
§ 1. The notion of a metric space

1.1. The notion of a metric space

Definition 1.1. Let X be a set.
A function ρ : X ˆ X Ñ R is called a distance (or a metric) if, for every

x, y, z P X,

1˝ ρpx, yq “ 0 ô x “ y;

2˝ ρpx, yq “ ρpy, xq;

3˝ ρpx, zq ď ρpx, yq ` ρpy, zq.

In this case, one says that pX, ρq is a metric space. If the metric ρ is clear from the
context, one just calls X a metric space. The number ρpx, yq is called the distance
between x and y. The conditions 1˝, 2˝, and 3˝—the axioms of metric—are referred
to as, respectively, the axiom of identity, the axiom of symmetry, and the triangle
inequality.

Simpler properties of metric are collected in the following

Proposition 1.1. Let pX, ρq be a metric space, and let x, y, z, u, v P X. Then

(a) ρpx, yq ě 0;

(b) (the quadrangle inequality)
ˇ

ˇρpx, yq ´ ρpu, vq
ˇ

ˇ ď ρpx, uq ` ρpy, vq;

(c) (the reverse triangle inequality)
ˇ

ˇρpx, yq ´ ρpy, zq
ˇ

ˇ ď ρpx, zq;

(d) every subset of X is again a metric space with respect to the distance ρ.

Proof. (a). One has (by taking z “ x in the triangle inequality 3˝)

2ρpx, yq “ ρpx, yq ` ρpy, xq ě ρpx, xq “ 0,

hence ρpx, yq ě 0.

(b). We must show that

´ρpx, uq ´ ρpy, vq ď ρpx, yq ´ ρpu, vq ď ρpx, uq ` ρpy, vq,

i.e.,

ρpu, vq ď ρpx, yq ` ρpx, uq ` ρpy, vq and ρpx, yq ď ρpx, uq ` ρpy, vq ` ρpu, vq.

Both these inequalities follow from the triangle inequality:

ρpu, vq ď ρpu, xq ` ρpx, vq ď ρpx, uq ` ρpx, yq ` ρpy, vq “ ρpx, yq ` ρpx, uq ` ρpy, vq,

ρpx, yq ď ρpx, uq ` ρpu, yq ď ρpx, uq ` ρpu, vq ` ρpv, yq “ ρpx, uq ` ρpy, vq ` ρpu, vq.

(c). The claim follows by taking, in the quadrangle inequality (b), u “ z and
v “ y.

(d) is more than obvious.
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2 Metric spaces

1.2. Simpler examples of metric spaces

Example 1.1. The set R of real numbers is a metric space with respect to the
natural distance

dpx, yq “ |x ´ y|, x, y P R.

Example 1.2. Let n P N. The Euclidean metric d in

Rn :“
␣

pξjq
n
j“1 :“ pξ1, . . . , ξnq : ξ1, . . . , ξn P R

(

is defined by

dpx, yq “

g

f

f

e

n
ÿ

j“1

|ξj ´ ηj|2, x “ pξjq
n
j“1, y “ pηjq

n
j“1 P Rn.

(The axioms of metric for d will be veryfied in Section 5.) In particular, in R2,

dpx, yq “
a

|ξ1 ´ η1|2 ` |ξ2 ´ η2|2, x “ pξ1, ξ2q, y “ pη1, η2q P R2,

and, in R3,

dpx, yq “
a

|ξ1 ´ η1|2 ` |ξ2 ´ η2|2 ` |ξ3 ´ η3|2, x “ pξ1, ξ2, ξ3q, y “ pη1, η2, η3q P R3,

i.e., dpx, yq is the “natural” distance between x and y.

Example 1.3. Let X be an arbitrary set. Define, for x, y P X,

ρpx, yq “

#

0, if x “ y,

1, if x ‰ y.

Exercise 1.1. Prove that ρ is a distance.

The metric ρ is called the discrete metric. The metric space pX, ρq is called the
discrete metric space.

1.3. Balls and bounded sets in a metric space

Definition 1.2. Let X be a metric space, and let a P X and r ą 0. The sets

Bpa, rq :“
␣

x P X : ρpx, aq ă r
(

,

Bpa, rq :“
␣

x P X : ρpx, aq ď r
(

,

Spa, rq :“
␣

x P X : ρpx, aq “ r
(

are called, respectively, the the open ball, closed ball, and the sphere of radius r
centered at a.
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Example 1.4. The open and closed balls, and the sphere in R2 centered at a “

pa1, a2q P R2 of radius r ą 0 with respect to the Euclidean distance d

Bpa, rq “
␣

x “ pξ1, ξ2q P R2 : dpx, aq ă r
(

“

!

pξ1, ξ2q P R2 :
a

|ξ1 ´ a1|2 ` |ξ2 ´ a2|2 ă r
)

“
␣

pξ1, ξ2q P R2 : |ξ1 ´ a1|
2 ` |ξ2 ´ a2|2 ă r2

(

,

Bpa, rq “
␣

x “ pξ1, ξ2q P R2 : dpx, aq ď r
(

“

!

pξ1, ξ2q P R2 :
a

|ξ1 ´ a1|2 ` |ξ2 ´ a2|2 ď r
)

“
␣

pξ1, ξ2q P R2 : |ξ1 ´ a1|
2 ` |ξ2 ´ a2|2 ď r2

(

,

Spa, rq “
␣

x “ pξ1, ξ2q P R2 : dpx, aq “ r
(

“

!

pξ1, ξ2q P R2 :
a

|ξ1 ´ a1|2 ` |ξ2 ´ a2|2 “ r
)

“
␣

pξ1, ξ2q P R2 : |ξ1 ´ a1|
2 ` |ξ2 ´ a2|2 “ r2

(

are, respectively, the open disk, the closed disk, and the circle centered at a of
radius r.

Exercise 1.2. Describe the balls Bpa, rq and Bpa, rq and the sphere Spa, rq in the discrete metric
space.

Remark 1.1. The behaviour of balls in a metric space may be very “unballish”.
For instance,

‚ there exist metric spaces X such that for some a P X and r2 ą r1 ą 0, one
has Bpa, r2q Ă Bpa, r1q (think about the discrete metric space);

and, moreover,

‚ there exist metric spaces X such that for some a1, a2 P X and r2 ą r1 ą 0, one
has Bpa2, r2q Ř Bpa1, r1q (look at the metric space pN, ρq in [HOP, exercise 7]).

Exercise 1.3. Let X be a metric space and let a1, a2 P X and r1, r2 ą 0 satisfy r1 ď r2´ρpa1, a2q.
Prove that Bpa1, r1q Ă Bpa2, r2q and Bpa1, r1q Ă Bpa2, r2q.

Definition 1.3. Let X be a metric space and let x P X. Any set containing a ball
centered at x is called a neighbourhood of x.

Definition 1.4. Let X be a metric space and let A Ă X. The subset A is said to
be bounded, if it is contained in some ball.

Exercise 1.4. Prove that, in a metric space pX, ρq,

(a) every closed ball is contained in some open ball, and every open ball is contained in some
closed ball;

(b) for every ball Bpa, rq and every b P X, there exists R ą 0 such that Bpa, rq Ă Bpb,Rq.
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1.4. Convergence in a metric space

Definition 1.5. Let pX, ρq be a metric space, and let xn, x P X, n P N.
One says that the sequence pxnq8

n“1 converges to the element x in the space X,
and writes

xn ÝÝÝÑ
nÑ8

x or simply xn Ñ x or lim
nÑ8

xn “ x

if
ρpxn, xq ÝÝÝÑ

nÑ8
0.

The element x is called the limit of the sequence pxnq8
n“1.

In other words, xn ÝÝÝÑ
nÑ8

x if and only if

• for every ε ą 0, there is an index N P N such that

ρpxn, xq ă ε for every n ě N

or, equivalently,

• for every ε ą 0, there is an index N P N such that

xn P Bpx, εq for every n ě N

or, equivalently,

• for every neighbourhood U of x, there is an index N P N such that

xn P U for every n ě N .

A sequence in a metric space which is not convergent to any element of this space
is said to diverge.

Example 1.5. Let X be a metric space and let pxnq8
n“1 be a sequence in X such

that, for some index N P N,

xn “ xN for all n ě N .

Then xn ÝÝÝÑ
nÑ8

xN . Indeed, whenever ε ą 0, one has, for n ě N ,

ρpxn, xNq “ ρpxN , xNq “ 0 ă ε.

Exercise 1.5. Prove that, in a discrete metric space, the only convergent sequences are those
having the property described in the previous example.

Example 1.6. Let X be a metric space and let x, y P X, x ‰ y. Then the sequence

x, y, x, y, x. y, . . . ,

i.e., the sequence pxnq8
n“1 in X given by

#

xn “ x, if n is odd;

xn “ y, if n is even,

is divergent.
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Exercise 1.6. Prove that the sequence pxnq8
n“1 is divergent.

Simpler properties of convergent sequences are collected in the following

Proposition 1.2. (a) A convergent sequence in a metric space may have at most
one limit.

(b) A convergent sequence in a metric space is bounded (i.e., the set of its elements
is bounded).

(c) Every subsequence of a convergent sequence in a metric space converges to the
same limit.

(d) Distance ρ in a metric space X is continuous in the following sense: If xn, x,
yn, y P X, n P N, and

xn ÝÝÝÑ
nÑ8

x and yn ÝÝÝÑ
nÑ8

y, (1.1)

then
ρpxn, ynq ÝÝÝÑ

nÑ8
ρpx, yq.

Proof. Let X be a metric space, and let xn, x P X, n P N, be such that xn ÝÝÝÑ
nÑ8

x.

(a). Suppose that xn ÝÝÝÑ
nÑ8

y for some y P X. We have to show that x “ y or,

equivalently, ρpx, yq “ 0.
For every n P N,

0 ď ρpx, yq ď ρpx, xnq ` ρpxn, yq “ ρpxn, xq ` ρpxn, yq. (1.2)

Since, xn ÝÝÝÑ
nÑ8

x and xn ÝÝÝÑ
nÑ8

y, one has ρpxn, xq ÝÝÝÑ
nÑ8

0 and ρpxn, yq ÝÝÝÑ
nÑ8

0, thus

(1.2) implies that 0 ď ρpx, yq ď 0, i.e., ρpx, yq “ 0, as desired.

(b). It suffices to show that there is an r ą 0 such that xn P Bpx, rq for every
n P N. Since ρpxn, xq ÝÝÝÑ

nÑ8
0, there is an N P N such that

ρpxn, xq ă 1 for all n ą N .

Putting r :“ max
␣

ρpx1, xq, . . . , ρpxN , xq, 1
(

, one has xn P Bpx, rq for every n P N.
(c). Let pxknq8

n“1 be any subsequence of pxnq8
n“1. Since xn ÝÝÝÑ

nÑ8
x, one has

ρpxn, xq ÝÝÝÑ
nÑ8

0. Since any subsequence of a convergent sequence of numbers con-

verges to the same limit, the latter implies that also ρpxkn , xq ÝÝÝÑ
nÑ8

0, but this means

that xkn ÝÝÝÑ
nÑ8

x in X.

(d). Suppose that xn, x, yn, y P X, n P N, satisfy (1.1). Then, by the quadrangle
inequality,

ˇ

ˇρpxn, ynq ´ ρpx, yq
ˇ

ˇ ď ρpxn, xq ` ρpyn, yq ÝÝÝÑ
nÑ8

0.
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Throughout in what follows, either K “ R or K “ C.

2.1. The notion of a linear space

Definition 2.1. A non-empty set X is called a linear space (or a vector space) (over
the field K) if two operations—adddition

X ˆ X Q px, yq ÞÑ x ` y P X

and multiplication by a scalar

K ˆ X Q pα, xq ÞÑ αx P X

—have been defined in X satisfying the following axioms:

1˝ x ` y “ y ` x for all x, y P X;

2˝ px ` yq ` z “ x ` py ` zq for all x, y, z P X;

3˝ there is an element 0 P X (called the zero element of X) satisfying x ` 0 “ x
for all x P X;

4˝ for every x P X, there exists an element ´x P X (called the additive inverse
of x) satisfying x ` p´xq “ 0;

5˝ 1x “ x for all x P X;

6˝ αpx ` yq “ αx ` αy for all α P K and all x, y P X;

7˝ pα ` βq x “ αx ` β x for all α, β P K and all x P X;

8˝ pαβqx “ αpβ xq for all α, β P K and all x P X.

Remark 2.1. For x, y P X and α P Kzt0u, it is customary to denote

x ´ y :“ x ` p´yq and
x

α
:“

1

α
x.

A non-empty subset Y of X is called a linear subspace of X if its closed with
respect to the linear space operations, i.e., whenever x, y P Y and α P K, also
x ` y P Y and αx P Y .

Example 2.1. A prototypical example of a linear space is, for n P N,

Kn :“
␣

pξjq
n
j“1 :“ pξ1, . . . , ξnq : ξ1, . . . , ξn P K

(

with respect to the operations

x ` y :“ pξj ` ηjq
n
j“1, x “ pξjq

n
j“1, y “ pηjq

n
j“1 P Kn,

αx :“ pαξjq
n
j“1, x “ pξjq

n
j“1 P Kn, α P K.

6
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2.2. The notion of a normed space

Definition 2.2. Let X be a linear space over the scalar field K.
A function } ¨ } : X Ñ R is called a norm if, for all x, y P X and α P K,

1˝ }x} “ 0 ô x “ 0;

2˝ }αx} “ |α| }x};

3˝ }x ` y} ď }x} ` }y}.

In this case, one says that pX, }¨}q is a normed space. If the norm }¨} is clear from the
context, one just calls X a normed space. The number }x} is called the norm of x.
The conditions 1˝, 2˝, and 3˝—the axioms of norm—are referred to as, respectively,
the axiom of identity, the axiom of homogeneity, and the triangle inequality.

Notice that a linear subspace of a normed space is again a normed space with
respect to the same norm.

The following proposition says that every normed space can be viewed, in a
natural way, as a metric space.

Proposition 2.1. Let pX, } ¨ }q be a normed space. Then X is a metric space with
respect to the distance

ρpx, yq “ }x ´ y}, x, y P X.

Proof.

Exercise 2.1. Prove that ρ satisfies the axioms of metric.

Thus a normed space shares all the properties of a metric space. In particular,
whenever x, y P X, one has

‚ }x} ě 0;

‚ (the reverse triangle inequality for norm)
ˇ

ˇ}x} ´ }y}
ˇ

ˇ ě }x ´ y}.

Exercise 2.2. Prove the above assertions.

Example 2.2. A prototypical example of a normed space is Kn (n P N) with respect
to the Euclidean norm

}x} “

g

f

f

e

n
ÿ

j“1

|ξj|2, x “ pξjq
n
j“1 P Kn.

The axioms of norm for the Euclidean norm will be verified in Section 5. Notice that
the Euclidean norm induces the Euclidean metric (in the sense of Proposition 2.1).

Exercise 2.3. Let X ‰ t0u be a normed space. Prove that

(a) there exists an x P X satisfying }x} “ 1;

(b) for every c P r0,8q there exists an x P X satisfying }x} “ c.



8 Metric spaces

2.3. Balls and boundedness in a normed space

Remark 2.2. One may observe that, contrary to the possible “unballish” behaviour
of balls in a general metric space, the behavior of balls in a normed space is always
very ballish: the pathologies described in Remark 1.1 never occur in a normed space.
˚Exercise 2.4 (cf. Exercise 1.3). Let X be a normed space, and let a1, a2 P X and r1, r2 ą 0.
Prove that

(a) if Bpa1, r1q Ă Bpa2, r2q, then r1 ď r2 ´ }a1 ´ a2};

(b) if Bpa1, r1q Ă Bpa2, r2q, then r1 ď r2 ´ }a1 ´ a2}.

Definition 2.3. The two balls and the sphere

BX :“ Bp0, 1q “
␣

x P X : }x} ď 1
(

,

B˝
X :“ Bp0, 1q “

␣

x P X : }x} ă 1
(

,

SX :“ Sp0, 1q “
␣

x P X : }x} “ 1
(

in a normed space X are called, respectively, the closed unit ball, the open unit ball,
and the unit sphere of X.

Proposition 2.2. Let pX, } ¨ }q be a normed space, and let A Ă X. Then A is
bounded if and only if there exists an M ě 0 such that

}x} ď M for all x P A. (2.1)

Proof. Necessity. If A is bounded, then it is contained in some closed ball centered
at the origin, say Bp0,Mq, i.e., A Ă Bp0,Mq, but this is equivalent to (2.1).

