INTRODUCTION

Order structures. A relation < on a set X is a preorder if it is
(1) reflexive: x < x,
(2) transitive: x<yandy<z = x<z.
A preordered set X is directed downwards if
(3) forall x, y there exists zsuch that z< x, y
and it is directed upwards if it is directed downwards for the inverse relation =.
A preorder is a partial order if it is
(4) antisymmetric: x<yandy<sx = x=y.
A partially ordered set is linearly ordered if x < y or y < x for all x, y. A subset E c X is bounded from above if for

some b € X all e € E satisfy e < x. An element m € E is called a maximal element of E if e € E and m < e imply
m=e.

Zorn’slemma. If every linearly ordered subset of a partially ordered set X is bounded from above, then X contains
a maximal element.

Vector spaces. A vector space over a field K (K is ) is a set X equipped with addition + : X x X — X and scalar
multiplication - : K x X — X operations such that (X, +) is an Abelian group:
e associative: x+ (y+2)=(x+y)+z,
e commutative: x+y=y+x,
o there exists 0 € X such that 0+ x = x,
e every x € X has the inverse —x € X such that —-x+x =0,
and multiplication is compatible with addition:
A x = Apx),
A+wx=Ax+pux,
AMx+y)=Ax+ Ay,
o Ix=x.

L]

We consider K to be either R or C and then talk about real or complex vector spaces. Given x € X, A e K, A cK, and
E, G c X, we will use the following notation: E+ G={e+gle€E, geG}, x+G={x}+G, AE={Ae| A€ A, ec E},
and AE = {A}E.

Vector subspaces and linear span. A subset Y c X in a vector space X is a subspaceif KY + Y c Y. The minimal
subspace containing a given subset E c X is called a linear span of E and denoted span E. The linear span of E is
just the collection of all linear combinations of elements in E:

oo n n
spanE = | ZKE:{ZAix,-I/IiE[K, xi €E, nel\l}.

n=1i=1 i=1

We denote (x) := span{x} for any x € X.

Linear independence and basis. A subset E c X is linearly independent if for any finite set {x1,...,x,} € E from
Y, Aix; = 0itfollows that A; = 0 forall i = 1,..., n. Alinearly independent set E < X such that span E = X is called
a basis of X.

Linear maps. A map (or an operator) A: X — Y between vector spaces X and Y is linear if A(Ax+y) = LA(x)+A(y)
forall (A, x,y) € K x X x X. If a linear operator A is bijective, then A7l s linear, too. A linear functional is linear
operator from X to K.

Bilinear maps. Given vector spaces X,Y,Z over K, amap B: X x Y — Z is bilinear if the maps By : Y — K,
y+— B(x,y),and By : X — K, y— B(x, y), are linear.

Set-valued maps. In general, given sets X, Y, Z and an operation * : X x Y — Z let us denote by () : 2X x2Y 02
the induced elementwise operation defined on subsets of these sets: A(x)B={a*b|ac A, b€ B}, with shorthands
a(*)B = {a}(*)B and A(x)b = A(x){b}. Sometimes, when the context is clear (as above with operations in a vector
space), we will omit the brackets. A special notation is % |4 := #(N)A={FN A| F € &} forany & c 2Xand Ac X.
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1. TOPOLOGICAL SPACES
We switch the first two subsections, because the original first section seems to benefit from using filters as well.

1.1. Filters and nets. Let X be a set.
A system 2B c 2% is a prefilter or a filter base if
(1) ¢¢%,
(2) ABe#B — ICePB Cc AnB (i.e, the poset (%, ) is directed downwards).
A system F c 2% is a filter if
1) ¢e¢&F,
(2 ABe¥ — ANBe %,
(B) AopBe¥ — Ae Z.

Denote o/ := {Sc X |3A€ of Ac S} for any o < 2X. Condition (3) means that Z! = . Clearly, a filter is exactly a
prefilter satisfying this additional condition. And a system 28 c 2% is a prefilter if and only if 2! is a filter (then 28
is called a filter base of 2').

Given two prefilters %8; and %, let us denote %; < % if %I c %27, this means that for every A € 98, there is
B € 9B, such that Bc A.

Definition. A net (xy)yer is a mapping y — xy from a non-empty directed set (T',>) to X.
Example. Givenanet (xy)yer < X, its tails or eventuality prefilter is %(xy) ={{xp: B> a} | @ €T’} and its eventuality
filter is F(x,) := Bx -

Note that given a filter &, we can always construct a net (xr) rez € & for which it is the eventuality filter. (Just
take the set of pairs {(F, x) | F € &, x € F} directed by the first coordinate.)
Definition. Let Ac X. A prefilter 2 on X is

e eventuallyin Aif Ae B! (i.e., Fc Aforsome F € %),
o frequentlyin Aif AnF # ¢ for all F € 28 (in short, @ & 98| 4).

The system &* of all sets, where & is frequent is called the grill of &.
A net is eventually or frequently in A if its eventuality filter is so.
Lemma 1.2. Ler (xy) be a net. There exists a system € c 2 (X) such that

(1) (xy) is frequentinall A€ €6,
(2) ABE€¢ = AnBEeC,
(3) forany Ac X either Ac € or X\ A€ €.

Q?: How do you translate this lemma to the language of filters?

Definition. A net (yp)pea = X is called a subnet of (xy)yer < X if 9(x7) c f}(yﬁ). In other words, taking a subnet
corresponds to taking a superfilter.

Q?: Prove that the latter definition is equivalent to
VyeT3BeAVS =By =y : yp=xp.
Lemma 1.3. Let (xy) be a net and let «f < 2 (X) be such a system that

(1) (xy) is frequentinall A€ o,
2) AABesf — dC Cc AnB.

Then there is exists a subnet (¥p) of (xy), which is eventually in A forall A€ o .
Q?: Again, please translate this lemma to the language of filters.

Definition. A filter & on X is called an ultrafilter if it is a maximal filter (i.e., it is not contained in any different
filter ¢4 on X). In other words, for any Ac X either Ae # or X\ Ae &.
An ultranet is a net, whose eventuality filter is an ultrafilter.

The two lemmas above essentially amount to proving the “ultrafilter theorem” (which can also be proven di-
rectly).

Proposition 1.4 (Ultrafilter theorem). Every filter is contained in an ultrafilter.
Or, in the language of nets: every net contains a subnet, which is an ultranet.
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1.2. Basics of general topology.
Topological space. Given a set X, a system 7 < 2% := {E | E c X} is a topology on X if:

(TH @¢,Xe€T,
(T2) Yc1 = U¥Y:=Ugew GE T,
(T3) EGet = FnGeT.

A set X equipped with a topology is a topological space, the sets in T are open sets.

Comparing topologies. Given two topologies 71,72 such that 7, c 15, 71 is called weaker and 1, stronger. The
weakest topology on X is the antidiscrete topology {@, X}, and the strongest is the discrete topology 2.

Subspace of a TS. Given a subset Xy < X in a TS X equipped with a topology 7, it becomes a TS itself if equipped
with the subspace topology 7o = T|x, := {Xo N G| G € 7}, then (X, 7o) is a subspace of (X, 7).

Interior points and neighbourhoods. If for some x € X and E c X there is G € 7 such that x € G c E, then x is an
interior point of E and E is a neigbourhood of x.

Neighbourhood filter and bases. The set A5 = A} of all neighbourhoods of x € X (for a topology 7) is a filter
(called the neighbourhood filter at x). Any its filter base %8, is called a neighbourhood base of x.

Theorem 1.1. Let X be a set and fix a non-empty system %, < 2% for every point x € X. The systems 9By, x € X, are
neighbourhood bases for some topology t on X if and only if

(B1) xeV forallV e Ay,
(B2) A,Be B, = ICe B, Cc AN B (this together with (B1) means that 98y is a filter base),
(B3) foreveryV € 9B, thereis V' € B, such that V' c V and for all y € V' there exists W € 9, such that W < V'

(in short, the conditionon V' is: V' € 98; foreveryyeV').

Fix systems of neighbourhood bases {%87} xc x and {,%’fc'} xex for topologies T and 7/ on X. Then clearly, T < 7’ if
and only if 47 c A7 forall x € X if and only if 987 < 987 forall x € X.

Let (X,7) bea TS, Y c X, and y € Y. In the subspace topology 7|y the neighbourhood filter at y is exactly
JVJ,T ly={YnU|Ue JVJ}, and .%JT,IY is its base whenever .QBJT, is a neighbourhood base at y for the topology 7.

Set closure and closed sets. A point x € X is a limit point of E c X if ./, (or any its base) is frequently in E: that is,
ENU # @ for all U € A%. The closure of E c X is the collection of all its limit points, denoted by E. Some properties
of the closure (prove them!)»X:

o)) Ecﬁ,fzf,_ _
(2) EICE2:_>E1_CE2,
() E1UE; =E1UE,.

The set E is called closed if E = E. Clearly, E is closed if and only if X \ E is open.

Continuous maps. Let (X,7x) and (Y,7y) be topological spaces. Amap f: X — Y is continuous at x € X if for
every U € Ay (y) there is V € A, such that f(V) c U (in short, Ay < F(N)!, where f(F) = {f(F) | F € Z} for any
system & c 2%,

The function f is continuous (that, is continuous at every point x € X) if and only if any of the following holds

() Gety = f G ey,
(2) if Fisclosedin Y, then so is f‘l(F) in X.

A continuous bijective map f : X — Y having a continuous inverse f~! is called a homeomorphism or an iso-
morphism. The topological spaces X and Y are then called homeomorphic or isomorphic.

