
Generalized Linear Models
Lecture 10. Count data models IV.

Zero-truncated models. Generalized Poisson model
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Count data without zeros

Situation: data has less zeros than model (or no zeros at all)

Missing zeros. Motivating examples
Problems in healthcare economics: use of medical services (days in hospital,
use of x-ray, etc.)
Medical problems: alcohol use, drug use, sudden deaths
Problems in ecology: dead trees, animals hit on highways

Possible solution: Zero Truncated (ZT) model
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Zero Truncated Poisson (ZTP) model
To model count data without zeros, we need to estimate pmf, taking into account
that there are no zeros

Corresponding conditional probability:

P{Yi = yi |Yi > 0} = P{Yi = yi}
1− P{Yi = 0}

For Poisson distribution
p(yi ;µi ) = exp(−µi )µyi

i
yi !

Probability of having zero: P(Yi = 0) = exp(−µi )
Probability of not having zero: 1− P(Yi = 0) = 1− exp(−µi )

ZTP as conditional model

p(yi ;µi |Yi > 0) = exp(−µi )µyi
i

[1− exp(−µi )]yi !
,

where µi = exp(xT
i βi )
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Log-likelihood for ZTP model

Let us start with the pmf:

p(yi ;µi |Yi > 0) = exp(−µi )µyi
i

[1− exp(−µi )]yi !
, µi = exp(xT

i β)

Log-likelihood for i-th observation (with µi = exp(xT
i β)):

l(yi ;µi |Yi > 0) = yi [xT
i β]− exp(xT

i β)− ln yi !− ln[1− exp{− exp(xT
i β)}]

Log-likelihood for ZTP model

l(yi ;µi |Yi > 0) =
∑{

yi [xT
i β]− exp(xT

i β)− ln yi !− ln[1− exp{− exp(xT
i β)}]

}
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Zero truncated NB (ZTNB) model

Let us start with the pmf of NB distribution

p(yi ;µi , k) = Γ(k + yi )
yi ! Γ(k) ( k

k + µi
)k(1− k

k + µi
)yi

and apply the condition of that there are no zeros

The probability that NB-distributed r.v. Yi takes value zero is

P{Yi = 0} =
(

k
k + µi

)k

The conditional probability is thus

p(yi ;µi , k|Yi > 0) = p(yi ;µi , k)
1− P{Yi = 0}

The log-likelihood for ZTNB model can be derived analogously to ZTP model
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Example. Length of stay in a hospital

Example. Length of hospital stay
A study of length of hospital stay, in days, as a function of age, kind of health
insurance and whether or not the patient died while in the hospital. Length of
hospital stay is recorded as a minimum of at least one day. Corresponding
hypothetical data file has 1,493 observations and the variables are

stay – length of stay
age – group from 1 to 9 (will be treated as interval in this example)
hmo – indicator (1/0, has HMO insurance?)
died – indicator (1/0, died in hospital?)

Question of interest is whether and how the length of hospital stay depends on the
mentioned variables.

Source: https://stats.idre.ucla.edu/r/dae/zero-truncated-poisson/
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Example. ZTP for length of stay

> library(VGAM)
> m1 <- vglm(stay ~ age + hmo + died,

family = pospoisson(), data = data)
> summary(m1)
...
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.435808 0.027332 89.119 < 2e-16 ***
age -0.014442 0.005035 -2.869 0.00412 **
hmo1 -0.135903 0.023741 -5.724 1.04e-08 ***
died1 -0.203771 0.018372 -11.091 < 2e-16 ***
...
Number of linear predictors: 1
Name of linear predictor: loge(lambda)
Log-likelihood: -6908.799 on 1489 degrees of freedom
Number of iterations: 3
No Hauck-Donner effect found in any of the estimates
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Example. ZTNB for length of stay

> m2 <- vglm(stay ~ age + hmo + died,
family = posnegbinomial(), data = data)

> summary(m2)
...
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept):1 2.40833 0.07158 33.645 < 2e-16 ***
(Intercept):2 0.56864 0.05489 10.359 < 2e-16 ***
age -0.01569 0.01304 -1.204 0.229
hmo1 -0.14706 0.05922 -2.483 0.013 *
died1 -0.21777 0.04615 -4.719 2.38e-06 ***
...
Number of linear predictors: 2
Names of linear predictors: loge(munb), loge(size)
...

