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1 Introduction. Definition of risk. Insurable risk

Almost every human activity is related to some risk(s). When planning a
picnic, there is a risk that it will rain, when ordering a theater ticket, there
is the risk that the performance is sold out, when driving a car, there is a
risk of a traffic accident. There is endless amount of such examples, there
are various risks that may influence us all the time. However, turns out that
defining a risk itself is not that simple and obvious task. Although people
mainly think in a similar area, there is no unique definition that includes all
specifics of a risk. In the following we give few possible definitions:

• risk is a combination of threats;

• risk is a probability of something unpleasant to occur;

• risk is the uncertainty of loss;

• risk is the probability of loss;

• risk is uncertainty, tendency that the reality will differ from expecta-
tions;

• risk is a possibility of an unwanted negative outcome (which may be
known).

Let us assume now that we have established a common understanding about
the essence of a risk. The obvious question is how to deal with the risks. In
general, there are four basic ways how individuals deal with risk:

1. Assumption, acceptance – a decision is taken that the level of risk is
acceptable and no action is taken. For example, a cost benefit analy-
sis of the possible alternatives could conclude that the most efficient
solution is to take no action.

2. Elimination – all hazards to which one is exposed are removed. This is
not always possible and can often have unpredictable side-effects. For
example, pesticides can be used to eliminate the risk of crop failure,
but they migh then pollute the environment.

3. Avoidance – behaviour is modified in order to avoid the undesirable
exposure. For example, car is parked only in a secure garage to avoid
the theft risk.

4. Transfer – risk is transferred to third party. This is the basis of insu-
rance (and reinsurance) contracts.

1
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Many risks involve economical factor and have financial consequences (i.e.
measurable in monetary units). Such risks can also be divided into:

1. Speculative risk (dynamic risk) – either profit or loss is possible. Exam-
ples of speculative risks are betting, gambling, investing in stocks/bonds
and real estate. Speculative risk is uninsurable as it violates the most
fundamental concept of insurance – the insured should not gain from
insurance.

2. Pure risk (absolute risk, static risk) – there is a chance of either loss
or no loss, but no chance of gain; for example, either a building will
burn down or it won’t. Only pure risks are insurable.

Which criteria describe an insurable risk?

• the outcome must be financial, i.e., it involves a loss in value that can
be measured in monetary units;

• the risk must be pure risk, i.e. the insured can not gain from it;

• fortuity, i.e. the events causing the loss must arise due to chance, the
occurrence, timing, severity are not under the control of the insured
(policyholder);

• the frequency and severity of the possible loss must be measurable;

• the probability of the occurrence must not be too high;

• the circumstances of the loss event must be clearly definable;

• the price of the transfer must be reasonable (in general).

Definition 1.1 (Insurance, I). Insurance is a way of buying one off from
the economical consequences of possible risks.

Definition 1.2 (Insurance, II). Insurance is a way of redistributing the
society’s assets, which (in case when the party that suffered loss has an
insurance policy) will help the suffered party, covering their loss on the
credit of those policyholders who did not suffer the loss.

The insurance product is quite different from common ”physical” products
one can buy. It is possible (and even common) that no loss will occur during
the insurance period, nevertheless, if a loss occurs, the insurer must cover
the claim as specified by the contract. The occurrence of a loss event depends
on many different factors. In non-life insurance one can make difference be-
tween risk factors and rating factors. Risk factors are those factors which are
believed to influence directly the frequency or severity of a claim for a given

2



MTMS.02.053. Non-Life Insurance Mathematics

risk exposure. Such factors are often difficult to obtain or measure reliably.
Therefore, insurance companies gather information of related factors, which
are easier to measure and manage. For example, traffic density in which a
car is driven is clearly a significant risk factor, but it is very difficult to
measure the traffic density accurately for all the routes of all policyholders.
Some crude estimates that can be used here are the policyholder’s address
and also the purpose for which the vehicle is used.

In non-life insurance there is also a variety of different types of policy. This
means that many different measures are required to describe risk exposure.
For example, in motor insurance the usual measure of exposure is the vehi-
cle year. However, for some types of risk (e.g. traffic accidents), the distance
driven might be a better exposure indicator. On the other hand, distance
driven does not reflcet properly the exposure to theft claims as they occur
when the car is not being driven. Another question of importance for prac-
tical point of view is how accurately these measures can be obtained. Using
previous example, the vehicle year is straightforward and requires no addi-
tional calculations. The distance driven, although theoretically reasonable,
is rarely used in practice because of the difficulties in actual calculations.

The likelihood of a policyholder claiming against his or her insurance policy
obviously depends on risk factors mentioned above. Another way of classi-
fying the circumstances which make claim more or less likely is to identify
the hazards to which a policyholder is exposed. In the following we give a
broad classification of such hazards.

1. Legal hazards. These include changes in laws or imposition of new
conditions under which insurers could become liable (especially under
retrospective legislation).

2. Physical hazards. Physical or structural conditions which could in-
crease the likelihood of loss. For example, faulty house wiring or out-
dated safety systems.

3. Moral hazards. Deviation from normal behaviour of the policyholder
in order to gain financially from the insurance contract by taking cer-
tain actions within his or her control. In other words, the principle of
fortuity is violated.

4. Personal hazards. Personal hazards are closely related to moral haz-
ards. For example, people might be careless, or badly qualified, or
just more accident prone than others and therefore impose an above
average liability on the insurer.

To avoid or reduce these hazards, several rules and regulations are used. For
example:

3



MTMS.02.053. Non-Life Insurance Mathematics

• the principle of deductible: risk is not transferred fully, the policyholder
is still responsible for a small part of the risk;

• encouragement to increase security and safety levels to reduce physi-
cal risks, e.g. discounts of insurance premium if anti-theft devices are
fitted;

• no cover for claims if they are caused while intoxicated by alcohol or
under the influence of drugs, i.e. reducing personal risks;

• the conditions when and how much of the loss will be compensated
need to be precicely fixed in the insurance contract, thus reducing
possible moral risks.

In order to assure the policyholder’s trust in insurers and to guarantee the
solvency of insurers policyholders, the regulations are fixed by laws and
strictly supervised by appropriate institutions:

• in European level – Committee of European Insurance and Occupa-
tional Pensions Supervisors (CEIOPS);

• in Estonia – Financial Inspection.

It is also important to note that the current regulation regime Solvency I is
being soon replaced by more dynamic and flexible regime Solvency II.

References
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2 The cash-flow model of an insurance company

2.1 Transition equation

The financial operations of an insurer can be viewed in terms of a series of
cash inflows and outflows. The inflow components are added to the reservoir
of assets, while the reservoir is depleted by the outflow components.

Main inflow components for an insurance company are:

• premiums – the main income of an insurance company;

• reinsurance recoveries – an insurer may also transfer some risks or parts
of risk further to a reinsurer, in this case the corresponding claims are
also (partially) recovered by a reinsurer;

• income from investments – this includes interest payments, dividends,
rental income, changes in value of assets;

• new capital issued and subscribed for;

• miscellaneous.

Main outflow components for an insurance company are:

• claim payments – the main outflow component;

• reinsurance premiums;

• expenses – includes commission paid, administration and operating
expenses, we may also include taxes in this term;

• dividends paid to shareholders and bonuses paid to policyholders;

• miscellaneous.

It is obvious that the first two components in both lists are characterizing
the insurance business while the other components are general and do not
depend on company’s business.

Let us now introduce some mathematical notation so we can write the whole
cash-flow model as certain transition equation.

Notations for inflow (in period [0, t]) are following:

Pt – the premium income;

XRe
t – recoveries from reinsurance;

5
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It – the return from investments;

Unewt – new capital issued and subscribed for;

and notations for outflow (in period [0, t]) are:

Xt – claims;

Et – paid commission, administration and operating expenses;

PRet – ceded (reinsured) reinsurance premium;

Dt – dividends paid to shareholders.

Let At denote the assets of the insurer at time t. Then, the flows and resulting
assets can be expressed in the form of transition equation:

At = A0 + Pt +XRe
t + It + Unewt −Xt − Et − PRet −Dt. (2.1)

Model (2.1) is useful in various situations and depending on particular need,
the terms and whole model can have different interpretations. Firstly, we can
use it either as a discrete time model or a continuous time model. Since most
of the reporting and revisions are required on annual basis, a discrete time
model is justified to describe the yearly development. If one wants to monitor
the cash-flow more precisely, a continuous time model is better suited.

Although we stated the model as referring to the whole operation of an
insurer, the same principles can be applied to establish sub-models. For
example one may want to concentrate on a narrower context and examine
the development in certain subportfolio. One must be noted that application
of the model to a subportfolio may present some problems of interpretation
as to which assets are allocated to that subportfolio (but that does not
change the fundamental principle).

The model can also be interpreted as either deterministic or stochastic.
Many interesting and useful applications may be possible using deterministic
model. However, modelling the uncertainty is one of the main challenges
in risk theory and stochastic model clearly depicts the true essence of the
situation.

From the insurance perspective it is also important to make distinction
between ’paid’ amounts or ’earned’ and ’incurred’ quantities. Depending on
the quantities we use, the meaning of the model also changes.

Let us make the distinction

• P ′t – earned premium in period [0, t];

6
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• Pt – written premium in period [0, t].

Written premium is the premium charged (or to be charged) for a policy or
group of policies and it is (usually) fixed while signing the contract.

Earned premiums for an accounting year are those parts of premiums writ-
ten in the year, or in previous years, which relate to risks borne in that
accounting year. In so far as premiums written during the accounting year
provide cover for risk in the next or subsequent accounting years, the part of
the premium relating to those later periods is carried forward by establishing
the unearned premium reserve (UPR).

This construction can be written as

P ′t = Pt − UPRt + UPR0,

where UPRt is the unearned premium reserve at t (end of the account-
ing period) and UPR0 is the initial unearned premium reserve at time 0
(beginning of the accounting period).

Similarly to premiums, we make distinction between

• X ′t – incurred claims in period [0, t];

• Xt – paid claims in period [0, t].

Incurred claims in the accounting year are defined as the total amount of
claims arising from events which have occurred in the year (irrespective of
when final settlement is made!). It should be noted that the actual settlement
of some claims may be delayed considerably beyond the year in which the
event giving rise to the claim occurs. This means that the claims paid will
include amounts in respect of claims incurred in earlier accounting years,
which should have been included in the reserve for reported but not settled
claims (RBNS) brought forward from the previous accounting period.

In other words, the following relation between incurred and paid claims
holds:

X ′t = Xt +RBNSt −RBNS0,

where RBNSt is the reserve for outstanding claims at t and RBNS0 is the
reserve for reported but not settled claims at time 0.

2.2 Risk reserve and solvency

Now, let us go back to model (2.1) and notice the following:

• XRe
t ja PRet are strongly related to process Xt and determined by

reinsurance mechanics;
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• Pt is determined by the claims process Xt and many other factors
(market situation, marketing politics, global economical situation, le-
gal regulations, human psychology, etc);

• investments, expenses, dividends are not related to the essence of in-
surance, thus they can be omitted from the model and dealt with
separately.

Taking this remark into account we obtain a simplified surplus process Ut:

Ut = U0 + Pt −Xt, (2.2)

where U0 is the initial surplus (at t = 0), Pt is written (or earned) premium
during [0, t] and Xt denotes paid (incurred) claims during [0, t].

The model can be simplified further by considering the process Pt to be
linear in time: Pt = P · t.
The quantity Ut is also called solvency margin or risk reserve.

Definition 2.1 (Absolute solvency). An insurer is said to be absolutely
solvent if its liabilities do not exceed its assets, in other words Ut ≥ 0

The absolute solvency is not the best criterion to use in practice, because it
is too rough and it is too late to take any action if an insurer is already in-
solvent. Therefore, in current solvency I regime, there are two margins that
specify when the regulatory authorities should take action: required solvency
margin Umin and minimum guarantee fund Umgf . In case the solvency mar-
gin of an insurance company falls below the required margin, i.e., Ut < Umin,
then the supervision institutions may apply sanctions in order to save the
investments of the policyholders and the shareholders. The solvency margin
should never fall below a minimum guarantee fund, which is the absolute
minimum amount of capital required.

Let us consider the expectations of different parties related to the solvency
of the insurer. Policyholders’ main interest is that the insurer stays solvent:

P{U0 · (1 + i) + P −X < Umin} = ε,

where i is risk-free interest rate and ε > 0 is small.

Insurer’s (or shareholders’) on the other hand want to earn profit:

P{U0 · (1 + i) + P −X < U0 · (1 + i+ jmin)} = δ,

where jmin is the required return rate and δ > 0 is small (but usually δ > ε).

It can be seen that the solution to solvency equations above is the given by
the following equalities.

8
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U0 =
F−1(1− ε)− F−1(1− δ) + Umin

1 + i+ jmin
, (2.3)

P = F−1(1− δ) + jminU0. (2.4)

Formulas (2.3) and (2.4) guarantee to the shareholders capital return of at
least jmin with probability 1− δ.
The obvious remaining problem is how to find F (x). One possible simple
approach is so-called Normal Power approximation:

F−1(1− ε) ≈ EX + z1−ε
√
V arX +

z2
1−ε − 1

6
· E(X − EX)3

V arX
,

where z1−ε is the (1-ε)-quantile of standard normal distribution.

2.3 Managing insurance risk: risk pooling

Let us denote

• P (1) – individual insurance premium;

• n – number of contracts;

• P – whole premium for the period, P = nP (1);

• ω – a proportion factor, U0 = ωP ;

• X – total claims.

Then we can write an even more simplified formula for the surplus process
at t = 1:

U1 = U0 + P −X = ωP + P −X = (ω + 1)P −X,

Shareholders’ perspective in this process can be measured in terms of the
return of capital. The return of capital R is defined as

R =
P −X
U0

=
1

ω

(
1− X

P

)
with expected value

ER =
P − EX
U0

=
1

ω

(
1− EX

P

)
.

9
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On the other hand, policyholders’ perspective in this process is to minimize
the cost of insurance. The (relative) cost of insurance L is defined as

L =
P −X
P

= 1− X

P

with expected value

EL =
P − EX

P
= 1− EX

P
.

The characteristics R and L are connected through the proportion factor ω:
R = 1

ωL and ER = 1
ωEL

The probability of insolvency can be reduced by increasing the number of
independent risks insured, n. Using the law of large numbers we get

lim
n→∞

P

{∣∣∣∣Xn − EX

n

∣∣∣∣ < ε

}
= 1.

Thus, we can characterize the pooling of risk principle, which underlies all
insurance:

• the more contracts (the bigger n), the smaller can be the relative cost
of insurance (as the actual claim amount is close to expected with high
probability);

• the proportional factor can be decreased to increase the capital return
R;

• the more contracts the less capital (relatively) is required to obtain
sufficient capital return and acceptable cost of insurance.

Remark 2.1. It must be noted, however, that where there is heterogeneity
amongst the risks, the law of large numbers may not be entirely valid!

Example 2.1. An insurer issues 10 000 identical policies with the following
characteristics

• claim size (if it incurs) is 10 000 EUR;

• probability of incurrence is 0.05;

• individual insurance premium is 550 EUR.

The shareholders provide initial capital of 2.5 million Euros, expenses and
investment income will be ignored. As the portfolio is large, we assume that
the number of claims N is approximately normally distributed with

µ = 10000 · 0.05 = 500,

σ2 = 10000 · 0.05 · 0.95 = 475.

10
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Thus the incoming cash flow is 550 · 10000 + 2500000 = 8000000 EUR and
the probability of insolvency ε can be calculated as

ε = P{X > 8000000} = P{N > 800} = 1− Φ(13.765) ≈ 0.

The expected cost of insurance is EL = 1 − EX
P = 1 − 5000000

5500000 ≈ 0.09 and
the expected return of capital is ER = EL

ω = 0.09
0.45 = 0.2.

Remark 2.2. Besides the general pooling principle, several risk mitigation
techniques are used in order to manage the insurance risk:

• diversification involves accepting risks that are not similar in order to
benefit from the lessened correlation of contingent events;

• hedging involves accepting risks with a strong negative correlation;

• reinsurance means transferring risks or parts of risks to a reinsurer.

References
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3 Principles of the compensation calculation. Prin-
ciples of the deductible

The calculation of compensation relies mainly on the following two charac-
teristics:

• insurable value V – describes the value of the insurable object;

• sum insured S – usually determines the limit of the compensation.

The insurable value simply means the value of the insured object. When an
insurance claim occurs, one typically calculates the insurable value immedi-
ately before the claim event.

In many classes of property insurance, a sum insured is specified. In most
cases this is an upper limit for the compensation the insurance company will
pay in the event of claim.

Both sum insured and insurable value can be given as a fixed sum or as a
calculation principle (reinstatement value, replacement value, regular value,
etc). If the insurable value and sum insured are both given as fixed sums,
these sums regularly need to be equal. Otherwise we are talking about under-
insurance (if S < V ) or over-insurance (if S > V ).

If a policyholder suffers a loss caused by an event covered by the insurance,
then he receives compensation from the insurer. In the following we introduce
the main principles used to calculate the compensation.

Let X be the actual loss and let g(X) denote the calculated compensation.
One should be noted that the calculated compensation is not yet the com-
pensation that the policyholder actually receives, it is usually reduced by a
deductible (this will be described later).

1. Pro-rata principle:

g(x) = min{1, S
V
} · x,

takes into account the specifics of over- and under-insurance. The com-
pensation is reduced proportionally by the ratio between the sum in-
sured and the insurable value.

2. First risk principle:
g(x) = min{x, S},

the loss is fully covered as long as it does not exceed the sum insured;
if it exceeds the sum insured, then the sum insured is covered. The
first risk principle is often used when it is difficult to determine an
insurable value.

12
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3. Full insurance principle:
g(x) = x,

is rarely used, the possible compensation is not limited.

In most cases the calculated compensation is reduced by a deductible.

There are several reasons for introducing deductibles:

a) loss prevention – to lower the probability of claim occurrence;

b) loss reduction – to lower the claim amount in case of a loss event;

c) avoidance of small claims (as administration cost are dominant when
handling small claims);

d) premium reduction – the first three properties clearly simplify the
insurer’s risk management, in return the insurer can decrease the in-
surance premium.

Let h[g(X)] denote the actual compensation paid to the claiming policy-
holder. There are 3 main principles of deductibles that can be applied.

A. Fixed amount deductible b:

h1(g(x)) = max{0; g(x)− b}.

B. Proportional deductible β:

h2(g(x)) = (1− β)g(x).

C. Franchise deductible d:

h3(g(x)) = I{g(x)≥d}g(x).

Remark 3.1. Notice that

• principle A satisfies all requirements a)–d);

• principle B could not avoid the handling of small claims c);

• principle C does not satisfy b) and can work against it.
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4 Premium principles

4.1 Desirable properties of premium principles. Classical pre-
mium principles

As discussed before, insurance can be considered as transfer of a risk X
from policyholder to the insurer. The risk is of stochastic nature, so we can
consider it as a random variable. By the construction, we also assume it is a
non-negative random variable; risks taking negative values are not realistic
in non-life insurance.

The insurance industry exists because people are willing to pay a price for
being insured. A natural question related to the insurance process is how
much should the insurer ask for transfer of a risk X? In other words, we
need to specify some rules to determine a proper premium for a risk X. A
premium principle is a rule P that to any risk X assigns a premium P (X).
The premium P (X) is non-random and can be considered as a function of
the distribution of X.

