§ 1. The notion of a metric space

1.1. The notion of a metric space

Definition 1.1. Let X be a set.
A function p: X x X — R is called a distance (or a metric) if, for every
x,y,2 € X,

1° p(z,y) =0 < z=y;
2° p(z,y) = ply, x);
3° plx,z) < plx,y) + p(y, 2).

In this case, one says that (X, p) is a metric space. If the metric p is clear from the
context, one just calls X a metric space. The number p(z,y) is called the distance
between = and y. The conditions 1°, 2°, and 3°—the axioms of metric—are referred
to as, respectively, the axiom of identity, the axiom of symmetry, and the triangle
imequality.

Simpler properties of metric are collected in the following
Proposition 1.1. Let (X, p) be a metric space, and let x,y, z,u,v € X. Then
(a) p(z,y) = 0;
(b) (the quadrangle inequality) |p(z,y) — p(u,v)| < p(z, u) + p(y,v);
(c) (the reverse triangle inequality) |p(z,y) — p(y, 2)| < p(z, 2);
(d) every subset of X is again a metric space with respect to the distance p.
PROOF. (a). One has (by taking z = z in the triangle inequality 3°)
2p(x,y) = pla,y) + ply, x) = plx, ) = 0,
hence p(x,y) = 0.
(b). We must show that
—IO(JI,U) - p(ya ’U) < ,O(x,y) - p(ua U) < IO(J],U) + p(ya U)u
ie.,
pu,v) < p(z,y) + p(x,u) + ply,v) and  p(z,y) < p(z,u) + p(y, v) + p(u,v).
Both these inequalities follow from the triangle inequality:
plu,v) < plu, x) + p(x,v) < pla,uw) + plz,y) + p(y, v) = pla,y) + p(z,u) + py, v),
p(@,y) < plz,u) + plu,y) < p(z,u) + p(u,v) + p(v,y) = p(z,u) + p(y,v) + p(u, v).
(¢c). The claim follows by taking, in the quadrangle inequality (b), u = z and

v=1y.
(d) is more than obvious. O
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1.2. Simpler examples of metric spaces

Example 1.1. The set R of real numbers is a metric space with respect to the
natural distance

d($7y):‘x_y‘> :Ea:UER-
Example 1.2. Let n € N. The Fuclidean metric d in
R™ = {(5])?:1 = (51, s 7571): 51, s 7£n € R}

is defined by

DG —nil w= (&) y = () e R™.
j=1

(The axioms of metric for d will be veryfied in Section 5.) In particular, in R?,

d(x,y) = \/‘51 - 771’2 + ’& - 772\27 r = (51,52)7 Yy = (771,772) € R2>

and, in R3,

d(x,y) = \/|51 —m|? + [E2 — m2|? + [§3 — ms]?, = (&,62,8), vy = (m,m2,m3) € R3>
i.e., d(z,y) is the “natural” distance between = and y.

Example 1.3. Let X be an arbitrary set. Define, for x,y € X,

(2,y) = 0, ifx=y,
PRy = 1, ifx#uy.

Exercise 1.1. Prove that p is a distance.

The metric p is called the discrete metric. The metric space (X, p) is called the
discrete metric space.

1.3. Balls and bounded sets in a metric space
Definition 1.2. Let X be a metric space, and let a € X and r > 0. The sets
B(a,r) = {ze X: p(z,a) <r},

Bla,r):={ze X: p(z,a) <r},
S(a,r) = {zeX: p(x,a) =1}

are called, respectively, the the open ball, closed ball, and the sphere of radius r
centered at a.
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Example 1.4. The open and closed balls, and the sphere in R? centered at a =
(a1, as) € R? of radius 7 > 0 with respect to the Euclidean distance d

B(a,r) = {x = (£,6) eR?: d(x,a) < r}
~{6.&) e R Vg -aP + e - af <r}
= {(51752) e R*: &1 — G1\2 + &2 — a2]2 < 7’2},
Bla,r) ={z = (&,&) e R*: d(z,a) <7}
(61,6) e B2 Vg — P + & —azP <1}
= {(51752) eR*: |G —al]? 16— < 7’2},
S(a,r) = {a: = (£,6) e R?: d(n,a) = 7"}
= {(51752) eR*: V|G —ai]P+ & —af? = 7“}
= {(&1,&) e R*: |& —ar]* + |& — ao]? = 1%}

—~

are, respectively, the open disk, the closed disk, and the circle centered at a of
radius 7.

Exercise 1.2. Describe the balls B(a,r) and B(a,r) and the sphere S(a,) in the discrete metric
space.

Remark 1.1. The behaviour of balls in a metric space may be very “unballish”.
For instance,

e there exist metric spaces X such that for some a € X and ro > r; > 0, one
has B(a,r) < B(a,r) (think about the discrete metric space);

and, moreover,

e there exist metric spaces X such that for some a;,a, € X and ro > r; > 0, one
has B(ag, r2) & B(ay,m1) (look at the metric space (N, p) in [HOP, exercise 7).

Exercise 1.3. Let X be a metric space and let ai,as € X and ry,7r9 > 0 satisfy r1 < ra—plaq, az).
Prove that B(ay,r1) € B(ag,r2) and B(a1,r1) < B(az,T2).

Definition 1.3. Let X be a metric space and let x € X. Any set containing a ball
centered at x is called a neighbourhood of x.

Definition 1.4. Let X be a metric space and let A < X. The subset A is said to
be bounded, if it is contained in some ball.
Exercise 1.4. Prove that, in a metric space (X, p),

(a) every closed ball is contained in some open ball, and every open ball is contained in some
closed ball;

(b) for every ball B(a,r) and every b e X, there exists R > 0 such that B(a,r) = B(b, R).
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1.4. Convergence in a metric space

Definition 1.5. Let (X, p) be a metric space, and let z,,x € X, n e N.
One says that the sequence (x,,)%_; converges to the element x in the space X,
and writes

T, —— or simply T, — T or lim z,, = x
n—0oo n—aoo

if

p(x,, x) — 0.

The element x is called the limit of the sequence (x,)>_;.
In other words, z, —F if and only if
e for every € > 0, there is an index N € N such that
p(xn,x) <e for every n = N
or, equivalently,
e for every € > 0, there is an index N € N such that
Zn € B(z,e) for every n > N
or, equivalently,
e for every neighbourhood U of z, there is an index N € N such that
x, €U foreveryn>= N.

A sequence in a metric space which is not convergent to any element of this space
is said to diverge.

Example 1.5. Let X be a metric space and let (z,)°_; be a sequence in X such
that, for some index N € N,

T, =xy foralln>N.

Then x, —— zy. Indeed, whenever € > 0, one has, for n > N,
n—o0

p(xn,zn) = pley,zy) =0 <e.

Exercise 1.5. Prove that, in a discrete metric space, the only convergent sequences are those
having the property described in the previous example.

Example 1.6. Let X be a metric space and let x,y € X, z # y. Then the sequence
I? y? x’ y? X. y’ AR
i.e., the sequence (x,)*_; in X given by

Ty, =1, if n is odd;

Tn =Y, if n is even,

is divergent.
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Exercise 1.6. Prove that the sequence (x,)_; is divergent.
Simpler properties of convergent sequences are collected in the following

Proposition 1.2. (a) A convergent sequence in a metric space may have at most
one limat.

(b) A convergent sequence in a metric space is bounded (i.e., the set of its elements
is bounded).

(¢c) Every subsequence of a convergent sequence in a metric space converges to the
same limit.

(d) Distance p in a metric space X is continuous in the following sense: If ., x,
Yn,y € X, neN, and

Ty —— X and Yp —— Y, (1.1)
n—00 n—aw

then

n—00

PrOOF. Let X be a metric space, and let z,,,x € X, n € N, be such that z,, —— x.

n—0o0
(a). Suppose that z,, —— y for some y € X. We have to show that = = y or,
n—a0
equivalently, p(x,y) = 0.
For every n e N,
0<p(z,y) < p(@, 20) + p(n, y) = p(xn, ) + p(Tn, y)- (1.2)

Since, z,, —— z and x,, —— ¥, one has p(x,,r) —— 0 and p(z,,y) —— 0, thus
n—00 n—o0

n—0o0 n—0

(1.2) implies that 0 < p(z,y) <0, i.e., p(z,y) = 0, as desired.

(b). It suffices to show that there is an r > 0 such that x,, € B(z,r) for every
n € N. Since p(z,, ) — 0, there is an N € N such that
n—00

plx,,x) <1 for all n > N.

Putting r := max{p(xl,x), oo plen, ), 1}, one has z, € B(z,r) for every n € N.

(c). Let (xy,)_, be any subsequence of (x,)x_,. Since z, —— 1, one has
n—

p(x,,x) —— 0. Since any subsequence of a convergent sequence of numbers con-
n—ao0
verges to the same limit, the latter implies that also p(xy, , 2) —— 0, but this means
n—o0

that z,, —— x in X.
n—00

(d). Suppose that z,, z,y,,y € X, n € N, satisfy (1.1). Then, by the quadrangle
inequality,
|p(20,yn) = Pl y)| < plan, @) + p(yn, y) —— 0.

n—0o0
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Throughout in what follows, either K = R or K = C.

2.1. The notion of a linear space

Definition 2.1. A non-empty set X is called a linear space (or a vector space) (over
the field K) if two operations—adddition

XxX3(zy—»x+yeX
and multiplication by a scalar
Kx X s (a,z) »areX
—have been defined in X satisfying the following axioms:
1°z+y=y+a forall z,y e X;
2° (z+y)+z=a+ (y+2) forall z,y,z e X;

3° there is an element 0 € X (called the zero element of X) satisfying z + 0 = z
for all x € X

4° for every x € X, there exists an element —z € X (called the additive inverse
of x) satisfying x + (—x) = 0;

5° 1z = x for all z € X;

6° a(x +y) =ar+ay forall a e Kand all z,y € X;
7 (a+B)r=ar+ Pz forall a,f e K and all z € X;
8° (af)x =a(fx) forall a,f e K and all x € X.

Remark 2.1. For z,y € X and «a € K\{0}, it is customary to denote

1
r—y:=x+(—y) and gzzax.

A non-empty subset Y of X is called a linear subspace of X if its closed with
respect to the linear space operations, i.e., whenever z,y € Y and a € K, also
r+yeY and areY.

Example 2.1. A prototypical example of a linear space is, for n € N,
K" = {(§)j-1 = (&1, 1 60): &1, 6 €KY

with respect to the operations

x+y = (& + )1, = (§)i—1y = (n)j—1 € K",
az = (ag;)i_y, = (&), €K aek
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2.2. The notion of a normed space

Definition 2.2. Let X be a linear space over the scalar field K.
A function |- ||: X — R is called a norm if, for all z,y € X and a € K,

1° fz] =0 < x=0;
2 |ox| = [l |z];
3 o +yl < ] + [yl

In this case, one says that (X, |-||) is a normed space. If the norm ||| is clear from the
context, one just calls X a normed space. The number |z| is called the norm of .
The conditions 1°, 2°, and 3°—the azioms of norm—are referred to as, respectively,
the axiom of identity, the axiom of homogeneity, and the triangle inequality.

Notice that a linear subspace of a normed space is again a normed space with
respect to the same norm.

The following proposition says that every normed space can be viewed, in a
natural way, as a metric space.

Proposition 2.1. Let (X, | - |) be a normed space. Then X is a metric space with
respect to the distance

p(‘ray):”‘r_yHa vaJEX-
PROOF.

Exercise 2.1. Prove that p satisfies the axioms of metric.

[]

Thus a normed space shares all the properties of a metric space. In particular,
whenever x,y € X, one has

o |lz] = 0;
o (the reverse triangle inequality for norm) ||z| — [y[| = |z — y|.
Exercise 2.2. Prove the above assertions.

Example 2.2. A prototypical example of a normed space is K" (n € N) with respect
to the Euclidean norm

=] =

DGR = (&), e K
j=1

The axioms of norm for the Euclidean norm will be verified in Section 5. Notice that
the Euclidean norm induces the Euclidean metric (in the sense of Proposition 2.1).
Exercise 2.3. Let X # {0} be a normed space. Prove that

(a) there exists an x € X satisfying |z| = 1;

(b) for every c € [0,00) there exists an x € X satisfying |z| = c.
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2.3. Balls and boundedness in a normed space

Remark 2.2. One may observe that, contrary to the possible “unballish” behaviour
of balls in a general metric space, the behavior of balls in a normed space is always
very ballish: the pathologies described in Remark 1.1 never occur in a normed space.

*Exercise 2.4 (cf. Exercise 1.3). Let X be a normed space, and let a1,as € X and ry,72 > 0.
Prove that

(a) if B(ay,r1) < Blag,r2), then r1 <19 — |a; — asl;

(b) if B(a1,71) < B(as,m2), then ry < ry — |la; — as|.

Definition 2.3. The two balls and the sphere

B 1= B0 = {re X: ol <1),
B = B( ={zeX: |z| <1},
Sx:=5(0,1) = {zeX: |z =1}

in a normed space X are called, respectively, the closed unit ball, the open unit ball,
and the unit sphere of X.

Proposition 2.2. Let (X,| - |) be a normed space, and let A < X. Then A is
bounded if and only if there exists an M > 0 such that

lz| < M forall x € A. (2.1)

PROOF. Necessity. It A is bounded, then it is contained in some closed ball centered
at the origin, say B(0, M), i.e., A < B(0, M), but this is equivalent to (2.1).

Sufficiency. If (2.1) holds for some M > 0, then it also holds for some M > 0,
but this means that A is contained in the ball B(0, M), thus A is bounded. O

Exercise 2.5. For a set A in a linear space X, and z € X and a € K, the translate A + z and
dilation oA are defined by

A+z:={x+z:meA} and aA:={am:xeA}.

Prove that, if X is a normed space and A is bounded, then also A + z and a4 are bounded.

Exercise 2.6. Let X be a normed space, and let a,b € X and a,r > 0. Prove that

(a) E(Ov T) = TE(Oa 1); (b)
(c) aB(a,r) = B(aa,ar); (d)

2.4. Convergence in a normed space

Convergence x,, — x in a normed space, of course, means that

|z, — x| —— 0.
n—ao0
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Proposition 2.3. The norm and the algebraic operations in a normed space are
continuous in the following sense: if x,,x,y,,y € X and a,, 0 € K, n € N, are such
that

Tn €, Yn > Y, and Qn > Q, (22)
n—0o0 n—00 n—oo
then
Hxn” H:EH7 Ty + Yn > T+ Y, and ATy —> Q.
n—a0 n—0o0 n—0o0

PROOF. Suppose that z,,z,y,,y € X and «a,,a € K, n € N, satisfy (2.2). By the
reverse triangle inequality

— < |z, — — 0.
laall — lal| < Jzo — 2] —— 0
By the triangle inequality
[(@n +yn) = (@ +9)| = [(@n = 2) + (4o = )| < |20 = 2] + |y = y| — 0,
and

|onzy, — x| = |apz, — anx + ez — ax||

< Han(‘rn - JZ)H + H(an - O‘)IH = |O‘n|Hxn - JZH + |an - CV|||51C|| E’ 0.

]

2.5. When a metric is induced by a norm

In the light of Proposition 2.1, it is natural to ask: if a metric space (X, p) is such
that X is simultaneously a normed space, does there exist a norm | - || on X which
induces the distance p, i.e.,

plz,y) =z —y|  forallz,ye X? (2.3)

The answer, in general, is negative: endow a linear space X # {0} with the discrete
metric p; if one would have (2.3), then, for all x € X,

|z = llz = 0 = p(,0) < 1,

which can not be the case (because, by Exercise 2.3, any normed space X # {0}
admits elements of arbitrarily large norm).

Exercise 2.7. Prove that
p(x,y): ‘.’If—y‘, $7yER’
is a metric in R. Is this metric induced by some norm in R?

The following Proposition gives necessary and sufficient conditions for a metric
to be induced by a norm.
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Proposition 2.4. Suppose that (X, p) is a metric space, and that X is simulta-
neously a linear space. The following assertions are equivalent.

(i) The metric p is induced by a norm (i.e., there exists a norm ||| in X satisfying

(2.3)).
(ii) For all z,y,z€ X and a € K,
4 plax, ay) = |alp(z,y);
5 p(x + 2,y + 2) = p(z,y).
(iii) For all z,z € X and a € K,
4°° p(ax,0) = |a|p(z,0);
5 oz + 2,2) = plz,0).
If any of the equivalent conditions (i)—(iii) holds, then the norm in condition (i) is

defined by
|z] :== p(z,0), zeX.

PROOF.

Exercise 2.8. Prove Proposition 2.4.

