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Lecture 12. Censored and truncated models
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Censored/truncated count data models

Truncation – some of the counts are completely omitted
Usually truncated from left, analogous to zero-truncation, resulting model is
a conditional model

Censoring – the counts are restricted
Censoring is considered as a cutpoint, censored observations are considered as
potential outcomes

Log-likelihood generally consists of three parts:
left-censored part + uncensored part + right-censored part

Underlying distribution can be either Poisson or NB
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Right-censoring
Typical situation in count data: corresponds to ’... or more’

Instead of actual counts Y ∗ we consider censored counts Y

We assume that certain indicator C determines the observation process:

C := I{Y ∗≤a} =
{
1, if Y ∗ ∈ {0, . . . , a}
0, if Y ∗ ∈ {a + 1, a + 2, . . .}

for some positive integer a

Censored variable Y = min(Y ∗, a + 1)

P{C = 1} = P{Y ∗ ≤ a} = FY ∗ (a), FY ∗ (a) =
a∑

j=0
pY ∗ (j)

P{C = 0} = P{Y ∗ > a} = 1− FY ∗ (a)

Pmf of censored counts

pY (y) =
{

pY ∗ (y), if y = 0, 1, . . . , a
1− FY ∗ (a), if y = a + 1
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Models with right-censored data
Pmf of a censored count variable can be written as

pY (y) = C · pY ∗ (y) + (1−C)(1−FY ∗ (a)) = C · pY ∗ (y) + (1−C)[1−
a∑

j=0
pY ∗ (y)]

It has been proved that censored ML estimator is consistent and asymptotically
normally distributed if the pmf pY ∗ (y) is correctly determined

If the actual count Y ∗ is Poisson distributed, i.e. pY ∗ (y ;µ) = exp(−µ)µy

y ! ,
the censored pmf has the following form:

pY (y ;µ) = C exp(−µ)µy

y ! + (1− C)[1−
a∑

j=0

exp(−µ)µj

j! ]

One can also think of zero-modified censored models, e.g. right-censored
zero-inflated Poisson model (CZIP)
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Example. Right-censoring + Zero-inflation
Fish caught at a state park
Data on 250 groups that went to a park. Each group was questioned about how
many fish they caught (count, 0–149, many zeros), how many children were in
the group (child), how many people were in the group (persons), and whether
or not they brought a camper to the park (camper).

Applied models: 5 different CZIP (censored zero-inflated Poisson) models
Censoring at a = 4(18%), 7(10%), 10(7.2%), 13(6.4%), 16(4.8%),
i.e. the count is at least a
The form of models:

µ̂ = exp(b0 + b1camper + b2persons + b3child), ln π̂

1− π̂ = a0 + a1child

Results: a1 > 0, b3 < 0; b1, b2 > 0
Conclusion: increasing the number of censored values will increase the
standard errors, but BIC decreases, i.e. the model is better

Source: Saffari, S.E., Adnan, R. Zero-Inflated Poisson regression models with right censored count data, Matematika, UTM, vol 27 (1), 21– 29

GLM (MTMS.01.011) Lecture 12 6 / 56



Left-truncation (zero-truncation)
Some of the counting results are omitted

Zero-truncation based on conditional distribution:

P{Y = y |Y > 0} = P{Y = y}
1− P{Y = 0}

Consider the Poisson distribution

p(y ;µ) = exp(−µ)µy

y ! = µy

exp(µ)y !

Probability of zero exp(−µ)
Probability of non-zero 1− exp(−µ)

ZTP model (zero-truncated conditional model)

p(y ;µ|Y > 0) = exp(−µ)µy

(1− exp(−µ))y !
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Left-truncation (further truncation)

Left-truncation (truncation from below) at d > 0:

P{Y = y |Y > d} = P{Y = y}
1− P{Y ≤ d − 1}

Left-truncated Poisson model
Y ∈ {d , d + 1, . . .},

P{Y = y |Y > d} = µy

y ![exp(µ)−
∑d−1

j=0 µ
j/j!]

