
Generalized Linear Models
Lecture 7. Count data models I. Poisson model
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Count data

Count data – counting the number of events in a time interval

Common areas of use: insurance, reliability, medicine
number of insurance claims/losses
number of failures of a system
number of patients arriving in an emergency room
number of customer entering a shop
number of raisins in a bun

Poisson distribution occurs while counting events such that the probability of
an event is quite small
Typical histogram is asymmetric
The smaller the parameter, the more skewed histogram
The parameter of the distribution can be interpreted as the average number
of events in a time unit
Poisson distribution is also called the law of small numbers
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Poisson distribution in case of different parameters
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Poisson distribution (Simeon-Denis Poisson, 1781 – 1840)

Definition
Discrete r.v. Y has Poisson distribution, Y ∼ Po(µ), with parameter µ (µ > 0), if
its pmf has the following form:

p(y) = e−µµy

y ! , y ∈ {0, 1, 2 . . .}

Well-known properties:
1 Equidispersion property: EY = DY = µ

2 Additivity: if Y1, . . . ,Ym are independent, Yi ∼ Po(µi ), then the sum
Y =

∑m
i=1 Yi is also Poisson distributed, Y ∼ Po(µ), where µ =

∑m
i=1 µi

3 Poisson limit theorem (law of rare events): if the sample size n→∞ and the
probability of an event p is small, np → const, B(n, p)→ Po(np)

4 In case of big samples and big µ, Po(µ)→ N(µ, µ)
Property 2 implies that we can consider grouped and ungrouped data in a similar
way
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A classical example of Poisson model

Prussian army horse kick data (Vladislav Bortkiewicz, 1898)
Contains deaths by year and corp from horse kicks in Prussian army during
1875–1894.

Data (grouped by year):

Year 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
Deaths 3 5 7 9 10 18 6 14 11 9 5 11 15 6 11 17 12 15 8 4

In R, the dataset is available in library pscl:

library(pscl)
data(prussian)
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Poisson distribution as a member of exponential family

Let us rewrite the pmf to match the form of exponential family:

p(yi ) = exp(ln e−µiµyi
i

yi !
) = exp[ln(exp(−µi )) + lnµyi

i − ln yi !]

= exp[yi lnµi − µi − ln yi !]

θi = ln(µi )
b(θi ) = µi = exp(θi )
ϕ = 1
EYi = b′(θi ) = µi

DYi = ϕb′′(θi ) = µi

Prove it!

⇒ Poisson distribution belongs to exponential family
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GLM with Poisson distributed response
Sample: n observations, y1, . . . , yn, are considered as realizations from
Yi ∼ Po(µi )
Mean µi (and thus also the variance!) depends on arguments xi

Canonical link for Poisson model is log-link, which produces log-linear model:

(1) Log-linear (multiplicative) Poisson model
g(µi ) = ln(µi ), µi = exp(xT

i β), the effect of arguments is multiplicative

Coefficient βj corresponds to the change in natural logarithm of the mean of the
response variable if there is a unit change in j-th argument
Another possible choice is to use the identity link:

(2) Linear (aditive) Poisson model

µi = xT
i β, the effect of arguments is additive

Problems with the linear model:
the range of values of the right is not restricted
the left hand side (the response) can only take positive values
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Multiplicative Poisson model

Link function Log: g(µi ) = ln(µi ), lnµi = xT
i β

GLM for the mean: µi = exp(xT
i β)

µi = exp(β0 + β1xi1 + . . .+ βkxik) = exp(β0) · exp(β1xi1) · . . . · exp(βkxik)

Multiplicative effect of an argument xij (if all the other conditions remain the
same): change of xij by one unit corresponds to change of µi eβj times
The empirical studies also suggest the use of log-link:

In case of count data, the effect of arguments is more often multiplicative
than additive: typically the effect to bigger counts is big and to smaller
counts is small.
The effects of arguments tend to be proportional to the number of events
and the use of log-scale produces a simpler model and is justified

In case of small values (yi ≈ 0), there can occur problems with the log-transform
and in that case a small adjustment is suggested: yi = yi + c
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Model fitting
Log-likelihood for observation i :

li (β) = yi ln(µi )− µi − ln(yi !)

Sample log-likelihood:

l(β) =
∑

i
li (β) =

∑
i

yi ln(µi )−
∑

i
µi + c

Score equations (assuming canonic link, i.e. µi = µ(xi ,β) = exp(xT
i β)):

sj(β) = ∂l(β)
∂βj

=
n∑

i=1
(yi − µi )xij = 0, j = 1, . . . , p

⇒ in general, s(β) = X T (y − µ) = 0, which yields X T y = X T µ(β̂)

An important corollary: in a model with intercept term∑
i

(yi − µ̂i ) = 0

Why?
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Deviance
Let us recall that the deviance is defined as 2 times the difference between
saturated and current model: D = 2(l(y , y)− l(y , µ̂))

For each observation i , the log-likelihoods are:
For current model: li (β) = yi ln(µ̂i )− µ̂i − ln(yi !)
For saturated model: li (β) = yi ln(yi )− yi − ln(yi !)