Sufficiency. If (2.1) holds for some M ě 0, then it also holds for some M ą 0,
but this means that A is contained in the ball Bp0,Mq, thus A is bounded.

Exercise 2.5. For a set A in a linear space X, and z P X and α P K, the translate A ` z and
dilation αA are defined by

A ` z :“
␣

x ` z : x P A
(

and αA :“
␣

αx : x P A
(

.

Prove that, if X is a normed space and A is bounded, then also A ` z and αA are bounded.

Exercise 2.6. Let X be a normed space, and let a, b P X and α, r ą 0. Prove that

(a) Bp0, rq “ rBp0, 1q; (b) Bpa, rq “ Bp0, rq ` a;

(c) αBpa, rq “ Bpαa, αrq; (d) Bpa, rq ` b “ Bpa ` b, rq.

2.4. Convergence in a normed space

Convergence xn Ñ x in a normed space, of course, means that

}xn ´ x} ÝÝÝÑ
nÑ8

0.
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Proposition 2.3. The norm and the algebraic operations in a normed space are
continuous in the following sense: if xn, x, yn, y P X and αn, α P K, n P N, are such
that

xn ÝÝÝÑ
nÑ8

x, yn ÝÝÝÑ
nÑ8

y, and αn ÝÝÝÑ
nÑ8

α, (2.2)

then

}xn} ÝÝÝÑ
nÑ8

}x}, xn ` yn ÝÝÝÑ
nÑ8

x ` y, and αnxn ÝÝÝÑ
nÑ8

αx.

Proof. Suppose that xn, x, yn, y P X and αn, α P K, n P N, satisfy (2.2). By the
reverse triangle inequality

ˇ

ˇ}xn} ´ }x}
ˇ

ˇ ď }xn ´ x} ÝÝÝÑ
nÑ8

0.

By the triangle inequality

}pxn ` ynq ´ px ` yq} “ }pxn ´ xq ` pyn ´ yq} ď }xn ´ x} ` }yn ´ y} ÝÝÝÑ
nÑ8

0,

and

}αnxn ´ αx} “ }αnxn ´ αnx ` αnx ´ αx}

ď }αnpxn ´ xq} ` }pαn ´ αqx} “ |αn|}xn ´ x} ` |αn ´ α|}x} ÝÝÝÑ
nÑ8

0.

2.5. When a metric is induced by a norm

In the light of Proposition 2.1, it is natural to ask: if a metric space pX, ρq is such
that X is simultaneously a normed space, does there exist a norm } ¨ } on X which
induces the distance ρ, i.e.,

ρpx, yq “ }x ´ y} for all x, y P X? (2.3)

The answer, in general, is negative: endow a linear space X ‰ t0u with the discrete
metric ρ; if one would have (2.3), then, for all x P X,

}x} “ }x ´ 0} “ ρpx, 0q ď 1,

which can not be the case (because, by Exercise 2.3, any normed space X ‰ t0u

admits elements of arbitrarily large norm).

Exercise 2.7. Prove that

ρpx, yq “
a

|x ´ y|, x, y P R,

is a metric in R. Is this metric induced by some norm in R?

The following Proposition gives necessary and sufficient conditions for a metric
to be induced by a norm.
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Proposition 2.4. Suppose that pX, ρq is a metric space, and that X is simulta-
neously a linear space. The following assertions are equivalent.

(i) The metric ρ is induced by a norm (i.e., there exists a norm }¨} in X satisfying
(2.3)).

(ii) For all x, y, z P X and α P K,

4˝ ρpαx, αyq “ |α|ρpx, yq;

5˝ ρpx ` z, y ` zq “ ρpx, yq.

(iii) For all x, z P X and α P K,

4˝˝ ρpαx, 0q “ |α|ρpx, 0q;

5˝˝ ρpx ` z, zq “ ρpx, 0q.

If any of the equivalent conditions (i)–(iii) holds, then the norm in condition (i) is
defined by

}x} :“ ρpx, 0q, x P X.

Proof.

Exercise 2.8. Prove Proposition 2.4.

2.6. Convex sets in a linear space

Definition 2.4. Let X be a linear space and let A Ă X.
The set A is said to be convex, if, whenever x, y P A and λ P r0, 1s, one has

p1 ´ λqx ` λy P A.

Given x, y P X, the set

rx, ys :“
␣

x ` λpy ´ xq : λ P r0, 1s
(

“
␣

p1 ´ λqx ` λy : λ P r0, 1s
(

is called the (straight) line segment connecting x and y.

Thus convexity of a set A in a normed space means that, together with any two
points x, y P A, the set A contains also the straight line segment rx, ys connecting
these points.

Exercise 2.9. Prove that balls in a normed space are convex sets.

Exercise 2.10. Let X be a normed space and let x, y P X. Prove that

(a) }z} ď max
␣

}x}, }y}
(

for every z P rx, ys;

(b) }x} ď max
␣

}x ´ y}, }x ` y}
(

.
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Proposition 3.1 (Minkowski’s inquality). Let p P p1,8q and n P N. Whenever
a1, . . . , an, b1, . . . , bn ě 0, one has

n
ÿ

j“1

paj ` bjq
p ď

˜

n
ÿ

j“1

apj

¸
1
p

`

˜

n
ÿ

j“1

bpj

¸
1
p

. (3.1)

Minkowski’s inequality follows from

Proposition 3.2 (The Rogers–Hölder inequality). Let p, q P p1,8q be conjugate
exponents, i.e., 1

p
` 1

q
“ 1, and let n P N. Whenever a1, . . . , an, b1, . . . , bn ě 0 one

has
n
ÿ

j“1

ajbj ď

˜

n
ÿ

j“1

apj

¸
1
p
˜

n
ÿ

j“1

bqj

¸
1
q

. (3.2)

The Rogers–Hölder inequality, in turn, follows from

Proposition 3.3 (Young’s inequality). Let p, q P p1,8q be conjugate exponents,
i.e., 1

p
` 1

q
“ 1. Whenever a, b ě 0, one has

a
1
p b

1
q ď

a

p
`

b

q
. (3.3)

Remark 3.1. Young’s inequality is often formulated in the following (equivalent
to Proposition 3.3) form: if p, q P p1,8q are conjugate exponents, then, whenever
a, b ě 0,

ab ď
ap

p
`

bq

q
.

The proof of Minkowski’s inequality. Let a1, . . . , an, b1, . . . , bn ě 0. Since,
for each j P t1, . . . , nu,

paj ` bjq
p “ paj ` bjqpaj ` bjq

p´1 “ ajpaj ` bjq
p´1 ` bjpaj ` bjq

p´1,

by the Rogers–Hölder inequality, letting q P p1,8q satisfy 1
p

` 1
q

“ 1 (then 1
q

“
p´1
p

and qpp ´ 1q “ p),

n
ÿ

j“1

paj ` bjq
p “

n
ÿ

j“1

ajpaj ` bjq
p´1 `

n
ÿ

j“1

bjpaj ` bjq
p´1

ď

˜

n
ÿ

j“1

apj

¸
1
p
˜

n
ÿ

j“1

paj ` bjq
pp´1qq

¸
1
q

`

˜

n
ÿ

j“1

bpj

¸
1
p
˜

n
ÿ

j“1

paj ` bjq
pp´1qq

¸
1
q

“

¨

˝

˜

n
ÿ

j“1

apj

¸
1
p

`

˜

n
ÿ

j“1

bpj

¸
1
p

˛

‚

˜

n
ÿ

j“1

paj ` bjq
p

¸
1
q

.

11
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If a1 “ ¨ ¨ ¨ “ an “ 0, then the inequality (3.1) is obvious. Suppose that ak ą 0 for
some k P t1, . . . , nu. In this case, from the previous chain, we obtain

˜

n
ÿ

j“1

paj ` bjq
p

¸1´ 1
q

ď

˜

n
ÿ

j“1

apj

¸
1
p

`

˜

n
ÿ

j“1

bpj

¸
1
p

,

which, in view of the equality 1 ´ 1
q

“ 1
p
, is equivalent to (3.1).

Proof of the Rogers–Hölder inequality. If a1 “ ¨ ¨ ¨ “ an “ 0 or b1 “

¨ ¨ ¨ “ bn “ 0, then the inequality (3.2) clearly holds. Suppose that ak ‰ 0 and bl ‰ 0
for some k, l P t1, . . . , nu. Then, for each j P t1, . . . , nu, taking in Young’s inequality
(3.3)

a “
apj

řn
i“1 a

p
i

and b “
bqj

řn
i“1 b

q
i

,

one obtains
ajbj

p
řn

i“1 a
p
i q

1
p p
řn

i“1 b
q
i q

1
q

ď
apj

p
řn

i“1 a
p
i

`
bqj

q
řn

i“1 b
q
i

.

Thus

n
ÿ

j“1

ajbj

p
řn

i“1 a
p
i q

1
p p
řn

i“1 b
q
i q

1
q

ď

řn
j“1 a

p
j

p
řn

i“1 a
p
i

`

řn
j“1 b

q
j

q
řn

i“1 b
q
i

“
1

p
`

1

q
“ 1,

and the inequality (3.2) follows.

The proof of Young’s inequality. Let a, b ě 0. If b “ 0, then the inequality
(3.3) clearly holds. Thus we may assume that b ą 0. Putting λ “ 1

p
, the inequality

(3.3) is equivalent to
aλb1´λ ď λa ` p1 ´ λqb

or (dividing by b)
´a

b

¯λ

ď λ
a

b
` 1 ´ λ.

Putting t “ a
b
, it thus suffices to show that, for every t P p0,8q, one has

tλ ´ λt ď 1 ´ λ.

To this end, consider the function ϕptq “ tλ ´ λt. Since

ϕ1ptq “ λtλ´1 ´ λ “ λptλ´1 ´ 1q,

one has ϕ1ptq ą 0 if t P p0, 1q, and ϕ1ptq ă 0 if t P p1,8q. It follows that ϕp1q is the
maximal value of ϕ in p0,8q; thus, for all t P p0,8q,

tλ ´ λt ď ϕp1q “ 1 ´ λ.
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Proposition 3.4. Let 1 ď p ď q ă 8, and let n P N and a1, . . . , an ě 0. Then

˜

n
ÿ

j“1

aqj

¸
1
q

ď

˜

n
ÿ

j“1

apj

¸
1
p

.

Proof.
˚Exercise 3.1. Prove Proposition 3.4.



§ 4. Classical metric spaces

4.1. Finite-dimensional spaces

Throughout this subsection, n P N will be a fixed natural number, and K “ R or
K “ C.

The classical finite-dimensional normed spaces are:

‚ for 1 ď p ă 8, ℓnp :“ pKn, } ¨ }pq where

}x}p :“

˜

n
ÿ

j“1

|ξj|
p

¸
1
p

, x “ pξjq
n
j“1 P Kn.

The norm } ¨ }p is referred to as the p-norm.

‚ ℓn8 :“ mn :“ pKn, } ¨ }8q where

}x}8 :“ max
1ďjďn

|ξj|, x “ pξjq
n
j“1 P Kn.

The norm } ¨ }8 is referred to as the maximum norm.

For 1 ď p ă 8, the most interesting among the p-norms are, perhaps, the 1-
norm—also known as the sum norm—

}x}1 :“
n
ÿ

j“1

|ξj|, x “ pξjq
n
j“1 P Kn,

and the 2-norm—also known as the Euclidean norm—

}x}2 :“

g

f

f

e

n
ÿ

j“1

|ξj|2, x “ pξjq
n
j“1 P Kn.

Exercise 4.1. (a) Verify the axioms of norm for } ¨ }8.

(b) Let 1 ď p ă 8. Verify the axioms of norm for } ¨ }p (use Minkowski’s inequality for the
triangle inequality in the case 1 ă p ă 8).

Exercise 4.2. Draw the closed unit balls in the spaces ℓ21, ℓ
2
2, and ℓ28.

Remark 4.1. The notation ℓn8 is justified by

Proposition 4.1. For every x “ pξjq
n
j“1 P Kn,

}x}p ÝÝÝÑ
pÑ8

}x}8.

Proof.
˚Exercise 4.3. Prove Proposition 4.1

14
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Remark 4.2. Proposition 3.4 may be equivalently reformulated in terms of p-norms
as follows: Whenever 1 ď p ď q ă 8, one has, for every x P Kn,

}x}8 ď }x}q ď }x}p ď }x}1.

Proposition 4.2. Convergence in the spaces ℓnp , 1 ď p ď 8, is equivalent to coor-
dinatewise convergence, i.e., for xk “ pξkj qnj“1, x “ pξjq

n
j“1 P ℓnp , k P N,

xk ÝÑ
kÑ8

x in ℓnp ðñ ξkj ÝÑ
kÑ8

ξj for all j P t1, . . . , nu.

Proof. By Remark 4.2, for every j P t1, . . . , nu and all p P r1,8s,

|ξkj ´ ξj| ď max
1ďiďn

|ξki ´ ξi| “ }xk ´ x}8 ď }xk ´ x}p ď }xk ´ x}1 “

n
ÿ

i“1

|ξki ´ ξi|.

It follows that, on one hand, if xk ÝÑ
kÑ8

x in ℓnp for some p P r1,8s, i.e., }xk´x}p ÝÑ
kÑ8

0,

then
|ξkj ´ ξj| ÝÑ

kÑ8
0, i.e., ξkj ÝÑ

kÑ8
ξj for every j P t1, . . . , nu. (4.1)

On the other hand, if (4.1) holds, then also }xk´x}1 ÝÑ
kÑ8

0 and thus, for all p P r1,8s,

one has }xk ´ x}p ÝÑ
kÑ8

0, i.e., xk ÝÑ
kÑ8

x in ℓnp .

4.2. Sequence spaces

Throughout this subsection, K “ R or K “ C. By a sequence pξjq “ pξjq
8
j“1, we

shall mean a sequence of numbers, i.e., ξj P K, j P N.
In all of the linear spaces of sequences below, for sequences pξjq

8
j“1 and pηjq

8
j“1,

and a number α P K, the linear space operations are defined coordinatewise:

pξjq
8
j“1 ` pηjq

8
j“1 :“ pξj ` ηjq

8
j“1,

αpξjq
8
j“1 :“ pαξjq

8
j“1.

‚ The linear space of all sequences

s :“
␣

pξjq
8
j“1 : ξj P K, j P N

(

is a metric space with respect to the distance

ρpx, yq :“
8
ÿ

j“1

1

2j
|ξj ´ ηj|

1 ` |ξj ´ ηj|
, x “ pξjq

8
j“1, y “ pηjq

8
j“1 P s.

Exercise 4.4. Verify the axioms of metric for the distance ρ.

Hint. For the triangle inequality, it suffices to show that, whenever 0 ď α ď β, on has α
1`α ď

β
1`β ,

because, in this case, for all j P N,

|ξj ´ ζj |

1 ` |ξj ´ ζj |
“

|ξj ´ ηj ` ηj ´ ζj |

1 ` |ξj ´ ηj ` ηj ´ ζj |
ď

|ξj ´ ηj | ` |ηj ´ ζj |

1 ` |ξj ´ ηj | ` |ηj ´ ζj |

“
|ξj ´ ηj |

1 ` |ξj ´ ηj | ` |ηj ´ ζj |
`

|ηj ´ ζj |

1 ` |ξj ´ ηj | ` |ηj ´ ζj |
ď

|ξj ´ ηj |

1 ` |ξj ´ ηj |
`

|ηj ´ ζj |

1 ` |ηj ´ ζj |
.
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Notice that the distance in s is not induced by any norm.

Exercise 4.5. Prove that there is no norm in s satisfying ρpx, yq “ }x ´ y}, x, y P s.

Proposition 4.3. Convergence in the space s is equivalent to coordinatewise con-
vergence, i.e., for xk “ pξkj q8

j“1, x “ pξjq
8
j“1 P s, k P N,

xk ÝÑ
kÑ8

x in s ðñ ξkj ÝÑ
kÑ8

ξj for all j P N.

Proof. Let xk “ pξkj q8
j“1, x “ pξjq

8
j“1 P s, k P N.

“ñ”. Assume that xk ÝÝÝÑ
kÑ8

x in the space s, i.e

ρpxk, xq “

8
ÿ

j“1

1

2j
|ξkj ´ ξj|

1 ` |ξkj ´ ξj|
ÝÝÝÑ
kÑ8

0.