Products of topological spaces. If X and Y are topological spaces, one can define a topology (called the prod-
uct topology) on X x Y by providing neighbourhood bases for each point w = (x,y) € X x Y as follows: %y, ;) =
By (x)By ={Ux V| U e By, Ve B, where B, and 9B, are some bases of A, and 4}, respectively. It is easy to
check that this system of neighbourhood bases satisfies conditions (B1)-(B3) of Theorem 1.1.

Clearly,amap f: X x Y — Z is continuous at (x, y) if and only if for all W € A%, ,) there are U € A, and V € A,
such that f(U x V) ¢ W. Note that then the functions fy:Y — Z, u— f(x,u), and f,: X — Z, v— f(v,y), are
continuous at y and x, respectively.
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Convergence in topological spaces.

Definition. A filter & convergesto x € X or & — x if #; < &. A net (x,) converges to x if so does its eventuality
filter F(x,):

Xy = X & Fy) =X = N S Fx)).
So afilter (or a net) converge to x if they are eventually in every neighbourhood of x.
Let us also say that a prefilter 2 converges to x and write % — x if the generated filter 28! does so.

Note that given this definition, it is immediate that a subnet of a converging net converges to the same point.

Cluster points.

Definition. A point x € X is a cluster point of a filter & (or a net (xy) having & as the eventuality filter) when & is
frequently in every neighbourhood of x. It is written & ~~ x (or (x,) ~ X).

In short, & ~» x < ¢ € N, (N)&. Note that then the latter system is a prefilter. So we have

Proposition 1.5. A point x is a cluster point of a filter & (or a net (xy)) iff there is a superfilter 4 > & (or a subnet
(yp) of (xy)) converging to x.

Proposition 1.6. An ultrafilter (or an ultranet) converges iff it has a cluster point.

Hausdorff spaces and other separation axioms. A topological space is Hausdorff (or separated, or T>) if for all
distinct points x,y € X (x # y) thereare U e Ay and V € A4, suchthat UnV = ¢.

A bit weaker condition is T;: a topological space is T; if for all distinct points x, y € X there is U € A4 such that
ygu.

Proposition 1.7. A topological space is Hausdorff if and only if every converging filter (or net) has just one limit.

Note that a topological space X is Tj if and only if the latter holds just for all neighbourhood filters. Another
equivalent condition is: (A% = {x} for all x € X (here (N« means (e A).

Describing closed sets and continuous functions via convergence. Let us say that a filter & is a filter on a subset
EcXifEe%.

Proposition 1.8.
(@) A point x is a limit point of a set E < there is a net (xy) < E such that x, — x < thereis a filter & such
thatEe€ & and & — x.
(b) AsetE isclosed < it contains all limits of all its converging nets <= it contains all limits of all converging
filters on it.
(c) Amap f: X — Y is continuous if and only if any or each of the following holds:
e Xy —x = f(xy) — f(x) for all converging nets (x,) < X,
o F - x = f(F)— f(x) for all converging filters & on X
(note that f(F) = {f (F) | F € &} is a prefilter when & is a filter),
o f(AN)— f(x) forallxe X.

1.3. Compact topological spaces. A system of subsets of X is called

» centered if any finite intersection of its sets is non-empty;,
¢ cover if its union equals the whole X.

A topological space X is called compact if any its cover consisting of open sets contains a finite subcover.
It is easy to see that X is compact <= any centered system of closed sets has non-empty intersection.

Theorem 1.9. The following are equivalent.
(@) X is compact,
(b) every net (or filter) has a cluster point,
(c) every net has a converging subnet (or every filter has a converging superfilter),
(d) every ultranet (or ultrafilter) converges.



2. TOPOLOGICAL VECTOR SPACES

2.1. The notion of TVS. Let K be either R or C. A vector space X over the field KK, equipped with a topology 7, is
called a topological vector space if the addition T: X x X — X, (x,y) — x+ y, and the multiplication by a scalar
S:KxX— X, (A4, x) — Ax, are continuous.

Written out, this means:

o Continuity of addition:
VX, yEXVWE Ny U ENIVEN, : U+V W,
¢ Continuity of scalar multiplication:
Vxe XVAeEKVYWe N, AU e N36>0: B(A,6)-UcW,
where B(A,8) = {u €K | |A - u| < 8} is a closed ballin K (e.g., B(A,8) = [A— 8,1+ 6] if K = R).

Translation and homothety. Fixing a coordinate xg in the addition T above we get the translation mapping Ty, :
X — X, x— x+ xp. Clearly, Ty, is a continous linear map. Since its inverse is T_y,, also a continuous translation,
Ty, is a homeomorphism from X to itself. In particular, it maps open sets to open sets and closed sets to closed
sets.

Similarly, fixing a scalar Ag # 0 in the multiplication S, we get the homothety mapping Sy, : X — X, x — Agx.
Again, it is a linear homeomorphism with its inverse being Sy, .

Proposition 2.1. IfG is open (closed) subset ofa TVS X, x € X, and A € K, A # 0, then AG + x is also open (closed).

In general, a linear homeomorphism between topological vector spaces is called an isomorphism of topological
vector spaces.

Zero neighbourhood base.

Proposition 2.2. If % := 9, is a neighbourhood base at 0, then x + %8 := {x+ U | U € %} is a neighbourhood base at
x. In short, (x + .%)T =N

In the following, A" := Ag will denote the zero neighbourhood filter and 28 will denote some of its filter base
(that is, a zero neighbourhood base).
The two latter propositions imply several statements:
e Ue N = AUeNforall 1 #0,
* Xy— X <= xy—-x—0,
¢ alinear map between TV spaces is continuous if and only if it is continuous at 0.

2.2. Topologization of vector spaces.
Absorbing and balanced sets.

Definition. A set E absorbs a set A if there is § > 0 such that B(0,8) - A  E. A set E is called absorbing if it absorbs
every point x € X (that is, every one-point set {x}).

Definition. A set E is balanced if B(0,1) - E c E.

* A non-empty balanced set contains 0 and is symmetric.

If A and B are balanced, then so is A + B.

If A and B are absorbing, then sois An B.

If Ais balanced, then sois A A for any A € K.

If Ais absorbing, then so is A A for any A € K such that 1 # 0.

« Abalanced set E absorbs a set A if and only if there is § > 0 such that §A c E.

Proposition 2.3. Ina TVS X:
(1) everyU € N is an absorbing set,
(2) everyU € N contains a balancedV € N .

Corollary 2.4. Any TVS has a zero neighbourhood base consisting of absorbing balanced sets.
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Theorem 2.5. Every TVS has a zero neighbourhood base 98 consisting of absorbing balanced sets and such that
(NB4): for every U € BB thereisV € B withV +V c U.

Conversely, in a vector space X, any prefilter 8 consisting of absorbing balanced sets and satisfying property (NB4)
defines a topology on X when taking a neighbourhood base of any point x € X to be

By =x+B.
With respect to this topology, X becomes a TVS.
Proposition 2.6. Every TVS has a zero neighbourhood base consisting of closed balanced sets.
Exercise 2.1. Prove that the closure of a balanced set in a TVS is balanced.
Exercise 2.2. Prove that the closure of a vector subspace in a TVS is a vector subspace.

Proposition 2.7. A TVS is Hausdorff <= (% = {0} for all (or some) zero neighbourhood bases 9. (In particular, a
TVS is Hausdorff < itis Ty.)

Example 2.1. A normed space X is a TVS having {%B x | n € N} as one of its zero neighbourhood bases.

3. BOUNDED AND COMPACT SETS IN A TVS

3.1. Bounded and completely bounded sets.
Definition. A set E c X is bounded if it is absorbed by every zero neighbourhood.

Definition. A set E c X is completely bounded or precompact if for every U € A there is a finite set Ey < X such
that Ec Eg+ U.

Note that E can be chosen inside of E. For every e € Ey we can assume En(e+U) # @ and choose b, € En(e+U).
Then e+ U c b, —U+U. Soif U is taken to be balanced and such that U + U c V for a given V € 4/, then E c {b, |
ecEg}+V.

Let .# denote the system of all bounded or all completely bounded sets in X. Then (Q?: )

e AcBe¥ — Ae ¥,

e AABe¥ — AUBe.¥,
o every finite setis in .7,
AeK, Ae S — LAe S,
e ABEY¥ — A+Be ..

A system . satisfying the first 3 of the above properties is called an ideal system of sets or a bornology on X.
This is something that is dual to being a filter. In fact, the system of all complements {X \ A| A € ¥} is a filter on X.

Note that every completely bounded set is bounded, because given a balanced U € .4 and a finite (and thus
bounded) set Ey we can find p > 1 such that Ey < pU, so Eg+ U c pU + U < pU + pU = (U + U).

Proposition 3.1. If.% is as above, then A€ ¥ —> A€ .¥.

Proof. For boundedness, given a closed and balanced U € A4, uU is closed too. So E c pU if and only if the same
holds for E.

For complete boundedness, given a closed U € ./, find a finite Ey such that E c Ey + U = Ucg, e + U and note
that the latter set is closed as a finite union of closed sets. O

The definition of bounded sets is similar to some kind of continuity. The next proposition says it precisely.

Proposition 3.2. A set A is bounded if and only if for every (A,) c K such that A, — 0 and every (x,) € A, one has
Anx, — 0.

Exercise 3.1. Prove that AE < AE.



3.2. Compact sets.

Definition. A filter & is Cauchy if for every U € 4 there exists F € & such that F — F c U. A netis Cauchy if so is
its eventuality filter.
A set Ac X is complete if every Cauchy filter on (or net in) A converges to some element of A.

Exercise. Define A& ={F - F | F € &#}. Is it afilter or a prefilter? If it were, then we could say that & is Cauchy if
and only if A& — 0.

Proposition 3.3. A compact set is completely bounded.