2.6. Convex sets in a linear space

Definition 2.4. Let X be a linear space and let A ¢ X.
The set A is said to be convez, if, whenever x,y € A and A € [0, 1], one has

(I =Nz + \ye A
Given z,y € X, the set
[z,y] ={z+ Ay —2): Xe[0,1]} ={(1 =Nz + A y: Ae[0,1]}
is called the (straight) line segment connecting x and y.

Thus convexity of a set A in a normed space means that, together with any two
points z,y € A, the set A contains also the straight line segment [z,y] connecting
these points.

Exercise 2.9. Prove that balls in a normed space are convex sets.

Exercise 2.10. Let X be a normed space and let x,y € X. Prove that
(a) [2] < max{|z|,[y|} for every 2 € [z, y];

(b) || < max{fz -yl |z +yl}.
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Proposition 3.1 (Minkowski’s inquality). Let p € (1,0) and n € N. Whenever
A1y yCn, by, ... b, =0, one has

Zn:(aj + bj)p < (Zn: CL?) ' + (i b?) ! . (31)

Minkowski’s inequality follows from

Proposition 3.2 (The Rogers—Holder inequality). Let p,q € (1,00) be conjugate

exponents, i.e., Ilj + % =1, and let n € N. Whenever ay,...,a,,b1,...,b, = 0 one
has ) )
n n P n q
dlagh< | Yal | [ Db (3.2)
j=1 j=1 j=1

The Rogers—Holder inequality, in turn, follows from

Proposition 3.3 (Young’s inequality). Let p,q € (1,00) be conjugate exponents,
i.e., }—17 + % = 1. Whenever a,b > 0, one has

1

arbe < = + (3.3)

|

a
p
Remark 3.1. Young’s inequality is often formulated in the following (equivalent
to Proposition 3.3) form: if p,q € (1,0) are conjugate exponents, then, whenever
a,b>=0,

al? b

ab < — + —.

p q
THE PROOF OF MINKOWSKI’'S INEQUALITY. Let ai,...,a,,b1,...,b, = 0. Since,
for each j € {1,...,n},

(aj + bj)p = (aj + bj)(&j + bj)p_l = CLj((lj + bj)p_l + bj((lj + bj)p_l,
by the Rogers—Holder inequality, letting g € (1, 00) satisfy zlz + % =1 (then é = ’%1

and g(p — 1) = p),
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If a; = -+ = a, = 0, then the inequality (3.1) is obvious. Suppose that a; > 0 for
some k € {1,...,n}. In this case, from the previous chain, we obtain
1-1 1 1
j=1 j=1 j=1
which, in view of the equality 1 — é = 110, is equivalent to (3.1). ]
ProOOF OF THE ROGERS—HOLDER INEQUALITY. If ¢y = -+ = q, = 0 or b =

- = b, = 0, then the inequality (3.2) clearly holds. Suppose that ax # 0 and b; # 0
for some k,l € {1,...,n}. Then, for each j € {1,...,n}, taking in Young’s inequality
(3.3)

p q
a’ b
_ Y Y
a = ST and b= S SEE
=1 " =1 "1
one obtains
Cij a? bq

S ) (S by P AT B

Thus
L vy "oat b
Z aljbj . < Z]zl asz + Z] 1 ] _ 1 + 1 _ 1,
SR TSN D ST A

and the inequality (3.2) follows. O

THE PROOF OF YOUNG’S INEQUALITY. Let a,b > 0. If b = 0, then the inequality
(3.3) clearly holds. Thus we may assume that b > 0. Putting \ = %, the inequality

(3.3) is equivalent to
A" < Aa+ (1— )b

or (dividing by b)

(%)Aé)\%Jrl—)\.

Putting ¢ = ¢, it thus suffices to show that, for every ¢ € (0,0), one has
= A<1-A
To this end, consider the function ¢(t) = t* — At. Since
P(t) =M= A=A = 1),

one has ¢'(t) > 0if t € (0,1), and ¢/(t) < 0 if t € (1,00). It follows that ¢(1) is the
maximal value of ¢ in (0, c0); thus, for all ¢ € (0, o),

=M <P(l)=1—\
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Proposition 3.4. Let 1 < p<g< o, and letne N and ay,...,a, = 0. Then
1 1
n q p
q p
20 < | 2a
i=1 j=1
PROOF.

*Exercise 3.1. Prove Proposition 3.4.
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4.1. Finite-dimensional spaces

Throughout this subsection, n € N will be a fixed natural number, and K = R or
K = C.
The classical finite-dimensional normed spaces are:

o for 1 <p<oo, £y := (K", |-|,) where

lz]p == (Z |£j|p) , x=(&) eKn
j=1

The norm | - |, is referred to as the p-norm.

o (" :=my, = (K", |- |x) where
o == max fg;], @ = (&) € K.
The norm || - || is referred to as the mazimum norm.

For 1 < p < oo, the most interesting among the p-norms are, perhaps, the 1-
norm—also known as the sum norm—

)1 == Z &1, x = (&) € K",
j=1
and the 2-norm—also known as the Fuclidean norm—

z = (§)j- € K"

Exercise 4.1.  (a) Verify the axioms of norm for | - |4.

(b) Let 1 < p < oo. Verify the axioms of norm for | - |, (use Minkowski’s inequality for the
triangle inequality in the case 1 < p < o0).

Exercise 4.2. Draw the closed unit balls in the spaces ¢%, £3, and (2.
Remark 4.1. The notation ¢, is justified by
Proposition 4.1. For every x = (§;)j_, € K",

|2l —— lz[-

p—0

PROOF.

*Exercise 4.3. Prove Proposition 4.1

14
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Remark 4.2. Proposition 3.4 may be equivalently reformulated in terms of p-norms
as follows: Whenever 1 < p < q < o0, one has, for every x € K",

|zllee < [zl < lzlp < []s-
Proposition 4.2. Convergence in the spaces ), 1 < p < o0, is equivalent to coor-

dinatewise convergence, i.e., for xy = (55?)?:1,37 = (&)1 € EZ, ke N,

Ty —>x inl — § §J forall je{l,...,n}.
k—o0

PrROOF. By Remark 4.2, for every j € {1,... ,n} and all p € [1, 0],

€5 — &l < max € — & = ok — 2o < o = 2llp < an — 2 = Z & —&l.

It follows that, on one hand, if 2, — @ in £} for some p € [1, 0], i.e., |z}, — pr — 0,
—00

k—o0
then
k : .
[$ —§j|IH—O>OO, ie., £]k Ocﬁj for every j e {1,...,n}. (4.1)
On the other hand, if (4.1) holds, then also |z —z|; — 0 and thus, for all p € [1, o0],
—00

one has ||z) — IH”/H—O)OO’ ie., xy o in (7. O

4.2. Sequence spaces

Throughout this subsection, K = R or K = C. By a sequence (§;) = (§;)72,, we
shall mean a sequence of numbers, i.e., {; € K, j e N.

In all of the linear spaces of sequences below, for sequences (£;)72; and (1;)7,,
and a number « € K, the linear space operations are defined coordinatewise:

(&)izr + ()21 = (& +mi) 721,
O‘(gj);p:l = (Offj);o:l-

e The linear space of all sequences

si={(§)i: &K, jeN}

is a metric space with respect to the distance

0
11§ —nyl
J J 0
p(xvy) = Y ) T = (5j)j=17 Y= (n]) -1 €S
j;w L+ 18 = njl

Exercise 4.4. Verify the axioms of metric for the distance p.
HINT. For the triangle inequality, it suffices to show that, whenever 0 < o < 8, on has 135 < 7 f 5
because, in this case, for all j € N,

& =Gl _ &G =mtni =Gl &G =il + | = Gl
L+[§ =Gl T+1&G—ni+n0 — Gl 141§ —ni] +nj — ¢

&5 — nj — Gl < &=l =Gl

Sl gl =Gl 1+l =Gl T 1+l 1+ — Gl
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Notice that the distance in s is not induced by any norm.

Exercise 4.5. Prove that there is no norm in s satisfying p(z,y) = | — y|, z,y € s.

Proposition 4.3. Convergence in the space s is equivalent to coordinatewise con-
; _ k\oo _ [
vergence, i.e., for x, = (&F)72,, v = (§)72, €5, k€N,

Tp—> T NS — f—»é‘j for all j € N.
k—o0 k—0o0

PROOF. Let z; = (&), 2 = (&), €5, ke N.

“=”_ Assume that xry —— z in the space s, i.e

k—00
p(xg, x 3 l ’éf _ 6]’ 0
) = 2 1+ ]55@ — 5j| k—00
For every k € N,
1 [€f =&l .
— —=—— < p(ay,z) forevery jeN,
2 14| -l
thus i
E._ |§] - €J|

Ci= 2 <2 p(xy, ) for every j e N.
S S 3]

Since, for every j € N, one has 27 p(wy, ) — 0, it follows that
—00

th —— 0 for every j e N;

U NS
therefore, observing that, for all k, j € N, one has t% +t5|¢F — &;| = [€F —&;| and thus
tk
& — ¢ = ]t (note that 1 —¢¥ # 0, because ¥ < 1),
Y
;
|§k &l = t’“ — —— 0 for every j e N.

“<". Assume that fk — &, for every j € N. We must show that ;, —— x in
—00 k—o0

the space s, i.e., p(xy, x) = 0. To this end, letting € > 0 be arbitrary, it suffices
—00
to find an N € N so that, for & >

© k
11§ =&l
plor, @ 242_1+|§’c gl =
To this end, first choose an index n € N so that
“1 €
DERE
. 27 2
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00

(such an n € N exists because the series Y o7 converges and the remainder term of
i1
a convergent series converges to zero). Since |§f — & — 0 for every 7 € N, also,
—

for every j e {1,...,n},

€5 — &l 0
1+|£§€_£]| koo
thus, for every j € {1,...,n}, there exists an N; € N such that, for k > N, one has
kE_ ¢
L1 . Gl _e (4.2)
1+ |§J - €]| 2
Therefore, defining N := max{Ny, ..., N,}, the inequality (4.2) holds for all j €
{1,...,n} and k = N. Thus, whenever k > N, one has
oz x)_il &5 — &l —il &5 — &l i 11§~ &l
)= ) i T e T = e i e —
€ - 1 e e
<Zﬁ+,2 5 “3tg=¢
j=1 j=n+1
O

The most important classical normed sequence spaces are:

e for 1 < p < o0, the linear space of p-summable sequences

by = {(ij)f_li 2 l&P < 00}

=1

with respect to the norm

] = Nl := (Z |€j|”)

e the linear space of bounded sequences

) T = (gj);ozl € épa

U :=m = {(&)7,: there exists M > 0 such that |¢;| < M for all j € N}

and its linear subspaces of convergent sequences
c:= {(fj)jool the limit lim & e K exists} C ly
J—0
and
co 1= {(fj);?o_lz lim &; = O} cccly
Jj—©
with respect to the norm

|z = lzle :=sup[&5], @ = (&)1 € Lo
jeN
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Exercise 4.6. Prove that, in the space ¢y, the norm can be computed by
ol = ol == max|&sl,  x = (&;)j% € co.

The most interesting among these spaces £,, 1 < p < o0, are the space of sum-
mable sequences

b= R () D lg] <o

J=1

where the norm is given by
0
o] = Nzl = D 161, = =(&)Lieb,
j=1

and the space
0
by = § (&)= Z]§j|2<oo

where the norm is given by

lz] = ll]2 =

DGl =) et
j=1

Proposition 4.4. (a) For 1 < p < o0, convergence in the space €, implies coordi-
natewise convergence, i.e., for x; = (5;“);0:1, = (&), €y, keN,

Ty —>x in b, = ’?—>§j for all j € N.
k—0o0 J k-0

(b) Convergence in the space Ly is equivalent to uniform coordinatewise conver-
gence, i.e., for xj = (f]’?);?ozl, r=(§)7, €lo, kEN,

Ty > 2 mn Ly — § 5] uniformly in j € N

. ke
(z.e., SJIGIIE 1€ §j|k_)000).

PRrooOF.

Exercise 4.7. Prove Proposition 4.4.

Lause 4.1. Let 1 <p <q< . Then (, & {, and

2], < llzl, for cvery x € 6.

PROOF.
Exercise 4.8. Prove Proposition 4.1

HinT. Use Proposition 3.4.
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4.3.

Function spaces

If T < K, in all of the linear spaces of functions T — K below, for functions
x,y: T — K and a number « € K, the linear space operations are defined pointwise:

(z +y)(t) = 2(t) + y(1),

(az)(t) = az(t), tel:

The most important classical function spaces are the following.

M]a, b] is the normed space of bounded functions z: [a,b] — K and C|[a, b] is
its linear subspace of continuous functions. The norm in thes spaces is defined
by

|| = sup [z(t)], = e Mla,b].
te[a,b]

In the space Cla,b], the norm can be computed by

= t Cla,b|.
] = max [z(®)], e Cla,b]

Notice that convergence in these spaces is the uniform convergence on [a, b]:
for x,,,z € M|[a,b],

r, —— = in M|a, D] — Tp(t) —— x(t) uniformly in ¢ € [a, b].
n—a0 n—a0

C™la,b] (n € N) is the normed space of n times continuously differentiable on
[a, b] functions, where the norm is defined by

n

] = max |(t)] + ;ga;f] 2D (@)|, xeC[a,b].

L,(a,b) (1 < p < o0) is the normed space of p-integrable (in the sense of
Lebesgue) functions (a,b) — K i.e., measurable (in the sense of Lebesgue)
functions z: (a,b) — K for which

b
J ()P dt < o,

The norm in L,(a,b) is defined by

|z =l = (J ()P dt) p7 2 € Ly(a,b).

Equality of functions x,y € L,(a, b) is understood as almost everywhere (a.e.)
equality:

r=y in Ly(a,b) — z(t) = y(t) for almost every in t € (a,b).
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Equivalently, L,(a,b) can be interpreted as the normed space of equivalence classes of a.e.
equal on (a,b) p-integrable functions, where the algebraic operations and norm are defined
as above via representatives of equivalence classes.

The most interesting among the spaces L,(a,b), 1 < p < oo, are the space of
integrable in the sense of Lebesgue functions L;(a,b) where the norm is given

by
b
lz| = |lz]: = f [z(t)|dt, x € Li(a,b)

and the space of square-integrable functions Ls(a,b) where the norm is given
by

b
fol = lels = g/ [ o0 dt,, € La(a,b)
Ly (a,b) is the normed space of essentially bounded (in the sense of Lebesgue)
functions (a,b) — K (i.e., Lebesgue measurable functions (a,b) — K which
are bounded outside a set of Lebesgue measure 0). The norm for « € Ly (a, b)

is defined by
|z = 2] - = esssup |a(t)] := vraisup |z (t)|
te(a,b) te(a,b)

c=inf{M > 0: |z(t)| < M ae.}
—inf{M > 0: m({te (a,b): a(t)] > M}) = 0},

where m is the Lebesgue measure. Notice that |z(t)| < |z« a.e.

Asin Ly(a,b) for 1 < p < o0, equality of functions in L (a, b) is understood as their equality
a.e. Equivalently, Ly, (a,b) is often interpreted as the normed space of equivalence classes of
a.e. equal on (a,b) essentially bounded functions.

Remark 4.3. In general, convergence in the space L,(a,b) where 1 < p < oo does

not imply convergence a.e. (let alone pointwise convergence): if x,,x € Ly(a,b)

(1 <p <o), neN, are such that z, —— x in L,(a,b), one does not necessarily
n—0o0

have that

T, —— x a.e. in (a,b),
n—ao

let alone

zp(t) — x(t) for every t € (a,b).

On the other hand, if x,,z € L,(a,b) (1 <p < ), n €N, are such that

(1) z, —u in L,(a,b);

(2) there exist a subsequence (zj,)*_; and a function z: (a,b) — K such that

xy, — z a.e. in (a,b),
n—o0

then = z a.e. (thus also z € L,(a,b), and = z in the space L,(a,b)).

Convergence in the space L (a,b) implies convergence a.e.
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Remark 4.4. In the set-theoretical sense, the spaces L,(a,b), p € [1, 0], are related
as follows: if 1 < p < ¢ < o0, one has

Ly (CL> b) 2 Lp(av b) = Lq(aa b) = Loo(aa b)-

*Exercise 4.9. Prove the assertion above.



§ 5. Open and closed sets in metric spaces.
Interior, boundary, and closure

Throughout this section, X will be a metric space.

5.1. Open sets in metric spaces. Interior points

Definition 5.1. A subset A — X is said to be an open set, if every point of A has
a neighbourhood which is contained in A.

Definition 5.2. Let A ¢ X.

