
Simulation Methods in Financial Mathematics

Computer Lab 5

Goal of the lab:

• To learn to use Euler's method for systems of stochastic di�erential equations and to compute option prices with a
given accuracy when using a numerical method for generating stock prices.

The Euler's method for solving a stochastic di�erential equation (SDE) of the form

dY (t) = α(t, Y (t)) dt+ β(t, Y (t)) dB(t), Y (0) = Y0

can be presented as
Yk+1 = Yk + α(tk, Yk)(tk+1 − tk) + β(tk, Yk)Xk, k = 0, 1, . . . ,m− 1

where Xk ∼ N(0,
√
tk+1 − tk) are independent random variables and Yk are the approximate values of Y (tk). Typically

we take tk = k · Tm , which in turn means that tk+1 − tk = ∆t = T
m . More generally, the Euler's method for solving a

system of N SDE's of the form

dYi(t) = α(t, Y1(t), . . . , YN (t)) dt+ β(t, Y1(t), . . . , YN (t)) dBi(t), Yi(0) = Yi0, i = 1, . . . , N

is
Yi,k+1 = Yik + α(tk, Y1k, . . . , YNk)(tk+1 − tk) + β(tk, Y1k, . . . , YNk)Xik, i = 1, . . . , N, k = 0, 1, . . . ,m− 1,

where the vectors (X1k, . . . , XNk) are independent random vectors with the same n-dimensional normal distribution
as (B1(tk+1) − B1(tk), . . . , BN (tk+1) − BN (tk)). In the particular case when all Brownian motions are idependent and

tk = k · Tm , all values Xik are iid random variables with the distribution N(0,
√

T
m ).

We know several methods for generating stock prices and we know that for pricing options the weak convergence rate
of the method used is important. It is known that if p is continuous and has bounded �rst derivative (ie it is Lipshitz
continuous), then Euler's method and Milstein's method are weakly convergent with rate q = 1 and we also know one
method that has weak convergence rate 2 for su�ciently nice pay-o� functions. Next we consider, how this information
can be used for computing the price of and option with a given accuracy when we have to use a numerical method for
generating the stock prices.

Let V be the price of an European option with the expiration date T and pay-o� function p, then

V = E(exp(−rT )p(S(T ))),

where S(t), 0 ≤ t ≤ T follows certain stochastic di�erential equation (SDE). If the SDE can not be solved exactly, then
instead of S(T ) we use Sm, thus we use Monte-Carlo method to compute an approximate value Vm of V , where

Vm = E[e−rT p(Sm)].

Often we know the weak convergence rate of a numerical method. This means that

|V − Vm| =
C

mq
+ o(

1

mq
)

for some q > 0. Here C is a constant that does not depend on m and mq · o( 1
mq ) → 0 as m → ∞. Actually, usually a

more precise relation

V − Vm =
C1

mq
+ o(

1

mq
),

holds (and thus the previous estimate for the absolute value of the error holds with here C = |C1|) and we use that later
for estimating the coe�cient C.

Thus, if we use Sm instead of S(T ) and use Monte-Carlo method with allowed error ε at a speci�ed allowed error
probability α, then the total error of the computed number V̂m,ε is

|V − V̂m,ε| ≤ |V − Vm|+ |Vm − V̂m,ε| ≤
C

mq
+ o(

1

mq
) + ε.

The last term is the error of the Monte-Carlo method and can be chosen by us. So, in order to compute the option price
V with a given error ε, we should choose large enough m (so that the term C

mq is small enough, for example less than
ε
2 ) and then use MC method with allowed error ε = ε

2 ). There is one trouble: we do not know C. One possibility to
estimate C is as follow:

1. Choose some values for m0, ε0 for m and MC error ε. The value of m0 should not be too small, but very large
values take too much computation time; the value of the allowed error ε0 should be su�ciently small (we discuss it
in more detail in the next step). In practice we usually use m0 = 5 or m0 = 10.



