
INTRODUCTION

Order structures. A relation ≤ on a set X is a preorder if it is

(1) reflexive: x ≤ x,
(2) transitive: x ≤ y and y ≤ z =⇒ x ≤ z.

A preordered set X is directed downwards if

(3) for all x, y there exists z such that z ≤ x, y

and it is directed upwards if it is directed downwards for the inverse relation ≥.
A preorder is a partial order if it is

(4) antisymmetric: x ≤ y and y ≤ x =⇒ x = y .

A partially ordered set is linearly ordered if x ≤ y or y ≤ x for all x, y . A subset E ⊂ X is bounded from above if for
some b ∈ X all e ∈ E satisfy e ≤ x. An element m ∈ E is called a maximal element of E if e ∈ E and m ≤ e imply
m = e.

Zorn’s lemma. If every linearly ordered subset of a partially ordered set X is bounded from above, then X contains
a maximal element.

Vector spaces. A vector space over a field K (K is ) is a set X equipped with addition + : X × X → X and scalar
multiplication · :K×X → X operations such that (X ,+) is an Abelian group:

• associative: x + (y + z) = (x + y)+ z,
• commutative: x + y = y +x,
• there exists 0 ∈ X such that 0+x = x,
• every x ∈ X has the inverse −x ∈ X such that −x +x = 0,

and multiplication is compatible with addition:

• (λµ)x =λ(µx),
• (λ+µ)x =λx +µx,
• λ(x + y) =λx +λy ,
• 1x = x.

We considerK to be either R or C and then talk about real or complex vector spaces. Given x ∈ X , λ ∈K,Λ⊂K, and
E ,G ⊂ X , we will use the following notation: E +G = {e + g | e ∈ E , g ∈G}, x +G = {x}+G , ΛE = {λe | λ ∈Λ, e ∈ E },
and λE = {λ}E .

Vector subspaces and linear span. A subset Y ⊂ X in a vector space X is a subspace if KY +Y ⊂ Y . The minimal
subspace containing a given subset E ⊂ X is called a linear span of E and denoted spanE . The linear span of E is
just the collection of all linear combinations of elements in E :

spanE =
∞⋃

n=1

n∑
i=1
KE =

{
n∑

i=1
λi xi |λi ∈K, xi ∈ E , n ∈N

}
.

We denote 〈x〉 := span{x} for any x ∈ X .

Linear independence and basis. A subset E ⊂ X is linearly independent if for any finite set {x1, . . . , xn} ⊂ E from∑n
i=1λi xi = 0 it follows that λi = 0 for all i = 1, . . . ,n. A linearly independent set E ⊂ X such that spanE = X is called

a basis of X .

Linear maps. A map (or an operator) A : X → Y between vector spaces X and Y is linear if A(λx+y) =λA(x)+A(y)
for all (λ, x, y) ∈K× X × X . If a linear operator A is bijective, then A−1 is linear, too. A linear functional is linear
operator from X toK.

Bilinear maps. Given vector spaces X ,Y , Z over K, a map B : X × Y → Z is bilinear if the maps Bx : Y → K,
y 7→ B(x, y), and By : X →K, y 7→ B(x, y), are linear.

Set-valued maps. In general, given sets X ,Y , Z and an operation ∗ : X ×Y → Z let us denote by (∗) : 2X ×2Y → 2Z

the induced elementwise operation defined on subsets of these sets: A(∗)B = {a∗b | a ∈ A, b ∈ B}, with shorthands
a(∗)B = {a}(∗)B and A(∗)b = A(∗){b}. Sometimes, when the context is clear (as above with operations in a vector
space), we will omit the brackets. A special notation is F |A :=F (∩)A = {F ∩ A | F ∈F } for any F ⊂ 2X and A ⊂ X .
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1. TOPOLOGICAL SPACES

We switch the first two subsections, because the original first section seems to benefit from using filters as well.

1.1. Filters and nets. Let X be a set.
A system B ⊂ 2X is a prefilter or a filter base if

(1) ; 6∈B,
(2) A,B ∈B =⇒ ∃C ∈B C ⊂ A∩B (i.e., the poset (B,⊂) is directed downwards).

A system F ⊂ 2X is a filter if

(1) ; 6∈F ,
(2) A,B ∈F =⇒ A∩B ∈F ,
(3) A ⊃ B ∈F =⇒ A ∈F .

Denote A ↑ := {S ⊂ X | ∃A ∈A A ⊂ S} for any A ⊂ 2X . Condition (3) means that F ↑ =F . Clearly, a filter is exactly a
prefilter satisfying this additional condition. And a system B ⊂ 2X is a prefilter if and only if B↑ is a filter (then B

is called a filter base of B↑).
Given two prefilters B1 and B2, let us denote B1 ≤ B2 if B

↑
1 ⊂ B

↑
2 , this means that for every A ∈ B1 there is

B ∈B2 such that B ⊂ A.

Definition. A net (xγ)γ∈Γ is a mapping γ 7→ xγ from a non-empty directed set (Γ,Â) to X .

Example. Given a net (xγ)γ∈Γ ⊂ X , its tails or eventuality prefilter is B(xγ) := {{xβ :βÂα} |α ∈ Γ} and its eventuality

filter is F(xγ) :=B(xγ)
↑.

Note that given a filter F , we can always construct a net (xF )F∈F ∈F for which it is the eventuality filter. (Just
take the set of pairs {(F, x) | F ∈F , x ∈ F } directed by the first coordinate.)

Definition. Let A ⊂ X . A prefilter B on X is

• eventually in A if A ∈B↑ (i.e., F ⊂ A for some F ∈B),
• frequently in A if A∩F 6= ; for all F ∈B (in short, ; 6∈B|A).

The system F # of all sets, where F is frequent is called the grill of F .
A net is eventually or frequently in A if its eventuality filter is so.

Lemma 1.2. Let (xγ) be a net. There exists a system C ⊂P (X ) such that

(1) (xγ) is frequent in all A ∈C ,
(2) A,B ∈C =⇒ A∩B ∈C ,
(3) for any A ⊂ X either A ∈C or X \ A ∈C .

Q?: How do you translate this lemma to the language of filters?

Definition. A net (yβ)β∈∆ ⊂ X is called a subnet of (xγ)γ∈Γ ⊂ X if F(xγ) ⊂ F(yβ). In other words, taking a subnet
corresponds to taking a superfilter.

Q?: Prove that the latter definition is equivalent to

∀γ ∈ Γ ∃β ∈∆ ∀β′ ≥β ∃γ′ ≥ γ : yβ′ = xγ′ .

Lemma 1.3. Let (xγ) be a net and let A ⊂P (X ) be such a system that

(1) (xγ) is frequent in all A ∈A ,
(2) A,B ∈A =⇒ ∃C C ⊂ A∩B.

Then there is exists a subnet (yβ) of (xγ), which is eventually in A for all A ∈A .

Q?: Again, please translate this lemma to the language of filters.

Definition. A filter F on X is called an ultrafilter if it is a maximal filter (i.e., it is not contained in any different
filter G on X ). In other words, for any A ⊂ X either A ∈F or X \ A ∈F .

An ultranet is a net, whose eventuality filter is an ultrafilter.

The two lemmas above essentially amount to proving the “ultrafilter theorem” (which can also be proven di-
rectly).

Proposition 1.4 (Ultrafilter theorem). Every filter is contained in an ultrafilter.
Or, in the language of nets: every net contains a subnet, which is an ultranet.
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1.2. Basics of general topology.
Topological space. Given a set X , a system τ⊂ 2X := {E | E ⊂ X } is a topology on X if:

(T1) ;, X ∈ τ,
(T2) G ⊂ τ =⇒ ⋃

G :=⋃
G∈G G ∈ τ,

(T3) F,G ∈ τ =⇒ F ∩G ∈ τ.

A set X equipped with a topology is a topological space, the sets in τ are open sets.
Comparing topologies. Given two topologies τ1,τ2 such that τ1 ⊂ τ2, τ1 is called weaker and τ2 stronger. The
weakest topology on X is the antidiscrete topology {;, X }, and the strongest is the discrete topology 2X .
Subspace of a TS. Given a subset X0 ⊂ X in a TS X equipped with a topology τ, it becomes a TS itself if equipped
with the subspace topology τ0 = τ|X0 := {X0 ∩G |G ∈ τ}, then (X0,τ0) is a subspace of (X ,τ).
Interior points and neighbourhoods. If for some x ∈ X and E ⊂ X there is G ∈ τ such that x ∈ G ⊂ E , then x is an
interior point of E and E is a neigbourhood of x.
Neighbourhood filter and bases. The set Nx = N τ

x of all neighbourhoods of x ∈ X (for a topology τ) is a filter
(called the neighbourhood filter at x). Any its filter base Bx is called a neighbourhood base of x.

Theorem 1.1. Let X be a set and fix a non-empty system Bx ⊂ 2X for every point x ∈ X . The systems Bx , x ∈ X , are
neighbourhood bases for some topology τ on X if and only if

(B1) x ∈V for all V ∈Bx ,
(B2) A,B ∈Bx =⇒ ∃C ∈Bx C ⊂ A∩B (this together with (B1) means that Bx is a filter base),
(B3) for every V ∈ Bx there is V ′ ∈ Bx such that V ′ ⊂ V and for all y ∈ V ′ there exists W ∈ By such that W ⊂ V ′

(in short, the condition on V ′ is: V ′ ∈B
↑
y for every y ∈V ′).

Fix systems of neighbourhood bases {Bτ
x }x∈X and {Bτ′

x }x∈X for topologies τ and τ′ on X . Then clearly, τ ⊂ τ′ if
and only if N τ

x ⊂N τ′
x for all x ∈ X if and only if Bτ

x ≤Bτ′
x for all x ∈ X .

Let (X ,τ) be a TS, Y ⊂ X , and y ∈ Y . In the subspace topology τ|Y the neighbourhood filter at y is exactly
N τ

y |Y = {Y ∩U |U ∈N τ
y }, and Bτ

y |Y is its base whenever Bτ
y is a neighbourhood base at y for the topology τ.

Set closure and closed sets. A point x ∈ X is a limit point of E ⊂ X if Nx (or any its base) is frequently in E : that is,
E ∩U 6= ; for all U ∈Nx . The closure of E ⊂ X is the collection of all its limit points, denoted by E . Some properties
of the closure (prove them!)z:

(1) E ⊂ E , E = E ,
(2) E1 ⊂ E2 =⇒ E 1 ⊂ E 2,
(3) E1 ∪E2 = E 1 ∪E 2.

The set E is called closed if E = E . Clearly, E is closed if and only if X \ E is open.

Continuous maps. Let (X ,τX ) and (Y ,τY ) be topological spaces. A map f : X → Y is continuous at x ∈ X if for
every U ∈N f (x) there is V ∈Nx such that f (V ) ⊂U (in short, N f (x) ⊂ f (Nx )↑, where f (F ) = { f (F ) | F ∈F } for any
system F ⊂ 2X ).

The function f is continuous (that, is continuous at every point x ∈ X ) if and only if any of the following holds

(1) G ∈ τY =⇒ f −1(G) ∈ τX ,
(2) if F is closed in Y , then so is f −1(F ) in X .