> AIC(m1)
[1] 13825.6
> AIC(m2)
[1] 9520.559
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Example. Counting skunks

Example. Skunks
Special traps were used to count the number of skunks in an area. Skunks that
did not fall to the trap were not counted (thus the dataset does not contain
zeros). The number of times each individual skunk was captured over several
trappings was recorded. Individual skunks never trapped could not be recorded, so
only counts of one or more appear in the data. One goal is to estimate the
number of skunks in the area for each sex in each of two years. The dataset
contains the following variables:

y – the number of times a skunk was captured (response)
year – 1977 or 1978
sex

Source: Zelterman, D. (2002). Advanced Log-Linear Models using SAS
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Skunk

Skunks are nocturnal animals. They hunt at night and sleep in the daytime. Skunks are omnivorous, eating both plant and animal material and changing
their diets as the seasons change. Skunks are North and South American mammals. Not related to polecats which are in the weasel family, the closest Old
World relative to the skunk is the stink badger. The animals are known for their ability to spray a liquid with a strong unpleasant smell.
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Example. Skunks, ZTP model (1)

> modelZTP=vglm(y~year*sex,freq=freq,family="pospoisson",data=skunk)
> summary(modelZTP)
...
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.0372 0.2014 5.149 2.62e-07 ***
year78 -0.4187 0.2742 -1.527 0.127
sexM 0.1933 0.2553 0.757 0.449
year78:sexM -0.7492 0.5242 -1.429 0.153
...
Number of linear predictors: 1
Name of linear predictor: loge(lambda)
Log-likelihood: -78.9688 on 47 degrees of freedom
Number of iterations: 5
No Hauck-Donner effect found in any of the estimates
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Example. Skunks, ZTP model (2)

> modelZTP=vglm(y~year,freq=freq,family="pospoisson",data=skunk)
> summary(modelZTP)
...
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.1521 0.1237 9.317 <2e-16 ***
year78 -0.6566 0.2104 -3.121 0.0018 **
...
Number of linear predictors: 1
Name of linear predictor: loge(lambda)
Log-likelihood: -80.115 on 49 degrees of freedom
Number of iterations: 4
No Hauck-Donner effect found in any of the estimates

> exp(coef(skunkM)[2])
year78

0.5186258

Interpretation?
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Example. Skunks, ZTNB model

> modelZTNB=vglm(y~year,family="posnegbinomial",data=skunk)
There were 50 or more warnings (use warnings() to see the first 50)
> summary(modelZTNB)
...
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept):1 1.1653 0.1250 9.324 < 2e-16 ***
(Intercept):2 7.4287 157.0156 0.047 0.96226
year78 -0.6444 0.2093 -3.080 0.00207 **
...
Number of linear predictors: 2
Names of linear predictors: loge(munb), loge(size)
Log-likelihood: -80.136 on 99 degrees of freedom
Number of iterations: 10
Warning: Hauck-Donner effect detected in the following estimate(s):
’(Intercept):1’

Interpretation?
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Example. Skunks, conclusion

> exp(coef(modelZTNB)[2])
(Intercept):2

1683.699

> AIC(modelZTP)
[1] 164.2299

> AIC(modelZTNB)
[1] 166.2719

Conclusion?

GLM (MTMS.01.011) Lecture 10 14 / 24



Summary. Models with "zero-problems"

ZI – zero inflated models, too many zeros, count process zeros are of interest,
resulting model is a mixture
ZA – zero altered (hurdle models) – too many zeros, zeros are not of interest,
zeros are analyzed separately (two-step model)
ZT – zero truncated models – no zeros, conditional model

Models with Poisson distribution: ZIP, ZAP, ZTP

Models with negative binomial distribution: ZINB, ZANB, ZTNB
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Summary. Which model is best?