In case of left-truncation E (Y |Y > d) = EY + δ, δ > 0, i.e. mean is greater than
in non-truncated case
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Right-truncation

Right-truncation (truncation from above) at c:

P{Y = y |Y ≤ c} = P{Y = y}
P{Y ≤ c}

Right-truncated Poisson model
Y ∈ {0, 1, . . . , c},

P{Y = y |Y ≤ c} = µy

y !
∑c

j=0 µ
j/j!

In case of right-truncation E (Y |Y ≤ c) = EY + δ∗, δ∗ < 0, i.e. mean is smaller
than in non-truncated case
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Censoring vs truncation

Censoring and truncation are related but different concepts

Censoring
Left: if b is the smallest observed value, it is not exact and means that y ≤ b
Right: if a is the largest observed value, it is not exact and means that y ≥ a

Truncation
Left: truncation at d means that only observations y > d are used, smaller
values, if they exist, are omitted
Right: truncation at c means that only observations y ≤ c are used, larger
values, if they exist, are omitted
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Survival/Duration models
Duration data: response variable can be interpreted as time to event

Survival/Duration models is a widely used branch of GLM,
different fields use slightly different terminology:

Demographics – life tables (since Halley’s life table 1693), birth rates
Medicine, biostatistics – survival analysis
Insurance – hazard analysis, life table analysis
Economics – duration analysis, transition analysis: labor markets, strike
duration, ’survival’ of companies, business failure prediction, government
changes
Sociology – event history analysis: length of marriages, analysis of consumer
behaviour, recidivism analysis
Engineering – reliability theory: analysis of reliability of a system (time to
failure)
Queuing theory, waiting time theory – optimization of service times (time
until start/end of service)
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Survival function

Let us denote
T – a (continuous) nonnegative rv (lifetime of individuals in a population)
F (t) = P(T ≤ t) – (cumulative) distribution function (cdf) of T
f (t) = F ′(t) – probability density function (pdf) of T

In survival analysis, the following function plays central role.

Definition (Survival function/survivor function/reliability function)
The probability that an individual survives to time t is given by the survival
function:

S(t) = P(T > t) = 1− F (t).

From the properties of cdf it immediately follows that
S(0) = 1, S(∞) = limt→∞ S(t) = 0
S(t) is continuous and non-increasing
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Example. Survival function (in medicine)
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Example. Survival function (Strike duration)

Source: Cameron & Trivedi (2005). Microeconometrics Methods and Applications, Cambridge University Press, p. 575
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Example. Survival function (’survival’ of companies)

Source: Oki Kim. Developing Business Failure Models using SAS software. Business failure prediction
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Hazard function

Definition (Hazard function)
The hazard function specifies the instantaneous rate of failure at T = t given
that the individual survived up to time t

h(t) = lim
∆t→0+

P{t 6 T < t + ∆t|T > t}
∆t = f (t)

S(t)

In terms of survival function, we can write

h(t) = lim
∆t→0+

S(t)− S(t + ∆t)
∆t · S(t)

The hazard function is not a density or a probability. We can think of it as the
probability of failure in an infinitesimally small time period between t and t + ∆t
given that the subject has survived up till time t. In this sense, the hazard is a
measure of risk: the greater the hazard between times t1 and t2, the greater the
risk of failure in this time interval
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Examples of hazard functions
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U-shaped hazard

Survival after heart attacks (WHAS500 data)
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Hazard functions of different distributions

Source: W.G. Greene (2003). Econometric analysis. New York University, Prentice Hall.
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Cumulative hazard function

Definition (Cumulative hazard function/integrated hazard function)
Integrating the hazard function h(t) over interval (0, t) gives the cumulative
hazard function

H(t) =
∫ t

0
h(u) du

Similarly to the hazard function, the cumulative hazard function is not a
probability but is a measure of risk: the greater the value of H(t), the greater the
risk of failure by time t.