A continuous bijective map f : X → Y having a continuous inverse f −1 is called a homeomorphism or an iso-
morphism. The topological spaces X and Y are then called homeomorphic or isomorphic.

Products of topological spaces. If X and Y are topological spaces, one can define a topology (called the prod-
uct topology) on X ×Y by providing neighbourhood bases for each point w = (x, y) ∈ X ×Y as follows: B(x,y) =
Bx (×)By = {U ×V |U ∈ Bx , V ∈ By }, where Bx and By are some bases of Nx and Ny , respectively. It is easy to
check that this system of neighbourhood bases satisfies conditions (B1)-(B3) of Theorem 1.1.

Clearly, a map f : X ×Y → Z is continuous at (x, y) if and only if for all W ∈N f (x,y) there are U ∈Nx and V ∈Ny

such that f (U ×V ) ⊂ W . Note that then the functions fx : Y → Z , u 7→ f (x,u), and fy : X → Z , v 7→ f (v, y), are
continuous at y and x, respectively.
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Convergence in topological spaces.

Definition. A filter F converges to x ∈ X or F → x if Nx ⊂ F . A net (xγ) converges to x if so does its eventuality
filter F(xγ):

xγ→ x ⇐⇒ F(xγ) → x ⇐⇒ Nx ⊂F(xγ).

So a filter (or a net) converge to x if they are eventually in every neighbourhood of x.
Let us also say that a prefilter B converges to x and write B → x if the generated filter B↑ does so.

Note that given this definition, it is immediate that a subnet of a converging net converges to the same point.

Cluster points.

Definition. A point x ∈ X is a cluster point of a filter F (or a net (xγ) having F as the eventuality filter) when F is
frequently in every neighbourhood of x. It is written F x (or (xγ) x).

In short, F x ⇐⇒ ; 6∈Nx (∩)F . Note that then the latter system is a prefilter. So we have

Proposition 1.5. A point x is a cluster point of a filter F (or a net (xγ)) iff there is a superfilter G ⊃ F (or a subnet
(yβ) of (xγ)) converging to x.

Proposition 1.6. An ultrafilter (or an ultranet) converges iff it has a cluster point.

Hausdorff spaces and other separation axioms. A topological space is Hausdorff (or separated, or T2) if for all
distinct points x, y ∈ X (x 6= y) there are U ∈Nx and V ∈Ny such that U ∩V =;.

A bit weaker condition is T1: a topological space is T1 if for all distinct points x, y ∈ X there is U ∈Nx such that
y 6∈U .

Proposition 1.7. A topological space is Hausdorff if and only if every converging filter (or net) has just one limit.

Note that a topological space X is T1 if and only if the latter holds just for all neighbourhood filters. Another
equivalent condition is:

⋂
Nx = {x} for all x ∈ X (here

⋂
A means

⋂
A∈A A).

Describing closed sets and continuous functions via convergence. Let us say that a filter F is a filter on a subset
E ⊂ X if E ∈F .

Proposition 1.8.

(a) A point x is a limit point of a set E ⇐⇒ there is a net (xγ) ⊂ E such that xγ → x ⇐⇒ there is a filter F such
that E ∈F and F → x.

(b) A set E is closed ⇐⇒ it contains all limits of all its converging nets ⇐⇒ it contains all limits of all converging
filters on it.

(c) A map f : X → Y is continuous if and only if any or each of the following holds:
• xγ→ x =⇒ f (xγ) → f (x) for all converging nets (xγ) ⊂ X ,
• F → x =⇒ f (F ) → f (x) for all converging filters F on X

(note that f (F ) = { f (F ) | F ∈F } is a prefilter when F is a filter),
• f (Nx ) → f (x) for all x ∈ X .

1.3. Compact topological spaces. A system of subsets of X is called

• centered if any finite intersection of its sets is non-empty,
• cover if its union equals the whole X .

A topological space X is called compact if any its cover consisting of open sets contains a finite subcover.
It is easy to see that X is compact ⇐⇒ any centered system of closed sets has non-empty intersection.

Theorem 1.9. The following are equivalent.

(a) X is compact,
(b) every net (or filter) has a cluster point,
(c) every net has a converging subnet (or every filter has a converging superfilter),
(d) every ultranet (or ultrafilter) converges.
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2. TOPOLOGICAL VECTOR SPACES

2.1. The notion of TVS. Let K be either R or C. A vector space X over the field K, equipped with a topology τ, is
called a topological vector space if the addition T : X × X → X , (x, y) 7→ x + y , and the multiplication by a scalar
S :K×X → X , (λ, x) 7→λx, are continuous.

Written out, this means:

• Continuity of addition:

∀x, y ∈ X ∀W ∈Nx+y ∃U ∈Nx ∃V ∈Ny : U +V ⊂W,

• Continuity of scalar multiplication:

∀x ∈ X ∀λ ∈K ∀W ∈Nλx ∃U ∈Nx ∃δ> 0 : B(λ,δ) ·U ⊂W,

where B(λ,δ) = {µ ∈K | |λ−µ| ≤ δ} is a closed ball inK (e.g., B(λ,δ) = [λ−δ,λ+δ] ifK=R).

Translation and homothety. Fixing a coordinate x0 in the addition T above we get the translation mapping Tx0 :
X → X , x 7→ x + x0. Clearly, Tx0 is a continous linear map. Since its inverse is T−x0 , also a continuous translation,
Tx0 is a homeomorphism from X to itself. In particular, it maps open sets to open sets and closed sets to closed
sets.

Similarly, fixing a scalar λ0 6= 0 in the multiplication S, we get the homothety mapping Sλ0 : X → X , x 7→ λ0x.
Again, it is a linear homeomorphism with its inverse being S1/λ0 .

Proposition 2.1. If G is open (closed) subset of a TVS X , x ∈ X , and λ ∈K, λ 6= 0, then λG +x is also open (closed).

In general, a linear homeomorphism between topological vector spaces is called an isomorphism of topological
vector spaces.

Zero neighbourhood base.

Proposition 2.2. If B :=B0 is a neighbourhood base at 0, then x +B := {x +U |U ∈B} is a neighbourhood base at
x. In short, (x +B)↑ =Nx .

In the following, N := N0 will denote the zero neighbourhood filter and B will denote some of its filter base
(that is, a zero neighbourhood base).

The two latter propositions imply several statements:

• U ∈N =⇒ λU ∈N for all λ 6= 0,
• xγ→ x ⇐⇒ xγ−x → 0,
• a linear map between TV spaces is continuous if and only if it is continuous at 0.

2.2. Topologization of vector spaces.
Absorbing and balanced sets.

Definition. A set E absorbs a set A if there is δ> 0 such that B(0,δ) · A ⊂ E . A set E is called absorbing if it absorbs
every point x ∈ X (that is, every one-point set {x}).

Definition. A set E is balanced if B(0,1) ·E ⊂ E .

• A non-empty balanced set contains 0 and is symmetric.
• If A and B are balanced, then so is A+B .
• If A and B are absorbing, then so is A∩B .
• If A is balanced, then so is λA for any λ ∈K.
• If A is absorbing, then so is λA for any λ ∈K such that λ 6= 0.
• A balanced set E absorbs a set A if and only if there is δ> 0 such that δA ⊂ E .

Proposition 2.3. In a TVS X:

(1) every U ∈N is an absorbing set,
(2) every U ∈N contains a balanced V ∈N .

Corollary 2.4. Any TVS has a zero neighbourhood base consisting of absorbing balanced sets.
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Theorem 2.5. Every TVS has a zero neighbourhood base B consisting of absorbing balanced sets and such that
(NB4): for every U ∈B there is V ∈B with V +V ⊂U .

Conversely, in a vector space X , any prefilter B consisting of absorbing balanced sets and satisfying property (NB4)
defines a topology on X when taking a neighbourhood base of any point x ∈ X to be

Bx := x +B.

With respect to this topology, X becomes a TVS.

Proposition 2.6. Every TVS has a zero neighbourhood base consisting of closed balanced sets.

Exercise 2.1. Prove that the closure of a balanced set in a TVS is balanced.

Exercise 2.2. Prove that the closure of a vector subspace in a TVS is a vector subspace.

Proposition 2.7. A TVS is Hausdorff ⇐⇒ ⋂
B = {0} for all (or some) zero neighbourhood bases B. (In particular, a

TVS is Hausdorff ⇐⇒ it is T1.)

Example 2.1. A normed space X is a TVS having { 1
n BX | n ∈N} as one of its zero neighbourhood bases.

3. BOUNDED AND COMPACT SETS IN A TVS

3.1. Bounded and completely bounded sets.

Definition. A set E ⊂ X is bounded if it is absorbed by every zero neighbourhood.

Definition. A set E ⊂ X is completely bounded or precompact if for every U ∈ N there is a finite set E0 ⊂ X such
that E ⊂ E0 +U .

Note that E0 can be chosen inside of E . For every e ∈ E0 we can assume E∩(e+U ) 6= ; and choose be ∈ E∩(e+U ).
Then e +U ⊂ be −U +U . So if U is taken to be balanced and such that U +U ⊂V for a given V ∈N , then E ⊂ {be |
e ∈ E0}+V .

Let S denote the system of all bounded or all completely bounded sets in X . Then (Q?: )

• A ⊂ B ∈S =⇒ A ∈S ,
• A,B ∈S =⇒ A∪B ∈S ,
• every finite set is in S ,
• λ ∈K, A ∈S =⇒ λA ∈S ,
• A,B ∈S =⇒ A+B ∈S .

A system S satisfying the first 3 of the above properties is called an ideal system of sets or a bornology on X .
This is something that is dual to being a filter. In fact, the system of all complements {X \ A | A ∈S } is a filter on X .

Note that every completely bounded set is bounded, because given a balanced U ∈ N and a finite (and thus
bounded) set E0 we can find µ> 1 such that E0 ⊂µU , so E0 +U ⊂µU +U ⊂µU +µU =µ(U +U ).

Proposition 3.1. If S is as above, then A ∈S =⇒ A ∈S .

Proof. For boundedness, given a closed and balanced U ∈N , µU is closed too. So E ⊂ µU if and only if the same
holds for E .

For complete boundedness, given a closed U ∈ N , find a finite E0 such that E ⊂ E0 +U = ⋃
e∈E0 e +U and note

that the latter set is closed as a finite union of closed sets. �

The definition of bounded sets is similar to some kind of continuity. The next proposition says it precisely.

Proposition 3.2. A set A is bounded if and only if for every (λn) ⊂K such that λn → 0 and every (xn) ⊂ A, one has
λn xn → 0.

Exercise 3.1. Prove that λE ⊂λE .
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3.2. Compact sets.

Definition. A filter F is Cauchy if for every U ∈N there exists F ∈F such that F −F ⊂U . A net is Cauchy if so is
its eventuality filter.

A set A ⊂ X is complete if every Cauchy filter on (or net in) A converges to some element of A.

Exercise. Define ∆F = {F −F | F ∈ F }. Is it a filter or a prefilter? If it were, then we could say that F is Cauchy if
and only if ∆F → 0.