A point a € A is called an interior point of A, if a has a neighbourhood which is
contained in A.

Equivalently, a point a € A is called an interior point of A, if there exists a ball
centered at a which is contained in A, i.e., there is an ¢ > 0 such that B(z,e) c A.

The following corollary is straightforward from the preceding definitions.
Corollary 5.1. Let A < X. The following assertions are equivalent:
(i) the set A is open;
(i) every point of A is an interior point of A;
(iii) for every a € A, there exists an € > 0 such that B(a,c) < A.
Proposition 5.2. An open ball is an open set.

PROOF. Let a € X and r > 0, and let b € B(a,r). In order to see that the open
ball B(a,r) is an open set, it suffices to find an € > 0 such that B(b,e) < B(a,r).
The latter inclusion clearly holds for € := r — p(b,a) (here ¢ > 0 because, since
be B(a,r), one has p(b,a) < r), because whenever = € B(b,¢), one has

p(z,a) < p(z,b) + p(b,a) < e+ p(b,a) <r—p(b,a) + p(b,a) =r

and thus z € B(a,r). O

Example 5.1. The half-open interval [0,1) in R is not an open set (with respect to the metric
d(z,y) = |z —y|, z,y € R). Indeed, the point 0 € [0, 1) is not an interior point of the interval [0, 1),
because no open ball B(0,¢e) = (—¢,¢) (here € > 0) is contained in [0, 1).

The following proposition collects some basic properties of open sets.

Proposition 5.3. (a) & and X are open sets;

(b) any finite intersection of open sets is an open set, i.e., whenever n € N and
. . . n . .
Aq,..., A, © X are open sets, also their intersection ﬂj:1 A; is an open set;

(¢) any union of open sets is an open set, i.e., whenever I is a set of indices and
Aj, j€l, are open sets, also their union Ujd A; is an open set.

22
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PROOF. (a). Every point of ¢ is an interior point of ¢§ (because there are no points
in ), thus ¢ is open. Since X contains every ball in it, every point in X is an
interior point of X and thus X is open.

(b). Let n € N and let A;,..., A, < X be open sets. In order to show that the
intersection ﬂ?zl A; =: A is open, letting x € A be arbitrary, it suffices to find an
e > 0 such that B(x,e) < A. For every j € {1,...,n}, since the set A; is open and
x € Aj, there is an €; > 0 such that B(xz,¢;) < A;. Putting € := min{ey,...,e,}, one
has B(z,¢) = B(z,¢;) = A; for every j € {1,...,n}, and thus B(z,e) = [)]_; A; =
A, as desired.

(c). Let I be a set of indices and let A;, j € I, be open sets. In order to show
that the union Uj€I A; =: A is open, letting x € A be arbitrary, it suffices to find
an € > 0 such that B(x,e) < A. Let ¢ € I be such that = € A;. Since the set A; is

open, there is an € > 0 such that B(z,e) ¢ A; Uje] A; = A, as desired. ]

5.2. Closed sets in metric spaces. Boundary points

Definition 5.3. Let A < X.

A point a € X is called a boundary point of A, if every neighbourhood of a
contains both points in A and points not belonging to A.

Equivalently, a point a € A is called a boundary point of A, if, for every € > 0,

B(a,e)nA# g and B(a,e) n(X\A) # .

Since A = X\(X\A), the following corollary is straightforward from the prece-
ding definition.

Corollary 5.4. Let A ¢ X. The set A and its complement X\ A have the same
boundary points.

Corollary 5.5. Let A ¢ X. Then any point of A is either an interior point or a
boundary point of A. No point of A can be simultaneously an interior point and a
boundary point of A.

PROOF. Let a € A. There are two (mutually excluding each other) alternatives:
(I) there exists a neighbourhood of a which is contained in A;
(IT) every neighbourhood of @ contains a point not belonging to A.

In the case (I), the point a is an interior point of A by definition.

In the case (II), since every neighbourhood of a also contains points in A (note
that every neighbourhood of a contains the point a € A itself), the point a is a
boundary point.

It is clear from the corresponding definitions that no point of A can be simulta-
neously an interior point and a boundary point of A. m
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From Corollary 5.5 it follows that, for a subset A of X,
Aisopen <= A contains none of its boundary points.

Definition 5.4. Let A < X. The set A is said to be a closed set, if it contains all
its boundary points.

Remark 5.1. A set A € X may be both open and closed simultaneously. This happens precisely
when A has no boundary points. Examples of such a phenomenon are, e.g., A = ¢ and A = X.

Also, every set in a discrete metric space is both open and closed (see exercise 5.6).

Remark 5.2. A set in a metric space may be neither open nor closed. E.g., the half-open interval
[0,1) in R is not an open set (with respect to the metric d(z,y) = |z — y|, 2,y € R) (see example
5.1); nor is it closed, because its boundary point 1 € R is not in [0, 1).

The following proposition shows the duality between open and closed sets in
metric spaces.

Proposition 5.6. Let Ac X.
(a) The set A is closed if and only if its complement X\ A is open.
(b) The set A is open if and only if its complement X\ A is closed.

PROOF. (a). Since by Corollary 5.4, the set A and its complement X\ A have the
same boundary points,

Ais closed <= A contains all of its boundary points
< X\A contains none of its boundary points

< X\A is open.
(b). Since A = X\(X\A), one has, by (a),
Aisopen <«— X\(X\A)isopen <= X\Ais closed.
[

By courtesy of Proposition 5.6, the following proposition becomes a corollary
from Proposition 5.3.

Proposition 5.7. (a) & and X are closed sets;

(b) any finite union of closed sets is a closed set, i.e., whenever n € N and
Ay, ..., A, c X are closed sets, also their union U?=1 A; is a closed set;

(c) any intersection of closed sets is a closed set, i.e., whenever I is a set of indices
and Aj;, j € I, are closed sets, also their intersection mjel A;j is a closed set.
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PRroOOF. (a) Since g = X\X and X = X\, and, by Proposition 5.3, X and &
are open sets, the sets ¢J and X are closed by Proposition 5.6, (a).

(b). Let n e N and let Ay,..., A, = X be closed sets. In order to show that the
union U?=1 A; =: A is closed, by Proposition 5.6, (a), it suffices to show that its
complement X\ A is open. By De Morgan’s law,

‘wAzxuﬁ&zfiw@.

1

Since the sets A;,..., A, are closed, their complements X\A4;,..., X\ A, are open
by Proposition 5.6, (a), and thus also their intersection ﬂ?;l X\A4; is open by Pro-
position 5.3, (b), i.e., the complement X\ A is open, as desired.

(c). Let I be a set of indices and let A;, j € I, be closed sets. In order to show
that the intersection ﬂje] A; =: A is closed, by Proposition 5.6, (a), it suffices to
show that its complement X\ A is open. By De Morgan’s law,

X\A=x\[4; = x\4;.

Since, for every j € I, the set A; is closed, its complement X\A; is open by Propo-
sition 5.6, (a), thus also the union Uje] X\A; is open by Proposition 5.3, (c), i.e.,
the complement X\ A is open, as desired.

L]

Proposition 5.8. Let A < X. The following assertions are equivalent:
(i) A is closed;

(ii) whenever a sequence (x,)_, of elements of A converges to some x € X, also
x e A.

PROOF. (i)=(ii). Let A be closed, and let (z,)*_; be a sequence of elements of A
converging to an element x € X. We must show that x € A. There are two (mutually
excluding each other) alternatives:

(1) there exists a neighbourhood of x which is contained in A;
(2) every neighbourhood of = contains a point not belonging to A.

In the case (1), clearly x € A (in fact, x is an interior point of A). In the case (2),

observing that, since z,, — =,
n—o0

e cvery neighbourhood of x contains some x,, (and thus every neighbourhood of
x contains a point belonging to A),

the point x is a boundary point of A and thus x € A by the closedness of A.
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(ii)=>(i). Assume that (ii) holds and let x € X be a boundary point of A. In
order for A to be closed, it suffices to show that x € A. Since x is a boundary point
of A, for every n € N, there is some

1
Ty € B(x,—) NA,
n

1
For every n € N, since z,, € B(x, —), one has
n

1
0< n < -
ptn, z) < —

and thus p(z,,r) —— 0, i.e., z, —— x in X. By (ii), z € A, as desired. O]
p n—0o0 n—0

Proposition 5.9. Closed balls and spheres in metric spaces are closed sets.

PROOF. We only show that closed balls are closed. (The closedness of spheres can
be shown analogously.)

Let a € X and 7 > 0, and let 2, € B(a,r), n € N, and € X be such that
r,, — x in X. For the closedness of the closed ball B(a,r), by Proposition 5.8, it

n—00
suffices to show that x € B(a,r), i.e., p(x,a) <.
By the continuity of the metric p (see Proposition 1.2, (d)),

p(:L‘n, Cl) E’ p(a;, a)'

For every n € N, since z,, € B(a,r), one has p(x,,a) < r, thus also p(z,a) < r, as
desired. [

Exercise 5.1. Prove Proposition 5.9 by showing that the complement of a closed ball and the
complement of a sphere are open sets (and then applying Proposition 5.6).

5.3. Interior, boundary, and closure

Definition 5.5. Let A < X.

e The set of all interior points of A is called the interior of A and denoted by
A° or int A.

e The set of all boundary points of A is called the boundary of A and denoted
by 0A or fr A.

e The union of the set A and its boundary is is called the closure of A and
denoted by A or cl A. The points in A are called closure points of A.

Thus, by definition,

A=clA:=AU0A=A"U A
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The following proposition just a restatement of Corollaries 5.4 and 5.5 (which
were immediate corollaries from the corresponding definitions).

Proposition 5.10. Let A < X. Then
(a) 0A =0(X\A);
(b) for every x € A, either x € A° or x € 0A;
(c) A°ndA=¢.
Clearly,
e Aisopen «— A=A" << AnidA=,
o Aisclosed «— A=A
Exercise 5.2. Let A ¢ X. Prove that
(a) A°=X\X\4; (b)) A=X\(X\A)%5 () (X\A)"=X\4  (d) X\A=Xx\4°.
Closure points of a set in a metric space are described by
Proposition 5.11. Let A X and x € X. The following assertions are equivalent:
(i) z e A;
(ii) for every e >0, one has B(x,e) n A # &;

(iii) there is a sequence (x,) of elements of A such that x, — .

n—o0
PROOF. (i)=(ii). Let z € A, and let € > 0. If z € A°, then x € B(z,¢) N A, hence
B(z,e) n A # . If © € 0A, then the latter holds by definition.

(ii)=(iii). Suppose that (ii) holds. Then, for every n € N, there exists some

1
rpn€Blx,— ) nA Now x, € A for all n e N and x,, —— x because
n n—00

1
< - —
p(xn, x) < P 0.

(iii)=>(i). Suppose that there are x, € A, n € N, such that z,, —— z. If z € A,
n—ao0

then clearly = € A, i.e., (i) holds. Suppose that = ¢ A. In this case, since every neig-
hbourhood of x contains z, every neighbourhood of x contains points not belonging

to A, and since every neighbourhood of x contains some z,, (because z,, —— ),
n—0o0

every neighbourhood of x contains points in A; thus z is a boundary point of A and
therefore x € A. O

Simpler properties of closure are collected in

Proposition 5.12. Let A,B < X. Then
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(a) A is a closed set;

(b) if Ac B, then A c B;

(c) A=4;
(d) AvB=AuUB.

PROOF. (a). Let (z,,) be a sequence of elements of A converging to some z in X. In
order to prove that A is closed, by Proposition 5.8, it suffices to show that z € A.
For every n € N, since € A, by Proposition 5.11, there exists some z, €

An B(xn, %) Now (z,) is a sequence of elements of A satisfying z, —— = in X,
n—oo

because .
P(2n, ) < p(2n, Tn) + p(Ty, ) < ~t p(Tn, r) — 0;

n—0o0
thus, by Propostion 5.11, z € A, as desired.

(b). Assume that A = B, and let € A. It suffices to show that x € B. To
this end, letting ¢ > 0 be arbitrary, by Proposition 5.11, it suffices to show that
B(z,e) n B # &. The latter holds because A < B and B(z,e) n A # J by
Proposition 5.11 (because = € A).

(c) follows immediately from (a).

(d). On the one hand, since A ¢ A and B < B, also Au B ¢ A u B, thus
AU B c AU B by (b). Since A and B are closed sets (by (a)) and finite unions
of closed sets are closed (by Proposition 5.7, (b)), also the union A U B closed and
therefore AU B=AuUB. Thus AuBc AuB=AuUB.

On the other hand, since A« AuB and B < AU B, by (b),one has Ac Au B
and B < AuU B, and thus also Au B < AU B.

O
Simpler properties of interior are collected in
Proposition 5.13. Let A, B < X. Then
(a) A° is an open set;
(b) if A< B, then A° c B°;
(c) (A7) =A%
(d) (An B)° = A°n B°.

PROOF.
Exercise 5.3. Prove Proposition 5.13

HinT. Use Exercise 5.2 together with Proposition 5.12.
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Proposition 5.14. Let A < X. Then
(a) A° =] G; by A= F.

GcA AcFcX
G is open F is closed

PROOF.

Exercise 5.4. Prove Proposition 5.14

Corollary 5.15. Let A c X.

(a) The interior A° is the biggest open set contained in A.

(b) The closure A is the smallest closed set containing A.

PRrOOF. (a). The interior A° is an open set by Proposition 5.13, (a). The interior
A° is the biggest open set contained in A because, again by Proposition 5.14, (a),
every open set contained in A is contained in A°.

(b). The closure A is a closed set by Proposition 5.12, (a). The closure A is the
smallest closed set containing A_because, again by Proposition 5.14, (b), every closed
set containing A also contains A. m

5.4. Additional exercises

Exercise 5.5. Let a € X and r > 0. Prove that
(a’) B((l, T)O = B(aa 7‘);

HiNT. For (a) and (b), use the facts that open balls are open sets and closed balls are closed sets.

SoLuTION. (c). Since B(a,7) = B(a,r), one has, by Proposition 5.12, (a), and the closedness of
B(a,r),

B(a,r) < B(a,r) = B(a,r).
(d). Since B(a,r) > B(a,r), one has, by Proposition 5.13, (a), and the openness of B(a,r),
B(a,r)° o B(a,r)° = B(a,r).
(e). It suffices to show that
0B(a,r) " B(a,r) = & and 0B(a,r)n (X\B(a,r)) = &.
The first equality follows from the openness of B(a,r). The second equality holds because, by (c),
0B(a,r) < B(a,r) < B(a,r).
(f). By the closedness of B(a,r),
0B(a,r) < B(a,r) = B(a,r) v S(a,r).
Since, by (d), B(a,r) < B(a,r)°, it follows that dB(a,r) = S(a,r).
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Remark 5.3. The inclusions (c¢)—(f) in Exercise 5.5 are, in general, strict. In order to give the
corresponding examples, it is, first, useful to solve the following Exercise 5.6.

Exercise 5.6. Prove that
(a) every set in a discrete metric space is open;
(b) every set in a discrete metric space is closed.
(c) the boundary of every set in a discrete metric space is empty.

Example 5.2. We give some examples of cases where the inclusions (c)—(f) in Exercise 5.5 are
strict.
Let X be a discrete metric space containing at least two elements, and let a € X. Then

e B(a,1) = B(a,1) = {a} £ X = B(a,1);
e B(a,1)° = B(a,1) = X 2 {a} = B(a,1);
* 0B(a,1) = J & X\{a} = S(a, 1);
e 0B(a,1) = & < X\{a} = S(a,1).
Remark 5.4. The following Exercise 5.7 shows that if X # {0} is a normed space, then the
inclusions (¢)—(f) in Exercise 5.5 are actually equalities.
Exercise 5.7. Let X # {0} be a normed space. Prove that
(a) 0B(a,r) = S(a,r);
(b) 0B(a,r) = S(a,r);
(¢) Bla,r) = B(a,r);
(d) B(a,r)° = B(a,r).
Exercise 5.8. Prove that, in a normed space,
(a) the closure of a subspace is a subspace;
(b) the closure of a convex set is convex.

Exercise 5.9. Prove that 0(0A) < dA. It follows that the boundary 0A is a closed set.
Exercise 5.10. Let A ¢ X and let x € X. The distance of = from A is defined by

d(z, A) := (iLIElflp(x,a).
Prove that
(a) d(z, A) = d(, A);
(b) z € A if and only if d(z,a) = 0.
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6.1. The notion of completeness

Definition 6.1. A sequence (x,,) in a metric space X is called a Cauchy sequence
(or a fundamental sequence) if

P(Tn, Tm) 0,

n,m—00
i.e., for every € > 0, there is an index N € N such that
nm=N = p(x,,z,) <¢c

or, equivalently,
npeNn=N = p(x,, Tnip) <E€.

