Generalized Linear Models

Lecture 9. Count data models Ill. Models with excess zeros
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Data with excess zeros

There are too many zeros (probability distribution suggests less), thus there are
so-called 'false’ zeros and 'true’ zeros

Motivating examples
o Small claims not reported in non-life insurance

o Defective products in a manufacturing process (Lambert, 1992)

©

Absent days because of sick-leave (Lam et al, 2006)

(]

Domestic violence cases (Famoye, Singh, 2006)
o Shark counting via bycatch

Tools and examples about how to deal with zero-modified data:
Zuur, A.F., leno, E.N., Walker, N., Saveliev, A.A., Smith, G.M. (2009). Mixed Effects
Models and Extensions in Ecology with R

http://www.springer.com/life+sciences/ecology/book/978-0-387-87457-9
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Example 1. Zero inflation in estimating the shark count

Australia-Japan Workshop on Data Science 2009

Modeling shark bycatch: The Zero-Inflated Negative
Binomial (ZINB) Regression Model (with Smoothing)

Histogram of silky shark

+ Large Proportion of Zeros

bycatch counts 16375 zero count / 32148 sets = 50.9%
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* Could take large number of count
76 sets had more than 100 bycatch

bycatch never occur

Perfect state (zero state)
e.g. sharks are not around a floating object

bycatch may occur and counts follow the
negative binomial regression model
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Example 2: Zero inflation in teeth data

DMFT-Index for 797 School-Children

from Belo Horizonte (Brazil)
=00

O ohsarved
— O TIOENN e S|
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Number of Children
8
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3 4 5 2 7 ]
of DMFT-Index

Values

Figure 1: DMFT distribution at begin of study

DMFT index - Decay, Missing, Filled Teeth — counts problematic teeth

Source: Béhning, Dietz, Schlattmann (1997). Zero inflated Count Models and their Applications in Public Health and Social Science. In: Applications of
Latent Trait and Latent Class Models in the Social Sciences, Ch 32, p 334.
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Approach 1. Zero inflated model

You thought I was a
crocodile. You didn't see me! |
was just under the
water.

I am not here, but

the habitat is good!

0 hippos

0 hippos

I am not here, because
the habitat is not good!

Here we are!

50 hippos

Fig. 11.5  Sketch of the underlying principle of mixture models (ZIP and ZINB). In counting
hippos at sites, one can measure a zero because the habitat is not good (the hippos don’t like
the covariates), or due to poor experimental design and inexperienced observers (or experienced
observers but difficult to observe species)

Source: Zuur et al. 2009
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Approach 2. Zero altered (hurdle) model

11.3  Too Many Zeros 273

I am not here, because
the habitat is not good!

0 hippos You didn't see me! |
was just under the
water.

You thought | was a
crocodile.

I am not here, but

the habitat is good!

>0 hippos

Here we are!

Fig. 11.4 Sketch of a two-part, or hurdle model. There are two processes; one is causing zeros
versus non-zeros, the other process is explaining the non-zero counts. This is expressed with the
hurdle in the circle; you have to cross it to get non-zero counts. The model does not make a
distinction between the different types of zeros

Source: Zuur et al. 2009
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Zero Inflated (ZI) model. Setup (1)

Problem: too many zeros

Idea: we divide the data in two imaginary groups:

o First group — only zeros (the false zeros). This group is also called the
observations with zero mass

o Second group — the count data, which may produce zeros (true zeros) and
values larger than zero.

Note that

o We are not actively splitting the data in two groups; it is just an assumption
that we have these two groups.

o We do not know which of the observations with zeros belong to a specific
group.
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Zero Inflated (ZI) model. Setup (2)

Assume now that the data comes from
o the process of (false) zeros with probability 7, 0 <7 <1

o the counting process with probability 1 — 7

Then we have

P{Y =0} =7+ (1—-m)p(0) ()
P{Y=y}=00-m)p(y), y=12,.. (**)

p(y) — Poisson or NB pmf

The resulting model is a certain mixture of models:
o for the binary part (Bernoulli process) we use logit or probit link
o for the counting process we apply Poisson or NB model
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ZIP model (Zero Inflated Poisson)

Let us start with Poisson model with pmf

exp(—pui) )’

p(yii i) =
il

)

i.e. we estimate counts with the Poisson model p; = p;(8) = exp(x/ 3)
Let us also have a process generating zeros: m; = m;(7y)

Now the relations (*) and (**) from previous slide allow us to write

ZIP model

PLY; = 0} = mi(y) + (1 = mi(7)) exp(—1i(8))
PLY; =y} = (1— () AN

, Yi— 1,27...

