
Generalized Linear Models
Lecture 2. Exponential Family of Distributions

Score function. Fisher information
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Background. Linear model

y = Xβ + ε, Ey = µ = Xβ

y = (y1, . . . , yn)T – dependent variable, response
X = (1, xc

1, . . . , xc
k) – design matrix n × p, 1 – vector of 1s

β = (β0, . . . , βk)T – vector of unknown parameters
k – number of explanatory variables (number of unknown parameters p = k + 1)
ε = (ε1, . . . , εn)T – vector of random errors

Assumptions:
Eεi = 0, εi ∼ N(0, σ2), Dεi = σ2.
⇒ Model has normal errors, constant variance and the mean of response
equals to the linear combination of explanatory variables.

There are some situations where general linear models are not appropriate
The range of Y is restricted (e.g. binary, count)
The variance of Y depends on the mean.

Generalized linear models extend the general linear model framework to address
these issues.
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Data structure
In cross-sectional analysis the data (yi , xi ) consists of observations for each
individual i (i = 1, . . . , n).
Ungrouped data – the common situation, one row of data matrix corresponds to
exactly one individual.
Grouped data – only rows with different combinations of covariate values appear
in data matrix, together with the number of repetitions and the arithmetic mean
of the individual responses

Notation
n – number of groups (or individuals in ungrouped case)
ni – number of individuals (repetitions) corresponding to row i
N – total number of measurements (sample size):

N =
n∑

i=1
ni

Ungrouped data is a special case of grouped data with n1 = . . . = nN = 1 (and
n = N).

Source: Fahrmeir, Tutz (2001); Tutz (2012)
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Example. Grouped data

Table taken from Tutz (2012)
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Generalized linear model

Conditional distribution of response variable Y belongs to exponential family,
Yi ∼ E with mean µi .

Generalized design matrix
X = (xij), i = 1, . . . , n; j = 1, . . . , p
X = (x1, . . . , xn)T , where xi is the covariate vector for row i
NB! Columns of X can be transformed from original data using certain design
functions

Generalized linear model
Conditional mean of response: µi = h(xT

i β), g(µi ) = xT
i β

g – link function, h – response function, h = g−1

The generalized linear model expands the general linear model so that the
dependent variable is linearly related to the explanatory variables via a specified
link function.

GLM (MTMS.01.011) Lecture 2 5 / 32



Three components of GLM

There are three components to any GLM:
Random component: identifies dependent variable Y , its (conditional)
probability distribution belongs to exponential family, Yi ∼ E with mean µi .
Systematic component: identifies the set of explanatory variables in the
model, more specifically their linear combination in creating the so called
linear predictor ηi

.= g(µi ) = xT
i β.

Link Function: identifies a function of the mean that is a linear function of
the explanatory variables (specifies the link between random and systematic
components g(µi ) = ηi )
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Exponential family of distributions
Exponential Family (Pitman, Koopman, Darmois, 1935–1936)
Natural Exponential Family (Morris, 1982)
Simple Exponential Family (Tutz, 2012)
Exponential Dispersion Family (Bent Jorgensen, 1987) ϕ → a(ϕ)

Definition. Natural Exponential family of distributions
Exponential family is a set of probability distributions whose probability density
function (or probability mass function in case of a discrete distribution) can be
expressed in the form

f (yi ; θi , ϕi ) = exp
{

yiθi − b(θi )
ϕi

+ c(yi , ϕi )
}
,

θi – natural or canonical parameter of the family
ϕi – scale or dispersion parameter (known), often ϕi = ϕ · ai ,
for grouped data: ai = 1/ni , for ungrouped data: ai = 1, i = 1, . . . , n.
b(·) – real-valued differentiable function of parameter θi

c(·) – known function, independent of θi
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Regular distribution

Distributions belonging to the exponential family of distributions are regular, i.e.
Integration and differentiation can be exchanged.
The support of the distribution ({x : f (x , θ) > 0}) cannot depend on
parameter θ.

For a regular distribution:
E∂l(θ; y)

∂θ
= 0

E∂
2l(θ; y)
∂θ∂θT = −E(∂l(θ; y)

∂θ

∂l(θ; y)
∂θT )
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Mean and variance in the exponential family, 1

Lemma
If the distribution of r.v. Y belongs to exponential family, Y ∼ E , it can be shown
that:

expected value of Y is equal to the first derivative of b with respect to θ, i.e.
EY = b′(θ)
variance of Y is the product of the second derivative of b(θ) and the scale
parameter ϕ, i.e. DY = ϕb′′(θ)

Note that both mean and variance are determined by the function b(·)

The second derivative of function b is called the variance function ν(θ) := b′′(θ)