For every k P N,

1

2j
|ξkj ´ ξj|

1 ` |ξkj ´ ξj|
ď ρpxk, xq for every j P N,

thus

tkj :“
|ξkj ´ ξj|

1 ` |ξkj ´ ξj|
ď 2jρpxk, xq for every j P N.

Since, for every j P N, one has 2j ρpxk, xq ÝÝÝÑ
kÑ8

0, it follows that

tkj ÝÝÝÑ
kÑ8

0 for every j P N;

therefore, observing that, for all k, j P N, one has tkj ` tkj |ξkj ´ ξj| “ |ξkj ´ ξj| and thus

|ξkj ´ ξj| “
tkj

1 ´ tkj
(note that 1 ´ tkj ‰ 0, because tkj ă 1),

|ξkj ´ ξj| “
tkj

1 ´ tkj
ÝÝÝÑ
kÑ8

0 for every j P N.

“ð”. Assume that ξkj ÝÝÝÑ
kÑ8

ξj for every j P N. We must show that xk ÝÝÝÑ
kÑ8

x in

the space s, i.e., ρpxk, xq ÝÝÝÑ
kÑ8

0. To this end, letting ε ą 0 be arbitrary, it suffices

to find an N P N so that, for k ě N ,

ρpxk, xq “

8
ÿ

j“1

1

2j
|ξkj ´ ξj|

1 ` |ξkj ´ ξj|
ă ε.

To this end, first choose an index n P N so that

8
ÿ

j“n`1

1

2j
ă

ε

2
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(such an n P N exists because the series
8
ř

j“1

1

2j
converges and the remainder term of

a convergent series converges to zero). Since |ξkj ´ ξj| ÝÝÝÑ
kÑ8

0 for every j P N, also,
for every j P t1, . . . , nu,

|ξkj ´ ξj|

1 ` |ξkj ´ ξj|
ÝÝÝÑ
kÑ8

0,

thus, for every j P t1, . . . , nu, there exists an Nj P N such that, for k ě Nj, one has

|ξkj ´ ξj|

1 ` |ξkj ´ ξj|
ă

ε

2
. (4.2)

Therefore, defining N :“ maxtN1, . . . , Nnu, the inequality (4.2) holds for all j P

t1, . . . , nu and k ě N . Thus, whenever k ě N , one has

ρpxk, xq “

8
ÿ

j“1

1

2j
|ξkj ´ ξj|

1 ` |ξkj ´ ξj|
“

n
ÿ

j“1

1

2j
|ξkj ´ ξj|

1 ` |ξkj ´ ξj|
`

8
ÿ

j“n`1

1

2j
|ξkj ´ ξj|

1 ` |ξkj ´ ξj|

ă

n
ÿ

j“1

ε

2j`1
`

8
ÿ

j“n`1

1

2j
ă

ε

2
`

ε

2
“ ε.

The most important classical normed sequence spaces are:

‚ for 1 ď p ă 8, the linear space of p-summable sequences

ℓp :“

#

pξjq
8
j“1 :

8
ÿ

j“1

|ξj|
p ă 8

+

with respect to the norm

}x} “ }x}p :“

˜

8
ÿ

j“1

|ξj|
p

¸
1
p

, x “ pξjq
8
j“1 P ℓp;

‚ the linear space of bounded sequences

ℓ8 :“ m :“
␣

pξjq
8
j“1 : there exists M ě 0 such that |ξj| ď M for all j P N

(

and its linear subspaces of convergent sequences

c :“

"

pξjq
8
j“1 : the limit lim

jÑ8
ξj P K exists

*

Ă ℓ8

and

c0 :“

"

pξjq
8
j“1 : lim

jÑ8
ξj “ 0

*

Ă c Ă ℓ8

with respect to the norm

}x} “ }x}8 :“ sup
jPN

|ξj|, x “ pξjq
8
j“1 P ℓ8.
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Exercise 4.6. Prove that, in the space c0, the norm can be computed by

}x} “ }x}8 :“ max
jPN

|ξj |, x “ pξjq8
j“1 P c0.

The most interesting among these spaces ℓp, 1 ď p ă 8, are the space of sum-
mable sequences

ℓ1 :“

#

pξjq
8
j“1 :

8
ÿ

j“1

|ξj| ă 8

+

where the norm is given by

}x} “ }x}1 :“
8
ÿ

j“1

|ξj|, x “ pξjq
8
j“1 P ℓ1,

and the space

ℓ2 :“

#

pξjq
8
j“1 :

8
ÿ

j“1

|ξj|
2 ă 8

+

where the norm is given by

}x} “ }x}2 :“

g

f

f

e

8
ÿ

j“1

|ξj|2, x “ pξjq
8
j“1 P ℓ2.

Proposition 4.4. (a) For 1 ď p ă 8, convergence in the space ℓp implies coordi-
natewise convergence, i.e., for xk “ pξkj q8

j“1, x “ pξjq
8
j“1 P ℓp, k P N,

xk ÝÑ
kÑ8

x in ℓp ùñ ξkj ÝÑ
kÑ8

ξj for all j P N.

(b) Convergence in the space ℓ8 is equivalent to uniform coordinatewise conver-
gence, i.e., for xk “ pξkj q8

j“1, x “ pξjq
8
j“1 P ℓ8, k P N,

xk ÝÑ
kÑ8

x in ℓ8 ðñ ξkj ÝÑ
kÑ8

ξj uniformly in j P N
ˆ

i.e., sup
jPN

|ξkj ´ ξj| ÝÑ
kÑ8

0

˙

.

Proof.

Exercise 4.7. Prove Proposition 4.4.

Lause 4.1. Let 1 ď p ă q ď 8. Then ℓp Ř ℓq and

}x}q ď }x}p for every x P ℓp.

Proof.

Exercise 4.8. Prove Proposition 4.1

Hint. Use Proposition 3.4.
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4.3. Function spaces

If T Ă K, in all of the linear spaces of functions T Ñ K below, for functions
x, y : T Ñ K and a number α P K, the linear space operations are defined pointwise:

px ` yqptq :“ xptq ` yptq,

pαxqptq :“ αxptq,
t P T.

The most important classical function spaces are the following.

‚ M ra, bs is the normed space of bounded functions x : ra, bs Ñ K and Cra, bs is
its linear subspace of continuous functions. The norm in thes spaces is defined
by

}x} “ sup
tPra,bs

|xptq|, x P M ra, bs.

In the space Cra, bs, the norm can be computed by

}x} “ max
tPra,bs

|xptq|, x P Cra, bs.

Notice that convergence in these spaces is the uniform convergence on ra, bs:
for xn, x P M ra, bs,

xn ÝÝÝÑ
nÑ8

x in M ra, bs ðñ xnptq ÝÝÝÑ
nÑ8

xptq uniformly in t P ra, bs.

‚ Cnra, bs (n P N) is the normed space of n times continuously differentiable on
ra, bs functions, where the norm is defined by

}x} “ max
tPra,bs

|xptq| `

n
ÿ

j“1

max
tPra,bs

|xpjqptq|, x P Cnra, bs.

‚ Lppa, bq (1 ď p ă 8) is the normed space of p-integrable (in the sense of
Lebesgue) functions pa, bq Ñ K i.e., measurable (in the sense of Lebesgue)
functions x : pa, bq Ñ K for which

ż b

a

|xptq|p dt ă 8.

The norm in Lppa, bq is defined by

}x} “ }x}p :“

˜

ż b

a

|xptq|p dt

¸
1
p

, x P Lppa, bq.

Equality of functions x, y P Lppa, bq is understood as almost everywhere (a.e.)
equality:

x “ y in Lppa, bq ðñ xptq “ yptq for almost every in t P pa, bq.
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Equivalently, Lppa, bq can be interpreted as the normed space of equivalence classes of a.e.
equal on pa, bq p-integrable functions, where the algebraic operations and norm are defined
as above via representatives of equivalence classes.

The most interesting among the spaces Lppa, bq, 1 ď p ă 8, are the space of
integrable in the sense of Lebesgue functions L1pa, bq where the norm is given
by

}x} “ }x}1 :“

ż b

a

|xptq| dt, x P L1pa, bq

and the space of square-integrable functions L2pa, bq where the norm is given
by

}x} “ }x}2 :“

d

ż b

a

|xptq|2 dt, , x P L2pa, bq.

‚ L8pa, bq is the normed space of essentially bounded (in the sense of Lebesgue)
functions pa, bq Ñ K (i.e., Lebesgue measurable functions pa, bq Ñ K which
are bounded outside a set of Lebesgue measure 0). The norm for x P L8pa, bq
is defined by

}x} “ }x}8 : “ ess sup
tPpa,bq

|xptq| :“ vrai sup
tPpa,bq

|xptq|

: “ inf
␣

M ě 0: |xptq| ď M a.e.
(

“ inf
!

M ě 0: m
`

tt P pa, bq : |xptq| ą Mu
˘

“ 0
)

,

where m is the Lebesgue measure. Notice that |xptq| ď }x}8 a.e.

As in Lppa, bq for 1 ď p ă 8, equality of functions in L8pa, bq is understood as their equality
a.e. Equivalently, L8pa, bq is often interpreted as the normed space of equivalence classes of
a.e. equal on pa, bq essentially bounded functions.

Remark 4.3. In general, convergence in the space Lppa, bq where 1 ď p ă 8 does
not imply convergence a.e. (let alone pointwise convergence): if xn, x P Lppa, bq
(1 ď p ă 8), n P N, are such that xn ÝÝÝÑ

nÑ8
x in Lppa, bq, one does not necessarily

have that
xn ÝÝÝÑ

nÑ8
x a.e. in pa, bq,

let alone
xnptq ÝÝÝÑ

nÑ8
xptq for every t P pa, bq.

On the other hand, if xn, x P Lppa, bq (1 ď p ă 8), n P N, are such that

(1) xn ÝÝÝÑ
nÑ8

x in Lppa, bq;

(2) there exist a subsequence pxknq8
n“1 and a function z : pa, bq Ñ K such that

xkn ÝÝÝÑ
nÑ8

z a.e. in pa, bq,

then x “ z a.e. (thus also z P Lppa, bq, and x “ z in the space Lppa, bq).

Convergence in the space L8pa, bq implies convergence a.e.
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Remark 4.4. In the set-theoretical sense, the spaces Lppa, bq, p P r1,8s, are related
as follows: if 1 ă p ă q ă 8, one has

L1pa, bq Ś Lppa, bq Ś Lqpa, bq Ś L8pa, bq.

˚Exercise 4.9. Prove the assertion above.



§ 5. Open and closed sets in metric spaces.

Interior, boundary, and closure

Throughout this section, X will be a metric space.

5.1. Open sets in metric spaces. Interior points

Definition 5.1. A subset A Ă X is said to be an open set, if every point of A has
a neighbourhood which is contained in A.

Definition 5.2. Let A Ă X.
A point a P A is called an interior point of A, if a has a neighbourhood which is

contained in A.
Equivalently, a point a P A is called an interior point of A, if there exists a ball

centered at a which is contained in A, i.e., there is an ε ą 0 such that Bpx, εq Ă A.

The following corollary is straightforward from the preceding definitions.

Corollary 5.1. Let A Ă X. The following assertions are equivalent:

(i) the set A is open;

(ii) every point of A is an interior point of A;

(iii) for every a P A, there exists an ε ą 0 such that Bpa, εq Ă A.

Proposition 5.2. An open ball is an open set.

Proof. Let a P X and r ą 0, and let b P Bpa, rq. In order to see that the open
ball Bpa, rq is an open set, it suffices to find an ε ą 0 such that Bpb, εq Ă Bpa, rq.
The latter inclusion clearly holds for ε :“ r ´ ρpb, aq (here ε ą 0 because, since
b P Bpa, rq, one has ρpb, aq ă r), because whenever x P Bpb, εq, one has

ρpx, aq ď ρpx, bq ` ρpb, aq ă ε ` ρpb, aq ă r ´ ρpb, aq ` ρpb, aq “ r

and thus x P Bpa, rq.

Example 5.1. The half-open interval r0, 1q in R is not an open set (with respect to the metric
dpx, yq “ |x´ y|, x, y P R). Indeed, the point 0 P r0, 1q is not an interior point of the interval r0, 1q,
because no open ball Bp0, εq “ p´ε, εq (here ε ą 0) is contained in r0, 1q.

The following proposition collects some basic properties of open sets.

Proposition 5.3. (a) H and X are open sets;

(b) any finite intersection of open sets is an open set, i.e., whenever n P N and
A1, . . . , An Ă X are open sets, also their intersection

Şn
j“1 Aj is an open set;

(c) any union of open sets is an open set, i.e., whenever I is a set of indices and
Aj, j P I, are open sets, also their union

Ť

jPI Aj is an open set.

22
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Proof. (a). Every point of H is an interior point of H (because there are no points
in H), thus H is open. Since X contains every ball in it, every point in X is an
interior point of X and thus X is open.

(b). Let n P N and let A1, . . . , An Ă X be open sets. In order to show that the
intersection

Şn
j“1 Aj “: A is open, letting x P A be arbitrary, it suffices to find an

ε ą 0 such that Bpx, εq Ă A. For every j P t1, . . . , nu, since the set Aj is open and
x P Aj, there is an εj ą 0 such that Bpx, εjq Ă Aj. Putting ε :“ mintε1, . . . , εnu, one
has Bpx, εq Ă Bpx, εjq Ă Aj for every j P t1, . . . , nu, and thus Bpx, εq Ă

Şn
j“1 Aj “

A, as desired.

(c). Let I be a set of indices and let Aj, j P I, be open sets. In order to show
that the union

Ť

jPI Aj “: A is open, letting x P A be arbitrary, it suffices to find
an ε ą 0 such that Bpx, εq Ă A. Let i P I be such that x P Ai. Since the set Ai is
open, there is an ε ą 0 such that Bpx, εq Ă Ai Ă

Ť

jPI Aj “ A, as desired.

5.2. Closed sets in metric spaces. Boundary points

Definition 5.3. Let A Ă X.
A point a P X is called a boundary point of A, if every neighbourhood of a

contains both points in A and points not belonging to A.
Equivalently, a point a P A is called a boundary point of A, if, for every ε ą 0,

Bpa, εq X A ‰ H and Bpa, εq X pXzAq ‰ H.

Since A “ XzpXzAq, the following corollary is straightforward from the prece-
ding definition.

Corollary 5.4. Let A Ă X. The set A and its complement XzA have the same
boundary points.

Corollary 5.5. Let A Ă X. Then any point of A is either an interior point or a
boundary point of A. No point of A can be simultaneously an interior point and a
boundary point of A.

Proof. Let a P A. There are two (mutually excluding each other) alternatives:

(I) there exists a neighbourhood of a which is contained in A;

(II) every neighbourhood of a contains a point not belonging to A.

In the case (I), the point a is an interior point of A by definition.
In the case (II), since every neighbourhood of a also contains points in A (note

that every neighbourhood of a contains the point a P A itself), the point a is a
boundary point.

It is clear from the corresponding definitions that no point of A can be simulta-
neously an interior point and a boundary point of A.
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From Corollary 5.5 it follows that, for a subset A of X,

A is open ðñ A contains none of its boundary points.

Definition 5.4. Let A Ă X. The set A is said to be a closed set, if it contains all
its boundary points.

Remark 5.1. A set A Ă X may be both open and closed simultaneously. This happens precisely
when A has no boundary points. Examples of such a phenomenon are, e.g., A “ H and A “ X.
Also, every set in a discrete metric space is both open and closed (see exercise 5.6).

Remark 5.2. A set in a metric space may be neither open nor closed. E.g., the half-open interval
r0, 1q in R is not an open set (with respect to the metric dpx, yq “ |x ´ y|, x, y P R) (see example
5.1); nor is it closed, because its boundary point 1 P R is not in r0, 1q.

The following proposition shows the duality between open and closed sets in
metric spaces.

Proposition 5.6. Let A Ă X.

(a) The set A is closed if and only if its complement XzA is open.

(b) The set A is open if and only if its complement XzA is closed.

Proof. (a). Since by Corollary 5.4, the set A and its complement XzA have the
same boundary points,

A is closed ðñ A contains all of its boundary points

ðñ XzA contains none of its boundary points

ðñ XzA is open.