B3 — parameter vector of the counting process
~ — parameter vector the process generating zeros
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ZIP model: mean and variance

Since P(Y; = y;) = (1 — m;)p(y;), the mean of the response is:

E(Y}) = w1 —m) )

and to find the variance, we use

D(Y)) = E(Y?) = (EY})? = (1 — m)(i + 1) — (1 — ;)22
Thus the variance of the response is

D(Y;) = ui(1 — m)(1 + pimi) J

Variance is greater than the mean: D(Y;) > E(Y))
= excessive number of (false) zeros causes overdispersion!
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Estimation of ZIP model

To estimate parameter -, often a logit-model is used (to estimate the
probability of zeros!):

exp(w/v)

()
1+ exp(w/ )

T
=w;7, milY)=

If the zero-model is logit, the mean of ZIP model is
T
() = (2B
1+ exp(w; 7)
Another common choice for estimating ~ is probit-model 7;(v) = ®(w/~)

Now, the arguments of the ZIP model are divided into two groups:

o arguments of the counting process, x:
pi(B) = pi(x/ B)
o arguments of the zero-generating process, w:
mi(y) = mi(w] )
Usually x; and w; differ
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Log-likelihood for ZIP model

Log-likelihood of ZIP model consists of log-likelihood of zero-model and
log-likelihood of Poisson model

If zero-model is logit:

I(y:B,7) =Y In[exp(w]~) + exp(—exp(x] B))]

ityi=0

+ > lyix] B —exp(x] B) —Inyil] = > In[1 + exp(w/ v)]

iryi>0 i=1

If zero-model is probit:

Ily:B.7) = Z In[@(w] ) + (1 - &(w] 7)) exp(— exp(x] B))]

iryi=

+ > [In(L = ®(w] 7)) — exp(x] B) + yix] B —Iny,!]

ityi>0
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Example. Australian doctor visits

The dataset contains information for approximately 5,000 Australian individuals
about the number and possible determinants of doctor visits that were made
during a two-week interval.
Variables used for modelling:

o doctorco — response variable, the number of visits

o sex — 0/1 (male/female)

o age — age/100 (people over 72 are coded to age 72)

o illness - number of illnesses during 2 weeks (1, .., 5; over 5 coded to 5)
o income - income (in 1000AUD)

o hscore - health score (bigger score means worse health)

Arguments used:

o In zero-model: only age was used (as empirical studies show that younger
people tend to not go to a doctor)

o In counting model: all mentioned arguments
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How do we know that we have excess zeros? (1)

Simplest way is to compare the amount of zeros in data with the amount
estimated by model:

# Apply Poisson and NB models
modelP=glm(doctorco~sex+age+illness+hscore,family="poisson",data=docvisit)
library(MASS)
modelNB=glm.nb(doctorco~sex+age+illness+hscore,data=docvisit)

data_counts = table(docvisit$doctorco) # actual counts in data

# counts by Poisson model
lambda=fitted(modelP)
modelP_counts = NA
for (i in (0:9)) {
modelP_counts[i+1] = nrow(docvisit)*mean(dpois(i,lambda=lambda))

}
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How do we know that we have excess zeros? (2)

# counts by NB model
mu = fitted(modelNB)
k = modelNB$theta
modelNB_counts = NA
for (i in (0:9)) {
modelNB_counts[i+1] = nrow(docvisit)*mean(dnbinom(i,mu=mu,size=k))

}

# Comparison of counts
> rbind(data_counts,modelP_counts,modelNB_counts)

0 1 2 3 4
data_counts 4141.000 782.000 174.0000 30.00000 24.000000
modelP_counts 3923.240 1027.489 192.3367 36.83231 7.821768
modelNB_counts 4162.377 711.002 193.1876 66.62437 27.385283