Proposition 3.3. A compact set is completely bounded.

Proof. Given a compact set A and an open U ∈N , note that A+U =⋃
a∈A a+U is an open cover of A, so it contains

a finite subcover A0 +U , with A0 finite. �

Proposition 3.4. A compact set is complete.

Proof. It is enough to show that a Cauchy filter F that clusters at x, converges to x: F x =⇒ F → x.
Given V ∈N , find U ∈N with U+U ⊂V and F ∈F with F −F ⊂U . Since F x, we have that G := (x+U )∩F 6=

;, so F ⊂ F −G +G ⊂ F −F +x +U ⊂U +x +U ⊂ x +V . �

The induction on the definition of ultrafilters implies

Lemma 3.5. If F is an ultrafilter on X =⋃n
i=1 Xn , then Xk ∈F for some k ∈ {1, . . . ,n}.

Lemma 3.6. A set E is completely bounded if and only if for every U ∈ N there are S1, . . . ,Sn such that E = ⋃n
i=1 Si

and Si −Si ⊂U for all i .

Proof. Given U ∈ N find a balanced V ∈ N with V +V ⊂ U and {x1, . . . , xn} such that E ⊂ ⋃n
i=1 xi +V . Note that

xi +V − (xi +V ) =V −V =V +V ⊂U . �

Theorem 3.7. A set is compact if and only if it is complete and completely bounded.

Proof of necessity. Observe that the two above lemmas say that every ultrafilter on a completely bounded set is
Cauchy. Indeed, take a precompact set E and an ultrafilter F on E . Given U ∈N and applying the above lemmas
we get S ⊂ E such that S ∈F and S −S ⊂U . �

4. METRIZABLE TVS

In a metric space (X ,ρ) the sets B(x,1/n), n ∈ N, form a neighbourhood base for any point x ∈ X . Thus, in a
metrizable topological space every point has a countable neighbourhood base.

4.1. Metrizable TVS.

Definition. Let X be a vector space. A mapping | · |→R, x 7→ |x|, is a pseudonorm if

(1) x = 0 ⇐⇒ |x| = 0,
(2) |λx| ≤ |x| if |λ| ≤ 1,
(3) |x + y | ≤ |x|+ |y |.

Note that every norm is a pseudonorm. In turn, a pseudonorm induces a metric on X defined by ρ(x, y) = |x−y |,
which is translation-invariant: d(x + z, y + z) = d(x, y).

Proposition 4.1. If a Hausdorff TVS has a countable zero neighbourhood base, then its topology can be induced by
a pseudonorm.

Proof. We can assume that the zero neighbourhood base B = {Vn | n ∈ N} consists of balanced sets such that
Vn+1 +Vn+1 ⊂Vn . Denote byQ2 := { m

2n | m,n ∈Z} the set of dyadic rationals and define f :Q2 ∩ (0,1) →P (X ) by

f

(
n∑

k=1

1

2 jk

)
=

n∑
k=1

V jk .

Note that f (q1)+ f (q2) ⊂ f (q1+q2) whenever q1, q2, q1+q2 ∈Q2∩(0,1). Indeed, f (q1)+ f (2−n) is either f (q1+2−n)
as needed or f (q1 −2−n)+ f (2−n)+ f (2−n) ⊂ f (q1 −2−n)+ f (2−n+1) with q1 −2−n having fewer primitive addends
in it than q1. Note that, in particular, f (q1) ⊂ f (q2) whenever 0 < q1 ≤ q2 < 1.

Let us define |x| := inf({q ∈Q2 ∩ (0,1) | x ∈ f (q)}∪ {1}). (Then |x| ≤ 1 for all x.)
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(1) Clearly, |0| = 0, and |x| = 0 means that x ∈ f (q) with q < 2−n for every n ∈ N, so that x ∈ f (2−n) = Vn , and
therefore x ∈⋂

B = {0}.
(2) Note that f (q) is balanced as a finite sum of balanced sets, therefore λx ∈ f (q) for |λ| ≤ 1 whenever x ∈

f (q).
(3) We only have to consider the case |x|+ |y | < 1. Note that

{q | x ∈ f (q)}+ {q | y ∈ f (q)} = {qx +qy | x ∈ f (qx ), y ∈ f (qy )} ⊂ {qx +qy | x + y ∈ f (qx +qy )} = {q | x + y ∈ f (q)},

therefore
|x|+ |y | = inf

(
{q | x ∈ f (q)}+ {q | y ∈ f (q)}

)≥ |x + y |.
This shows that | · | is indeed a pseudonorm. It remains to observe that

Vn+1 ⊂ B

(
0,

1

2n

)
=

{
x : |x| < 1

2n

}
⊂Vn ,

and therefore y +Vn+1 ⊂ B
(
y, 1

2n

)⊂ y +Vn for any y ∈ X , so that the neighbourhood filters at y are the same for the
induced and the original TVS topology. �

Theorem 4.2. The following are equivalent for a Hausdorff TVS:

(1) it has a countable zero neighbourhood base,
(2) the topology is induced by a pseudonorm,
(3) the topology is induced by a translation-invariant metric,
(4) the topology is metrizable.

Proposition 4.3. If two translation-invariant metrics on a vector spave both induce the same topology, which makes
this vector space a TVS, then these metrics have the same Cauchy sequences and are simultaneously complete or
incomplete.

Proposition 4.4. A metrizable TVS is complete if and only its topology is induced by a complete translation-invariant
metric. In other words, a metrizable TVS is complete if and only if every Cauchy sequence converges.

Definition. A TVS is locally bounded if there is a bounded U ∈N . A TVS is locally compact if there is a compact
U ∈N .

Proposition 4.5. Every locally bounded Hausdorff TVS is metrizable.

Exercise 4.1. If B ∈N is bounded, then { 1
n B | n ∈N} is a countable zero neighbourhood base.

4.2. Finite-dimensional TVS.

Proposition 4.6. A Hausdorff TVS of dimension n <∞ is isomorphic to mn .

Proof. Let X = span{e1, . . . ,en}. Define T : mn → X by T ((λi )) =∑n
i=1λi ei . From linear algebra we know that T is a

bijective linear map. Since in mn the convergence of a net of vectors imply the convergence of their corresponding
coordinates, the continuity of addition and scalar multiplication imply that T is continuous.

In order to show the continuity of T −1, it is enough to show it at 0: for every zero neighbourhood U in mn its
preimage (T −1)−1(U ) = T (U ) must be a zero neighbourhood of X . Since {εBmn |ε ∈ (0,1)} form a zero neighbour-
hood base in mn and T is linear, it is enough to show that T (Bmn ) is a zero neighbourhood in X .

Consider the sphere Smn = {x ∈ mn : ‖x‖ = 1}. It is a closed and bounded set in a finite-dimensional Banach
space, so it is compact. Then its continuous image T (Smn ) ⊂ X is compact as well and hence closed. Since 0 6∈ Smn ,
so also 0 6∈ T (Smn ). Therefore, X \ T (Smn ) is an open zero neighbourhood. It contains a balanced zero neighbour-
hood V . If V 6⊂ T (Bmn ) then there exists y ∈ mn such that ‖y‖ > 1 and T y ∈ V . But then 1

‖T y‖T y ∈ V ∩T (Smn ), a
contradiction. So V ⊂ T (Bmn ), as needed. �

Corollary 4.7. A finite-dimensional subspace of a Hausdorff TVS is closed.

Proof. The above proposition (recall that mn is complete) and the exercises below give that a finite-dimensional
subspace is complete and that a complete set is closed.

�

Exercise. Show that a TVS isomorphic to a complete TVS is complete, too.
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Exercise. Show that a subspace of a TVS is complete in the induced topology if and only if it is complete as a
subset.

Exercise. Show that a convergent filter is Cauchy.

Proposition 4.8. A locally compact Hausdorff TVS X is finite-dimensional.

Proof. Take a compact balanced V ∈ N . It is bounded, so Exercise 4.1 gives that N = {2−nV | n ∈N}↑. Since V
is completely bounded, V ⊂ V0 + 1

2 V for some finite set V0 ⊂ V . Consider the finite-dimensional subspace Y =
spanV0. We have V ⊂ Y + 1

2 V . Dividing by 2, this gives 1
2 V ⊂ Y + 1

4 V . Adding the two inclusions together, we get

V ⊂ Y +Y + 1
4 V ⊂ Y + 1

4 V . Thus by induction we have V ⊂⋂
n∈N(Y +2−nV ) = Y = Y . So spanV ⊂ Y . On the other

hand spanV = X , because V is absorbing. �

4.3. Examples.

Example 4.1. Consider the vector space

C (C) := {x = x(t ) | x :C→K is continuous}

with addition and scalar multiplication defined pointwise: (λx + y)(t ) =λx(t )+ y(t ).
Let us denote pn(x) := max|t |≤n |x(t )| and Vn,ε = {x | pn(x) < ε} and show that B := {Vn,ε | n ∈ N, ε > 0} is an

additive prefilter consisting of absorbing balanced sets:

(1) Vmax(n,m),min(ε,δ) ⊂Vn,ε∩Vm,δ, so B is a prefilter.
(2) pn(λx) = |λ|pn(x), so Vn,ε is balanced,

(3) for every x ∈ X , pn

(
ε

pn (x)+1 x
)
< ε, so Vn,ε is absorbing,

(4) Vn, ε2
+Vn, ε2

⊂Vn,ε, so B is additive.

Thus B is a zero neighbourhood base for some TVS topology. Since
⋂
ε>0 Vn,ε clearly consists of functions, which

are zero on BK(0,n), we have
⋂

B = {0}, so that the induced topology is Hausdorff. Since every Vn,ε contains Vn, 1
i

for some i ∈ N, our base B has a countable generating subsystem {Vn, 1
i

}n,i∈N, so that the induced topology is

metrizable.
Given a Cauchy sequence (xk ) ⊂C (C) let us denote yk := xk |BK(0,n) and observe that (yk ) is a Cauchy sequence

in the Banach space C (BK(0,n)) equipped with the norm pn , so it converges to the pointwise limit y ∈C (BK(0,n))
in the norm. This means that the pointwise limit x of (xn) is continuous on every BK(0,n), hence continous on the
whole C, and so clearly xn → x in C (C).

So, C (C) is a complete TVS.

Remark. Recall that given a compact Hausdorff topological space K , the space C (K ) ⊂KK of all continuous func-
tions on K is a Banach space, when equipped with the norm ‖ f ‖ := maxt∈K | f (t )|. The completeness of the
norm here follows, e.g., from the Arzelà-Ascoli theorem: a subset A ⊂ C (K ) is relatively compact if and only if it
is bounded and equicontinuous.

5. CONVEX SETS AND SEMINORMS

5.1. Convex subsets in a vector space. Let X be a vector space.....

Definition. Given x, y ∈ X denote [x, y] := {λx + (1−λ)y | λ ∈ [0,1]}. A subset E ⊂ X is convex if [x, y] ⊂ E for any
two points x, y ∈ E . A balanced convex set is called absolutely convex.

Proposition 5.1. A subset E ⊂ X is absolutely convex if{
λx +µy | |λ|+ |µ| ≤ 1, λ,µ ∈K}⊂ E

for any two points x, y ∈ E.