(b). Since A “ XzpXzAq, one has, by (a),

A is open ðñ XzpXzAq is open ðñ XzA is closed.

By courtesy of Proposition 5.6, the following proposition becomes a corollary
from Proposition 5.3.

Proposition 5.7. (a) H and X are closed sets;

(b) any finite union of closed sets is a closed set, i.e., whenever n P N and
A1, . . . , An Ă X are closed sets, also their union

Ťn
j“1 Aj is a closed set;

(c) any intersection of closed sets is a closed set, i.e., whenever I is a set of indices
and Aj, j P I, are closed sets, also their intersection

Ş

jPI Aj is a closed set.
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Proof. (a) Since H “ XzX and X “ XzH, and, by Proposition 5.3, X and H

are open sets, the sets H and X are closed by Proposition 5.6, (a).

(b). Let n P N and let A1, . . . , An Ă X be closed sets. In order to show that the
union

Ťn
j“1Aj “: A is closed, by Proposition 5.6, (a), it suffices to show that its

complement XzA is open. By De Morgan’s law,

XzA “ Xz

n
ď

j“1

Aj “

n
č

j“1

XzAj.

Since the sets A1, . . . , An are closed, their complements XzA1, . . . , XzAn are open
by Proposition 5.6, (a), and thus also their intersection

Şn
j“1 XzAj is open by Pro-

position 5.3, (b), i.e., the complement XzA is open, as desired.

(c). Let I be a set of indices and let Aj, j P I, be closed sets. In order to show
that the intersection

Ş

jPI Aj “: A is closed, by Proposition 5.6, (a), it suffices to
show that its complement XzA is open. By De Morgan’s law,

XzA “ Xz
č

jPI

Aj “
ď

jPI

XzAj.

Since, for every j P I, the set Aj is closed, its complement XzAj is open by Propo-
sition 5.6, (a), thus also the union

Ť

jPI XzAj is open by Proposition 5.3, (c), i.e.,
the complement XzA is open, as desired.

Proposition 5.8. Let A Ă X. The following assertions are equivalent:

(i) A is closed;

(ii) whenever a sequence pxnq8
n“1 of elements of A converges to some x P X, also

x P A.

Proof. (i)ñ(ii). Let A be closed, and let pxnq8
n“1 be a sequence of elements of A

converging to an element x P X. We must show that x P A. There are two (mutually
excluding each other) alternatives:

(1) there exists a neighbourhood of x which is contained in A;

(2) every neighbourhood of x contains a point not belonging to A.

In the case (1), clearly x P A (in fact, x is an interior point of A). In the case (2),
observing that, since xn ÝÝÝÑ

nÑ8
x,

• every neighbourhood of x contains some xn (and thus every neighbourhood of
x contains a point belonging to A),

the point x is a boundary point of A and thus x P A by the closedness of A.
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(ii)ñ(i). Assume that (ii) holds and let x P X be a boundary point of A. In
order for A to be closed, it suffices to show that x P A. Since x is a boundary point
of A, for every n P N, there is some

xn P B
´

x,
1

n

¯

X A,

For every n P N, since xn P B
´

x,
1

n

¯

, one has

0 ď ρpxn, xq ă
1

n

and thus ρpxn, xq ÝÝÝÑ
nÑ8

0, i.e., xn ÝÝÝÑ
nÑ8

x in X. By (ii), x P A, as desired.

Proposition 5.9. Closed balls and spheres in metric spaces are closed sets.

Proof. We only show that closed balls are closed. (The closedness of spheres can
be shown analogously.)

Let a P X and r ą 0, and let xn P Bpa, rq, n P N, and x P X be such that
xn ÝÝÝÑ

nÑ8
x in X. For the closedness of the closed ball Bpa, rq, by Proposition 5.8, it

suffices to show that x P Bpa, rq, i.e., ρpx, aq ď r.
By the continuity of the metric ρ (see Proposition 1.2, (d)),

ρpxn, aq ÝÝÝÑ
nÑ8

ρpx, aq.

For every n P N, since xn P Bpa, rq, one has ρpxn, aq ď r, thus also ρpx, aq ď r, as
desired.

Exercise 5.1. Prove Proposition 5.9 by showing that the complement of a closed ball and the
complement of a sphere are open sets (and then applying Proposition 5.6).

5.3. Interior, boundary, and closure

Definition 5.5. Let A Ă X.

• The set of all interior points of A is called the interior of A and denoted by
A˝ or intA.

• The set of all boundary points of A is called the boundary of A and denoted
by BA or frA.

• The union of the set A and its boundary is is called the closure of A and
denoted by A or clA. The points in A are called closure points of A.

Thus, by definition,

A :“ clA :“ A Y BA “ A˝ Y BA.



§ 5. Open and closed sets. Interior, boundary, and closure 27

The following proposition just a restatement of Corollaries 5.4 and 5.5 (which
were immediate corollaries from the corresponding definitions).

Proposition 5.10. Let A Ă X. Then

(a) BA “ BpXzAq;

(b) for every x P A, either x P A˝ or x P BA;

(c) A˝ X BA “ H.

Clearly,

• A is open ðñ A “ A˝ ðñ A X BA “ H;

• A is closed ðñ A “ A.

Exercise 5.2. Let A Ă X. Prove that

paq A˝ “ XzXzA; pbq A “ XzpXzAq˝; pcq pXzAq˝ “ XzA; pdq XzA “ XzA˝.

Closure points of a set in a metric space are described by

Proposition 5.11. Let A Ă X and x P X. The following assertions are equivalent:

(i) x P A;

(ii) for every ε ą 0, one has Bpx, εq X A ‰ H;

(iii) there is a sequence pxnq of elements of A such that xn ÝÝÝÑ
nÑ8

x.

Proof. (i)ñ(ii). Let x P A, and let ε ą 0. If x P A˝, then x P Bpx, εq X A, hence
Bpx, εq X A ‰ H. If x P BA, then the latter holds by definition.

(ii)ñ(iii). Suppose that (ii) holds. Then, for every n P N, there exists some

xn P B

ˆ

x,
1

n

˙

X A. Now xn P A for all n P N and xn ÝÝÝÑ
nÑ8

x because

ρpxn, xq ď
1

n
ÝÝÝÑ
nÑ8

0.

(iii)ñ(i). Suppose that there are xn P A, n P N, such that xn ÝÝÝÑ
nÑ8

x. If x P A,

then clearly x P A, i.e., (i) holds. Suppose that x R A. In this case, since every neig-
hbourhood of x contains x, every neighbourhood of x contains points not belonging
to A, and since every neighbourhood of x contains some xn (because xn ÝÝÝÑ

nÑ8
x),

every neighbourhood of x contains points in A; thus x is a boundary point of A and
therefore x P A.

Simpler properties of closure are collected in

Proposition 5.12. Let A,B Ă X. Then
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(a) A is a closed set;

(b) if A Ă B, then A Ă B;

(c) A “ A;

(d) A Y B “ A Y B.

Proof. (a). Let pxnq be a sequence of elements of A converging to some x in X. In
order to prove that A is closed, by Proposition 5.8, it suffices to show that x P A.

For every n P N, since x P A, by Proposition 5.11, there exists some zn P

A X B
`

xn,
1
n

˘

. Now pznq is a sequence of elements of A satisfying zn ÝÝÝÑ
nÑ8

x in X,

because

ρpzn, xq ď ρpzn, xnq ` ρpxn, xq ă
1

n
` ρpxn, xq ÝÝÝÑ

nÑ8
0;

thus, by Propostion 5.11, x P A, as desired.

(b). Assume that A Ă B, and let x P A. It suffices to show that x P B. To
this end, letting ε ą 0 be arbitrary, by Proposition 5.11, it suffices to show that
Bpx, εq X B ‰ H. The latter holds because A Ă B and Bpx, εq X A ‰ H by
Proposition 5.11 (because x P A).

(c) follows immediately from (a).

(d). On the one hand, since A Ă A and B Ă B, also A Y B Ă A Y B, thus

A Y B Ă A Y B by (b). Since A and B are closed sets (by (a)) and finite unions
of closed sets are closed (by Proposition 5.7, (b)), also the union A Y B closed and

therefore A Y B “ A Y B. Thus A Y B Ă A Y B “ A Y B.
On the other hand, since A Ă AYB and B Ă AYB, by (b), one has A Ă A Y B

and B Ă A Y B, and thus also A Y B Ă A Y B.

Simpler properties of interior are collected in

Proposition 5.13. Let A,B Ă X. Then

(a) A˝ is an open set;

(b) if A Ă B, then A˝ Ă B˝;

(c) pA˝q˝ “ A˝;

(d) pA X Bq˝ “ A˝ X B˝.

Proof.

Exercise 5.3. Prove Proposition 5.13

Hint. Use Exercise 5.2 together with Proposition 5.12.
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Proposition 5.14. Let A Ă X. Then

(a) A˝ “
ď

GĂA
G is open

G ; (b) A “
č

AĂFĂX
F is closed

F .

Proof.

Exercise 5.4. Prove Proposition 5.14

Corollary 5.15. Let A Ă X.

(a) The interior A˝ is the biggest open set contained in A.

(b) The closure A is the smallest closed set containing A.

Proof. (a). The interior A˝ is an open set by Proposition 5.13, (a). The interior
A˝ is the biggest open set contained in A because, again by Proposition 5.14, (a),
every open set contained in A is contained in A˝.

(b). The closure A is a closed set by Proposition 5.12, (a). The closure A is the
smallest closed set containing A because, again by Proposition 5.14, (b), every closed
set containing A also contains A.

5.4. Additional exercises

Exercise 5.5. Let a P X and r ą 0. Prove that

(a) Bpa, rq˝ “ Bpa, rq;

(b) Bpa, rq “ Bpa, rq;

(c) Bpa, rq Ă Bpa, rq;

(d) Bpa, rq˝ Ą Bpa, rq;

(e) BBpa, rq Ă Spa, rq;

(f) BBpa, rq Ă Spa, rq.

Hint. For (a) and (b), use the facts that open balls are open sets and closed balls are closed sets.

Solution. (c). Since Bpa, rq Ă Bpa, rq, one has, by Proposition 5.12, (a), and the closedness of
Bpa, rq,

Bpa, rq Ă Bpa, rq “ Bpa, rq.

(d). Since Bpa, rq Ą Bpa, rq, one has, by Proposition 5.13, (a), and the openness of Bpa, rq,

Bpa, rq˝ Ą Bpa, rq˝ “ Bpa, rq.

(e). It suffices to show that

BBpa, rq X Bpa, rq “ H and BBpa, rq X
`

XzBpa, rq
˘

“ H.

The first equality follows from the openness of Bpa, rq. The second equality holds because, by (c),

BBpa, rq Ă Bpa, rq Ă Bpa, rq.

(f). By the closedness of Bpa, rq,

BBpa, rq Ă Bpa, rq “ Bpa, rq Y Spa, rq.

Since, by (d), Bpa, rq Ă Bpa, rq˝, it follows that BBpa, rq Ă Spa, rq.
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Remark 5.3. The inclusions (c)–(f) in Exercise 5.5 are, in general, strict. In order to give the
corresponding examples, it is, first, useful to solve the following Exercise 5.6.

Exercise 5.6. Prove that

(a) every set in a discrete metric space is open;

(b) every set in a discrete metric space is closed.

(c) the boundary of every set in a discrete metric space is empty.

Example 5.2. We give some examples of cases where the inclusions (c)–(f) in Exercise 5.5 are
strict.

Let X be a discrete metric space containing at least two elements, and let a P X. Then

• Bpa, 1q “ Bpa, 1q “ tau Ř X “ Bpa, 1q;

• Bpa, 1q˝ “ Bpa, 1q “ X Ś tau “ Bpa, 1q;

• BBpa, 1q “ H Ř Xztau “ Spa, 1q;

• BBpa, 1q “ H Ř Xztau “ Spa, 1q.

Remark 5.4. The following Exercise 5.7 shows that if X ‰ t0u is a normed space, then the
inclusions (c)–(f) in Exercise 5.5 are actually equalities.

Exercise 5.7. Let X ‰ t0u be a normed space. Prove that

(a) BBpa, rq “ Spa, rq;

(b) BBpa, rq “ Spa, rq;

(c) Bpa, rq “ Bpa, rq;

(d) Bpa, rq˝ “ Bpa, rq.

Exercise 5.8. Prove that, in a normed space,

(a) the closure of a subspace is a subspace;

(b) the closure of a convex set is convex.

Exercise 5.9. Prove that BpBAq Ă BA. It follows that the boundary BA is a closed set.

Exercise 5.10. Let A Ă X and let x P X. The distance of x from A is defined by

dpx,Aq :“ inf
aPA

ρpx, aq.

Prove that

(a) dpx,Aq “ dpx,Aq;

(b) x P A if and only if dpx, aq “ 0.
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6.1. The notion of completeness

Definition 6.1. A sequence pxnq in a metric space X is called a Cauchy sequence
(or a fundamental sequence) if

ρpxn, xmq ÝÝÝÝÝÑ
n,mÑ8

0,

i.e., for every ε ą 0, there is an index N P N such that

n,m ě N ùñ ρpxn, xmq ă ε

or, equivalently,
n, p P N, n ě N ùñ ρpxn, xn`pq ă ε.

Example 6.1. Denote, for all n P N,

en “ p0, . . . , 0, 1
loooomoooon

n

, 0, . . .q.

The sequence penq8
n“1 is not a Cauchy sequence in ℓp for any p P r0,8s because, whenever

n ă m,

}en ´ em} “
›

›p

m
hkkkkkkkkkkkkkikkkkkkkkkkkkkj

0, . . . , 0, 1
loooomoooon

n

, 0, . . . , 0,´1, 0, . . .q
›

› “

#

2
1
p , if 1 ď p ă 8;

1, if p “ 8.

Multiple examples of Cauchy sequences are provided by assertion (a) of the
following

Proposition 6.1. (a) Every convergent sequence is a Cauchy sequence.

(b) Every Cauchy sequence is bounded.

(c) If a Cauchy sequence has a convergent subsequence, then this sequence conver-
ges to the same limit as the subsequence.

Proof. Let pxnq be a sequence in a metric space X.

(a). Suppose that xn ÝÝÝÑ
nÑ8

x for some x P X. We must show that pxnq is a

Cauchy sequence, which is the case because

ρpxn, xmq ď ρpxn, xq ` ρpx, xmq ÝÝÝÝÝÑ
n,mÑ8

0.

(b). Let pxnq be a Cauchy sequence. We must show that the sequence pxnq is
bounded, i.e., the set of its elements is contained in some ball, i.e., there exist a P X
and r ě 0 such that xn P Bpa, rq for every n P N, i.e.,

ρpxn, aq ď r for every n P N. (6.1)

31
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Since pxnq is a Cauchy sequence, there is an index N P N such that

n,m ě N ñ ρpxn, xmq ă 1.

In particular,
ρpxn, xNq ă 1 for every n ě N .

But now, (6.1) holds for

a :“ xN and r :“ max
␣

ρpx1, xNq, . . . , ρpxN´1, xNq, 1
(

.

(c). Suppose that pxnq contains a convergent subsequence, say pxknq8
n“1, and let

xkn ÝÝÝÑ
nÑ8

x P X. We must show that xn ÝÝÝÑ
nÑ8

x which is the case because

ρpxn, xq ď ρpxn, xknq ` ρpxkn , xq ÝÝÝÑ
nÑ8

0

(here ρpxn, xknq ÝÝÝÑ
nÑ8

0 because pxnq is a Cauchy sequence and kn ÝÝÝÑ
nÑ8

8).

Example 6.2. Non-convergent Cauchy sequences do exist.

Indeed, let X be the interval p0, 1s in R equipped with the Euclidean distance, and let xn “
1
n P X, n P N. Then the sequence pxnq is a Cauchy sequence in X which does not converge in X.

To see this, observe that xn Ñ 0 in R, thus pxnq is a convergent sequence in R, hence a Cauchy
sequence in R by Proposition 6.1, (a), and thus also a Cauchy sequence in X. If the sequence pxnq

were convergent in X, say xn Ñ x P X in X, then also xn Ñ x in R, and thus pxnq would have
two different limits—0 and x—in R, a contradiction.

The previous example motivates the following

Definition 6.2. A metric space X is said to be complete if every Cauchy sequence
in X converges (in X).

A complete normed space is called a Banach space.

