
Generalized Linear Models
Lecture 4. Models with normally distributed response
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Formulation of the problem

Assumptions:
Observations yi are realizations of (conditional) r.v. Yi

Yi ∼ N(µi , σ
2)

Independence: cov(Yi ,Yj) = 0, i 6= j
R.v.-s Yi constitute r.v. Y = (Y1, . . . ,Yn)T

⇒ Y ∼ Nn(µ, σ2I)

Sample y is a random realization of n observations from Y, y = (y1, . . . , yn)T

Design matrix X

Classical linear model:
µi = xT

i β, µ = Xβ

Link function: identity g(µi ) = µi
Depending on the type of arguments we reach different classical models
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Advantages of classical linear model

Models with normal response are simpler as compared to other members of
exponential family:

canonical link is identity
variance function does not depend on the mean
all cumulants except for first two are equal to 0
in case of multivariate normal setup, the dependency structure is determined
by covariance or correlation matrix

In case of other distributions, situation is not as simple nor clear
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Assessing the normality assumption

Question
How important is the assumption of normality?

important if n is small
if n→∞, asymptotic normality follows from the central limit theorem

Central limit theorem assumes homogenous (constant) variance!
⇒ outliers may violate this assumption and void the convergence to normal
distribution even if n→∞

Thus, we consider models where the response has constant variance

GLM (MTMS.01.011) Lecture 4 4 / 28



Estimation of β (fixed σ2), 1
Consider the model µi = xT

i β

Question
How to estimate the parameters β (model parameter) and σ2 (parameter of dist.)?

In case of independent observations, the sample log-likelihood is

ln L(β, σ2) = −n
2 ln(2πσ2)− 1

2
∑ (yi − µi )2

σ2

where µi = xT
i β (and assume that σ2 is fixed)

NB! Maximizing the log-likelikood is equivalent to minimizing the residual sum of
squares:

RSS(β) =
∑

(yi − µi )2 = (y − Xβ)T (y − Xβ)

Derivative w.r.t. β leads us to normal equations:

XTXβ = XT y
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Estimation of β (fixed σ2), 2

If X has full rank, so has XTX, which implies that ∃(XTX)−1 so that

β̂ = (XTX)−1XT y

If the inverse matrix does not exist, generalized inverse can be used (but the
solution is not unique!)

β̂ = (XTX)−XT y
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Estimation of parameter β. Algorithmic solutions

Main difficulty: estimation of (XTX)−1

Gauss elimination method. Beaton (1964)
SWEEP-operator technique
Cholesky decomposition
Main idea is to find a triangular matrix L such that
XTX = LLT , which implies (XTX)−1 = (L−1)TL−1

QR decomposition (Gram-Schmidt orthogonalization)
Matrix X is decomposed as a product X = QR,
where Q is a n × n orthogonal matrix, i.e QTQ = QQT = I
R− n × p (upper) triangular matrix such that RTR = RTQTQR = XTX
Q,R can be found using different methods (Householder’s method, Givens
rotation, and more)
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Properties of the ordinary least squares (OLS) estimator

By Gauss-Markov theorem (provided that the assumptions hold)

OLS estimator is unbiased: Eβ̂ = β

OLS estimator is effective (has minimal variance)

i.e. OLS estimate is BLUE – best linear unbiased estimate

Assumptions:
Eεi = 0, Dεi = σ2,∀i
cov(εi , εj) = 0, i 6= j

If Y ∼ Nn(µ, σ2I) then OLS estimate is also ML estimate and

β̂ ∼ Np(β, (XTX)−1σ2)
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Estimation of σ2

Log-likelihood of a sample: ln L(β, σ2) = −n
2 ln(2πσ2)− 1

2
∑ (yi − µi )2

σ2

where µi = xT
i β

Now, substitute the obtained estimate β̂ to the equation

ln L(σ2) = −n
2 ln(2πσ2)− 1

2
RSS(β̂)
σ2

to get so-called profile likelihood for σ2
As usual, take the derivative by σ2, equate it to zero to obtain the following
(biased!) estimate

σ̂2 = RSS(β̂)
n

Unbiased estimate is given by:

σ̂2 = RSS(β̂)
n − p
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Hypotesis testing. Wald test

A. To test a single parameter H0 : βj = 0

t = β̂j√
σ2
β̂j

If σ2 estimated then t ∼ tn−p; If σ2 known then t ∼ N(0, 1)
In case of big samples (n→∞) t a∼ N(0, 1)