Before finding some suitable functions P , let us think what properties should
such function have. A short list of natural properties is the following:

1) subadditivity: ∀X,Y , P (X + Y ) ≤ P (X) + P (Y );

2) monotonicity: ∀X,Y , P (X) ≤ P (X + Y );

3) risk loading: ∀X, P (X) ≥ EX;

4) premium is limited by maximal possible loss:
for ∀X the inequality P{X < P (X)} < 1 holds;

4’) a weaker form of 4):
if ∀X ∃m so that P{X ≤ m} = 1, then also P (X) ≤ m.

Four commonly used classical premium principles are

(a) expected value principle P1(X) = (1 + α)EX, α > 0;

(b) standard deviation principle P2(X) = EX + β
√
V arX, β > 0;

(c) variance principle P3(X) = EX + γV arX, γ > 0;

(d) “combined variational principle” (compromise principle) P4(X) = EX+
β1

√
V arX + γ1V arX, β1, γ1 > 0.

Turns out that the some of the properties 1)-4’) are not well satisfied by
these classical principles (prove it!).
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One can also find premium as a solution for the following condition

P{X ≥ P} ≤ ε,

where ε > 0 is the maximal tolerated ruin probability. In other words, we
want to find a premium which ensures that the probability that this premium
is sufficient to cover the claims is at least 1− ε. In that case we obtain

(e) the quantile principle: P5(X) = minP [P{X ≤ P} ≥ 1− ε].

The quantile premium calculation principle is often also called the percentile
principle. No additional assumptions are set to risk X, but the amount of
data must be sufficient to give usable estimates for the required quantiles.

4.2 Utility theory

There is an economic theory that explains how much insureds are willing to
pay for transferring a possible loss. The theory postulates that a decision
maker, generally without being aware of it, attaches a value u(x) to his
wealth x instead of just x, where u(·) is called his or her utility function. So,
all decisions related to random losses are done by comparing the expected
changes in utility. Although it is impossible to determine a person’s utility
function exactly, we can give some plausible properties of it. For example,
more wealth would imply a higher utility level, so the utility function u(·)
should be a non-decreasing function. It is also logical that ”reasonable”
decision makers are risk averse, which means that they prefer a fixed loss
over a random loss with the same expected value. In conclusion, a utility
function u(x) is assumed to be increasing (u′(x) > 0) and concave, i.e. the
relative value of money will decrease while x increases (u′′(x) < 0).

Maximum premium P that the insured with wealth x is willing to pay is the
solution of the following equation:

u(x− P ) = E[u(x−X)].

Similar line of argument applies from an insurer’s viewpoint. Then the min-
imum acceptable premium by insurer with utility function u(x) is found
from:

u(x) = E[u(x+ P −X)].

The problem is that, in general, the premium will depend on the insurer’s
surplus x, which makes it very difficult to apply in practice.

A known solution to last equation is given by function

u(x) =
1

a
(1− e−ax), a > 0.
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Using this function we can calculate the premium:

1

a
(1− e−ax) =

1

a
E(1− e−a(x+P−X));

e−ax = e−axe−aPEeaX ;

eaP = EeaX ;

P =
1

a
lnEeaX .

Thus, we obtained a formula where the premium does not depend on surplus
x anymore. The corresponding premium principle is called

(f) exponential principle: P6(X) = 1
a lnEeaX .

The parameter a > 0 is called risk aversion, it represents the ’unwilling-
ness’ of the insurer to undertake the risk. It can be proved that exponential
premium increases when a increases: the more risk averse one is, the larger
premium one is willing to pay.

Turns out that the exponential principle satisfies the properties 1)-4’) much
better than the classical principles described above (prove it!). Unfortunately
it has a quite complex form and it is quite difficult to apply this principle
in practice.

Remark 4.1 (Allais paradox (1953)). Consider the following capital gains

X = 1 000 000 with probability 1

Y =


5 000 000 with probability 0.10

1 000 000 with probability 0.89

0 with probability 0.01

V =

{
1 000 000 with probability 0.11

0 with probability 0.89

W =

{
5 000 000 with probability 0.10

0 with probability 0.90

Turns out that having a choice betweenX and Y , many people chooseX, but
at the same time they prefer W over V . One can easily see that, assuming an
initial wealth of 0, these choices contradict the expected utility hypothesis. It
seems that the attraction of being completely safe is tronger than expected
utility indicates, and induces people to make irrational decisions.
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4.3 A note on terminology

The premiums are used in different contexts and with different meanings
(depends on how many factors are taken into account). A short overview is
given by the following list.

• Pure premium: the expected loss EX;

• Risk premium: pure premium EX plus risk loading D, where D is
calculated depending on chosen premium principle;

• Gross premium: risk premium plus expense loading ;

GP =
1

1− k
· [P (X) +K],

where k denotes expenses proportional to premium (e.g. commission
fees) and K denotes other (unproportional) expenses (e.g. expenses
related to claim handling and adjustment);

• Net premium: by this we usually mean net of reinsurance (and agent’s
commissions or other related costs), i.e. either risk premium minus pay-
ments made for reinsurance or gross premium minus payments made
for reinsurance, depending on situation.

We are mainly speaking of risk premiums unless specified otherwise.
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5 Loss distributions

The aim of this chapter is to give a brief overview of distributions suitable
to describe the claim severity. Claim severity refers to the monetary loss
of an (individual) insurance claim. Obviously the final aim of an insurance
company is to estimate the aggregate claim amount in order to find suitable
premiums and reserves. The study of individual claims can be seen as the
first step towards this objective.

5.1 Characteristics of loss distributions

Claim severity is usually modelled as a nonnegative continuous random vari-
able.

The list of possible distributions is large:

• Exponential distribution

• Pareto distribution

• Weibull distribution

• Lognormal distribution

• Gamma distribution

• Burr distribution

• Loggamma distribution

• Generalized Pareto distribution

• Inverse Gaussian distribution

• ...

In the following we focus on the first five, i.e. exponential, Pareto, Weibull,
lognormal and gamma distributions and give a review of their key charac-
teristics.

5.1.1 Exponential distribution

Exponential distribution is a good reference distribution for examples, but
usually too ”optimistic” for real models. Exponential distribution is also
often used to describe the inter-arrival times of loss events. For an exponen-
tially distributed random variable X we write X ∼ Exp(λ), where λ > 0 is
a parameter.

Main characteristics for the exponential distribution are:
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• distribution function FX(x) = 1− e−λx, x ≥ 0,

• density function fX(x) = λe−λx, x ≥ 0,

• expectation EX = 1
λ ,

• variance V arX = 1
λ2

.

5.1.2 Pareto distribution

The Pareto distribution is a power law probability distribution that is used
in several models in economics and social sciences. The corresponding dis-
tribution family is a wide one, with several sub-families. We will first review
the classical Pareto distribution and then focus on it’s shifted version (so-
called American Pareto distribution), which is most widely used in non-life
insurance as a model for claim severity.

A. The classical Pareto, X ∼ Pa∗(α, β), α, β > 0

Main characteristics for the classical Pareto distribution are:

• distribution function FX(x) = 1−
(
β
x

)α
, x ≥ β,

• density function fX(x) = αβα

xα+1 , x ≥ β,

• expectation EX = αβ
α−1 , α > 1,

• variance V arX = αβ2

(α−1)2(α−2)
, α > 2,

• moments EXn = αβn

α−n , α > n, but EXn =∞, α ≤ n.

B. American Pareto, Y ∼ Pa(α, β), Y = X−β, X ∼ Pa∗(α, β), α, β > 0

The American Pareto distribution is obtained from classical Pareto distri-
bution by shifting it to the origin.

Main characteristics for the American Pareto distribution are:

• distribution function FY (y) = 1−
(

β
β+y

)α
, y ≥ 0,

• density function fY (y) = αβα

(β+y)α+1 , y ≥ 0,

• expectation EY = β
α−1 , α > 1,

• variance V arY = αβ2

(α−1)2(α−2)
, α > 2,

• moments EY n = βnn!∏n
i=1(α−i) , α > n, but EY n =∞, α ≤ n.
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Parameter estimation using the method of moments:

α̂ =
2(m2 −m2

1)

m2 − 2m2
1

,

β̂ =
m1m2

m2 − 2m2
1

,

where m1 =
∑n

j=1
yj
n and m2 =

∑n
j=1

y2j
n .

5.1.3 Weibull distribution

The Weibull distribution is one of the main distributions in survival analysis
and reliability analysis, it is also used in models for service and manufac-
turing times. Because of its shape it is also usable to model severities in
non-life insurance. For a Weibull-distributed random variable X we write
X ∼W (α, λ), α > 0, λ > 0.

Main characteristics for the Weibull distribution are:

• distribution function FX(x) = 1− e−λxα ,

• density function fX(x) = αλαxα−1e−λx
α
,

• moments EXn = λnΓ(1+n
α ).

We also note that if

α < 1, then Weibull distribution is “between” exponential and Pareto;
α > 1, then Weibull distribution has lighter tail than exponential;
α = 1, then Weibull distribution reduces to exponential.

5.1.4 Lognormal distribution

The distribution function of lognormal distribution is found using the log
transformation to reach normal distribution and standardization to reach
standard normal distribution. Since the normal distribution is one of the
most thoroughly studied distributions, the simple connection between log-
normal and normal makes lognormal distribution also an appealing choice in
different models. For a lognormally distributed random variable X we write
X ∼ LnN(µ, σ), −∞ < µ <∞, σ > 0.

Main characteristics are:

• its connection to normal distribution, if Y ∼ N(µ, σ) and X = eY ,
then X = LnN(µ, σ),

• distribution function FX(x) = FY (lnx) = Φ( lnx−µ
σ ),
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• density function fX(x) = 1
xfY (lnx),

• expectation EX = eµ+σ2

2 ,

• variance V arX = e2µ+σ2
(eσ

2 − 1),

• moments EXn = enµ+ 1
2
n2σ2

.

Parameter estimation:

µ̂ =
1

n

n∑
j=1

lnxj ,

σ̂2 =
1

n− 1

n∑
j=1

[ln(xj − µ̂)]2.

5.1.5 Gamma distribution

The gamma distribution can also be considered as a generalization of expo-
nential distribution. Namely, if α is integer, then gamma distribution can
be interpreted as a sum of α independent exponentially distributed random
variables. Gamma distribution is widely used in different models for manu-
facturing processes and telecommunications, because of its shape it is also
a suitable choice in risk and ruin theory. For a gamma-distributed random
variable X we write X ∼ Γ(α, λ), α > 0, λ > 0.

Main characteristics are:

• distribution function FX(x) = γ(α, xλ),

• density function fX(x) = λα

Γ(α)x
α−1e−λx, x > 0,

where

Γ(α) =

∫ ∞
0

xα−1e−xdx = (α− 1)Γ(α− 1) is gamma function,

γ(α, t) =

∫ t
0 x

α−1e−xdx

Γ(α)
is incomplete gamma function,

• expectation EX = α
λ ,

• variance V arX = α
λ2

.
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Parameter estimation using the method of moments:

α̂ =
m2

1

m2 −m2
1

,

λ̂ =
m1

m2 −m2
1

.

5.1.6 Mixture distributions. Exponential/Gamma example

Mixture distributions

a) enable us to include in models for claim amounts the variability amongst
risks in a portfolio (that is, they allow us to model heterogeneity of
risks);

b) provide a source of further heavy-tailed loss distributions;

c) shed further light on some distributions we have already met.

Let us consider the following model:

• size of each individual claim is exponentially distributed;

• parameter of this exponential distribution is a Gamma-distributed ran-
dom variable, Λ ∼ Γ(α, β);

• parameters α and β are known.

So, for each fixed λ the (conditional) individual claim size is

X|Λ = λ ∼ Exp(λ)

and the density function of Λ is

fΛ(λ) =
βα

Γ(α)
λα−1e−βλ, λ > 0.
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Let us calculate the (marginal) distribution of X:

fX(x) =

∫ ∞
0

fX,Λ(x, λ)dλ

=

∫ ∞
0

fΛ(λ)fX|Λ(x|λ)dλ

=

∫ ∞
0

βα

Γ(α)
λα−1e−βλ · λe−λxdλ

=
βα

Γ(α)

∫ ∞
0

λαe−(x+β)λdλ

=
βα

Γ(α)

∫ ∞
0

fΓ(λ)Γ(α+ 1)

(x+ β)α+1
dλ

=
βα

Γ(α)

Γ(α+ 1)

(x+ β)α+1

∫ ∞
0

fΓ(λ)dλ

=
αβα

(x+ β)α+1
,

where Γ ∼ Γ(α+ 1, x+ β).

In conclusion, loss size in this case is (American) Pareto-distributed, X ∼
Pa(α, β), i.e. Pareto distribution is a mixture of exponential distributions
with a Gamma mixing distribution.

5.2 Related functions in R statistical software

In R statistical software, there is a variety of functions available related to
different probability distributions. Some most commonly needed for expo-
nential distribution (available in package stats, rate = λ) are:

• dexp(x, rate = 1, log = FALSE) – density;

• pexp(q, rate = 1, lower.tail = TRUE, log.p = FALSE) – distri-
bution function;

• qexp(p, rate = 1, lower.tail = TRUE, log.p = FALSE) – quan-
tile function;

• rexp(n, rate = 1) – random number generation .

Similar functions are available for all distributions discussed:

• Pareto: dpareto, ppareto, qpareto, rpareto (package actuar);

• Weibull: dweibull, pweibull, qweibull, rweibull (package stats);

• Lognormal: dlnorm, plnorm, qlnorm, rlnorm (package stats);

• Gamma: dgamma, pgamma, qgamma, rgamma (package stats).
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5.3 Model evaluation and selection

After a distribution has been estimated, we have to evaluate it to ascertain
that the assumptions applied are acceptable and supported by the data.
This should be done prior to using the model for prediction and pricing.
Model evaluation can be done using graphical methods, as well as formal
misspecification tests and diagnostic checks.

In graphical methods, one simply plots the proposed candidate distribu-
tion function against the empirical distribution function. If the proposed
candidate distribution fits well, the plotted graphs should be close, if the
proposed distributional assumption is incorrect, the plotted graphs will dif-
fer. Similarly, one can plot the probability density functions of candidate
distributions against the histogram of observed data and compare their fit.

Formal misspecification tests can be conducted to compare the estimated
model against a hypothesized model. When the key interest is the com-
parison of the distribution functions, we may use the Kolmogorov-Smirnov
and/or Anderson-Darling test. The chi-square goodness-of-fit test is an al-
ternative for testing distributional assumptions, by comparing the observed
frequencies against the theoretical frequencies. The likelihood ratio test is
applicable to test the validity of restrictions on a model, and can be used to
decide if a model can be simplified.

We will study two less known methods which might be particularly useful
in insurance related problems:

• method of empirical mean excess function (or mean residual life func-
tion);

• limited expected value comparison test.

5.3.1 Method of mean excess function

Let X be a continuous random variable and let x > 0.

Definition 5.1 (Mean excess function e(x)).

e(x) = E(X − x|X ≥ x) =

∫∞
x (t− x)fX(t)dt

P{X ≥ x}
.

Assuming limt→∞(x− t)(1− FX(t)) = 0, we can also write

e(x) =

∫∞
x (1− FX(t))dt

1− FX(x)
.
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Empirical mean excess function can be calculated as:

en(x) =
n∑
i=1

I{xi≥x}xi

#{xi ≥ x}
− x.

Mean excess function is used

• in various risk and extreme value models;

• for distribution fitting;

• tail estimation of heavy-tailed distributions;

• ...

Mean excess functions for the distributions discussed in this chapter have
the following forms:

• X ∼ Pa(α, β), e(x) = β+x
α−1 ;

• X ∼ Exp(λ), e(x) = 1
λ ;

• X ∼ Γ(α, λ), e(x) ≈ const, if x is large;

• X ∼W (α, λ), e(x) ≈ 1
λxα−1 , if x is large;

• X ∼ LN(µ, σ), e(x) ≈ const·x
lnx , if x is large.

Graphs of these functions are shown in the next figure. As one can see,
the graphs of different distributions are clearly distinguished. So one can
simply calculate the empirical mean excess function and decide based on
its behaviour. If this seems like a linear function with positive slope, then
a Pareto distribution might be an appropriate model. If it is more like a
constant for the larger x values, gamma might provide good fit. Something
between these choices might suggest either lognormal or Weibull distribu-
tion.

5.3.2 Limited expected value comparison test

Another ad hoc test that actuaries sometimes use is closely related to mean
excess functions. This test might be preferred in situations in which the data
is censored (from above) and therefore follows certain truncated distribution.
Also, in that case it is impossible to compute the empirical mean excess
function for the tail part.
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Definition 5.2. For any non-negative random variable X (or corresponding
distribution F (x)) the limited expected value function E[X;x] is defined by

E[X;x] = E(min(X,x)) =

∫ x

0
ydF (y) + x(1− F (x)), x > 0.

An alternative formula might also prove useful in some situations:

E[X;x] =

∫ x

0
[1− F (y)]dy.

Following the same idea, the empirical limited expected value function can
be calculated as

En[X;x] =

∑n
i=1 min{xi, x}

n
.

For simplicity (and keeping in mind that the main aim is to apply the limited
expected value function to a claim size distribution), we assume that

• X is continuous;

• X is nonnegative;
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• EX <∞.

It is easy to prove that the LEV-function E[X;x] has the following general
properties:

1. E[X;x] is continuous, concave and nondecreasing function;

2. EX = E[X;x] + e(x)(1− FX(x))

3. E[X;x]→ E(X), if x→∞;

4. F (x) = 1− (E[X;x])′

⇒ E[X;x] determines the distribution of X uniquely!

5. Limited expected value function of aX + b is given by

E[aX + b;x] = aE

[
X;

x− b
a

]
+ b.

The goodness-of-fit of a proposed candidate distribution and the observed
sample is measured by the following comparison test. Let us calculate the
differences

di =
E[X;xi]− En[X;xi]

E[X;xi]
, i = 1, 2, . . . , n− c,

and find the vector ~D = (d1, . . . , dn−c), where c is the number of censored
observations. For simplicity we assume that the sample is ordered and the
last c have not been observed. If ~D is close to null vector, it is reasonable to
believe that the distribution corresponding to E[X;x] fits given data. The
main problem concerning this method is that there are no good criteria to
decide when ~D is close enough to null vector (and when not).

5.4 Effects of coverage modifications to loss distributions

We use the following notations for quantities of interest (also certain sub-
scripts may be used to specify the particular situation):

• X – actual loss size, this will be divided between insurer and policy-
holder, X = Y + Z;

• Y – insurer’s part of loss;

• Z – policyholder’s part of loss;

• FX(·) – distribution function of X;
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• fX(·) – probability density function of X.

Let us also define a characteristic that shows the proportion of losses that
given coverage limitation (e.g., deductible or an upper limit) allows us to
eliminate.

Definition 5.3 (Loss elimination ratio (LER)).

LER =
amount of eliminated claims

amount of total claims
=

∑
Zi∑
Xi
.

The following examples show how the expected claim amounts change and
what are loss elimination ratios using different coverage limitations.

Example 5.1. In case of fixed amount deductible b, we can express the
actual loss size as a sum

X = Yb + Zb,

where

Yb =

{
X − b, if X > b,

0, if X ≤ b.