Example 6.3. The space R is complete (with respect to the Euclidean distance).

Indeed, let pxnq be a Cauchy sequence in R. By Proposition 6.1, (b), the sequence pxnq is
bounded. Since, by the Bolzano–Weierstrass theorem, every bounded sequence of real numbers has
a convergent subsequence, the sequence pxnq converges by Proposition 6.1, (c).

Example 6.4. The space C is complete (with respect distance ρpx, yq “ |x ´ y|,
x, y P C).

Indeed, let pxnq be a Cauchy sequence in C. For every n P N, let an, bn P R be, respectively,
the real and imaginary part of xn, i.e., xn “ an ` ibn. Since, for all n,m P N,

|xn ´ xm| “ |pan ´ amq ` ipbn ´ bmq| “
a

|an ´ am|2 ` |bn ´ bm|2,

one has

|an ´ am| ď |xn ´ xm| ÝÝÝÝÝÑ
n,mÑ8

0 and |bn ´ bm| ď |xn ´ xm| ÝÝÝÝÝÑ
n,mÑ8

0,

thus the sequences panq and pbnq are Cauchy sequences in R, and, by the completeness of R, the
sequences panq and pbnq converge in R, i.e., xn ÝÝÝÑ

nÑ8
x and xn ÝÝÝÑ

nÑ8
x in R for some a, b P R.

Putting x :“ a` ib, for the completeness of C, it remains to observe that xn ÝÝÝÑ
nÑ8

x in C, because

|xn ´ x| “ |pan ´ aq ` ipbn ´ bq| “
a

|an ´ a|2 ` |bn ´ b|2 ÝÝÝÑ
nÑ8

0.
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In fact, every metric space in § 5 is complete. In these notes, we shall prove the
completeness for just a few of them.

Example 6.5. For every n P N and 1 ď p ď 8, the space ℓnp is complete.

Indeed, let n P N, let 1 ď p ď 8, and let pxkq8
k“1 “

`

pξkj qnj“1

˘8

k“1
be a Cauchy sequence in ℓnp .

Then the sequence pxkq8
k“1 is bounded, i.e., there is some M ě 0 such that }xk} ď M for all k P N.

By Remark 4.2, for every j P t1, . . . , nu and every k P N,

|ξkj | ď }xk}8 ď }xk}p ď M,

thus the sequence pξkj q8
k“1 is bounded in K. By the Bolzano-Weierstrass theorem, every bounded

sequence in K has a convergent subsequence, thus

(1) the sequence pξk1 q8
k“1 has a convergent subsequence pξ

i1k
1 q8

k“1;

(2) the sequence pξ
i1k
2 q8

k“1 has a convergent subsequence pξ
i2k
2 q8

k“1;

(3) the sequence pξ
i2k
3 q8

k“1 has a convergent subsequence pξ
i3k
3 q8

k“1;

and so on,

(n ´ 1) the sequence pξ
in´2
k
n´1 q8

k“1 has a convergent subsequence pξ
in´1
k
n´1 q8

k“1;

(n) the sequence pξ
in´1
k
n q8

k“1 has a convergent subsequence pξ
ink
n q8

k“1.

Now, the subsequence pxink
q8
k“1 “

`

pξ
ink
j qnj“1

˘8

k“1
(of pxkq8

k“1) is coordinatewise convergent, and
hence convergent in ℓnp .

Example 6.6. The space ℓ8 is complete.

Indeed, let pxnq8
n“1 “

`

pξnj q8
j“1

˘8

n“1
be a Cauchy sequence in ℓ8. For the completeness of ℓ8,

it suffices to show that the sequence pxnq converges in ℓ8. To this end, observe that, for every
j P N, the sequence of the j-th coordinates pξnj q8

n“1 is a Cauchy sequence in K because

|ξnj ´ ξmj | ď }xn ´ xm}8 ÝÝÝÝÝÑ
n,mÑ8

0.

By the completeness of the space K, for every j P N, the sequence pξnj q8
n“1 converges in K, say

ξnj ÝÝÝÑ
nÑ8

ξj P K. It now suffices to show that x :“ pξjq P ℓ8 and xn ÝÝÝÑ
nÑ8

x in ℓ8.

To this end, letting ε ą 0 be arbitrary, it suffices to find an N P N such that

n ě N ùñ }xn ´ x}8 “ sup
jPN

|ξnj ´ ξj | ď ε. (6.2)

Indeed, if one would have x P ℓ8, then this would imply that xn ÝÝÝÑ
nÑ8

x. But (6.2) also implies

that, for n ě N , one has xn ´ x P ℓ8 and thus also x “ xn ´ pxn ´ xq P ℓ8.
Since pxnq is a Cauchy sequence, there is an N P N such that

n,m ě N ùñ }xn ´ xm}8 “ sup
jPN

|ξnj ´ ξmj | ă ε.

In particular, for all j P N,
n,m ě N ùñ |ξnj ´ ξmj | ă ε.

Letting m Ñ 8, the latter implies (6.2).

Proposition 6.2. (a) A complete subspace of any metric space is closed.

(b) A closed subspace of a complete metric space is complete.
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The following corollary is straightforward from Proposition 6.2.

Corollary 6.3. A subspace of a complete metric space is complete if and only if it
is closed.

Proof of Proposition 6.2. Let X be a metric space.

(a). Let Y be a complete subspace of X. In order to show that Y is closed,
letting pynq be a sequence of elements of Y converging to some x P X in X, (by
Proposition 5.8) it suffices to show that x P Y .

Since the sequence pynq converges in X, it is a Cauchy sequence in X and thus
also a Cauchy sequence in Y . By the completeness of Y , the sequence pynq converges
in Y to some y P Y . But then the sequence pynq converges to y also in X, and, by
the uniqueness of the limit, x “ y P Y , as desired.

(b). Assume that X is complete, and let Y be a closed subspace of X. In order to
show that Y is complete, letting pynq be an arbitrary Cauchy sequence of elements
of Y , it suffices to show that the sequence pynq converges in Y .

Since pynq is a Cauchy sequence also inX, by the completeness ofX, the sequence
pynq converges in X to some x P X. Since Y is closed, one has x P Y (by Proposition
5.8), and thus the sequence pynq is convergent in Y , as desired.

Example 6.7. The space c0 is complete.

Indeed, since c0 is a (normed) subspace of the complete space ℓ8, for the completeness of c0,
by Corollary 6.3, it suffices to show that c0 is a closed subspace of ℓ8.

Let xn “ pξnj q8
j“1 P c0, n P N, and x “ pξjq8

j“1 P ℓ8 be such that xn ÝÝÝÑ
nÑ8

x in ℓ8. For the

closedness of c0, it suffices to show that x P c0, i.e., ξj ÝÝÝÑ
jÑ8

0, i.e., for every ε ą 0, there exists an

N P N such that
j ě N ùñ |ξj | ă ε.

Fix an arbitrary ε ą 0. Observe that for all j, n P N one has

|ξj | ď |ξj ´ ξnj | ` |ξnj | ď }x ´ xn} ` |ξnj |.

Since xn ÝÝÝÑ
nÑ8

x, we can fix an n P N so that }x ´ xn} ă ε
2 . Since xn P c0, one has ξnj ÝÝÝÑ

jÑ8
0,

thus there is an N P N such that

j ě N ùñ |ξnj | ă
ε

2
.

Now, whenever j ě N , one has

|ξj | ď }x ´ xn} ` |ξnj | ă
ε

2
`

ε

2
“ ε.

6.2. Principle of nested balls

The following characterization of complete metric spaces will be used in the next
subsection in the proof of the fundamental Baire’s theorem 6.6. However, it is not
without interest in its own right.

Theorem 6.4 (Principle of nested balls). Let X be a metric space. The following
assertions are equivalent:
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(i) X is complete;

(ii) every nested sequence of closed balls in X whose radii tend to zero have a
non-empty intersection, i.e., whenever

Bpx1, r1q Ą Bpx2, r2q Ą ¨ ¨ ¨ Ą Bpxn, rnq Ą Bpxn`1, rn`1q Ą ¨ ¨ ¨ (6.3)

are closed balls in X with rn ÝÝÝÑ
nÑ8

0, one has
Ş8

n“1 Bpxn, rnq ‰ H.

Remark 6.1. Cantor’s nested interval’s theorem says that, whenever I1 Ą I2 Ą I3 Ą ¨ ¨ ¨

are closed intervals in R whose lengths tend to 0, the intersection
Ş8

n“1 In consists of
exactly one point. By Theorem 6.4, this is the other way to say that R is complete.
(Remark that the completeness of R is usually proven (see Example 6.4) using the Bolzano-
Weierstrass theorem, whose proof, in turn, relies on Cantor’s nested interval’s theorem.)

An important observation regarding the Principle of nested balls is

Proposition 6.5. Let X be a metric space, let X Ą D1 Ą D2 Ą D3 Ą ¨ ¨ ¨ satisfy
dn :“ diamDn ÝÝÝÑ

nÑ8
0, and let x P

Ş8

n“1 Dn. Then

(a)
Ş8

n“1 Dn “ txu, i.e., x is the only point in
Ş8

n“1Dn;

(b) whenever xn P Dn, one has xn ÝÝÝÑ
nÑ8

x.

Proof.

Exercise 6.1. Prove Proposition 6.5.

Proof of Theorem 6.4. (i)ñ(ii). Assume that X is complete, and let (6.3) be
closed balls in X whose radii tend to 0. Then the sequence pxnq of the centers of the
balls is a Cauchy sequence, because, for n,m P N, n ă m, one has xm P Bpxn, rnq

and thus
ρpxn, xmq ď rn ÝÝÝÑ

nÑ8
0.

By the completeness of X, the sequence pxnq converges to some x P X. But now,
x P

Ş8

n“1 Bpxn, rnq because, for every n P N, one has xm P Bpxn, rnq whenever
m ě n, and thus, by the closedness of the ball Bpxn, rnq, also the limit x P Bpxn, rnq.

(ii)ñ(i). Assume that (ii) holds and let pxnq be a Cauchy sequence in X. For the
completeness of X, we must show that pxnq converges in X for which, by Proposition
6.1, (c), it suffices to show that pxnq contains a convergent subsequence.

Our idea is to find indices k1 ă k2 ă k3 ă ¨ ¨ ¨ and real numbers rn ą 0, n P N,
so that that the closed balls Bpxkn , rnq, n P N, are nested and rn ÝÝÝÑ

nÑ8
0—in this

case, by assumption (ii) and Proposition 6.5, the sequence pxknq8
n“1 converges to the

unique element in
Ş8

n“1Bpxkn , rnq.
To this end, choose indices k1 ă k2 ă k3 ă ¨ ¨ ¨ so that, for all n P N,

l,m ě kn ùñ ρpxl, xmq ă
1

2n
.
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It remains to observe that the balls Bpxkn ,
1

2n´1 q, n P N, are nested: whenever n P N
and x P Bpxkn`1 ,

1
2n

q, one also has x P Bpxkn ,
1

2n´1 q because

ρpx, xknq ď ρpx, xkn`1q ` ρpxkn`1 , xknq ď
1

2n
`

1

2n
“

1

2n´1
.

6.3. Baire’s theorem

Theorem 6.6 below may seem quite useless at first glance. However, it is one of
the cornerstones of the theory complete metric spaces—e.g., a number of results on
operators between Banach spaces rely on Baire’s theorem.

Definition 6.3. A subset A of a metric space is said to be dense (in X) if its closure
A “ X.

Theorem 6.6 (Baire’s theorem). (a) A countable intersection of open dense sets
in a complete metric space is dense.

(b) If a complete non-empty metric space is represented as a countable union of
closed sets, then at least one of these sets contains a ball.

Both assertions (a) and (b) of Theorem 6.6 are referred to as Baire’s theorem. In
fact, it is easy to derive (b) from (a) (this is exactly how we prove (b) below) and,
vice versa, it is not much more difficult to derive (a) from (b).

Before proving Baire’s theorem, it may be helpful to clarify the relationship of
some of its ingredients.

Exercise 6.2. Let X be a metric space and let A Ă X. Prove that the following assertions are
equivalent:

(i) A is dense;

(ii) XzA contains no balls.

Now we are in a position to prove Baire’s theorem.

Proof of Theorem 6.6. Let X be a complete metric space.

(a). Let Gn Ă X, n P N, be open dense sets, and let B be an open ball in X. In
order for the intersection

Ş8

n“1Gn to be dense, by Exercise 6.2, it suffices to show
that B X

Ş8

n“1 Gn ‰ H. To this end, choose x1 P X and r1 P p0, 1q so that

Bpx1, r1q Ă G1 X B

(this is possible because G1 X B is open and, since G1 is dense, G1 X B ‰ H by
Exercise 6.2) and proceed by induction: given n P N, and closed balls

Bpx1, r1q Ą Bpx2, r2q Ą ¨ ¨ ¨ Ą Bpxn, rnq,
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choose xn`1 P X and rn`1 P
`

0, 1
n`1

˘

so that

Bpxn`1, rn`1q Ă Gn`1 X Bpxn, rnq

(this is possible because Gn`1 X Bpxn, rnq is open and, since Gn`1 is dense, Gn`1 X

Bpxn, rnq ‰ H by Exercise 6.2). By Theorem 6.4, there exists an

x P

8
č

n“1

Bpxn, rnq Ă B X

8
č

n“1

Gn.

(b). Let X “
Ť8

n“1 Fn where Fn Ă X, n P N, are closed sets. Suppose for
contradiction that no Fn contains a ball. Then, by Exercise 6.2, the completion
Gn :“ XzFn is dense for every n P N. By (a), also the intersection

Ş8

n“1 Gn is dense,
hence, by Exercise 6.2, its completion Xz

Ş8

n“1 Gn contains no balls. But, by De
Morgan’s law,

Xz

8
č

n“1

Gn “

8
ď

n“1

XzGn “

8
ď

n“1

Fn “ X,

hence X does not contain any balls, a contradiction.

Exercise 6.3. Prove that the intersection of two open dense sets in any metric space (not neces-
sarily complete!) is again dense.

6.4. Completion of a metric space

Example 6.2 suggests that the reason why a Cauchy sequence in a non-complete
metric space may fail to converge is that it has nowhere to converge—a non-complete
space does not have enough elements to ensure that every Cauchy sequence has a
limit. In this subsection, we observe that this flaw can, in a sense, be removed:
any metric space can be nicely embedded into a complete metric space as a dense
subspace.

Definition 6.4. Let pX, ρXq and pY, ρY q be metric spaces. A bijection f : X Ñ Y
is called an isometry if

ρY
`

fpxq, fpuq
˘

“ ρXpx, uq for all x, u P X. (6.4)

In this case, one says that X and Y are isometric (or Y is isometric to X)

In other words, an isometry between metric spaces is a bijection which preserves
the distance between elements. Clearly, Y is isometric to X if and only if X is
isometric to Y .

Exercise 6.4. Let pX, ρXq and pY, ρY q be metric spaces. Prove that a mapping f : X Ñ Y
satisfying (6.4) is an injection. It follows that a surjection f : X Ñ Y satisfying (6.4) is an isometry.

Exercise 6.5. Let X, Y and Z be metric spaces such that X and Y are isometric, and Y and Z
are isometric. Prove that X and Z are isometric.
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Definition 6.5. LetX be a metric space. A metric space Z is said to be a completion
of X if there exists a subspace Y of Z such that

(1) Y is dense in Z;

(2) Y and X are isometric.

Proposition 6.7. Let X be a subspace of a complete metric space Z. Then the
closure X is a completion of X.

Proof. First observe that the closed subspace X of the complete space Z is comp-
lete. Since X is isometric to itself considered as a subspace of X, and X is dense
in X, the closure X is a completion of X by definition.

Theorem 6.8. For every metric space X, there exists a completion Z. Any two
completions of X are isometric.

Proof. Let pX, ρq be a metric space. Define an equivalence relation „ in the set

X :“
␣

pxnq :“ pxnq8
n“1 : pxnq is a Cauchy sequence in X

(

of all Cauchy sequences in X by

pxnq „ pynq :ðñ ρpxn, ynq ÝÝÝÑ
nÑ8

0, pxnq, pynq P X .

Exercise 6.6. Prove that ρ is an equivalence relation.

For an element pxnq P X , denote its equivalence class in the quotient space Z :“ X {„

by rpxnqs. Define a metric ρ in Z by

ρ
´

rpxnqs, rpynqs

¯

“ lim
nÑ8

ρpxn, ynq, pxnq, pynq P X . (6.5)

Exercise 6.7. Prove that ρ is a metric.

