
Before you start

1) Remember that everything is CASE SENSITIVE in R. This means that caps make a difference.

2) Also, functions in R mostly work ELEMENTWISE by default! This means that a lot of
operations can be accomplished with a single line of code.

3) Several functions can be used in the same line of code (i.e. output of one function is used as
(perhaps partial) input for another) and if desired, lines of code can be “joined” by putting a
semicolon between them.

4) It is not necessary to leave any spaces anywhere, this is just for display purposes.

5) Character # can be used for commenting the code (i.e. everything following this symbol on a line
is ignored by R). Make sure that you do COMMENT YOUR CODE. It is invaluable when you are
returning to use your code later on.

Getting Started

variable <- value setting a value for variable, often = is used instead
a <- 3
b = 9

?function documentation of a function
?sum

apropos("string") lists all the functions that contain string in its name
apropos("sum")

install.packages("packagename") installs the package named packagename into the users
computer
install.packages("gsl")

library("packagename") loads that package
library(help="packagename") opens an overview of the package and the functions in it

Basic Operators
+ - * / addition, substraction, multiplication, division,
** ^ raising to a power (two variants),
%/% %% integer division, remainder
a * b #27
b ** (1 / 2) #3
b ** 1 / 2 #4.5
a %% b #3

Vectors

c(...) combines arguments into a vector
c(1, 2) #1 2
c(2 * c(a, b), a) #6 18 3

from : to produces a vector of integers with increment (plus or minus) one
a : b #3 4 5 6 7 8 9
a : -1 #3 2 1 0 -1
1 : 2 + 3 #4 5

seq(from, to, by) identical but by specifies the increment; instead of by argument length.out can be
used to specify the desired length of the sequence
seq(a, -1, -2) #3 1 -1
seq(a, -1, -3) #3 0
seq(a, -1, length.out=5) #3 2 1 0 -1

rep(x, times) replicate argument x times times; each can be used to replicate each element of x each
times
rep(c(2, 5), times=2) #2 5 2 5

1/4 Simulation Methods in Financial Mathematics

rep(c(2, 5), each=4) #2 2 2 2 5 5 5 5
Math & Stat

length(x) number of elements in argument x
abs(x) absolute value of elements of argument x
max(...) maximal element of all elements in the arguments

max(a, 6) #6
max(c(a, b), 6) #9

min(...) minimal element of all elements in the arguments
sum(...) sum of all elements in the arguments
prod(...) product of all elements in the arguments
log(x) natural logarithm of elements of argument x; argument base can be used to set a different base

log(9, base=3) #2
exp(x) exponent of elements of argument x
mean(x) arithmetic mean of elements of argument x

mean(c(a, b)) #6
sd(x) standard deviation of elements of argument x

var(c(a, b)) #18
var(x) variance of argument x
cor(x, y) correlation between vectors x and y
cov(x, y) covariance between vectors x and y
round(x, digits) round the elements of x to the number of decimal places specified by digits
pmax(...) positionwise maxima

pmax(c(4, 5), c(a, b)) #4 9
pmin(...) positionwise minima
cumsum(x) cumulative sum of the elements of argument x

cumsum(c(a, b, a)) #4 13 17
cumprod(x) cumulative product of the elements of argument x
cummax(x) cumulative maximum of the elements of argument x

cummax(c(a, b, a)) #4 9 9
cummin(x) cumulative minimum of the elements of argument x

Matrices

matrix(x, nrow, ncol) creating a matrix with nrow rows and ncol columns from elements of x by
first filling the first column (top to bottom), then the second, etc
matrix(c(2, 3), nrow=2, ncol=2) #2 2

#3 3
diag(x) forms a diagonal matrix with elements of x on the main diagonal; argument nrow can still be

used
%*% binary operator for matrix multiplication
t(x) transposes argument x
solve(x) inverse of the square matrix x
dim(x) dimensions of argument x i.e. number of rows and columns for a matrix; returns NULL for vectors

dim(diag(2, nrow=2)) #2 2
rowSums(x) sum the elements of x by rows
colSums(x) sum the elements of x by columns
cbind(...) combine arguments side-by-side

cbind(c(2, 3), c(4, 5), c(a, b))#2 4 3
#3 5 9

rbind(...) combine arguments top to bottom
rbind(c(2, 3), c(4, 5)) #2 3

#4 5
apply(X,MARGIN,FUN) apply function FUN to the object X by rows if MARGIN=1 or by columns if

