
Simulation Methods in Financial Mathematics

Computer Lab 1

Goals of the lab:

• To get familiar with R and RStudio

• To learn to use the Monte-Carlo method and estimate its error

• To learn to calculate integrals using simulation methods

Monte-Carlo method or simulation method is a computational algorithm for estimating the mean or some other
characteristic of a random variable. In this course we reduce problems in �nance to estimating the mean of an
appropriate random variable. When estimating the mean value, MC method is based on performing independent
trials and averaging the obtained results. That is, if we are interested in EY for some random variable Y , we
generate n independent values Y1, Y2, . . . , Yn from the distribution of Y and estimate

EY ≈ Hn =
1

n

n∑
i=1

Yi.

According to the Law of Large Numbers this average converges to the expected value of Y as the number of
trials goes to in�nity. Actually, there are di�erent versions of this law, corresponding to di�erent modes of
convergence (do you know in what sense the convergence takes place?).

From the practical point of view it is not enough to know that we get the correct result when the number of
trials goes to in�nity. Instead, we need to know how large can the error of our estimate Hn be after a �nite
number of trials. Since the number of trials is usually very large when MC method is used (often in millions),
an estimate of the error of Hn can be obtained by using the Central Limit Theorem: for large enough n we
have that the distribution of the error of Hn (i.e. |Hn −EY |) is very close to the normal distribution N(0, σY√

n
)

and hence the inequality

|Hn − EY | ≤ ε = −Φ−1(α/2)σY√
n

holds with approximate probability 1 − α (prove it!). Here Φ denotes the cumulative distribution function
of the standard normal distribution. The inverse of a cumulative distribution function is called the quantile

function (also percent point function) of that distribution, so actually the quantile function of the standard
normal distribution is used in the error estimate. The standard deviation σY of the random variable Y is also
estimated by using Y1, . . . , Yn.

In most cases relevant Y can be expressed as Y = g(X), where X is a random variable (or random vector) with
known distribution and g is some given function. In this case we generate values of Y by applying the function
g to the generated values of X.

Tasks:

1. We start using the MC method. Let Y = X2, where X has the standard uniform distribution. Using the
sample of size n = 1000 �nd an estimate of EY , calculate the error estimate for α = 0.1 and the actual
error.

2. Let us write our �rst useful function for applying MC method in many di�erent situations. Namely, de�ne
the function MC1 with four arguments: the name of a function g, the name of a function that for a given
n generates n random variables X, the number n of random variables to be generated, and the value of α
used in computing the error estimate. The function should return a vector of two numbers; the estimate
of E[g(X)] and the error estimate. Additionally, de�ne the function f(x) = x2 and compute the value
MC1(f, runif, 100, 0.1). Is the result correct?

3. Practice using Moodle VPL exercise by submitting your function to the VPL_exercise_1 in Moodle. Try
to submit originally a code with some mistakes and then a correct one. You get warnings about security
risks and should allow your computer to connect to the exercise server.

4. Use the functionMC1 to repeat the �rst task 100 times and produce three vectors: average, error_estimate,
actual_error. How many times did the actual error exceed the error estimate?



5. When using the MC method, we usually do not know beforehand how large a sample should be generated
in order to get an answer that is accurate enough for our purposes. Thus simulation continues until
the required precision is achieved (or in some cases until we cannot wait any longer). In order to do
that we �rst set the number of random variables to be generated at one go (denote it by n0) and after
generating this number of values we estimate the error. If the error estimate is not small enough we
generate additional n0 values and estimate the error again by using all 2n0 generated values. If the error
estimate is still too large, we generate again additional n0 values and again estimate the error by using all
generated values and so on. Since the number of generations needed for achieving the desired accuracy
can be very large, we do not store the previously generated random variables (to avoid memory problems),
and thus we cannot use the R functions to calculate the mean and standard deviation of all generated
values. Instead we store only the sum, the sum of squares and the total number of values of Y generated
so far. The standard deviation can then be estimated as

σY ≈
√
|sum_of_squares_of_y − (sum_of_y)2/n|

n− 1
.

Write a function which takes as the input a function g, a function gen which generates values from the
distribution of X, allowed error ε and α (the probability of exceeding the allowed error) and returns the
estimate (with given precision with probability 1− α) of the expected value of Y = g(X).

6. De�nite integral ∫ b

a

g(x) dx

can be viewed as the expected value of a function by multiplying and dividing the integrand by a suitable
probability density function: ∫ b

a

g(x) dx =

∫ b

a

g(x)

fX(x)
fX(x) ds = E(g̃(X)),

where X is a random variable with the probability density function fX such that fX(x) > 0, x ∈ [a, b]
and

g̃(x) =
g(x)

fX(x)
I[a,b](x).

Here I[a,b](x) is the indicator function of the set [a, b] having value 1 when x belongs to that interval and 0
otherwise and it is not needed if the density fX or the function g is constantly zero outside of the interval
[a, b]. So there are many ways to compute by MC the same de�nite integral, di�erent choices of the
random variable X give di�erent methods with di�erent convergence properties. As the error estimate of
MC method depends on the variance of the random variable Y = g̃(X), a good choice of the distribution
for X should be such that in the region where fX(x) is large, the function g̃(x) is close to a constant.

Use the Monte-Carlo method to calculate approximately with the precision ε = 0.02 (using α = 0.05) the
value of the integral ∫ ∞

1

5e−2x

x2 + 1
dx.

Use the exponential distribution Exp(λ) with rate parameter λ = 2 for converting the integral to the
problem of computing the expected value. Hint: the indicator function I[a,b](x) can be written in R as
(x >= a) ∗ (x <= b).

7. Homework 1 (Deadline 13.09.2020 ) is about computing integrals with MC method. Detailed information
is given in corresponding VPL exercise in Moodle.