5 6 7 8 9
data_counts 9.000000 12.000000 12.00000000 5.00000000 1.000000000
modelP_counts 1.768392 0.401649 0.08806722 0.01824272 0.003535122
modelNB_counts 12.849942 6.654180 3.70833122 2.18477570 1.343859220
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Example solution in R. ZIP model (1)

> library(pscl)

> modelZIP1 = zeroinfl(doctorco~sex+age+illness+income+hscore | age,
dist="poisson", link="logit", data=docvisit)

> summary(modelZIP1)

Count model coefficients (poisson with log link):

Estimate
(Intercept) -0.92742
sex 0.12474
age -0.20144
illness 0.23971
income -0.16805
hscore 0.08775

Zero-inflation model

Estimate
(Intercept)  1.0945
age -2.3300

Std. Error z value Pr(>|zl)

.14339
.06265
.20192
.02013
.09118
.01006

O O O O OO

-6.468 9.95e-11
1.991 0.0465
-0.998 0.3185
11.906 < 2e-16

%k %k Xk

%k % Xk

-1.843 0.0653 .

8.723 < 2e-16

coefficients (binomial with
Std. Error z value Pr(>|zl)

0.1673
0.3654

6.543 6.03e-11
-6.376 1.82e-10

Number of iterations in BFGS optimization: 17
Log-likelihood: -3500 on 8 Df
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Example solution in R. ZIP model (1)

> modelZIP2 = zeroinfl(doctorco~sex+illness+hscore | age,
dist="poisson",link="logit", data=docvisit)
> summary (modelZIP2)

Count model coefficients (poisson with log link):
Estimate Std. Error z value Pr(>|zl|)
(Intercept) -1.13238 0.07611 -14.878 <2e-16 *xx*

sex 0.14999 0.06029 2.488 0.0129 x*
illness 0.24005 0.01991 12.056 <2e-16 *x*x*
hscore 0.08948 0.01002 8.933 <2e-16 **x*

Zero-inflation model coefficients (binomial with logit link):
Estimate Std. Error z value Pr(>|z]|)

(Intercept) 1.0164 0.1297  7.836 4.64e-15 *x*x

age -2.1570 0.2690 -8.019 1.07e-15 x*x*x

Number of iterations in BFGS optimization: 14
Log-likelihood: -3502 on 6 Df
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ZINB model (Zero Inflated Negative Binomial )

Idea is very similar to ZIP model, the difference is that the Poisson count model is
substituted with the NB model

Let us recall the pmf of NB distribution:

C(k + yi) ( k >k< k )y"
i iy k) = 1-—
pLyii i, k) yi' T(k)  \k+pi k + i

We again have
o a counting process, with ; = 11;(8) = exp(x; B)
o a process generating zeros 7;(7y)

ZINB model

P{Yi =0} =mi(7v) +[1 - ”"(7)](#;(6)%

P{Yi =y} = [1 — mi(¥)]p(yi; i k), yi = 1,2, ...

3 — parameter vector of the counting process
~ — parameter vector the process generating zeros

Main choices to estimate 7; are again logit or probit model
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Mean and variance of ZINB model

Mean of the response variable is

E(Yi) = pi(1 —m)

Now, assuming the zero model is logit, we can proceed and obtain

el B)
B0 = 17 ep(wl )

Variance of the response variable is

2
D(Y) = (L = m) (s + 50) + (a7 + )

Clearly D(Y;) > E(Y7)

GLM (MTMS.01.011) Lecture 9

19 /36



Example solution in R. ZINB model (1)

> modelZINBl=zeroinfl(doctorco~sex+age+illness+income+hscore|age,
dist="negbin", link="logit", data=docvisit)
> summary (modelZINB1)

Count model coefficients (negbin with log link):
Estimate Std. Error z value Pr(>lz|)

(Intercept) -1.91238 0.19185 -9.968 < 2e-16 **x*
sex 0.20288 0.07085 2.863 0.004191 =*x
age 0.27688 0.25984 1.066 0.286614
illness 0.27450 0.02397 11.453 < 2e-16 **x*
income -0.15122 0.10311 -1.467 0.142500
hscore 0.10969 0.01355 8.096 5.66e-16 *x*x*