Then

E(Zb) =

∫ b

0
yfX(y)dy + b[1− FX(b)] = E[X; b],

E(Yb) = E(X)− E[X; b]

and

LERb =
E[X; b]

E(X)
.

Example 5.2. If we apply fixed amount deductible and also take into ac-
count the inflation rate r, we get the following formulas:

Xr = (1 + r)X,

Yb,r =

{
Xr − b, if Xr > b,

0, if Xr ≤ b,

E(Yb,r) = (1 + r)

(
E(X)− E

[
X;

b

1 + r

])
,

LERb,r =
E
[
X; b

1+r

]
E(X)

.

If the deductible is not adjusted by inflation, then
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• it is not possible to calculate En[X; b
1+r ],

• LERb,r decreases if r increases.

Example 5.3. In case we apply an upper limit u to an individual claim
amount, we get the following formulas:

Yu =

{
X, if X ≤ u,
u, if X > u,

E(Yu) =

∫ u

0
xfX(x)dx+ u[1− FX(u)] = E[X;u],

LERu =
E(X)− E[X;u]

E(X)
= 1− E[X;u]

E(X)
.

Example 5.4. In case we apply an upper limit u and also adjust by inflation
rate r, then:

Xr = (1 + r)X,

E(Yu,r) = (1 + r)E

[
X;

u

1 + r

]
,

LERu,r = 1−
E
[
X; u

1+r

]
E(X)

.

If we also adjust the upper limit by inflation, i.e., u
′

= (1 + r)u, the expec-
tation is calculated as follows:

E(Xu′ ,r) = (1 + r)E

[
X;

u
′

1 + r

]
= (1 + r)E[X;u].

Example 5.5. In case the coverage is modified by upper limit and de-
ductible, then, without the effect of inflation we have:

E(Yb,u) = E[X;u]− E[X; b],

=

∫ u

b
ydF (y) + u(1− F (u))− b(1− F (b)) =

∫ u

b
(1− F (y))dy,

LERb,u = LERb + LERu = 1− E[X;u]− E[X; b]

E(X)
.

If we also take the inflation into account, these formulas change to:

E(Yb,u,r) = (1 + r)

(
E

[
X;

u

1 + r

]
− E

[
X;

b

1 + r

])
,

LERb,u,r = LERb,r + LERu,r = 1−
E
[
X; u

1+r

]
− E

[
X; b

1+r

]
E(X)

.
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6 Risk models

The aggregate loss of a portfolio of insurance policies is the sum of all losses
incurred in the portfolio. There are two main approaches to model such loss:
the individual risk model and the collective risk model.

6.1 Individual risk model

Individual risk model is mostly used in case of group insurance (with fixed
group size), it is also more common in health and life insurance. In the
individual risk model we consider a risk portfolio with n policies. We also
denote

• Xk – claim amount corresponding to k-th policy (in case there occurs
a loss);

• Yk – risk outcome corresponding to k-th policy (0 or Xk);

• S – aggregate (total) claim amount.

The general assumptions for individual risk model are:

1) risks Yk are independent;

2) number of risks n is fixed;

3) each risk Yk can cause at most 1 claim;

4) claims Xk may come from different distributions.

Thus, the aggregate (or total) claim amount can be calculated as

S = Y1 + . . .+ Yn.

The calculation of expectation and variance for S is obvious due to con-
struction:

ES = EY1 + . . .+ EYn

and
V arS = V arY1 + . . .+ V arYn.

On the other hand, the distribution of S is usually quite hard to find. Note
that typically most policies have zero loss, so that Yk is zero for these policies.
In other words, Y follows a mixed distribution with probability mass at point
zero.
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Example 6.1. Consider the following portfolio from medical insurance

Coverage Number Expected cost Std. dev
insured per insured per insured

Single 786 76 42

Family 592 187 77

Then

ES = 786 · 76 + 592 · 187 = 170 440,

V arS = 786 · 422 + 592 · 772 = 4 896 472.

Using the normal approximation, we can find

FS(x) ≈ Φ(
x− 170440

2212.8
)

and, e.g.,

P{S > 175000} = 1− FS(175000) = 1− Φ(2.06) = 0.0197.

6.2 Collective risk model

The aims of collective risk model are:

• to describe the distribution of total claim amount with some known
distribution;

• to include only the policies that actually caused claims (in order to
reduce the amount of work).

Thus, we define S as a random sum

S =

N∑
i=1

Xi,

where N is a random variable denoting the number of claims.

We also assume that

• the claim severities X1, X2, . . . do not depend on the number of claims
N ;

• for any fixed n the individual claims X1, . . . , Xn are i.i.d. random vari-
ables.
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We can see that if all the risks Yi follow the same distribution, individual
risk model can be considered as a special case of collective risk model with
P{N = n} = 1.

Let us now denote the distributions of interest:

• F (x) := P{Xk ≤ x} – distribution of individual claim Xk;

• G(x) := P{S ≤ x} – distribution of total claim amount S.

Then

G(x) = P{S ≤ x} = P

{ ∞⋃
k=0

{S ≤ x and N = k}

}

=
∞∑
k=0

P{S ≤ x and N = k} =
∞∑
k=0

P{N = k}P{S ≤ x|N = k}

=
∞∑
k=0

P{N = k}P{X1 + . . .+Xk ≤ x}

=
∞∑
k=0

P{N = k}F ∗k(x),

where F ∗k denotes the n-fold convolution of F .

Remark 6.1 (Convolution of distributions). Let Xi, i = 1, . . . , k be in-
dependent random variables with distributions Pi, then the distribution of
X1+. . .+Xk (say, P ) is called the convolution of distributions Pi. Similar no-
tion is used for distribution functions and probability density functions: the
distribution function FX1+...+Xk is called the convolution of (independent)
distribution functions FXi and denoted by

FX1+...+Xk = FX1 ∗ FX2 ∗ . . . ∗ FXk .

If Xi-s have same distribution, the corresponding convolution is denoted by
F ∗k.

For two independent random variables X and Y :

• in general: FX+Y (s) =
∫
FX(s− y)dFY (y);

• if X is continuous: fX+Y (s) =
∫
fX(s− y)dFY (y);

• if both X and Y are continuous: fX+Y (s) =
∫
fX(s− y)fY (y)dy.
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We also recall the notion of moment generating function of a random vari-
able: for any random variable Z, its moment generating function is defined
by

MZ(t) = E(etZ).

The key property of moment generating function is that its n-th order deriva-
tive at zero gives n-th raw moment of corresponding random variable, i.e.

EZn = M
(n)
Z (0).

Let us now focus on the moment generating function of aggregate claim
amount S. It can be shown that the moment generating function of aggregate
claim amount MS can be calculated using the moment generating function
of individual claims MX and the moment generating function of the claim
number MN by the following formula:

MS(t) = MN (lnMX(t)).

Furthermore, this relation allows us to calculate expectation and variance
of aggregate claim amount by

ES = EN · EX,
V arS = (EX)2 · V arN + EN · V arX.

We also mention that the construction used to define the aggregate claim
amount in collective risk model is actually a special form of definition of a
compound distribution.

Definition 6.1 (Compound distribution). Let S =
∑N

i=1Xi be a (random)
sum of random variables Xi, where Xi are i.i.d. and N⊥Xi. Then S has a
compound distribution of N .

The distribution of N is called the primary distribution and the distribution
of X (where X follows the same distribution as Xi; since Xi-s are i.i.d. we
can simply use X for brevity) is called the secondary distribution.

There are three classical choices for claim number N :

• binomial distribution (EN = np, V arN = np(1− p), EN > V arN);

• Poisson distribution (EN = V arN = λ);

• negative binomial distribution (EN = α(1−p)
p , V arN = α(1−p)

p2
, EN <

V arN).

Thus we can talk about compound binomial distribution, compound Poisson
distribution and compound negative binomial distribution.
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6.3 Direct estimation of total claim amount

Besides severity-frequency models it is also possible to estimate the aggre-
gate claim amount directly.

There are few different options:

• normal approximation (in case 2 first moments can be estimated):

F (x) ≈ Φ

(
x− µ
σ

)
;

• normal Power approximation (in case we can also estimate skewness
γ):

F (x) ≈ Φ

(
−3

γ
+

√
9

γ2
+ 1 +

6

γ

x− µ
σ

)
;

• translated gamma approximation:

– set S = k + Y , where Y = Γ(α, λ) and k is some constant

– set parameters α, λ ja k equal to those of S, i.e. solve

µ = k +
α

λ
,

σ2 =
α

λ2
,

γ =
2√
α
.

6.4 Conclusions

The aggregate claim amount S can be estimated

• directly; or

• through distributions of individual claim amount X and claim fre-
quency N .

Modelling the aggregate claim amount through distributions of X and N
has some distinct advantages:

• The expected number of claims changes as the number of insured poli-
cies changes. Growth in the volume of business needs to be taken into
account.

• The effects of inflation are reflected in the individual losses and are
difficult to take into account on aggregate amounts, especially when
deductibles and policy limits do not depend on inflation.
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• The impact of changing individual deductibles and policy limits is
more easily studied.

• The impact on claims frequencies of changing deductibles is better
understood.

• Data that are heterogeneous in terms of deductibles and limits can be
combined to obtain the hypothetical aggregate claim amount distribu-
tion (useful when data from several years with different conditions is
combined).

• It is easier to take into account the influence of reinsurance.

• The shape of the distribution of S depends on the shapes of both
distributions of N and X. The understanding of the relative shapes is
useful when modifying policy details.

6.5 Calculation of aggregate claim amount distribution in R

Function aggregateDist (in package actuar): returns a function to com-
pute the distribution function of the aggregate claim amount distribution in
any point.

Most important arguments of aggregateDist:

• method – method to be used:

– method="recursive" – Panjer recursion;

– method="convolution" – uses convolutions;

– method="normal" – normal approximation;

– method="npower" – Normal Power approximation;

– method="simulation" – uses simulations from empirical distri-
bution;

• model.freq – frequency distribution∗;

• model.sev – severity (individual claim amount) distribution∗.

∗ Exact usage will depend on the choice of the method, see the docu-
mentation of package actuar.
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7 Claim number distribution

In this section we study some distributions suitable to describe the number
(or frequency) of claims.

7.1 The (a, b)-class of counting distributions

Definition 7.1 (Counting distribution). A counting distribution is a dis-
crete distribution with only non-negative integers in its domain.

We typically use a counting distribution to model the number of occurrences
of a certain event, for example ”number of car accidents in a year”.

Definition 7.2 (The (a, b)-class). The (a, b)-class (or (a, b, 0)-class) is a
two-parameter family of counting distributions that satisfy the following
recursion:

p(k) = (a+
b

k
)p(k − 1), k = 1, 2, . . . (7.1)

for some a, b ∈ R. The family is usually denoted by R and a particular
counting distribution with parameters a and b is denoted by R(a, b).

Example 7.1 (Poisson distribution). Let us have N ∼ Po(λ).

Then

p(k) = P{N = k} =
λk

k!
e−λ, p(k − 1) = P{N = k − 1} =

λk−1

(k − 1)!
e−λ.

In conclusion

p(k) =
λ

k
p(k − 1)

, i.e., a = 0 and b = λ or, equivalently,

N ∼ R(0, λ).

Thus, the region of parameters (a, b) covered by the Poisson distribution is

{(a, b) : a = 0, b > 0}.

Example 7.2 (Binomial distribution). Let us have N ∼ Bin(n, p).

Then

p(k) = Cknp
k(1− p)n−k, p(k − 1) = Ck−1

n pk−1(1− p)n−k+1

and
p(k)

p(k − 1)
=
n+ 1− k

k

p

1− p
= − p

1− p
+
n+ 1

k

p

1− p
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or, equivalently,

p(k) =

(
− p

1− p
+
n+ 1

k

p

1− p

)
p(k − 1).

NB! Check what happens if k > n!

Thus a = − p
1−p and b = −(n + 1)a and the region of parameters (a, b)

covered by binomial distribution is

{(a, b) : a < 0, b = −ma, m = 2, 3, . . .}.

Example 7.3 (Negative binomial distribution). Let us haveN ∼ NBin(α, p).

Then

p(k) = Ckα+k−1p
α(1− p)k, p(k − 1) = Ck−1

α+k−2p
α(1− p)k−1

and
p(k)

p(k − 1)
=

(k + α− 1)(1− p)
k

= (1− p) +
(α− 1)(1− p)

k
.

Thus a = (1−p) and b = (α−1)a and the region of parameters (a, b) covered
by negative binomial distribution is

{(a, b) : 0 ≤ a ≤ 1, b > −a}.

Theorem 7.1 (The (a, b)-class theorem). The class R contains the Poisson,
the negative binomial, and the binomial distributions, and these are the only
non-degenerate members.

Idea of the proof:

1. Previous examples show that the mentioned distributions belong to R

2. Consider the remaining 3 regions separately:

(a) a+ b ≤ 0;

(b) a ≥ 1, a+ b > 0;

(c) a < 0, b 6= −ma for any m = 2, 3, . . .
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7.2 Examples of collective risk models

Example 7.4 (Compound Poisson model). Let us have N ∼ Po(λ). Then
EN = V arN = λ and MN (t) = exp{λ(et− 1)}, general formulas for MS(t),
ES and V arS simplify to

MS(t) = exp{λ(MX(t)− 1)},
ES = λEX,

V arS = λV arX + λ(EX)2 = λEX2.

Also E(S − ES)3 = λEX3 (prove it!), thus skewness is given by

η3(S) =
E(S − ES)3√

(V arS)3
=

λEX3√
(λEX2)3

≥ 0,

since X ≥ 0.

Recall now that the sum of independent Poisson distributed random vari-
able is also Poisson distributed. Such additivity is obviously very desirable
property for a compound model to have as well. It is important when es-
tablishing the relations between distributions of aggregate claim amounts
in different aggregation levels. Therefore the question whether the sum of
independent compound Poisson random variables also has such property is
naturally of great interest.

Theorem 7.2 (Sum of independent compound Poisson random variables).
Let S1, S2, . . . , Sn be independent random variables such that Si is compound
Poisson distributed with parameters λi and Fi(x)). Then S1 + . . . + Sn is
compound Poisson distributed with parameters λ and F (x), where

λ =

n∑
i=1

λi and F (x) =
1

λ

n∑
i=1

λiFi(x).

Proof. Notice that F (x) is a distribution function (it is weighted average
of distribution functions with positive weights which sum to 1). The corre-
sponding moment-generating function:

M(t) =

∫ ∞
0

etx
1

λ

n∑
i=1

λifi(x)dx =
1

λ

n∑
i=1

λi

∫ ∞
0

etxfi(x)dx =
1

λ

n∑
i=1

λiMi(t),

where fi(x) and Mi(x) are the probability density function and moment-
generating function corresponding to Fi(x).
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Let MS(t) denote the moment-generating function for S.
Then (as S1, S2, . . . , Sn are independent):

MS(t) = EetS = EetS1+...+tSn =
n∏
i=1

EetSi .

On the other hand:

EetSi = MS(t) = exp{λi(Mi(t)− 1)},

which implies

MS(t) = exp

{
n∑
i=1

λi(Mi(t)− 1)

}
= exp{λ(M(t)− 1)},

where

λ =

n∑
i=1

λi and M(t) =
1

λ

n∑
i=1

λiMi(t).

Since the moment-generating function determines the distribution uniquely,
S is compound Poisson distributed with parameters S and F (x).

In conclusion, with the compound Poisson model the estimation of each
individual risk in homogeneous classes gives immediately an estimate for
the distribution of total claim amount as well. So it is clearly an appealing
choice to model the aggregate claim amount.

Example 7.5 (Compound binomial model). Let us have N ∼ Bin(n, p),
then EN = np, V arN = np(1− p) and MN (t) = (p · et + 1− p)n.

Then

MS(t) = (p ·MX(t) + 1− p)n,
ES = npEX,

V arS = npV arX + np(1− p)(EX)2 = npEX2 − np2(EX)2.

The expression for the third central moment is

E(S − ES)3 = npEX3 − 3np2EX2EX + 2np3(EX)3

(prove it!) and skewness is calculated as

η3(S) =
npEX3 − 3np2EX2EX + 2np3(EX)3√

(npEX2 − np2(EX)2)3
.

NB! Skewness can be either positive or negative!

41



MTMS.02.053. Non-Life Insurance Mathematics

Example 7.6 (Compound negative binomial model). Let us have N ∼
NBin(α, p), then EN = α(1−p)

p , V arN = α(1−p)
p2

and MN (t) = pα(1 − (1 −
p)et)−α.

Then

MS(t) =
pα

(1− (1− p)Mx(t))α
,

ES =
α(1− p)

p
EX,

V arS =
α(1− p)

p
V arX +

α(1− p)
p2

(EX)2 =
α(1− p)

p
EX2 +

α(1− p)2

p2
(EX)2.

Skewness is positive, but the exact formula is quite complex.

Lastly, we introduce yet another criterion for fitting the claim number dis-
tribution from the (a, b)-class of distributions.

We can rewrite the (a, b)-class condition as

p(k)

p(k − 1)
= a+

b

k
,

which implies k p(k)
p(k−1) = ka+ b.

In other words the quantity k p(k)
p(k−1) is a linear function of k.

Moreover, the slope a clearly distinguishes the candidate distributions:

• for Poisson a = 0;

• for binomial a < 0;

• for negative binomial a > 0.

In practice, one can plot

k · p̂(k)

p̂(k − 1)
= k · policies with k claims

policies with k − 1 claims

against k.
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8 Panjer recursion and discrete Fourier transform

8.1 Panjer recursion

Recall that we have obtained the following formula for calculating the dis-
tribution function for aggregate claim amount:

G(x) =
∞∑
n=0

P{N = n}F ∗n(x).

The problem is that this approach is usually not feasible except for certain
special choices for the claim frequency and claim severity distributions. In
this section, we take a new approach and assume that all severities are
positive and integer-valued. While this might seem unexpected, in practice
this assumption actually holds: all amounts are measured as multiples of
some monetary unit!

Now, the probability mass function corresponding to aggregate claim amount
is

g(x) = P{S = x} =
∞∑
n=0

P{N = n}f∗n(x), x = 0, 1, . . . ,

where

f∗n(x) = P{X1 + . . .+Xn = x} =
x∑
y=1

f(y)f∗(n−1)(x− y)

and f(x) = P{Xi = x}, x = 1, 2, . . ..

Then the next result allows us calculate all the probabilities g(x) sequen-
tially, starting from g(0).

Theorem 8.1 (Panjer recursion). Let S =
∑N

i=1Xi, where Xi-s are i.i.d.
positive integer-valued random variables independent of N . Let the distribu-
tion of N belong to the (a, b)-class of counting distributions.

Then

g(x) = P{S = x} =
x∑
y=1

(
a+

by

x

)
f(y)g(x− y), x = 1, 2, 3 . . .

and g(0) = P{N = 0}.

Proof. A. g(0) = P{S = 0} = P{N = 0}, since Xi > 0.

B. Use probability generating function PX(t) = EtX =
∑∞

i=0 p(i)t
i, p(i) =

P{X = i}
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It can be proved that PS(t) = PN (PX(t)) and therefore also

P ′S(t) = P ′N (PX(t))P ′X(t).