Example 6.1. Denote, for all n € N,

en =(0,...,0,1,0,...).
[

n

The sequence (ey,);_; is not a Cauchy sequence in £, for any p € [0, 0] because, whenever
n <m,

o>3

len — eml = [(0,...,0,1,0,.
——

530, = 9%, if1<p<ao;
1, ifp=o0.

n

Multiple examples of Cauchy sequences are provided by assertion (a) of the
following

Proposition 6.1. (a) Every convergent sequence is a Cauchy sequence.
(b) Ewvery Cauchy sequence is bounded.

¢) If a Cauchy sequence has a convergent subsequence, then this sequence conver-
Y seq g q q
ges to the same limit as the subsequence.

PROOF. Let (x,) be a sequence in a metric space X.

(a). Suppose that x,, —— x for some z € X. We must show that (z,) is a
n—o0

Cauchy sequence, which is the case because

P(Tn; Tm) < p(Tn, @) + p(2, ) —— 0.

n,m—00

(b). Let (z,) be a Cauchy sequence. We must show that the sequence (x,) is
bounded, i.e., the set of its elements is contained in some ball, i.e., there exist a € X
and r >0 such that x, € B(a,r) for every n e N, i.e.,

p(x,,a) <r for every n e N. (6.1)

31
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Since (z,,) is a Cauchy sequence, there is an index N € N such that
nm=N = p(t,,T,) <l

In particular,
p(x,,xy) <1 for every n > N.

But now, (6.1) holds for

a:=zy and 7r:= max{p(a:l, TN), - p(TN_1,TN), 1}.
(c). Suppose that (z,) contains a convergent subsequence, say (zx,)r_;, and let

x, — x € X. We must show that x,, —— 2 which is the case because
n—aoo n—aoo

Pl 1) < pa,2i,) + plig,7) —

(here p(z,,xr,) — 0 because (z,) is a Cauchy sequence and k,, —— ). O
n—o0 n—ao0

Example 6.2. Non-convergent Cauchy sequences do exist.

Indeed, let X be the interval (0,1] in R equipped with the Euclidean distance, and let z,, =
€ X, n € N. Then the sequence (z,,) is a Cauchy sequence in X which does not converge in X.

To see this, observe that x,, — 0 in R, thus (x,,) is a convergent sequence in R, hence a Cauchy
sequence in R by Proposition 6.1, (a), and thus also a Cauchy sequence in X. If the sequence (z;,)
were convergent in X, say z, — x € X in X, then also z,, — z in R, and thus (z,) would have
two different limits—0 and x—in R, a contradiction.

1
n

The previous example motivates the following

Definition 6.2. A metric space X is said to be complete if every Cauchy sequence
in X converges (in X).
A complete normed space is called a Banach space.

Example 6.3. The space R is complete (with respect to the Euclidean distance).

Indeed, let (z,) be a Cauchy sequence in R. By Proposition 6.1, (b), the sequence (z,) is
bounded. Since, by the Bolzano—Weierstrass theorem, every bounded sequence of real numbers has
a convergent subsequence, the sequence (x,,) converges by Proposition 6.1, (c).

Example 6.4. The space C is complete (with respect distance p(x,y) = |z — y|,
z,y e C).

Indeed, let (x,) be a Cauchy sequence in C. For every n € N, let a,,b, € R be, respectively,
the real and imaginary part of x,, i.e., x, = a, + ib,. Since, for all n,m e N,

|2 — o] = [(an — am) + i(bn, — bm)| = \/|an —am|? + |bn — b |?,
one has

|an, — am| <|zn —2m| —— 0 and  |by — by < |20 — 2| —— 0,
n,m— n,m—o0
thus the sequences (a,) and (b,) are Cauchy sequences in R, and, by the completeness of R, the
sequences (a,) and (b,) converge in R, i.e., x, —— x and z,, —— z in R for some a,b € R.
0

n—o0

n—
Putting = := a + ib, for the completeness of C, it remains to observe that x,, —— z in C, because
n—o0

|z, — x| = |(an, — a) +i(b, — b)| = \/|an—a|2—|—|bn—b\2 ﬁo.
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In fact, every metric space in § 5 is complete. In these notes, we shall prove the
completeness for just a few of them.

Example 6.5. For every n € N and 1 < p < o, the space £ is complete.

Indeed, let n € N, let 1 < p < o0, and let (xx)72; = ((§))7- 1) | be a Cauchy sequence in €.
Then the sequence (z)5, is bounded, i.e., there is some M > 0 such that |zp| < M for all k e N
By Remark 4.2, for every j € {1,...,n} and every k € N,

€51 < loklloo < axlp < M,

thus the sequence (ff),;‘czl is bounded in K. By the Bolzano-Weierstrass theorem, every bounded
sequence in K has a convergent subsequence, thus

-1

(1) the sequence (£¥)?_; has a convergent subsequence (£;*)%_;;
.1 -2

(2) the sequence (£,7)7°_, has a convergent subsequence (£5)%_;;

2 .3
(3) the sequence (£5*)%_, has a convergent subsequence (£;°)7;;

and so on,

n2 nl

(n—1) the sequence (£* ;)% has a convergent subsequence (£* ;)% ;

-n—1

(n) the sequence (&7 )%, has a convergent subsequence (f;{:)f:

1
Now, the subsequence (win)i_, = ((5;2)?:1)20:1 (of (zx)y.,) is coordinatewise convergent, and
hence convergent in £;.

Example 6.6. The space £, is complete.

Indeed, let (z,)7_; = ()2 1) , be a Cauchy sequence in £y, For the completeness of £,
it suffices to show that the sequence (J;n) converges in 4. To this end, observe that, for every
j € N, the sequence of the j-th coordinates (5”) ~_, is a Cauchy sequence in K because

|§;L - f;n‘ < zn = 2mfoo ——— 0.
n,Mm—00

By the completeness of the space K, for every j € N, the sequence (f;-b)f‘:l converges in K, say
£} —— &; € K. It now suffices to show that z := (§;) € £y and z,, —— x in Ly,
n—o0 n—0o0

To this end, letting £ > 0 be arbitrary, it suffices to find an N € N such that

n=zN = |z,—z|s :su£|£j’-‘—§j| <e. (6.2)
je

Indeed, if one would have x € ¢, then this would imply that x,, —— z. But (6.2) also implies
n—0o0

that, for n > N, one has x,, — x € £y, and thus also x = x,, — (2, — ) € lop.
Since (x,,) is a Cauchy sequence, there is an N € N such that

nm=N = |x,— :cm||oo—sup|§" ' <e.
jeN

In particular, for all j € N,
nm=N = |[{ =" <e.

Letting m — oo, the latter implies (6.2).
Proposition 6.2. (a) A complete subspace of any metric space is closed.

(b) A closed subspace of a complete metric space is complete.
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The following corollary is straightforward from Proposition 6.2.

Corollary 6.3. A subspace of a complete metric space is complete if and only if it
15 closed.

PROOF OF PROPOSITION 6.2. Let X be a metric space.

(a). Let Y be a complete subspace of X. In order to show that Y is closed,
letting (y,) be a sequence of elements of Y converging to some x € X in X, (by
Proposition 5.8) it suffices to show that x € Y.

Since the sequence (y,,) converges in X, it is a Cauchy sequence in X and thus
also a Cauchy sequence in Y. By the completeness of Y, the sequence (y,,) converges
in Y to some y € Y. But then the sequence (y,) converges to y also in X, and, by
the uniqueness of the limit, x = y € Y, as desired.

(b). Assume that X is complete, and let Y be a closed subspace of X. In order to
show that Y is complete, letting (y,) be an arbitrary Cauchy sequence of elements
of Y, it suffices to show that the sequence (y,) converges in Y.

Since (y,,) is a Cauchy sequence also in X, by the completeness of X, the sequence
(yn) converges in X to some z € X. Since Y is closed, one has z € Y (by Proposition
5.8), and thus the sequence (y,) is convergent in Y, as desired. O

Example 6.7. The space ¢ is complete.

Indeed, since ¢ is a (normed) subspace of the complete space £y, for the completeness of ¢y,
by Corollary 6.3, it suffices to show that cq is a closed subspace of £.
Let z,, = (f?);ozl €cyg,neN,and z = (fj)‘?ozl € l« be such that z,, —— x in £. For the

n—0o0

closedness of ¢y, it suffices to show that = € cg, i.e., {§§ —— 0, i.e., for every € > 0, there exists an
j—00

N € N such that
izN = |[{]<e

Fix an arbitrary € > 0. Observe that for all j,n € N one has
61 < 18 — &1+ 16571 < |z — aa] + [€5].

Since x, —— x, we can fix an n € N so that |z — z,| <
n—o0

thus there is an N € N such that

£ 3 - €N
5. Since z,, € cg, one has &; j_)—o(; 0,

. €
jzN = g§l<3
Now, whenever j > N, one has

3 9
Gl <lo—aal Il < S+ 5 =c

6.2. Principle of nested balls

The following characterization of complete metric spaces will be used in the next
subsection in the proof of the fundamental Baire’s theorem 6.6. However, it is not
without interest in its own right.

Theorem 6.4 (Principle of nested balls). Let X be a metric space. The following
assertions are equivalent:
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(i) X is complete;

(ii) every mested sequence of closed balls in X whose radii tend to zero have a
non-empty intersection, i.e., whenever

B(x1,71) 2 B(xg,72) 2 -+ 2 B(n,70) © B(Tpa1,Tng1) D - (6.3)
are closed balls in X with r,, —— 0, one has ﬂleg(xn,?"n) # .
n—00

Remark 6.1. Cantor’s nested interval’s theorem says that, whenever Iy o Io D I3 D ---
are closed intervals in R whose lengths tend to 0, the intersection ﬂ;o:l I, consists of
exactly one point. By Theorem 6.4, this is the other way to say that R is complete.
(Remark that the completeness of R is usually proven (see Example 6.4) using the Bolzano-
Weierstrass theorem, whose proof, in turn, relies on Cantor’s nested interval’s theorem.)

An important observation regarding the Principle of nested balls is

Proposition 6.5. Let X be a metric space, let X > Dy D Dy D D3 > -+ satisfy
dy := diam D,, —— 0, and let x € (\_, Dy,. Then
n—o0

(a) ., Do = {z}, t.e., x is the only point in (\,_, Dy;

(b) whenever x, € D, one has xr, — .
n—00

PROOF.

Exercise 6.1. Prove Proposition 6.5.

[]

PROOF OF THEOREM 6.4. (i)=(ii). Assume that X is complete, and let (6.3) be
closed balls in X whose radii tend to 0. Then the sequence (x,,) of the centers of the
balls is a Cauchy sequence, because, for n,m € N, n. < m, one has x,, € B(x,,7,)
and thus

p(xp, ) < 1y —— 0.
n—0o0

By the completeness of X, the sequence (z,) converges to some z € X. But now,
z € (\_, B(zn,r,) because, for every n € N, one has z,, € B(xy,, ) ‘whenever
m = n, and thus, by the closedness of the ball B(z,,,), also the limit x € B(x,,,r,).

(ii)=>(i). Assume that (ii) holds and let (x,,) be a Cauchy sequence in X. For the
completeness of X, we must show that (z,) converges in X for which, by Proposition
6.1, (c), it suffices to show that (x,) contains a convergent subsequence.

Our idea is to find indices k1 < ky < k3 < --- and real numbers r,, > 0, n € N,

so that that the closed balls B(xy,,7,), n € N, are nested and 7, —> 0—in this
n—0o0

case, by assumption (ii) and Proposition 6.5, the sequence (zy, ), converges to the
unique element in (_, B(zx,, 7).
To this end, choose indices k; < ky < k3 < --- so that, for all n € N,

1
l7m = kn a p(xlaxm) < 2_n
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1
ny 9n—1

It remains to observe that the balls B(xy, ), n € N, are nested: whenever n € N

and x € B(xy,,,, 57), one also has x € B(xy,, 5:7) because

Fao
on o 2n—1'

;O(xaajkn) < p<xaxkn+1) + p(xkn+17xkn) < 2_"

6.3. Baire’s theorem

Theorem 6.6 below may seem quite useless at first glance. However, it is one of
the cornerstones of the theory complete metric spaces—e.g., a number of results on
operators between Banach spaces rely on Baire’s theorem.

Definition 6.3. A subset A of a metric space is said to be dense (in X) if its closure
A=X.

Theorem 6.6 (Baire’s theorem). (a) A countable intersection of open dense sets
i a complete metric space is dense.

(b) If a complete non-empty metric space is represented as a countable union of
closed sets, then at least one of these sets contains a ball.

Both assertions (a) and (b) of Theorem 6.6 are referred to as Baire’s theorem. In
fact, it is easy to derive (b) from (a) (this is exactly how we prove (b) below) and,
vice versa, it is not much more difficult to derive (a) from (b).

Before proving Baire’s theorem, it may be helpful to clarify the relationship of
some of its ingredients.

Exercise 6.2. Let X be a metric space and let A ¢ X. Prove that the following assertions are
equivalent:

(i) A is dense;
(ii) X\A contains no balls.

Now we are in a position to prove Baire’s theorem.

PROOF OF THEOREM 6.6. Let X be a complete metric space.

(a). Let G,, € X, n € N, be open dense sets, and let B be an open ball in X. In
order for the intersection ()_, G, to be dense, by Exercise 6.2, it suffices to show
that B n ﬂle G, # . To this end, choose z; € X and r; € (0, 1) so that

B(xl,rl) C G1 N B

(this is possible because G; n B is open and, since GGy is dense, Gy N B # & by
Exercise 6.2) and proceed by induction: given n € N, and closed balls

B(x1,71) D B(x2,12) D -+ D B(xy,10),
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choose x,,1 € X and 7,1 € (0, n+r1) so that

B(anrla rn+1) - Gn+1 N B<xn7 rn)

(this is possible because G,1 N B(z,,m,) is open and, since G, is dense, G, 11 N
B(xy,rn) # & by Exercise 6.2). By Theorem 6.4, there exists an

ﬁ B(xy,, ) cBmﬂG

n=1

(b). Let X = |J,_, F, where F,, ¢ X, n € N, are closed sets. Suppose for
contradiction that no £, contains a ball. Then, by Exercise 6.2, the completion
G, = X\F, is dense for every n € N. By (a), also the intersection [)_, G, is dense,
hence, by Exercise 6.2, its completion X'\ ﬂle G, contains no balls. But, by De

Morgan’s law,
e} o0 o0
X\(G=JX\Gu=JF =X
n=1 n=1 n=1

hence X does not contain any balls, a contradiction. O]

Exercise 6.3. Prove that the intersection of two open dense sets in any metric space (not neces-
sarily complete!) is again dense.

6.4. Completion of a metric space

Example 6.2 suggests that the reason why a Cauchy sequence in a non-complete
metric space may fail to converge is that it has nowhere to converge—a non-complete
space does not have enough elements to ensure that every Cauchy sequence has a
limit. In this subsection, we observe that this flaw can, in a sense, be removed:
any metric space can be nicely embedded into a complete metric space as a dense
subspace.

Definition 6.4. Let (X, px) and (Y, py) be metric spaces. A bijection f: X — Y
is called an isometry if

py (f(z), f(u)) = px(z,u) forall z,ue X. (6.4)
In this case, one says that X and Y are isometric (or Y is isometric to X)

In other words, an isometry between metric spaces is a bijection which preserves
the distance between elements. Clearly, Y is isometric to X if and only if X is
isometric to Y.

Exercise 6.4. Let (X, px) and (Y, py) be metric spaces. Prove that a mapping f: X — Y
satisfying (6.4) is an injection. It follows that a surjection f: X — Y satisfying (6.4) is an isometry.

Exercise 6.5. Let X, Y and Z be metric spaces such that X and Y are isometric, and Y and Z
are isometric. Prove that X and Z are isometric.
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Definition 6.5. Let X be a metric space. A metric space Z is said to be a completion
of X if there exists a subspace Y of Z such that

(1) Y is dense in Z;
(2) Y and X are isometric.

Proposition 6.7. Let X be a subspace of a complete metric space Z. Then the
closure X is a completion of X.

PRrROOF. First observe that the closed subspace X of the complete space Z is comp-
lete. Since X is isometric to itself considered as a subspace of X, and X is dense
in X, the closure X is a completion of X by definition. m

Theorem 6.8. For every metric space X, there exists a completion Z. Any two
completions of X are isometric.