Proof. Given a compactset Aand an open U € .4, note that A+ U =, 4 a+ U is an open cover of 4, so it contains
a finite subcover Ag + U, with Ag finite. O

Proposition 3.4. A compact set is complete.

Proof. Itis enough to show that a Cauchy filter & that clusters at x, converges to x: & ~» x —= & — x.
Given Ve N, findU e &/ withU+U c V and F € & with F-F c U. Since & ~ x, we have that G:= (x+U)NF #
@,50FcF-G+GcF-F+x+UcU+x+Ucx+V. |

The induction on the definition of ultrafilters implies
Lemma 3.5. If % is an ultrafilter on X = U;?:l Xy, then X € & for someke{l,...,n}.

Lemma 3.6. A set E is completely bounded if and only if for every U € A there are Sy, ..., Sy such that E =U!" | S;
and S; —S;c U foralli.

Proof. Given U € ./ find a balanced V € A with V+V c U and {x,,...,x,} such that E c U;’:I x; + V. Note that
Xi+V-(x+V)=V-V=V+VcU. O

Theorem 3.7. A set is compact if and only if it is complete and completely bounded.

Proof of necessity. Observe that the two above lemmas say that every ultrafilter on a completely bounded set is
Cauchy. Indeed, take a precompact set E and an ultrafilter & on E. Given U € .4 and applying the above lemmas
weget Sc EsuchthatSe % and S-Sc U. ]

4., METRIZABLE TVS

In a metric space (X, p) the sets B(x,1/n), n € N, form a neighbourhood base for any point x € X. Thus, in a
metrizable topological space every point has a countable neighbourhood base.

4.1. Metrizable TVS.

Definition. Let X be a vector space. A mapping |- | — R, x — |x|, is a pseudonorm if
1) x=0 < |x|=0,
2) |Ax| = |xlif|A] =1,
@) lx+yl=lxl+Iyl

Note that every norm is a pseudonorm. In turn, a pseudonorm induces a metric on X defined by p(x, y) = |x— I,
which is translation-invariant. d(x +z,y +z) =d(x,y).

Proposition 4.1. If a Hausdorff TVS has a countable zero neighbourhood base, then its topology can be induced by
a pseudonorm.

Proof. We can assume that the zero neighbourhood base % = {V,, | n € N} consists of balanced sets such that
Vis1 + Vg1 € V. Denote by Q; := {Zﬂn | m, n € Z} the set of dyadic rationals and define f: Q2N (0,1) — 22 (X) by
n 1 n

— | = Vi .
Note that f(q1)+ f(q2) < f(q1+ g2) whenever g1, G2, g1+ g2 € Q2n(0,1). Indeed, f(q1)+ f(27") iseither f(q1+27 n)
asneeded or f(q1 -2+ f2™M+ f27) c f(gr1 —27™ + f(27*"!) with g1 — 27" having fewer primitive addends
in it than ¢;. Note that, in particular, f(q;) < f(g2) whenever 0 < gq; < g, < 1.

Let us define |x| :=inf({g€ Q2N (0,1) | x € f(g)} U{1}). (Then |x| = 1 for all x.)
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(1) Clearly, |0] =0, and |x| = 0 means that x € f(q) with g <27" for every n € N, so that x € f(27") = V,;, and
therefore x € %8 = {0}.
(2) Note that f(q) is balanced as a finite sum of balanced sets, therefore Ax € f(q) for |A| = 1 whenever x €

f(@.
(3) We only have to consider the case |x| + |y| < 1. Note that

lglxefii+iglye f(@t=1{gs+qylx€ f(qx), yE fgit<{gx+qylx+yeflgxitq)t=1{qglx+ye f(q)},
therefore
lx|+|yl=inf({g | x€ f(@}+1g |y € f(@}) = |x+ yl.
This shows that | - | is indeed a pseudonorm. It remains to observe that

1 1
Vn+1cB(0,2—n):{x:|x|<2—n}cVn,

and therefore y + V41 < B(y, Zln) c y+ V, for any y € X, so that the neighbourhood filters at y are the same for the
induced and the original TVS topology. |

Theorem 4.2. The following are equivalent for a Hausdorff TVS:

(1) it has a countable zero neighbourhood base,

(2) the topology is induced by a pseudonorm,

(3) the topology is induced by a translation-invariant metric,
(4) the topology is metrizable.

Proposition 4.3. Iftwo translation-invariant metrics on a vector spave both induce the same topology, which makes
this vector space a TVS, then these metrics have the same Cauchy sequences and are simultaneously complete or
incomplete.

Proposition 4.4. A metrizable TVS is complete if and only its topology is induced by a complete translation-invariant
metric. In other words, a metrizable TVS is complete if and only if every Cauchy sequence converges.

Definition. A TVS is locally bounded if there is a bounded U € .A". A TVS is locally compact if there is a compact
UeN.

Proposition 4.5. Every locally bounded Hausdorff TVS is metrizable.

Exercise 4.1. If B € ./ is bounded, then {%B | n €N} is a countable zero neighbourhood base.
4.2. Finite-dimensional TVS.

Proposition 4.6. A Hausdorff TVS of dimension n < oo is isomorphic to m,,.

Proof. Let X =span{ey,...,e,}. Define T: m;, — X by T((1;)) = ?:1 A;e;. From linear algebra we know that T is a
bijective linear map. Since in m,, the convergence of a net of vectors imply the convergence of their corresponding
coordinates, the continuity of addition and scalar multiplication imply that T is continuous.

In order to show the continuity of T}, it is enough to show it at 0: for every zero neighbourhood U in m,, its
preimage (T~!)"1(U) = T(U) must be a zero neighbourhood of X. Since {¢B,, |¢ € (0,1)} form a zero neighbour-
hood base in m,, and T is linear, it is enough to show that T'(B;,) is a zero neighbourhood in X.

Consider the sphere S;;,, = {x € m;,, : | x|l = 1}. Itis a closed and bounded set in a finite-dimensional Banach
space, so it is compact. Then its continuous image T'(S;;,) = X is compact as well and hence closed. Since 0 ¢ Sj;,,,
so also 0 ¢ T'(S;,,). Therefore, X\ T'(S;,,,) is an open zero neighbourhood. It contains a balanced zero neighbour-
hood V. If V & T'(B,,,) then there exists y € m, such that ||y|l >1 and Ty € V. But then #Ty eVNT(Sm,) a

1Tyl
contradiction. So V < T(By;,), as needed. O

Corollary 4.7. A finite-dimensional subspace of a Hausdorff TVS is closed.

Proof. The above proposition (recall that m,, is complete) and the exercises below give that a finite-dimensional
subspace is complete and that a complete set is closed.
]

Exercise. Show that a TVS isomorphic to a complete TVS is complete, too.
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Exercise. Show that a subspace of a TVS is complete in the induced topology if and only if it is complete as a
subset.

Exercise. Show that a convergent filter is Cauchy.
Proposition 4.8. A locally compact Hausdorff TVS X is finite-dimensional.

Proof. Take a compact balanced V € 4. It is bounded, so Exercise 4.1 gives that &/ = {27"V | ne N}'. Since V
is completely bounded, V c Vj + %V for some finite set V; « V. Consider the finite-dimensional subspace Y =
span Vp. We have V c Y + 3 V. Dividing by 2, this gives 1V Y + 1 V. Adding the two inclusions together, we get
VcY+Y+1vey+1v. Thus by induction we have V e M,en(Y +27"V) =Y =Y. So spanV < Y. On the other
hand span V = X, because V is absorbing. ]

4.3. Examples.

Example 4.1. Consider the vector space
CC):={x=x(1t) | x:C— K is continuous}
with addition and scalar multiplication defined pointwise: (Ax + y)(£) = Ax(#) + y(1).
Let us denote pj,(x) := maXj <, [x(#)| and V¢ = {x | p,(x) < €} and show that B := {V,,. [ n €N, € > 0} is an

additive prefilter consisting of absorbing balanced sets:

(1) Vinax(n,m),min(e,5) © Va,e N Vin,s, 50 2B is a prefilter.

(2) pn(Ax) =|Alpn(x), so V¢ is balanced,

(3) forevery x€ X, p, (mx) <€, 80 Vy,. is absorbing,

4) Vye 4 Vpye © Ve, s0 2B is additive.
Thus 28 is a zero neighbourhood base for some TVS topology. Since (.>o Vi,,¢ clearly consists of functions, which
are zero on By (0, n), we have (28 = {0}, so that the induced topology is Hausdorff. Since every V,, . contains Vn, 1
for some i € N, our base 28 has a countable generating subsystem {Vn’ 1}n,ien, O that the induced topology is

metrizable.

Given a Cauchy sequence (x;) < C(C) let us denote yi := xilpy 0,n) and observe that (yx) is a Cauchy sequence
in the Banach space C(B (0, n)) equipped with the norm p;,, so it converges to the pointwise limit y € C(By (0, n))
in the norm. This means that the pointwise limit x of (x;) is continuous on every Bk (0, ), hence continous on the
whole C, and so clearly x;, — x in C(C).

So, C(C) is a complete TVS.

Remark. Recall that given a compact Hausdorff topological space K, the space C(K) c KX of all continuous func-
tions on K is a Banach space, when equipped with the norm | f|| := max;cx|f(#)|. The completeness of the
norm here follows, e.g., from the Arzela-Ascoli theorem: a subset A < C(K) is relatively compact if and only if it
is bounded and equicontinuous.

5. CONVEX SETS AND SEMINORMS
5.1. Convex subsets in a vector space. Let X be a vector space.....

Definition. Given x,y € X denote [x,y] :={Alx+ (1 -A)y| A €[0,1]}. Asubset E c X is convex if [x, y] c E for any
two points x, y € E. A balanced convex set is called absolutely convex.
Proposition 5.1. A subset E c X is absolutely convex if
{Ax+pylIA+1pl <1, L,peKtcE

for any two points x,y € E.