NB!
Both hazard function and cumulative hazard function define the corresponding
distribution uniquely, thus they can be considered as alternative tools for defining
a distribution.
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Location-scale family. Log-linear models

One common modelling option for survival data is the class log-linear models for
lifetime T
More specifically, we are interested in the models where the log-transform
Y = ln(T ) belongs to location-scale family, i.e. each rv Y can be expressed as

Y = µ+ σZ ,

where Z is the standard member (µ = 0 and σ = 1):

T Y = ln(T )
Weibull extreme minimum value
log-normal normal
log-logistic logistic
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Example. Weibull pdf

k – shape parameter (k = 1 means exponential dist.)
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Example. Weibull hazard function

p – shape parameter (p = 1 means exponential dist.)
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Parametric regression models (1)

Suppose that arguments X = (X1, . . . ,Xp) influence the time variable T
⇒ parameters of dist. of T depend on those arguments, i.e. we have conditional
functions f (t|x), h(t|x), S(t|x)

Two main models that are used
1 Accelerated failure time model – parametric model, (usually) the effect of

arguments to survival time is estimated

2 Proportional hazards model – semiparametric model, (usually) the effect of
arguments to hazard function is estimated

In more general case, the arguments can change in time
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Parametric regression models (2)

γ – scale, α – shape
Source: A.C. Cameron, P.K. Trivedi (2005). Microeconometrics Methods and Applications, Cambridge University Press.
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Accelerated failure time (AFT) model (1)

Accelerated failure time (AFT) model
AFT model is characterized by the following property of survival function:

S(t|x) = S0(exp(−xT β)t) = S0(t∗),

where S0(·) denotes the baseline survival function

Thus
if xT β decreases then t∗ increases, which means the time to failure
accelerates – accelerated failure time model
if xT β increases then t∗ decreases, which means the time to failure
decelerates – decelerated failure time model
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Accelerated failure time (AFT) model (2)

AFT model is also called location-scale model, as it can be written as a log-linear
model for failure time T such that

Y = ln T = xT β + Z ,

where Z has a distribution from location-scale family

For example, the following regression models belong to the class of AFT models:
exponential
Weibull
log-logistic
log-normal
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Cox proportional hazards model
For Cox PH model (Cox, 1972), the hazard function is

h(t|x) = h0(t) · exp(xT β),

where h0(t) is a baseline hazard function (does not depend on the covariates x)

Exponential and Weibull models are special cases of this model

Definition (Proportional hazards property)
For two different observations x1 and x2, the hazard ratio

h(t|x1)
h(t|x2) = exp(xT

1 β)
exp(xT

2 β)
= exp

(
(xT

1 − xT
2 )β

)
is constant with respect to time t.

Estimates for β are based on marginal likelihood (Kalbfleisch (1973)) or partial
likelihood (Cox (1972, 1975), Prentice (1983))
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Example. Survival analysis of leukemia patients

Survival times of leukemia patients (in weeks)
Treatment: 6 6 6 6* 7 9* 10 10* 11* 13 16 17* 19* 20* 22 23 25* 32* 32* 34* 35*
Placebo: 1 1 2 2 3 4 4 5 5 8 8 8 8 11 11 12 12 15 17 22 23

Estimated survival function (Kaplan-Meier) (* means censoring)

Source: Gehan (1965) data. Lindsay (2007). Applying Generalized Linear Models, p 114
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Example continued
Exponential and Weibull AFT models and Cox PH model were fitted (using
treatment as an argument)

Results:
1 Exponential distribution

null model: AIC = 235.5
two groups: AIC = 221.0
estimated (constant) hazard ratio exp(1.527) = 4.604 (since β̂ = 1.527)

2 Weibull distribution
null model: AIC = 236.5
two groups: AIC = 218.9
estimated (constant) hazard ratio exp(1.726) = 5.618 (since β̂ = 1.726)

3 Cox PH model
null model: AIC = 255.8
two groups: AIC = 242.4
estimated (constant) hazard ratio exp(1.521) = 4.577 (since β̂ = 1.521)

Conclusion?
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Censoring in survival data

Censoring can arise in different situations and can be classified in several ways:
right censoring – a data point is above a certain value but it is unknown by
how much, e.g., indemnity limits in non-life insurance

left censoring – a data point is below a certain value but it is unknown by
how much, e.g., it is fixed when a diagnose is set, but the exact starting time
of illness is not known

interval censoring – a data point is somewhere in an interval between two
values, e.g., time between visits to a doctor