2. Use MC method twice to compute V̂m0,ε0 and V̂2m0,ε0 . The value ε0 is small enough if the results di�er signi�cantly
more than by 2ε0. If we use too large value of ε0, then we overestimate the value of C and hence the �nal value of
m in the following steps and our �nal computations may take too much time.

3. Estimate the value of C. We use the inequality

|Vm0
− V2m0

| ≤ |Vm0
− V̂m0,ε0 |+ |V2m0

− V̂2m0,ε0 |+ |V̂m0,ε0 − V̂2m0,ε0 |.

If we use the more precise information about Vm and V2m and assume that the terms o( 1
mq

0
) and o( 1

(2m0)q ) are

practically zero, then it follows that

C ≤ (2m0)q

2q − 1
· (|V̂m0,ε0 − V̂2m0,ε0 |+ |Vm0

− V̂m0,ε0 |+ |V2m0
− V̂2m0,ε0 |)

≤ (2m0)q

2q − 1
· (|V̂m0,ε0 − V̂2m0,ε0 |+ 2ε0) =: C̄.

4. Choose m1 such that C̄
mq

1
≤ ε

2 and compute V̄m1,
ε
2
. The last result is an approximation of the true option price

which satis�es the desired error estimate, if the starting value of m0 was large enough so that the additional error
terms of order o( 1

mq ) are practically equal to zero. In this course we do not consider methods of determining if the
starting value of m0 was su�ciently large and take the result of the last computation to be the desired answer.

Tasks:

1. Find the value of an European call option with strike price E = 98 at time t = 0 with precision 0.1, when α = 0.05,
r = 0.05, D = 0, T = 0.5, S(0) = 100 and σ(t, s) = 0.7− 0.7 e−0.01s. To solve the problem we have to choose an m
so that the error due to m would be su�ciently small.

2. Future risk free interest rate is actually not a constant and can be considered to be a random variable. In the case
Black-Scholes model with a random interest rate the prices of European options can be computed as

Price = E[exp(−
∫ T

0

r(t) dt)p(S(T ))],

where
dS(t) = S(t)((r(t)−D) dt+ σ dB1(t))

and r(t) follows a suitable stochastic di�erential equation. We consider so called Cox-Ingersoll-Ross model

dr(t) = a(b− r(t)) dt+ σ2

√
r(t) dB2(t),

where B1(t) and B2(t) are independent Brownian motions. So we have a system of stochastic di�erential equations

for S and r. When computing the option prices we can replace the integral
∫ T

0
r(t) with the product of the mean

value or the interest rate and T . So, for computing the option price we should write a function that for a given
values of parameters D,σ, σ2, T, a, b,m and n generates n pairs of the future stock prices S(T ) and mean values
of the interest rates corresponding to the same trajectory. Compute the price of the call option described in the
previous problem in the case of stochastic interest rate by using Euler's method with m = 60 time steps for solving
the system of SDEs. Assume that r(0) = 0.02, a = 0.5, b = 0.05, σ2 = 0.2.

3. Homework (Deadline 12.10.2020). Assume that the price at t = 0 of an European option depending on two
underlying stocks with pay-o� function p is given by

Price = E[e−0.02·T p(S1(T ), S2(T ))],

where T is the exercise time (or duration of the option) and Si(T ), i = 1, 2 correspond to the solution of the system
of stochastic di�erential equations

dS1(t) = S1(t) · (0.02 dt+ 0.5 dB1(t)),

dS2(t) = S2(t) · (0.02 dt+ (0.4 + 0.2e−0.02S1(t)) dB2(t)),

satisfying the initial conditions S1(0) = 60, S2(0) = 40. Here B1 and B2 are independent Brownian motions.

Find the price of the European option with the exercise time T = 0.7 and the pay-o� function p(s1, s2) = max(s1−
50, 40− s2, 0) with total error less than 0.05 at the con�dence level α = 0.05 by using Euler-Maruyama method for
generating the stock prices.