The deviance is thus:

D = 2
∑

i
(yi ln yi

µ̂i
− (yi − µ̂i )), D a∼ χ2

n−p

Note that because of the corollary from previous slide we can express the deviance
in a model with intercept term similarly to binomial:

2
∑

oi ln oi
ei

Difference of deviances is asymptotically χ2-dist. (even if the deviance itself is not)
For two models: Mr – r params, deviance Dr , and Ms – s params, Ds , s > r
Ds − Dr ∼ χ2

s−r , i.e. we can decide whether to include these s − r arguments
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Pearson χ2-statistic

χ2
P =

∑ (yi − µ̂i )2

µ̂i

Asymptotic (for both D and χ2
P) holds if µi →∞

Note that in case of grouped data, the formulas implicitly contain ni (µ̂i = ni µ̃i
and we can think of fixed cell asymptotic ni →∞)

The use of deviance and the Pearson statistic depends on whether asymptotic
results apply
Usually one expects all of the means to be larger than three
If D and χ2

P are quite different, one might suspect that the approximation is
inadequate

More details: Tutz, p 187
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Overdisperion
Overdispersion is a serious problem for Poisson model

If the model fits, it must hold that EYi = DYi = µi

Overdispersion is usually modelled via a scale parameter ϕ: DYi = ϕEYi ,

ϕ = 1, no problem
ϕ > 1, i.e. DYi > EYi ⇒ overdispersion
ϕ < 1, i.e. DYi < EYi ⇒ underdispersion

If the model is correct (deviance and Pearson’s χ2-statistic are asymptotically
χ2-distributed), the following holds:

D
df ≈ 1 χ2

df ≈ 1

If the ratio > 2, overdispersion needs to be addressed

Simplest option: estimate the scale and take it into account

ϕ̂ = D
n − p , ϕ̂ = χ2

n − p
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Example. Overdispersion (Prussian army data), 1

> prussian2=sqldf("select sum(y) as y,
year from prussian group by year")

> modelP=glm(y~year,family="poisson",data=prussian2)
> summary(modelP)
...

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.69095 1.06056 0.651 0.515
year 0.01876 0.01243 1.509 0.131

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 38.503 on 19 degrees of freedom
Residual deviance: 36.216 on 18 degrees of freedom
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Example. Overdispersion (Prussian army data), 2

> modelP_orig=glm(y~year+corp,family="poisson",data=prussian)
> summary(modelP_orig)
...

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.815e+00 1.087e+00 -1.669 0.0951 .
year 1.876e-02 1.243e-02 1.510 0.1312
corpI 3.850e-09 3.535e-01 0.000 1.0000
...
corpVIII -8.267e-01 4.532e-01 -1.824 0.0681 .
corpX -6.454e-02 3.594e-01 -0.180 0.8575
corpXI 4.463e-01 3.202e-01 1.394 0.1633
corpXIV 4.055e-01 3.227e-01 1.256 0.2090
corpXV -6.931e-01 4.330e-01 -1.601 0.1094
...
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 323.23 on 279 degrees of freedom
Residual deviance: 294.81 on 265 degrees of freedom
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Reasons of overdispersion

Main reasons (small/apparent overdispersion):
Systematic component of the model is not correctly estimated (some
significant argument or interaction is missing). Think of the Prussian army
example!
Scale of the arguments is not the best, a scale transform can help (e.g. log)
Outliers in data

If overdispersion is small (< 5), the first step is to check the model structure ⇒ if
the structure is ok, overdispersion needs to be taken into account

If overdispersion is big (> 5), something must be wrong... ⇒ Poisson distribution
does not fit

Big (real) overdispersion indicates extra randomness in data. That can be caused
by:

Poisson process in an interval with random length
excess zeros or missing zeros in data
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Solving the overdispersion problem (small overdispersion)

Things to try:
1 Check for outliers
2 Modify the systematic component of the model (incl. interaction terms),

scale transforms of arguments
3 Use variance stabilizing transforms y1/2, y2/3 (Anscombe, 1953)
4 Use quasi-likelihood, assume that DYi = ϕµi , estimate ϕ̂ and adjust the

covariance matrix of arguments accordingly

Possibilities to check for overdispersion:
analysis of generalized residuals → outliers
visualization, e.g. plot ȳi vs s2

i
in ideal case the points should lie close to bisector
different tests
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Solving the overdispersion problem (big overdispersion)

Poisson distribution does not fit, possible reasons:
1 no zeros
2 too many zeros
3 mixture of distributions
4 censored data
5 truncated data
6 counting depends on additional argument (which is not used)
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Solving the overdispersion problem (big overdispersion)

In general, the solution is to apply another (more complex) model:
ZIP, ZTP, ZAP models
Negative binomial model
ZINB, ZTNB, ZANB models
Generalized Poisson distribution
Mixtures of distributions
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Grouped data
Yij – events for observation j in group i
Yi =

∑
j Yij – total number of events in group i

Assuming the independence, we get that from Yij ∼ Po(µi ), j = 1, . . . , ni ,
follows Yi ∼ Po(niµi )

The same likelihood function is used for both grouped and ungrouped data

The model for individual means has the following form:

lnE(Yij) = lnµi = xT
i β

Thus, for the whole ith group

lnE(Yi ) = ln(niµi ) = ln ni + lnµi = ln ni + xT
i β

The estimates for β are the same for grouped and ungrouped case
In case of grouped data, there is an extra term (ln ni) called offset
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Rate data as grouped data
Parameter of Poisson distribution, µi , is considered as the number of events in a
time unit

Let Yi be the number of events in a time interval ti

Rate data
Number of events in a time unit (incidence rate) can be obtained by:

IRi = Yi
ti

The mean of the rate is
E(Yi

ti
) = 1

ti
E(Yi ) = µi

ti

Thus the model is

ln(µi
ti

) = xT
i β, ln(µi ) = ln(ti ) + xT

i β,

where ln(ti ) is offset
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