2/4 Simulation Methods in Financial Mathematics

MARGIN=2
Logicals

== >= > < <= != %in% binary operators equal to, greater than or equal to, greater than, less than, less
than or equal to, not equal to, and is contained in producing logical objects consisting of TRUE
and/or FALSE
a > b #FALSE
a + 6 == b #TRUE
a != b #TRUE
c(a, 2) %in% c(2, b, 1) #FALSE TRUE

! unary operator for negating the logical object
!c(FALSE, TRUE) #TRUE FALSE

& | binary operators AND and OR for combining logical objects
a == 3 | b == 3 #TRUE

Probability distributions

rnorm(n) random generation of n numbers from a standard normal (Gaussian) distribution; arguments
mean and sd can be used to specify distribution parameters
set.seed(16)
rnorm(2) #1.147829 -0.468412
rnorm(2, mean=3) #4.096216 1.555771

dnorm(x) value of the probability density function (pdf) of a standard normal distribution at elements of
x; arguments mean and sd can be used to specify distribution parameters

pnorm(q) value of the cumulative distribution function (cdf) of a standard normal distribution at
elements of q; arguments mean and sd can be used to specify distribution parameters
pnorm(0) #0.5

qnorm(p) value of the quantile function i.e. inverse cdf of a standard normal distribution at elements of
q; arguments mean and sd can be used to specify distribution parameters
qnorm(0.95) #1.644854

Similar functions exist for many other distributions e.g. runif generates uniformly distributed random
numbers (from the unit interval) and pexp is the cdf of exponentially distributed random numbers; arguments
for specifying the parameters have different names

Data extraction

x = 2 : 10
y = 9 : 1
z = c(5, 2, 3)

y[3] #7
z[-2] #5 3
y[1 : 3] #9 8 7
y[-(1 : 7)] #2 1
x[c(2, 4, 6)] #3 5 7
z[c(TRUE, FALSE, TRUE)] #5 3
x[y > 4] #2 3 4 5 6
x[x > 3 & x < 5] #4

element at a specific position
all elements except one at a specific position
elements at specific positions
all elements except those at specific positions
elements at specific positions
elements at positions TRUE
elements at positions TRUE
elements at positions TRUE

m = rbind(x, y)

m[2, 3] #7
m[1,] #2 3 4 5 6 7 8 9 10
m[, 2] #3 8
m[-1, 1] #9

element at a specific position
specified row
specified column
specified sub-matrix

3/4 Simulation Methods in Financial Mathematics

m[1, c(1, 3)] #2 4 specified sub-matrix

Plotting

plot(x, y) plot the points coordinates of which are defined by the vectors x and y elementwise;
argument type can be used to change the plotting style e.g. "p" for points, "l" for lines, "o" for
overplotted points and lines
plot(x, y, type="l")

matplot(x, y) plot the series of points coordinates of which are defined by the matrices x and y
elementwise with series in columns; if only one matrix is given then this is assumed to be y; type
can be used as before
matplot(m, type="l")
x1 = (1 : 200) / 100; y1 = matrix(0, length(x1), 2)
y1[, 1] = cos(x); y1[, 2] = sin(x); matplot(x1, y1, type="l")

Programming

function definition; functions are usually named and not used “on the spot”; giving default values to
arguments allows execution of a function without specifying values for all the arguments; values can be
arbitrary (e.g. function names); when the function body consists of a single expression then the curly braces
can be omitted

mltpl_tbl = function(x=1:9, y=1:9){x %*% t(y)}
mltpl_tbl(1:2, 1:2) #1 2

 #2 4
univ_func = function(obj, f) f(obj)

if(condition){expressions} expressions are executed only if condition is TRUE
if(runif(1) > runif(1)) print("first was bigger")

if(condition){expressions1}else{expressions2} if condition is TRUE then expressions1
are executed, if not then expressions2
if(runif(1) > runif(1)){

print("first was bigger")
}else{
print("second was bigger")

}
for(variable in sequence){expressions} a cycle where a variable takes the value of the first

element of the sequence and expressions are then executed, then the variable takes the value of the
second element of the sequence and expressions are again executed; this continues until the
sequence is exhausted or expressions cause the cycle to end prematurely
N = 1000
n = 500
meanv = rep(0, N)
for(i in 1 : N){

meanv[i] = mean(runif(n))
}
var(meanv) #should be approximately 1/(12*n)

while(condition){expressions} a cycle where expressions are executed if the condition is
TRUE initially; then the condition is re-checked and if it is still true then expressions are executed
again; this continues until the condition is FALSE or expressions cause the cycle to end prematurely
init = 1:10
summand = init
while(max(summand) > 0.00001){

summand = summand / 2
init=init+summand

}

4/4 Simulation Methods in Financial Mathematics