If we define the scalar product for vectors - : K" x X" — X like this: (A)-(xg) = Z=1 Ak Xk, then the convexity and
the absolute convexity of E mean respectively that SZZ -E2c Eand El% - E? c E, where E[IIZ ={A)eK™ | XAl <1}

1
is the closed unit ball of the Banach space [f and S;jn ={(A;) eR"*| A =0, Y A; = 1} is the positive part of its sphere.
1

Some properties:

o if Ey, a €T, are convex (absolutely convex), then so is (ger Eq,
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e given 6 € K and a linear map T : X — Y, if E;, E; c X are convex (absolutely convex), then so are E; + Eo,
0E;, and T (Ey).
Lemma5.2. LetEc X.
(1) IfE is convex then S;,-E" < E foralln e N.
1

(2) IfE is absolutely convex then E[{l -E"cE forallneN.

Definition. Let E c X. Then
o0
convE:=J S}, -E"
n=1 1

is called the convex hull of E and
absconvE:= J By -E"

n=1
is called the absolutely convex hull of E.

Example 5.1. Make sure that E c convE c absconvE c spanE.

Let us note that conv E (absconvE) is the minimal (absolutely) convex set containing E.
Example 5.2. Show that if E c X is balanced, then so is conv E and hence conv E = absconvE.
Proposition 5.3. Let X bea TVS. IfE c X is convex, then so is E.

Corollary 5.4. IfE c X is absolutely convex, then so is E.

Let Ey, ..., E, c X be absolutely convex. Observe that

n —_—
absconv | J E; = Byn - (Ey x -+ x Ep).
i=1

Proposition 5.5. IfEj, ..., E, < X are compact and absolutely convex sets, then so is absconvU}_ | E;.
5.2. Seminorms and Minkowski functionals. Let X be a vector space.

Definition. A functional p: X — Ris
(1) positively homogeneous if p(1x) = Ap(x) for 1 =0,
(2) absolutely homogeneous if p(Ax) = |A|p(x) for 1 € K,
(3) subadditiveif p(x+ y) < p(x)+ p(y),
(4) sublinear if it is positively homogeneous and subadditive,
(5) seminorm if it is absolutely homogeneous and subadditive.

Exercise 5.3. Prove that
(1) asublinear functional p satisfies p(0) =0 and |p(x) — p(y)| = max{p(x - y), p(y — x)},
(2) aseminorm p satisfies p(x) =0 and |p(x) — p(Y)| < p(x— ),
(3) if p is a seminorm, then p~1(0) c X is a vector subspace of X.

Exercise 5.4. Prove that if p is a seminorm, then both the open and closed unit balls B, := p‘1 ([0,1)) and Ep =
p~1([0,1]) are absolutely convex and absorbing.

Definition. Let U c X be an absorbing set. The functional py : X — R, x — inf{y > 0 | x € pU}, is called its
Minkowski functional or gauge.

Exercise 5.5. Prove that py(0) =0 and 0 < py(x) < co.

Proposition 5.6. Let U c X be an absorbing set. Then
(1) pu is positively homogeneous,
(2) ifU is balanced, then py is absolutely homogeneous,
(3) if U is convex, then py is subadditive and B, « U Cgpu-

Corollary 5.7. The gauge of a convex absorbing set is a positive sublinear functional. The gauge of an absolutely
convex absorbing set is a seminorm.
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Proposition 5.8. Let p: X — R be a seminorm and U := Ep. Then py = p.
Let X beaTVS.
Lemma 5.9. Ifa sublinear functional p : X — R is continuous at 0, then it is continuous everywhere.

Theorem 5.10. An absorbing set U c X is a zero neighbourhood if and only if py is continuous. If U is open, then
U = By,. If U is closed, then U = By, .

6. HAHN-BANACH THEOREM

6.1. Hahn-Banach theorem for real vector spaces. Recall that the algebraic dual of a vector space X is the vector
space X* of all linear functionals f : X — K with vector space operations defined pointwise: (Af] + f2) = 1f1(x) +
f2(x).

Let X bea TVS.

Proposition 6.1. A linear functional f € X* is continuous if and only if there is U € A such that f(U) c K is
bounded, that is, f(U) c Bk (0, M) for some M > 0.

Proof. Itis enough to consider continuity at 0.

(=): By continuity, since B (0, 1) is a zero neighbourhood in K, there is U € 4" such that f(U) < Bk (0, 1).

(<): We have f(;U) = 17 f(U) < Bk (0, ¢) for all £ > 0 with the latter sets forming a zero neighbourhood base in
Kand 57U € .4 forall e > 0. O

The topological dual of X is the vector subspace X’ of X* which consists of continuous functionals.
Let Y be a subspace of a vector space X and let f € X*. Define f|ly € Y* by fly(y) = f(y) forall ye Y. Then f is
called an extension of f|y to X, and f|y is called the resrictionof f to Y.

Theorem 6.2 (Hahn-Banach for K = R). Let X be a real vector space and X, c X its subspace. Let p: X — R be a
sublinear functional. If fo € X satisfies fo(x) < p(x) for all x € Xy, then there exists an extension f € X* of fo such
that f(x) < p(x) forallx e X.

Proof. Consider a partially ordered set S of pairs (Y, g) where Y c X is a subspace containing X, and g € Y™ is an
extension of fy to Y such that g(y) < p(y) forall y € Y, the order given by (Y1, y1) < (Y2,y2) if Y1 c Yo and g2y, = g1.
Zorn's lemma gives the claim once we show that

(1) if Y # X, then (Y, g) is not maximal,
(2) alinearly ordered subset of S has an upper bound.

(1) Take z € X \ Y and note that

gxX)+g)=gx+y)=px+y)=px-2)+ply+2
or
gX)-px—2)=ply+2)—g)

forall x,y € Y. So, A:=sup,y(gx) — p(z+x)) < infyey(p(x — 2) — g(x)) =: B. Take any ¢ € [A, B] and define
f:Y+Rz—Rby f(y+A1z) = g(y)+ At. Itis easy to see that Y + Rz is a subspace of X and that f is correctly defined.
The inequality f(y + Az) < p(y + 1z) follows from the choice of ¢.

(2) Given a linearly ordered set {(Yy, g4)lq < S, define Y =, Yy and g: Y — R by g(y) = g (y) for any a such that
¥y € Y,. Again it is easy to see that g is correctly defined, linear, and g(y) < p(y) for all ye Y, so that (Y, g) € Sis the
required upper bound. U

Corollary 6.3. Let X be a real vector space. For any sublinear functional p : X — R there exists f € X* such that
f(x) < px) forallxe X.

Note that the above corollary is non-trivial only in the case, when the sublinear functional has some negative
values.
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6.2. Hahn-Banach theorem for complex vector spaces. Given a vector space X over C, consider the restriction
of the scalar product - : C x X — X to R x X. The set X equipped with this restriction and the unchanged addition
becomes a real vector space, which we denote by Xg.

Theorem 6.4 (Hahn-Banach for K = C). Let X be a vector space over K (K is either R orC) andletp: X — R be a
seminorm. If a linear functional fy, defined on a subspace Xy c X, satisfies | fo(x)| < p(x) for all x € Xy, then it has
an extension f € X* such that | f(x)| < p(x) forall x € X.

Proof. (K =R): Applying Theorem 6.2 we get an extension f € X* such that f(x) < p(x) for all x € X. The claim
follows, because — f(x) = f(—x) < p(—x) = p(x), too.

(K = ©): Denote ¢po(x) = Re fy(x), then ¢ € (Xo)[;i and fo(x) = ¢o(x) — ipg(ix). Also, |Po(x)| < | fo(x)| < p(x). So
applying the case K = R, we get ¢ € X such that [¢p(x)| < p(x) for all x € X. Then f(x) := ¢(x) — i¢p(ix) defines a

linear functional f € X*. If f(x) #0, then f ( ';Eg' x) =|f(x)| >0, so that

If(x)lx): (P(If(x)lx)s (If(x)lx)_ TN ) = po.

f(x) f(x) fx) ") f

If(x)|=f(
O

6.3. Separation theorems. Let g: X — R be a mapping. Letusdenote [g=a]l={xe X |gx)=a}, [g<al={x€
X | g(x) < a}, and in the same manner also [g > a], [g = «], and so on.

Let X be areal vector space and f € X*\{0}. Aset H:=[f = a] is called a hyperplane. Note that Hy := [f =0] # X
and so H = z+ Hy for any z € H. Every such hyperplane yields corresponding half-spaces [ = a], [f < a] and
strict half-spaces [f > a], [f < a]. Both a hyperplane and a functional defining it are said to (strictly) separate two
subsets of X if these subsets reside in different (strict) half-spaces, corresponding to the hyperplane.

Proposition 6.5. In a real TVS X a hyperplane H = [f = a] is either closed (H = H) or dense (H = X). It is closed if
and only if f is continuous.

Proof. Clearly, H is closed if f is continuous. If f is discontinuous, then (prove it))*X there is anet (xq) © X such
that x, — 0 but f(x4) =1. Now y, :=x— f(x)xq — x and (y,) € Hyp = [f = 0] for any x € X. So Hy = X but then also
H=2z+Hy=2z+Hy=Xgivenany z€ H. (]

Let X bea TVS.
Lemma 6.6. Every f € X*\ {0} is an open mapping, that is, it maps open sets to open sets.