If we define the scalar product for vectors · :Kn×X n → X like this: (λk )·(xk ) =∑n
k=1λk xk , then the convexity and

the absolute convexity of E mean respectively that S+
`2

1
·E 2 ⊂ E and B`2

1
·E 2 ⊂ E , where B`n

1
= {(λi ) ∈Kn |∑ |λi | ≤ 1}

is the closed unit ball of the Banach space `n
1 and S+

`n
1
= {(λi ) ∈Rn |λ≥ 0,

∑
λi = 1} is the positive part of its sphere.

Some properties:

• if Eα, α ∈ Γ, are convex (absolutely convex), then so is
⋂
α∈ΓEα,
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• given δ ∈K and a linear map T : X → Y , if E1,E2 ⊂ X are convex (absolutely convex), then so are E1 +E2,
δE1, and T (E1).

Lemma 5.2. Let E ⊂ X .

(1) If E is convex then S+
`n

1
·E n ⊂ E for all n ∈N.

(2) If E is absolutely convex then B`n
1
·E n ⊂ E for all n ∈N.

Definition. Let E ⊂ X . Then

convE :=
∞⋃

n=1
S+
`n

1
·E n

is called the convex hull of E and

absconvE :=
∞⋃

n=1
B`n

1
·E n

is called the absolutely convex hull of E .

Example 5.1. Make sure that E ⊂ convE ⊂ absconvE ⊂ spanE .

Let us note that convE (absconvE) is the minimal (absolutely) convex set containing E .

Example 5.2. Show that if E ⊂ X is balanced, then so is convE and hence convE = absconvE .

Proposition 5.3. Let X be a TVS. If E ⊂ X is convex, then so is E.

Corollary 5.4. If E ⊂ X is absolutely convex, then so is E.

Let E1, . . . ,En ⊂ X be absolutely convex. Observe that

absconv
n⋃

i=1
Ei = B`n

1
· (E1 ×·· ·×En) .

Proposition 5.5. If E1, . . . ,En ⊂ X are compact and absolutely convex sets, then so is absconv
⋃n

i=1 Ei .

5.2. Seminorms and Minkowski functionals. Let X be a vector space.

Definition. A functional p : X →R is

(1) positively homogeneous if p(λx) =λp(x) for λ≥ 0,
(2) absolutely homogeneous if p(λx) = |λ|p(x) for λ ∈K,
(3) subadditive if p(x + y) ≤ p(x)+p(y),
(4) sublinear if it is positively homogeneous and subadditive,
(5) seminorm if it is absolutely homogeneous and subadditive.

Exercise 5.3. Prove that
(1) a sublinear functional p satisfies p(0) = 0 and |p(x)−p(y)| ≤ max{p(x − y), p(y −x)},
(2) a seminorm p satisfies p(x) ≥ 0 and |p(x)−p(y)| ≤ p(x − y),
(3) if p is a seminorm, then p−1(0) ⊂ X is a vector subspace of X .

Exercise 5.4. Prove that if p is a seminorm, then both the open and closed unit balls Bp := p−1 ([0,1)) and B p :=
p−1 ([0,1]) are absolutely convex and absorbing.

Definition. Let U ⊂ X be an absorbing set. The functional pU : X → R, x 7→ inf{µ > 0 | x ∈ µU }, is called its
Minkowski functional or gauge.

Exercise 5.5. Prove that pU (0) = 0 and 0 ≤ pU (x) <∞.

Proposition 5.6. Let U ⊂ X be an absorbing set. Then

(1) pU is positively homogeneous,
(2) if U is balanced, then pU is absolutely homogeneous,
(3) if U is convex, then pU is subadditive and BpU ⊂U ⊂ B pU .

Corollary 5.7. The gauge of a convex absorbing set is a positive sublinear functional. The gauge of an absolutely
convex absorbing set is a seminorm.
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Proposition 5.8. Let p : X →R be a seminorm and U := B p . Then pU = p.

Let X be a TVS.

Lemma 5.9. If a sublinear functional p : X →R is continuous at 0, then it is continuous everywhere.

Theorem 5.10. An absorbing set U ⊂ X is a zero neighbourhood if and only if pU is continuous. If U is open, then
U = BpU . If U is closed, then U = B pU .

6. HAHN-BANACH THEOREM

6.1. Hahn-Banach theorem for real vector spaces. Recall that the algebraic dual of a vector space X is the vector
space X ∗ of all linear functionals f : X →K with vector space operations defined pointwise: (λ f1 + f2) = λ f1(x)+
f2(x).

Let X be a TVS.

Proposition 6.1. A linear functional f ∈ X ∗ is continuous if and only if there is U ∈ N such that f (U ) ⊂ K is
bounded, that is, f (U ) ⊂ BK(0, M) for some M > 0.

Proof. It is enough to consider continuity at 0.
(⇒): By continuity, since BK(0,1) is a zero neighbourhood inK, there is U ∈N such that f (U ) ⊂ BK(0,1).
(⇐): We have f ( ε

M U ) = ε
M f (U ) ⊂ BK(0,ε) for all ε> 0 with the latter sets forming a zero neighbourhood base in

K and ε
M U ∈N for all ε> 0. �

The topological dual of X is the vector subspace X ′ of X ∗ which consists of continuous functionals.
Let Y be a subspace of a vector space X and let f ∈ X ∗. Define f |Y ∈ Y ∗ by f |Y (y) = f (y) for all y ∈ Y . Then f is

called an extension of f |Y to X , and f |Y is called the resriction of f to Y .

Theorem 6.2 (Hahn-Banach for K = R). Let X be a real vector space and X0 ⊂ X its subspace. Let p : X → R be a
sublinear functional. If f0 ∈ X ∗

0 satisfies f0(x) ≤ p(x) for all x ∈ X0, then there exists an extension f ∈ X ∗ of f0 such
that f (x) ≤ p(x) for all x ∈ X .

Proof. Consider a partially ordered set S of pairs (Y , g ) where Y ⊂ X is a subspace containing X0 and g ∈ Y ∗ is an
extension of f0 to Y such that g (y) ≤ p(y) for all y ∈ Y , the order given by (Y1, y1) ≤ (Y2, y2) if Y1 ⊂ Y2 and g2|Y1 = g1.

Zorn’s lemma gives the claim once we show that

(1) if Y 6= X , then (Y , g ) is not maximal,
(2) a linearly ordered subset of S has an upper bound.

(1) Take z ∈ X \ Y and note that

g (x)+ g (y) = g (x + y) ≤ p(x + y) ≤ p(x − z)+p(y + z)

or

g (x)−p(x − z) ≤ p(y + z)− g (y)

for all x, y ∈ Y . So, A := supx∈Y (g (x) − p(z + x)) ≤ infx∈Y (p(x − z) − g (x)) =: B . Take any t ∈ [A,B ] and define
f : Y +Rz →R by f (y+λz) = g (y)+λt . It is easy to see that Y +Rz is a subspace of X and that f is correctly defined.
The inequality f (y +λz) ≤ p(y +λz) follows from the choice of t .
(2) Given a linearly ordered set {(Yα, gα)}α ⊂ S, define Y =⋃

αYα and g : Y → R by g (y) = gα(y) for any α such that
y ∈ Yα. Again it is easy to see that g is correctly defined, linear, and g (y) ≤ p(y) for all y ∈ Y , so that (Y , g ) ∈ S is the
required upper bound. �

Corollary 6.3. Let X be a real vector space. For any sublinear functional p : X → R there exists f ∈ X ∗ such that
f (x) ≤ p(x) for all x ∈ X .

Note that the above corollary is non-trivial only in the case, when the sublinear functional has some negative
values.
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6.2. Hahn-Banach theorem for complex vector spaces. Given a vector space X over C, consider the restriction
of the scalar product · : C× X → X to R× X . The set X equipped with this restriction and the unchanged addition
becomes a real vector space, which we denote by XR.

Theorem 6.4 (Hahn-Banach for K = C). Let X be a vector space over K (K is either R or C) and let p : X → R be a
seminorm. If a linear functional f0, defined on a subspace X0 ⊂ X , satisfies | f0(x)| ≤ p(x) for all x ∈ X0, then it has
an extension f ∈ X ∗ such that | f (x)| ≤ p(x) for all x ∈ X .

Proof. (K = R): Applying Theorem 6.2 we get an extension f ∈ X ∗ such that f (x) ≤ p(x) for all x ∈ X . The claim
follows, because − f (x) = f (−x) ≤ p(−x) = p(x), too.

(K = C): Denote φ0(x) = Re f0(x), then φ0 ∈ (X0)∗
R

and f0(x) = φ0(x)− iφ0(i x). Also, |φ0(x)| ≤ | f0(x)| ≤ p(x). So
applying the case K = R, we get φ ∈ X ∗

R
such that |φ(x)| ≤ p(x) for all x ∈ X . Then f (x) := φ(x)− iφ(i x) defines a

linear functional f ∈ X ∗. If f (x) 6= 0, then f
( | f (x)|

f (x) x
)
= | f (x)| > 0, so that

| f (x)| = f

( | f (x)|
f (x)

x

)
=φ

( | f (x)|
f (x)

x

)
≤ p

( | f (x)|
f (x)

x

)
=

∣∣∣∣ | f (x)|
f (x)

∣∣∣∣p(x) = p(x).

�

6.3. Separation theorems. Let g : X → R be a mapping. Let us denote [g = α] = {x ∈ X | g (x) = α}, [g ≤ α] = {x ∈
X | g (x) ≤α}, and in the same manner also [g >α], [g ≥α], and so on.

Let X be a real vector space and f ∈ X ∗\{0}. A set H := [ f =α] is called a hyperplane. Note that H0 := [ f = 0] 6= X
and so H = z + H0 for any z ∈ H . Every such hyperplane yields corresponding half-spaces [ f ≥ α], [ f ≤ α] and
strict half-spaces [ f >α], [ f <α]. Both a hyperplane and a functional defining it are said to (strictly) separate two
subsets of X if these subsets reside in different (strict) half-spaces, corresponding to the hyperplane.

Proposition 6.5. In a real TVS X a hyperplane H = [ f = α] is either closed (H = H) or dense (H = X ). It is closed if
and only if f is continuous.

Proof. Clearly, H is closed if f is continuous. If f is discontinuous, then (prove it!)z there is a net (xα) ⊂ X such
that xα→ 0 but f (xα) = 1. Now yα := x − f (x)xα→ x and (yα) ⊂ H0 = [ f = 0] for any x ∈ X . So H 0 = X but then also
H = z +H0 = z +H 0 = X given any z ∈ H . �

Let X be a TVS.

Lemma 6.6. Every f ∈ X ∗ \ {0} is an open mapping, that is, it maps open sets to open sets.

