Generalized Linear Models

Lecture 4. Models with normally distributed response
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Formulation of the problem

Assumptions:

o Observations y; are realizations of (conditional) r.v. Y;
o Yi~ N(ui,0?)
o Independence: cov(Y;, Yj) =0, i #j
R.v.-s Y; constitute rv. Y = (Yq,..., Y,)"
= Y ~ N,(p, 0°1)

Sample y is a random realization of n observations from Y, y = (y1,...,y,)"
Design matrix X

Classical linear model:
pi=x;B, p=XB

Link function: identity g(ui) = i
Depending on the type of arguments we reach different classical models
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Advantages of classical linear model

Models with normal response are simpler as compared to other members of
exponential family:

o canonical link is identity

o variance function does not depend on the mean

©

all cumulants except for first two are equal to 0

o in case of multivariate normal setup, the dependency structure is determined
by covariance or correlation matrix

In case of other distributions, situation is not as simple nor clear
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Assessing the normality assumption

Question

How important is the assumption of normality? J

o important if n is small
o if n — oo, asymptotic normality follows from the central limit theorem

Central limit theorem assumes homogenous (constant) variance!

= outliers may violate this assumption and void the convergence to normal
distribution even if n — oo

Thus, we consider models where the response has constant variance
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Estimation of 3 (fixed 02), 1

Consider the model y; = x/ B

How to estimate the parameters B (model parameter) and o2 (parameter of dist.)?

Question J

In case of independent observations, the sample log-likelihood is

S V)
180" = Diniaro®) - Ly L
g

where p1; = x] 8 (and assume that o2 is fixed)
NB! Maximizing the log-likelikood is equivalent to minimizing the residual sum of
squares:

RSS(B) = (vi —mi)* = (y = XB)"(y — XB)

Derivative w.r.t. B leads us to normal equations:

X™XB =XTy
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Estimation of 3 (fixed 02), 2

If X has full rank, so has X7 X, which implies that 3(X7X)~?! so that

B=(XTX)"'XTy

If the inverse matrix does not exist, generalized inverse can be used (but the
solution is not unique!)

B=(X"X)"X"y
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Estimation of parameter 8. Algorithmic solutions

Main difficulty: estimation of (X7 X)~!

o Gauss elimination method. Beaton (1964)
SWEEP-operator technique

o Cholesky decomposition
Main idea is to find a triangular matrix L such that
XTX = LL", which implies (X"X)™! = (L71)7L~!
o QR decomposition (Gram-Schmidt orthogonalization)
Matrix X is decomposed as a product X = QR,
where Q is a n x n orthogonal matrix, i,e Q"Q = QQ" =1
R — n x p (upper) triangular matrix such that RTR=RTQ"QR = X"X
Q, R can be found using different methods (Householder's method, Givens
rotation, and more)
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Properties of the ordinary least squares (OLS) estimator

By Gauss-Markov theorem (provided that the assumptions hold)

o OLS estimator is unbiased: E3 = 3

o OLS estimator is effective (has minimal variance)

i.e. OLS estimate is BLUE — best linear unbiased estimate

Assumptions:
Qo EE,' = 0, DE—I,' = 0’27VI.
o cov(ei,g;) =0,i#j

If Y ~ N,(p,0°l1) then OLS estimate is also ML estimate and

B~ Np(B. (X"X)0?)
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Estimation of o2

1 i — pi)?
Log-likelihood of a sample: In L(,B,crz) = —g |n(27r02) -3 Z M

where u; = x] B

Now, substitute the obtained estimate B to the equation

~

InL(0?) = —g In(270?) — %RS;(IB)

to get so-called profile likelihood for o2

As usual, take the derivative by o2, equate it to zero to obtain the following
(biased!) estimate

RSS(4
n
Unbiased estimate is given by:
52 _ RSS(B)
n—p
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Hypotesis testing. Wald test

A. To test a single parameter Hy : 8; =0
Bj

2
/UBJ-
If 02 estimated then t ~ t,_p; If 0 known then t ~ N(0, 1)
In case of big samples (n — o) t < N(0,1)

t =

B. To test more than one parameter Hy : 8, =0
B = (,31T7 ﬁzT)T, (p1 + p2)-dimensional

AT on
W:,32Z[_-,22,32

Under the normality assumption, w ~ x2,, if o is known
If 02 is estimated then me~ Fopnp, P=p1+ P2
If n— oo then n — p — oo and (scaled!) F-distribution — X3,
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Hypothesis testing. Likelihood ratio test