Hint. First show that ρ is well-defined, i.e.

(1) the limit in (6.5) exists (to this end, using the quadrangle inequality (see Proposition 1.1,(b)),

show that the sequence
`

ρpxn, ynq
˘8

n“1
is Cauchy);

(2) the limit in (6.5) does not depend on the choice of the representatives pxnq and pynq in the
equivalence classes of rpxnqs and rpynqs, i.e., whenever pxnq, punq, pynq, pvnq P X are such
that rpunqs “ rpxnqs and rpvnqs “ rpynqs (i.e., punq „ pxnq and pvnq „ pynq), one has

lim
nÑ8

ρpun, vnq “ lim
nÑ8

ρpxn, ynq.

Define
Y :“

!

rpx, x, x, . . . qs : x P X
)

Ă Z,

i.e., Y is the subspace of Z consisting of equivalence classes of constant sequences
in X (note that constant sequences in X do converge, thus they are Cauchy, and
therefore constant sequences in X belong to X ).

Observe that
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(I) Y is dense in Z;

(II) X and Y are isometric.

Exercise 6.8. Prove the assertions (I) and (II).

Hint. For (II), show that the mapping

f : X Q x ÞÝÑ rpx, x, x, . . . qs P Y

is an isometry.

In order to see that Z is a completion of X, it remains to show that

(III) the metric space pZ, ρq is a complete.

To this end, let let pakq8
k“1 be a Cauchy sequence in Z. For the completeness

of Z, it suffices to show that the sequence pakq8
k“1 converges in Z.

Since Y is dense in Z, for every k P N, there is a bk P Y such that

ρpak, bkq ă
1

k
.

For every k P N,

ak “ rpxk
nq8

n“1s for some Cauchy sequence pxk
nq8

n“1 in X;

bk “ rpxk, xk, xk, . . . qs for some xk P X.

Observe that the sequence pxkq8
k“1 in X is Cauchy. Indeed, whenever k.l P N, one

has, for every n P N,

ρpxk, xlq ď ρpxk, x
k
nq ` ρpxk

n, x
l
nq ` ρpxl

n, xlq.

Since

ρpxk, x
k
nq ÝÝÝÑ

nÑ8
ρpbk, akq ă

1

k
, (6.6)

ρpxk
n, x

l
nq ÝÝÝÑ

nÑ8
ρpak, alq, and ρpxl

n, xlq ÝÝÝÑ
nÑ8

ρpal, blq ă
1

l
,

it follows that (since pakq8
k“1 is Cauchy)

ρpxk, xlq ď
1

k
` ρpak, alq `

1

l
ÝÝÝÝÑ
k,lÑ8

0,

and thus pxkq8
k“1 is a Cauchy sequence in X.

Putting a :“ rpxnq8
n“1s P Z, we are going to show that ak ÝÝÝÑ

kÑ8
a in Z, i.e.,

ρpak, aq ÝÝÝÑ
kÑ8

0, i.e.,

lim
nÑ8

ρpxk
n, xnq ÝÝÝÑ

kÑ8
0. (6.7)

To this end, let ε ą 0, and observe that, for all k, n P N,

ρpxk
n, xnq ď ρpxk

n, xkq ` ρpxk, xnq.



40 Metric spaces

By (6.6), there is an N1 P N such that

n ě N1 ùñ ρpxk
n, xkq ă

1

k
.

Since the sequence pxnq8
n“1 is Cauchy, there is an N2 P N such that

k, n ě N2 ùñ ρpxk, xnq ă
ε

2
.

Thus, whenever k ě max
␣

2
ε
, N2

(

, one has, for n ě maxtN1, N2u,

ρpxk
n, xnq ă

1

k
`

ε

2
ď

ε

2
`

ε

2
“ ε,

hence also limnÑ8 ρpxk
n, xnq ď ε, and (6.7) follows.

It remains to show that

(IV) any two completions of X are isometric.

To this end, it suffices to prove

Claim. Let Z and W be complete metric spaces. Suppose that there exist dense
subspaces Y of Z and V of W such that Y and V are isometric. Then Z and W
are isometric.

To see that Claim implies (IV), let Z and W be two completions of X, and let Y
and V be dense subspaces of Z and W , respectively, such that both Y and Z are
isometric to X. Then Y and V are isometric (by Exercise 6.5), and Z and W are
isometric by Claim.

Exercise 6.9. Prove Claim.

Hint. Letting g : Y Ñ V be an isometry, define a mapping f : Z Ñ W as follows. Whenever
z P Z, let pynq be a sequence in Y such that z “ limnÑ8 yn (such a sequence pynq exists because Y
is dense in Z), and define fpzq :“ limnÑ8 gpynq P W (observe that, since the convergent sequence
pynq is Cauchy, also the sequence

`

gpynq
˘

is Cauchy (because g is an isometry), and thus the

sequence
`

gpynq
˘

converges in W by the completeness of W ). In order to see that f is well-defined,
one has to show that its value fpzq P W for z P Z does not depend on the choice of the sequence
pynq in Y converging to Y , i.e., one has to show that whenever pynq and pŷnq are two sequences in
Y such that limnÑ8 yn “ limnÑ8 ŷn, one has limnÑ8 gpynq “ limnÑ8 gpŷnq.

It remains to show that f is an isometry.
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If X and Y are metric spaces, then mappings X Ñ Y are called operators. Mappings
X Ñ K are called functionals.

7.1. The notion of continuity

Definition 7.1. Let X and Y be metric spaces. An operator f : X Ñ Y is said to
be continuous at a point a P X if, for every ε ą 0, there exists a δ ą 0 such that

ρpx, aq ă δ ùñ ρ
`

fpxq, fpaq
˘

ă ε. (7.1)

Equivalently, (7.1) means that f
“

Bpa, δq
‰

Ă B
`

fpaq, ε
˘

.Thus, the definition of continuity can
be rephrased as follows: an operator f : X Ñ Y is said to be continuous at a point a P X if, for
every neighbourhood V of fpaq, there exists a neighbourhood U of a such that f rU s Ă V .

Loosely speaking, f is continuous at a if the values of f at points which are close
enough to a are as close as we want to fpaq.

Theorem 7.1 (Heine’s criterion of continuity). Let X and Y be metric spaces, let
f : X Ñ Y , and let a P X. The following assertions are equivalent:

(i) f is continuous at a;

(ii) whenever a sequence of elements of X converges to a in X, the corresponding
sequence of values of f converges to fpaq in Y , i.e.,

xn P X, n P N, xn ÝÝÝÑ
nÑ8

a ùñ fpxnq ÝÝÝÑ
nÑ8

fpaq.

Proof. (i)ñ(ii). Let f be continuous at a, and let xn P X, n P N, be such that
xn ÝÝÝÑ

nÑ8
a. We must show that fpxnq ÝÝÝÑ

nÑ8
fpaq. To this end, letting ε ą 0 be

arbitrary, it suffices to find an index N P N such that

n ě N ùñ ρ
`

fpxnq, fpaq
˘

ă ε. (7.2)

By the continuity of f at a, there is a δ ą 0 satisfying (7.1). Since xn ÝÝÝÑ
nÑ8

a, there

is an N P N such that

n ě N ùñ ρpxn, aq ă δ.

For this N , the implication (7.2) holds.

(ii)ñ(i). Let (ii) hold and suppose that f is not continuous at a. Then there is
an ε ą 0 such that no δ ą 0 satisfies (7.1). Thus, for every n P N, there is an xn P X
such that

ρpxn, aq ă
1

n
and ρ

`

fpxnq, fpaq
˘

ě ε.

But now
xn ÝÝÝÑ

nÑ8
a and fpxnq ÝÝ{ÝÝÑ

nÑ8

fpaq

which contradicts (ii).

41
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Exercise 7.1. Let X, Y , and Z be metric spaces, let f : X Ñ Y be contimuous at a point a P X,
and let g : Y Ñ Z be continuous at the point fpaq P Y . Prove that the composition operator

gf : X Q x ÞÝÑ g
`

fpxq
˘

P Z

is continuous at a.

Definition 7.2. Let X and Y be metric spaces. An operator f : X Ñ Y is said to
be continuous, if it is continuous at every point x P X.

Theorem 7.2. Let X and Y be metric spaces. An operator f : X Ñ Y is continuous
if and only if, for every open set V in Y , its preimage f´1rV s :“

␣

x P X : fpxq P V
(

is an open set in X.

Proof. Necessity. Let f be continuous, and let V be an open subset of Y . Letting
x P f´1rV s be arbitrary, it suffices to show that Bpx, δq Ă f´1rV s for some δ ą 0.
Since V is open, fpxq P V is an interior point of V , thus there is an ε ą 0 such
that B

`

fpxq, ε
˘

Ă V . By the continuity of f at x, there is a δ ą 0 satisfying
f
“

Bpx, δq
‰

Ă B
`

fpxq, ε
˘

. But now

Bpx, δq Ă f´1
“

B
`

fpxq, ε
˘‰

Ă f´1rV s.

Sufficiency. Assume that, for every open set in Y , its preimage with respect
to f is open in X, and let x P X. In order for X to be continuous, it suffices
to show that f is continuous an x. To this end, letting ε ą 0 be arbitrary, it
suffices to show that there is a δ ą 0 such that Bpx, δq Ă f´1

“

B
`

fpxq, ε
˘‰

. By our
assumption, the preimage f´1

“

B
`

fpxq, ε
˘‰

of the open ball B
`

fpxq, ε
˘

is an open
set, thus x P f´1

“

B
`

fpxq, ε
˘‰

is its interior point, hence Bpx, δq Ă f´1
“

B
`

fpxq, ε
˘‰

for some δ ą 0, as desired.

Corollary 7.3. Let X and Y be metric spaces. An operator f : X Ñ Y is continuous
if and only if, for every closed set H in Y , its preimage f´1rHs is a closed set in X.

Proof. First observe that, for any subset D of Y , one has

f´1rY zDs “ Xzf´1rDs. (7.3)

Exercise 7.2. Prove the equality (7.3).

Now, since open sets are complements of closed sets and complements of closed sets
are open,

f is continuous ðñ f´1rV s is an open set for every open set V Ă Y

ðñ f´1rY zHs is an open set for every closed set H Ă Y

ðñ Xzf´1rHs is an open set for every closed set H Ă Y

ðñ f´1rHs is a closed set for every closed set H Ă Y .

Remark 7.1. In general,
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• the image of an open set under a continuous function need not be open;

• the image of a closed set under a continuous function need not be closed.

Example 7.1. The natural inclusion map

j : r0, 1q Q x ÞÝÑ x P R

where both r0, 1q and R are equipped with the Euclidean metric is obviously continuous.
The set r0, 1q is both open and closed in the domain space r0, 1q while its image j

“

r0, 1q
‰

“

r0, 1q is neither open nor closed in the range space R.

Example 7.2. Let X be any metric space and let z P R. The constant mapping

f : X Q x ÞÝÑ z P R

is obviously continuous. The domain space X is an open set in itself while its image
f rXs “ tzu is not open in R.

7.2. Lipschitz condition

An important class of continuous operators is comprised by

Definition 7.3. Let X and Y be metric spaces. An operator f : X Ñ Y is said to
satisfy the Lipschitz condition if there is an L ě 0 such that

ρ
`

fpxq, fpzq
˘

ď Lρpx, zq for all x, z P X.

In this case one also says that f is a Lipschitz function. The constant L is called a
Lipschitz constant for f .

Proposition 7.4. Every Lipschitz operator is continuous.

Proof. Let X and Y be metric spaces, let f : X Ñ Y be a Lipschitz function with
Lipschitz constant L, and let x P X. It suffices to show that f is continuous at x.
To this end, letting xn P X, n P N, be such that xn ÝÝÝÑ

nÑ8
x, it suffices to show that

fpxnq ÝÝÝÑ
nÑ8

fpxq. The latter holds because

ρ
`

fpxnq, fpxq
˘

ď Lρpxn, xq ÝÝÝÑ
nÑ8

0.
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Throughout this section, X will be a metric space.

Definition 8.1. A point x0 P X is called a fixed point of an operator f : X Ñ X if
fpx0q “ x0.

In other words, x0 P X is a fixed point of f if it is a solution of the equation fpxq “ x.

Definition 8.2. An operator f : X Ñ X is called a contraction if there exists a
non-negative q ă 1 such that

ρ
`

fpxq, fpzq
˘

ď q ρpx, zq for all x, z P X. (8.1)

In other words, a contraction is a mapping in a metric space satisfying the Lipsc-
hitz condition with constant ă 1. In particular, it follows that any contraction is
continuous.

The following Banach fixed point theorem is also often referred to as the Banach
fixed point principle or the contraction principle.

Theorem 8.1 (The Banach fixed point principle). A contraction in a complete
metric space has exactly one fixed point.

Proof. Let X be a complete metric space, and let f : X Ñ X be a contraction,
i.e., there is a q P p0, 1q satisfying (8.1).

Letting x0 P X be arbitrary, inductively define a sequence pxnq “ pxnq8
n“1 in X

by setting
xn :“ fpxn´1q for every n P N.

It suffices to show that

(1) pxnq is a Cauchy sequence (and thus, by the completeness of X, a convergent
in X sequence);

(2) putting z0 :“ limnÑ8 xn, the point z0 is a fixed point of f , i.e., fpz0q “ z0;

(3) z0 is the only fixed point of f .

(1). Whenever n, p P N,

ρpxn, xn`pq ď ρpxn, xn`1q ` ρpxn`1, xn`2q ` ¨ ¨ ¨ ` ρpxn`p´1, xpq “

n`p´1
ÿ

j“n

ρpxj, xj`1q.

For every j P N,

ρpxj, xj`1q “ ρ
`

fpxj´1q, fpxjq
˘

ď qρpxj´1, xjq “ qρ
`

fpxj´2q, fpxj´1q
˘

ď q2ρpxj´2, xj´1q “ q2ρ
`

fpxj´3q, fpxj´2q
˘

. . . . . . . . . . . .

ď qjρpx0, x1q,
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thus, putting a :“ ρpx0, x1q,

ρpxn, xn`pq ď

n`p´1
ÿ

j“n

qj a “ a
n`p´1
ÿ

j“n

qj ď a qn
8
ÿ

i“0

qi “
a qn

1 ´ q
ÝÝÝÑ
nÑ8

0,

and it follows that pxnq is a Cauchy sequence.
Indeed, letting ε ą 0 be arbitrary, one can pick N P N so that

n ě N ùñ
a qn

1 ´ q
ă ε,

but now also ρpxn, xn`pq ă ε whenever n, p P N with n ě N .

(2). By the continuity of f ,

fpz0q “ f
`

lim
nÑ8

xn

˘

“ lim
nÑ8

fpxnq “ lim
nÑ8

xn`1 “ z0.

(3). In order to prove that z0 is the only fixed point of f , letting z P X be any
fixed point of X, i.e., fpzq “ z, it suffices to show that z “ z0. One has

0 ď ρpz, z0q “ ρ
`

fpzq, fpz0q
˘

ď qρpz, z0q

which, since 0 ď q ă 1, implies that ρpz, z0q “ 0, i.e., z “ z0, as desired.



§ 9. Compact sets in metric spaces

9.1. The notion of compactness.

Let X be a metric space and let K be a subset of X.

Definition 9.1. The subset K is said to be relatively compact if every sequence of
its elements contains a convergent subsequence.

Observe that the convergent subsequence in the preceding definition need not
converge to an element of K.

Definition 9.2. The subset K is said to be compact if it is relatively compact and
closed.

Proposition 9.1. Let X be a metric space and let K be a subset of X. The following
assertions are equivalent.

(i) K is compact;

(ii) every sequence of elements of K has a subsequence which converges to an
element of K.

Proof.

Exercise 9.1. Prove Proposition 9.1.

Definition 9.3. A metric space X is said to be compact if it is a compact subset
of itself, i.e., every sequence in X contains a convergent subsequence.

Since any metric space X is a closed subset of itself, for X the notions of relative
compactness and compactness coincide.

Proposition 9.2. A compact metric space is complete

Proof. LetX be a compact metric space. For the completeness ofX, we must show
that every Cauchy sequence in X is convergent. So, let pxnq be a Cauchy sequence
in X. By the compactness of X the sequence pxnq has a convergent subsequence,
and it follows that the sequence pxnq is convergent itself (because, by Proposition
6.1, (c), whenever a Cauchy sequence has a convergent subsequence, the sequence is
convergent itself).