Censoring is also classified into Type I, Type II and random censoring
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Likelihood for censored data (1)

Let us denote
Ti – lifetime of individual i , i = 1, . . . , n (with cdf F , pdf f , and survival
function S)
Ci – random censor time with survival function SC and pdf fC

Thus we can model the observed time Yi as

Yi = min{Ti ,Ci},

Let δi denote the failure indicator for observation i . Then the likelihood
for uncensored observations (δi = 1) is

Lδi =1 = f (ti )SC (ti )

for censored observations (δi = 0) is

Lδi =0 = fC (ti )S(ti )
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Likelihood for censored data (2)

Now

L =
n∏

i=1
[f (ti )(SC (ti ))]δi [S(ti )fC (ti )]1−δi ,

which (assuming C does depend on any arguments of interest) implies

ln L =
n∑

i=1
[δi ln f (ti ) + (1− δi ) ln S(ti )] (+const.)

or, equivalently,

ln L =
n∑

i=1
[ln S(ti ) + δi ln h(ti )] (+const.)
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Censored data in proportional hazards model
Proportional hazards model: h(t|x) = h0(t) exp(xT β)

Cumulative hazard

H(t|x) =
∫ t

0
h(u|x)du = H0 exp(xT β),

where H0 is cumulative baseline hazard: H0(t) =
∫ t
0 h0(u)du

Survival function:
S(t|x) = exp(−H0(t) exp(xT β))

Now the expressions for S(t|x) and h(t|x) imply

ln S(t|x) = −H0(t) exp(η), ln h(t|x) = ln h0(t) + η, where η = xT β

⇒ we have both required components for log-likelihood:

ln L =
n∑

i=1
[δi (ln h0(ti ) + ηi )− H0(ti ) exp(ηi )]

Maximizing the log-likelihood gives us estimates for β
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Proportional hazards model as Poisson model
Denote µi = H0(ti ) exp(ηi ), then lnµi = ln H0(ti ) + ηi

Recall the expression of log-likelihood
ln L =

∑n
i=1[δi (ln h0(ti ) + ηi )− H0(ti ) exp(ηi )] and rewrite it as

ln L =
n∑

i=1
(δi lnµi − µi ) +

n∑
i=1

δi ln h0(ti )
H0(ti )

Notice that the first summand is similar to Poisson log-likelihood and second does
not depend on arguments ⇒ the failure indicator δi can be considered a Poisson
r.v. with mean µi

Parameter vector β is estimated using standard methods,
where ln H0(ti ) can be considered as offset (fixed additional intercept)

Thus, the model for failure indicator is a Poisson model with log-link:

lnµi = ln H0(ti ) + xT
i β
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Example. Cox proportional hazards model
Recidivism analysis
Persons released from Maryland’s prison (n = 432) were under surveillance the
following year. Weekly data was collected: 52 weeks, censoring occurred if there
were no arrests during this period (week – week of arrest)

Prisoner week arrest
174 17 1
999 30 0
77 43 1
168 52 0
...

Available arguments: fin (1–support, 0–no support), age, wexp (1–working experience,
0–no exp.), mar (1–married), education, prio (number of prior convictions)
Cox proportional hazards model was fitted: h(t) = h0 exp(b1x1 + . . .+ bkxk)
Results: fin: b = −0.38, exp(−0.38) = 0.68, age: b = −0.057, exp(−0.057) = 0.94,
prio: b = 0.09, exp(0.09) = 1.09, coef.-s for education, marriage, working experience
were not significant

Data: Rossi et al. 1980, analyzed by Allison 1984, Fox 2002 (in R)
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Example. Analysis of recidivism data (1)
Recidivism data survival function, median T̂0.5 = 43
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Example. Analysis of recidivism data (2)
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Censoring of a continuous response. Motivating examples

Censoring of a continuous response variable is a common problem in economic
data. Several examples are available in economics and sociology:

1 Household expenditures on durable goods (Tobin, 1958)
2 Analysis of extramarital affairs (Fair, 1977, 1978)
3 The number of hours worked by a woman in the labor force (Quester, Green,