Proof. Find xp € X such that f(xp) = 1. Take a non-empty open G c X and x € G. Then G- x € ./, so it absorbs
Xo, hence there exists € > 0 such that By (0, ¢) - xo € G — x. Applying f, we get Bk (0,¢) < f(G—x) = f(G) — f(x) or
f(x)+ Bk(0,¢) c f(G), so that f(x) is an interior point of f(G). O

Theorem 6.7. Let E,G < X be convex such that EN G = @ and G is open. Then there exist f € X' and t € R such that
Ref(z)<t<Ref(y) forallze Gand y € E (thatis, GC [Re f < tl and Ec [Re f = t]).

Proof. It is clearly enough to prove the case when K =R and G,E # . Fix any yp € E and zp € G and denote
Xo:=Yo— 29 and C:= G— E + xo. Then C is open, convex, 0 € C, and x( € C. Hence its gauge p := pc is a continuous
positive sublinear functional such that p(xp) = 1. Define a linear functional f; : R xo — R by fo(Axo) := A. Then
fo(Axp) = A < p(Axp). Applying Theorem 6.2 we obtain an extension f € X* such that f(x) < p(x) for all xe X.

Note that f(x) < p(x) =1 and hence also f(—x) = —1forall x € C. Thus f(Cn(-C)) c[-1,1]withCn (-C) e &,
so f is continuous by Proposition 6.1.

Forye Eandze Gweget f(2)—f()+1=f(z—y+x9) < p(z—y+xp) <1, because z—y+xp € C and C is
open, so that f(z) < f(y) forall ze G and y € E. Since f(G) c R is open, setting ¢ := sup f(G) yields the needed
inequalities. ]

Corollary 6.8. If X contains non-trivial open convex subsets, then X' # {0}.
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7. LOCALLY CONVEX SPACES
7.1. Describing a locally convex topology via zero neighbourhood bases and via seminorms.
Definition. A TVS X is locally convex (LCS) if every U € & contains a convex V € A,
Proposition 7.1. In an LCS X every U € A contains a closed absolutely convexV € N .

Proof. Take a closed U € A& . There are a convex V € A" and a balanced W € A such that W c V < U. Now convW
is absolutely convex (prove it and W c convW c V c U. O

Recall that a centered system of sets is such that no finite intersection of its sets is empty. Every centered system
generates a filter in a unique way: the smallest filter containing it. Vice versa, every subset of a filter is a centered
system. A centered system is also called a filter subbase.

If we denote by 7(28) the system of all finite intersections of the sets in a centered system 2, then 7(%) is a
prefilter.

Consider an arbitrary system 98 of absolutely convex absorbing sets in a vector space X. It is centered, because
0 € N %,. However, the generated filter 77(%8,)' may fail to be a zero neighbourhood filter for some TVS because it
may fail to be closed under multiplication by some € > 0.

Denote < := Ri(ef ={eU | U € o, € > 0} for any system «f < 2X_ Note that 7@?0) c n(@)) and both these
systems are prefilters, generating the same filter.

Exercise 7.1. Prove that this filter satisfies conditions of Theorem 2.5.

Proposition 7.2. Every system %, of absolutely convex absorbing sets in a vector space X generates an LC topology
having (%) as a zero neighbourhood base (and 98 as its subbase). This topology is Hausdor{f if and only if
N%o = {0}.

The system 8 is then called a prebase of the corresponding zero neighbourhood filter .4". That is, a system
9 consisting of absorbing absolutely convex sets is a prebase of A if %, is its subbase. Note that any subsystem
%) consisting of absolutely convex sets and containing 93, is also a prebase of A" (in particular, any subsystem %6,
such that 2y c 6 < 7(%o)).

Proposition 7.3. (1) Every system 2 of seminorms on a vector space X defines a locally convex topology T on it
via the prebase {B, = p~1((0,1]) | p € 2}. The elements of the corresponding zero neighbourhood base are of
the form

We ptrpn -= {xElel_z:lxpi(x) SE},

wheree >0, neN, and py,...,pn € 2. The topology v is Hausdorff if and only if 2 separates points in X,
that is,
VxeX3IpeP: p(x) #0.

(2) Every locally convex topology can be generated by a system of seminorms in this way.

Proposition 7.4. Let (X,7) be an LCS and denote by & the system of all continuous seminorms on X. Then &
generatesT.

7.2. Convergence and boundedness in LCS.

Proposition 7.5. Let the LC topology of (X, 1) be defined by a system of seminorms 2. Then
1) X9 —x <= pxeg—x)—0VpeP,
(2) Ec X isbounded <= sup,.p p(x) <oo (i.e., p(E) is bounded) forallp € 2.

Proof.
(1) (=):is because seminorms p € & are continuous.
(<): It is enough to prove that & — 0 < p(&¥) — 0 Vp € £ for any prefilter &. Note that p(¥) — 0
means that EEP e F! for any € > 0. So the filter Z! contains {Eﬁp | € >0, pe 2P}, asubbase of A, hence
also ./ itself. That is, & — 0.
(2) Note that AEc B, <= Ec 1B, <= p(E) < [0,1]. Thatis, p(E) is bounded < E is absorbed by B,,.
Since absorption is preserved under finite intersections and multiplication by positive scalar, it is enough
to be absorbed by all elements in some prebase of A"
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Proposition 7.6. Let X be a LCS.
(1) IfE c X is bounded, then so is absconvE.
(2) IfE c X is completely bounded, then so is absconvE.

Proof. (1) Since X is LC, given V € ./, there is an absolutely convex U € A", U c V. If there is A > 0 such that
E c AU, then also absconvE c absconvAU = AU c AV.
(2) Given V € ./ take an absolutely convex U € A such that U + U c V. There is a finite set Ey such that E
Ep+U. Then absconv E = absconv(Ey+U) c absconv Eyg+absconv U = absconv Ey+U. Itis enough to prove
that H := absconvE, is completely bounded. Observe that for any point x € E, the set absconvi{x} = By x
is compact (because it is a continuous image of By, which is compact). Proposition 5.5 now implies that
absconvUjye, Bixis compactand hence completely bounded. Then so is absconv Eg < absconvUjyep, By x.

(Note that (see the original conspect) one can show that absconv Ej is compact, too.)
|

7.3. Metrizable and normable LCS. Given a metrizable LCS, there is a countable base of .4 consisting of ab-
solutely convex sets. The corresponding Minkowski functionals form a countable seminorm system, which de-
fines the same topology. On the other hand, given a Hausdorff topology defined by a countable seminorm system
{pn}nen, one can define a translation invariant metric

< 1 palx-y)

dx,y)=) ———"—
Y =12t 1+ pux—y)

(prove it)X. Tt is clear that (prove it)X, d(x4,0) — 0 if and only if p, (x,) — 0 for all n € N, so that this metric
induces the original topology. We have observed

Proposition 7.7. A Hausdorff LCS is metrizable if and only if its topology can be defined by a countable (or finite)
seminorm system.

Example 7.1. The space C(C) from Example 4.1 is a metrizable LCS, because the sets V}, ; forming a base of A" are
absolutely convex.

Normable LCS. It is easy to see that if a Hausdorff LC topology is defined by a finite seminorm system {py, ..., pn},
then p(x) := max;<;<, p;i(x) defines a norm, inducing the same topology. In that case, let us say that the space is
normable.

Proposition 7.8 (Kolmogorov theorem). A Hausdorff TVS is normable if and only if it has bounded convex zero
neighbourhoods.

Corollary 7.9. A Hausdorff LCS is normable if and only if it has a bounded zero neighbourhood.

Example 7.2. The space ¢, 0 < p < 1, is a metrizable TVS with a pseudonorm |x| = } |x¢|” but it is not locally
convex.

7.4. The dual of an LCS.

Definition. A subspace Y c X* separates the points of X if for all x,y € X with x # y there is f € Y such that
f(x) # f(y). Equivalently, if for all x # 0 there is f € Y such that f(x) #0.

Proposition 7.10. The algebraic dual X* of a vector space X separates the points of X.

Proposition 7.11. Let X bean LCS. A functional f € X* is continuous if and only there exists a continuous seminorm
p on X such that|f(x)| < p(x) forall x € X.

Proposition 7.12. Let X be an LCS and let Xy c X be a subspace. For every fy € X{ thereis f € X' such that fx, = fo.
Theorem 7.13. If X is a Hausdorff LCS, then X' separates points of X.

Exercise 7.2. Show thatif 771 7o, then (X,71) < (X, 12)".
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7.5. Another two separation theorems.
Proposition 7.14. Let X be an LCS and let E X be convex. Then x € E ifand only if f (x) € f(E) forall f € X'.

Theorem 7.15. Let X be an LCS.

(@) IfE c X is absolutely convex and x € X \ E, then there is f € X' such that f(E) c Bk but f(x) > 1.
(b) Let Xo < X be a subspace. Then x € X, ifand only if f (x) = 0 for all f € X' such that f|x, = 0.

Corollary 7.16. Let Xy c X be a subspace of an LCS X. Then Xy = X ifand only if flx, #0 forall f € X'\{0}. In other
words, Xo = X ifand only if flx, =0 = f=0forall fe X .

Example 7.3. Consider the metrizable TVS S[a, b] from Example 4.2. We can show that S[a, b]’ = {0}.
8. DUAL PAIRS OF VECTOR SPACES

8.1. Dual pair.

Definition. Let X and Y be vector spaces over the same field K. The spaces X and Y form a dual pair (X,Y) if
there is fixed a bilinear functional () : X x Y — K, which separates the points of both X and Y, that is:

o forevery x € X\ {0} thereis y € Y such that (x, y) #0,
« forevery y € Y \ {0} there is x € X such that (x, y) #0.

Of course, if (X, Y) is a dual pair, then so is (Y, X).
Example 8.1. The spaces ¢ and ¢, form a dual pair with (x, y) := > | Xx¥n.
Example 8.2. Every Hilbert space forms a dual pair with itself, the bilinear functional is just the dot product.
Example 8.3. Given any vector space X, the dual pair (X, X*) can be defined by the functional (x, f) = f(x).