Options for choosing the best model:
Common sense, follow the schema: Poisson, overdispersed Poisson, NB,
excess zeros (ZI, ZA models) or missing zeros (ZT models)
Information criteria (AIC, BIC)
Tests (Poisson vs NB, likelihood ratio test, Vuong’s test)
compare the predictions and actual values (RMSE, MAE)

Source: Zuur et al. (2009), p 291
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Summary. Overview of count models

Source: Zuur et al. (2009), p 293GLM (MTMS.01.011) Lecture 10 17 / 24



Generalized Poisson model
Joe & Zhu (2005), Consul (1989)

Pmf of generalized Poisson distribution

p(y ;λ, ξ) = λ

y ! [λ+ ξy ]y−1 exp(−λ− ξy), y = 0, 1, . . .

λ > 0, −1 ≤ ξ < 1

Mean and variance:

EY = µ = λ

1− ξ

DY = λ

(1− ξ)3 = µ

(1− ξ)2 = 1
(1− ξ)2 EY = ϕEY ,

where ϕ = 1
(1−ξ)2 is the variance function

Thus,
ξ = 0 means ϕ = 1, i.e. we have Poisson distribution with parameter λ
ξ > 0 means ϕ > 1, i.e. overdisperson
ξ < 0 means ϕ < 1, i.e. underdisperson

Source: Hardin & Hilbe (2007) p 239
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Example. GP model. Elderly drivers

Data from 901 drivers with at least 65 years of age from Alabama 1991–1996
response variable – number of accidents within 5 years
arguments – several health related variables, driving habits, car type, final sample
had 595 drivers

About data: mean number of accidents 0.76, variance 1.33 (overdispersion!)
Poisson model and GP model were estimated, GP model is better ((ξ =)α 6= 0)
Both models have 7 significant arguments
NB model was also estimated, but GP is considered more flexible

Further developments
Famoye, Singh (2006): drivers who did not drive did not cause accidents ⇒ ZIGP
model
Zeros in data 47.2%, Poisson or GP model suggest 36%

Famoye, Wulu, Singh (2004). On the generalized Poisson Regression model with an application to accident data. Journal of Data Science, 2, 287–295
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Example continued. Results of Poisson and GP models
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Further generalizations

Zero inflated GP models (ZIGP)

Zero truncated GP models (ZTGP)

other generalizations to Poisson model (e.g. Conway-Maxwell-Poisson)
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Example. Australian doctor visits (revisited)

Let us recall the Australian doctor visits dataset.

The dataset contains information for approximately 5,000 Australian individuals
about the number and possible determinants of doctor visits that were made
during a two-week interval.
Variables used for modelling:

doctorco – response variable, the number of visits
sex – 0/1 (male/female)
age – age/100 (people over 72 are coded to age 72)
illness - number of illnesses during 2 weeks (1, .., 5; over 5 coded to 5)
income - income (in 1000AUD)
hscore - health score (bigger score means worse health)
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Example solution in R. GP model (1)

> library(VGAM)
> modelGP = vglm(doctorco ~ sex + age + illness + hscore,

family = "genpoisson", data = docvisit)
> summary(modelGP)
...
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept):1 0.47618 0.03161 15.065 < 2e-16 ***
(Intercept):2 -2.63041 0.08154 -32.257 < 2e-16 ***
sex 0.21126 0.06530 3.235 0.00121 **
age 1.02032 0.15408 6.622 3.55e-11 ***
illness 0.24495 0.02093 11.701 < 2e-16 ***
hscore 0.09163 0.01136 8.067 7.18e-16 ***
...
Number of linear predictors: 2
Names of linear predictors: rhobit(lambda), loge(theta)
Log-likelihood: -3363.963 on 10374 degrees of freedom
Number of iterations: 5
Warning: Hauck-Donner effect detected in the following estimate(s):
’(Intercept):2’
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Example solution in R. GP model (2)

How is R output related to GP model?

Recall the pmf of GP:

p(yi ;λi , ξ) = λi
yi !

[λi + ξyi ]yi −1 exp(−λi − ξyi ), yi = 0, 1, . . .

In R:
theta corresponds to λ̂i
⇒ ln(λ̂i ) = η

(2)
i = −2.63041 + 0.21126 · sex + 1.02032 · age + . . .

lambda corresponds to ξ̂ ⇒ rhobit(ξ̂) = η(1) = 0.47618

What about rhobit?
rhobit(ξ) = 1+ξ

1−ξ , inverse function is rhobit−1(η) = exp(η)−1
exp(η)+1

no know relation to hobbit (or any other J.R.R.Tolkien’s character)
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