Log(theta) -0.38889 0.10685 -3.640 0.000273 **x
Zero-inflation model coefficients (binomial with logit link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.7688 0.8535 0.901 0.3677
age -8.8293 4.0542 -2.178 0.0294 =*

Log-likelihood: -3381 on 9 Df
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Example solution in R. ZINB model (2)

> modelZINB2 = zeroinfl(doctorco~sex+illness+hscore | age,
dist="negbin",link="logit",data=docvisit)
> summary (modelZINB2)

Count model coefficients (negbin with log link):
Estimate Std. Error z value Pr(>lz|)
(Intercept) -1.85496 0.08453 -21.945 < 2e-16 *xx*

sex 0.23801 0.06887  3.456 0.000549 xxx
illness 0.28089 0.02380 11.800 < 2e-16 *xxx
hscore 0.11050 0.01351 8.181 2.81e-16 **x

Log(theta) -0.32524 0.10261 -3.170 0.001526 *x*
Zero-inflation model coefficients (binomial with logit link):
Estimate Std. Error z value Pr(>|zl)

(Intercept) 0.8226 0.4855 1.694 0.09023 .
age -7.4834 2.2866 -3.273 0.00107 *x*

Theta = 0.7224
Number of iterations in BFGS optimization: 26
Log-likelihood: -3384 on 7 Df
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Hurdle model (also called ZA (Zero Altered) model)

Setup:
o too many zeros in data

o zeros in count process are not of interest

Two-step process:

@ binary process that models the probability of event that the counting process
starts

@ counting process (without zeros)

Hurdle (ZA) model

P{Y; = 0} = (0)
1 (0)

PLYi = yilYi > 0} = e 1— 5y

,yi=1,2,... (***)

where f; and f, are some pmf-s (corresponding to binary process and count
process)
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Deriving the probabilities for Hurdle model

To explain the formula (***), let us look at the setup in more details:

@ First step: a binary process C:
o C =0 - counting is not yet started, P{C = 0} = £(0)
o C =1 - "hurdle is crossed’ and counting is started, P{C =1} =1 — £(0)

@ Second step: the conditional distribution of the counting process (given
C =1, i.e. 'hurdle is crossed') is found:

fL(yi
P{Y,-:y,-C:1}=12(g()0), yi=1,2,...,

where f, is the (non-conditional) pmf of the counting process
Now, since

P{Y; =y} = P{Y; = yi|C =1}P{C =1} = P{Y; = y;|C = 1}(1 — £(0)),
the equation (***) follows:

PLY = ylY > 0) = L2251~ (0)
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Poisson Hurdle (ZAP) model

Notation and assumptions:
o f, — pmf of count model (Poisson)
o f; — pmf of zero model (logistic/normal: logit/probit-link for binary model)

Poisson Hurdle (ZAP) logit model

[L— P{Y, = 0} exp(— i) exp(— i)

i» ilyi >0 = :
pUistilyi > 0) = = =t [+ expmo)lL — exp(— )y
where

_ )
o P{Y; = 0} 71?25;)7%,0)
on,o_ln = w/ 'y, mi = P{Y; =0}, p; = exp(x; ,6‘)

o w;— argument vector for zero model

o x; — argument vector for count model

The derivation of NB Hurdle model (ZANB) is analogous
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Mean and variance of ZA models

ZAP model:

1—77,' )
T T exp(—u)

1—71','

) 1—m ?
200 = = g )~ ()

ZANB model:

K k
EK = I3 h P =
(Y) =12 Po“ where To <u;+k>
1—m; n _|_H/ 1—m; .2
1- P, Fi T p 1_P0H:

The mean and variance can be used to calculate Pearson residuals

D(Yi) =
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Difference of ZI and ZA models

NB! An important difference is that in R

o in ZIP and ZINB, the binomial GLM models the probability of a false zero
versus other types of data,

o in ZAP and ZANB, the binomial GLM models the probability of presence
versus absence

Hence, the estimated regression parameters obtained by ZAP and ZANB should
have opposite signs compared to those obtained by ZIP and ZINB due to the
definition of ;.