The last example can be generalized to a dual pair (X, Y), where a subspace Y ¢ X* separates the points of X.
In fact, this case essentially encompasses all dual pairs. Given a dual pair (X, Y) we can define a linear injection
m:Y — X* by n(y)(x) = (x,y), so that Y is isomorphic to n(Y) c X*.

Therefore, given a dual pair (X, Y) we can (and will) always assume that Y is a subspace X*, which separates
points of X (or that X is a subspace of Y*). In that case the bilinear functional is automatically defined.

Exercise 8.1. Denote by w = {(x,) < K} the space of all sequences and by ¢ = {(x,) c K | x,, # 0 for finitely many n}
the space of all finite sequences. Then {(w, ¢ is a dual pair by the functional (x, y) = X7, X, yx.

8.2. Weak topology.

Definition. Let (X,Y) be a dual pair and let T be an LC topology on X. If (X, 1)’ = Y, then 7 is said to be consistent
with the duality (X, Y).

Note that given f € X*, we can define a seminorm py: X — Rby py(x) = Kx, /)| = [f(x)I.

Definition. Let (X,Y) be a dual pair. The locally convex topology o(X,Y) on X defined by a family of seminorms
{pr| f € Y}is called the weak topology (defined by the duality (X, Y)).
Properties of the weak topology o (X, Y):
(1) Itis Hausdorff.
(2) We know that a zero neighbourhood base is 7[({?,!J f } fey). However, the linearity allows to drop the epsilons

and consider just n({Ep f} fey) as the base. That is, the sets in this base are of the form

Wy

e

I3 ;:{xelel_axlfi(x)lil},

forallmeNand fi,...,freY.

(3) The convergence: x, — x <= f(x,) — f(x) forall f € Y. The boundedness: E c X is bounded if and only
if f(E) isbounded forall ye Y.

(4) The topology o (Y, X) on Y can be described symmetrically and has the same properties.

Exercise 8.2. Describe the convergence of a sequence (x"”) in the LCS (£, 0 (£oo, £1)). Does the sequence (y")
converge if y = (1,0,0,...), y® =(1,1,0,0,...), ..., y" = (1,1,...,1,0,0,...), ...2
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Exercise 8.3. Does the sequence from the above exercise converge in (¢1,0(£1,4))?

Exercise 8.4. Show that x"” — x in the topology o (w, ¢) if and only if x](cn) — xp forall ke N.

Proposition 8.1. Let(X,Y) be a dual pair. In (X,0(X,Y)), every bounded set is completely bounded.

Lemma 8.2. Let X be a vector space and let f, f1,..., fn € X*. Then f € span{fi,..., f} ifand only if
Viefl,...,n} fi(x) =0 = f(x)=0.

Note that if we knew (e.g., from Theorem 8.3 below) that o (X *, X) were consistent with (X*, X),i.e. (X*,0(X*, X))’ =
X, then the above lemma would immediately follow from Corollary 7.16 (because a finite-dimensional subspace
is always closed in a Hausdorff TVS). Alas, we need the above lemma to prove Theorem 8.3 below, so another proof
is needed.

Theorem 8.3. The topology o(X,Y) is consistent with the duality (X,Y), that is, (X,0(X,Y)) =Y.

Theorem 8.4. The weak topology o(X,Y) is the weakest of all LC topologies consistent with the duality (X,Y).
Corollary 8.5. If X = (X, 1) is a Hausdorff LCS, then 1 is consistent with (X, X'y and o (X,X') c 1.

8.3. Polars.

Exercise 8.5. If 71 c 7o, then E °c E' .

Proposition 8.6. Let(X,Y) beadual pair. The closure of a convex set E c X is the same in all LC topologies consistent
with(X,Y).

Theorem 8.7. The closed convex sets are the same in all LC topologies consistent with a given duality.
Definition. Let (X, Y) be a dual pair and let E c X. The polar of E is defined as
E’:={feY|VxeE: |f(x)|<1}cY.
Show that
Exercise 8.6. Ec F = F%c E°,
Exercise 8.7. (AE)* = JE%if A€ K\{0},
Exercise 8.8. (Uger Eq)® =Naer EY,
Exercise 8.9. E is absolutely convex and o (Y, X)-closed,
Exercise 8.10. if X, c X is a subspace, then (Xy)? = (Xo)* :={f € Y| flx, = 0}.
Given a system of sets o c 2%, denote &/ := (U | U € A}.

Proposition 8.8. Let 98 be a zero neighourhood base of an LCS X. Then X' =\J28°, where the polars are taken with
respect to duality (X, X ™).

Let (X, Y) and (Y, Z) be dual pairs such that X c Z. Given E c X, we can define the bipolar E®° = (E%)° with
respect to these dualities.

Exercise 8.11. Show that E c E%.

Proposition 8.9 (bipolar theorem). Let(X,Y) and (Y, Z) be dual pairs such that X c Z. Given E c X the bipolar
E® with respect to these dualities satisfies
E% = absconvE” Y.
When X is a Hausdorff LCS, by the bipolar E° of E ¢ X we will usually mean the bipolar with respect to the
dualities (X, X’y and (X', X).

Corollary 8.10. Let X be a Hausdorff LCS X and E c X. Then E® = absconvE.

Corollary 8.11. Let X be a Hausdorff LCS X and E c X. Then E°° = E°.
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9. POLAR TOPOLOGIES
9.1. G-topologies and equicontinuous sets.

Proposition 9.1. Let (X,Y) be a dual pair and let B < Y. Then B® c X is absorbing if and only if B is o(Y, X) -
bounded.

Thus given a system of & < 2¥ of o(Y, X)-bounded sets, the system of their polars &° < 2% consists of absorbing
absolutely convex sets, so it is a prebase of some LC topology on X. Let us denote it by 9 and call it the polar
topology defined by G or the topology of uniform convergence on the sets from S.

Since &% = &0, we can assume that every element of S is absolutely convex and o (Y, X)-closed. We can also
assume the following:

(PT1) 81,5,€6 = 3S: S1US, S (i.e., G is directed upwards),
(PT2) SeGand A >0imply AS€ & (i.e., & =6).

Moreover, 9 is Hausdorff if and only if

(PT3) spanUG " =v.

It is clear that I is defined by the family of seminorms {pg}secs, where pgo is the Minkowski functional of S°.
Observe that pgo (x) = supcs|f(x)| forall x € X, so the convergence with respect to pg is the uniform convergence
on S. Let us also denote p® := p.

Since being absorbing is a necessary condition for being an element of a prebase of an LC topology, we get
the strongest possible polar topology on X with respect to duality (X, Y) if we consider the system &, < Y of all
o (Y, X)-bounded sets. This polar topology (X, Y) := I, is called the strong topology.

The weak topology o(X,Y) is also a polar topology with o(X,Y) = Jg,, where o is either the system of all
one-element subsets or of all finite subsets of Y.

Proposition 9.2. Every Hausdorff LC topology T on a vector space is a polar topology: T = I 5o, where %8 is some zero
neighbourhood base of (X, 1).

Definition. Let (X,7) be aTVS. Then S c X' is called equicontinuous (or t-equicontinuous) if
Ve>0IUeN:VfeSVYxeUl|f(x)<e.
Proposition 9.3. Let X be a Hausdor{f LCS. Then S < X' is equicontinuous if and only if S < U° for some U € N .
Let us denote the collection of all equicontinuous subsets of X’ by &.
Exercise 9.1. Prove that & = &.
Exercise 9.2. Prove that §;,S5, €8 — S;US€é8.

Theorem 9.4. Every Hausdorff LC topology T on a vector space X is the topology of uniform convergence on t-
equicontinuous sets
Some properties of equicontinuous sets:

¢ & isabornology (or an ideal),
. (gaOO Céa,

. —oX',X
o if S€ &, then SU( ) € & and absconvS € &,
« every equicontinuous set is o (X', X)-bounded.

9.2. Mackey topology.
Proposition 9.5. Let X be a vector space. Then (X*,0(X*, X)) is a complete LCS.

Proposition 9.6 (Alaoglu theorem). Let X be a Hausdorff LCS. IfU € A, then U X' isa(X', X) -compact. (Due to
Proposition 8.8, the polar U° is the same for dualities (X, X"y or (X, X*).)

Let (X,Y) be a dual pair. Consider the system Gy 2Y ofall o (Y, X)-compact and absolutely convex sets. Note
that & satisfies (PT1) and (PT2).

Definition. The topology 7(X, Y) := g, on X is called the Mackey topology.
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Letus pointout thato(X,Y) c 7(X,Y), because 6(X,Y) =T, = 37'630 and for every S € G, its polar S0 is a zero
neighbourhood of o(X, Y), so S% is o(Y, X)-compact by the Alaoglu theorem and hence &%° c &. In particular,
this implies that 7(X, Y) is Hausdorff.

Theorem 9.7 (Mackey-Arens theorem). A Hausdorff LC topology T on a vector space X is consistent with a duality
(X, Yy ifandonlyifo(X,Y) ct c1(X,Y). In that case, there is a system G c S¢ such thatt =9 g.

Corollary 9.8. The Mackey topology is the strongest LC topology on X, which is consistent with a duality (X, Y.

Corollary 9.9. A Hausdorff LC topology T on X is consistent with a duality (X,Y) if and only if t = I for some
system G of absolutely convex and o (Y, X)-compact subsets of Y .

9.3. Mackey theorem on bounded sets.

Theorem 9.10 (Mackey theorem). Let X be a Hausdorff LCS. Then E c X is bounded if and only if it is weakly
bounded (that is, o (X, X')-bounded).

