
Simulation Methods in Financial Mathematics

Computer Lab 12

Goals of the lab:

• To learn the generation of Halton and Sobol sequences for quasi-Monte Carlo simulation

• To learn to compute the price of an European option by using quasi-Monte Carlo method

The speed of convergence of Monte-Carlo methods for computing expected values is always c√
n
,

where n is the number of random variables generated. It is possible to reduce the constant c, but
for Monte-Carlo methods the convergence speed with respect to n is always the same. It turns
out that if we replace the random numbers in a Monte-Carlo method by specially constructed

(non-random) values, it is possible to improve the convergence rate to C log(n)d

n , where d is the
dimension of the points. Since log(n) increases very slowly as n increases, the gain in accuracy is
almost proportional to the number of values generated.

The basis for this improvement are so called low discrepancy sequences which are sequences in
the m-dimensional unit cube [0, 1]m which for every value of n cover the cube in some sense as
well as possible. More precisely, a sequence of d-dimensional points x1, x2, . . . is called a low
discrepancy sequence if there exists a constant c such that for every n and every box B of the
form [a1, b1]× [a2, b2]× . . .× [ad, bd], where 0 ≤ ai < bi ≤ 1, we have∣∣∣∣ |{i : i ≤ n, xi ∈ B}|

n
− V ol(B)

∣∣∣∣ ≤ c log(n)d

n
.

Here the absolute value of a set denotes the number of elements in the set. In words, this inequality
tells us that the proportion of the points x1, . . . , xn that fall into a given box B is quite close to
the volume of the box for every box, so the sequence covers the unit cube well. It turns out
that for such sequences (under some additional technical assumptions about the function f , see
Koskma-Hlawka inequality) we have∣∣∣∣∣E f(X)− 1

n

n∑
i=1

f(xi)

∣∣∣∣∣ ≤ Cf
log(n)d

n
,

X is a d-dimensional vector of independent uniformly distributed random variables. As we'll see,
the condition that X has to be a uniformly distributed random vector, is not a problem - if we
have a Monte Carlo method that uses random variables from some other distribution, we can use
the idea of applying the inverse cumulative distribution function to change it so that uniformly
distributed random variables are used.

One (the simplest possible) class of such sequences is so called Halton sequences.

The idea of Halton sequences is as follows. We can represent a number, say k, in a number system
that has base b where b ≥ 2, in the form

k =

∞∑
i=0

αi(k)bi, αi(k) ∈ {0, 1, . . . , b− 1}.

Denote

ψb(k) =

∞∑
i=0

αi(k)

bi+1
.

Then it turns out that the sequence ψb(0), ψb(1), . . . is a one-dimensional low discrepancy sequence.
When generating an m-dimensional Halton sequence, m numbers b1, b2, . . . , bm that do not have
a common factor (usually m �rst prime numbers) are chosen and point xk is de�ned as a point
with coordinates

xkj = ψbj (k), j = 1, . . . ,m.



Task 1 Install and load package randtoolbox. Installation can usually be done by the command
install.packages("randtoolbox") and loading by the command library("randtoolbox").
If you do not have administrative rights and R is not con�gured well, you still can install
packages for your own use. For this make a folder where you are going to install your own
R packages. Then you can use commands

.libPaths("your folder paths")

install.packages("randtoolbox",lib="your folder path")

to install the package. Use the function halton(n,dim) to generate 200 Halton points with
dimension 8. Visualize the placement by scatterplots that can be created with R function
pairs().

There are many di�erent low discrepancy sequences available, we'll consider Sobol sequences in
addition to Halton sequences. When low discrepancy sequence is used for computing approximately
an expected value of a random variable, the method is called Quasi Monte Carlo method.

The procedure of implementing a Quasi Monte Carlo methods is as follows:

1. Implement a Monte-Carlo method for for computing EY , where Y is the random variable
we are interested in. It can be a simple MC or a method using various variance reduction
techniques.

2. Rewrite your MC method so that it is based on generating independent uniformly distributed
random variables. This can be achieved, for example, by applying the knowledge that if FX

is the cumulative distribution function of a continuous random variable X, then the random
variable F−1X (U), where U ∼ U(0, 1) is uniformly distributed in the interval (0, 1), has the
same distribution as X. So, if our MC method uses random variables from the distribution
N(0, a), then we can generate them by

X = aΦ−1(U),

where U ∼ U(0, 1) and Φ is the cumulative distribution function of the standard normal
distribution.

3. If for generating one value of Y we use m uniformly distributed random variables, then
replace them by coordinates of a point of a m-dimensional low discrepancy sequence.

4. Compute the �nal answer using as the simple average of the largest number of values of Y
that can be generated in reasonable time.

The �nal answer is usually much more accurate than the answer obtained with a simple MC using
the same number of generated values of Y . Unfortunately there are no e�cient procedures for
estimating the error of the answer obtained by this procedure that is called Quasi Monte Carlo
method.

Task 2 Consider pricing an European put option with E = 100 at time t = 0 using the Euler's
method when r = 0.1, D = 0, T = 0.5, S(0) = 105 and σ(t, s) = 0.6− 0.5 e−0.01s. We want
to study how much the use of Halton sequence speeds up the convergence of the MC method
in the cases when m = 5 and m = 20. To do this, replace the increments of the Brownian
motion with values that are generated using a Halton sequence and �nd the errors for cases
n = 10000, 20000, 40000, 80000. For comparison, �nd the errors for regular MC method for
the same values of n. Use the knowledge that the expected value is 7, 731 when m = 5 and
it is 7, 577 when m = 20.

Task 3 Repeat the computations of Task 2 with Sobol sequences.