The variance function ν describes how the variance depends on the mean.
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Mean and variance in the exponential family, 2

In a GLM, we assume that the conditional distribution of responses Yi = Y |xi is
in the exponential family, i.e.

f (yi ; θi , ϕi ) = exp
{

yiθi − b(θi )
ϕi

+ c(yi , ϕi )
}

Then, by previous lemma:
µi = E(Yi ) = b′(θi ) = ∂b(θi )

∂θ

σ2i = D(Yi ) = ϕiν(θi ) = ϕib′′(θi ) = ϕi
∂2b(θi )
∂θ2

Since θi depends on µi , it can be written as θi = θ(µi ) and thus ν is usually
considered as a function of µi
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Link function
Definition. Link function
Link function g(·) is a function that relates the mean value of response to the
linear predictor (linear combination of predictors).

ηi = g(µi ) = xT
i β

Link function must be monotone and differentiable.

For a monotone function g we can define the inverse called the response
function (h = g−1).

The choice of the link function depends on the type of data.

Certain link functions are natural for certain distributions and are called canonical
(natural) links.
For each member of the exponential family, there exists a natural or canonical link
function.
The canonical link function relates the canonical parameter θi directly to the
linear predictor θi = g(µi ) = ηi = xT

i β
Canonical links yield ’nice’ mathematical properties in the estimation process.
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Setup

xT
i β = ηi

h=g−1

−−−−−→
←−−−−−g

µi

θ
−−−−−→
←−−−−−

µ

θi

Functions µ and θ are specified by a particular distribution

We want to predict µi using x i ⇒ we need to find best β for our model

MLE goes through θi , the natural parameter of exponential family

With canonical link ηi = θi and the calculations are simpler (yet this is not
the only criterion for choosing link function g)
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Canonical (natural) links
Normal distribution N(µ, σ2)
Canonical parameter: θ = µ ⇒ canonical link: g(µ) = µ, link identity

Bernoulli distribution B(1, π), µ = π

Canonical parameter: θ = ln π
1−π , canonical link: g(µ) = ln µ

1−µ , Logit-link

Poisson Distribution Po(λ), µ = λ

Canonical parameter: θ = lnλ, canonical link: g(µ) = lnµ, Log-link

Gamma distribution
Canonical parameter: θ = (−)µ−1, canonical link: g(µ) = (−)µ−1, inverse-link

Inverse Gaussian IG
Canonical parameter: θ = (−) 1

2µ2 , canonical link: g(µ) = (−) 1
2µ2 , squared

inverse link
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Example: Normal distribution N(µi , σ
2)

Probability density function

f (yi ;µi , σ) = 1√
2πσ2

exp (− (yi − µi )2
2σ2 ),

− (yi − µi )2
2σ2 = − y2

i
2σ2 + 2yiµi − µ2i

2σ2
⇒ Normal distribution belongs to the exponential family:

canonical (natural) parameter θi = µi (identity link is canonical)
b(θi ) = 1

2µ
2
i (= 1

2θ
2
i )

mean: b′(θi ) = µi (= θi )
variance: ϕi · b′′(θi ), b′′(θi ) = 1, ϕi = σ2
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Example: Poisson distribution Po(µi) (Po(λi))

Probability mass function

p(yi ;µi ) = exp(−µi )
µyi

i
yi !

= exp(−µi + yi lnµi − ln(yi !))

Let θi = lnµi , then

p(yi ; θi ) = exp(yiθi − exp(θi )− c(yi ))

⇒ Poisson distribution belongs to the exponential family:
canonical (natural) parameter θi = lnµi (log-link is canonical)
b(θi ) = exp(θi )
mean: b′(θi ) = exp(θi ) = µi

variance: ϕi · b′′(θi ), b′′(θi ) = µi , ϕi = 1
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Example: Bernoulli distribution B(1, µi) (B(1, πi))

Probability mass function

p(yi ;µi ) = µyi
i (1− µi )1−yi =

(
µi

1− µi

)yi

(1− µi )

p(yi ;µi ) = exp
(

yi ln( µi
1− µi

) + ln(1− µi )
)

⇒ Bernoulli distribution belongs to the exponential family:
canonical (natural) parameter is log-odds, which yields logistic canonical link:

θi = ln( µi
1− µi

)

b(θi ) = ln(1 + eθi )
dispersion (scale) parameter ϕi = 1
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Likelihood and log-likelihood

Estimation of the parameters of a GLM is done using the maximum likelihood
method.
Parameter values that maximize the log-likelihood are chosen as the estimates for
parameters.