B. To test more than one parameter H0 : β2 = 0
β = (βT

1 ,β
T
2 )T , (p1 + p2)-dimensional

w = β̂
T
2 Σ−2

β̂2
β̂2

Under the normality assumption, w ∼ χ2p2
, if σ2 is known

If σ2 is estimated then w
p2
∼ Fp2,n−p, p = p1 + p2

If n→∞ then n − p →∞ and (scaled!) F -distribution → χ2p2
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Hypothesis testing. Likelihood ratio test

To test more than one parameter H0 : β2 = 0
β = (βT

1 ,β
T
2 )T , (p1 + p2)-dimensional

X = (X1,X2) is divided into two parts (p1 and p2 parameters)
Compare the models:
M = M(X) (upper model, all arguments)
M1 = M(X1) (lower model, p1 parameters, k1 = p1 − 1 arguments)
Compare the corresponding log-likelihoods (σ2 known)
max ln L(β1) = C − 1

2
RSS(X1)
σ2 , where C = − n

2 ln(2πσ2) does not depend on β
max ln L(β) = C − 1

2
RSS(X1+X2)

σ2

Likelihood ratio statistic (λ)

−2 lnλ = RSS(X1)− RSS(X1 + X2)
σ2

If σ2 is not known, it will be estimated from the upper model:
σ̂2 = RSS(X1 + X2)/(n − p)
In case of big samples −2 lnλ ∼ χ2p2
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Regression diagnostics. Residual analysis

Model y = Xβ + ε

Model residuals ε̂ (or e) are the estimates of random error ε
β̂ = (XTX)−1XT y , ŷ = Xβ̂ = X(XTX)−1XT y

ε̂ = y − ŷ = (I− X(XTX)−1XT )y = (I−H)y ,

where H = X(XTX)−1XT is the "hat" matrix ŷ = Hy
ε̂ = (I−H)y , Dε̂ = (I−H)σ2I

Variance of i-th residual is thus σ2ε̂i
= (1− hii )σ2

⇒ residuals may have different variances even if the observations have
constant variance (σ2), since the estimates also depend on the arguments!
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Standarized/Studentized residuals

Standardized residuals (also internally studentized)

eiS = ei√
1− hii σ̂

Studentized residuals (also externally studentized, studentized deleted)

eiT = ei√
1− hii σ̂(i)

Standardized/Studentized residual is too big if it is ≈ 3 (already > 2 can be
considered)
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Leverage and influence

Leverage is the diagonal element hii of hat matrix H (Hat diag)

H = X(XTX)−1XT , rank(H) =
∑n

i=1 hii = k + 1 ⇒ k+1
n

Leverage is too big: hii >
2(k+1)

n

Influence is the observation’s effect on parameters (prediction, parameters’
variance)

Observation’s influence is estimated by Cook’s statistic (cooks.distance, in R
package stats)
Observation’s influence to a particular parameter estimate: dfbetas (Difference of
Betas, in R package stats)

dfbetas(model)i,j =
β̂j − β̂(i)j

σ̂(i)

√
(XTX)−1jj

Empirical estimate: influence is too big if dfbetas > 2√
n
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Transformations

Transformations are used to transform non-symmetric distributions close to
normal and also to stabilize the variance

George Edward Pelham Box (b. 1919), Sir David Roxbee Cox (b. 1924)
Box-Cox (1964) family of power-transformations
Yeo-Johnson (2000) family of power-transformations

Box-Cox transforms are modified, because
1 Not all data can be transformed to be close to normal
2 Initial restriction y > 0
3 Work well if the transformation is applied to a unimodal non-symmetric

distribution
4 Do not work well in case of U-shaped distributions
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Box-Cox family of transformations
Box and Cox (1964) – there exist non-symmetric distributions that can be
transformed quite close to a normal distribution

General form of the transformation:

y(λ) =
{ yλ−1

λ , λ 6= 0
ln y , λ = 0

}
y > 0, λ – parameter of the transformation, usually λ ∈ (−2, 2)
The transformation is simplified to yλ if λ 6= 0 (Cleveland, 1993)

Known transformations:

λ = −1⇒ 1
y

λ = 0⇒ ln y

λ = 0.5⇒ √y

λ = 1⇒ y

λ = 2⇒ y2
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Box-Cox transformation. General schema

Assume that ∃λ, such that the transformed data is normal:

Yi (λ) ∼ N(xT
i β, σ

2)

Estimation (using ML):
1 fix λ, estimate β, σ2
2 substitute the obtained estimates to ML expression to get the function pL(λ)

pL(λ) – profile likelihood of parameter λ
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Box-Cox transformation (1)

NB! Don’t forget the Jacobian J(λ, y) while transforming y → y(λ)

λ 6= 0, y(λ) = yλ−1
λ

f (yi |λ, µi , σ) = 1√
2πσ2

yλ−1i exp[− 1
2σ2 {

yλi − 1
λ

− µi}2]