PROOF. Let (X, p) be a metric space. Define an equivalence relation ~ in the set
X = {(z,) = (zn)i_: (2,) is a Cauchy sequence in X}
of all Cauchy sequences in X by

(l’n) ~ (?/n) = P(xn,yn) — 0, (In), (yn) e X.

n—00
Exercise 6.6. Prove that p is an equivalence relation.

For an element (z,,) € X, denote its equivalence class in the quotient space Z := X'/~
by [(x,)]. Define a metric p in Z by

([ [wa)]) = i plan ), (@), () € X, (6.5)

Exercise 6.7. Prove that p is a metric.
HiNT. First show that p is well-defined, i.e.

(1) thelimit in (6.5) exists (to this end, using the quadrangle inequality (see Proposition 1.1,(b)),
show that the sequence (p(mn, yn));o:l is Cauchy);
(2) the limit in (6.5) does not depend on the choice of the representatives (z,) and (y,) in the

equivalence classes of [(x,)] and [(y,)], i-e., whenever (z,), (un), (yn), (v,) € X are such
that [(un)] = [(z5)] and [(vn)] = [(yn)] (ie., (un) ~ (2n) and (vn) ~ (yn)), one has

lirr;c P(Un, Vp) = hrgop(xn,yn).
Define
Y := {[(m,x,a:,...)]: sceX} c Z,

i.e., Y is the subspace of Z consisting of equivalence classes of constant sequences
in X (note that constant sequences in X do converge, thus they are Cauchy, and
therefore constant sequences in X belong to X).

Observe that
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(I) Y is dense in Z;

(IT) X and Y are isometric.

Exercise 6.8. Prove the assertions (I) and (II).
HinT. For (II), show that the mapping

f: Xsz—[(z,2,2,...)]€Y
is an isometry.

In order to see that Z is a completion of X, it remains to show that
(IIT) the metric space (Z,p) is a complete.

To this end, let let (ax);; be a Cauchy sequence in Z. For the completeness
of Z, it suffices to show that the sequence (ax);”; converges in Z.
Since Y is dense in Z, for every k € N, there is a b, € Y such that

1

D b —.
plak, by) < 2

For every k € N,

ap = [(#F)*_,] for some Cauchy sequence (¥)*_ in X;

b = [(vg, T, Tk, ... )] for some xy € X.

Observe that the sequence (xy){., in X is Cauchy. Indeed, whenever k.l € N, one
has, for every n € N,

p(l‘k,Il) < p(kaxﬁ) + p(xlri?xln) + p(‘riwml)'

Since
pla k) —— plbia) < 7 (6:6)
Y n n—00 Y k? N
1
Pl o) T plaw @), and  p(e, @) — pla b) < 7,
it follows that (since (ay){, is Cauchy)
() < 7+ Plag, @) + 7 —— 0
P\Tk; T1) = 2 plar, 4 [ bl
and thus (zx)7~, is a Cauchy sequence in X.
Putting a := [(z,)7,] € Z, we are going to show that ag —a in 7, ie.,
—00
plag,a) — 0, i.e.,
k—o0
lim p(af, z,) — 0. (6.7)

n—o0 k—o0

To this end, let £ > 0, and observe that, for all k,n € N,

p(mﬁvxn) < p(‘xfka> + p<xk7$n)
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By (6.6), there is an Ny € N such that

1
n=N = pla¥ n)< T

Since the sequence (z,,);_; is Cauchy, there is an Ny € N such that

k,n>= Ny = plag,z,) < g.

Thus, whenever k > max{g, NQ}, one has, for n > max{Ny, Ny},

; 1

p(xn,xn)<k+ < -+ =g¢

DO | ™
DO ™

£
2
hence also lim,, o p(z¥, 2,) < &, and (6.7) follows.

It remains to show that
(IV) any two completions of X are isometric.

To this end, it suffices to prove

CLAIM. Let Z and W be complete metric spaces. Suppose that there exist dense
subspaces Y of Z and V of W such that' Y and V' are isometric. Then Z and W
are 1sometric.

To see that Claim implies (IV), let Z and W be two completions of X, and let Y
and V' be dense subspaces of Z and W, respectively, such that both Y and Z are
isometric to X. Then Y and V are isometric (by Exercise 6.5), and Z and W are
isometric by Claim.

Exercise 6.9. Prove Claim.

HiNT. Letting g: Y — V be an isometry, define a mapping f: Z — W as follows. Whenever
z € Z, let (yn) be a sequence in Y such that z = lim, 4 ¥, (such a sequence (y,,) exists because Y
is dense in Z), and define f(z) := lim, o g(yn) € W (observe that, since the convergent sequence
(yn) is Cauchy, also the sequence (g(y,)) is Cauchy (because g is an isometry), and thus the
sequence (g(yn)) converges in W by the completeness of ). In order to see that f is well-defined,
one has to show that its value f(z) € W for z € Z does not depend on the choice of the sequence
(yn) in Y converging to Y, i.e., one has to show that whenever (y,,) and (¢,) are two sequences in
Y such that lim, o yp = lim, o §p, one has lim,, o g(yn) = limy, o0 g(Gn)-
It remains to show that f is an isometry.
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If X and Y are metric spaces, then mappings X — Y are called operators. Mappings
X — K are called functionals.

7.1. The notion of continuity

Definition 7.1. Let X and Y be metric spaces. An operator f: X — Y is said to
be continuous at a point a € X if, for every € > 0, there exists a § > 0 such that

p(z,a) <6 = p(f(z),f(a) <e. (7.1)

Equivalently, (7.1) means that f[B(a,d)| < B(f(a),c).Thus, the definition of continuity can
be rephrased as follows: an operator f: X — Y is said to be continuous at a point a € X if, for
every neighbourhood V of f(a), there exists a neighbourhood U of a such that f[U] c V.

Loosely speaking, f is continuous at a if the values of f at points which are close
enough to a are as close as we want to f(a).

Theorem 7.1 (Heine’s criterion of continuity). Let X and Y be metric spaces, let
f: X =Y, and let a € X. The following assertions are equivalent:

(i) f is continuous at a;

(ii) whenever a sequence of elements of X converges to a in X, the corresponding
sequence of values of f converges to f(a) inY, i.e.,

anX7n€N7 Tp —>a and f(xn)_—'—_)f(a)
n—0oo n—aw

PROOF. (i)=(ii). Let f be continuous at a, and let z,, € X, n € N, be such that
x, —— a. We must show that f(z,) —— f(a). To this end, letting € > 0 be
n—o0

n—o0

arbitrary, it suffices to find an index N € N such that
n=N = p(f(z,),f(a)) <e. (7.2)

By the continuity of f at a, there is a 6 > 0 satisfying (7.1). Since z,, —— a, there
n—ao0
is an N € N such that

n=N — p(xp,a) < 0.

For this N, the implication (7.2) holds.

(ii)=(i). Let (ii) hold and suppose that f is not continuous at a. Then there is
an € > 0 such that no 0 > 0 satisfies (7.1). Thus, for every n € N, there is an z,, € X
such that

ol a) <~ and p(f(ra), fla)) > <

But now

tn——a and f(z,) —— f(a)

n—o0 n—00

which contradicts (ii). O
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Exercise 7.1. Let X, Y, and Z be metric spaces, let f: X — Y be contimuous at a point a € X,
and let g: Y — Z be continuous at the point f(a) € Y. Prove that the composition operator

gf: Xam'—>g(f(x))eZ

is continuous at a.

Definition 7.2. Let X and Y be metric spaces. An operator f: X — Y is said to
be continuous, if it is continuous at every point x € X.

Theorem 7.2. Let X andY be metric spaces. An opemtor f X —>Y s contmuous
if and only if, for every open set V in'Y, its preimage f1 = {x eX: f(x)e V}
18 an open set in X.

PROOF. Necessity. Let f be continuous, and let V' be an open subset of Y. Letting
x € f7V] be arbitrary, it suffices to show that B(z,d) < f~*[V] for some § > 0.
Since V' is open, f(x) € V is an interior point of V| thus there is an ¢ > 0 such
that B(f(z),e) < V. By the continuity of f at z, there is a § > 0 satisfying

f[B(z,0)] = B(f(z),e). But now
B(z,8) < f7H[B(f(x),e)] = fHV].

Sufficiency. Assume that, for every open set in Y, its preimage with respect
to f is open in X, and let x € X. In order for X to be continuous, it suffices
to show that f is continuous an z. To this end, letting ¢ > 0 be arbitrary, it
suffices to show that there is a 6 > 0 such that B(m §) < f1 [B( (x), )] By our
assumption, the preimage f~ [B (f(a:), )] of the open ball B( ) 5) is an open
set, thus z € f~! [B (f(:l:), 5)] is its interior point, hence B(z, ) -1 [ ( )]
for some 6 > 0, as desired. n

Corollary 7.3. Let X andY be metric spaces. An operator f: X — Y is continuous
if and only if, for every closed set H in'Y, its preimage f~'[H| is a closed set in X.

ProoOF. First observe that, for any subset D of Y, one has

“'Y\D] = X\ /'[D]. (7.3)
Exercise 7.2. Prove the equality (7.3).

Now, since open sets are complements of closed sets and complements of closed sets
are open,

f is continuous <= f![V] is an open set for every open set V c Y
< f![Y\H] is an open set for every closed set H c Y/
< X\f '[H] is an open set for every closed set H = Y

< f7'[H] is a closed set for every closed set H c Y.

Remark 7.1. In general,
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e the image of an open set under a continuous function need not be open;
e the image of a closed set under a continuous function need not be closed.
Example 7.1. The natural inclusion map
j: [0,1)3x—zeR

where both [0,1) and R are equipped with the Euclidean metric is obviously continuous.
The set [0,1) is both open and closed in the domain space [0, 1) while its image j[[0,1)] =
[0,1) is neither open nor closed in the range space R.

Example 7.2. Let X be any metric space and let z € R. The constant mapping
f: Xs2z—z€eR
is obviously continuous. The domain space X is an open set in itself while its image

f[X] = {z} is not open in R.

7.2. Lipschitz condition

An important class of continuous operators is comprised by

Definition 7.3. Let X and Y be metric spaces. An operator f: X — Y is said to
satisfy the Lipschitz condition if there is an L > 0 such that

p(f(z), f(z)) < Lp(z,z) forallz,zeX.

In this case one also says that f is a Lipschitz function. The constant L is called a
Lipschitz constant for f.

Proposition 7.4. Every Lipschitz operator is continuous.

PrROOF. Let X and Y be metric spaces, let f: X — Y be a Lipschitz function with
Lipschitz constant L, and let x € X. It suffices to show that f is continuous at x.
To this end, letting x,, € X, n € N, be such that x,, —— x, it suffices to show that

n—oo
f(z,) —— f(z). The latter holds because
n—o0

p(f(@a). f(2)) < Lp(aw,.x) — 0.

n—o0



§ 8. Banach fixed point theorem

Throughout this section, X will be a metric space.

Definition 8.1. A point zy € X is called a fized point of an operator f: X — X if
f(x0) = wo.

In other words, xg € X is a fixed point of f if it is a solution of the equation f(z) = x.

Definition 8.2. An operator f: X — X is called a contraction if there exists a
non-negative ¢ < 1 such that

p(f(x), f(z)) <qp(x,z) forall z,ze X. (8.1)

In other words, a contraction is a mapping in a metric space satisfying the Lipsc-
hitz condition with constant < 1. In particular, it follows that any contraction is
continuous.

The following Banach fixed point theorem is also often referred to as the Banach
fixed point principle or the contraction principle.

Theorem 8.1 (The Banach fixed point principle). A contraction in a complete
metric space has exactly one fixed point.

ProOF. Let X be a complete metric space, and let f: X — X be a contraction,
i.e., there is a ¢ € (0, 1) satisfying (8.1).
Letting zp € X be arbitrary, inductively define a sequence (x,,) = (z,)5_; in X
by setting
zy, = f(x,_1) for every neN.

It suffices to show that

(1) (z,) is a Cauchy sequence (and thus, by the completeness of X, a convergent
in X sequence);

(2) putting zy := lim,,_, z,,, the point zj is a fixed point of f, i.e., f(20) = zo;
(3) 2o is the only fixed point of f.
(1). Whenever n,p € N,

n+p—1
p(xnaanrp) < P(ﬂfn, anrl) + p('xn+1>$n+2) + -+ p(xn+p717xp) = Z p(l'j,l'j+1)-

J=n

For every 7 € N,

p(rj,T541) = P(f(xj—l)a f(xj))
< gp(wj_1,x5) = qp(f(%'—z), f(l‘j—l))
< @p(xjoa, xj-1) = ¢p(f(xj-3), f(zj-2))
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thus, putting a := p(xg, x1),

n+p—1 n+p—1 0

n
p<xn7mn+p) < Z ¢ a=a Z ¢’ gaanq’: 16Lq 0,
j=n j=n i=0 —4q nee

and it follows that (z,,) is a Cauchy sequence.
Indeed, letting € > 0 be arbitrary, one can pick N € N so that

n=N

but now also p(zy, Tn4p) < € whenever n,p € N with n > N.

(2). By the continuity of f,
f(ZO) = f(nh—l}olo In) = T}I—I}olo f(xn) = 7}1_1}30 Tnt+1 = <0-

(3). In order to prove that zy is the only fixed point of f, letting z € X be any
fixed point of X, i.e., f(z) = z, it suffices to show that z = z5. One has

0.< p(2,20) = p(f(2), f(20)) < ap(z, 20)

which, since 0 < ¢ < 1, implies that p(z,z9) = 0, i.e., z = 2, as desired. O



§ 9. Compact sets in metric spaces

9.1. The notion of compactness.

Let X be a metric space and let K be a subset of X.

Definition 9.1. The subset K is said to be relatively compact if every sequence of
its elements contains a convergent subsequence.

Observe that the convergent subsequence in the preceding definition need not
converge to an element of K.

Definition 9.2. The subset K is said to be compact if it is relatively compact and
closed.

Proposition 9.1. Let X be a metric space and let K be a subset of X. The following
assertions are equivalent.

(i) K is compact;

(ii) every sequence of elements of K has a subsequence which converges to an
element of K.

PROOF.

Exercise 9.1. Prove Proposition 9.1.

]

Definition 9.3. A metric space X is said to be compact if it is a compact subset
of itself, i.e., every sequence in X contains a convergent subsequence.

Since any metric space X is a closed subset of itself, for X the notions of relative
compactness and compactness coincide.

Proposition 9.2. A compact metric space is complete

ProOOF. Let X be a compact metric space. For the completeness of X, we must show
that every Cauchy sequence in X is convergent. So, let (z,) be a Cauchy sequence
in X. By the compactness of X the sequence (z,) has a convergent subsequence,
and it follows that the sequence (z,) is convergent itself (because, by Proposition
6.1, (c), whenever a Cauchy sequence has a convergent subsequence, the sequence is
convergent itself). O

Example 9.1. Every finite set in a metric space is compact.

Indeed, given a sequence of elements of a finite set in a metric space, at least one of the elements
of this finite set must occur infinitely many times in this sequence, thus the sequence has a constant
subsequence whose members are equal to this element of this set, and this constant subsequence

converges to this element of this set.

46
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Example 9.2. Whenever n € N and 1 < p < o0, every bounded subset of £ is
relatively compact.

Indeed, in Example 6.5, we essentially proved that every bounded sequence in ¢} (n € N,
1 < p < o) has a bounded subsequence, and it easily follows that bounded sets in ¢y are relatively

compact.
Proposition 9.3. A relatively compact set is bounded.

PROOF. Let X be a metric space and let A be a relatively compact subset in X.
Suppose, for contradiction, that A is not bounded. Then, letting a € A being arbit-
rary, for every n € N, there is an z,, € A\B(a,n) (because, otherwise, we would have
A < B(a,n) and thus A would be bounded, a contradiction). Since A is relatively
compact, the sequence (z,)%_; in A has a convergent subsequence, say (xy,)"_;.
Letting = := lim,,_,, x,,, one has, by the continuity of the metric (Proposition 1.2,

(d)),

p(2.0) — pl,0).
One the other hand, since z,, ¢ B(a,n) for every n € N,

p(xnua) =Zn— 00,
n—00

and thus p(z,,a) —— o0, a contradiction. ]
n—0o0

Corollary 9.4. Letne N and 1 < p < .
(a) A subset of €7 is relatively compact if and only if it is bounded.

(b) A subset of 3 is compact if and only if it is bounded and closed.

9.2. Hausdorff’s theorem

Definition 9.4. Let X be a metric space, let A and B be subsets of X, and let
e > 0.
The set B is said to be an e-net for A if

Ac U B(b,¢),

beB
i.e., for every a € A, there is a b € B such that p(b,a) < e.