To test more than one parameter Hy : B, =0
B=(B{.B3)", (p1 + p2)-dimensional J

X = (X1, Xp) is divided into two parts (p; and p, parameters)
Compare the models:

M = M(X) (upper model, all arguments)

M; = M(X;) (lower model, p; parameters, k; = p; — 1 arguments)
Compare the corresponding log-likelihoods (02 known)

maxInL(B;) = C — %%&Xﬂ where C = _g In(27m2) does not depend on 3
maxInL(B) = C — %W

Likelihood ratio statistic ()
RSS(Xy) — RSS(X; + Xa)

2
o
If 02 is not known, it will be estimated from the upper model:
52 = RSS(X1 + Xa)/(n— p)
In case of big samples —2In A ~ x2,

—2InA =
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Regression diagnostics. Residual analysis

Model y = X8 + ¢

Model residuals & (or e) are the estimates of random error €

B=(XTX)"'XTy, y=XB=X(X"X)"'X"y
e=y—§=(01-XX"X)"'X)y = (1-H)y, |

where H = X(X7X)~"1XT is the "hat" matrix y = Hy
&=(1-H)y, D&=(1-H)l

Variance of i-th residual is thus 03 = (1 — h;i)o®

= residuals may have different variances even if the observations have
constant variance (02), since the estimates also depend on the arguments!
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Standarized /Studentized residuals

Standardized residuals (also internally studentized)

€i
T
Studentized residuals (also externally studentized, studentized deleted)
e =
T V1= hiiiy

Standardized /Studentized residual is too big if it is ~ 3 (already > 2 can be
considered)
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Leverage and influence

Leverage is the diagonal element hj; of hat matrix H (Hat diag) )
H=X(X"X)"1XT, rank(H) =37 hij = k+1 = &2

Leverage is too big: h; > @

Influence is the observation's effect on parameters (prediction, parameters’
variance) J

Observation's influence is estimated by Cook's statistic (cooks.distance, in R
package stats)

Observation's influence to a particular parameter estimate: dfbetas (Difference of
Betas, in R package stats)

N N

Bi — B
A —1
(i (XTX);

Empirical estimate: influence is too big if dfbetas > %

dfbetas(model);; =
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Transformations

Transformations are used to transform non-symmetric distributions close to
normal and also to stabilize the variance

George Edward Pelham Box (b. 1919), Sir David Roxbee Cox (b. 1924)
o Box-Cox (1964) family of power-transformations

o Yeo-Johnson (2000) family of power-transformations

Box-Cox transforms are modified, because
@ Not all data can be transformed to be close to normal
@ Initial restriction y > 0

@ Work well if the transformation is applied to a unimodal non-symmetric
distribution

@ Do not work well in case of U-shaped distributions
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Box-Cox family of transformations
Box and Cox (1964) — there exist non-symmetric distributions that can be
transformed quite close to a normal distribution

General form of the transformation:

[ 5 A 40
ym_{ ny, A=0 }

y >0, X\ — parameter of the transformation, usually A € (—2,2)
The transformation is simplified to y* if A # 0 (Cleveland, 1993)

Known transformations:

1
A=—-1=—
y
A=0=Iny
A=05=.y
A=1=y
A=2=y?

GLM (MTMS.01.011) Lecture 4 16 / 28



Box-Cox transformation. General schema

Assume that 3\, such that the transformed data is normal:
Yi(A) ~ N(x[ B,0%)
Estimation (using ML):
@ fix \, estimate 83, o2

@ substitute the obtained estimates to ML expression to get the function pL())
pL(X) — profile likelihood of parameter A
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Box-Cox transformation (1)

NB! Don't forget the Jacobian J(A,y) while transforming y — y(\)

A0, y(N) =51

1 A—1 1 )’f\_l 2
f(yi|)‘7/~LiaO—) = \/W Yi exp[_r‘.z — uit ]
A=0, y(A)=Iny
1 Iny; — i)
f(Yi|07Mi7U): W.yl 1exp[_%]

p = XB, thus p = 1(B)
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Box-Cox transformation (2)

Main steps:
@ Find the log-likelihood of the sample
@ Fix ), find the partial derivatives of the log-likelihood by 8 and &2
@ Equate the derivatives to 0, obtain the estimates ,[AB and &