Let us calculate

P ′N (t) =
∞∑
i=0

i · ti−1p(i) =
∞∑
i=1

i · ti−1

(
a+

b

i

)
p(i− 1)

=
∞∑
i=0

(i+ 1) · ti
(
a+

b

i+ 1

)
p(i) =

∞∑
i=0

((i+ 1)a+ b)p(i)ti

= (a+ b)PN (t) +
∞∑
i=0

ia · p(i)ti = (a+ b)PN (t) + atP ′N (t),

which leads us to

P ′N (t) =
a+ b

1− at
PN (t).

Now

P ′S(t) =
a+ b

1− aPX(t)
PN (PX(t)) · P ′X(t)

and
[1− aPX(t)] · P ′S(t) = (a+ b) · PS(t) · P ′X(t). (8.1)

Since, by definition of probability generating function, we have

PS(t) =
∞∑
x=0

g(x)tx and P ′S(t) =
∞∑
x=0

x · g(x)tx−1

and

PX(t) =
∞∑
y=1

f(y)ty and P ′X(t) =
∞∑
y=1

y · f(y)ty−1,

we can rewrite (8.1) as

∞∑
x=0

xg(x)tx−1− a
∞∑
y=1

∞∑
x=0

xf(y)g(x)tx+y−1 = (a+ b)

∞∑
x=0

∞∑
y=1

yf(y)g(x)tx+y−1

or, equivalently,

∞∑
x=1

xg(x)tx−1−a
∞∑
x=1

x∑
y=1

(x−y)f(y)g(x−y)tx−1 = (a+b)
∞∑
x=1

x∑
y=1

yf(y)g(x−y)tx−1,
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from where

xg(x)− a
x∑
y=1

(x− y)f(y)g(x− y) = (a+ b)
x∑
y=1

yf(y)g(x− y).

In conclusion, we have

g(x) =
x∑
y=1

(
a+

by

x

)
f(y)g(x− y), x = 1, 2, 3 . . . .

Now, the probabilities can be calculated sequentially as follows:

• g(1) = (a+ b)f(1)g(0),

• g(2) = (a+ b
2)f(1)g(1) + (a+ b)f(2)g(0),

• g(3) = (a+ b
3)f(1)g(2) + (a+ 2b

3 )f(2)g(1) + (a+ b)f(3)g(0),

• . . .

Finally, let us note the main advantages of Panjer recursion:

• it is easy to implement;

• it is ”cheaper” than brute-force computation; and

• it allows ”exact” evaluation of compound distributions.

On the other hand, it also has some known weaknesses:

• the method is still still quite resource-expensive, especially in case of
large number of lattice points;

• precision of the result depends highly on how precise are the estimates
for distributions of N and X.

8.2 The discrete Fourier transform method

Let us first recall two important definitions.

Definition 8.1 (Characteristic function). The characteristic function ϕ of
a random variable X is defined as

ϕ(t) = EeitX ,

where i is the imaginary unit.

46



MTMS.02.053. Non-Life Insurance Mathematics

Definition 8.2 (Discrete Fourier Transform (DFT)). Discrete Fourier trans-
form for a sequence of M complex numbers c0, c1, . . . cM−1 is defined by

φ(k) =

M−1∑
t=0

cte
− 2πi
M
tk, k = 0, . . . ,M − 1. (8.2)

Using these definitions, for a discrete random variable X with probability
mass function f and possible values 0,1,. . . ,M − 1 and choosing in Formula
(8.2) ct = f(t), we can write

φ(k) =

M−1∑
t=0

f(t)e−
2πi
M
tk = Eei·(−

2πk
M

)X = ϕ

(
−2πk

M

)
, k = 0, . . . ,M − 1.

Similarly, one can move back from the characteristic function ϕ to the prob-
ability mass function f using the inverse transform:

f(t) =
1

M

M−1∑
k=0

φ(k)e
2πi
M
tk =

1

M

M−1∑
k=0

ϕ

(
−2πk

M

)
e

2πi
M
tk, t = 0, . . . ,M − 1.

To apply these ideas to the aggregate claim amount, let us recall the collec-
tive model setup:

S =
N∑
i=1

Xi,

where Xi-s are iid and Xi ⊥ N .

It can be proved that the characteristic function ϕS can be expressed as

ϕS(t) = PN (ϕX(t)),

where PN is the probability generating function of N . The proof is similar to
the proof of moment generating function and probability generating function
for S (use conditioning by N).

Now the following DFT algorithm can be used to estimate the aggregate
claim amount:

1. Discretize the severity distribution and find the required values of the
probability mass function:

fX(0), fX(1), . . . , fX(M − 1).
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2. Using DFT, find the values for the characteristic function of severity:

ϕX

(
−2π · 0

M

)
, ϕX

(
−2π · 1

M

)
, . . . , ϕX

(
−2π · (M − 1)

M

)
.

3. Apply the relation ϕS(t) = ϕN (ϕX(t)) to find the values for compound
characteristic function:

ϕS

(
−2π · 0

M

)
, ϕS

(
−2π · 1

M

)
, . . . , ϕS

(
−2π · (M − 1)

M

)
.

4. Apply the inverse DFT to these values to obtain the values for prob-
ability mass function g of S:

g(0), g(1), . . . , g(M − 1).

Straightforward application of DFT results in the same complexity as the
Panjer recursion (O(n2) operations), a more efficient result is obtained us-
ing certain Fast Fourier transform (FFT) algorithms, where the complexity
is reduced to O(n log n). The main idea of FFT algorithms relies on the
factorization of properly chosen M (e.g., choose M = 2k). In case of heavy-
tailed distributions and moderate to big amount of data, the FFT approach
outperforms Panjer recursion by far.

Example 8.1. Consider a compound Poisson model, i.e. S =
∑N

i=1Xi,
where N ∼ Po(λ).

Then the probability generating function PN is given by

PN (t) = exp{λ(t− 1)}

and the characteristic function of the compound distribution is

ϕS (t) = exp {λ (ϕX (t)− 1)} .

Now, assume we have the following objects defined in R:

• f – an M -element vector consisting of the values of pmf of X at
0, . . . ,M − 1;

• lambda – the parameter of Poisson distribution of N .

Then the aggregate probability mass function g can be calculated by

g=Re(fft(exp(lambda*(fft(f)-1)),inverse=T)/M)

Note that R uses unscaled versions for both forward and inverse Fourier
transforms (this is why we need to divide by M).
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9 Introduction to classical ruin theory

Recall that while studying the cash-flow model we already encountered the
surplus process of an insurance company in a quite simplified setting. In this
section we study this process more thoroughly.

9.1 Setup

In the classical risk process, an insurer’s surplus at fixed time t > 0 is
determined by three quantities: the amount of surplus at time 0, the amount
of premium income received up to time t, and the amount paid out in claims
up to time t:

U(t) = u+ ct− S(t),

where

• u is the insurer’s initial surplus (at time 0);

• c is the insurer’s (constant) rate of premium income per unit time (for
simplicity it is assumed to be received continuously);

• S(t) is the aggregate claims process.

The aggregate claims process is the only random component in the equality,
and is modelled similarly to compound models studied so far:

S(t) =

N(t)∑
i=1

Xi,

whereXi are i.i.d. random variables representing the individual claim amounts
and {N(t), t ≥ 0} is a counting process for the number of claims.

In the classical risk process model it is assumed that {N(t), t ≥ 0} is a
Poisson process and the aggregate claims process {S(t), t ≥ 0} is thus a
compound Poisson process.

Definition 9.1. A counting process {N(t), t ≥ 0} is called a Poisson pro-
cess, if

(1) N(0) = 0;

(2) the increments of the process N(si + ti) − N(si) are independent for
disjoint intervals (si, si + ti), i = 1, 2, . . .;
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(3) the distribution of the number of events in an interval of length t
is a Poisson distributed random variable with parameter λt, i.e. for
arbitrary s, t ≥ 0

P{N(s+ t)−N(s) = n} =
(λt)n

n!
e−λt, n = 0, 1, 2, . . . .

The quantity λ is called the intensity of the underlying Poisson process.

Definition 9.2. A random process {S(t), t ≥ 0} is called compound Poisson
process, if

S(t) =

N(t)∑
i=1

Xi, t > 0,

where {N(t), t ≥ 0} is a Poisson process and {Xi, i = 1, 2, . . .} are i.i.d.
random variables independent of {N(t), t ≥ 0}.

It can be shown that in the Poisson process with intensity λ the interar-
rival times (the times between events) are exponentially distributed random
variables with parameter λ.

In the context of a compound Poisson process representing an aggregate
claims process, for any fixed time t > 0, the distribution of the time until
the next claim is exponential with parameter λ.

Using the properties of the compound Poisson model, we can see that the
average growth of the surplus in a time interval with length t is given by

E[U(s+ t)− U(s)] = E[u+ c · (s+ t)− S(s+ t)− u− c · s+ S(s)]

= c · t− E[S(s+ t)− S(s)] = c · t− λtEX.

So, in average, the growth of surplus is positive if

c > λEX. (9.1)

The condition (9.1) is called net profit condition and it can be shown that
if this condition does not hold, then ψ(u) = 1 for all u ≥ 0. Therefore, from
now on we assume that the net profit condition holds, i.e. c > λEX. It is
often convenient to write c = (1 + θ)λEX, where θ is the premium loading
factor or safety loading :

θ =
c

λEX
− 1.

So, with net profit condition, we have θ > 0.
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9.2 Definitions of ruin probability

The probability of ruin in infinite time, also known as the ultimate ruin
probability, is defined as

ψ(u) = P{U(t) < 0 for some t > 0}.

So, ψ(u) is the probability that insurer’s surplus falls below zero at some
time in the future, i.e. the insurer turns insolvent. Given model is a contin-
uous time model. For discrete time model, the ultimate ruin probability is
expressed as

ψr(u) = P{U(t) < 0 for some t, t = a, 2a, 3a, . . .}.

If ruin occurs under the discrete time model, it must also occur under the
continuous time model, the opposite is not true. However, as a becomes
small, so that we are ’checking’ the surplus level very frequently, then ψr(u)
should be a good approximation for ψ(u).

One can also define survival probability φ(u), i.e. the probability of non-ruin
as

φ(u) = 1− ψ(u).

The finite time ruin probability is defined by

ψ(u, t) = P{U(s) < 0 for some s, 0 < s ≤ t},

i.e., the insurer becomes insolvent at some time in the interval (0, t]. Simi-
larly, the discrete time ruin probability in finite time is defined by

ψr(u, t) = P{U(t) < 0 for some s, s = a, 2a, 3a, . . . , t}.

9.3 The adjustment coefficient and Lundberg’s inequality

In order to give an upper bound for the ruin probability, it is important
to measure the risk of given surplus process. This is done using certain
adjustment coefficient (or Lundberg exponent) R, which takes into account
the aggregate claims and the premium income and is defined as the unique
positive root of the following equality in r:

λMX(r)− λ− cr = 0, (9.2)

where MX(r) is the moment generating function of claim severity X.

In general, the adjustment coefficient equation has one positive solution:

• MX(t) is strictly convex, since M
′′
X(t) = E(X2etX) > 0;
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• λMX(t)−λ−ct is decreasing at zero, if net profit condition (9.1) holds,
since M

′
X(0) = EX < c

λ ;

• MX(t)→∞ continuously (with few exceptions).

There are several equivalent forms to equation (9.2):

• λ+ cR = λMX(R),

• 1 + (1 + θ)R · EX = MX(R),

• eRc = EeRS ,

• c = 1
R lnMS(R),

where S is the total claims amount in an interval of length 1 and MS(R) is
its moment-generating function.

Theorem 9.1 (Lundberg’s exponential bound for the ruin probability). For
a compound Poisson risk process with an initial capital u, premium per unit
of time c, and an adjustment coefficient R, satisfying (9.2) the following
inequality for the ruin probability holds:

ψ(u) ≤ e−Ru.

9.4 Top-down model for premium calculation

The ruin theory also allows us to shed some more light to the premium prin-
ciples. Namely, we can use the ruin process model to find certain estimates
for the risk loading coefficients of premium principles.

Let us start with the following question: how large should be the initial
capital u and the premimum c in order to remain solvent at all times with
a prescribed probability?

By the Lundberg inequality, the ruin probability ψ(u) is bounded from above
by e−Ru, where R can be found as the root of eRc = EeRS . Now, if we set
the upper bound equal to ε, then

R =
| ln ε|
u

. (9.3)

Hence, the premium c can be calculated for given initial capital u and allowed
ruin probability ε using the following formula:

c =
1

R
ln(EeRS), (9.4)
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where R is specified by (9.3), and we recognize the exponential principle
with risk aversion equal to the adjustment coefficient R.

Let us assume now that the total premium (in time unit) S has finite (non-
central) moments, E[Sk] < ∞, k = 1, 2, 3... It is a known fact that the
moment generating function defines the distribution of S uniquely. The log-
arithm of the moment generating function is called the cumulant generating
function (further referred to as cgf ) which is denoted as κS(t) and is pre-
sented as

κS(t) = lnMS(t) = lnEetS .

Using the Taylor expansion on the last formula, we obtain

κS(t) =

∞∑
n=1

κn
tn

n!
, t = 1, 2, 3...,

where κn denotes the n-th cumulant of random variable S. Now the premium
for exponential principle (9.4) can be simply rewritten as

c =
1

R
κS(R),

and applying the Taylor expansion will result in

c =
1

R
κS(R) =

1

R

∞∑
n=1

κn
Rn

n!
=

1

R

(
κ1R+ κ2

R2

2!
+ ...

)
≈ κ1 +

1

2
Rκ2 = ES +

1

2
R · V arS,

where the approximation is justified if the risk aversion R is small. Thus the
variance principle can be considered as certain simplification of the exponen-
tial principle and in the top-down method framework the risk loading factor
γ is determined by the Lundberg exponent, γ = 1

2R. Also, the following
properties hold true:

• if the insurer wants to rise the loading factor γ two times, then the
tolerated ruin probability ε decreases to ε2;

• if the insurer wants to double the loading factor γ and keep the same
tolerated ruin probability, the initial capital u can be halved.

Let us now consider the aspect of dividends in this framework. Assume that
operating capital suppliers want to receive the dividend proportional to the
provided capital u. Let the yearly dividend rate be denoted by i. One must
now take into account that the dividend part is not included into costs but
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must be added to them, therefore the premium must be also increased by
iu. The risk process (for one year) can then be presented as

U1 = u+ (c+ iu)− S − iu.

Thus, the question to be answered is: how big should the premium be to
ensure the non-ruin probability 1 − ε and to cover the dividends paid to
the shareholders? Consider the variance premium calculation principle with
loading factor γ = 1

2R, where R is calculated as in (9.3). Then the corre-
sponding premium can be presented by

P (S) = ES +
| ln ε|

2u
V arS + iu. (9.5)

Such premium is more likely to be achieved if the initial capital is chosen so
that it makes the premium to be as low as possible. After setting the first
derivative of P (S) with respect to u equal to zero, we get

P ′(S) = −V arS | ln ε|
2u2

+ i = 0,

or, equivalently,
V arS| ln ε|

2u2
= i.

The the initial capital u can be calculated from

u =
√
V arS

√
| ln ε|

2i
. (9.6)

Thus, the higher is the required dividend rate i, the lower is the optimal
size of initial capital u. To obtain the required premium, the derived initial
capital u must be substituted into (9.5). After some simplifications it comes
out that the premium is equal to

P (S) = ES +

√
i| ln ε|

√
V arS√

2
+

√
i| ln ε|

√
V arS√

2

= ES +
√

2i| ln ε|
√
V arS.

As
√
V arS is the standard deviation of claim amount S, the derived pre-

mium is the standard deviation premium with the loading factor β =
√

2i| ln ε|.
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10 Reinsurance

Similarly to ”regular” insurance, the risks and liabilities can grow too high
for a single insurer to handle, thus there is a need to transfer portions of risk
portfolios to other parties by some form of agreement in order to reduce the
likelihood of having to pay a large obligation resulting from an insurance
claim.

There are two general solutions

• reinsurance – ”insurance for insurers”;

• co-insurance – cooperation with other insurers.

In the reinsurance process, the direct (initial) insurer is called either ceding
company or cedant or cedent, for the reinsurer we may also use the term
reinsurance company. An example of the reinsurance process is shown in
the following figure.

Some world’s biggest names in reinsurance business are Swiss Re, Munich
Re, Hannover Re, Lloyd’s, Allianz.

10.1 Types of reinsurance

Reinsurance can be classified by the type of reinsurance contract:

• facultative reinsurance;

• compulsory (treaty) reinsurance.
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By the compensation mechanics, reinsurance can be divided into the follow-
ing categories:

• proportional reinsurance:

– quota share;

– surplus;

• non-proportional reinsurance:

– excess of loss (XL);

– stop loss.

Before studying the reinsurance mechanics in different categories, we need
to introduce some related notation. Let us denote

• S,X, P – gross total claim amount, severity, premium;

• S̃, X̃, P̃ – net total claim amount, severity, premium;

• Ŝ, X̂, P̂ – reinsurer’s total claim amount, severity, premium.

10.1.1 Proportional reinsurance

The main principle of proportional reinsurance is that the proportion of
premiums equals to the proportion of claim amount.

Remark 10.1. In practice, this is not entirely true, since there are, in fact,
certain commission fees that need to be taken into account separately. Com-
mission fee is a fee that the reinsurer pays to ceding company for bringing
the reinsurer a new client. Still, the commission fees do not change the gen-
eral principle and are not of interest from our point of view, thus, we may
safely ignore them.

So, we can illustrate the idea of proportional reinsurance by the following
formula:

P̂

P
=
X̂

X
.

Main advantage of proportional reinsurance is simple calculation of premi-
ums and compensation, while the main drawback is that both parties have
to handle all claims (not depending on claim size).

There are two types of proportional reinsurance. In quota share reinsurance,
everything is determined by fixed retention proportion α, 0 < α < 1.
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Then, all claims in given portfolio are divided using proportion α as follows:

X̃ = αX, X̂ = (1− α)X,

S̃ = αS, Ŝ = (1− α)S.

Similar holds for premiums:

P̃ = αP, P̂ = (1− α)P.

Another type of proportional reinsurance is the surplus reinsurance. Whereas
quota share reinsurance scales down each risk in the same proportion, a sur-
plus treaty is more flexible: the proportion of each risk reinsured may vary.
To obtain this flexibility, we need to introduce more parameters than one
single proportion factor. The ceded amount is defined by the following pa-
rameters:

• ceding company retains at most a certain amount m of each risk (one
line);

• the exceeding part is reinsured but only up to a certain multiple l of
the retention (number of lines);

• proportion of liabilities is determined individually depending on the
risk size Q (consider, e.g., possible maximal loss (PML), sum insured
or estimated maximum loss (EML));

• (automatic underwritten) capacity of the treaty is thus L = (l+ 1)m.

• larger risks Q > L will require another reinsurance layer or facultative
reinsurance.

Under such construction the initial insurer’s (cedant’s) part is calculated as:

X̃ =

{
X, Q ≤ m;
m
QX, m < Q ≤ L.

NB! The quantities Q and m are fixed when contract is underwritten and
do not depend on the actual claim amount X. If X = Q then X̃ = m, i.e.
initial insurer’s maximal payout can not exceed m.

Example 10.1 (Surplus treaty). Consider a 9-line surplus treaty (l1 = 9)
with one line m1 = 1 000 000 EUR, i.e. the treaty capacity is L1 = (l1 +
1)m1 = 10 000 000 EUR. Let the cedant also have another surplus treaty
with m2 = 10 000 000, l2 = 3 and L2 = 40 000 000. Consider a risk such
that risk size (Q) is 21 million EUR.
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Under the first treaty the cedant’s proportion is

m1

Q
+
Q−m1(l1 + 1)

Q
=

12

21

and the reinsurer’s proportion is

1− 12

21
=

9

21
.