Proof. Find x0 ∈ X such that f (x0) = 1. Take a non-empty open G ⊂ X and x ∈ G . Then G − x ∈ N , so it absorbs
x0, hence there exists ε > 0 such that BK(0,ε) · x0 ⊂ G − x. Applying f , we get BK(0,ε) ⊂ f (G − x) = f (G)− f (x) or
f (x)+BK(0,ε) ⊂ f (G), so that f (x) is an interior point of f (G). �

Theorem 6.7. Let E ,G ⊂ X be convex such that E ∩G =; and G is open. Then there exist f ∈ X ′ and t ∈R such that
Re f (z) < t ≤ Re f (y) for all z ∈G and y ∈ E (that is, G ⊂ [Re f < t ] and E ⊂ [Re f ≥ t ]).

Proof. It is clearly enough to prove the case when K = R and G ,E 6= ;. Fix any y0 ∈ E and z0 ∈ G and denote
x0 := y0−z0 and C :=G −E +x0. Then C is open, convex, 0 ∈C , and x0 6∈C . Hence its gauge p := pC is a continuous
positive sublinear functional such that p(x0) ≥ 1. Define a linear functional f0 : R · x0 → R by f0(λx0) := λ. Then
f0(λx0) =λ≤ p(λx0). Applying Theorem 6.2 we obtain an extension f ∈ X ∗ such that f (x) ≤ p(x) for all x ∈ X .

Note that f (x) ≤ p(x) ≤ 1 and hence also f (−x) ≥−1 for all x ∈C . Thus f (C ∩ (−C )) ⊂ [−1,1] with C ∩ (−C ) ∈N ,
so f is continuous by Proposition 6.1.

For y ∈ E and z ∈ G we get f (z)− f (y)+ 1 = f (z − y + x0) ≤ p(z − y + x0) < 1, because z − y + x0 ∈ C and C is
open, so that f (z) < f (y) for all z ∈ G and y ∈ E . Since f (G) ⊂ R is open, setting t := sup f (G) yields the needed
inequalities. �

Corollary 6.8. If X contains non-trivial open convex subsets, then X ′ 6= {0}.
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7. LOCALLY CONVEX SPACES

7.1. Describing a locally convex topology via zero neighbourhood bases and via seminorms.

Definition. A TVS X is locally convex (LCS) if every U ∈N contains a convex V ∈N .

Proposition 7.1. In an LCS X every U ∈N contains a closed absolutely convex V ∈N .

Proof. Take a closed U ∈N . There are a convex V ∈N and a balanced W ∈N such that W ⊂V ⊂U . Now convW
is absolutely convex (prove it!)z and W ⊂ convW ⊂V ⊂U . �

Recall that a centered system of sets is such that no finite intersection of its sets is empty. Every centered system
generates a filter in a unique way: the smallest filter containing it. Vice versa, every subset of a filter is a centered
system. A centered system is also called a filter subbase.

If we denote by π(B) the system of all finite intersections of the sets in a centered system B, then π(B) is a
prefilter.

Consider an arbitrary system B0 of absolutely convex absorbing sets in a vector space X . It is centered, because
0 ∈⋂

B0. However, the generated filter π(B0)↑ may fail to be a zero neighbourhood filter for some TVS because it
may fail to be closed under multiplication by some ε> 0.

Denote Â := R+(·)A = {εU | U ∈ A , ε > 0} for any system A ⊂ 2X . Note that �π(B0) ⊂ π
(
B̂0

)
and both these

systems are prefilters, generating the same filter.

Exercise 7.1. Prove that this filter satisfies conditions of Theorem 2.5.

Proposition 7.2. Every system B0 of absolutely convex absorbing sets in a vector space X generates an LC topology
having �π(B0) as a zero neighbourhood base (and B̂0 as its subbase). This topology is Hausdorff if and only if⋂

B̂0 = {0}.

The system B0 is then called a prebase of the corresponding zero neighbourhood filter N . That is, a system
B0 consisting of absorbing absolutely convex sets is a prebase of N if B̂0 is its subbase. Note that any subsystem
C0 consisting of absolutely convex sets and containing B0 is also a prebase of N (in particular, any subsystem C0

such that B0 ⊂C0 ⊂π
(
B̂0

)
).

Proposition 7.3. (1) Every system P of seminorms on a vector space X defines a locally convex topology τ on it
via the prebase {B p = p−1([0,1]) | p ∈P }. The elements of the corresponding zero neighbourhood base are of
the form

Wε,p1,...,pn :=
{

x ∈ X | max
i

pi (x) ≤ ε
}

,

where ε > 0, n ∈ N, and p1, . . . , pn ∈ P . The topology τ is Hausdorff if and only if P separates points in X ,
that is,

∀x ∈ X ∃p ∈P : p(x) 6= 0.

(2) Every locally convex topology can be generated by a system of seminorms in this way.

Proposition 7.4. Let (X ,τ) be an LCS and denote by P the system of all continuous seminorms on X . Then P

generates τ.

7.2. Convergence and boundedness in LCS.

Proposition 7.5. Let the LC topology of (X ,τ) be defined by a system of seminorms P . Then

(1) xα→ x ⇐⇒ p(xα−x) → 0 ∀p ∈P ,
(2) E ⊂ X is bounded ⇐⇒ supx∈E p(x) <∞ (i.e., p(E) is bounded) for all p ∈P .

Proof.

(1) (⇒): is because seminorms p ∈P are continuous.
(⇐): It is enough to prove that F → 0 ⇐= p(F ) → 0 ∀p ∈ P for any prefilter F . Note that p(F ) → 0

means that εB p ∈ F ↑ for any ε > 0. So the filter F ↑ contains {εB p | ε > 0, p ∈ P }, a subbase of N , hence
also N itself. That is, F → 0.

(2) Note that λE ⊂ B p ⇐⇒ E ⊂ 1
λB p ⇐⇒ p(E) ⊂ [0, 1

λ ]. That is, p(E) is bounded ⇐⇒ E is absorbed by B p .
Since absorption is preserved under finite intersections and multiplication by positive scalar, it is enough
to be absorbed by all elements in some prebase of N .
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Proposition 7.6. Let X be a LCS.
(1) If E ⊂ X is bounded, then so is absconvE.
(2) If E ⊂ X is completely bounded, then so is absconvE.

Proof. (1) Since X is LC, given V ∈N , there is an absolutely convex U ∈N , U ⊂ V . If there is λ> 0 such that
E ⊂λU , then also absconvE ⊂ absconvλU =λU ⊂λV .

(2) Given V ∈N take an absolutely convex U ∈N such that U +U ⊂ V . There is a finite set E0 such that E ⊂
E0+U . Then absconvE = absconv(E0+U ) ⊂ absconvE0+absconvU = absconvE0+U . It is enough to prove
that H := absconvE0 is completely bounded. Observe that for any point x ∈ E0 the set absconv{x} = BKx
is compact (because it is a continuous image of BK, which is compact). Proposition 5.5 now implies that
absconv

⋃
x∈E0 BKx is compact and hence completely bounded. Then so is absconvE0 ⊂ absconv

⋃
x∈E0 BKx.

(Note that (see the original conspect) one can show that absconvE0 is compact, too.)
�

7.3. Metrizable and normable LCS. Given a metrizable LCS, there is a countable base of N consisting of ab-
solutely convex sets. The corresponding Minkowski functionals form a countable seminorm system, which de-
fines the same topology. On the other hand, given a Hausdorff topology defined by a countable seminorm system
{pn}n∈N, one can define a translation invariant metric

d(x, y) =
∞∑

n=1

1

2n

pn(x − y)

1+pn(x − y)

(prove it!)z. It is clear that (prove it!)z, d(xα,0) → 0 if and only if pn(xα) → 0 for all n ∈ N, so that this metric
induces the original topology. We have observed

Proposition 7.7. A Hausdorff LCS is metrizable if and only if its topology can be defined by a countable (or finite)
seminorm system.

Example 7.1. The space C (C) from Example 4.1 is a metrizable LCS, because the sets Vn,i forming a base of N are
absolutely convex.

Normable LCS. It is easy to see that if a Hausdorff LC topology is defined by a finite seminorm system {p1, . . . , pn},
then p(x) := max1≤i≤n pi (x) defines a norm, inducing the same topology. In that case, let us say that the space is
normable.

Proposition 7.8 (Kolmogorov theorem). A Hausdorff TVS is normable if and only if it has bounded convex zero
neighbourhoods.

Corollary 7.9. A Hausdorff LCS is normable if and only if it has a bounded zero neighbourhood.

Example 7.2. The space `p , 0 < p < 1, is a metrizable TVS with a pseudonorm |x| = ∑
k |xk |p but it is not locally

convex.

7.4. The dual of an LCS.

Definition. A subspace Y ⊂ X ∗ separates the points of X if for all x, y ∈ X with x 6= y there is f ∈ Y such that
f (x) 6= f (y). Equivalently, if for all x 6= 0 there is f ∈ Y such that f (x) 6= 0.

Proposition 7.10. The algebraic dual X ∗ of a vector space X separates the points of X .

Proposition 7.11. Let X be an LCS. A functional f ∈ X ∗ is continuous if and only there exists a continuous seminorm
p on X such that | f (x)| ≤ p(x) for all x ∈ X .

Proposition 7.12. Let X be an LCS and let X0 ⊂ X be a subspace. For every f0 ∈ X ′
0 there is f ∈ X ′ such that f |X0 = f0.

Theorem 7.13. If X is a Hausdorff LCS, then X ′ separates points of X .

Exercise 7.2. Show that if τ1 ⊂ τ2, then (X ,τ1)′ ⊂ (X ,τ2)′.
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7.5. Another two separation theorems.

Proposition 7.14. Let X be an LCS and let E ⊂ X be convex. Then x ∈ E if and only if f (x) ∈ f (E) for all f ∈ X ′.

Theorem 7.15. Let X be an LCS.

(a) If E ⊂ X is absolutely convex and x ∈ X \ E, then there is f ∈ X ′ such that f (E) ⊂ BK but f (x) > 1.
(b) Let X0 ⊂ X be a subspace. Then x ∈ X0 if and only if f (x) = 0 for all f ∈ X ′ such that f |X0 = 0.

Corollary 7.16. Let X0 ⊂ X be a subspace of an LCS X . Then X0 = X if and only if f |X0 6= 0 for all f ∈ X ′ \{0}. In other
words, X0 = X if and only if f |X0 = 0 =⇒ f = 0 for all f ∈ X ′.

Example 7.3. Consider the metrizable TVS S[a,b] from Example 4.2. We can show that S[a,b]′ = {0}.

8. DUAL PAIRS OF VECTOR SPACES

8.1. Dual pair.

Definition. Let X and Y be vector spaces over the same field K. The spaces X and Y form a dual pair 〈X ,Y 〉 if
there is fixed a bilinear functional 〈·, ·〉 : X ×Y →K, which separates the points of both X and Y , that is:

• for every x ∈ X \ {0} there is y ∈ Y such that 〈x, y〉 6= 0,
• for every y ∈ Y \ {0} there is x ∈ X such that 〈x, y〉 6= 0.

Of course, if 〈X ,Y 〉 is a dual pair, then so is 〈Y , X 〉.
Example 8.1. The spaces `1 and `∞ form a dual pair with 〈x, y〉 :=∑∞

n=1 xn yn .

Example 8.2. Every Hilbert space forms a dual pair with itself, the bilinear functional is just the dot product.