Example 9.1. Every finite set in a metric space is compact.
Indeed, given a sequence of elements of a finite set in a metric space, at least one of the elements

of this finite set must occur infinitely many times in this sequence, thus the sequence has a constant

subsequence whose members are equal to this element of this set, and this constant subsequence

converges to this element of this set.
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Example 9.2. Whenever n P N and 1 ď p ď 8, every bounded subset of ℓnp is
relatively compact.

Indeed, in Example 6.5, we essentially proved that every bounded sequence in ℓnp (n P N,
1 ď p ď 8) has a bounded subsequence, and it easily follows that bounded sets in ℓnp are relatively

compact.

Proposition 9.3. A relatively compact set is bounded.

Proof. Let X be a metric space and let A be a relatively compact subset in X.
Suppose, for contradiction, that A is not bounded. Then, letting a P A being arbit-
rary, for every n P N, there is an xn P AzBpa, nq (because, otherwise, we would have
A Ă Bpa, nq and thus A would be bounded, a contradiction). Since A is relatively
compact, the sequence pxnq8

n“1 in A has a convergent subsequence, say pxknq8
n“1.

Letting x :“ limnÑ8 xn, one has, by the continuity of the metric (Proposition 1.2,
(d)),

ρpxn, aq ÝÝÝÑ
nÑ8

ρpx, aq.

One the other hand, since xn R Bpa, nq for every n P N,

ρpxn, aq ě n ÝÝÝÑ
nÑ8

8,

and thus ρpxn, aq ÝÝÝÑ
nÑ8

8, a contradiction.

Corollary 9.4. Let n P N and 1 ď p ď 8.

(a) A subset of ℓnp is relatively compact if and only if it is bounded.

(b) A subset of ℓnp is compact if and only if it is bounded and closed.

9.2. Hausdorff’s theorem

Definition 9.4. Let X be a metric space, let A and B be subsets of X, and let
ε ą 0.

The set B is said to be an ε-net for A if

A Ă
ď

bPB

Bpb, εq,

i.e., for every a P A, there is a b P B such that ρpb, aq ă ε.

Theorem 9.5 (Hausdorff’s theorem). Let A be a subset of a metric space X. In
order for A to be relatively compact, it is necessary and, if X is complete, also
sufficient that, for every ε ą 0, the set A admits a finite ε-net.

Proof. Necessity. Assume that A is relatively compact, and let ε ą 0. Suppose,
for contradiction, that, for some ε ą 0, the set A does not have any finite ε-nets.
Letting x1 P A be arbitrary, inductively choose a sequence pxnq in A as follows: given
n P N and x1, . . . , xn P A, choose an xn`1 P Az

Ťn
i“1Bpxi, εq (such an element xn`1
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exists because otherwise one would have
Ťn

i“1 Bpxi, εq Ą A, i.e., tx1, . . . , xnu would
be a finite ε-net for A).

The sequence pxnq obtained in this process does not contain any Cauchy sub-
sequences, because, whenever n,m P N, m ą n, one has xm R

Ťm´1
i“1 Bpxi, εq, thus

xm R Bpxn, εq, i.e., ρpxm, xnq ě ε. Thus the sequence pxnq (of elements of A) does
not contain any convergent subsequences which is a contradiction, because A is
relatively compact by our assumption.

Sufficiency. Assume that X is complete and that, for every ε ą 0, the set A
admits a finite ε-net. Let pxnq “ pxnq8

n“1 be a sequence in A. We must show that
pxnq has a convergent subsequence. Choose εn ą 0, n P N, so that εn ÝÝÝÑ

nÑ8
0.

By our assumption, there exists a finite ε1-net for A, i.e., there exists a finite set
A1 Ă X such that

A Ă
ď

aPA1

Bpa, ε1q.

Choose an a1 P A1 so that the ball Bpa1, ε1q contains infinitely many members of
the sequence pxnq (such an a1 exists!), and an index k1 P N so that xk1 P Bpa1, ε1q.

Proceed inductively as follows: provided n P N, elements a1, . . . , an P X and
indices k1 ă k2 ă ¨ ¨ ¨ ă kn such that the intersection

Şn
i“1 Bpai, εiq contains infinitely

many elements of the sequence pxnq and xkj P
Şj

i“1 Bpai, εiq for every j P t1, . . . , nu;
by our assumption, there exists a finite εn`1-net for A X

Şn
i“1 Bpai, εiq, i.e., there

exists a finite set An`1 Ă X such that

A X

n
č

i“1

Bpai, εiq Ă
ď

xPAn`1

Bpa, εn`1q;

now choose an an`1 P An`1 so that the intersection

ˆ n
č

j“1

Bpai, εiq

˙

X Bpan`1, εn`1q “

n`1
č

j“1

Bpai, εiq

contains infinitely many members of the sequence pxnq and an index kn`1 P N so
that kn`1 ą kn and xkn`1 P

Şn`1
j“1 Bpai, εiq.

In order to see that the subsequence pxknq8
n“1 obtained by this process is conver-

gent, by the completeness of X it suffices to show that this subsequence is Cauchy
which is the case, because, whenever n, p P N, one has xkn , xkn`p P Bpan, εnq, and
thus

ρpxkn , xkn`pq ď ρpxkn , anq ` ρpan, xkn`pq ă 2εn ÝÝÝÑ
nÑ8

0.

9.3. Continuous functionals on compact sets.

The following exercise says that continuous operators take relatively compact sets
into relatively compact ones and compact sets into compact ones.
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Exercise 9.2. Let X and Y be metric spaces, let f : X Ñ Y be a continuous operator, and let S
be a subset of X. Prove that

(a) if S is relatively compact, then f rSs is relatively compact;

(b) if S is compact, then f rSs is compact.

Exercise 9.3. Let X and Y be metric spaces, let f : X Ñ Y be a continuous operator, and let S
be a subset of X. Prove that

(a) f rSs Ă f rSs;

(b) if S is relatively compact, then f rSs “ f rSs.

Theorem 9.6. Let K be a compact metric space, and let f : K Ñ K be a continuous
functional. Then

(a) f is bounded, i.e., there exists an L ě 0 such that

|fpxq| ď L for every x P K; (9.1)

(b) if K “ R, then f attains its minimum and maximum, i.e., there exist z1, z2 P K
such that

fpz1q “ min
xPK

fpxq and fpz2q “ max
xPK

fpxq.

Proof. (a). Suppose for contradiction that f is not bounded, i.e., there is no L ě 0
satisfying (9.1). Then, for every n P N, there exists an xn P K such that

|fpxnq| ą n.

By the compactness of K, the sequence pxnq8
n“1 has a convergent to some z P K

subsequence pxknq8
n“1, i.e., xkn ÝÝÝÑ

nÑ8
z. The functional K Q x ÞÑ |fpxq| P R is

continuous (because it is the composition of the continuous functionals f : K Ñ K
and | ¨ | : K Q α ÞÑ |α| P R), thus |fpxknq| ÝÝÝÑ

nÑ8
|fpzq|. On the other hand,

|fpxknq| ě kn ÝÝÝÑ
nÑ8

8,

thus |fpxknq| ÝÝÝÑ
nÑ8

8, a contradiction.

(b). Let K “ R. We only show that f attains its maximum (the proof that f
attains its minimum is analogous). By (a),

M :“ sup
xPK

fpxq ă 8,

We must find a z1 P K such that fpz1q “ M .
For every n P N, there is an xn P K such that

fpxnq ą M ´
1

n
.
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By the compactness of K, the sequence pxnq8
n“1 has a convergent subsequence

pxknq8
n“1. Put z1 :“ limnÑ8 xn. Since

M ´
1

kn
ă fpxknq ď M for every n P N,

letting n Ñ 8, it follows that fpxknq ÝÝÝÑ
nÑ8

M . On the other hand, since f is

continuous, fpxknq ÝÝÝÑ
nÑ8

fpz1q, and thus fpz1q “ M by the uniqueness of the

limit.

9.4. The Arzelà–Ascoli theorem.

Definition 9.5. Let a, b P R, a ă b, and let C be a set of continuous functions
ra, bs Ñ R. The set C is said to be uniformly bounded if there exists an M ě 0 such
that

|xptq| ď M for all t P ra, bs and all x P C.

The set C is said to be equicontinuous if, for every ε ą 0, there exists a δ ą 0 such
that

t1, t2 P ra, bs, |t1 ´ t2| ă δ ùñ |xpt1q ´ xpt2q| ă ε for all x P C. (9.2)

Clearly,

• a set of continuous functions ra, bs Ñ R is uniformly bounded if and only if it
is bounded when considered as a subset of the metric space Cra, bs;

• every function of an equicontinuous set of functions ra, bs Ñ R is uniformly
continuous on ra, bs; for a set consisting of a single function, its equicontinuity is
equivalent to the uniform continuity of this function (and thus to the continuity
of this function by Cantor’s theorem).

Theorem 9.7 (The Arzelà–Ascoli theorem). Let C be a subset of the metric space
Cra, bs. The following assertions are equivalent:

(i) C is relatively compact;

(ii) C is uniformly bounded and equicontinuous.

Corollary 9.8 (The Arzelà–Ascoli theorem). Let C be a subset of the metric space
Cra, bs. The following assertions are equivalent:

(i) C is compact;

(ii) C is closed, uniformly bounded and equicontinuous.
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Proof of the Arzelà–Ascoli theorem 9.7. (i)ñ(ii). Assume that C ‰ H is
relatively compact. Then C is a bounded subset of Cra, bs, i.e., it is a uniformly
bounded set, and it remains to show that C is equicontinuous, i.e., for every ε ą 0,
there is a δ ą 0 satisfying (9.2). Let ε ą 0 be arbitray. Since C is relatively compact,

by Hausdorff’s theorem, there exists a finite
ε

3
-net B Ă Cra, bs for C. Every function

z P B is uniformly continuous on ra, bs by Cantor’s theorem, thus there is a δz ą 0
such that

t1, t2 P ra, bs, |t1 ´ t2| ă δz ùñ |zpt1q ´ zpt2q| ă
ε

3
.

Put δ :“ minzPB δz, and let x P C be arbitrary. Since B is an
ε

3
-net for C, there is

a z P B such that }x ´ z} ă
ε

3
. Whenever t1, t2 P ra, bs satisfy |t1 ´ t2| ă δ, one also

has |t1 ´ t2| ă δz, and thus

|xpt1q ´ xpt2q| “ |xpt1q ´ zpt1q ` zpt1q ´ zpt2q ` zpt2q ´ xpt2q|

ď |xpt1q ´ zpt1q| ` |zpt1q ´ zpt2q| ` |zpt2q ´ xpt2q|

ď }x ´ z} `
ε

3
` }x ´ z}

ă
ε

3
`

ε

3
`

ε

3
“ ε.

(ii)ñ(i) will be omitted in this course.
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Recall that a subset A of a metric space X is said to be dense (in X), if A “ X.

The following proposition is a direct consequence of Proposition 5.11.

Proposition 10.1. Let X be a metric space and let A Ă X. The following assertions
are equivalent:

(i) A is dense (in X), i.e., A “ X;

(ii) for every x P X and every ε ą 0, there is an a P A such that ρpx, aq ă ε, i.e.,
x P Bpa, εq;

(iii) for every x P X, there is a sequence pxnq of elements of A such that xn ÝÝÝÑ
nÑ8

x.

Definition 10.1. A metric space X is said to be separable if there exists an at most
countable dense subset of X.

In fact, all the metric spaces introduced in § 4, except ℓ8 and L8pa, bq, are
separable. In these notes, we shall only prove the separability of quite a few of them.

Example 10.1. The space K (endowed with the natural metric dpx, yq “ |x ´ y|,
x, y P K) is separable: the subset KQ of K where

RQ :“ Q and CQ :“ tα ` iβ : α, β P Qu

is countable and KQ “ K.

Indeed, suppose that K “ R. The set RQ “ Q is countable. Whenever x P R and ε ą 0, there
is an α P Q such that dpx, αq “ |x ´ α| ă ε, hence RQ “ Q is dense in R.

Now let K “ C. The set CQ is countable, because the mapping Q ˆ Q Q pα, βq ÞÑ α ` iβ P CQ
is a bijection and the set Q ˆ Q is countable. To see that CQ “ C is dense in C, let z “ x ` iy P C
(here x, y P R) and ε ą 0 be arbitrary. By the density of Q in R, there are α, β P Q such that

|x ´ α|, |y ´ β| ă
ε

?
2
. Putting a :“ α ` iβ P CQ, one has

dpz, aq “ |z ´ a| “ |px ´ αq ` ipy ´ βq| “
a

|x ´ α|2 ` |y ´ β|2 ă

c

ε2

2
`

ε2

2
“ ε.

and CQ “ C is dense in C by Proposition 10.1.

Example 10.2. Whenever n P N and p P r1,8s, the space ℓnp is separable: the set

KQ ˆ ¨ ¨ ¨ ˆ KQ
looooooomooooooon

n

“
␣

pκ1, . . . , κnq : κ1, . . . , κn P KQ
(

is countable and dense in ℓnp .

Exercise 10.1. Prove that the set KQ ˆ ¨ ¨ ¨ ˆ KQ
loooooooomoooooooon

n

is dense in ℓnp .
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Hint. It suffices to show that KQ ˆ ¨ ¨ ¨ ˆ KQ
loooooooomoooooooon

n

is dense in ℓn1 : the density of KQ ˆ ¨ ¨ ¨ ˆ KQ
loooooooomoooooooon

n

in ℓnp for

arbitrary p P r1,8s follows from its density in ℓn1 , because }x}p ď }x}1 for every x P K ˆ ¨ ¨ ¨ ˆ K
loooooomoooooon

n

by Proposition 3.4.

Proposition 10.2. A compact metric space is separable.

Proof. Let X be a compact metric space. By Hausdorff’s theorem 9.5, for every

n P N, there exists a finite
1

n
-net Bn Ă X of X. The union B :“

Ť8

n“1 Bn is at most

countable and dense in X, i.e., B “ X. To prove the latter, letting x P X and ε ą 0
be arbitrary, it suffices to find a b P B such that ρpx, bq ă ε. To this end, pick an

n P N such that
1

n
ă ε; since Bn is a

1

n
-net for X, there exists a z P Bn Ă B such

that ρpx, bq ă
1

n
ă ε, as desired.

Definition 10.2. Let X be a linear space and let A be a subset of X. The smallest
linear subspace of X containing A is called the linear span of A and is denoted by
spanA.

Thus, spanH “ t0u and, for A ‰ H,

spanA “

" n
ÿ

k“1

akxk : n P N, x1, . . . , xn P X, a1, . . . , an P K
*

,

i.e., for A ‰ H, the linear span of A is the linear subspace of all linear combinations
of elements of A.

Definition 10.3. Let X be a normed space. A subset A of X is said to be total
(in X), if its linear span is dense in X, i.e. spanA “ X.

Proposition 10.3. A normed space is separable if and only if it has an at most
countable total subset.

Remark 10.1. In § 12, we shall prove, using Propostion 10.3, that the normed spaces c0, c, and
ℓp where 1 ď p ă 8 are separable.

Also, Propostion 10.3 yields the separability of ℓnp for all n P N and p P r1,8s (i.e., the result
of Example 10.2), because, defining

ek :“ p

n
hkkkkkkkkkkikkkkkkkkkkj

0, . . . , 0, 1
loooomoooon

k

, 0, . . . , 0q for every k P t1, . . . , nu,

the subset te1, . . . , enu Ă ℓnp is total in ℓnp : in fact, spante1, . . . , enu “ ℓnp .

For the proof of the sufficiency in Proposition 10.3, it is appropriate to point out
the following easy

Lemma 10.4. Let Y be a dense subset of a metric space X and let Z be a dense
(in Y ) subset of Y . Then Z is dense in X.
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Proof.

Exercise 10.2. Prove lemma 10.4.

Proof of Proposition 10.3. Necessity is obvious, because any dense subset of
X is total (therefore, if X is a separable normed space and A is an at most countable
dense subset of S, the set A is a total; thus X has an at most countable total subset).

