Survival Models

Lecture VI. Multistate models (MSM). Continuous time Markov chains

Study materials for multistate models

The following lectures are based on different textbooks and course notes.

The main book:

• Meira-Machado, Una-Alvarez, Cardarso-Suarez, Andersen (2007). *Multi-state models for the analysis of time to event data*.

Supplementary reading:

- Aalen, Borgan, Gjessing (2008). Survival and event history analysis. A process point of view.
- Beyersmann, Schumacher & Allignol (2012). Competing risks and multistate models with R.
- Dickson, Hardy, Waters (2013). Actuarial mathematics for life contingent risks.
- Hougaard (2001). Analysis of multivariate survival data.

Survival model in framework of random processes

Let us first notice that since a survival model models time to an event, this model can be written in terms of a random process.

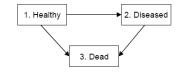
Simple mortality model:

Obviously, a model with just two states (and one of them is absorbing) is more convenient to handle by a time-to-event random variable.

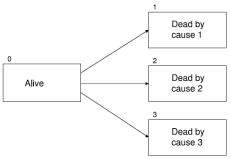
But using the random processes' framework, it is fairly simple to generalize the model by including more states.

Examples of multistate models (1)

Illness-death model (with terminal illness)



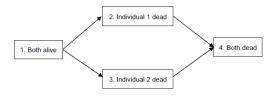
Competing risks model



Examples of multistate models (2)

k-progressive model

Bivariate model



Examples of multistate models (3)

HIV disease progression

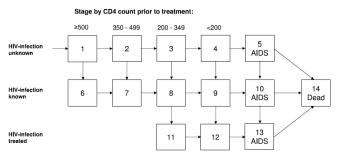


Fig. 1.12 Model for progression of HIV disease, according to level of CD4 count and whether the infection was known (by positive HIV test) or not.

Multistate models. Notation

Let us denote:

- $\{X(t), t \ge 0\}$ a (continuous time) stochastic process (describing the health status of an individual). For each fixed t, X(t) is a random variable
- S (countable) state space corresponding to the process (i.e. the set of possible values for X(t)). For example
 - in simple mortality model $S = \{1, 2\}$:
 - 1 alive
 - 2 dead
 - in competing risks model with two competing risks $S = \{1, 2, 3\}$:
 - 1 alive
 - 2 dead (cause 1)
 - 3 dead (cause 2)
 - in illness-death model $S = \{1, 2, 3\}$:
 - 1 alive (healthy)
 - 2 ill
 - 3 dead

Transition probabilities. Markov property

To describe a multistate model, the key question is to find or estimate the following transition probabilities

$$\mathbb{P}\{X(t+s) = j | X(t) = i, X(u) = x(u), 0 \le u < t\},\$$

where $s, t \ge 0$, and $i, j, x(u), 0 \le u < t$ are possible states for given model.

Modelling such process is in general a fairly complex task. Usually, certain simplifactions are assumed, most popular of them is the Markov property:

$$\mathbb{P}\{X(t+s) = j | X(t) = i, X(u) = x(u), 0 \le u < t\} = \mathbb{P}\{X(t+s) = j | X(t) = i\}$$

In other words, the process has no memory, the (probabilistic) future behaviour is given by the last known state. This property also allows us to use notation $P_{ij}(t,t+s)$.

A stochastic process with Markov property is called a Markov chain

Transition intensities

Alternative option is to describe the model via transition intensities:

$$\lim_{\Delta t \to 0} \frac{\mathbb{P}(X(t+\Delta t) = j \mid X(u) = x(u), \ 0 \leqslant u < t, \ X(t) = i)}{\Delta t},$$

which, in case of a Markov model, simplify to

$$h_{ij}(t) = \lim_{\Delta t o 0} rac{P_{ij}(t, t + \Delta t)}{\Delta t}$$

Transition intensities

Alternative option is to describe the model via transition intensities:

$$\lim_{\Delta t \to 0} \frac{\mathbb{P}(X(t + \Delta t) = j \mid X(u) = x(u), \ 0 \leqslant u < t, \ X(t) = i)}{\Delta t},$$

which, in case of a Markov model, simplify to

$$h_{ij}(t) = \lim_{\Delta t \to 0} \frac{P_{ij}(t, t + \Delta t)}{\Delta t}$$

NB!

The similarity of this notation to the notation of hazard function is intentional. The transition intensities in case of a survival model can be interpreted as "state changing" hazards.

Important preliminaries about Markov chains (1)

Chapman-Kolmogorov equation

$$P_{ij}(z, t + \Delta t) = \sum_{k \in \mathcal{S}} P_{ik}(z, t) P_{kj}(t, t + \Delta t)$$

Kolmogorov forward equation (KFE)

$$\frac{dP_{ij}(z,t)}{dt} = \sum_{k \in \mathcal{S} \setminus \{j\}} P_{ik}(z,t) h_{kj}(t) - h_j(t) P_{ij}(z,t),$$

where
$$h_j(t) = \sum_{i:i \neq j} h_{ji}(t)$$

Kolmogorov backward equation (KBE)

$$\frac{dP_{ij}(z,t)}{dz} = h_i(z)P_{ij}(z,t) - \sum_{k \in \mathcal{S}\setminus\{i\}} h_{ik}(z)P_{kj}(z,t),$$

where $h_i(z) = \sum_{j: j \neq i} h_{ij}(z)$

Important preliminaries about Markov chains (2)

Idea of proof.