Example 8.3. Given any vector space X , the dual pair 〈X , X ∗〉 can be defined by the functional 〈x, f 〉 = f (x).

The last example can be generalized to a dual pair 〈X ,Y 〉, where a subspace Y ⊂ X ∗ separates the points of X .
In fact, this case essentially encompasses all dual pairs. Given a dual pair 〈X ,Y 〉 we can define a linear injection
π : Y → X ∗ by π(y)(x) = 〈x, y〉, so that Y is isomorphic to π(Y ) ⊂ X ∗.

Therefore, given a dual pair 〈X ,Y 〉 we can (and will) always assume that Y is a subspace X ∗, which separates
points of X (or that X is a subspace of Y ∗). In that case the bilinear functional is automatically defined.

Exercise 8.1. Denote by ω= {(xn) ⊂K} the space of all sequences and by φ= {(xn) ⊂K | xn 6= 0 for finitely many n}
the space of all finite sequences. Then 〈ω,φ〉 is a dual pair by the functional 〈x, y〉 =∑∞

n=1 xn yn .

8.2. Weak topology.

Definition. Let 〈X ,Y 〉 be a dual pair and let τ be an LC topology on X . If (X ,τ)′ = Y , then τ is said to be consistent
with the duality 〈X ,Y 〉.

Note that given f ∈ X ∗, we can define a seminorm p f : X →R by p f (x) = |〈x, f 〉| = | f (x)|.
Definition. Let 〈X ,Y 〉 be a dual pair. The locally convex topology σ(X ,Y ) on X defined by a family of seminorms
{p f | f ∈ Y } is called the weak topology (defined by the duality 〈X ,Y 〉).

Properties of the weak topology σ(X ,Y ):

(1) It is Hausdorff.

(2) We know that a zero neighbourhood base is áπ({B p f } f ∈Y ). However, the linearity allows to drop the epsilons

and consider just π({B p f } f ∈Y ) as the base. That is, the sets in this base are of the form

W f1,..., fn := {x ∈ X | max
i

| fi (x)| ≤ 1},

for all n ∈N and f1, . . . , fn ∈ Y .
(3) The convergence: xα→ x ⇐⇒ f (xα) → f (x) for all f ∈ Y . The boundedness: E ⊂ X is bounded if and only

if f (E) is bounded for all y ∈ Y .
(4) The topology σ(Y , X ) on Y can be described symmetrically and has the same properties.

Exercise 8.2. Describe the convergence of a sequence
(
x(n)

)
in the LCS (`∞,σ(`∞,`1)). Does the sequence

(
y (n)

)
converge if y (1) = (1,0,0, . . . ), y (2) = (1,1,0,0, . . . ), . . . , y (n) = (1,1, . . . ,1,0,0, . . . ), . . . ?
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Exercise 8.3. Does the sequence from the above exercise converge in (`1,σ(`1,`∞))?

Exercise 8.4. Show that x(n) → x in the topology σ(ω,φ) if and only if x(n)
k → xk for all k ∈N.

Proposition 8.1. Let 〈X ,Y 〉 be a dual pair. In (X ,σ(X ,Y )), every bounded set is completely bounded.

Lemma 8.2. Let X be a vector space and let f , f1, . . . , fn ∈ X ∗. Then f ∈ span{ f1, . . . , fn} if and only if

∀i ∈ {1, . . . ,n} fi (x) = 0 =⇒ f (x) = 0.

Note that if we knew (e.g., from Theorem 8.3 below) thatσ(X ∗, X ) were consistent with 〈X ∗, X 〉, i.e. (X ∗,σ(X ∗, X ))′ =
X , then the above lemma would immediately follow from Corollary 7.16 (because a finite-dimensional subspace
is always closed in a Hausdorff TVS). Alas, we need the above lemma to prove Theorem 8.3 below, so another proof
is needed.

Theorem 8.3. The topology σ(X ,Y ) is consistent with the duality 〈X ,Y 〉, that is, (X ,σ(X ,Y ))′ = Y .

Theorem 8.4. The weak topology σ(X ,Y ) is the weakest of all LC topologies consistent with the duality 〈X ,Y 〉.
Corollary 8.5. If X = (X ,τ) is a Hausdorff LCS, then τ is consistent with 〈X , X ′〉 and σ(X , X ′) ⊂ τ.

8.3. Polars.

Exercise 8.5. If τ1 ⊂ τ2, then E
τ2 ⊂ E

τ1 .

Proposition 8.6. Let 〈X ,Y 〉 be a dual pair. The closure of a convex set E ⊂ X is the same in all LC topologies consistent
with 〈X ,Y 〉.
Theorem 8.7. The closed convex sets are the same in all LC topologies consistent with a given duality.

Definition. Let 〈X ,Y 〉 be a dual pair and let E ⊂ X . The polar of E is defined as

E 0 := { f ∈ Y | ∀x ∈ E : | f (x)| ≤ 1} ⊂ Y .

Show that

Exercise 8.6. E ⊂ F =⇒ F 0 ⊂ E 0,

Exercise 8.7. (λE)0 = 1
λE 0 if λ ∈K\ {0},

Exercise 8.8. (
⋃
α∈ΓEα)0 =⋂

α∈ΓE 0
α,

Exercise 8.9. E 0 is absolutely convex and σ(Y , X )-closed,

Exercise 8.10. if X0 ⊂ X is a subspace, then (X0)0 = (X0)⊥ := { f ∈ Y | f |X0 = 0}.

Given a system of sets A ⊂ 2X , denote A 0 := {U 0 |U ∈ A}.

Proposition 8.8. Let B be a zero neighourhood base of an LCS X . Then X ′ =⋃
B0, where the polars are taken with

respect to duality 〈X , X ∗〉.
Let 〈X ,Y 〉 and 〈Y , Z 〉 be dual pairs such that X ⊂ Z . Given E ⊂ X , we can define the bipolar E 00 = (E 0)0 with

respect to these dualities.

Exercise 8.11. Show that E ⊂ E 00.

Proposition 8.9 (bipolar theorem). Let 〈X ,Y 〉 and 〈Y , Z 〉 be dual pairs such that X ⊂ Z . Given E ⊂ X the bipolar
E 00 with respect to these dualities satisfies

E 00 = absconvE
σ(Z ,Y )

.

When X is a Hausdorff LCS, by the bipolar E 00 of E ⊂ X we will usually mean the bipolar with respect to the
dualities 〈X , X ′〉 and 〈X ′, X 〉.
Corollary 8.10. Let X be a Hausdorff LCS X and E ⊂ X . Then E 00 = absconvE.

Corollary 8.11. Let X be a Hausdorff LCS X and E ⊂ X . Then E 000 = E 0.
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9. POLAR TOPOLOGIES

9.1. S-topologies and equicontinuous sets.

Proposition 9.1. Let 〈X ,Y 〉 be a dual pair and let B ⊂ Y . Then B 0 ⊂ X is absorbing if and only if B is σ(Y , X )-
bounded.

Thus given a system of S⊂ 2Y ofσ(Y , X )-bounded sets, the system of their polars S0 ⊂ 2X consists of absorbing
absolutely convex sets, so it is a prebase of some LC topology on X . Let us denote it by TS and call it the polar
topology defined by S or the topology of uniform convergence on the sets from S.

Since S000 =S0, we can assume that every element of S is absolutely convex and σ(Y , X )-closed. We can also
assume the following:

(PT1) S1,S2 ∈S =⇒ ∃S : S1 ∪S2 ⊂ S ( i.e., S is directed upwards),
(PT2) S ∈S and λ> 0 imply λS ∈S (i.e., Ŝ=S).

Moreover, TS is Hausdorff if and only if

(PT3) span
⋃
S
σ(Y ,X ) = Y .

It is clear that TS is defined by the family of seminorms {pS0 }S∈S, where pS0 is the Minkowski functional of S0.
Observe that pS0 (x) = sup f ∈S | f (x)| for all x ∈ X , so the convergence with respect to pS0 is the uniform convergence

on S. Let us also denote p(S) := pS0 .
Since being absorbing is a necessary condition for being an element of a prebase of an LC topology, we get

the strongest possible polar topology on X with respect to duality 〈X ,Y 〉 if we consider the system Sb ⊂ Y of all
σ(Y , X )-bounded sets. This polar topology β(X ,Y ) :=TSb

is called the strong topology.
The weak topology σ(X ,Y ) is also a polar topology with σ(X ,Y ) = TSσ

, where σ is either the system of all
one-element subsets or of all finite subsets of Y .

Proposition 9.2. Every Hausdorff LC topology τ on a vector space is a polar topology: τ=TB0 , where B is some zero
neighbourhood base of (X ,τ).

Definition. Let (X ,τ) be a TVS. Then S ⊂ X ′ is called equicontinuous (or τ-equicontinuous) if

∀ε> 0 ∃U ∈N : ∀ f ∈ S ∀x ∈U | f (x)| ≤ ε.

Proposition 9.3. Let X be a Hausdorff LCS. Then S ⊂ X ′ is equicontinuous if and only if S ⊂U 0 for some U ∈N .

Let us denote the collection of all equicontinuous subsets of X ′ by E .

Exercise 9.1. Prove that Ê = E .

Exercise 9.2. Prove that S1,S2 ∈ E =⇒ S1 ∪S2 ∈ E .

Theorem 9.4. Every Hausdorff LC topology τ on a vector space X is the topology of uniform convergence on τ-
equicontinuous sets

Some properties of equicontinuous sets:

• E is a bornology (or an ideal),
• E 00 ⊂ E ,

• if S ∈ E , then S
σ(X ′,X ) ∈ E and absconvS ∈ E ,

• every equicontinuous set is σ(X ′, X )-bounded.

9.2. Mackey topology.

Proposition 9.5. Let X be a vector space. Then (X ∗,σ(X ∗, X )) is a complete LCS.

Proposition 9.6 (Alaoglu theorem). Let X be a Hausdorff LCS. If U ∈N , then U 0 ⊂ X ′ is σ(X ′, X )-compact. (Due to
Proposition 8.8, the polar U 0 is the same for dualities 〈X , X ′〉 or 〈X , X ∗〉.)

Let 〈X ,Y 〉 be a dual pair. Consider the system S0 ⊂ 2Y of all σ(Y , X )-compact and absolutely convex sets. Note
that S0 satisfies (PT1) and (PT2).

Definition. The topology τ(X ,Y ) :=TS0 on X is called the Mackey topology.
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Let us point out thatσ(X ,Y ) ⊂ τ(X ,Y ), becauseσ(X ,Y ) =TSσ
=TS00

σ
and for every S ∈Sσ its polar S0 is a zero

neighbourhood of σ(X ,Y ), so S00 is σ(Y , X )-compact by the Alaoglu theorem and hence S00
σ ⊂S0. In particular,

this implies that τ(X ,Y ) is Hausdorff.

Theorem 9.7 (Mackey–Arens theorem). A Hausdorff LC topology τ on a vector space X is consistent with a duality
〈X ,Y 〉 if and only if σ(X ,Y ) ⊂ τ⊂ τ(X ,Y ). In that case, there is a system S⊂S0 such that τ=TS.