Under the second treaty the cedant’s proportion is

m2

Q
=

10

21

and the reinsurer’s proportion is

1− 10

21
=

11

21
.

For a claim X = 21 million EUR the reinsurance part is

X̂ =
9

21
· 21 +

11

21
· 21 = 9 + 11 = 20 million EUR

and cedant’s part is 1 million EUR.

For a claim X = 7 milllion EUR the reinsurance part is

X̂ =
9

21
· 7 +

11

21
· 7 =

20

3
= 6

2

3
million EUR

and cedant’s part is 1
3 million EUR.

10.1.2 Non-proportional reinsurance

The traditional forms of non-proportional reinsurance cover are known as
excess of loss (XL) and stop loss. Both provide cover once claims exceed a
certain level and usually have a limited insured amount.

In case of excess of loss reinsurance, the reinsurer will cover the part of claims
which exceed a certain excess point or retention (also called first risk), up
to agreed limit (called second risk).

Excess of loss reinsurance can be further classified:

• Working XL – applied to each claim;

• Aggregate XL – applied to aggregate claims;
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• Cat XL – applied to losses occurred in a fixed period after a catastro-
phe.

Claims are divided by initial insurer and reinsurer as follows:

X̃ = min(X,M)

and
X̂ = max(0, X −M),

where M is the retention of initial insurer.

Usually the XL-treaty covers certain layer A exceeding threshold M (layer
A xs M ). In such case

X̂ = min(A,max(0, X −M)) = min(M +A,X)−min(M,X).

In stop-loss contracts the aggregate covers are linked to the cedant’s gross
premium income during a 12 month period (P ) through the loss ratio S

P : in
case S

P exceeds a fixed proportion, exceeding part is covered by reinsurer.

Usually the reinsurer’s liability is also limited, i.e. the reinsurer will cover a
layer defined by m1 <

S
P ≤ m2.

For example m1 = 1.05, m2 = 1.3 Then,

• in case S
P ≤ 1.05 everything is covered by cedant, S̃ = S;

• if 1.05 < S
P ≤ 1.3 then S̃ = 1.05 · P and Ŝ = S − 1.05 · P ;

• if S
P > 1.3 then S̃ = S − 0.25 · P and Ŝ = 0.25 · P .

Example 10.2. Consider a portfolio with the following risks:

Risks House Block of flats Industry

A 100 000

B 200 000

C 300 000

D 2 000 000

E 10 000 000

F 20 000 000

Premium rate 0.1% 0.2% 0.3%

Losses B: 150 000 F: 2 550 000

Sum insured 600 000 2 000 000 30 000 000

Gross premium 600 4000 90 000

Loss burden 150 000 2 550 000

Consider also the following reinsurance contracts:

61



MTMS.02.053. Non-Life Insurance Mathematics

1. Quota of 30% (i.e. retention α = 70%);

2. Surplus 4 max after 100 000, 500 000, 2 500 000;

3. Fac. 7.5 million after 12.5 million;

4. Excess of loss (WXL) 4 million xs 1 million;

5. Stop loss 8 million after 2 million (Aggregate XL 8 million xs 2 million).

Then the corresponding reinsurance claims and premiums are shown in the
following table:

Premiums (P̂ ) Claims (Ŝ)

1 28 380 810 000

2 55 800 1 350 000

3 22 500 956 250

4 ? 1 550 000

5 ? 700 000

10.2 The effect of reinsurance to claim distributions

Let us now study how the modifications to the cover by reinsurance affect
the claim distributions.

In case of proportional reinsurance the proportion α fixed (either the same
for all policies in case of quota share, or different for each risk depending
on its size in case of surplus), so the claim severity distribution X̃ is found
from:

FX̃(x) = P{X̃ ≤ x} = P{αX ≤ x} = P{X ≤ x

α
} = FX(

x

α
).

The number of claims (claim frequency) stays the same for both parties.

In case of non-proportional (XL) reinsurance, the distribution of X̃ = min(M,X)
is given by

FX̃(x) =

{
FX(x), x < M,

1, x ≥M.

Then, the expected individual and aggregate claim amounts for initial in-
surer are:

EX̃ = E(min(M,X)) = E[X;M ],

ES̃ = EÑEX̃ = EN · E[X;M ].

In practice, the reinsurer only needs to know the claims he is (partially)
compensating, i.e. claims exceeding M . Therefore we introduce the following
variables which are important from reinsurer’s point of view:
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• individual claim size: X̂M := X −M |X > M ;

• number of claims: N̂M :=
∑N

i=1 I{Xi>M}.

The distribution function corresponding to X̂M is

FX̂M (x) : = P{X̂M ≤ x} = P{X −M ≤ x|X > M}

= P{M < X ≤ x+M |X > M} =

∫ x+M
M fX(t)dt

1− FX(M)

=
FX(x+M)− FX(M)

1− FX(M)
, x ≥ 0

and the probability density function of X̂M is

fX̂M (x) =
fX(x+M)

1− FX(M)
, x ≥ 0.

By construction, the expectation of X̂M is

EX̂M = E(X −M |X > M) = e(M) =
EX − E[X;M ]

1− FX(M)
.

On the other hand, since X̃ + X̂ = X,

EX̂ = EX − EX̃ = EX

(
EX − EX̃

EX

)
= EX

(
1− E[X;M ]

EX

)
.

Denote c(x) := 1− E[X;x]
EX , then

EX̂M =
c(M) · EX
1− FX(M)

=
EX̂

1− FX(M)
.

Expected number of claims N̂M can be calculated:

EN̂M = E(

N∑
i=1

I{Xi>M}) = EN(1− FX(M))

In conclusion, the expected total claim amount ŜM is given by

EŜM = EX̂MEN̂M =
EX̂

1− FX(M)
EN(1− FX(M)) = EX̂EN = EŜ.
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11 Reserving

An insurance company’s technical reserve is the amount set aside to meet
company’s principal insurance liabilities. Reserves are required in respect of
business written, both earned and unearned.

Technical reserves serve serveral purposes:

• to enable the company to meet and administer its contractual obliga-
tions to policyholders;

• to provide management information;

• for tax purposes;

• to assist in sale and purchase negotiations;

• to advise on portfolio reinsurance;

• ...

The reserves held in respect of insurance related liabilities fall into three
main categories:

• reserves in respect of unexpired (or unearned) exposure:

1. unearned premium reserve (UPR);

2. deferred acquisition costs (DAC);

3. additional unexpired risk reserve (AURR);

• contingent reserves:

1. catastrophe reserves;

2. claims equalization reserves;

• reserves in respect of earned exposure:

1. notified outstanding claims or reported but not settled claims
(RBNS);

2. incurred but not reported claims (IBNR);

3. incurred but not enough reported (IBNER) on existing notified
claims.
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11.1 Unearned premium reserve (UPR)

The situation related to premium payments can be briefly described as fol-
lows:

• premiums are paid in advance;

• policies start at different times;

• insurance periods and accounting periods generally do not match;

• the insurer has contractual obligations to provide coverage beyond the
accounting date.

Thus, the following two questions need to be answered:

1. How do estimate the sufficient size of the UPR?

2. When can we say that a premium is finally earned?

In general, the UPR in respect of an individual policy can be expressed using
the following formula:

UPR(ti) = P0 · F (ti) · (1− k),

where

• ti is the accounting date;

• P0 is the premium received from given policy;

• F (ti) is the proportion of the not exposed cover for this policy;

• k is the proportion of expenses (acquisition expenses are treated as
earned).

A straightforward basic formula for the proportion factor is

F (·) =
period of unexpired cover

duration of original policy
.

Such approach is also called the 1
365 -method. Proportions are calculated for

each individual policy.

In practice it is unusual to calculate a UPR on an individual policy basis;
generally the premiums received are aggregated within similar classes of
business by month or quarter and the UPR is calculated on the assumption
that the premiums were received, on average, half way through the period.
So we can talk about
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• monthly (’24ths’ or 1
24 -) method;

• quarterly (’eights’ or 1
8 -)method.

Then, the formula corresponding to 1
24 -method is

F (t) =
2t− 1

24
, t = 1, 2, . . . , 12.

Similar construction holds for quarterly calculations.

Example 11.1. Let the accounting date be 31.12.2012 and let us consider
policies that started in March 2012. Then t = 3 and F (3) = 2·3−1

24 = 5
24 , i.e.

for each policy started in March 2012 a proportion 5
24 from premiums is still

unearned at the end of year 2012.

In case the risk exposure is not uniformly spread over the policy duration
one can

• use a more complex proportion function F (t);

• use additional reserves for periods with higher risk intensity.

11.2 Reserves in respect of earned exposure

The process underlying the appearance of a claim in the insurance company’s
books involves:

1) the occurrence of an insured event causing a loss to the policyholder;

2) the policyholder being aware of the loss and subsequently advising the
insurer via a claim form;

3) the insurer processing the claim form and establishing a case reserve
which might lead to a payment.

There are different options for establishing and estimation of the claim re-
serves:

• straightforward – claim-based approach (for reported claims);

• statistical methods for estimating required future provisions (espe-
cially important in IBNR calculation)

– chain ladder method;

– Bornhütter-Ferguson method;
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– other stochastic approaches (GLM).

The claim development pattern is usually depicted in the following form
(run-off triangle):

Development period j
Year of origin i 0 1 2 . . . J

0 C00 C01 C02 . . . C0J

1 C10 C11 . . .
2 C20 . . .
. . . . . .
I CI0

Here Cij denotes the claims (numbers or amounts) for year of origin i
(i = 0, . . . , I, we can also use simply calendar years here) and development
year j (j = 0, . . . , J). Development period 0 means ”current” or ”running”
period and the number of development periods J is defined by the nature of
particular risks. The number of usable years of origin is defined by the his-
tory insurance company has. The usual assumption is that I = J ; although,
it is possible that the insurance company has more historical information
about the particular reserve development (I > J), in this case we assume
that all this information is included in the first row of the run-off triangle.

The development pattern is defined by the choice for the year of origin,
which can be

• year of underwriting;

• year of accident (claim occurrence);

• year of reporting;

and the development year, which can be

• year of accident (occurrence);

• year of reporting;

• year of claim settlement (year of final payment).

Depending on the choice of years of origin and development, the run-off tri-
angles can describe the development of different stages of different reserves.
Obviously the development period has to correspond to a later process than
the year of origin in order to get a meaningful development pattern.

For example, if the origin period is accident year and
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• the development period is reporting year, the corresponding run-off
triangle describes development in IBNR reserve;

• the development period is claim settlement year, the corresponding
run-off triangle describes development in total claims reserve.

11.2.1 The chain ladder method

The most widely used reserving method is the chain ladder method. There
are many variations, but they all have the same objective: to extract from
the loss development triangle a pattern for the claim run-off that can be
used to extrapolate the less mature years of account. The method is very
simple and is based on the assumption that the development proportions
remain the same (or at least are similar) in the future. If this assumption
holds, the behaviour of future claims behaviour can be described by certain
development factors or, equivalently, through some proportion factors.

More precisely, the chain ladder model assumes that the development be-
tween successive periods of development can be described as

Ci,j+1 ≈ fjCij , i = 0, . . . , I, j = 0, . . . , J − 1,

where

• Cij is the (cumulative) claim amount (or number) corresponding to
year of origin i and development period j;

• Ci,j+1 is the (cumulative) claim amount (or number) corresponding to
year of origin i and development period j + 1;

• fj is the development factor between development periods j and j+1.

Equivalently, the chain ladder model can be written as

Cij ≈ SiRj ,

where

• Cij is the (cumulative) claim amount (or number) corresponding to
year of origin i and development period j;

• Si is the ultimate claim amount (or number) for year of origin i;

• Rj is the proportion of the ultimate that has emerged by the end of
the on jth development period.
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The approximate equalities are used to stress out that there is no fixed
relationship, we just propose a model for predictions (alternatively, one can
specify a model with exact equalities and include error terms).

The estimation of development factors is done using all the available infor-
mation between successive development periods:

f̂j =

∑I−j−1
i=0 Ci,j+1∑I−j−1
i=0 Cij

, j = 0, . . . , J − 1.

The cumulative development factors describe development pattern between
given development stage j and the ultimate (or final) stage J . Thus, the
estimates are found as

F̂j =

J−1∏
k=j

f̂k, j = 0, . . . , J − 1.

Also, the inverses of cumulative factors represent the proportion of total
claims emerged by the end of given development period. Thus, the the esti-
mates for proportions are simply found by

R̂j =
1

F̂j
, j = 0, . . . , J − 1.

As the basic chain ladder method does not take into account factors depend-
ing on particular calendar years (e.g. inflation) the following adjustment can
be made to obtain a more flexible model:

Cij ≈ SiRjλij ,

where λij is the inflation coefficient.

In order to apply the influence of inflation to correct datum it is necessary
to consider incremental data while correcting with inflation, i.e. in first step
we apply the inflation to increments and in second step we get cumulative
sums from inflation-adjusted increments.

The calculation of different reserves using chain ladder method is shown in
the following examples. The key step is step 5 where the development factors
and proportions are found.
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Claims reserving example - paid claims

Step 1 – Incremental paid claims
Development period

Year of origin 0 1 2 3 4 5
1991
1992
1993
1994
1995
1996

Step 2 – Cumulative paid claims
Development period

Year of origin 0 1 2 3 4 5
1991
1992
1993
1994
1995
1996

Column sum

0

Step 3 – Graph

Step 4 – Individual development factors
Development period

Year of origin 0 - 1 1 - 2 2 - 3 3 - 4 4 - 5
1991 1,547 1,113 1,086 1,050 1,030
1992 1,581 1,118 1,075 1,045
1993 1,570 1,097 1,069
1994 1,479 1,087
1995 1,550
1996

Step 5 – Development factors
Development period

0 - 1 1 - 2 2 - 3 3 - 4 4 - 5
Development factor 1,542 1,102 1,076 1,047 1,030

0 – ultimate 1 – ultimate 2 – ultimate 3 – ultimate 4 – ultimate
Cumulative factor 1,972 1,279 1,160 1,079 1,030

Inverse 0,507 0,782 0,862 0,927 0,971

52 546 28 729 9 186 7 816 4 885 3 102
62 285 36 210 11 601 8 250 5 336
72 173 41 126 11 041 8 543
86 135 41 224 11 050
97 068 53 408

128 982

52 546 81 275 90 461 98 277 103 162 106 264
62 285 98 495 110 096 118 346 123 682
72 173 113 299 124 340 132 883
86 135 127 359 138 409
97 068 150 476

128 982
499 189 570 904 463 306 349 506 226 844 106 264

Column sum (excl. 
last value) 370 207 420 428 324 897 216 623 103 162

0 1 2 3 4 5
0

20 000

40 000

60 000

80 000

100 000

120 000

140 000

160 000

1991

1992

1993

1994

1995

1996
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Claims reserving example - paid claims

Step 6 – Individual development factors (step 4 extended)
Development period

Year of origin 0 - 1 1 - 2 2 - 3 3 - 4 4 - 5
1991 1,547 1,113 1,086 1,050 1,030
1992 1,581 1,118 1,075 1,045 1,030
1993 1,570 1,097 1,069 1,047 1,030
1994 1,479 1,087 1,076 1,047 1,030
1995 1,550 1,102 1,076 1,047 1,030
1996 1,542 1,102 1,076 1,047 1,030

Step 7 – Cumulative paid claims (step 2 extended)
Development period

Year of origin 0 1 2 3 4 5
1991
1992
1993
1994
1995
1996

Step 8 – Estimated reserve
Year of origin Reserve

1992
1993
1994
1995
1996
Total

Step 9 – Estimated ultimate claims at each development period
Development period

Year of origin 0 1 2 3 4 5
1991
1992
1993
1994
1995
1996

Step 10 – Incremental payments
Development period

Year of origin 0 1 2 3 4 5
1991
1992
1993
1994
1995
1996

52 546 81 275 90 461 98 277 103 162 106 264
62 285 98 495 110 096 118 346 123 682 127 401
72 173 113 299 124 340 132 883 139 153 143 337
86 135 127 359 138 409 148 893 155 918 160 606
97 068 150 476 165 823 178 383 186 799 192 416

128 982 198 906 219 192 235 794 246 920 254 344

3 719
10 454
22 197
41 940

125 362
203 673

103 617 103 928 104 969 106 009 106 264 106 264
122 822 125 947 127 753 127 656 127 401
142 321 144 877 144 281 143 337
169 853 162 856 160 606
191 412 192 416
254 344

52 546 28 729 9 186 7 816 4 885 3 102
62 285 36 210 11 601 8 250 5 336 3 719
72 173 41 126 11 041 8 543 6 270 4 184
86 135 41 224 11 050 10 484 7 025 4 688
97 068 53 408 15 347 12 560 8 417 5 617

128 982 69 924 20 286 16 602 11 126 7 425
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Claims reserving example - paid claims

Step 11 – Estimated future payments by calendar year
Development period

Year of origin 1997 1998 1999 2000 2001 Total
1991
1992
1993
1994
1995
1996
Total

Step 12 – Back-fitted incremental claims
Development period

Year of origin 0 1 2 3 4 5
1991
1992
1993
1994
1995
1996

Step 13 – Residuals (actual – expected)
Development period

Year of origin 0 1 2 3 4 5
1991 -485 711 880 237 0
1992 -66 -237
1993 -516 -391 -813
1994
1995 -509 509
1996 0

3 719 3 719
6 270 4 184 10 454

10 484 7 025 4 688 22 197
15 347 12 560 8 417 5 617 41 940
69 924 20 286 16 602 11 126 7 425 125 362

105 743 44 055 29 707 16 742 7 425 203 673

53 888 29 214 8 475 6 936 4 648 3 102
64 607 35 025 10 161 8 316 5 573
72 689 39 406 11 432 9 356
81 446 44 154 12 809
97 577 52 899

128 982

-1 342
-2 322 1 185 1 440

1 720
4 689 -2 930 -1 759
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Example of IBNR

Step 1 – Incremental numbers of reported claims
Development period

Year of origin 0 1 2 3 4 5
1991 53 29 9 8 5 3
1992 64 36 12 8 5
1993 72 41 11 9
1994 86 41 11
1995 97 53
1996 128

Step 2 – Cumulative numbers of reported claims
Development period

Year of origin 0 1 2 3 4 5
1991 53 82 91 99 104 107
1992 64 100 112 120 125
1993 72 113 124 133
1994 86 127 138
1995 97 150
1996 128

Column sum 500 572 465 352 229 107

372 422 327 219 104 0

Step 3 Graph

Step 4 – Individual development factors
Development period

Year of origin 0 - 1 1 - 2 2 - 3 3 - 4 4 - 5
1991 1,547 1,110 1,088 1,051 1,029
1992 1,563 1,120 1,071 1,042
1993 1,569 1,097 1,073
1994 1,477 1,087
1995 1,546
1996

Step 5 – Development factors
Development period

0 - 1 1 - 2 2 - 3 3 - 4 4 - 5
Development factor 1,538 1,102 1,076 1,046 1,029

0 – ultimate 1 – ultimate 2 – ultimate 3 – ultimate 4 – ultimate
Cumulative factor 1,962 1,276 1,158 1,076 1,029