Theorem 9.5 (Hausdorft’s theorem). Let A be a subset of a metric space X. In
order for A to be relatively compact, it is necessary and, if X is complete, also
sufficient that, for every € > 0, the set A admits a finite e-net.

PROOF. Necessity. Assume that A is relatively compact, and let £ > 0. Suppose,
for contradiction, that, for some £ > 0, the set A does not have any finite e-nets.
Letting z; € A be arbitrary, inductively choose a sequence (x,,) in A as follows: given
neNand zi,...,z, € A, choose an z,1 € A\J,_, B(z;,¢) (such an element x4,
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exists because otherwise one would have | J |, B(z;,€) o A4, i.e., {z1,...,x,} would
be a finite e-net for A).

The sequence (x,) obtained in this process does not contain any Cauchy sub-
sequences, because, whenever n,m € N, m > n, one has z,, ¢ U:r:11 B(x;,¢), thus
Tm ¢ B(xy, ), i.e., p(xm,,x,) = €. Thus the sequence (z,) (of elements of A) does
not contain any convergent subsequences which is a contradiction, because A is
relatively compact by our assumption.

Sufficiency. Assume that X is complete and that, for every € > 0, the set A
admits a finite e-net. Let (x,) = (z,))°_, be a sequence in A. We must show that

(x,) has a convergent subsequence. Choose ¢, > 0, n € N, so that ¢, —— 0.
n—aoo

By our assumption, there exists a finite e;-net for A, i.e., there exists a finite set

A, © X such that
Ac U B(a,ey).

(IEA1

Choose an a; € A; so that the ball B(ay,e1) contains infinitely many members of
the sequence (z,) (such an a; exists!), and an index ky € N so that xx, € B(a,e1).

Proceed inductively as follows: provided n € N, elements ay,...,a, € X and
indices ky < kg < --- < k;, such that the intersection (), B(a;, ¢;) contains infinitely
many elements of the sequence (z,,) and zy, € (V_, B(ai,&;) for every j e {1,...,n};
by our assumption, there exists a finite &,41-net for A n (), B(a;,¢;), i.e., there
exists a finite set A, 1 < X such that

AﬁﬁB(ai7€i)C U B(a,5n+1>;

i=1 €A1

now choose an a, 1 € A,,1 so that the intersection

n n+1
( B(aiaei)) N B(a’n-l-laen-‘rl) = ﬂ B(aiaei)
=1 J=1

J

contains infinitely many members of the sequence (z,) and an index k,,; € N so
that k.11 >k, and ., € ;L;rll Blai, &;).

In order to see that the subsequence (xy,)*_; obtained by this process is conver-
gent, by the completeness of X it suffices to show that this subsequence is Cauchy
which is the case, because, whenever n,p € N, one has zy, ,zx, . € B(an,&,), and

thus

n+p

'0<xkn7xkn+p) < p('rkn’ an) + p(ana $kn+p) < 2e, m 0

9.3. Continuous functionals on compact sets.

The following exercise says that continuous operators take relatively compact sets
into relatively compact ones and compact sets into compact ones.
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Exercise 9.2. Let X and Y be metric spaces, let f: X — Y be a continuous operator, and let S
be a subset of X. Prove that

(a) if S is relatively compact, then f[S] is relatively compact;
(b) if S is compact, then f[S] is compact.

Exercise 9.3. Let X and Y be metric spaces, let f: X — Y be a continuous operator, and let S
be a subset of X. Prove that

(a) fIS]< f15];
(b) if S is relatively compact, then f[S] = f[S].

Theorem 9.6. Let K be a compact metric space, and let f: K — K be a continuous
functional. Then

(a) f is bounded, i.e., there exists an L = 0 such that

\f(zx)| < L for every x € K; (9.1)

(b) if K =R, then f attains its minimum and mazimum, i.e., there exist z1, 29 € K
such that

f(z1) = min f(z) and  f(z) = max f(z).

PROOF. (a). Suppose for contradiction that f is not bounded, i.e., there isno L > 0
satisfying (9.1). Then, for every n € N, there exists an z, € K such that

| (n)| > n.

By the compactness of K, the sequence (x,)*_; has a convergent to some z € K

subsequence (xy,)e_,, i.e., vy, — 2. The functional K > = — |[f(z)| € R is
n—0o0

continuous (because it is the composition of the continuous functionals f: K — K
and |- |: K2 a~— |a| € R), thus |f(zk, )| —— |f(2)|. On the other hand,
n—00

| f (k)

= kn - OO:
n—0

thus |f(xy, )| —— o0, a contradiction.
n—o0

(b). Let K = R. We only show that f attains its maximum (the proof that f
attains its minimum is analogous). By (a),

M :=sup f(x) < o,
zeK
We must find a z; € K such that f(z;) = M.
For every n € N, there is an x,, € K such that
1

flzp) > M — -
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By the compactness of K, the sequence (z,)r_, has a convergent subsequence
(xg,)e . Put z; := lim,_, x,. Since

1
M — T < flzx,) < M for every n e N,

n

letting n — oo, it follows that f(xy,) —— M. On the other hand, since f is
n—00
continuous, f(xy,) —— f(21), and thus f(z;1) = M by the uniqueness of the
n—o0
limit. [

9.4. The Arzela—Ascoli theorem.

Definition 9.5. Let a,b € R, a < b, and let C' be a set of continuous functions
[a,b] — R. The set C is said to be uniformly bounded if there exists an M > 0 such
that

lz(t)| < M for all t € [a,b] and all z € C.

The set C' is said to be equicontinuous if, for every ¢ > 0, there exists a § > 0 such
that

t1,t € [a,b], [t —ta] < ¢ — |z(ty) — x(tz)] <e forallzeC. (9.2)
Clearly,

e a set of continuous functions [a, b] — R is uniformly bounded if and only if it
is bounded when considered as a subset of the metric space Cla, b];

e every function of an equicontinuous set of functions [a,b] — R is uniformly
continuous on |[a, b]; for a set consisting of a single function, its equicontinuity is
equivalent to the uniform continuity of this function (and thus to the continuity

of this function by Cantor’s theorem).

Theorem 9.7 (The Arzela-Ascoli theorem). Let C' be a subset of the metric space
Cla,b]. The following assertions are equivalent:

(i) C is relatively compact;
(ii) C is uniformly bounded and equicontinuous.

Corollary 9.8 (The Arzela—Ascoli theorem). Let C' be a subset of the metric space
Cla,b]. The following assertions are equivalent:

(i) C is compact;

(ii) C is closed, uniformly bounded and equicontinuous.



§ 9. COMPACT SETS IN METRIC SPACES 51

PROOF OF THE ARZELA—ASCOLI THEOREM 9.7. (i)=-(ii). Assume that C' # ¢J is
relatively compact. Then C' is a bounded subset of Cl[a,b], i.e., it is a uniformly
bounded set, and it remains to show that C'is equicontinuous, i.e., for every ¢ > 0,
there is a § > 0 satisfying (9.2). Let € > 0 be arbitray. Since C' is relatively compact,

by Hausdorft’s theorem, there exists a finite %—net B c Cla,b] for C. Every function

z € B is uniformly continuous on [a, b] by Cantor’s theorem, thus there is a §, > 0
such that

£
ti1,l9 € [(1, b], ‘tl — t2’ < (Sz — ‘Z(tl) — Z(tg)‘ < g

. . . . € .
Put ¢ := min,cgd,, and let x € C' be arbitrary. Since B is an g—net for C, there is
5
a z € B such that |z — z|| < 3 Whenever t1, t; € [a, b] satisfy |t; — t5] < 0, one also

has |t; — to] < 0., and thus

[2(ty) — x(ta)| = |z(t1) — 2(t1) + 2(t) — 2(t2) + 2(t2) — z(t2)]
< lz(t) = 2(t)| + |2(t) — 2(t2)] + [2(t2) — x(12)]
|

19
< |$—z||+§+||x—z||
€+€+€ c
3 3 3

(ii)=(i) WILL BE OMITTED IN THIS COURSE. O
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Recall that a subset A of a metric space X is said to be dense (in X), if A = X.

The following proposition is a direct consequence of Proposition 5.11.

Proposition 10.1. Let X be a metric space and let A < X. The following assertions
are equivalent:

(i) A is dense (in X), i.e., A= X;

(i) for every x € X and every e > 0, there is an a € A such that p(z,a) < ¢, i.e.,
r € Bla,¢);

(iii) for everyx € X, there is a sequence (x,,) of elements of A such that x, — x.
n—0o0
Definition 10.1. A metric space X is said to be separable if there exists an at most
countable dense subset of X.

In fact, all the metric spaces introduced in § 4, except o and Ly(a,b), are
separable. In these notes, we shall only prove the separability of quite a few of them.

Example 10.1. The space K (endowed with the natural metric d(z,y) = |z — y|,
z,y € K) is separable: the subset Kg of K where

Rg:=Q and Co:={a+if: a,BecQ}

is countable and KT@ = K.

Indeed, suppose that K = R. The set Rg = Q is countable. Whenever z € R and € > 0, there
is an o € Q such that d(x,a) = |z — af < ¢, hence Rg = Q is dense in R.

Now let K = C. The set Cg is countable, because the mapping Q x Q 3 (o, 8) — a + i € Cq
is a bijection and the set Q x Q is countable. To see that Cg = C is dense in C, let z = z + iy € C
(here z,y € R) and € > 0 be arbitrary. By the density of Q in R, there are «, 8 € Q such that
|z —al,ly — 8| < % Putting a := o + 8 € Cg, one has

%

g2 g2

d(z,0) = |z~ a| = |(w — a) +ily — B) =v/lo —aP + [y = AP </ 5 + 5 =<

and Cg = C is dense in C by Proposition 10.1.

Example 10.2. Whenever n € N and p € [1, o], the space {,, is separable: the set

Ko x -+ x Kg = {(k1,.- . 6n): K1,-.., 8, € Ko}
—
n

is countable and dense in EZ.

Exercise 10.1. Prove that the set Kg x -+ x Kq is dense in £}.
|

n

52
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HinT. It suffices to show that Kg x -+ x Kg is dense in £7: the density of Kg x - -+ x Kg in £} for
— —_—
. . n . . n
arbitrary p € [1, 0] follows from its density in ¢}, because |z|, < |z|; for every z e K x -+ x K
by Proposition 3.4.
Proposition 10.2. A compact metric space is separable.

Proor. Let X be a compact metric space. By Hausdorft’s theorem 9.5, for every

1
n € N, there exists a finite —-net B,, = X of X. The union B := | J,_, B, is at most
n

countable and dense in X, i.e., B = X. To prove the latter, letting € X and ¢ > 0
be arbitrary, it suffices to find a b € B such that p(x,b) < e. To this end, pick an

1
n € N such that — < ¢; since B,, is a —-net for X, there exists a z € B,, © B such
n n

1
that p(z,b) < — < €, as desired. O
n

Definition 10.2. Let X be a linear space and let A be a subset of X. The smallest
linear subspace of X containing A is called the linear span of A and is denoted by

span A.
Thus, span & = {0} and, for A # J,

n
span A = {Zakxk: neN, xy,...,x, € X, al,...,aneK},
k=1

i.e., for A # ¢, the linear span of A is the linear subspace of all linear combinations
of elements of A.

Definition 10.3. Let X be a normed space. A subset A of X is said to be total
(in X), if its linear span is dense in X, i.e. span A = X.

Proposition 10.3. A normed space is separable if and only if it has an at most
countable total subset.

Remark 10.1. In § 12, we shall prove, using Propostion 10.3, that the normed spaces cg, ¢, and
£, where 1 < p < o0 are separable.

Also, Propostion 10.3 yields the separability of £ for all n € N and p € [1,00] (i-e., the result
of Example 10.2), because, defining

n

er :=(0,...,0,1,0,...,0) forevery ke {l,...,n},
—_——
k
the subset {e1,...,e,} < £} is total in £: in fact, span{ey,...,e,} = £}.

For the proof of the sufficiency in Proposition 10.3, it is appropriate to point out
the following easy

Lemma 10.4. Let Y be a dense subset of a metric space X and let Z be a dense
(in'Y ) subset of Y. Then Z is dense in X.
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PROOF.

Exercise 10.2. Prove lemma 10.4.

]

PROOF OF PROPOSITION 10.3. Necessity is obvious, because any dense subset of
X is total (therefore, if X is a separable normed space and A is an at most countable
dense subset of S, the set A is a total; thus X has an at most countable total subset).

Sufficiency. Suppose that a normed space X has an at most countable total
subset A, i.e. span A = X. For the separability of X, by Lemma 10.4, it suffices
to show that span A has an at most countable dense (in span A) subset. We may
assume that X # {0}. Then A # ¢J and (since A is at most countable) we can write
A = {zy: k € N} where z; € A for every k € N (with the possibility that x; = x; for
some k # [ (this happens when A is finite)). Now it suffices to show that the subset

spang A 1= {Z aprr: NN, aq,...,a, € KC} c span A
k=1

is an at most countable set which is dense in span A.
Exercise 10.3. Prove that spang A is at most countable and spang A S span A.
HINT. For every n € N, put B, := {ZZ:I QRTR: O1,...,0, € KC}; then spang A = U;‘f:l B,.

Thus, in order that spang A were at most countable, letting n € N be arbitrary, it suffices to show
that B, is at most countable. To this end, it suffices to observe that the mapping Kg x - -+ x Kg 3
[

(a1,...,00) — D _; agxy is a surjection while the set Kg x - -+ x Kg is countable.
(S —

Example 10.3. The space /, is not separable.

Indeed, let A be a dense subset of £,. For the non-separability of £, it suffices to show that A
is uncountable (i.e., A is neither finite nor countable). To this end, denote by D the subset of £y,
consisting of sequences having only 1 and 0 as their terms. The set D is known to be uncountable.

1
Since A is dense in £y, for every x € D, there is an a, € A such that = € B(agg, 5) Whenever

1
x,z € D and such that x # z, one has a, # a., because otherwise z, z € B(am, 5) and thus

1 1
|z =2l = lz = az + as =2 < & —as| + oz — 2] < 5 + 5 =1 =z —z],
a contradiction (here |z — z| = 1 because the sequence z — z can have only 1, 0 and —1 as its

terms, and, since, x # z, at least one of the terms of x — z is either 1 or —1). It follows that the

subset {a,: x € D} of A is uncountable, and thus also A itself is uncountable.

*Exercise 10.4. Prove that any subspace of a separable metric space is separable.



§ 11. Topological spaces

11.1. The notion of a topological space

Definition 11.1. Let X be a set. A collection 7 of subsets of X is called a topology
if

1° g, X er;

2° any finite intersection of sets in 7 belongs to 7, i.e., whenever n € N and
Ay, Ay € 7, also the intersection ()_; A; € T;

3° any union of sets in 7 belongs to 7, i.e., whenever [ is a set of indices and
Aj e 7 for every j € I, also the union | J,.; 4; € 7.

The pair (X, 7) (or just X when the role of the topology 7 is well understood from
the context) is called a topological space. The sets in the collection 7 are called open
sets in X.

Example 11.1. The collection of open subsets in a metric space X is a topology (by
Proposition 5.3). This topology is referred to as the topology induced by the metric
of X.

Example 11.2. Let X be a set. The collection P(X) of all subsets of X is clearly a
topology. This topology, called the discrete topology on X, is induced by the discrete
metric on X (recall that (see Exercise 5.6) every subset of X is an open set with
respect to the discrete metric).

Example 11.3. Let X be a set. The collection {7, X} is a topology on X. This
topology is referred to as the weakest topology on X.

Remark 11.1. Not every topology is induced by a metric. For example, letting
X = {a,b} (i.e,, X is a set consisting of two elements) and 7 := {@,X,{A}},

the collection 7 is clearly a topology. However, this topology is not induced by any
metric.

Exercise 11.1. Prove that the topology 7 is not induce by any metric.

Definition 11.2. A set A in a topological space (X, 7) is said to be closed if its
complement X\A is open, i.e., X\A € 7.

Recall that, in a metric space, a set is closed if and only if its complement is
open (see Proposition 5.6). Thus closed sets in a metric space are exactly the sets
that are closed with respect to the topology induced by the metric.

The following properties of closed sets in a topological space follow immediately
from Definitions 11.2 and 11.1 by De Morgan’s laws.

Proposition 11.1. Let X be a topological space. Then
(a) & and X are closed sets;

95
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(b) any finite union of closed sets is a closed set, i.e., whenever n € N and
Ay, ... A, < X are closed sets, also their union U?Zl Aj is a closed set;

(c) any intersection of closed sets is a closed set, i.e., whenever I is a set of indices
and Aj, j € I, are closed sets, also their intersection (\;.; A; is a closed set.