@ Substitute the estimates to the expression of likelihood, obtain the profile
log-likelihood for A:

pIO) = -3 T InRSS(A A=1)) Iy
® Maximizing over A-s gives the optimal A
R: function boxcox (package MASS), more advanced version: function boxCox

(package car), SAS: proc TRANSREG
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Box-Cox transform. Example 1

Data: distance (in km) and fuel consumption (in litres), n = 107
Simple regression model: y — distance, x — fuel consumption
Box-Cox transform was used

Results:
o model parameters: intercept fo = —636.9, f1 = 211.9, R = 0.49
o estimated A =15 95% CI: (0.7; 2.4)

Can you write down the corresponding model?

NB! Box-Cox method gives a suggestion about the range of transformations

NB! The transformation changes the scale, thus it is also important to consider
the interpretability of the model!

Source: Chen, Lockhart, Stephens (2002)
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Box-Cox transform. Example 2

Residuak Belare Translor mation Log like lihood of data wilh powar ranstor mation
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Left figure shows the residuals before and after transform
Right figure shows the log-likelihood of data under different A-s, maximum is
obtained if A = 0.2, i.e. the transformation is &/y
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The necessity of a transform. Atkinson scores

Question
Is the Box-Cox transformation necessary at all?

To test that, an additional term will be added to the model:
Yi
ai =Yi In - — 1 s
i = yi( 7 )

where ¥ is the geometric mean of y

Let us denote the coefficent of the extra term a; by
If the extra term is significant then the Box-Cox transform is necessary and

Ar1-— q,
where 4 is the estimate of v from the model

Source: Atkinson (1985)
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Argument transforms

Box, Tidwell (1962): similar approach as with Atkinson scores

Question

Is an argument transform necessary?

To test if, in case of a continuous argument x, it is necessary to add x> to a
model (if x already is included), an extra term a = x In x is used so that the
model contains x (coefficient 8) and x In x (coefficient )

If the extra term is significant, then the transform is necessary and A~d4 1,

2>

where 4 is the estimated coefficient of the extra term,

A

B is the coefficient of argument x from the original model (without x In x)

Both Atkinson and Box-Tidwell method are based on the Taylor series expansion.
Assume that the correct model is y = o + x> + ¢, using Taylor expansion x* at
A =1 yields x* ~ x + (A — 1)xInx

Substitute this into the model, get y = o + 8x + (A — 1)xInx + € and denote
7 =5A-1)

R: function boxTidwell (package car)
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Yeo-Johnson family of power-transformations

Box-Cox: restriction y > 0

Idea: find a transform that minimizes Kullback-Leibler information and transforms
a skewed distribution to symmetric

New concepts: relative skewness (Zwet, 1964), more right-skewed, more
left-skewed

Yeo-Johnson family of power-transformations

(y+D*=1)/x, A#0,y>0
In(y—|—1) A=0,y>0
—((~y +1*A=1)/(2=A), X#2,y<0
—In(-y+1), A=2,y<0

Yy, \) =

If case y > 0, this construction is equivalent to Box-Cox transformation

R: function boxCox with parameter family="yjPower" (package car)
Yeo, |.-K., Johnson, R.A. (2000). A new family of power transformations to improve normality or symmetry. Biometrika, 87,4,954-959

GLM (MTMS.01.011) Lecture 4 24 /28



Comparison of transformations (1)

(a) Box-Cox transformations (b) New transformations
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Comparison of Box-Cox transformations and new (Yeo-Johnson) transformations
under different values of A
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Comparison of transformations (2)

Transform, =0

Transform, &= -1
S0 40 -0 20 -10 O 10
I

IS
,‘u
<o{- -
®
IS

o)
g

Transform, A = 0.5
8 6 4 -2 0 2 4

Comparison of Box-Cox transformations and new (Yeo-Johnson) transformations if
y—0
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Comments about transformations

o Box-Cox method gives a suggestion about the range of transformations. The
transformation changes the scale, thus it is also important to consider the
interpretability of the model.

o Box-Cox transforms are empirical, based on data.
There are also transforms for stabilizing the variance that are based on
theoretical considerations

o John Tukey, Fred Mosteller (1977) 'bulging rule’ — two-dimensional graphs
show which transformation to use
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Bulging rule
Transformation depending on data
Figure 4.6 from Fox (1997)
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