Column sum (excl. 
last value)
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Example of IBNR

Inverse 0,510 0,784 0,864 0,930 0,972

Step 6 – Individual development factors (step 4 extended)
Development period

Year of origin 0 - 1 1 - 2 2 - 3 3 - 4 4 - 5
1991 1,547 1,110 1,088 1,051 1,029
1992 1,563 1,120 1,071 1,042 1,029
1993 1,569 1,097 1,073 1,046 1,029
1994 1,477 1,087 1,076 1,046 1,029
1995 1,546 1,102 1,076 1,046 1,029
1996 1,538 1,102 1,076 1,046 1,029

Step 7 – Cumulative reported claims (step 2 extended)
Development period

Year of origin 0 1 2 3 4 5
1991 53 82 91 99 104 107
1992 64 100 112 120 125 129
1993 72 113 124 133 139 143
1994 86 127 138 149 155 160
1995 97 150 165 178 186 191
1996 128 197 217 233 244 251

Step 8 – Estimated reserve

Year of origin Reserve
1992 4 989
1993 10 999
1994 22
1995 41
1996 123
Total 200

Step 9 – Estimated ultimate number of claims at each development period
Development period

Year of origin 0 1 2 3 4 5
1991 104 105 105 107 107 107
1992 126 128 130 129 129
1993 141 144 144 143
1994 169 162 160
1995 190 191
1996 251

Step 10 – Incremental numbers of claims reporting
Development period

Year of origin 0 1 2 3 4 5
1991 53 29 9 8 5 3
1992 64 36 12 8 5 4
1993 72 41 11 9 6 4
1994 86 41 11 11 7 4
1995 97 53 15 13 8 5
1996 128 69 20 17 11 7

Number (not 
reported)

Average 
claim

3 956
9 990

1 003 22 066
1 003 41 123
1 008 123 984

201 119
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Example of IBNR

Step 11 – Estimated reporting of claims by calendar year
Development period

Year of origin 1997 1998 1999 2000 2001 Total
1991
1992 4 4
1993 6 4 10
1994 11 7 4 22
1995 15 13 8 5 41
1996 69 20 17 11 7 123
Total 104 43 29 16 7 200

Step 12 – Back-fitted incremental claims
Development period

Year of origin 0 1 2 3 4 5
1991 55 29 9 7 5 3
1992 66 35 10 8 5
1993 73 39 11 9
1994 81 44 13
1995 98 52
1996 128

Step 13 – Residuals (actual – expected)
Development period

Year of origin 0 1 2 3 4 5
1991 -2 0 0 1 0 0
1992 -2 1 2 0 0
1993 -1 2 0 0
1994 5 -3 -2
1995 -1 1
1996 0
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Claims reserving example - inflation-adjusted paid claims

Step 1 – incremental paid claims
Development period

Year of origin 0 1 2 3 4 5
1991
1992
1993
1994
1995
1996

Inflation rates
Period Inflation

1991-92 12,4%
1992-93 22,0%
1993-94 21,9%
1994-95 15,9%
1995-96 13,2%

Step 1A – inflation-adjusted incremental paid claims
Development period

Year of origin 0 1 2 3 4 5
1991
1992
1993
1994
1995
1996

Step 2 – Cumulative paid claims
Development period

Year of origin 0 1 2 3 4 5
1991
1992
1993
1994
1995
1996

Column sum

0

Step 3 – Graph

52 546 28 729 9 186 7 816 4 885 3 102
62 285 36 210 11 601 8 250 5 336
72 173 41 126 11 041 8 543
86 135 41 224 11 050
97 068 53 408

128 982

115 239 56 055 14 691 10 254 5 530 3 102
121 528 57 911 15 220 9 339 5 336
115 427 53 957 12 498 8 543
113 008 46 666 11 050
109 881 53 408
128 982

115 239 171 294 185 985 196 240 201 770 204 872
121 528 179 439 194 660 203 999 209 335
115 427 169 384 181 882 190 425
113 008 159 674 170 724
109 881 163 289
128 982
704 065 843 080 733 251 590 664 411 104 204 872

Column sum (excl. 
last value) 575 083 679 791 562 527 400 238 201 770
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Claims reserving example - inflation-adjusted paid claims

Step 4 – Individual development factors
Development period

Year of origin 0 - 1 1 - 2 2 - 3 3 - 4 4 - 5
1991 1,486 1,086 1,055 1,028 1,015
1992 1,477 1,085 1,048 1,026
1993 1,467 1,074 1,047
1994 1,413 1,069
1995 1,486
1996

Step 5 – Development factors
Development period

0 - 1 1 - 2 2 - 3 3 - 4 4 - 5
Development factor 1,466 1,079 1,050 1,027 1,015

0 – ultimate 1 – ultimate 2 – ultimate 3 – ultimate 4 – ultimate
Cumulative factor 1,732 1,181 1,095 1,043 1,015

Inverse 0,577 0,847 0,913 0,959 0,985

Step 6 – Individual development factors (step 4 extended)
Development period

Year of origin 0 - 1 1 - 2 2 - 3 3 - 4 4 - 5
1991 1,486 1,086 1,055 1,028 1,015
1992 1,477 1,085 1,048 1,026 1,015
1993 1,467 1,074 1,047 1,027 1,015
1994 1,413 1,069 1,050 1,027 1,015
1995 1,486 1,079 1,050 1,027 1,015
1996 1,466 1,079 1,050 1,027 1,015

Step 7 – Cumulative paid claims in current money (step 2 extended)
Development period

Year of origin 0 1 2 3 4 5
1991
1992
1993
1994
1995
1996

Step 8 – Estimated reserve
Reserve

Year of origin
Nominal

1992
1993
1994
1995
1996
Total

115 239 171 294 185 985 196 240 201 770 204 872
121 528 179 439 194 660 203 999 209 335 212 553
115 427 169 384 181 882 190 425 195 595 198 602
113 008 159 674 170 724 179 263 184 130 186 960
109 881 163 289 176 130 184 940 189 961 192 881
128 982 189 089 203 960 214 161 219 975 223 357

Current 
money 
(1996)

Net present 
value

3 218 3 605 3 400
8 177 9 562 8 820

16 237 19 646 17 795
29 592 37 082 32 966
94 375 115 415 103 845

151 600 185 310 166 826
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Claims reserving example - inflation-adjusted paid claims

Step 9 – Estimated ultimate claims at each development period
Development period

Year of origin 0 1 2 3 4 5
1991
1992
1993
1994
1995
1996

Step 10 – Incremental payments (in 1996 money)
Development period

Year of origin 0 1 2 3 4 5
1991
1992
1993
1994
1995
1996

Step 10A – Incremental payments (with future inflation 12% per annum)
Development period

Year of origin 0 1 2 3 4 5
1991
1992
1993
1994
1995
1996

Step 10B – Incremental payments (with future inflation 12%, discounted 6% per annum)
Development period

Year of origin 0 1 2 3 4 5
1991
1992
1993
1994
1995
1996

Step 11 – Estimated future payments by calendar year (in 1996 money)
Development period

Year of origin 1997 1998 1999 2000 2001 Total
1991
1992
1993
1994
1995
1996
Total

199 559 202 337 203 673 204 666 204 872 204 872
210 450 211 958 213 173 212 758 212 553
199 885 200 081 199 180 198 602
195 695 188 611 186 960
190 280 192 881
223 357

115 239 56 055 14 691 10 254 5 530 3 102
121 528 57 911 15 220 9 339 5 336 3 218
115 427 53 957 12 498 8 543 5 170 3 007
113 008 46 666 11 050 8 539 4 867 2 831
109 881 53 408 12 841 8 810 5 021 2 920
128 982 60 107 14 870 10 202 5 814 3 382

3 605
5 790 3 772

9 564 6 105 3 977
14 382 11 051 7 054 4 595

67 320 18 653 14 333 9 149 5 960

3 400
5 462 3 357

9 023 5 433 3 339
13 568 9 835 5 923 3 640

63 510 16 601 12 034 7 247 4 454

3 218 3 218
5 170 3 007 8 177
8 539 4 867 2 831 16 237

12 841 8 810 5 021 2 920 29 592
60 107 14 870 10 202 5 814 3 382 94 375
89 876 31 554 18 053 8 735 3 382 151 600
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Claims reserving example - inflation-adjusted paid claims

Step 12 – Back-fitted incremental claims
Development period

Year of origin 0 1 2 3 4 5
1991
1992
1993
1994
1995
1996

Step 13 – Residuals (actual – expected)
Development period

Year of origin 0 1 2 3 4 5
1991 922 897 197 0
1992 711 -369 -197
1993 741 511 -724 -528
1994
1995
1996 0

118 307 55 133 13 640 9 357 5 333 3 102
122 743 57 200 14 151 9 708 5 533
114 687 53 446 13 222 9 071
107 964 50 313 12 447
111 383 51 906
128 982

-3 068 1 052
-1 215 1 069

5 044 -3 647 -1 397
-1 502 1 502
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11.2.2 Loss ratio and Bornhütter-Ferguson method

Besides using only claim-based data for reserve estimation it is also pos-
sible to take into account the (relevant) premiums. A simplest calculation
of reserves could be made by multiplying premiums by the expected loss
ratio (obviously the true loss ratio is not yet known) to get an estimate for
ultimate claim amount.

Example 11.2. Assume that the expected loss ratio is 0.8 and after devel-
opment period j the loss ratio based on known claims is 0.71. Then one can
estimate that the remaining IBNR reserve at the end of period j should be
about 0.8− 0.71 = 0.09, i.e. 9% of premiums.

The Bornhütter-Ferguson method gives a way of combining the prior expec-
tation of losses provided by simple loss ratio estimates with the actual rate
of emergence of claims. The estimated ultimate claims for year of origin i at
the end of developent period j (i.e. using the information available at the
end of development period j) is given by

Si = Pi · IELRi(1−Rj) + Cij ,

where

• Pi is the premium income received;

• IELRi is the initial expected loss ratio for year of origin i;

• Rj is the proportion factor at the end of the on jth development period;

• Cij is the (cumulative) amount of claims for year of origin i and de-
velopment year j.

11.2.3 Chain ladder as a generalized linear model

The methods considered so far are mainly based on averages and provide
only point estimates. The other weak point is that there is no way to measure
the goodnes of fit of proposed models. In the following we consider certain
stochastic reserve estimation methods that also allow us to estimate the
variability of predicted claims reserves.

Firstly, we note that several often used and traditional actuarial methods to
complete a run-off triangle can be described by one generalized linear model
(GLM). Let the random variables Cij , i = 0, 1, . . . , I and j = 0, 1, . . . , J
denote the random variables corresponding to the claim figure for year of
origin i and year of development j, as previously. We consider the following
multiplicative model

Cij ≈ αi · βj · γk, (11.1)
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where αi is the parameter that describes the effect of year of origin i, βj is
the parameter corresponding to development year j, and γk describes the
effect of calendar year k = i+ j.

The expected value of Cij can be given as

ECij = exp{lnαi + lnβj + ln γk},

or, equivalently,
lnECij = lnαi + lnβj + ln γk,

so there is a logarithmic link function (or log-link).

Turns out that this simple model allows generate quite a few reserving tech-
niques, depending on the assuptions set on distribution of the Cij .

If we restrict the model (11.1) to

Cij ∼ Po(αiβj), γk ≡ 1, (11.2)

where Cij are independent for different i, j = 1, . . . , I; i+j ≤ I, then we ob-
tain a model behaving as the chain ladder. Indeed, if the parameters αi > 0
and βj are to be estimated by maximum likelihood, then model (11.2) is a
multiplicative GLM with log-link. Also the (Poisson) distributional assump-
tion allows to find estimates for other characteristics of the predicted claims
reserves, such as variance.

It can be shown that the optimal parameters αi and βj produced by this
GLM are equal to the estimates obtained by the chain ladder method.

11.2.4 Mack’s stochastic model behind the chain ladder

In the previous subsection we saw that the chain ladder method can be
considered as an algorithm to estimate the parameters of a simple GLM
with two factors (year of origin and development year). In 1993 Thomas
Mack describes ’the’ stochastic model behind chain ladder as a different
set of assumptions under which doing these calculations makes sense. As
the proposed model is distribution-free, the maximum likelihood approach
cannot be used, instead certain unbiased linear estimators for the mean
squared errors are found. Let us recall that the mean squared error (MSE)
of an estimate is the variance of the estimate plus the square of its bias.
Therefore, if an estimate is unbiased, its MSE is equal to its variance, which
makes MSE a convenient choice to model the variability of the predictions.

The Mack’s model for chain ladder is described by three assumptions:

(A1) there exist proportion factors fj > 0 such that for all i ∈ {0, 1, . . . , I}
and j ∈ {0, 1, . . . , J − 1} the conditional expectation for cumulative
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claims for the development period j+1 can be calculated by multiply-
ing the cumulative claims for development period j by the proportion
factor fj :

E(Ci,j+1|Ci1, . . . , Cij) = fjCij ;

(A2) for different years of origin i and k the random variables {Ci0, . . . , CiJ}
and {Ck0, . . . , CkJ} are independent;

(A3) there exist constants σ2
j > 0 such that for all i = 0, 1, . . . , I and j =

0, 1, . . . , J − 1 the following equality holds

V ar(Ci,j+1|Ci1, . . . , Cij) = σ2
jCij .

The assumption A1 establishes the existence of proportion factors and de-
picts the very essence of the chain ladder method.

The independence assumption A2 follows from the fact that the chain ladder
algorithm does not take into account any dependencies between years of
origin.

The variance assumption A3 follows from the fact that the proportion factor
fj is the Cij-weighted mean of the individual development factors

Ci,j+1

Cij
and

thus the variance V ar(
Ci,j+1

Cij
|Ci1, . . . , Cij) should be inversely proportional

to Cij .

It can be shown that (Mack, 1993):

• the estimates of parameters fj calculated by chain ladder method are
unbiased;

• there exist unbiased estimators for the variance factors σ2
j .

In conclusion, under assumptions A1–A3 there can be found formulas for
mean squared errors of the claim reserve amounts that only use data from the
chain ladder triangle. This allows to calculate the variability of the proposed
predictions. The exact calculations and formulas are quite technical and
are thus omitted. But it is important to remember that the constructed
stochastic model

• formalizes and extends the idea of chain ladder method;

• gives exactly the same point estimates as the chain ladder method;

• gives an additional possibility to find certain interval estimates for the
predicted claims reserves.
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11.2.5 Chain ladder bootstrap

Bootstrapping is a simple and powerful method which enables the calcula-
tion of a number of different estimates of a random variable, using empirical
data as an approximation of the true distribution. In other words, no distri-
butional assumptions are made, the only assumption is that available data
is representative enough for the underlying population.

In this section we briefly introduce the idea of bootstrap method and show
how it can be applied to calculated errors associated with the predicted
claims reserves.

Let us assume that the chain ladder development factors are found and the
ultimate claims are estimated. We can now back-fit the claims in the run-
off triangle based on the ultimate claims and development factors to obtain
the run-off triangle (say, with components Ĉij) which follows exactly the
proposed model:

Development period j
Year of origin i 0 1 2 . . . J

0 Ĉ00 Ĉ01 Ĉ02 . . . Ĉ0J

1 Ĉ10 Ĉ11 . . .

2 Ĉ20 . . .
. . . . . .

I ĈI0

Here Ĉij is calculated from

Ĉij =
Ŝi

f̂j · . . . · f̂J−1

,

where Ŝi and f̂j denote estimated values for ultimate claims for year of origin
i and proportion factor between development years j and j+1, respectively.

The cumulative back-fitted claims are found as differences between actual
and expected values:

Year of Development period j
origin i 0 1 2 . . . J

0 C00 − Ĉ00 C01 − Ĉ01 C02 − Ĉ02 . . . C0J − Ĉ0J

1 C10 − Ĉ10 C11 − Ĉ11 . . .

2 C20 − Ĉ20 . . .
. . . . . .

I CI0 − ĈI0

If we now move from cumulative differences to incremental differences to re-
move the cumulative effect, we obtain a run-off triangle which consists of the
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residual errors. The residual errors (or simply residuals) give us information
how well the model fits to the known data and allows to make predictions
about the future fit.

We now make assumption that the residual errors are random. This assump-
tion should actually be tested to ensure there is no systematic component,
but it is consistent with the chain ladder model. The significance of this
assumption for the bootstrap method is that each error could equally well
have arisen as the residual error from any other development period and
year of origin.

Now we are ready to formulate the chain ladder bootstrap algorithm:

Step 1: fix the number of repetitions n.

Step 2: for each repetition i = 1, . . . , n:

2.1) draw a random sample (allowing for replacement) from the set of
residual errors (in other words, we produce an alternative set of
equally likely outcomes, called the pseudo data);

2.2) create incremental pseudo claims by adding the pseudo residuals
to actual claims;

2.3) cumulate the incremental pseudo claims;

2.4) apply the chain ladder method to cumulative claims as normally
to obtain a reserve estimate.

Step 3: now we have n estimates for the reserves, which, by the assump-
tions provide a random sample of the distribution of the true reserve
value. This sample can be used to calculate estimates for different
characteristics of the distribution (e.g. variance).

In case the incremental claims are affected by inflation then the data should
be adjusted by inflation before applying the bootstrap procedure.
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12 Using individual history in premium calcula-
tion

12.1 Bayesian credibility theory

Let us consider the following motivating problem.

Example 12.1. An insurance company has a long-time customer with av-
erage claim amount per year x̄ (e.g., x̄ = 1600). On the other hand, the
estimated average claim for similar risks in the insurer’s portfolio is µ (e.g.
µ = 2500). How much premium should the insurer ask from this customer?
1600? 2500? Or something in between?

To answer this question we need to estimate the credibility of the customer
(or customer data), which can be mathematically described by the credibility
factor z.

Let z = 0.6, then the (pure) premium is found as

P = 0.6 · 1600 + 0.4 · 2500 = 1960.

In general, the premium is found as a weighted average

P = z · x̄+ (1− z)µ,

where

• x̄ – estimated claim amount (or number) for some fixed risk;

• µ – reference value, expected claim amount (or number) obtained by
analysis of similar risks (collateral information);

• z – credibility factor, 0 ≤ z ≤ 1.

What properties should the credibility factor z have?

It should increase if

• there is more data about the particular risk;

• the precision of individual risks becomes greater.

It should decrease if

• there is more collateral information;

• the collateral risk becomes more relevant.
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12.1.1 Poisson/gamma model

Suppose that the number of claims in a portfolio is Poisson distributed with
parameter λ, where the value of λ is a realization of a gamma distributed
random variable Λ (Λ ∼ Γ(α, β)). Suppose also that for some risk the claim
numbers in past k years are known: n1, . . . , nk.

The problem is to estimate based on this information (prior distribution and
history) the (conditional!) expected claim number for the next year:

E(E(N |Λ)|n1, . . . , nk) = E(Λ|n1, . . . , nk).

Notice that this problem is closely related to the setup of Bayesian statis-
tics: we need to estimate the posterior distribution of Λ based on the prior
distribution of Λ and the observations n1, . . . , nk.

By Bayes Theorem the distribution of (Λ|n1, . . . , nk) is Γ(α+
∑k

i=1 ni, β+k)
(check it!).

We are mostly interested in its expectation:

E(Λ|n1, . . . , nk) =
α+

∑k
i=1 ni

β + k
=

β

β + k
· α
β

+
k

β + k
·
∑k

i=1 ni
k

.