In other words, assuming that 7; corresponds to the probability of zeros, we
should interpret the R output for ZA models as either

17r,,

o logit(1 — ;) = In =w/~, or

o logit(m;) = In 177“ =-—w/~
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Example solution in R. ZAP model (1)

> modelZAP1 = hurdle(doctorco~sex+age+illness+income+hscore | age,
dist="poisson",link="logit",data=docvisit)
> summary (modelZAP1)

Count model coefficients (truncated poisson with log link):
Estimate Std. Error z value Pr(>|zl)

(Intercept) -0.28073 0.16843 -1.667 0.095574 .
sex -0.13048 0.08908 -1.465 0.142996

age -0.05724 0.21614 -0.265 0.791133
illness 0.10324 0.02931  3.523 0.000427 x*x**
income -0.33740 0.14077 -2.397 0.016539 *
hscore 0.06879 0.01265 5.436 5.44e-08 **x*

Zero hurdle model coefficients (binomial with logit 1link):
Estimate Std. Error z value Pr(>|zl)

(Intercept) -2.16884 0.08337 -26.02 <2e-16 *xx

age 1.85287 0.16727 11.08 <2e-16 **x

Number of iterations in BFGS optimization: 14
Log-likelihood: -3619 on 8 Df
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Example solution in R. ZAP model (2)

> modelZAP2=hurdle(doctorco~illness+hscore+income | age,
dist="poisson",link="logit",data=docvisit)
> summary(modelZAP2)

Count model coefficients (truncated poisson with log link):
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.41924 0.10783 -3.888 0.000101 *x*x*

illness 0.10060 0.02864  3.512 0.000445 *xx*
hscore 0.06991 0.01258  5.557 2.74e-08 x*x*x*
income -0.27016 0.12831 -2.105 0.035250 *

Zero hurdle model coefficients (binomial with logit link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.16884 0.08337 -26.02 <2e-16 **x

age 1.85287 0.16727 11.08 <2e-16 *xx

Number of iterations in BFGS optimization: 16
Log-likelihood: -3621 on 6 Df
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Example solution in R. ZANB model (1)

> modelZANBl=hurdle(doctorco~sex+age+illness+income+hscore | age,
dist="negbin",link="logit",data=docvisit)
> summary(modelZANB1)

Count model coefficients (truncated negbin with log link):
Estimate Std. Error z value Pr(>|z])
(Intercept) -10.83240 37.96271 -0.285 0.7754

sex -0.11067 0.14721 -0.752  0.4522
age -0.24472 0.36378 -0.673 0.5011
illness 0.12985 0.04986 2.605 0.0092 *x*
income -0.33252 0.20842 -1.595 0.1106
hscore 0.10451 0.02617 3.994 6.5e-05 *x*x*
Log(theta) -10.75455  37.96275 -0.283 0.7770

Zero hurdle model coefficients (binomial with logit link):
Estimate Std. Error z value Pr(>|zl)

(Intercept) -2.16884 0.08337 -26.02 <2e-16 ***

age 1.85287 0.16727 11.08 <2e-16 ***

Theta: count = 0
Number of iterations in BFGS optimization: 32
Log-likelihood: -3490 on 9 Df
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Example solution in R. ZANB model (2)

> modelZANB2=hurdle (doctorco~illness+hscore | age,
dist="negbin",link="logit",data=docvisit)
> summary (modelZANB2)

Count model coefficients (truncated negbin with log link):
Estimate Std. Error z value Pr(>|zl)

(Intercept) -11.65889 47.28034 -0.247 0.80522

illness 0.13020 0.04832 2.695 0.00705 *x*

hscore 0.10722 0.02609 4.110 3.96e-05 *x**

Log(theta) -11.22227 47.28088 -0.237 0.81238

Zero hurdle model coefficients (binomial with logit 1link):
Estimate Std. Error z value Pr(>|zl)

(Intercept) -2.16884 0.08337 -26.02 <2e-16 *xx

age 1.85287 0.16727 11.08 <2e-16 **x

Theta: count = 0

Number of iterations in BFGS optimization: 61
Log-likelihood: -3491 on 6 Df
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Which models to choose?