1982)
4 Household expenditures on various commodity groups (Jarque, 1987)
5 Vacation expenditures (Melenberg, Soest, 1996)
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Censoring and truncation for continuous response
Recall that

Truncated data – some observations are missing (in response and in
arguments)
Censored data – some observations are missing in response

In case of truncated data, more information is lost

The truncated/censored variable Y is usually given conditionally through a
(partially observed) latent variable Y ∗ and the corresponding realizations are
denoted by y and y∗

In case of truncation/censoring from below (left), Y ∗ is observed if it exceeds
certain threshold (often 0)

Let us have Y = Y ∗ if Y ∗ > 0

Example
Model for annual hours worked by hourly wage w (generated data)
Model y∗ = −2500 + ln(w), censored below from 0 hours (35% of observations)

Source: Cameron & Trivedi (2005). Chap. 16: Tobit and selection models, 529 – 572
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Example. Model for hours worked
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Censoring (1)

Censoring from below/left:

Y =
{

Y ∗, if Y ∗ > b
b, if Y ∗ ≤ b

In other words, we have a continuous-discrete mixture:
If Y > b, we have a continuous distribution with pdf f (y |x) = f ∗(y |x)
There is point mass at b, P{Y = b|x} = P{Y ∗ ≤ b|x} = F ∗(b|x)

Thus, in case of left-censoring

f (y |x) =
{

f ∗(y |x), if y > b
F ∗(b|x), if y = b
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Censoring (2)

Defining the indicator D by D = 1 for Y > b and D = 0 for Y = b (recall the
construction from survival models!) and denoting the observed value of D by d ,
we obtain the conditional density:

f (y |x) = f ∗(y |x)dF ∗(b|x)1−d (1)

and the corresponding sample log-likelihood is

ln L(θ) =
∑

[di ln f ∗(yi |x i , θ) + (1− di ) ln F ∗(bi |x i , θ)]

where θ is the parameter of corresponding distribution

A common option is to choose equal threshold: bi = b
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Truncation

Truncation from below/left: Y = Y ∗, if Y ∗ > b

Conditional density under truncation:

f (y |x) = f ∗(y∗|x; (Y ∗|x) > b) = f ∗(y |x)
P{(Y ∗|x) > b} = f ∗(y |x)

1− F ∗(b|x)

Corresponding sample log-likelihood:

ln L(θ) =
∑

[ln f ∗(yi |x i , θ)− ln(1− F ∗(bi |x i , θ))] (2)

ML estimates obtained using truncated or censored log-likelihood are consistent
and asymptotically normal if the distribution of the latent variable is correctly
determined
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Tobit model

Tobit model: censored normal regression model

Censoring from below (at b = 0):

Tobit model
Model Y ∗ = xT β + ε, where ε ∼ N(0, σ2)

Y =
{

Y ∗, if Y ∗ > 0
−, if Y ∗ ≤ 0

Observed values y are equal to observed values y∗ if y∗ > 0 and missing (or 0) if
y∗ ≤ 0

In general, data may be censored either from below or below or from both sides

Tobin (1958) was the first to apply this model (modelling household expenditures on durable goods)
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Truncation of normal distribution

Source: Vijayamohanan, Pillai N. (2009)
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Estimation of Tobit model
The parameters of Y ∗ = xT β + ε are estimated using MLE

Let us find the likelihood, starting from (1), where y∗ is a realization of
Y ∗ ∼ N(xT β, σ2)

For F ∗(0) we write

F ∗(0) = P{Y ∗ ≤ 0} = P{xT β + ε ≤ 0} = Φ
(
−xT β

σ

)
= 1− Φ

(
xT β

σ

)
(3)

Thus, using the indicator d (with b = 0), the relation (1) can be rewritten

f (y |x) =
[

1√
2πσ2

exp
{
− 1
2σ2 (y − xT β)2

}]d [
1− Φ

(
xT β

σ

)]1−d

Sample log-likelihood:

ln L(β, σ2) =
∑{

di

[
−1
2 ln 2π − 1

2 lnσ2 − 1
2σ2 (yi − xT

i β)2
]

+ (1− di ) ln
[
1− Φ

(
xT

i β

σ

)]}
(4)
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Estimation of truncated model

