruyama method
- ullet Intuitively for non-intersecting time periods (t_{i-1},t_i) we have

$$S(t_i) \approx S(t_{i-1}) + S(t_{i-1})(\mu(t_{i-1})h_i + \sigma(S(t_{i-1}), t_{i-1})X_i)$$

= $S(t_{i-1})(1 + \mu(t_{i-1})h + \sigma(S(t_{i-1}), t_{i-1})X_i),$

where $h_i = t_i - t_{i-1}$ and $X_j \sim N(0, \sqrt{h_i})$, j = 1, 2, ..., N and X_i are independent normally distributed random variables. This relation enables us to simulate sample trajectories according to the market model.

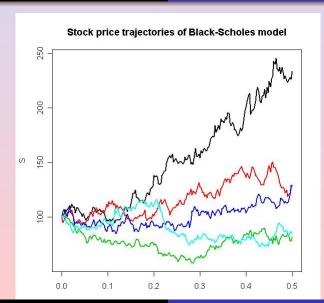
- BS market model is a stochastik differential equation. If we want to see the output of the model, we need to solve it
- In most cases we have to solve approximately
- The simplest numerical method Euler-Maruyama method
- ullet Intuitively for non-intersecting time periods (t_{i-1},t_i) we have

$$S(t_i) \approx S(t_{i-1}) + S(t_{i-1})(\mu(t_{i-1})h_i + \sigma(S(t_{i-1}), t_{i-1})X_i)$$

= $S(t_{i-1})(1 + \mu(t_{i-1})h + \sigma(S(t_{i-1}), t_{i-1})X_i),$

where $h_i = t_i - t_{i-1}$ and $X_j \sim N(0, \sqrt{h_i}), \ j = 1, 2, ..., N$ and X_i are independent normally distributed random variables. This relation enables us to simulate sample trajectories according to the market model.

• The computations correspond to using Euler-Maruyama method for solving BS Stochastic Differential Equation (SDE)



Self-financing investment strategies

Self-financing investment strategies

A portfolio consists from a bank holding (a loan or a deposit) and a number of shares of a stock

Self-financing investment strategies

A portfolio consists from a bank holding (a loan or a deposit) and a number of shares of a stock

Assume that there are no transaction costs

Self-financing investment strategies

A portfolio consists from a bank holding (a loan or a deposit) and a number of shares of a stock

Assume that there are no transaction costs

The value of a **self-financing** portfolio changes only because of the interest rate payments, dividend payments and the changes of the value of the stock.

Self-financing investment strategies

A portfolio consists from a bank holding (a loan or a deposit) and a number of shares of a stock

Assume that there are no transaction costs

The value of a **self-financing** portfolio changes only because of the interest rate payments, dividend payments and the changes of the value of the stock.

No-arbitrage condition

It is not possible to make riskless profit on the market

No-arbitrage condition

It is not possible to make riskless profit on the market

Corollary: If a self-financing portfolio produces exactly the same cash flows as holding an option, then the value of the portfolio and the option price have to be equal.

Understanding notation for partial derivatives

 In this course we often use composition of functions and processes

Understanding notation for partial derivatives

- In this course we often use composition of functions and processes
- It is very important to understand the order of operations

Understanding notation for partial derivatives

- In this course we often use composition of functions and processes
- It is very important to understand the order of operations
- Let f(x, t) be a function of two real numbers. What is

$$\frac{\partial}{\partial t}f(t^2,t)$$
?

What is

$$\frac{\partial f}{\partial t}(t^2,t)$$
?

ltō's formula

f(y, t) - a twice differentiable function

ltō's formula

f(y,t) - a twice differentiable function

$$dY(t) = \alpha(t) dt + \beta(t) dB(t),$$

Itō's formula

f(y, t) - a twice differentiable function

$$dY(t) = \alpha(t) dt + \beta(t) dB(t),$$

$$df(Y(t),t) = \left(\frac{\partial f}{\partial t}(Y(t),t) + \frac{\beta(t)^2}{2}\frac{\partial^2 f}{\partial y^2}(Y(t),t)\right)dt + \frac{\partial f}{\partial y}(Y(t),t)dY(t).$$