11.2. Convergence of sequences in topological spaces

Definition 11.3. Let (X, 7) be a topological space, and let z € X. A set G < X is
called a neighbourhood of the point x (in the topology 7) if there is a set u € 7 such
that r e U < G.

Thus, the neighbourhoods of a point in a metric spaces are the same as its
neighbourhoods in the topology induced by the metric.

Definition 11.4. Let (X, 7) be a topological space. A sequence (z,)*_; in X is
said to converge to an element x € X (with respect to the topology 7) if, for every
neighbourhood U of z, there is an index N € N such that

n=N = zg,eU.

Thus, the convergence of a sequence in a metric space is the same as the conver-
gence of this sequence with respect to the topology induced by the metric.

Notice that, in general, the limit of a sequence in a topological space need not
be unique: for instance, when X is any set and 7 is the weakest topology on X i.e.,
7 :={, X}, every sequence in X is converges to any element in X.

Remark that, in topological spaces, the convergence of sequences does not play
as an important role as in metric spaces: the role played by sequences in the theory
of metric spaces is, in topological spaces, performed by nets (a concept more general
than that of a sequence).



§ 12. Series in normed spaces

12.1. Series in normed spaces
Definition 12.1. Let X be a normed space and let z, € X, k € N.

The formal infinite sum

o0
ZE1+$2+ZE3+"'=ZZZL‘k (121)
k=1

is called a series. The elements z, € X, k € N, are called the terms of the series (12.1).
The sums

n
2 T, mneN,
k=1

are called the partial sums of the series (12.1).

If the sequence (3;_, %), of the partial sums of the series (12.1) converges,

then its limit is called the sum of this series, and the series (12.1) is said to be
convergent (to its sum). Otherwise the series (12.1) is said to be divergent.

If the series (12.1) converges, then its sum is denoted by >)” | x;, (as the series
(12.1) itself). Thus the sum of the series (12.1) is

First properties of convergent series are collected in

Proposition 12.1. Let > ;" ) and ZZOZI yr be convergent series in a normed
space X, and let a, B € K. Then

(a) the series Y, (axy + Byk) is convergent and its sum

Z(@xk+5yk) :a2$k+52yk;

k=1 k=1 k=1

(b) o2 0:

a0
(€) 2pmnsr @k ——0;

(@) |7 o] < Sl
The assertions (b) and (c) of Proposition 12.1 say, respectively, that

e the sequence of the terms of a convergent series converges to 0;

e the remainder term of a convergent series converges to 0.

o7
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PROOF OF PROPOSITION 12.1. Put z := >} x4 and y

- = 212021 Yk-
(a). We must show that
Z azxy + Byr) —— ax + Py. (12.2)
k=1
Exercise 12.1. Verify (12.2).
(b). One has
n—1
nszk— Ty ——x—x=0.
n—0o0
- k=1
(c). One has

> Zwk
n—0

k=n+1
Exercise 12.2. Prove the equality (e).

(d). One has, by the continuity of the norm and by the triangle inequality,

0

>

n

lim Z T
e}
k=1

n

im Z Ty
e}
k

I
S —
=g

n oo
< tim Y el = Y Jawl-
n—ao0
k=1 k=1

Exercise 12.3. Put

er=(0,...,0,1,0,...), keN,  and =(1,1,1,...).
— —
k

0
1
(a) Does the series Z 7 ¢ converge in the space

(al) 4y;
(a2) £, where 1 < p < o0;
(a3) L7

e}
(b) Is it true that x = 2 Epep in X
k=1

(bl) for every = (&) € X = £, where 1 < p < o0;
(b2) for every z = (&) € X = co;
(b3) for every x = (&) e X = ¢?

(c) Let x = (&)L, € ¢ with & — &. Prove that

Zék—
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Remark 12.1. Suppose that 1 < p < o. From Exercise 12.3, (bl), it follows
that the countable set {e,: k € N} is total in the space ¢,; thus ¢, is separable by
Proposition 10.3. Indeed, for the totality of {e;: k € N} in ¢,, observe that, whenever
= (& )72, € £y, one has

n 0

§ gkek > E gkek =T
n—0oo

k=1 k=1

while Y7, &rex € span{eg: k € N} for all n € N; thus span{ey: ke N} = {,,.

Similarly, from Exercise 12.3, (b2) and (c), one deduces that the countable sets
{er: ke N} and {e} u{er: k € N} are total in the spaces ¢y and ¢, respectively; thus
the spaces ¢y and ¢ are separable by Proposition 10.3.

Definition 12.2. A series Y,  xx in a normed space X is said to be absolutely
convergent if the series Y, | || converges in R, i.e.,

09]

D k]| < o0

k=1

In order to prove the completeness of a normed space, it is often convenient to
use

Theorem 12.2. A normed space X is complete (i.e., a Banach space) if and only
if every absolutely convergent series in X converges in X.

PROOF. Necessity. Let X be a Banach space, and let > x; be an absolutely
convergent series in X. In order that the series Y.,. | 7} were convergent, courtesy
of the completeness of X, it suffices to show that the sequence (S,)a_; of its partial
sums is a Cauchy sequence, i.e., |S, — Sy 0. To this end, observe that, for

n,m—00
n,m € N, n > m, one has
n m n n a0
1Sn = Sl = | Diax =D m| = | X me| < D el < D) Nl —0,
k=1 k=1 k=m-+1 k=m-+1 k=m+1 "

because the remainder term of the convergent (in R) series Y, | |lzx| converges to 0.

Sufficiency. Let X be a normed space such that every absolutely convergent
series in X is convergent, and let (x,,)%_; be a Cauchy sequence in X. In order for X
to be complete, it suffices to show that the sequence (x,)*_; converges in X. To
this end, by Proposition 6.1, (b), it suffices to show that (z,)°_; has a convergent
subsequence. To this end, pick indices 0 = mg < m; < mo < m3 < --- so that, for

all ke N,
1

2k
(this is possible because (z,,) is a Cauchy sequence). Now the series

Z (xmk - xmk—l)

k=1

n,m=my = |z, — Tn| <

(12.3)
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by

is absolutely convergent because, for every k > 2, one has |2,,, — Tm,_, | <

(12.3) and thus

k-1

0
”xmk - Imk—1|| |$m1H + k—1 |xm1H +1 <o
2
k=1

By our assumption on X, the series >~ ,(%pm, — Tm,_,) is convergent, i.e., the
sequence of its partial sums is convergent. But, for every n € N,

n
Z(xfmc - xmkfl) = Tmn,

thus the sequence (z,,, )", is convergent. O

Example 12.1. The space ¢; is complete.

Indeed, let ZZO:1 x) be an absolutely convergent series in ¢;. For the completeness of ¢1, by
Theorem 12.2, it suffices to show that ZZOZI x) converges in £1.
To this end, letting a3 = (ff)ﬁl for every k € N, observe that, by the absolute convergence of

Zkoo=1 Lk
(o0 o0 o0 o0 o0
pREN :Zleﬂ:ZZmﬁm.
k=1 k=1j=1 j=1k=1

In particular, for every j € N, one has Zzozl |§f| < 00, i.e., the series 21;.0:1 {k is absolutely con-

vergent (in K) and hence convergent (in K). It remains to observe that z := (3, f’“) €l

22021 §f < 220:1 ch:l |§f| < ) and Zkoczl T = in fq:

1(Ee),.-(24),1-1(29).,
i i <Y Y= Y Y0

j=1lk=n+1 k=n+1j=1
(because the remainder term 37 | 377, |€F| of the convergent series 35,7, 317 [€F] tends to 0).

7j=1

(because Z;ozl

n
Pk
k=1




§ 13. Continuous linear operators between normed
spaces

13.1. Continuous linear operators between normed spaces

Definition 13.1. Let X and Y be linear spaces over the same scalar field K (where
K=RorK=0C).
A mapping A: X — Y is said to be linear if

1° A is additive, i.e.,

Alx +2) = Az + Az for all z,y € X

2° A is homogenous, i.e.,

A(azx) = aAx for all x € X and all a € K.

Loosely speaking, the linearity of a mapping means that it preserves the linear structure of its
domain space.

Exercise 13.1. Let X and Y be linear spaces and let A: X — Y. Prove that the following
assertions are equivalent:

1° A is linear;
2° Alax + 2) = aAx + Az for all z,y € X and all o, 8 € K;
3° A(azx + z) = adx + Az for all z,y € X and all a € K.

The following proposition says that a linear operator between normed spaces is
continuous already when it is continuous at a single point.

Proposition 13.1. Let X and Y be normed spaces and let A: X — Y be a linear
operator. The following assertions are equivalent:

(i) A is continuous;

(ii) A is continuous at 0;

(iii) there exists a point in X at which A is continuous.
PROOF. (i)=(ii)=(iii) is obvious.

(iii)=(i). Suppose that A is continuous at a point z € X, and let z,z, € X,

n € N, be such that x, —— x. For the continuity of A, it suffices to show that
n—00

Ax, —— Az. By the linearity of A,

n—ao0

Az, = Az —x+2) — Az + Av —— Az — Az + Ao = Az

n—0o0

(because z,, — x + z — z, and thus A(z,, —x + z) —— Az by the continuity of A
n—00 n—0o0

at z). O
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Definition 13.2. Let X and Y be normed spaces. A linear operator A: X — Y is
said to be bounded, if there exists an M > 0 such that

[Az| < M ||z|| for all z € X. (13.1)

The term “bounded” linear operator is justified by

Proposition 13.2. Let X and Y be normed spaces and let A: X — 'Y be a linear
operator. The following assertions are equivalent:

(i) A is bounded;

(ii)) A maps bounded sets in X into bounded sets in Y, i.e., whenever B is a
bounded subset of X, its image A[B] := {Ax: x € B} is a bounded subset
of Y.
PROOF.
Exercise 13.2. Prove Proposition 13.2.

SOLUTION. (i)=>(ii). Suppose that A is bounded, and let B be a bounded subset of X. We must
show that A[B] = {Az: x € B} is a bounded subset of Y, i.e. (see Proposition 2.2), there is a
K > 0 such that

lyl < K for all y € A[B], ie., |[Az| < K for all z € B.

Since A is a bounded operator, there is an M > 0 satisfying (13.1). Since B is a bounded set, there
is an L > 0 such that |z| < L for all z € B. Now, for all z € B,

[Az| < M|z| < M L.

(ii)=>(i). Let the images under A of bounded sets in X be bounded sets in Y. Then, in particular,
the image A[Sx] = {Ax: x € Sx} of the unit sphere Sx of X is a bounded set in Y7; thus there
exists an M > 0 such that

lyl < M for all y € A[Sx], ie., |Az| < M for all z € Sx.
For all z € X\{0}, one has ﬁ € Sx, thus
x
1 1 T
—|Az| = |— Az| = |A(— )| < M,
[y 142l H 2] IH H <||x||)H

ie., ||Az| < M|z|. The latter clearly holds also for = 0, thus A is bounded.
[

Theorem 13.3. A linear operator between normed spaces is continuous if and only
if it is bounded.

PROOF. Sufficiency. A bounded linear operator between normed spaces satisfies the
Lipschitz condition, hence it is continuous.

Necessity. Let X and Y be normed spaces and let A: X — Y be a continuous
linear operator. Suppose for contradiction that A is not bounded. Then, for every
n € N, there is an x,, € X such that

REA
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Tn

—— 0, because

N =
oW Zp onnH oo

T

J2nll = | =] = ol = = —— 0
nlan| 1 0l nH —o
On the other hand, for every n € N,
1 1
4z = [A(T) ] = [y Aw] = o Az > ] =1
nlan| onnH nn| nlan|
thus Az, —— 0. This contradicts the continuity of A at 0. O
n—oo

13.2. The norm of an operator

Let X and Y be normed spaces (over the same scalar field K). In this subsection,
we shall give the set of continuous linear operators from X to Y the structure of a
normed space.

First, letting A, B: X — Y be continuous linear operators and a € K, one
defines the sum A + B: X — Y and scalar multiple «A: X — Y by

(A+ B)(z) :== Az + Bz and (aA)z := a(Az), reX. (13.2)

It is straightforward to verify that A + B and aA are linear and continuous.
Exercise 13.3. Prove that the operators A + B and «A are linear and bounded.
It is also straightforward to verify that the set of continuous linear operators

X — Y is a linear space with respect to the operations (13.2). This linear space is
denoted by L(X,Y).

Define, for Ae L(X,Y),
| Al := sup |Az]. (13.3)

:L‘EX

Observe that |A| < co. Indeed, since A is bounded, there is an M > 0 such that |Az| < M |z|
for all x € X. For such M,

[Al = sup [[Az] < sup M| =

Proposition 13.4. £(X,Y) is a normed space with respect to the norm (13.3).

PROOF.
Exercise 13.4. Prove that (13.3) is a norm in £(X,Y).
[

Exercise 13.5. Let A € £(X,Y)\{0} and suppose that |A| = | Az| for some z € Bx. Prove that
z € Sx, lLe., |z = 1.

Exercise 13.6. Let X # 0. Prove that, for every A € L(X,Y),

|A] = sup [Az|© bup |Az| = sup [[Az].

re€Bx zeB$ reSx

Notice that the equality (e) holds also if X = 0 while Sx = ¢J in this case.



64 Metric spaces

The following proposition is a handy tool for estimating the norm of a continuous
linear operator from above.

Proposition 13.5. Let A€ L(X,Y). Then
|A| = min{M > 0: ||Az| < M|z| for all z € X}
PROOF. In the paragraph following (13.3), we proved that
e |A| < M whenever M > 0 satisfies |Az| < M|z| for all x € X.

Thus it remains to prove that

|Az| < |A| x| forall z e X.

If 2 = 0, then clearly |Az| = [A0| = 0] = 0 < | A] |z|. If z # 0, then ﬁ e By
x

and thus

1 T

= 2l =llal-
=1 ‘ <\x\)'

1
gl = ] 4] 2] = H—Ax el < Al Je].
E E

]

Definition 13.3. The normed space £(X, K) of continuous linear functionals X —
K is called the dual space of X, and denoted by X*:

X* = L(X,K).

Exercise 13.7. Prove that convergence in £(X,Y) implies pointwise convergence, i.e., whenever
T,,T € L(X,Y), n € N, are such that T,, —— T in £(X,Y), ie., |T, — T| —— 0, then
n—o0

n—00
T, —— T pointwise, i.e.,

n—aoo0

Thorx —— Tx forall ze X.
n—0o0

13.3. Completeness of the space of linear operators

It is natural to ask when the space L£(X,Y) is complete. This question is answered
by

Theorem 13.6. Let X # {0}. Then L(X,Y) is a Banach space if and only if Y is
a Banach space.

In the trivial case X = {0}, the space L(X,Y) = {0} is, of course, always complete.

In particular, Theorem 13.6 implies that, since X* = £(X,K) and the space K
is complete, the dual space X™* of a normed space X is always complete.

The proof of the necessity in Theorem 13.6 relies on

Theorem 13.7. Whenever X # {0}, the dual space X* contains non-zero functio-
nals. Moreover, for every x € X, there exists an x* € Sxx such that z*(x) = |z|.
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Theorem 13.7 is a consequence of the Hahn-Banach theorem which is not included
in this introductory course; we omit its proof here. (Note, that the proof of the
Hahn-Banach theorem, of course, does not make use of Theorem 13.6).

For the proof of Theorem 13.6 it is also convenient to point out the following
exercise.

Exercise 13.8. Let z* € X* and y € Y. Define an operator
¥Ry Xsxr—a*(z)yeV.

Prove that z* ® y € L(X,Y) with |z* @ y| = |z*|| |y

PROOF OF THEOREM 13.6. Necessity. Suppose that £(X,Y) is complete, and let
(yn)_, be a Cauchy sequence in Y. We must show that the sequence (y,) converges
inY.

Pick an = € Sx. By Theorem 13.7, there is an z* € Sy« such that z*(z) =
|z| = 1. Observe that the operators z* ® y,, n € N (see Exercise 13.8), form a
Cauchy sequence:

|2* @ yn = 2% @ym| = |27 ® (Yo — ym)| = |2"[ 90 = Yl = [0 = Y| ———0

m—00
(because (y,) is a Cauchy sequence). Since £(X,Y") is complete, the Cauchy sequence
(z* ® y,) converges in L(X,Y), say 2* ® y, —— T for some T € L(X,Y). In
n—ao0

particular, (z* ® y,)zr —— Tz, i.e.,
n—o0
|(@* @yn)x = Tx| = |l2%(z )yn — T| = yn — Tx| —0,

ie,y, > TrinY.