Corollary 9.11. Given a duality (X,Y), the bounded sets of X are the same in all LC topologies consistent with this
duality.

For proving the Mackey theorem we need the following proposition and the principle of uniform boundedness
from the Banach space theory.

Proposition 9.12. Let V be a compact and absolutely convex set in a Hausdorff LCS X. Then py :spanV — R, the
Minkowski functional of V, is a norm on Xy := span V. Moreover, (Xy, pv) is a Banach space and the norm topology
on it is stronger than the induced topology on Xy .

Proof. Scheme:
() VcXisabsorbingifand onlyifspanV =X,
(I) (Xv, py) is Hausdorff if and only if py is a norm,
(D) if V is bounded in X, then py is a norm,
(IV) if V is compact in X, then (Xy, py) is complete.
O

Let us recall the principle of uniform boundedness: if X and Z are Banach spaces and «f is a system of bounded
linear maps A: X — Z such that «f is pointwise bounded, that is, {A(x) | A € o/} is bounded in Z for every x € X,
then « is uniformly bounded, that s, {|| All | A € &/} < Ris bounded.

Proof of the Mackey theorem. Scheme: Take a weakly bounded E < X. As the set of functionals on X, it is pointwise
bounded. Take a nice zero neighbourhood U < X and consider the Banach space (X£10’ pyo). Consider E as the set
of continuous linear functionals on it and apply the principle. (|
Proposition 9.13. A metrizable LC topology is a Mackey topology. That is, if an LCS (X, 1) is metrizable, then T =
(X, X").

Proof. ... ]

10. BARRELLED SPACES AND F-SPACES
10.1. Strong topology and barrelled space.

Definition. A barrel is a closed absolutely convex absorbing set. An LCS is a barrelled space if every barrel is a
zero neighbourhood.

It is easy to check that
o if X is a Hausdorff LCS, then U c X isa barrel ifand only if U = U 00 with respect to (X, X',
e if X is a Hausdorff LCS, then U < X is a barrel if and only if there is a o (X', X)-bounded set S = X’ such that
Uu=Ss,
« all LC topologies on X consistent with a duality (X, Y) have the same barrels,
» every LCS has a zero neighbourhood base consisting of barrels.

Proposition 10.1. Given a Hausdorff LCS (X, T), the following are equivalent:
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(1) (X,7) is a barrelled space,

(2) everyo (X', X)-bounded set S = X' is T-equicontinuous,
(3) 7=p(X,X),

@ t=1(X,X") =X, X",

(5) T=1(X,X") and B(X, X") is consistent with (X, X').

Let us extend the definition of equicontinuous sets to subsets of operators.
Definition. A set Ac L(X,Y) is called equicontinuous if
VVeNAUeN:VTEATWU) V.

Exercise 10.1. Every equicontinuous set A < L(X,Y) is pointwise bounded, that is, {T'(x) | T € A} is bounded in Y
for every x € X.

Theorem 10.2 (principle of uniform boundedness). If X is a barrelled space and Y is an LCS, then every pointwise
bounded set Ac L(X,Y) is equicontinuous

Theorem 10.3 (continuity of the limit operator). Let X be a barrelled space and let Y be an LCS. Consider a sequence
(Ty) € L(X,Y) such that for every x € X there exists T(x) :=lim,, T,(x). Then T € L(X,Y).

10.2. F-spaces. Open mapping theorem. Recall that an LCS is metrizable if and only if its topology can be induced
by an at most countable system of seminorms {p,},en. In that case, the defining translation invariant metric can
be chosen to be - ( )
1 X -
d (x,y) = Z —nu
n=1 2" 1+ Pn(X—J’)
This provides a zero neighbourhood base {}%B}neN, where B ={x|d(x,0) <1}.
Definition. A complete metrizable LCS is called an F-space or Frechet’ space.

Lemma 10.4. Let X and Y be F-spaces and T : X — Y a surjective linear operator. For every barrel U c X there is
V e Ny such thatV < T(U).

Proposition 10.5. Every F-space is barrelled.

Theorem 10.6 (open mapping theorem). Let X and Y be F-spaces. A surjective T € L(X,Y) (that is, linear and
continuous) is open, that is, T(G) is open for every open G c X.

10.3. Closed graph theorem.
Theorem 10.7 (continuity of the inverse). Let X and Y be F-spaces. If A€ L(X,Y) is bijective, then A~' € L(Y, X).

Observe that (prove it!)*X the topological product X x Y of F-spaces X and Y is again an F-space, with its topol-
ogy induced by all seminorms r, , of the form

Tmn(%,Y) 1= pm(X) + gn(y),
where the systems {p;;}» and {g,}, induce the topologies of X and Y, respectively.

Definition. Let T': X — Y be alinear operator. Its graph is the set gr T := {(x, Tx) | x € X} € X x Y. The operator T
is called closed if gr T is closed in X x Y.

Theorem 10.8 (closed graph theorem). Let X and Y be F-spaces. A closed linear operator T : X — Y is continuous.

11. PROJECTIVE LIMITS

11.1. Projective limit topology. Fix a vector space X, locally convex spaces X, and linear operators vy : X — X,
forallyeT.

Definition. The weakest LC topology on X such that all operators v, are continuous is called the projective limit
topology (induced by pairs {(Xy, vy) | y € I'}). Itis denoted by 7proj. The space (X, Tproj) is called the projective limit
of these pairs.

Given prebases &, of A, consisting of absolutely convex sets, the zero neighbourhood filter A of (X, Tpro5) is
generated, e.g., by the prebase Uyer U;l (Px,) = {1/;1 (W) 1 U € &y, v €T} or by the subbase Uyer v;l (Ax,).
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Proposition 11.1. Ifall X, are Hausdorff, then (X, Tproj) is Hausdorff if and only if
vy (o} = {0}
Y

Proof. Proposition 2.7 says that X is Hausdorff if and only if N.A4x = {0}. Note that, in general, given a filter & and
its subbase 28, one has (% = 4%. So

NAx=N N o' @ =N vy (A, =Ny o,

ver U€</ny yel'
g

Proposition 11.2. Let Y be an LCS. A linear operator T : Y — X is continuous if and only if so are all compositions
vyoT:Y — X,.

Proof. Sufficiency is clear. For the necessity, note that T is continuous if and only if 71 (U) € .44 for all U in some
prebase Py of A%. So it is enough to check if 77! (v;1 () = (vyo T)~'(U) € Ay for all U in some prebase of Nx,
for all y. This is clearly equivalent to the continuity of vy o T for all y. ]

Proposition 11.3. A subset E < X is Tproj-bounded if and only if vy (E) is bounded for all y.
Proof. As above, again it is enough to check if the set is absorbed by elements of some prebase of A%. ]

To check the validity of the first two examples, just check the equality of prebases for the projective limit and
the usual definition.

Example 11.1. Let Xy c X. The induced subspace topology on Xj is a projective limit of the pair {(X, i)}, where
i:Xo — X is the injection map.
Example 11.2. Let (X, Y) be a dual pair. The weak topology o (X, Y) is the projective limit of {(K, f) | f € Y}.

Example 11.3. Given a collection of topologies {ty}, on X, the projective limit {((X,7y), Ix) | y € T'} is the weakest
LC topology generated by Uy 7, where Ix : X — X is the identity.

Example 11.4. Any LC topology on X defined by a system of seminorms {p,}, is the weakest topology such that
all the seminorms p, are continuous. Thus it is the projective limit of seminormed spaces (X, py), more precisely,
of pairs {((X, py), Ix)}y.

Example 11.5. Any LC topology on X is a projective limit of normed spaces. Take the seminormed spaces (X, py)
as above and consider vector spaces X, := X/ p~1(0) equipped with the norm ||x+ p~1(0)]| := p(x) for every p = Py-
Consider the operator k : X — X, defined by k,(x) = x+ p~'(0). Note that k' (Bx,) = p~'((0,1]), so that the
projective limit of {(X,, k) | p € {py}y} is exactly the original topology on X.

11.2. Product of locally convex spaces. Let X as a vector space be equal to the product [], Xy = {(x)) | xy € Xy}.
Denote the projections by 7y : X — X, and the injections by j, : X, — X defined by 7y, ((xy)) = xy, and

x, ify =vyo,
0, otherwise.

Jro(X)y = {
Note that
7' (oD = {0}
Y
Exercise 11.1. Prove that jy is linear and injective.
Exercise 11.2. Check that 7y o j, = Ix, (identity) and 7wy 0 j, =0if v # .
Exercise 11.3. Check that y;,x,) = j, '

Consider the projective limit topology on X defined by pairs {(Xy, 7y)},. The next proposition observes the fact
that it coincides with the usual product topology.

Proposition 11.4. A net (x*) c X converges to x € X if and only if my (x*) — 4 7y (x) forally.
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Proof. It is enough to show that for a filter & on X one has & — 0 if and only if 7, (%) — 0 for all y. This is true,
because the former means that Ay c & or, equivalently, x c & for any prebase of 4y, while the latter means
nycny(§)1orn)’,l(ﬂxy)cg. O

Proposition 11.5. A net (x*) c X is Cauchy if and only if the net (1, (x%)) o is Cauchy for ally.

Proof. This follows from the above by noticing that T(¥ — %) = T(¥) — T(¥) for any prefilter & and a linear
operator 7. (Il

The next two observations are just special cases of their projective limit versions.
Proposition 11.6. LetY be an LCS. A linear operator T : Y — X is continuous if and only if soare all wy o T, y € T..
Proposition 11.7. A subser E < X is bounded if and only if so are all wy (E) < X,,, y € T.
Proposition 11.8. X is Hausdorff if and only if so are all X,,, y € T

Proof. Proposition 11.1 gives the sufficiency. For the necessity note that jy is injective and
-1 .
(HNx = Yorny (ﬂﬂxy) > jy (ﬂ'/VXy) ,
because jy (X)) © J'[El 0)ify #B. O

Proposition 11.9. A closed subset E < X is complete if and only if n, (E) € Xy is complete forall’y € T.