Taking z = k
β+k , we can write

E(Λ|n1, . . . , nk) = z

∑k
i=1 ni
k

+ (1− z)α
β
.

Recall that we have initial estimates for the expectation based on two
sources:

• µ = α
β (based on Γ(α, β));

• n̄ =
∑k
i=1 ni
k (based on individual history).

Then the conditional expectation can be written as

E(Λ|n1, . . . , nk) = z · n̄+ (1− z)µ,

i.e. it is a weighted average of the initial estimates.

It is easy to see that always 0 ≤ z ≤ 1 and the more history we have the
higher z.
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12.1.2 Normal/normal model

Suppose that claim sizes X are normally distributed (X ∼ N(θ, σ1)), where
θ is fixed, but unknown (and σ1 is assumed to be known). Let us also have
claims information for some risk in past k years: x1, . . . , xk.

Supposing now that the collateral information gives prior Θ ∼ N(µ, σ2)
distribution for θ, we have the following problem of Bayesian statistics: es-
timate the posterior distribution of Θ based on its prior distribution and
observations x1, . . . , xk.

By Bayes Theorem the posterior distribution of Θ is

N

(
µσ2

1 + kσ2
2x̄

σ2
1 + kσ2

2

,
σ2

1σ
2
2

σ2
1 + kσ2

2

)
,

where x̄ =
∑k
i=1 xi
k .

Thus, the conditional expectation is

E(E(X|Θ)|x1, . . . , xk) = E(Θ|x1, . . . , xk)

=
µσ2

1 + kσ2
2x̄

σ2
1 + kσ2

2

=
σ2

1

σ2
1 + kσ2

2

µ+
kσ2

2

σ2
1 + kσ2

2

x̄.

Taking

z =
kσ2

2

σ2
1 + kσ2

2

=
k

k +
σ2
1

σ2
2

,

the posterior expectation can be written as a weighted average of prior
expectation µ and the mean value of observed claims x̄:

E(Θ|x1, . . . , xk) = z · x̄+ (1− z)µ,

One can see that again always 0 ≤ z ≤ 1 and the more history we have the
higher z.

12.2 Empirical Bayesian credibility theory

In Bayesian credibility models, the information came from two sources: a
priori distribution of collateral data describing the between risk information
and the individual history. In empirical Bayesian credibility theory (EBCT),
the general idea stays the same, we simply drop the distributional assump-
tion set to collateral data and study certain distribution-free models.
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12.2.1 The Bühlmann credibility model

Let us consider a portfolio with n risks and let Xij , j = 1, . . . , k denote
the (aggregate) claim amounts (or numbers) that arise from risk i for k
successive years.

Now, let us consider a similar model to Bayesian credibility model, where the
distributional assumptions are replaced with certain structural assumptions:

• the distribution of each Xij , i = 1, . . . , n, j = 1, . . . , k depends on
the value of an unknown parameter Θi, which is assumed to be an
(unknown) random variable, but its value θi is fixed for given risk;

• given θi, the random variables Xij , j = 1, . . . , k are i.i.d.;

• for different risks i and i′ (i 6= i′), the pairs of variables (Θi, Xij) and
(Θi′ , Xi′j′), j, j

′ = 1, . . . , k, are i.i.d. This assumption allows us to write
simply Θ instad of Θi, since the distribution of Θi does not depend on
i.

• the conditional mean and variance of Xij are

E(Xij |Θi) = µ(Θi) = µ(Θ),

V ar(Xij |Θi) = σ2(Θi) = σ2(Θ).

Now, the unconditional mean and variance for Xij are calculated as

EXij = E(E(Xij |Θ)) = Eµ(Θ),

V arXij = E(V ar(Xij |Θ)) + V ar(E(Xij |Θ)) = Eσ2(Θ) + V ar(µ(Θ)),

where the decomposition of variance is based on the law of total variance.

The variance components can be interpreted as follows:

• Eσ2(Θ) represents the expected value of the process variance, i.e. the
variance within risk ;

• V ar(µ(Θ)) is the variance of the hypothetical means, i.e., the variance
between the risks.

Now, assume that for past k years the claim amounts (or numbers) xij
(the realizations of Xij), j = 1, . . . , k, for risk i are known. Then all the
structural parameters, Eµ(Θ), Eσ2(Θ) and V ar(µ(Θ)) can be estimated
from the collateral data. The usual estimators are:

Êµ(Θ) = x̄ =
1

n

n∑
i=1

x̄i =
1

nk

n∑
i=1

k∑
j=1

xij ,
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Êσ2(Θ) =
1

n

n∑
i=1

1

k − 1

k∑
j=1

(xij − x̄i)2

and

̂V ar(µ(Θ)) =
1

n− 1

n∑
i=1

(x̄i − x̄)2 − 1

nk

n∑
i=1

1

k − 1

k∑
j=1

(xij − x̄i)2.

Thus, we have again two sources of information: the individual history gives
us mean value x̄i = 1

k

∑k
j=1 xij and the collateral information suggests over-

all mean x̄.

Now, the formula for credibility premium for risk i in Bühlmann model can
be written as

Pi = z · x̄i + (1− z) · x̄

and the remaining question is how to calculate a proper credibility factor z.

Let us now recall the credibility factor for normal/normal model

z =
k

k +
σ2
1

σ2
2

,

where σ2
1 and σ2

2 can be interpreted as the within risk variance is the be-
tween risk variance, respectively. Turns out that similar property holds for
Poisson/gamma model: the credibility factor is given by z = k

k+β or, equiv-
alently,

z =
k

k + α/β
α/β2

where we recognize that

• α
β is the expectation (and hence also the variance) of the Poisson dis-
tribution, so it describes the within risk variance;

• α
β2 is the variance of the gamma distribution, i.e. the between risk
variance.

These expressions for credibility factor suggest the following formula for the
credibility factor in empirical setup:

z =
k

k + Êσ2(Θ)
̂V ar(µ(Θ))

.
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Notice that although Eσ2(Θ) and V ar(µ(Θ)) are always positive, the pro-
posed estimator for V ar(µ(Θ)) can take negative values, as well. In that
case, one can just take the corresponding estimate equal to zero, which im-
plies the credibility factor z is also equal to zero (basically, this assumption
means that there is no between risks variance, so the collateral information
can be fully trusted). So, the value of credibility factor z will always satisfy
0 ≤ z ≤ 1.

In conclusion, in the Bühlmann credibility model

• the credibility factor z is the same for all risks in the collective, it only
has to be calculated once;

• the more information concerning individual risk (the bigger k) the
bigger is z;

• large values of Eσ2(Θ) correspond to large variability from year to
year within risks and implies smaller value of credibility factor z;

• large values of V ar(µ(Θ)) mean large variability between risks and
thus the data from other risks is not very informative or relevant,
implying higher credibility factor (i.e. the data from an individual risk
is more important).

12.2.2 The Bühlmann-Straub model

We saw that the Bühlmann model provides a convenient way to model a het-
erogeneous portfolio. At the same time, the Bühlmann model has a serious
limitation that the the claim amounts (or numbers) for a risk are identi-
cally distributed for all years of exposure. In practice, this assumption is
often violated. This issue is addressed in the Bühlmann-Straub model: the
assumption of i.i.d. claims is relaxed by introducing an additional exposure
or risk volume parameter.

In particular, let us consider again a portfolio with n risks and k successive
years. Let Yij denote the aggregate claim amount for risk i in year j and
let us introduce the claim amount per unit of risk volume (or per unit of
exposure)

Xij =
Yij
vij

,

where vij represents the the risk volume. The risk volumes vij are assumed
to be known and fixed for each risk i and year j.

Example 12.2. In practice, several different risk volumes are used, depend-
ing on the line of business and risk specifics:
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• number of years at risk in motor insurance;

• total amount of wages in the collective health or collective accident
insurance;

• sum insured in fire insurance;

• annual turnover in commercial liability insurance;

• annual premium (written or earned) by the ceding company in excess
of loss reinsurance.

Similarly to Bühlmann model, a random variable Xij is assumed to depend
from a parameter Θi, which is unknown, but its value θi is fixed for each
risk i .

The general assumptions of the Bühlmann-Straub model are:

• given θi, the random variables Xij , j = 1, . . . , k, are independent;

• E(Xij |Θi) =: µ(Θi) does not depend on j;

• vijV ar(Xij |Θi) =: σ2(Θi) does not depend on j;

• for different risks i and i′ (i 6= i′), the pairs of variables (Θi, Xij) and
(Θi′ , Xi′j′), j, j

′ = 1, . . . , k, are i.i.d.;

• the risk parameters Θi, i = 1, . . . , n are i.i.d.

The last assumption allows us to write simply Θ instad of Θi, since the
distribution of Θi does not depend on i.

Then, the credibility premium for risk i can be found as

Pi = zi · x̄i + (1− zi) · Êµ(Θ),

where the meaning of x̄i and the calculation of an estimate for Eµ(Θ) are
slightly changed compared to Bühlmann model:

x̄i =

∑k
j=1 vijxij∑k
j=1 vij

=

∑k
j=1 yij∑k
j=1 vij

and

Êµ(Θ) = x̄ =

∑n
i=1

∑k
j=1 vijxij∑n

i=1

∑k
j=1 vij

=

∑n
i=1

∑k
j=1 yij∑n

i=1

∑k
j=1 vij

,

where xij and yij are the realizations of Xij and Yij , respectively.
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Similarly, the estimates for variance components are now adjusted by risk
volume as follows:

Êσ2(Θ) =
1

n

n∑
i=1

1

k − 1

k∑
j=1

vij(xij − x̄i)2

and

̂V ar(µ(Θ)) =
1

v

 1

nk − 1

n∑
i=1

k∑
j=1

vij(xij − x̄)2 − 1

n

n∑
i=1

1

k − 1

k∑
j=1

vij(xij − x̄i)2

 ,
where

v =
1

nk − 1

n∑
i=1

k∑
j=1

vij

(
1−

∑k
j=1 vij∑n

i=1

∑k
j=1 vij

)
.

Now, the credibility factor is given by

zi =

∑k
j=1 vij∑k

j=1 vij + Êσ2(Θ)
̂V ar(µ(Θ))

.

By similar argumentation as before, we can see that 0 ≤ zi ≤ 1. Also, the
general idea underlying this model is the same as in Bühlmann model. The
main difference in the calculation of credibility factor is that the number
of years k is changed to the aggregate risk volume, which is obviously a
more informative characteristic. The calculation of estimates for structural
parameters is also slightly changed, but their meaning is the same: Eσ2(Θ)
describes the within risk variance and V ar(µ(Θ)) is the between risks vari-
ance.

To sum up, we also mention the following:

• in case all the volumes vij are equal to 1, the Bühlmann-Straub model
reverts to the Bühlmann model;

• zi is increasing function of aggregate risk volume for risk i: higher risk
volume implies higher credibility for that risk;

• although we formulated all the results assuming the variables Yij repre-
sent claim amounts, the same model can be applied to claim numbers,
as well;

• the Bühlmann-Straub model is by far the most used credibility model
in insurance practice.
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12.3 Bonus-malus systems (No Claims Discount systems)

We consider the following situation

• insurer has sufficient history of its customers’ (policyholders’) claim
behaviour;

• insurer is interested in keeping its ”good” customers (who cause no or
few claims);

• insurer is willing to offer certain discount to keep the good customers.

The main question we search answers for is how to construct a suitable
discount system.

Example 12.3 (A three-level NCD system). Let us consider the following
simple system:

level discount

0 0%

1 25%

2 40%

The rules how a policyholder can reach different discount levels will be spec-
ified later on.

In general, let us have n discount levels (categories) and let πi denote the
proportion of policyholders at i-th level (

∑
i πi = 1). To give a formal de-

scription of an NCD system we need to recall some properties and results
related to Markov chains.

Let us denote
~π = (π0, π1, . . . , πn)

and

P = (pij) =


p00 p01 . . . p0n

p10 p11 . . . p1n
...

...
. . .

...
pn0 pn1 . . . pnn

 ,

where pij are transition probabilities, i.e. probabilities that (based on the
claim behaviour of the next year) a policyholder will move from discount
level i to discount level j. Matrix P is called the transition matrix.

An important task for insurer is to estimate the vector ~π. In case there exists
a steady state, i.e. ~π = ~π · P , we can find ~π by solving the corresponding
system of equations.

Example 12.4. Let us now extend the NCD system described in previous
example by the following rules:
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• in case of a claim-free year the policyholder moves in the next year to
the next higher level of discount (if possible);

• in case of claim(s) the policyholder moves in the next year to next
lower level of discount (if possible).

Let the probability of a loss be 0.1. The corresponding transition matrix is:

P =

0.1 0.9 0
0.1 0 0.9
0 0.1 0.9


and ~π = ~π · P gives 

0.1π0 + 0.1π1 = π0

0.9π0 + 0.1π2 = π1

0.9π1 + 0.9π2 = π2

π0 + π1 + π2 = 1

,

which has solution π0 = 1
91 , π1 = 9

91 ja π2 = 81
91 .

In practice the assumption that all customers have the same loss probability
is obviously oversimplified. Still, the customers can be divided by their claim
behaviour into ”good” and ”bad” categories and the loss probability can be
estimated in those categories separately.

Let us extend the example even further Let the probability of ”good” drivers
having an accident be 0.1 and for ”bad” drivers 0.2. Then the steady state
distribution for ”good” drivers is given in previous example and for ”bad”
drivers the proportions are (check it!): π0 = 1

21 , π1 = 4
21 and π2 = 16

21 .

Suppose that the full (individual) premium c. Then the average pure pre-
mium paid by a ”good” driver is

1

91
c+

9

91
· 0.75c+

81

91
· 0.6c = 0.619c

and the average pure premium paid by a ”bad” driver is

1

21
c+

4

21
· 0.75c+

16

21
· 0.6c = 0.648c.

Thus, in spite the fact that ”bad” drivers are twice as likely to claim as
”good” drivers, the premium they pay is only marginally higher (on average).

The following example shows how a discount system may affect the policy-
holders decision whether to make the claim. In other words, the probability
that there incurs a loss is not the same as the probability that a clame is
made!
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Example 12.5. Consider the same 3-level discount system (0%, 25% ja
40%), where policyholders move between discount levels as specified in pre-
vious examples. Let the policyholders be divided into two groups: ”good”
drivers and ”bad” drivers with accident probabilities 0.1 and 0.2, respec-
tively. The probability of any driver having two or more accidents is so
small it may be assumed to be zero. The cost of repair following an accident
has lognormal distribution with parameters µ = 5 and σ = 2 (in EUR). The
annual premium for policyholders (without discount) is 500 EUR. A policy-
holder makes a claim following an accident only if the cost of the repair is
greater than the win from the discounts of premium in the following three
years in case no claim is made.

For each level of discount, calculate

(a) the cost of repair below which a policyholder will not claim;

(b) the probability that a policyholder will make a claim following an
accident;

(c) the proportions of ”good” and ”bad” drivers assuming these propor-
tions have reached a steady state.

(a) A policyholder will decide whether to make a claim following an accident
comparing the sums the premiums payable in the next three years

(i) given that a claim is made for the cost of repair (and assuming no
claims in the following years);

(ii) given that no claim is made for the cost of this repair (and assuming
no claims in the following years).

A policyholder will make a claim only if the cost of repair is greater than
difference between (i) and (ii), i.e.

• for discount level 0%: (500 + 375 + 300)− (375 + 300 + 300) = 200;

• for discount level 25%: (500 + 375 + 300)− (300 + 300 + 300) = 275;

• for discount level 40%: (375 + 300 + 300)− (300 + 300 + 300) = 75.

(b) Let X denote the loss size, then lnX ∼ N(5, 2). The claim will only be
made if it exceed certain threshold x, i.e.

P{X > x} = P{lnX > lnx} = 1− Φ

(
lnx− 5

2

)
.

The threshold x is different for each level of discount and found in (a).

Thus the claim probabilities in case of accident are:
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• for discount level 0%: 1− Φ
(

ln 200−5
2

)
= 1− Φ(0.149) = 0.441;

• for discount level 25%: 1− Φ
(

ln 275−5
2

)
= 1− Φ(0.308) = 0.379;

• for discount level 40%: 1− Φ
(

ln 75−5
2

)
= 1− Φ(−0.341) = 0.633.

(c) Let us consider ”good” and ”bad” drivers separately. Since

P{claim} = P{claim|accident} ·P{accident},

the transition matrix for ”good” drivers is

P =

0.0441 0.9559 0
0.0379 0 0.9621

0 0.0633 0.9367

 .

At the steady state we obtain the following system of equations
0.0441π0 + 0.0379π1 = π0

0.9559π0 + 0.0633π2 = π1

0.9621π1 + 0.9367π2 = π2

π0 + π1 + π2 = 1

,

which has solution (check it!) π0 = 0.0024, π1 = 0.0616 ja π2 = 0.9360.

The transition matrix for ”bad” drivers is

P =

0.0882 0.9118 0
0.0758 0 0.9242

0 0.1266 0.8734


and the solution of steady state system gives

• π0 = 0.0099,

• π1 = 0.1193,

• π2 = 0.8708.
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13 The accounting framework

To understand the operation of a company it is important that the content
of the accounts and the relationship between revenue accounts and balance
sheets is clearly understood.

A brief description of key terms follows:

• the revenue account summarizes the cash flows incurred during the
year due to the insurance business;

• the profit and loss account incorporates the insurance result from rev-
enue account, as well as other cash flows (e.g. tax and dividend pay-
ments, investments, etc);

• the balance sheet provides a view of the total assets and the liabilities
of the company at one moment in time.

The revenue and profit and loss accounts therefore provide the link between
the opening (or brought forward) balance sheet and the closing (or carried
forward) balance sheet.

The following figure demonstrates the connection between the various parts
of the accounts and certain cash flows.
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13.1 The revenue account

The amount of premium included in the accounts is the earned premium.
Recall that using the unearned premiums reserve (UPR), the total premium
earned in an accounting year is found as:

UPR brought forward from the previous accounting year

+ the premium written in the accounting year

− the UPR carried forward to the next accounting year.

Similary, the insurer must account for the claims incurred during the year,
not for the claims paid during the accounting year. Thus, using the claims
reserves (RBNS and IBNR), the claims incurred are calculated as:

the claims paid

− claims reserves brought forward

+ claims reserves carried forward.

The items above, together with expenses associated with underwriting ac-
tivities and commission, are combined in the revenue account to produce
the underwriting result as follows:

earned premium

− incurred claims

− expenses and commission.

13.2 The profit and loss account

The profit and loss account is a continuation of the revenue account, reflect-
ing those revenues and expenses not directly attributable to the underwriting
activities.

A typical profit and loss account of a non-life insurance company includes
the following items:

+ balance of profit and loss account brought forward

+ investment income

+ capital gains

− overhead expenses

+ exceptional items
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+ underwriting profit

= overall result

− tax liability

− dividend payments

= balance of profit and loss account carried forward

13.3 The balance sheet

The balance sheet gives a view of the financial position of the company.
It is divided into two parts describing different aspects of the company’s
business:

• assets;

• liabilities and equity.

For a non-life insurance company, these parts are likely to include the fol-
lowing components.