• For KFE: apply the Chapman-Kolmogorov equation to

$$P_{ij}(z, t + \Delta t)$$

and consider the limit

$$\lim_{\Delta t \to 0} \frac{P_{ij}(z, t + \Delta t) - P_{ij}(z, t)}{\Delta t}$$

• For KBE: apply the Chapman-Kolmogorov equation to

$$P_{ij}(z,t)$$

and consider the limit

$$\lim_{\Delta t \to 0} \frac{P_{ij}(z + \Delta t, t) - P_{ij}(z, t)}{\Delta t}$$

Important preliminaries about Markov chains (3)

A Markov chain is called homogeneous if it satisfies

$$P_{ij}(t, t + s) = P_{ij}(0, s) = P_{ij}(z, z + s),$$

for any t, z, s > 0 and $i, j \in \mathcal{S}$

Such assumption obviously simplifies the formulas (and thus the estimation of all the required quantities) significantly

Question(s)

What restrictions does the homogeneity assumption imply? Is a homogeneous Markov chain suitable model for general practice?

Important preliminaries about Markov chains (3)

A Markov chain is called homogeneous if it satisfies

$$P_{ij}(t, t + s) = P_{ij}(0, s) = P_{ij}(z, z + s),$$

for any t, z, s > 0 and $i, j \in \mathcal{S}$

Such assumption obviously simplifies the formulas (and thus the estimation of all the required quantities) significantly

Question(s)

What restrictions does the homogeneity assumption imply? Is a homogeneous Markov chain suitable model for general practice?

In case of survival models, a homogeneous Markov chain is obviously an oversimplified model, because it implies that all the transition intensities (=hazards!) are constant. A more general option is to use piecewise constant transition intensities, which retains most of the simplicity, but allows to model the changes in hazard.

Multistate models. Additional notation

Cumulative hazards:

$$H_{ij}(s,t)=\int_s^t h_{ij}(u)du$$

and

$$H_i(s,t) = \int_s^t h_i(u) du$$

Probability of not changing the state in a time interval:

$$P_{ii}(0,t) = e^{-H_i(0,t)} = e^{-\int_0^t h_i(u)du},$$

and, more generally

$$P_{ii}(z,t) = e^{-H_i(z,t)} = e^{-\int_z^t h_i(u)du}$$

Competing risks model (1)

Consider an competing risks model with two competing risks. Let us denote the states of the model as follows:

- 1 alive (healthy)
- 2 dead (cause of risk 1)
- 3 dead (cause of risk 2)

Then the only possible transitions are $1 \rightarrow 2$ and $1 \rightarrow 3$.

Competing risks model (2)

Let us now apply KFE to $P_{11}(z, t)$:

$$\frac{dP_{11}(z,t)}{dt} = \sum_{k \in \{2,3\}} P_{1k}(z,t)h_{k1}(t) - P_{11}(z,t)h_{1}(t) = -P_{11}(z,t)h_{1}(t)$$

This differential equation is easy to solve, because

$$\frac{d \ln P_{11}(z,t)}{dt} = \frac{\frac{dP_{11}(z,t)}{dt}}{P_{11}(z,t)} = -h_1(t),$$

thus the solution is on the form

$$\ln P_{11}(z,t) = -\int_{z}^{t} h_{1}(u)du + C$$

or, equivalently

$$P_{11}(z,t) = e^{-\int_z^t h_1(u)du} e^C = e^{-H_1(z,t)}$$

Competing risks model (3)

Applying KFE to $P_{12}(z, t)$ results in

$$\frac{dP_{12}(z,t)}{dt} = P_{11}(z,t)h_{12}(t),$$

which implies (since $P_{12}(z, z) = 0$):

$$P_{12}(z,t) = \int_{z}^{t} P_{11}(z,u)h_{12}(u)du$$

Finally, $P_{13}(z,t)$ can be found from

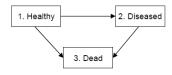
$$P_{13}(z,t) = 1 - P_{11}(z,t) - P_{12}(z,t)$$

Illness-death model (1)

Consider an illness-death model with terminal illness. Let us denote the states of the model ad follows:

- 1 alive (healthy)
- 2 (terminally) ill
- 3 dead

Then the only possible transitions are $1 \rightarrow 2$, $1 \rightarrow 3$ and $2 \rightarrow 3$.



Illness-death model (2)

Applying KFE (similarly to previous) implies:

$$P_{11}(z,t) = e^{-H_1(z,t)}$$

and

$$P_{22}(z,t) = e^{-H_2(z,t)}$$

Furthermore, it can be shown that

$$P_{12}(z,t) = \int_{z}^{t} P_{11}(z,u)h_{12}(u)P_{22}(u,t)du$$