Different aspects that need to be considered while choosing models for count
data:

o overdispersion in data (including non-zero part): Poisson vs NB

o too many zeros (overdispersion in zero part), depending on situation: Z/ or
ZA models

5 different types of zeros are discussed in (Zuur et al., 2009, p 270)
@ structural zeros — true zeros
@ design errors — e.g., wrong area or wrong season for counting
@ observer errors
@ ’errors’ of the subject of counting — the habitat is suitable, but site is not used
® naughty naughts; bad zeros — obvious errors (need to be deleted)

Type 1 (true negative), is taken into account by ZI models
Types 2—4 are false negatives, which actually are not of interest
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Which model fits best?

Different tools are available to compare the models:
o AIC, BIC

o Likelihood ratio test — for nested models)
Poisson vs NB; ZIP vs ZINB

o Vuong's test (closeness test) — for nonnested models
ZIP vs Poisson; ZINB vs NB
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Vuong's test
Hypothesis that 2 models f : Fy and g : G, are close: Hy : E(In ny;) 0

The corresponding test statistic is a difference of weighted log-likelihoods:

- In LR,,(G,,,"Y,—,)

InLR, = If(0,) — 18(%,) (log-likelihoods), w, — weights
Think, e.g.: Fp :ZIP, ZINB G, : Poisson, NB

Decision rules (significance level o = 0.05):

If V> 1.96 = Fy is better than G,
If V < ~1.96 = G, is better than Fy
If |V| < 1.96 = models are equally good

Weights:

.yt‘zta 1 }/t|Zt7
Z[' Pl Z Tz, On)ye

— Yt|zt7'Yn 1 g(ytlzt,5n)

Quang H. Vuong (b. 1953 Paris), Professor in University of Pennsylvania (economics)
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Example continued. Comparison of models (1)

> library(lmtest)
> lrtest(modelNB,modelP)
Likelihood ratio test

Model 1: doctorco ~ sex + age + illness + hscore

Model 2: doctorco ~ sex + age + illness + hscore
#Df LogLik Df Chisq Pr(>Chisq)

1 6 -3385.9

2 5 -3650.5 -1 529.11 < 2.2e-16 **x

> vuong(modelP,modelZIP2)

Vuong Non-Nested Hypothesis Test-Statistic:

(test-statistic is asymptotically distributed N(0,1) under the
null that the models are indistinguishible)

Vuong z-statistic H_A p-value
Raw -5.481430 model2 > modell 2.1095e-08
AIC-corrected -5.444507 model2 > modell 2.5974e-08
BIC-corrected -5.323503 model2 > modell 5.0894e-08
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Example continued. Comparison

> vuong(modelNB,modelZIP2)

Vuong z-statistic

Raw
AIC-corrected
BIC-corrected

5.500703
5.548084
5.703362

> vuong(modelNB,modelZINB2)

modell >
modell >
modell >

of models (2)

H_A
model?2
model?2
model?2

p-value
1.8914e-08
1.4441e-08
5.8733e-09

Vuong z-statistic

Raw
AIC-corrected
BIC-corrected

-0.5144592
-0.3001882
0.4020304

> vuong(modelNB,modelZANB2)

Vuong z-statistic

Raw
AIC-corrected
BIC-corrected

GLM (MTMS.01.011)

6.329138
6.329138
6.329138

model2 >
model2 >
modell >

H_A
modell
modell
model?2

p-value
0.30347
0.38202
0.34383

modell >
modell >
modell >

Lecture 9

H_A
model?2
model?2
model?2

p-value
1.2327e-10
1.2327e-10
1.2327e-10
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Example continued. Comparison of models (3)

> AIC(modelP,modelZIP2,modelZAP2,modelNB,modelZINB2,modelZANB2)

df
modelP 5
modelZIP2 6
modelZAP2 6
modelNB 6
modelZINB2 7
modelZANB2 6

Final decision?

7310.
7016.
7253.
6783.
6781.
6994 .

GLM (MTMS.01.011)

AIC
941
026
176
834
033
115
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