λ = 0, y(λ) = ln y

f (yi |0, µi , σ) = 1√
2πσ2

y−1i exp[− (ln yi − µi )2
2σ2 ]

µ = Xβ, thus µ = µ(β)
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Box-Cox transformation (2)

Main steps:
1 Find the log-likelihood of the sample
2 Fix λ, find the partial derivatives of the log-likelihood by β and σ2
3 Equate the derivatives to 0, obtain the estimates β̂ and σ̂
4 Substitute the estimates to the expression of likelihood, obtain the profile

log-likelihood for λ:

pl(λ) = −n
2 lnRSS(λ) + (λ− 1)

∑
ln yi

5 Maximizing over λ-s gives the optimal λ

R: function boxcox (package MASS), more advanced version: function boxCox
(package car), SAS: proc TRANSREG
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Box-Cox transform. Example 1

Data: distance (in km) and fuel consumption (in litres), n = 107
Simple regression model: y – distance, x – fuel consumption
Box-Cox transform was used

Results:
model parameters: intercept β̂0 = −636.9, β̂1 = 211.9, R2 = 0.49
estimated λ = 1.5 95% CI: (0.7; 2.4)

Can you write down the corresponding model?

NB! Box-Cox method gives a suggestion about the range of transformations
NB! The transformation changes the scale, thus it is also important to consider
the interpretability of the model!

Source: Chen, Lockhart, Stephens (2002)
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Box-Cox transform. Example 2

Left figure shows the residuals before and after transform
Right figure shows the log-likelihood of data under different λ-s, maximum is
obtained if λ = 0.2, i.e. the transformation is 5

√y
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The necessity of a transform. Atkinson scores

Question
Is the Box-Cox transformation necessary at all?

To test that, an additional term will be added to the model:

ai = yi (ln yi
ỹ − 1),

where ỹ is the geometric mean of y

Let us denote the coefficent of the extra term ai by γ
If the extra term is significant then the Box-Cox transform is necessary and

λ̂ ≈ 1− γ̂,

where γ̂ is the estimate of γ from the model

Source: Atkinson (1985)
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Argument transforms
Box, Tidwell (1962): similar approach as with Atkinson scores

Question
Is an argument transform necessary?

To test if, in case of a continuous argument x , it is necessary to add xλ to a
model (if x already is included), an extra term a = x ln x is used so that the
model contains x (coefficient β) and x ln x (coefficient γ)

If the extra term is significant, then the transform is necessary and λ̂ ≈ γ̂

β̂
+ 1,

where γ̂ is the estimated coefficient of the extra term,
β̂ is the coefficient of argument x from the original model (without x ln x)

Both Atkinson and Box-Tidwell method are based on the Taylor series expansion.
Assume that the correct model is y = α + βxλ + ε, using Taylor expansion xλ at
λ = 1 yields xλ ≈ x + (λ− 1)x ln x
Substitute this into the model, get y = α + βx + β(λ− 1)x ln x + ε and denote
γ = β(λ− 1)

R: function boxTidwell (package car)
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Yeo-Johnson family of power-transformations
Box-Cox: restriction y > 0

Idea: find a transform that minimizes Kullback-Leibler information and transforms
a skewed distribution to symmetric
New concepts: relative skewness (Zwet, 1964), more right-skewed, more
left-skewed

Yeo-Johnson family of power-transformations

ψ(y , λ) =


((y + 1)λ − 1)/λ, λ 6= 0, y ≥ 0

ln(y + 1), λ = 0, y ≥ 0
−((−y + 1)2−λ − 1)/(2− λ), λ 6= 2, y < 0

− ln(−y + 1), λ = 2, y < 0

If case y > 0, this construction is equivalent to Box-Cox transformation
R: function boxCox with parameter family="yjPower" (package car)

Yeo, I.-K., Johnson, R.A. (2000). A new family of power transformations to improve normality or symmetry. Biometrika, 87,4,954–959
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Comparison of transformations (1)

Comparison of Box-Cox transformations and new (Yeo-Johnson) transformations
under different values of λ
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Comparison of transformations (2)

Comparison of Box-Cox transformations and new (Yeo-Johnson) transformations if
y → 0
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Comments about transformations

Box-Cox method gives a suggestion about the range of transformations. The
transformation changes the scale, thus it is also important to consider the
interpretability of the model.
Box-Cox transforms are empirical, based on data.
There are also transforms for stabilizing the variance that are based on
theoretical considerations
John Tukey, Fred Mosteller (1977) ’bulging rule’ – two-dimensional graphs
show which transformation to use
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Bulging rule
Transformation depending on data
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