Likelihood function

L(θi ; yi ) = f (yi ; θi , ϕi ) = exp
{

yiθi − b(θi )
ϕi

+ c(yi , ϕi )
}

Log-likelihood function

li (θi )
.= ln L(θi ; yi ) = yiθi − b(θi )

ϕi
+ c(yi , ϕi )
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Likelihood of a sample

Let us have a sample y consisting of n independent units and let θ be the vector
of corresponding natural parameters. Then we have

Likelihood of a sample

L(θ; y) =
n∏

i=1
exp

{
yiθi − b(θi )

ϕi
+ c(yi , ϕi )

}

Log-likelihood of a sample

l(θ; y) .= ln L(θ; y) =
n∑

i=1
li (θi ) =

n∑
i=1

{
yiθi − b(θi )

ϕi
+ c(yi , ϕi )

}
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Maximum Likelihood estimation

Note than we are actually interested in estimating the parameters β not θ
Let us also recall that µi and θi depend on each other, i.e.

µi = µ(θi )
θi = θ(µi )

Further, since our model is g(µ(θi )) = xT
i β = ηi or, equivalently,

µ(θi ) = h(xT
i β) = h(ηi ), we also have

θi = θ(µi ) = θ(h(xT
i β))

⇒ we can express θi through the unknown parameter β

This allows to write us the likelihood w.r.t. β as follows:

l(β; y) =
n∑

i=1
li (β) =

n∑
i=1

yiθ(h(xT
i β))− b(θ(h(xT

i β)))
ϕi

+ . . .
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Score function

Definition. Score function
Score function s(·) is the derivative of log-likelihood function with respect to the
parameters

Score function for parameters β:

s(β) =
n∑

i=1
si (β), si (β) = ∂li (β)

∂β
=
(
∂li (β)
∂β1

, . . . ,
∂li (β)
∂βp

)T
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Calculation of the score function, 1

Recall that θi = θ(µi ) = θ(h(xT
i β)) = θ(h(ηi ))

Thus we can calculate the score function as follows:

s(β) = ∂l(β)
∂β

=
n∑

i=1

∂li (θi )
∂θ

· ∂θ(µi )
∂µ

· ∂h(ηi )
∂η

· ∂ηi
∂β

,

where
1 ∂li (θi )

∂θ = yi−b′(θi )
ϕi

= yi−µi
ϕi

2 ∂θ(µi )
∂µ =

(
∂µ(θi )
∂θ

)−1
=
(
∂2b(θi )
∂θ2

)−1
= 1

ν(θi ) = ϕi
σ2

i

3 ∂ηi
∂β = xi
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Calculation of the score function, 2

Now, putting the obtained derivatives together, we get

s(β) =
n∑

i=1
si (β) =

n∑
i=1

xi
∂h(ηi )
∂η

(yi − µi )
σ2i

Question
What happens if the link function is canonical, i.e. θi = ηi?

s(β) =
n∑

i=1

∂li (θi )
∂θ

∂ηi
∂β

=
n∑

i=1
xi

(yi − µi )
ϕi
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Calculation of the score function, 3

Let us denote (and recall):
y = (y1, . . . , yn)T – observed sample
µ = (µ1, . . . , µn)T – vector of means
Σ = Diag(σ21 , . . . , σ2n) – the covariance matrix
D = Diag(∂h(η1)

∂η , . . . , ∂h(ηn)
∂η ) – diagonal matrix of derivatives

X = (x1, . . . , xn)T – the design matrix
W = DΣ−1DT – the weight matrix

These notations allow us to write the score function in matrix notation:

s(β) = XT DΣ−1(y − µ) = XT WD−1(y − µ)
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Empirical (observed) Fisher information matrix F̃ (I)

As our aim is to estimate parameters β, the obvious way is to solve the system
s(β) = 0.

Since the equations are non-linear, we need additional tools before proceeding.

Definition. Empirical Fisher information matrix
Empirical Fisher information matrix is the negative of the second derivative of the
log-likelihood function.

F̃(β) = − ∂2l(β)
∂β∂βT =

(
− ∂

2l(β)
∂βj∂βk

)
j,k=1,...p

Recall that in mathematics, the second order partial derivative matrix is called the
Hessian matrix H, so F̃ = −H

NB! As F̃(β) depends on the observations, it is therefore random.
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Theoretical Fisher information matrix F (J ), 1
Definition. Theoretical (expected) Fisher information matrix
The theoretical (expected) Fisher information matrix is the mean of the observed
Fisher information matrix

F(β) = E(F̃(β))

Because of the regularity (E(s(β)) = 0 and E(− ∂2li (β)
∂β∂βT ) = E(∂li (β)

∂β
∂li (β)
∂βT )), the

expected Fisher information matrix is also the variance-covariance matrix of the
score vector:

F(β) = Σs(β) = E(s(β)s(β)T )

Now, applying the form of s(β), we can derive

F(β) = E
( n∑

i=1
si (β)si (β)T

)
= E

( n∑
i=1

xixT
i

(
∂h(ηi )
∂η

)2 (yi − µi )2
σ4i

)

=
n∑

i=1
xixT

i

(
∂h(ηi )
∂η

)2 1
σ2i
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Theoretical (expected) Fisher information matrix F, 2

Using the matrix notation, we can also write

F(β) = E(s(β)s(β)T )
= E(XT DΣ−1(y − µ)(y − µ)T Σ−1DT X) = XT WX,

where the weight matrix W is

W = DΣ−1DT = Diag
((

∂h(η1)
∂η

)2
/σ21 , . . . ,

(
∂h(ηn)
∂η

)2
/σ2n

)
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Theoretical (expected) Fisher information matrix F, 3

Question
What happens if the link function is canonical, i.e. θi = ηi?

W = Diag
(
σ21
ϕ2
1
, . . . ,

σ2n
ϕ2

n

)

F(β) =
n∑

i=1
xixT

i
σ2i
ϕ2

i

NB! Think what happens in case of normal distribution!
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MLE equations
Idea
Equate the score function to zero: s(β) = 0 and solve simultaneously for
parameters β to get ML estimates β̂

Since β is a p-dimensional vector, we get p equations

s(β1) = 0, s(β2) = 0, . . . , s(βp) = 0

As the equations are non-linear, iterative methods are needed. General setup:
1 Choose the starting value β̂

(0)

2 Adjust the value in each step r by ∆β̂
(r)
: β̂

(r+1)
= β̂

(r)
+ ∆β̂

(r)

3 If the process converges, ∆β̂
(r)
→ 0, proceed until ∆β̂

(r)
is ’small enough’

and choose β̂
(r)

as the ML estimate of parameter

The commonly used procedures are:
Newton-Raphson method
Fisher’s method of scoring
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Newton-Raphson method
The Newton-Raphson method is an iterative method for solving non-linear
equations.

1 Start with initial guess β̂
(0)

2 Consider the linear Taylor approximation slin(β) ≈ s(β) at β̂
(r)
, where β̂

(r)
is

the estimate in the r th step:

s(β) ≈ slin(β) = s(β̂
(r)

) + ∂s(β̂
(r)

)
∂β

(β − β̂
(r)

)

Now, slin(β) = 0 gives us the next estimate β̂
(r+1)

β̂
(r+1)

= β̂
(r)

+ F̃−1(β̂
(r)

)s(β̂
(r)

),

since ∂s(β̂(r))
∂β = H(β̂

(r)
) = −F̃(β̂

(r)
)

3 The iterations are stopped when

‖β̂
(r+1)

− β̂
(r)
‖

‖β̂
(r)
‖

≤ ε, ε > 0
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Fisher’s method of scoring

An alternative method is the Newton method with Fisher scoring.
The essential difference is that the observed information matrix is replaced by
expected.

β̂
(r+1)

= β̂
(r)

+ F−1(β̂
(r)

)s(β̂
(r)

)

Advantages:
To calculate the expected information matrix we do not need to evaluate the
second order derivatives.
The expected information matrix is usually positive definite, so some
non-convergence problems do not occur.
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Properties of ML estimator

Asymptotic properties
Consistency: ML estimator is consistent
Distribution: under certain regularity conditions, MLE has asymptotically
normal distribution

β̂
a∼ N(β,F−1(β̂)),

where

F(β̂) = XT ŴX =
n∑

i=1
xixT

i

(
∂h(η̂i )
∂η

)2 1
σ̂2i

with Ŵ being the matrix W evaluated at β̂ and σ̂2i = D̂(Y |xi ) = ϕ̂iν(µ̂i )
Efficiency: ML estimator is consistent and has the smallest asymptotic
variance

The ML estimator is asymptotically normally distributed, asymptotically unbiased
and efficient.
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Estimate of the dispersion (scale) parameter ϕ

If the dispersion parameter ϕ is not known, it also needs to be estimated

Recall that σ2i = ϕiν(µi ) = ϕν(µi )
ni

and ϕ = σ2
i

ν(µi )/ni
,

where ni is the group size for grouped data and ni = 1 for ungrouped data

Now the moment based (Pearson) estimate for ϕ is

ϕ̂ = 1
n − p

n∑
i=1

(yi − µ̂i )2
ν(µ̂i )/ni

Here p is the number of parameters and the model thus has n − p degrees of
freedom

NB! For a classical linear model we get the well known result that the variance is
estimated by the sum of squares of the residuals.
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