Assets

• Investments

– Equity

– Fixed interest

– Property

• Current assets

– Debtors

– Cash

Total assets

Liabilities and equity

• Liabilities

– Technical reserves

∗ RBNS carried forward

∗ IBNR carried forward

∗ UPR carried forward
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∗ DAC carried forward

∗ URR carried forward

– Other contingency reserves carried forward

– Creditors

– Long-term liabilities (loans, etc)

• Equity

– Share capital

– Retained earnings

Total liabilities + Equity

13.4 Key analytical statistics

Accounts can only provide summary information. They are particularly de-
ficient in indicating the inherent uncertainty in both the amount and timing
of asset receipts and liability outgo. This is a fundamental issue in insurance
and to improve the presentation of information (e.g. for a supervisory per-
spective), certain financial characteristics of different insurers can be com-
pared, and the performance of individual companies can be tracked through
time. This includes characteristics related to premium growth, changes in
the asset portfolio or in the solvency, and more:

• premium growth statistics, e.g.

premium written in year t

premium written in year t− 1

or

premium written in year t− premium written in year t− 1

premium written in year t− 1
;

• net income growth

net income in year t− net income in year t− 1

net income in year t− 1
;

• reinsurance related ratios

net written premium

gross written premium
;

net paid claims

gross paid claims
;
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net incurred claims

gross incurred claims
;

reinsurance debtors

reinsurance recoveries due on paid claims
;

• the loss ratio
incurred claims

earned premiums
;

• the expense ratio

expenses and commission

written premiums
;

• the operating ratio

loss ratio + expense ratio;

• the investment ratio
investment returns

written premiums
;

• solvency ratio
free assets

net written premiums
.

We also mention some general ratios that are widely used in accounting
framework (and are not limited to insurance business only):

• return on assets (ROA)
net income

total assets
.

• return on equity (ROE)

net income

shareholder’s equity
;

• current ratio
current assets

current liabilities
.
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13.5 A note on terminology. Premiums

Throughout this section (and the whole course) the term ”premium” is used
in different contexts having slightly different meaning. In the following we
briefly recall the used terms for premiums in different situations.

1. (Under)written premium:

• the premium charged (or to be charged) for a policy or group of
policies;

• fixed (usually) while signing the contract;

• related date – starting date of the contract.

2. Earned premium

• the premium recognized as revenue for the period in question;

• requires implicit or explicit statement of the corresponding block
of time.

3. Accounted premium

• takes into account sent out invoices;

• describes the premium volume of a portfolio without specifying
the period when the contracts are signed;

• related date – date when the invoice is issued.

4. Received premium

• actual payments received on insurance company’s bank account;

• related to cash-flow;

• related date – payment date.

In case of reinsurance, we may also categorize premiums as follows.

• Direct premiums – premiums arising from policies covering the cus-
tomer’s risks, other than risks from the customer’s insurance/reinsurance
or retrocession policies when the customer is an insurer (or reinsurer).

• Reinsurance premiums – premiums arising from policies covering
risks from direct insurance policies;

• Retrocession premiums – premiums arising from policies covering
risks from reinsurance policies.
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14 Solvency II

14.1 Background. Goals. Requirements

In general terms, solvency is the state of having more assets than liabilities.
To be solvent means that one is in the state of solvency.

Currently (as of 2013), the regulations in insurance market are specified in
the Solvency I directive, which was introduced already in 1973. The economy
and risk management systems are changed a lot during last years, thus the
Solvency I regime is outdated in many ways (it is static, volume-based, has
so-called accounting view and does not take risk behaviour and economic
factors into account). Therefore, in order to regulate the insurance market
more effectively and to enhance the customer protection, a new dynamic
regulation Solvency II is proposed and developed. Solvency II has so-called
economic view, takes into account the current risk management strategies
and allows much more dynamic capital allocation. Also, since the require-
ments specified in Solvency I proved to be not sufficient in many cases,
several EU member states have already reformed their insurance regula-
tions. Thus, the Solvency II regime also serves as unification of the solvency
regulatory system. The Solvency II regime is expected to go live in January
1, 2014.

The specifications for Solvency II regime are obtained through a series of
quantitative impact studies (QIS). Each following study refines the results of
the previous study and provides more detailed and specific documentation
required to adapt the Solvency II regime. In total, five quantitative impact
studies were conducted, shortly referred to as QIS1 – QIS5.

The Solvency II framework is divided into three main areas (called pillars,
similarly to the known banking supervisory system, Basel II)

• Pillar I (financial pillar): quantitative requirements;

• Pillar II (governance pillar): qualitative requirements – the supervisory
review process;

• Pillar III (market conduct): statutory and market reporting.

The first pillar includes the calculation of the capital requirements (either
according to standard formula or internal model, more details in next sub-
sections). It also includes rules on provisioning and eligible capital.

The second pillar focuses on the supervisors and their review process (e.g., a
company’s internal control and risk management and the approval of using
internal models in Pillar I).
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The third pillar includes reporting to both the supervisor and the market.
Reporting to market is required to promote market discipline and trans-
parency.

The International Association of Insurance Supervisors (IAIS) gives 15 re-
quirements for a solvency regime in relation to regulatory capital require-
ments:

1. A total balance sheet approach should be used in the assessment of
solvency to recognize the interdependence between assets, liabilities,
regulatory capital requirements and capital resources and to ensure
that risks are appropriately recognized.

2. Regulatory capital requirements should be established at a level such
that the amount of capital that an insurer is required to hold should
be sufficient to ensure that, in adversity, an insurer’s obligations to
policyholders will continue to be met as they fall due.

3. The solvency regime should include a range of solvency control levels
which trigger different degrees of intervention by the supervisor with
and appropriate degree of urgency.

4. The solvency regime should ensure coherence between the solvency
control levels established and the associated corrective action that may
be at the disposal of the insurer and/or the supervisor. Corrective
action may include options to reduce the risks being taken by the
insurer as well as to raise more capital.

5. The regulatory capital requirements in a solvency regime should es-
tablish a solvency control level which defines the level above which the
supervisor would not require action to increase the capital resources
held or reduce the risks undertaken by the insurer. This is referred
to as the solvency capital requirement (SCR) or prescribed capital re-
quirement (PCR).

6. The SCR should be defined such that assets will exceed technical
provisions and other liabilities with a specified level of safety over a
defined time horizon.

7. The regulatory capital requirements in a solvency regime should estab-
lish a solvency control level which defines the supervisory intervention
point at which the supervisor would invoke its strongest actions, if fur-
ther capital is not made available. This is referred to as the minimum
capital requirement (MCR).

8. The solvency regime should establish a minimum bound on the MCR
below which no insurer is regarded to be viable to operate effectively.
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9. The solvency regime should be open and transparent as to the reg-
ulatory capital requirements that apply. It should be explicit about
the objectives of the regulatory capital requirements and the bases on
which they are determined.

10. In determining regulatory capital requirements, the solvency regime
should allow a set of standardized and, if appropriate, other approved
more tailored approaches such as the use of (partial and full) internal
models.

11. The solvency regime should be explicit as to where risks are addressed,
whether solely in technical provisions, solely in regulatory capital re-
quirements or if split between the two, the extent to which the risks
are addressed in each. The regime should be explicit as to how risks
and their aggregation are reflected in regulatory capital requirements.

12. The supervisor should set out appropriate target criteria for the cal-
culation of regulatory capital requirements, which should underlie the
calibration of a standardized approach.

13. Where the supervisory regime allows the use of approved more tailored
approaches such as internal models for the purpose of determining reg-
ulatory capital requirements, the target criteria should also be used by
those approaches for that purpose to ensure broad consistency among
all insurers within the regime.

14. The solvency regime should be designed so that any variations to the
regulatory capital requirement imposed by the supervisor are made
within a transparent framework, are proportionate according to the
target criteria and are only expected to be required in limited circum-
stances.

15. The solvency regime should be supported by appropriate public dis-
closure and additional confidential reporting to the supervisor.

To model the solvency capital requirement (SCR), the International Actu-
arial Association (IAA) has proposed five main risk categories:

1. insurance risk (or underwriting risk);

2. credit risk;

3. market risk;

4. operational risk;

5. liquidity risk.
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The underwriting risk refers to the risk related to the businesses that will
be written during the following year. In general, it is considered net of rein-
surance, as the reinsurance risk will be dealt with in the default credit risk
category. The underwriting process risk will thus be highly correlated with
the credit risk.

Credit risk is the risk of not receiving promised payments (e.g., in company’s
investment portfolio, or reinsurance payments).

Market risk is introduced into an insurer’s operations through variations in
financial markets that cause changes in asset values, products, and portfolio
valuation. Market risks relate to the volatility of the market values of assets
and liabilities due to future changes in asset prices.

Operational risk is the risk of loss resulting from inadequate or failed internal
processes, people, systems, or from external events. The most common risks
that one may classify under operational risk are the failure in control and
management, the failure in IT processes, human errors, fraud, jurisdictional
and legal risks.

Liquidity risk is the risk that an insurer, although solvent, has insufficient
liquid assets to meet his obligations (e.g. claim payments) when they fall
due.

In the following we mostly concentrate on the problems related to the un-
derwriting risk, keeping in mind that that the whole picture is more complex
and includes other risk categories.

Generic risks related to underwriting that apply to most lines of business
are:

• underwriting process risk – risk from exposure to financial losses re-
lated to the selection and approval of risks to be insured;

• pricing risk – risk that the prices charged by the company for insurance
contracts will be ultimately inadequate;

• product design risk – risk that the company faces risk exposure under
its insurance contracts that was unanticipated in the design and pricing
of the insurance contract;

• claims risk (for each peril) – risk that many more claims occur than ex-
pected, or that some claims that occur are much larger than expected,
resulting in unexpected losses;

• economic environment risk – risk that social conditions will change in
a manner that has an adverse effect on the company;
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• net retention risk – risk that higher retention of insurance loss ex-
posures results in losses due to catastrophic or concentrated claims
experience;

• policyholder behaviour risk – risk that the insurance company’s poli-
cyholders will act in ways that are unanticipated and have an adverse
effect on the company;

• reserving risk – risk that the provisions held in the insurer’s financial
statements for its policyholder obligations will prove to be inadequate.

In constructing solvency capital requirements (SCR), the following funda-
mental issues need to be discussed:

• valuation of assets and liabilities – the economic total balance sheet
approach, i.e. assets and liabilities should be valued in a market-
consistent way and their interactions should be a part of the solvency
assessment;

• risk margins for uncertainty in assets and liabilities;

• risk measures for the volatility in assets and liabilities;

• modelling (risk categories, mitigation, diversification, etc).

14.2 Capital requirements in Solvency I

Before going to actual calculation in Solvency II, let us recall how the re-
quired capital is found under Solvency I regime.

Recall that in solvency I regime there are two important characteristics that
specify when the regulatory authorities should take action:

• required (adequate) solvency margin;

• minimum guarantee fund.

In case the solvency margin of an insurance company falls below the required
margin, supervisory organizations intervene and require certain actions to
restore the adequate solvency margin. The solvency margin should never fall
below a minimum guarantee fund, which is the absolute minimum amount
of capital required.

The current required solvency margin for non-life insurance companies in
EU is defined as the maximum of claim based and premium based indexes:

Umin = max(P ∗, S∗).
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The claims and premium indices are defined as:

P ∗ =

{
0.18 · P ·RRe, for P ≤ 50 · 106,

[0.18 · 50 · 106 + 0.16 · (P − 50 · 106)] ·RRe, for P > 50 · 106

and

S∗ =

{
0.26 · S ·RRe, for S ≤ 35 · 106,

[0.26 · 35 · 106 + 0.23 · (S − 35 · 106)] ·RRe, for S > 35 · 106,

where P is the annual premium written, S is the average annual amount of
claims and RRe is the reinsurance ratio.

In other words, the calculation of required solvency margin is simple and
straightforward, it is calculated as maximum of:

• 18% of premium written up to e 50m plus 16% of premiums above
e 50m (adjusted by reinsurance);

• 26% of claims up to e 35m plus 23% of claims above e 35m (adjusted
by reinsurance).

The minimum guarantee fund (MGF) is defined as

Umgf = max(v,
1

3
Umin),

where the margin v is between e 2m and e 3m, depending on the risk class.

Remark 14.1. All the limits in these calculations (e 50m, e 35m, e 2m
and e 3m) are revised from time to time and are a subject to change.

14.3 Solvency II standard formula for non-life insurance

The calculation of capital requirements in Solvency II framework can be
done in two ways:

• standard formula – a ready to use system with predetermined correla-
tions between risks classes, volatilities, etc; this approach is especially
convenient in the transition phase and also more suitable for smaller
and medium companies;

• internal model – each insurance company can also develop its own
model which will reflect better its individual risk profile.
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14.3.1 Calculation of the solvency capital requirement SCR

Although with several predetermined relations and margins, the Solvency II
standard formula framework is still very modular and dynamic (especially
compared to Solvency I). The general idea of finding SCR consists of finding
estimates for SCR in all modules at lower level of aggregation and then
aggregating the results in order to get a higher level estimate. At the very
top level, an insurance company is divided into parts depending on the
company’s profile (non-life, life, health, etc) and the aggregation rules are
specified. In the next level, each part of the company is also divided into
classes or modules of risks, then the solvency requirements are found for
these classes and aggregated in order to obtain a requirement corresponding
to higher level. Similar approach is applied in all levels of aggregation.

The SCR should be determined as

SCR = BSCR+ CROR −Adj,

where BSCR is the basic SCR, CROR is the capital charge for operational
risk, and Adj is an adjustment for the risk-absorbing effect of future profit
sharing and deferred taxes.

BSCR is SCR before any adjustments, combining capital requirements for
five major risk categories:

• CRNL – the non-life underwriting risk module;

• CRLR – the life underwriting risk module;

• CRHR – the health underwriting risk module;

• CRCR – the credit risk module;

• CRIAR – the intangible assets risk module (intangible asset is an asset,
other than a financial asset, that lacks physical substance).

BSCR is found as

BSCR = CRIAR +

√∑
i,j

ρij · CRi · CRj ,

where the i and j range over the values given in the list of categories above
(NL, LR, HR, CR).

The dependence structure between these risks is assumed to be fixed and
known, the values for ρij are given in the standard formula documentation.
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Remark 14.2. In many cases linear correlation is not an appropriate choice
to describe the dependency (consider, e.g., skewed distributions, tail depen-
dency). In such cases, the correlation parameters should be chosen in such
a way as to achieve the best approximation of the value at risk (V aR) at
0.995 for the aggregated capital requirement1. In other words, there is a 1 in
200 chance that the insurer’s surplus falls below the margin, so the capital
level is intended to be such that the insurer could withstand a 1 in 200 years
shock with sufficient assets remaining.

Let us now focus on the non-life insurance module and corresponding capital
requirement CRNL.

In the standard formula, there are two risk (sub)modules under the non-life
underwriting risk module

• premium and reserve risk submodule;

• catastrophe risk (CAT risk) submodule.

Let the corresponding capital requirements be denoted as CRNL,RP for pre-
mium and reserve risk and CRNL,CAT .

It is also assumed that the dependence between these risks ρRP,CAT is 0.25.
Conceptually, premium and reserve risks and the catastrophe risk should be
independent, but a positive correlation factor may be appropriate in some
situations, e.g., if underlying distributions are skewed and truncated. Then

Now, the capital requirement for the combined premium and reserve risks
is determined as

CRNL,RP = ρ0.995(σRP ) · VRP ,

where VRP is a volume measure (or, more precisely, a combination of volume
measures from reserve and premium volumes), σRP is combined standard
deviation, and ρ is a charge function, defined by

ρ1−α(σ) =
exp

(
Φ−1(1− α) ·

√
ln(1 + σ2)

)
√

1 + σ2
− 1.

In other words, the charge function ρ (with α = 0.005) is chosen such that,
assuming a lognormal distribution of the underlying risk, a capital charge

1Value at risk (V aR) for random variable X (with continuous and strictly increasing
distribution function F ) at given confidence level α ∈ (0, 1) is defined as

V aR(α) = F−1(α).
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consistent with the value at risk at 0.995 confidence is produced. Using the
lognormal assumption, the charge function is approximately ρ0.995(σ) ≈ 3σ.

The volume measures and standard deviations are calculated for each indi-
vidual line of business (LoB) and then aggregated. For each LoB k let us
denote

• VR,k – the volume measure for the reserve risk,

• VP,k – the volume measure for the premium risk,

• VRP,k – the volume measure for the premium and reserve risk,

• σR,k – the volatility measure (standard deviation) for the reserve risk,

• σP,k – the volatility measure (standard deviation) for the premium
risk,

• σRP,k – the volatility measure (standard deviation) for the premium
and reserve risk.

Then, VR,k is defined as the best estimate for claims outstanding in LoB k.
The volume measure for premium risk VR,k is defined as

VP,k = max{Pk(1), P ′k(1), Pk(0)}+Mk,

where Pk(1) is the estimate of the net written premium in the forthcoming
year, P ′k(1) is the estimate of the net earned premium in the forthcoming
year, Pk(0) is the net written premium during the previous year, and Mk is
the expected present value of net claims and expense payments that relate to
claims incurred after the following year and are covered by existing contracts
(multiyear contracts).

The volume measure for the premium and reserve risk within each LoB k is
simply calculated as the sum of components’ volume measures:

VRP,k = VR,k + VP,k

and the volatility for the reserve and premium risks for each LoB k is cal-
culated by

σ2
RP,k =

(VR,k · σR,k)2 + (VP,k · σP,k)2 + 2αVR,k · σR,k · VP,k · σP,k
V 2
RP,k

,

where α is a dependence factor (in QIS4, α is set to 0.5).

All the required values for standard deviations σR,k and σP,k are specified
in Solvency II documentation (for 12 general LoBs).
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Now, the overall volume measure is just a sum of volume measures over all
LoBs

VRP =
∑
k

VRP,k

and the overall volatility measure is defined by

σ2
RP =

1

V 2
RP

∑
j,k

ρj,k · Vj · Vk · σj · σk,

where ρj,k denotes the correlation between LoBs j and k and the needed
values for all combinations of j and k are again specified in Solvency II
documentation.

Lastly, without going into details, we also mention that there are two ap-
proaches to calculation of required capital in CAT-risk submodule:

• standardized scenario approach – detailed and comprehensive model;

• alternative (factor-based) approach – simplified model, used either in
development phase, or in cases that are very clearly specified.

14.3.2 Calculation of the minimum capital requirement MCR

The MCR should ensure a minimum level below the amount of financial
resources of an insurer should not fall. In case the resources fall below MCR,
the most serious supervisory intervention is triggered.

The MCR is calculated using the following two-step algorithm:

1. Calculate MCRL by

MCRL = MCRNL,NLt +MCRNL,Lt +MCRL,Lt +MCRL,NLt,

where

• MCRNL,NLt denotes the MCR for non-life activities practiced
on non-life technical basis,

• MCRNL,NLt denotes the MCR for non-life activities practiced
on life technical basis,

• MCRL,Lt denotes the MCR for life activities practiced on life
technical basis, and

• MCRL,NLt denotes the MCR for supplementary obligations for
life activities practiced on non-life technical basis.
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All the components are calculated using the corresponding technical
provisions and certain weight parameters provided by Solvency II doc-
umentation.

2. Squeeze the MCRL into a corridor if needed: MCRL should fit be-
tween MCRFloor = 0.25 · SCR and MCRCap = 0.45 · SCR.

Also, MCR must always be higher than an absolute floor AMCR:

MCR = max{MCRL, AMCR},

where the values for AMCR depend on company’s profile and are specified
in the Solvency II documentation.
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