Corollary 9.8. The Mackey topology is the strongest LC topology on X , which is consistent with a duality 〈X ,Y 〉.
Corollary 9.9. A Hausdorff LC topology τ on X is consistent with a duality 〈X ,Y 〉 if and only if τ = TS for some
system S of absolutely convex and σ(Y , X )-compact subsets of Y .

9.3. Mackey theorem on bounded sets.

Theorem 9.10 (Mackey theorem). Let X be a Hausdorff LCS. Then E ⊂ X is bounded if and only if it is weakly
bounded (that is, σ(X , X ′)-bounded).

Corollary 9.11. Given a duality 〈X ,Y 〉, the bounded sets of X are the same in all LC topologies consistent with this
duality.

For proving the Mackey theorem we need the following proposition and the principle of uniform boundedness
from the Banach space theory.

Proposition 9.12. Let V be a compact and absolutely convex set in a Hausdorff LCS X . Then pV : spanV → R, the
Minkowski functional of V , is a norm on XV := spanV . Moreover, (XV , pV ) is a Banach space and the norm topology
on it is stronger than the induced topology on XV .

Proof. Scheme:

(I) V ⊂ X is absorbing if and only if spanV = X ,
(II) (XV , pV ) is Hausdorff if and only if pV is a norm,

(III) if V is bounded in X , then pV is a norm,
(IV) if V is compact in X , then (XV , pV ) is complete.

�

Let us recall the principle of uniform boundedness: if X and Z are Banach spaces and A is a system of bounded
linear maps A : X → Z such that A is pointwise bounded, that is, {A(x) | A ∈ A } is bounded in Z for every x ∈ X ,
then A is uniformly bounded, that is, {‖A‖ | A ∈A } ⊂R is bounded.

Proof of the Mackey theorem. Scheme: Take a weakly bounded E ⊂ X . As the set of functionals on X ′, it is pointwise
bounded. Take a nice zero neighbourhood U ⊂ X and consider the Banach space (X ′

U 0 , pU 0 ). Consider E as the set
of continuous linear functionals on it and apply the principle. �

Proposition 9.13. A metrizable LC topology is a Mackey topology. That is, if an LCS (X ,τ) is metrizable, then τ =
τ(X , X ′).

Proof. ... �

10. BARRELLED SPACES AND F-SPACES

10.1. Strong topology and barrelled space.

Definition. A barrel is a closed absolutely convex absorbing set. An LCS is a barrelled space if every barrel is a
zero neighbourhood.

It is easy to check that

• if X is a Hausdorff LCS, then U ⊂ X is a barrel if and only if U =U 00 with respect to 〈X , X ′〉,
• if X is a Hausdorff LCS, then U ⊂ X is a barrel if and only if there is aσ(X ′, X )-bounded set S ⊂ X ′ such that

U = S0,
• all LC topologies on X consistent with a duality 〈X ,Y 〉 have the same barrels,
• every LCS has a zero neighbourhood base consisting of barrels.

Proposition 10.1. Given a Hausdorff LCS (X ,τ), the following are equivalent:
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(1) (X ,τ) is a barrelled space,
(2) every σ(X ′, X )-bounded set S ⊂ X ′ is τ-equicontinuous,
(3) τ=β(X , X ′),
(4) τ= τ(X , X ′) =β(X , X ′),
(5) τ= τ(X , X ′) and β(X , X ′) is consistent with 〈X , X ′〉.

Let us extend the definition of equicontinuous sets to subsets of operators.

Definition. A set A ⊂ L(X ,Y ) is called equicontinuous if

∀V ∈NY ∃U ∈NX : ∀T ∈ A T (U ) ⊂V.

Exercise 10.1. Every equicontinuous set A ⊂ L(X ,Y ) is pointwise bounded, that is, {T (x) | T ∈ A} is bounded in Y
for every x ∈ X .

Theorem 10.2 (principle of uniform boundedness). If X is a barrelled space and Y is an LCS, then every pointwise
bounded set A ⊂ L(X ,Y ) is equicontinuous

Theorem 10.3 (continuity of the limit operator). Let X be a barrelled space and let Y be an LCS. Consider a sequence
(Tn) ⊂ L(X ,Y ) such that for every x ∈ X there exists T (x) := limn Tn(x). Then T ∈ L(X ,Y ).

10.2. F-spaces. Open mapping theorem. Recall that an LCS is metrizable if and only if its topology can be induced
by an at most countable system of seminorms {pn}n∈N. In that case, the defining translation invariant metric can
be chosen to be

d(x, y) =
∞∑

n=1

1

2n

pn(x − y)

1+pn(x − y)
.

This provides a zero neighbourhood base { 1
n B}n∈N, where B = {x | d(x,0) ≤ 1}.

Definition. A complete metrizable LCS is called an F-space or Frechet’ space.

Lemma 10.4. Let X and Y be F-spaces and T : X → Y a surjective linear operator. For every barrel U ⊂ X there is
V ∈NY such that V ⊂ T (U ).

Proposition 10.5. Every F-space is barrelled.

Theorem 10.6 (open mapping theorem). Let X and Y be F-spaces. A surjective T ∈ L(X ,Y ) (that is, linear and
continuous) is open, that is, T (G) is open for every open G ⊂ X .

10.3. Closed graph theorem.

Theorem 10.7 (continuity of the inverse). Let X and Y be F-spaces. If A ∈ L(X ,Y ) is bijective, then A−1 ∈ L(Y , X ).

Observe that (prove it!)z the topological product X ×Y of F-spaces X and Y is again an F-space, with its topol-
ogy induced by all seminorms rm,n of the form

rm,n(x, y) := pm(x)+qn(y),

where the systems {pm}m and {qn}n induce the topologies of X and Y , respectively.

Definition. Let T : X → Y be a linear operator. Its graph is the set grT := {(x,T x) | x ∈ X } ⊂ X ×Y . The operator T
is called closed if grT is closed in X ×Y .

Theorem 10.8 (closed graph theorem). Let X and Y be F-spaces. A closed linear operator T : X → Y is continuous.

11. PROJECTIVE LIMITS

11.1. Projective limit topology. Fix a vector space X , locally convex spaces Xγ and linear operators vγ : X → Xγ

for all γ ∈ Γ.

Definition. The weakest LC topology on X such that all operators vγ are continuous is called the projective limit
topology (induced by pairs {(Xγ, vγ) | γ ∈ Γ}). It is denoted by τproj. The space (X ,τproj) is called the projective limit
of these pairs.

Given prebases Pγ of NXγ consisting of absolutely convex sets, the zero neighbourhood filter NX of (X ,τproj) is

generated, e.g., by the prebase
⋃
γ∈Γ v−1

γ (PXγ ) = {v−1
γ (U ) |U ∈Pγ, γ ∈ Γ} or by the subbase

⋃
γ∈Γ v−1

γ (NXγ ).
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Proposition 11.1. If all Xγ are Hausdorff, then (X ,τproj) is Hausdorff if and only if⋂
γ

v−1
γ ({0}) = {0}.

Proof. Proposition 2.7 says that X is Hausdorff if and only if
⋂

NX = {0}. Note that, in general, given a filter F and
its subbase B, one has

⋂
F =⋂

B. So⋂
NX = ⋂

γ∈Γ

⋂
U∈NXγ

v−1
γ (U ) = ⋂

γ∈Γ
v−1
γ

(⋂
NXγ

)
=⋂

γ
v−1
γ ({0}).

�

Proposition 11.2. Let Y be an LCS. A linear operator T : Y → X is continuous if and only if so are all compositions
vγ ◦T : Y → Xγ.

Proof. Sufficiency is clear. For the necessity, note that T is continuous if and only if T −1(U ) ∈NY for all U in some
prebase PX of NX . So it is enough to check if T −1(v−1

γ (U )) = (vγ ◦T )−1(U ) ∈NY for all U in some prebase of NXγ

for all γ. This is clearly equivalent to the continuity of vγ ◦T for all γ. �

Proposition 11.3. A subset E ⊂ X is τproj-bounded if and only if vγ(E) is bounded for all γ.

Proof. As above, again it is enough to check if the set is absorbed by elements of some prebase of NX . �

To check the validity of the first two examples, just check the equality of prebases for the projective limit and
the usual definition.

Example 11.1. Let X0 ⊂ X . The induced subspace topology on X0 is a projective limit of the pair {(X , i )}, where
i : X0 → X is the injection map.

Example 11.2. Let 〈X ,Y 〉 be a dual pair. The weak topology σ(X ,Y ) is the projective limit of {(K, f ) | f ∈ Y }.

Example 11.3. Given a collection of topologies {τγ}γ on X , the projective limit {((X ,τγ), IX ) | γ ∈ Γ} is the weakest
LC topology generated by

⋃
γτγ, where IX : X → X is the identity.

Example 11.4. Any LC topology on X defined by a system of seminorms {pγ}γ is the weakest topology such that
all the seminorms pγ are continuous. Thus it is the projective limit of seminormed spaces (X , pγ), more precisely,
of pairs {((X , pγ), IX )}γ.

Example 11.5. Any LC topology on X is a projective limit of normed spaces. Take the seminormed spaces (X , pγ)
as above and consider vector spaces Xp := X /p−1(0) equipped with the norm ‖x+p−1(0)‖ := p(x) for every p = pγ.
Consider the operator kp : X → Xp defined by kp (x) = x + p−1(0). Note that k−1

p (BXp ) = p−1([0,1]), so that the
projective limit of {(Xp ,kp ) | p ∈ {pγ}γ} is exactly the original topology on X .

11.2. Product of locally convex spaces. Let X as a vector space be equal to the product
∏
γ Xγ = {(xγ) | xγ ∈ Xγ}.

Denote the projections by πγ : X → Xγ and the injections by jγ : Xγ→ X defined by πγ0 ((xγ)) = xγ0 and

jγ0 (x)γ =
{

x, if γ= γ0,

0, otherwise.

Note that ⋂
γ
π−1
γ ({0}) = {0}.

Exercise 11.1. Prove that jγ is linear and injective.

Exercise 11.2. Check that πγ ◦ jγ = IXγ (identity) and πν ◦ jγ = 0 if ν 6= γ.

Exercise 11.3. Check that πγ| jγ(Xγ) = j−1
γ .

Consider the projective limit topology on X defined by pairs {(Xγ,πγ)}γ. The next proposition observes the fact
that it coincides with the usual product topology.

Proposition 11.4. A net (xα) ⊂ X converges to x ∈ X if and only if πγ(xα) →α πγ(x) for all γ.
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Proof. It is enough to show that for a filter F on X one has F → 0 if and only if πγ(F ) → 0 for all γ. This is true,
because the former means that NX ⊂ F or, equivalently, PX ⊂ F for any prebase of NX , while the latter means
NXγ ⊂πγ(F )↑ or π−1

γ (NXγ ) ⊂F . �

Proposition 11.5. A net (xα) ⊂ X is Cauchy if and only if the net (πγ(xα))α is Cauchy for all γ.

Proof. This follows from the above by noticing that T (F −F ) = T (F ) − T (F ) for any prefilter F and a linear
operator T . �

The next two observations are just special cases of their projective limit versions.