Sufficiency. Let Y be a Banach space, and let ZZO:I T} be an absolutely conver-
gent series in £(X,Y). In order that £(X,Y) were a Banach space, by Theorem
12.2, it suffices to show that the series >, | T converges in £(X,Y). To this end
observe that, for every x € X,

0

0 0
[Tz < D 0Tl 2l = =) )] 1T < o0,
1 k=1 k=1

k=

i.e., the series Zle Tz is absolutely convergent in Y, and, hence, since Y is a Banach
space, the series Y Tz converges in Y by Theorem 12.2. Define an operator
T: X ->Y by

0
Tr = ZTkm, re X.
k=1

It is straightforward to verify that T'e L(X,Y).

Exercise 13.9. Prove that T is linear and bounded.
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It remains to observe that > ;- Ty = T in L(X,Y), i.e.,

T- i T o O

[r- 0] - splre- Sl < sp] 5 1] < s 30 e
k=1 k=1

xeEBx :JceBX z€B X k=
0
<sup Y [Tl ] = Z |Tx| ——0
n—00

r€Bx T k=n+1

because the remainder term Y7 . |T|| of the covergent (in R) series Y7, |Tk|
tends to 0 as n — 0. O

Exercise 13.10. Let >~ z) be a convergent series in X, and let T € £(X,Y’). Prove that

(i ) ZTl‘k

k=1



§ 14. The “geometric series formula” for operators

14.1. The composition of continuous linear operators

Proposition 14.1. Let X, Y, and Z be normed spaces, and let A: X — Y and
B:'Y — Z be continuous linear operators, i.e., A € L(X,Y) and B € L(Y,Z).
Then the composition BA: X — Z is linear and continuous, i.e., BA € L(X,Z),
and | BA| < | B[ | A].

PROOF. The linearity of the composition BA is (or, at least, ought to be) known
from the introductory course in linear algebra.

Exercise 14.1. Prove that the composition BA: X — Z is linear.
For every x € X,
[(BA)x| = | B(Az)| < | Bl|Ax| < [ B[ Alll«],
thus BA is bounded and |BA| < |B]||A]. O

Proposition 14.2. Let X, Y, and Z be normed spaces, and let A, A, € L(X,Y)
and B, B, € L(Y,Z), ne N, be such that
A, — A in L(X,Y) and B, —— B in L(Y,Z). (14.1)
n—0oo

n—00

Then B,A, —— BA in L(X, Z).

n—so0
PROOF. For every n e N,
|B,A, — BA| = ||B,A, — ByA+ B,A— BA| = |B,(A, — A) + (B, — B)A|
< [Bu(An = A)| + |(Bn = B)A[ < [ Bu[[|An = Al + [ Bn — B[ | Al
The convergent sequence (B,)¥_; is bounded in L(Y,Z), i.e., there is an M > 0

such that
IB.| < M for every n € N.

Now,
| BnAn — BA| < [ B[ |An — Al + |Br — Bl A]
< M| A, — Al + | B, — B A] — 0,
because |A, — A|| —— 0 and | B, — B| —— 0 by the assumption (14.1). O
n—a0 n—aoo

14.2. The “geometric series formula” for operators

For a normed space X, a linear operator A: X — X, and a number n € {0} U N,
the n-th power A™ of the operator A is defined by

AV=1, A=A, and A" = AA" forn =2

(here I denotes the identity operator on X). From Proposition 14.1, it follows by
induction that

|A"| < |A|™ for all n e {0} UN.
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Theorem 14.3 (“the geometric series formula” for operators). Let X be a Banach
space (i.e. a complete normed space), and let A € L(X, X).

(a) Suppose that |A| < 1. Then the operator I — A is invertible and (I — A)~! is
continuous (i.e., (I — A)~t e L(X,X)). More precisely,

(I—-A)"'= i A"

where the latter series converges in L(X, X).

(b) Suppose that |I — A| < 1. Then the operator A is invertible and A™" is conti-
nuous (i.e., AV € L(X, X)). More precisely,

Al = i(l — A"

where the latter series converges in L(X, X).

PRrROOF. (b) follows immediately from (a), because A = I — (I — A).

a). First observe that the series Y~ A" is absolutely convergent, because
n=0 y

0 0
DA< DA <
n=0 n=0

(the latter series is a geometric series where the multiplier |A| < 1). Since the
space X is complete, also £(X, X) is complete (by Theorem 13.6), and thus the
absolutely convergent series Y, A" converges in £(X, X) (by Theorem 12.2). Put
B:=3%" A" e L(X,X). In order to prove that B = (I — A)™', it suffices to show
that

B(I-A)=1 and (I-A)B=1. (14.2)
To this end, putting, for every m € N,
B,, = Z A",
n=0
it suffices to show that
Bn,(I—A)——>1 and (I-A)B, —1I in £(X,X), (14.3)
m—00 m—0a0

because, since B,, —— B, by Proposition 14.2,
m—00

Bn(I—A)——> B(I—A) and (I—A)B, —— (I—A)B  inL(X,X):

m—00 m—0o0

therefore, if (14.3) holds, then one has (14.2) by the uniqueness of the limit.
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It remains to verify the conditions (14.3):

m

ZA"—AiAnz iA”—iAA”
n=0 n=0 n=0

n=0

(I = A)By,

A) A

n=0
m m m m+1
Z Z n+1:ZAn_Z+:An:AO_Am:]_Am;
n=0 n=0 n=1

since |A| < 1, one has |A™| < ||A||m —— 0, thus A™ —— 0 and
—00

m—00

(I—A)By=1-A" — I;

m—00

similarly one obtains that B,,(I — A) —— I, and the proof is complete. O

m—00

Corollary 14.4. Let X and Y be normed spaces with one of them being complete,
and let A, B € L(X,Y) be such that A is invertible and the inverse A~ is continuous
(i.e., A= e L(V, X)), and

1
A=

Then also B is invertible and the inverse B~ is continuous, i.e., B™' € L(Y, X).

|1B— Al <

ProOF. [I] First consider the case when Y is complete. In this case, one can write
B=(I-(A-B)A™) A

Since

[(A-B)A™ | < |A-B[|A™] < A7 =1

HA 1

and the space Y is complete, by “the geometric series formula” (Theorem 14.3), the
operator C':= [ —(A— B)A™' € L(Y,Y) is invertible and C~! € L(Y,Y). Thus also
B = CA in invertible and B~! = A~ C~1 e L(Y, X).

[II] In the case when X is complete, write
B=A(I-A"(A-DB)).

The rest of the argument is symmetric to that in (I). O



§ 15. Finite dimensional normed spaces

15.1. Pairwise isomorphness of n-dimensional normed spaces

Definition 15.1. Let X and Y be normed spaces. An operator T' € £(X,Y) is called
an isomorphism, if it is a bijection whose inverse is continuous, i.e., T~! € L(Y, X).
The spaces X and Y are said to be isomorphic, if there exists an isomorphism
T e L(X,Y). In this case, one also says that X is isomorphic to Y or that Y is
1somorphic to X.

Proposition 15.1. Let X and Y be normed spaces. A linear surjection T: X —Y
is an 1somorphism if and only if there are constants o, B > 0 such that, for every
reX,

afz| < [Tz < Blz|. (15.1)

PROOF.

Exercise 15.1. Prove Proposition 15.1.

O

Definition 15.2. Let n € N. One says that a normed space X is n-dimensional and
writes dim X = n if X is n-dimensional as a linear space, i.e., there are ey, ..., e, € X
such that every x € X admits a unique representation

xr = Zf’jej where &, ...,&, e K.
j=1

The system {eq, ..., e,} is called a basis for X.

A normed space X is said to be finite dimensional if it is finite dimensional as a
linear space, i.e., either X is n-dimensional for some n € N or X = {0}. In this case,
one writes dim X < 0.

A normed space X is said to be infinite dimensional if it is not finite dimensional.
In this case, one writes dim X = oo.

Remark 15.1. From the introductory course in linear algebra, one remembers that
a linear space X is n-dimensional if and only if there exists a linearly independent
system in X consisting of n vectors whereas every system consisting of n+ 1 vectors
i X is linearly dependent.

Example 15.1. The spaces £}, where n € N and 1 < p < o, are n-dimensional: the
system

is a basis for ().
All the other normed spaces introduced in Section 4 are infinite dimensional.
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In this subsection, we shall show that any two n-dimensional (n € N) normed
spaces are isomorphic. Our first step towards this result is the following lemma.

Lemma 15.2. Let n € N and let X be an n-dimensional normed space with a basis
{e1,...,en}. The mapping

T: 053 (&) — D Geje X (15.2)
j=1
15 an 1somorphism. Thus every n-dimensional normed space is isomorphic to (%,.

Proor. Clearly T is a linear bijecton. In order to see that T is an isomorphism, it
remains to find «, f > 0 satisfying (15.1) for every z € (7.
On one hand, for every x = (§;)_; € £}, one has

Sge < Nlslled < (R lert) g bl = (X st ) .
=1 j=1 j=1 =1
i.e., the second inequality in (15.1) holds for 8 := 37", [e;].
On the other hand, if z = 0, the first inequality in (15.1) holds for every a > 0.
el b < |y i

()=

Thus, denoting by S the unit sphere of £%, i.e. S := {x € €% |z| = 1}, in order to
find the desired a > 0, it suffices to show that

inf |Tx|| > 0, (15.3)

[Tl =

If x # 0, this inequality is equivalent to a <

because, in this case, one can take « := inf,cg |Tx| (observe that — € .S whenever

H H
x € (2\{0}).

It remains to prove (15.3). To this end, first observe that the function
f: Sax+—|Tx[|eR

is continuous (because it is the composition of the continuous mappings T'lg: S — X
and |- |: X — R). The unit sphere S is relatively compact (because, by Example
9.2, bounded sets in £, are relatively compact) and closed (because every sphere in a
metric space is closed); thus S is compact. By Theorem 9.6, the continuous function
f on the compact set S attains its infimum, i.e., there is an zo = (£})7_, € S such
that

f(zo) = inf f(z) = inf |Tz|.
zeS zeS
It remains to show that f(z¢) > 0. Suppose for contradiction that f(xo) = 0, i.e.,
|Txo| = HZ?:1 §?ejH =0, ie. D)7, &e; = 0. Since {ey, ..., ey} is a basis for X, it

follows that £ = --- = & = 0. On the other hand, |zo| = maxi<j<, |€]] = 1, a
contradiction. O
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Corollary 15.3. Let n € N. Any two n-dimensional normed spaces are isomorphic.

ProOOF. By Lemma 15.2, every n-dimensional normed space is isomorphic to 7.
Thus it suffices to solve the following exercise.

Exercise 15.2. Let X, Y, and Z be normed spaces. Prove that

(a) if T: X >Y and S: Y — Z are isomorphisms, then also the composition ST: X — Z is
an isomorphism;

(b) if X is isomorphic to Y, and Y is isomorphic to Z, then X is isomorphic to Z

Besides Corollary 15.3, Lemma 15.2 has some more nice corollaries.
Corollary 15.4. Any finite dimensional normed space is complete.

ProOOF. By Lemma 15.2, every n-dimensional normed space is isomorphic to ¢ .
The space (2, is complete (by Example 6.5). Thus it remains to solve the following
exercise.

Exercise 15.3. Prove that if one of two isomorphic normed spaces is complete, then so is the
other.

]
Corollary 15.5. A finite dimensional subspace of a normed space is closed.

PrOOF. By Corollary 15.4, any finite dimensional subspace of a normed space is
complete. By Proposition 6.2, (a), any complete subspace of a metric space is closed,
thus any finite dimensional subspace of a normed space is closed. O

Corollary 15.6. Any bounded set in a finite dimensional normed space is relatively
compact.

ProOOF. Let B be a bounded subset of an n-dimensional normed space, and let
T: (" — X be the isomorphism from Lemma 15.2. Then T7Y(B) = {T'z: 2z € B}
is a bounded subset of 7 (because the bounded operator T~ maps the bounded
set B into a bounded set by Proposition 13.2), thus T~!(B) is relatively compact
(because every bounded subset of (7 is relatively compact by Example 9.2). It
follows that also B = T(T~!(B)) is relatively compact (because the continuous
operator T maps the relatively compact set T—!(B) to a relatively compact set by
Exercise 9.2). O

Definition 15.3. Two norms | - | and || - || on a linear space X are said to be
equivalent if there are constants «, 5 > 0 such that

afz|| < ||z|| < B|z| for every x € X.

By Proposition 15.1, it is clear that the equivalence of the norms || - | and || - ||
means that the formal identity operator

(X)) 22— ze (X))

is an isomorphism.
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Corollary 15.7. Any two norms on a finite-dimensional linear space are equivalent.

PROOF. Let X be an n-dimensional linear space with basis {e1, ..., e,}. It suffices
to show that the formal identity operator

T (X)) 2z — e (X))

is an isomorphism. To this end, recall that, by Lemma 15.2, the mappings
T: 0y 3 (&) — Z&ey (X.[-]) and S: €5 5(&)f- — ngea (X1

are isomorphisms. Observing that J = ST ™!, it remains to apply Exercise 15.2, (a).
O

Corollary 15.8. Let X and Y be normed spaces. Suppose that dim X < co. Then
every linear operator T: X — 'Y is continuous.
PROOF.
*Exercise 15.4. Prove Corollary 15.8.
O]

Exercise 15.5. Prove that a continuous linear operator between normed spaces X an Y remains
continuous if the original norms in X and Y are replaced by equivalent norms.

15.2. Riesz’s lemma. Non-compactness of the unit sphere in
infinite dimensional normed spaces

By Corollary 15.6, every bounded set in a finite dimensional normed space is rela-

tively compact. In particular, the unit sphere of a finite dimensional normed space

is relatively compact. In this subsection, we shall see that this is a characteristic
feature of finite dimensional normed spaces.

The crucial step in showing that the unit sphere of an infinite dimensional normed
space is always non-compact is the following theorem which is of interest in its own
right.

Theorem 15.9 (Riesz’s lemma). Let X be a normed space, let Y be a proper closed
subspace of X (i.e., Y is a closed subspace of X such thatY # X ), and let0 < e < 1.
Then there is an x. € X with |z.| = 1 such that

lxe —yl| =1—¢ foreveryyeY, (15.4)
e, plxe,Y)=1—e¢.

Recall that in a metric space X, the distance p(z, A) between a point z € X and
a subset A ¢ X is defined by p(z, A) := infflp(x,y). It is clear that p(z, A) = 0 if
ye

and only if z € A.
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PROOF OF THEOREM 15.9. Since Y is a proper subspace, there is an z € X\Y.
Since Y is closed, Y =Y, therefore x ¢ Y, hence p(z,Y) > 0. Thus one can choose

Y _
azeY sothat |z — 2| < pix, ) Putting x. := H, one has [|z.| = 1, and it
—€ r—z
remains to verify (15.4): whenever y € Y, one has
T —z r—z—|z—z|y
S [ I I
I SR e R PR
=——le—z—|lz—z|y|=——|z—(2+ |z — 2|y
|z = 2| |z — 2]
Y
S pwY)
| = 2|
[

Corollary 15.10. The unit sphere of an infinite dimensional normed space is not
compact.

PROOF. Let X be an infinite dimensional normed space. It suffices to construct a
sequence (z;);”; in the unit sphere Sx := {z € X: |z| = 1} of X such that, for all
k,l e N with k& # [,

1

o =il = 5, (15.5)

because such a sequence (zj) does not contain any Cauchy subsequences, thus it
does not contain any convergent subsequences, and the non-compactness of the unit
sphere Sx follows.

In order to construct the desired sequence (zy), first choose an arbitrary z; € Sx
and proceed inductively as follows:

e givenn € Nand {z1,...,z,} satisfying (15.5) forall k,l € {1,... ,n} with k # [,
put Y := span{xy,...,x,} and choose an z,.; € Sy so that p(z,1,Y) = 5

(since, by Corollary 15.5, the subspace Y is closed, such an z,,; exists by
Riesz’s lemma).

The sequence (xx) obtained in this process clearly satisfies (15.5) for all k, [ € N with
k#1. O

Corollary 15.11. Let X be a normed space. The following assertions are equivalent:
(i) X is finite dimensional;
(i) every bounded set in X is relatively compact;

(iii) the unit sphere Sx :={x € X: |z| = 1} is compact.
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Proor. (i)=(ii) is Corollary 15.6.

(ii)=(iii). Assume that (ii) holds. Then Sy is relatively compact (because it is
bounded). Since Sy is closed (because every sphere in a metric space is closed), it
is compact.

(iii)=(i) follows from Corollary 15.10.