Tobit model can be applied to truncated data as well (although originally meant
for censored data)

Let us start with log-likelihood (2):

ln L(θ) =
∑

[ln f ∗(yi |x i , θ)− ln(1− F ∗(Li |x i , θ))]

Now, applying formula (3) for F ∗(0), we obtain:

ln L(β, σ2) =
∑[

−1
2 ln 2π − 1

2 lnσ2 − 1
2σ2 (yi − xT

i β)2 − ln Φ
(

xT
i β

σ

)]
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Problems with Tobit model

Tobit model is very sensitive to assumptions about the distribution:

if the model errors are not normally distributed or the variance is not constant,
MLE estimates are not consistent

One possibility to overcome this problem is to also estimate a model for variance:
σ2i = xT

i γ and use this estimate in (4)
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Variations of Tobit model

In case of censoring we assume that the same process is defining measuring and
censoring

In general, these processes can be different

Two approaches:

1 Two-step (or two-part) model
2 Sample selection model
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Two-part model

Model proposed by Cragg (1971) as a generalization of Tobit model

We define a participation model, where
participant, indicator D = 1, fully measured, Y > 0
non-participant, indicator D = 0, not measured, Y = 0

Two-part model

f (y |x,w) =
{

P{D = 0|w}, if y = 0
P{D = 1|w}f (y |D = 1, x), if y > 0

Main choices for participation model are logit and probit model

Does this construction ring a bell? Do you recall any two-part models we
have studied already?

Known also as hurdle model, since participation starts if a "hurdle" is crossed. For
example, ZAP and ZANB models are two-part models
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Example of a two-part model

Analysis of health expenditure
Data from health insurance. Two questions:

was there any expenditure during a year
if there is some expenditure, how to model it

Two-part solution:
Probit model: P{D = 1|w} = Φ(wT β1)
Log-normal model (provided that there is some expenditure):
ln Y |D = 1, x ∼ N(xT β2, σ

2
2)

Source: Duan et al (1983)
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Sample selection model

The assumption of random sample is not always fulfilled, selection may be
related to the response variable (self-selection)!

In extreme case, only participants are selected. This needs to be taken into
account while estimating the parameters

Depending on what the selection depends, we may apply different models: Tobit
model, Tobit 2 model (Heckman’s model), Roy model

Most of these models were developed by Heckman in 1970s

James Joseph Heckman (s. 1944), US economist, Nobel prize in 2000 (together with McFadden)
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Two-dimensional sample selection (Tobit 2)
Let Y ∗

2 be the response var. of interest. In case of regular Tobit model we only observe
Y ∗
2 > 0

In a more general case, we may include a latent var. Y ∗
1 so that Y ∗

2 is observed if
Y ∗
1 > 0

Two-dimensional sample selection model (Tobit 2 / Heckman’s model)
1. Participation

Y1 =
{

1, if Y ∗1 > 0
0, if Y ∗1 ≤ 0

2. Measuring

Y2 =
{

Y ∗2 , if Y ∗1 > 0
−, if Y ∗1 ≤ 0

In other words, the model assumes that Y2 is observed if Y ∗1 > 0

Models for latent variables:
Y ∗1 = wT β1 + ε1,
Y ∗2 = xT β2 + ε2

Reduces to regular Tobit model if Y ∗1 = Y ∗2
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The Roy model (Roy, 1951)
So far we assumed that Y2 is not observed if Y1 = 0

In general, Y2 can be observed, but it has two possible states

In that case we have three latent responses Y ∗1 ,Y ∗2 ,Y ∗3 :
Y ∗1 determines whether Y ∗2 or Y ∗3 is observed

The Roy model

Y1 =
{

1, if Y ∗1 > 0
0, if Y ∗1 ≤ 0

Y =
{

Y ∗2 , if Y ∗1 > 0
Y ∗3 , if Y ∗1 ≤ 0

Models for latent variables:
Y ∗1 = wT β1 + ε1,
Y ∗2 = xT β2 + ε2,
Y ∗3 = xT β3 + ε3
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Typology

Source: Hopkins, D. (2005). Heckman Selection Models
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