Proof. Sufficiency. Using Propositions 11.6 and 11.5 for any Cauchy filter & on E it is straightforward to obtain
x € X such that & — x. Since E is closed, x € E. Necessity. Given a Cauchy net (x4) < 7y (E), note that (jy(xg)) < E
is Cauchy by Proposition 11.6, because ngo j, = 0 if § # y, so that (j,(x)) converges to x € E and hence also
((my 0 jy)Xa) = (Xa) to 7y (X). U

Corollary 11.10. The product of complete LC spaces is a complete LCS.

Proposition 11.11. A projective limit (Xo, Tproj) 0f {(Xy, Vy)}yer, such that Ny y;l ({0}) = {0}, is isomorphic to a sub-
space of 1y Xy.
Proof. Define T: Xy — X := HY Xy by Tx = (vyx)y. Then T-10) = Ny v;l({O}), so that T is injective and we get a

linear T71: T(Xy) — Xy. Note that vy =7y o T and hence 7y = vy 0 T~! so that both T and T~! are continuous by
Proposition 11.2. (]

Corollary 11.12. Every Hausdor{f LCS is isomorphic to a subspace of a product of normed spaces.
Proof. This follows from Example 11.5, Proposition 11.1, and the above. O

Proposition 11.13. Let X =[], Xy. Foreveryy, jy: Xy — jy(Xy) € X is an isomorphism. If all X, are Hausdorff,
then jy(X,) is closed in X.

Proof. Exercises 11.1 and 11.2, together with Proposition 11.2, give that jy is linear and continuous. Exercise 11.3

gives that so is j, ', too. Note that j,(Xy) = Npzy ﬂEl (0) and that n;l (0) is closed if X is Hausdorff. O

12. INDUCTIVE LIMITS. BORNOLOGICAL SPACES.

12.1. Inductive limit topology. Fix a vector space X, for all y € I" fix locally convex spaces X, and linear operators
uy : Xy — X such that

X =span|Juy (Xy).
Y

Definition. The strongest LC topology on X such that all operators u, are continuous is called the inductive limit
topology (induced by pairs {(Xy, uy) | y € I'). It is denoted by Tjq. The space (X, Tinq) is called the inductive limit
of these pairs.

Exercise 12.1. Prove that the topology 7inq really exists.

Proposition 12.1. An absolutely convex absorbing set U < X is a zero neighbourhood of Ting if and only if u, L) is
in JVXY forallyeT.
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Proposition 12.2. A zero neighbourhood base of Tinq is
9B :={absconv|Ju, (V)) | Vy € N, ).
Y

Proposition 12.3. An inductive limit of barrelled spaces is a barrelled space.

Proposition 12.4. LerY be an LCS. A linear operator T : X — Y is continuous if and only if soareall Touy : Xy — Y,
yeT. Aset Ac L(X,Y) is equicontinuous if so are all{Tou, | T € A}, y€T.

Let (X, X’y and (Y, Y’) be dual pairs. The adjoint of a linear operator T : X — Y is the operator T": Y’ — X*
defined by T'(g) = go T. Note that (prove itk T'(Y’) ¢ X' if and only if T is weakly continuous, that is, T :
(X,0(X,X") — (Y,0(Y,Y")) is continuous. If X and Y are Hausdorff LCS and T : X — Y is continuous, then (prove
it T is weakly continuous, that is, T'(Y’) < X'.

The inductive limit topology is a polar topology.

Proposition 12.5. If all Xy, and (X, Tinq) are Hausdorff LCS, then Ting = I, where G is the system of all sets S ¢
(X, Ting) such that u;,(S) c X; is Ty -equicontinuous for all y.

The inductive limit and the projective limit are dual in some sense.

Proposition 12.6. Let all Xy, and (X, Ting) be Hausdorff LCS. Assume that for all y, there is a certain polar topology
Js, on X}/,, where &, is some system of 0(X,, X;) -bounded sets.

Denote by & the system of all finite unions of sets of the form u, (Sy), where Sy € &,. Then the polar topology T
on (X, Ting)" is the projective limit of {(X}, Ts,), uy)}y-

12.2. Bornological spaces. Note that (prove it!)’X4 a linear continuous operator T between LC spaces X and Y is
always bounded, that is, it maps bounded sets to bounded sets. Recall that for linear operators between normed
spaces, we have the reverse: a linear operator is bounded if and only if it is continuous.

Definition. An LCS X is a bornological space if every absolutely convex set U c X that absorbs every bounded set,
is a zero neighbourhood.
Proposition 12.7. Let X be an LCS. The following are equivalent:

(a) X is a bornological space,

(b) forevery LCSY every bounded linear operator T : X — Y is continuous.

Proof. Schema for (b) = (a): Take U < X as in the definition of bornological spaces, then it is absorbing and
hence its Minkowski functional py is a seminorm. Note that the identity i : X — (X, py) is bounded and hence
continuous. This implies that U is a zero neighbourhood of X. g

Note that (prove ith* if (X, T) is a Hausdorff bornological space, then 7 is the Mackey topology 7(X, X’). Recall
that we had the similar claim for the metrizable spaces.

Proposition 12.8. Every metrizable LCS is bornological.

Proof. Adapt the proof 0f9.13. (]
Proposition 12.9. An inductive limit of bornological spaces is bornological.

Proof. Use Prop. 12.7 together with Prop. 12.4. ]

The above two propositions imply that an inductive limit of metrizable LC spaces is bornological. This state-
ment can be reversed in the following sense.

Theorem 12.10. A Hausdorff LCS is bornological if and only if it is an inductive limit of normed spaces. A complete
Hausdorff LCS is bornological if and only if it is an inductive limit of Banach spaces.

The theorem above follows from

Lemma 12.11. Let (X, 1) be a Hausdorff LCS. On X, there exists the strongest LC topology T’ with the same bounded
sets as T. Moreover, (X,1') is a bornological space and it is an inductive limit of vector subspaces of X equipped with
some norms. The topologies T and T’ coincide if and only if (X, T) is bornological. If (X, ) is complete, then (X,1') is
an inductive limit of Banach spaces.
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Schema of the proof. Denote by S the collection of all closed bounded absolutely convex sets in (X, 7). For every
A€ S, its Minkowski functional p,4 is a norm on X4 := span 4, the injections u4 : (X4, pa) — (X, 1) are continuous
(see the proof of Prop. 9.12), and X = Ues ua(X4). Define 7 as the inductive limit of {(X4, u4) | A € S}. Derive the
rest of the claims. O

Remarks:

« In the proof of the above lemma, we can replace the system of all closed bounded absolutely convex sets
S with any of its fundamental systems Sy, that is, such that for every A € S there is B € Sy with A c B. This
implies that if the space (X,7) admits a countable fundamental system of bounded sets, then it can be
represented as an inductive limit of countably many normed spaces.

« In general, the classes of bornological spaces and barrelled spaces are incomparable. However, using the
above propositions we can prove (prove it!)’X that every complete Hausdorff bornological space is bar-
relled.

13. SPECIAL CASES OF INDUCTIVE LIMITS: QUOTIENT, DIRECT SUM, STRICT INDUCTIVE LIMIT

13.1. Quotient space. Let X be a vector space and let M c X be its subspace. The set X/M := {x+ M | x € X} c 2X
becomes a vector space with M being the zero element and addition and scalar multplication defined pointwise
with the exception that 0- (x + M) := M. (prove it!)"«

This vector space X/M is called the quotient of X with respect to M. The canonical projection k : X — X/ M,
k:x— x+ M, is linear and surjective. (prove it!)»X4

If X is a TVS, then the prefilter k(.#/") defines a linear topology on X/M, called the quotient topology. 1t is LC if
X is LC. Note that k is continuous with respect to these topologies. (prove it!)*X

Proposition 13.1. Let X be an LCS. The quotient topology on X /M is Hausdor{f if and only if M is closed.
Proof. If X/ M is Hausdorff, then {M} c X/M is closed, so that k~1({M}) = M is closed. On the other hand, note
that k" 'k(A) = A+ M for all Ac X, so that k" 1k(A) =M+ A4 and

M) = k(& k() = k(M +.4)) = k(M) = (M),

where the last equality holds if M is closed.
O

Note that the quotient topology can be induced by seminorms py ) with absolutely convex U € % forming a
base of A". Observe that py ) (x+ M) =inf{py(y) | y € x+ M}.

It is important to note that the quotient topology is the inductive limit of {(X, k)}. (prove it))XThe above propo-
sition then shows that the inductive limit of Hausdorff spaces may fail to be Hausdorff.

A special case of Proposition 12.3 is

Proposition 13.2. A quotient of a barrelled space is barrelled.

Proposition 13.3. Let T be a linear operator between LC spaces X and Y. Then T can be factorized as T = So k,
where S : X/ker T — Y is an injective linear operator and k is the canonical projection onto X /ker T. Moreover, T is
continuous if and only if so is S.

Proposition 13.4. The topological dual (X/M)' is algebraically isomorphic to M+ := {f € X' | f(M) = {0}} c X.
Proof. The isomorphism is k’, the adjoint of k, defined by g € (X/M)' — gok. O
Let (X, Y) be a dual pair and let a subspace M c X separate points of Y. Then (M, Y/M" ) is a dual pair and

Proposition 13.5. o(M, YIMHY =cM,Y)=0(X,Y)|um.
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