Proposition 11.6. Let Y be an LCS. A linear operator T : Y → X is continuous if and only if so are all πγ ◦T , γ ∈ Γ.

Proposition 11.7. A subset E ⊂ X is bounded if and only if so are all πγ(E) ⊂ Xγ, γ ∈ Γ.

Proposition 11.8. X is Hausdorff if and only if so are all Xγ, γ ∈ Γ.

Proof. Proposition 11.1 gives the sufficiency. For the necessity note that jγ is injective and⋂
NX = ⋂

γ∈Γ
π−1
γ

(⋂
NXγ

)
⊃ jγ

(⋂
NXγ

)
,

because jγ(Xγ) ⊂π−1
β

(0) if γ 6=β. �

Proposition 11.9. A closed subset E ⊂ X is complete if and only if πγ(E) ⊂ Xγ is complete for all γ ∈ Γ.

Proof. Sufficiency. Using Propositions 11.6 and 11.5 for any Cauchy filter F on E it is straightforward to obtain
x ∈ X such that F → x. Since E is closed, x ∈ E . Necessity. Given a Cauchy net (xα) ⊂ πγ(E), note that ( jγ(xα)) ⊂ E
is Cauchy by Proposition 11.6, because πβ ◦ jγ = 0 if β 6= γ, so that ( jγ(xα)) converges to x ∈ E and hence also
((πγ ◦ jγ)xα) = (xα) to πγ(x). �

Corollary 11.10. The product of complete LC spaces is a complete LCS.

Proposition 11.11. A projective limit (X0,τproj) of {(Xγ, vγ)}γ∈Γ, such that
⋂
γ v−1

γ ({0}) = {0}, is isomorphic to a sub-
space of

∏
γ Xγ.

Proof. Define T : X0 → X := ∏
γ Xγ by T x = (vγx)γ. Then T −1(0) = ⋂

γ v−1
γ ({0}), so that T is injective and we get a

linear T −1 : T (X0) → X0. Note that vγ = πγ ◦T and hence πγ = vγ ◦T −1, so that both T and T −1 are continuous by
Proposition 11.2. �

Corollary 11.12. Every Hausdorff LCS is isomorphic to a subspace of a product of normed spaces.

Proof. This follows from Example 11.5, Proposition 11.1, and the above. �

Proposition 11.13. Let X = ∏
γ Xγ. For every γ, jγ : Xγ → jγ(Xγ) ⊂ X is an isomorphism. If all Xγ are Hausdorff,

then jγ(Xγ) is closed in X .

Proof. Exercises 11.1 and 11.2, together with Proposition 11.2, give that jγ is linear and continuous. Exercise 11.3
gives that so is j−1

γ , too. Note that jγ(Xγ) =⋂
β 6=γπ−1

β
(0) and that π−1

β
(0) is closed if Xβ is Hausdorff. �

12. INDUCTIVE LIMITS. BORNOLOGICAL SPACES.

12.1. Inductive limit topology. Fix a vector space X , for all γ ∈ Γ fix locally convex spaces Xγ and linear operators
uγ : Xγ→ X such that

X = span
⋃
γ

uγ(Xγ).

Definition. The strongest LC topology on X such that all operators uγ are continuous is called the inductive limit
topology (induced by pairs {(Xγ,uγ) | γ ∈ Γ}). It is denoted by τind. The space (X ,τind) is called the inductive limit
of these pairs.

Exercise 12.1. Prove that the topology τind really exists.

Proposition 12.1. An absolutely convex absorbing set U ⊂ X is a zero neighbourhood of τind if and only if u−1
γ (U ) is

in NXγ for all γ ∈ Γ.
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Proposition 12.2. A zero neighbourhood base of τind is

B := {absconv
⋃
γ

uγ(Vγ) |Vγ ∈NXγ }.

Proposition 12.3. An inductive limit of barrelled spaces is a barrelled space.

Proposition 12.4. Let Y be an LCS. A linear operator T : X → Y is continuous if and only if so are all T ◦uγ : Xγ→ Y ,
γ ∈ Γ. A set A ⊂ L(X ,Y ) is equicontinuous if so are all {T ◦uγ | T ∈ A}, γ ∈ Γ.

Let 〈X , X ′〉 and 〈Y ,Y ′〉 be dual pairs. The adjoint of a linear operator T : X → Y is the operator T ′ : Y ′ → X ∗
defined by T ′(g ) = g ◦ T . Note that (prove it!)z T ′(Y ′) ⊂ X ′ if and only if T is weakly continuous, that is, T :
(X ,σ(X , X ′)) → (Y ,σ(Y ,Y ′)) is continuous. If X and Y are Hausdorff LCS and T : X → Y is continuous, then (prove
it!)z T is weakly continuous, that is, T ′(Y ′) ⊂ X ′.

The inductive limit topology is a polar topology.

Proposition 12.5. If all Xγ and (X ,τind) are Hausdorff LCS, then τind = TS, where S is the system of all sets S ⊂
(X ,τind)′ such that u′

γ(S) ⊂ X ′
γ is τγ-equicontinuous for all γ.

The inductive limit and the projective limit are dual in some sense.

Proposition 12.6. Let all Xγ and (X ,τind) be Hausdorff LCS. Assume that for all γ, there is a certain polar topology
TSγ

on X ′
γ, where Sγ is some system of σ(Xγ, X ′

γ)-bounded sets.
Denote by S the system of all finite unions of sets of the form uγ(Sγ), where Sγ ∈Sγ. Then the polar topology TS

on (X ,τind)′ is the projective limit of {((X ′
γ,TSγ

),u′
γ)}γ.

12.2. Bornological spaces. Note that (prove it!)z a linear continuous operator T between LC spaces X and Y is
always bounded, that is, it maps bounded sets to bounded sets. Recall that for linear operators between normed
spaces, we have the reverse: a linear operator is bounded if and only if it is continuous.

Definition. An LCS X is a bornological space if every absolutely convex set U ⊂ X that absorbs every bounded set,
is a zero neighbourhood.

Proposition 12.7. Let X be an LCS. The following are equivalent:

(a) X is a bornological space,
(b) for every LCS Y every bounded linear operator T : X → Y is continuous.

Proof. Schema for (b) =⇒ (a): Take U ⊂ X as in the definition of bornological spaces, then it is absorbing and
hence its Minkowski functional pU is a seminorm. Note that the identity i : X → (X , pU ) is bounded and hence
continuous. This implies that U is a zero neighbourhood of X . �

Note that (prove it!)z if (X ,τ) is a Hausdorff bornological space, then τ is the Mackey topology τ(X , X ′). Recall
that we had the similar claim for the metrizable spaces.

Proposition 12.8. Every metrizable LCS is bornological.

Proof. Adapt the proof of 9.13. �

Proposition 12.9. An inductive limit of bornological spaces is bornological.

Proof. Use Prop. 12.7 together with Prop. 12.4. �

The above two propositions imply that an inductive limit of metrizable LC spaces is bornological. This state-
ment can be reversed in the following sense.

Theorem 12.10. A Hausdorff LCS is bornological if and only if it is an inductive limit of normed spaces. A complete
Hausdorff LCS is bornological if and only if it is an inductive limit of Banach spaces.

The theorem above follows from

Lemma 12.11. Let (X ,τ) be a Hausdorff LCS. On X , there exists the strongest LC topology τ′ with the same bounded
sets as τ. Moreover, (X ,τ′) is a bornological space and it is an inductive limit of vector subspaces of X equipped with
some norms. The topologies τ and τ′ coincide if and only if (X ,τ) is bornological. If (X ,τ) is complete, then (X ,τ′) is
an inductive limit of Banach spaces.
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Schema of the proof. Denote by S the collection of all closed bounded absolutely convex sets in (X ,τ). For every
A ∈ S, its Minkowski functional p A is a norm on X A := span A, the injections uA : (X A , p A) → (X ,τ) are continuous
(see the proof of Prop. 9.12), and X =⋃

A∈S uA(X A). Define τ as the inductive limit of {(X A ,uA) | A ∈ S}. Derive the
rest of the claims. �

Remarks:

• In the proof of the above lemma, we can replace the system of all closed bounded absolutely convex sets
S with any of its fundamental systems S0, that is, such that for every A ∈ S there is B ∈ S0 with A ⊂ B . This
implies that if the space (X ,τ) admits a countable fundamental system of bounded sets, then it can be
represented as an inductive limit of countably many normed spaces.

• In general, the classes of bornological spaces and barrelled spaces are incomparable. However, using the
above propositions we can prove (prove it!)z that every complete Hausdorff bornological space is bar-
relled.

13. SPECIAL CASES OF INDUCTIVE LIMITS: QUOTIENT, DIRECT SUM, STRICT INDUCTIVE LIMIT

13.1. Quotient space. Let X be a vector space and let M ⊂ X be its subspace. The set X /M := {x +M | x ∈ X } ⊂ 2X

becomes a vector space with M being the zero element and addition and scalar multplication defined pointwise
with the exception that 0 · (x +M) := M . (prove it!)z

This vector space X /M is called the quotient of X with respect to M . The canonical projection k : X → X /M ,
k : x 7→ x +M , is linear and surjective. (prove it!)z

If X is a TVS, then the prefilter k(N ) defines a linear topology on X /M , called the quotient topology. It is LC if
X is LC. Note that k is continuous with respect to these topologies. (prove it!)z

Proposition 13.1. Let X be an LCS. The quotient topology on X /M is Hausdorff if and only if M is closed.

Proof. If X /M is Hausdorff, then {M } ⊂ X /M is closed, so that k−1({M }) = M is closed. On the other hand, note
that k−1k(A) = A+M for all A ⊂ X , so that k−1k(N ) = M +N and⋂

k(N ) = k
(⋂

k−1k(N )
)= k

(⋂
(M +N )

)= k
(
M

)
= {M },

where the last equality holds if M is closed.
�

Note that the quotient topology can be induced by seminorms pk(U ) with absolutely convex U ∈ B forming a
base of N . Observe that pk(U )(x +M) = inf{pU (y) | y ∈ x +M }.

It is important to note that the quotient topology is the inductive limit of {(X ,k)}. (prove it!)zThe above propo-
sition then shows that the inductive limit of Hausdorff spaces may fail to be Hausdorff.

A special case of Proposition 12.3 is

Proposition 13.2. A quotient of a barrelled space is barrelled.

Proposition 13.3. Let T be a linear operator between LC spaces X and Y . Then T can be factorized as T = S ◦k,
where S : X /kerT → Y is an injective linear operator and k is the canonical projection onto X /kerT . Moreover, T is
continuous if and only if so is S.

Proposition 13.4. The topological dual (X /M)′ is algebraically isomorphic to M⊥ := { f ∈ X ′ | f (M) = {0}} ⊂ X ′.

Proof. The isomorphism is k ′, the adjoint of k, defined by g ∈ (X /M)′ 7→ g ◦k. �

Let 〈X ,Y 〉 be a dual pair and let a subspace M ⊂ X separate points of Y . Then 〈M ,Y /M⊥〉 is a dual pair and

Proposition 13.5. σ(M ,Y /M⊥) =σ(M ,Y ) =σ(X ,Y )|M .
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