Sufficiency. Suppose that a normed space X has an at most countable total
subset A, i.e. spanA “ X. For the separability of X, by Lemma 10.4, it suffices
to show that spanA has an at most countable dense (in spanA) subset. We may
assume that X ‰ t0u. Then A ‰ H and (since A is at most countable) we can write
A “ txk : k P Nu where xk P A for every k P N (with the possibility that xk “ xl for
some k ‰ l (this happens when A is finite)). Now it suffices to show that the subset

spanQ A :“

" n
ÿ

k“1

αkxk : n P N, α1, . . . , αn P KC

*

Ă spanA

is an at most countable set which is dense in spanA.

Exercise 10.3. Prove that spanQ A is at most countable and spanQ A Ą spanA.

Hint. For every n P N, put Bn :“
!

řn
k“1 αkxk : α1, . . . , αn P KC

)

; then spanQ A “
Ť8

n“1 Bn.

Thus, in order that spanQ A were at most countable, letting n P N be arbitrary, it suffices to show
that Bn is at most countable. To this end, it suffices to observe that the mapping KQ ˆ ¨ ¨ ¨ ˆ KQ

loooooooomoooooooon

n

Q

pα1, . . . , αnq ÞÑ
řn

k“1 αkxk is a surjection while the set KQ ˆ ¨ ¨ ¨ ˆ KQ
loooooooomoooooooon

n

is countable.

Example 10.3. The space ℓ8 is not separable.
Indeed, let A be a dense subset of ℓ8. For the non-separability of ℓ8, it suffices to show that A

is uncountable (i.e., A is neither finite nor countable). To this end, denote by D the subset of ℓ8

consisting of sequences having only 1 and 0 as their terms. The set D is known to be uncountable.

Since A is dense in ℓ8, for every x P D, there is an ax P A such that x P B
´

ax,
1

2

¯

. Whenever

x, z P D and such that x ‰ z, one has ax ‰ az, because otherwise x, z P B
´

ax,
1

2

¯

and thus

}x ´ z} “ }x ´ ax ` ax ´ z} ď }x ´ ax} ` }ax ´ z} ă
1

2
`

1

2
“ 1 “ }x ´ z},

a contradiction (here }x ´ z} “ 1 because the sequence x ´ z can have only 1, 0 and ´1 as its

terms, and, since, x ‰ z, at least one of the terms of x ´ z is either 1 or ´1). It follows that the

subset tax : x P Du of A is uncountable, and thus also A itself is uncountable.

˚Exercise 10.4. Prove that any subspace of a separable metric space is separable.
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11.1. The notion of a topological space

Definition 11.1. Let X be a set. A collection τ of subsets of X is called a topology
if

1˝ H, X P τ ;

2˝ any finite intersection of sets in τ belongs to τ , i.e., whenever n P N and
A1, . . . , An P τ , also the intersection

Şn
j“1Aj P τ ;

3˝ any union of sets in τ belongs to τ , i.e., whenever I is a set of indices and
Aj P τ for every j P I, also the union

Ť

jPI Aj P τ .

The pair pX, τq (or just X when the role of the topology τ is well understood from
the context) is called a topological space. The sets in the collection τ are called open
sets in X.

Example 11.1. The collection of open subsets in a metric space X is a topology (by
Proposition 5.3). This topology is referred to as the topology induced by the metric
of X.

Example 11.2. Let X be a set. The collection PpXq of all subsets of X is clearly a
topology. This topology, called the discrete topology on X, is induced by the discrete
metric on X (recall that (see Exercise 5.6) every subset of X is an open set with
respect to the discrete metric).

Example 11.3. Let X be a set. The collection tH, Xu is a topology on X. This
topology is referred to as the weakest topology on X.

Remark 11.1. Not every topology is induced by a metric. For example, letting

X “ ta, bu (i.e., X is a set consisting of two elements) and τ :“
!

H, X, tAu

)

,

the collection τ is clearly a topology. However, this topology is not induced by any
metric.

Exercise 11.1. Prove that the topology τ is not induce by any metric.

Definition 11.2. A set A in a topological space pX, τq is said to be closed if its
complement XzA is open, i.e., XzA P τ .

Recall that, in a metric space, a set is closed if and only if its complement is
open (see Proposition 5.6). Thus closed sets in a metric space are exactly the sets
that are closed with respect to the topology induced by the metric.

The following properties of closed sets in a topological space follow immediately
from Definitions 11.2 and 11.1 by De Morgan’s laws.

Proposition 11.1. Let X be a topological space. Then

(a) H and X are closed sets;
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(b) any finite union of closed sets is a closed set, i.e., whenever n P N and
A1, . . . , An Ă X are closed sets, also their union

Ťn
j“1 Aj is a closed set;

(c) any intersection of closed sets is a closed set, i.e., whenever I is a set of indices
and Aj, j P I, are closed sets, also their intersection

Ş

jPI Aj is a closed set.

11.2. Convergence of sequences in topological spaces

Definition 11.3. Let pX, τq be a topological space, and let x P X. A set G Ă X is
called a neighbourhood of the point x (in the topology τ) if there is a set u P τ such
that x P U Ă G.

Thus, the neighbourhoods of a point in a metric spaces are the same as its
neighbourhoods in the topology induced by the metric.

Definition 11.4. Let pX, τq be a topological space. A sequence pxnq8
n“1 in X is

said to converge to an element x P X (with respect to the topology τ) if, for every
neighbourhood U of x, there is an index N P N such that

n ě N ùñ xn P U.

Thus, the convergence of a sequence in a metric space is the same as the conver-
gence of this sequence with respect to the topology induced by the metric.

Notice that, in general, the limit of a sequence in a topological space need not
be unique: for instance, when X is any set and τ is the weakest topology on X, i.e.,
τ :“ tH, Xu, every sequence in X is converges to any element in X.

Remark that, in topological spaces, the convergence of sequences does not play
as an important role as in metric spaces: the role played by sequences in the theory
of metric spaces is, in topological spaces, performed by nets (a concept more general
than that of a sequence).



§ 12. Series in normed spaces

12.1. Series in normed spaces

Definition 12.1. Let X be a normed space and let xk P X, k P N.
The formal infinite sum

x1 ` x2 ` x3 ` ¨ ¨ ¨ “:
8
ÿ

k“1

xk (12.1)

is called a series. The elements xk P X, k P N, are called the terms of the series (12.1).
The sums

n
ÿ

k“1

xk, n P N,

are called the partial sums of the series (12.1).
If the sequence p

řn
k“1 xkq

8

n“1
of the partial sums of the series (12.1) converges,

then its limit is called the sum of this series, and the series (12.1) is said to be
convergent (to its sum). Otherwise the series (12.1) is said to be divergent.

If the series (12.1) converges, then its sum is denoted by
ř8

k“1 xk (as the series
(12.1) itself). Thus the sum of the series (12.1) is

8
ÿ

k“1

xk “ lim
nÑ8

n
ÿ

k“1

xk.

First properties of convergent series are collected in

Proposition 12.1. Let
ř8

k“1 xk and
ř8

k“1 yk be convergent series in a normed
space X, and let α, β P K. Then

(a) the series
ř8

k“1pαxk ` βykq is convergent and its sum

8
ÿ

k“1

pαxk ` βykq “ α
8
ÿ

k“1

xk ` β
8
ÿ

k“1

yk;

(b) xk ÝÝÝÑ
kÑ8

0;

(c)
ř8

k“n`1 xk ÝÝÝÑ
nÑ8

0;

(d)
›

›

›

ř8

k“1 xk

›

›

›
ď
ř8

k“1 }xk}.

The assertions (b) and (c) of Proposition 12.1 say, respectively, that

• the sequence of the terms of a convergent series converges to 0;

• the remainder term of a convergent series converges to 0.
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Proof of Proposition 12.1. Put x :“
ř8

k“1 xk and y :“
ř8

k“1 yk.
(a). We must show that

n
ÿ

k“1

pαxk ` βykq ÝÝÝÑ
nÑ8

αx ` βy. (12.2)

Exercise 12.1. Verify (12.2).

(b). One has

xn “

n
ÿ

k“1

xk ´

n´1
ÿ

k“1

xk ÝÝÝÑ
nÑ8

x ´ x “ 0.

(c). One has
8
ÿ

k“n`1

xk
p‚q
“ x ´

n
ÿ

k“1

xk ÝÝÝÑ
nÑ8

0.

Exercise 12.2. Prove the equality p‚q.

(d). One has, by the continuity of the norm and by the triangle inequality,

›

›

›

›

8
ÿ

k“1

xk

›

›

›

›

“

›

›

›

›

lim
nÑ8

n
ÿ

k“1

xk

›

›

›

›

“ lim
nÑ8

›

›

›

›

n
ÿ

k“1

xk

›

›

›

›

ď lim
nÑ8

n
ÿ

k“1

}xk} “

8
ÿ

k“1

}xk}.

Exercise 12.3. Put

ek “ p0, . . . , 0, 1
loooomoooon

k

, 0, . . .q, k P N, and e “ p1, 1, 1, . . .q.

(a) Does the series
8
ÿ

k“1

1

k
ek converge in the space

(a1) ℓ1;

(a2) ℓp where 1 ă p ă 8;

(a3) ℓ8?

(b) Is it true that x “

8
ÿ

k“1

ξk ek in X

(b1) for every x “ pξkq P X “ ℓp where 1 ď p ă 8;

(b2) for every x “ pξkq P X “ c0;

(b3) for every x “ pξkq P X “ c?

(c) Let x “ pξkq8
k“1 P c with ξk Ñ ξ. Prove that

x “ ξ e `

8
ÿ

k“1

pξk ´ ξq ek.
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Remark 12.1. Suppose that 1 ď p ă 8. From Exercise 12.3, (b1), it follows
that the countable set tek : k P Nu is total in the space ℓp; thus ℓp is separable by
Proposition 10.3. Indeed, for the totality of tek : k P Nu in ℓp, observe that, whenever
x “ pξkq8

k“1 P ℓp, one has

n
ÿ

k“1

ξkek ÝÝÝÑ
nÑ8

8
ÿ

k“1

ξkek “ x

while
řn

k“1 ξkek P spantek : k P Nu for all n P N; thus spantek : k P Nu “ ℓp.
Similarly, from Exercise 12.3, (b2) and (c), one deduces that the countable sets

tek : k P Nu and teuYtek : k P Nu are total in the spaces c0 and c, respectively; thus
the spaces c0 and c are separable by Proposition 10.3.

Definition 12.2. A series
ř8

k“1 xk in a normed space X is said to be absolutely
convergent if the series

ř8

k“1 }xk} converges in R, i.e.,
8
ÿ

k“1

}xk} ă 8.

In order to prove the completeness of a normed space, it is often convenient to
use

Theorem 12.2. A normed space X is complete (i.e., a Banach space) if and only
if every absolutely convergent series in X converges in X.

Proof. Necessity. Let X be a Banach space, and let
ř8

k“1 xk be an absolutely
convergent series in X. In order that the series

ř8

k“1 xk were convergent, courtesy
of the completeness of X, it suffices to show that the sequence pSnq8

n“1 of its partial
sums is a Cauchy sequence, i.e., }Sn ´ Sm} ÝÝÝÝÝÑ

n,mÑ8
0. To this end, observe that, for

n,m P N, n ą m, one has

}Sn ´ Sm} “

›

›

›

›

›

n
ÿ

k“1

xk ´

m
ÿ

k“1

xk

›

›

›

›

›

“

›

›

›

›

›

n
ÿ

k“m`1

xk

›

›

›

›

›

ď

n
ÿ

k“m`1

}xk} ď

8
ÿ

k“m`1

}xk} ÝÝÝÑ
mÑ8

0,

because the remainder term of the convergent (in R) series
ř8

k“1 }xk} converges to 0.

Sufficiency. Let X be a normed space such that every absolutely convergent
series in X is convergent, and let pxnq8

n“1 be a Cauchy sequence in X. In order for X
to be complete, it suffices to show that the sequence pxnq8

n“1 converges in X. To
this end, by Proposition 6.1, (b), it suffices to show that pxnq8

n“1 has a convergent
subsequence. To this end, pick indices 0 “ m0 ă m1 ă m2 ă m3 ă ¨ ¨ ¨ so that, for
all k P N,

n,m ě mk ùñ }xn ´ xm} ď
1

2k
(12.3)

(this is possible because pxnq is a Cauchy sequence). Now the series

8
ÿ

k“1

pxmk
´ xmk´1

q
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is absolutely convergent because, for every k ě 2, one has }xmk
´ xmk´1

} ď
1

2k´1
by

(12.3) and thus

8
ÿ

k“1

}xmk
´ xmk´1

} ď }xm1} `

8
ÿ

k“2

1

2k´1
“ }xm1} ` 1 ă 8.

By our assumption on X, the series
ř8

k“1pxmk
´ xmk´1

q is convergent, i.e., the
sequence of its partial sums is convergent. But, for every n P N,

n
ÿ

k“1

pxmk
´ xmk´1

q “ xmn ,

thus the sequence pxmnq8
n“1 is convergent.

Example 12.1. The space ℓ1 is complete.

Indeed, let
ř8

k“1 xk be an absolutely convergent series in ℓ1. For the completeness of ℓ1, by
Theorem 12.2, it suffices to show that

ř8
k“1 xk converges in ℓ1.

To this end, letting xk “ pξkj q8
j“1 for every k P N, observe that, by the absolute convergence of

ř8
k“1 xk,

8
ÿ

k“1

}xk} “

8
ÿ

k“1

8
ÿ

j“1

|ξkj | “

8
ÿ

j“1

8
ÿ

k“1

|ξkj | ă 8.

In particular, for every j P N, one has
ř8

k“1 |ξkj | ă 8, i.e., the series
ř8

k“1 ξ
k
j is absolutely con-

vergent (in K) and hence convergent (in K). It remains to observe that x :“
`
ř8

k“1 ξ
k
j

˘8

j“1
P ℓ1

(because
ř8

j“1

ˇ

ˇ

ˇ

ˇ

ř8
k“1 ξ

k
j

ˇ

ˇ

ˇ

ˇ

ď
ř8

j“1

ř8
k“1 |ξkj | ă 8) and

ř8
k“1 xk “ x in ℓ1:

›

›

›

›

x ´

n
ÿ

k“1

xk

›

›

›

›

“

›

›

›

›

ˆ 8
ÿ

k“1

ξkj

˙8

j“1

´

ˆ n
ÿ

k“1

ξkj

˙8

j“1

›

›

›

›

“

›

›

›

›

ˆ 8
ÿ

k“n`1

ξkj

˙8

j“1

›

›

›

›

“

8
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

8
ÿ

k“n`1

ξkj

ˇ

ˇ

ˇ

ˇ

ď

8
ÿ

j“1

8
ÿ

k“n`1

|ξkj | “

8
ÿ

k“n`1

8
ÿ

j“1

|ξkj | ÝÝÝÑ
nÑ8

0

(because the remainder term
ř8

k“n`1

ř8
j“1 |ξkj | of the convergent series

ř8
k“1

ř8
j“1 |ξkj | tends to 0).
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spaces

13.1. Continuous linear operators between normed spaces

Definition 13.1. Let X and Y be linear spaces over the same scalar field K (where
K “ R or K “ C).

A mapping A : X Ñ Y is said to be linear if

1˝ A is additive, i.e.,

Apx ` zq “ Ax ` Az for all x, y P X;

2˝ A is homogenous, i.e.,

Apαxq “ αAx for all x P X and all α P K.

Loosely speaking, the linearity of a mapping means that it preserves the linear structure of its
domain space.

Exercise 13.1. Let X and Y be linear spaces and let A : X Ñ Y . Prove that the following
assertions are equivalent:

1˝ A is linear;

2˝ Apαx ` βzq “ αAx ` βAz for all x, y P X and all α, β P K;

3˝ Apαx ` zq “ αAx ` Az for all x, y P X and all α P K.

The following proposition says that a linear operator between normed spaces is
continuous already when it is continuous at a single point.

Proposition 13.1. Let X and Y be normed spaces and let A : X Ñ Y be a linear
operator. The following assertions are equivalent:

(i) A is continuous;

(ii) A is continuous at 0;

(iii) there exists a point in X at which A is continuous.

Proof. (i)ñ(ii)ñ(iii) is obvious.

(iii)ñ(i). Suppose that A is continuous at a point z P X, and let x, xn P X,
n P N, be such that xn ÝÝÝÑ

nÑ8
x. For the continuity of A, it suffices to show that

Axn ÝÝÝÑ
nÑ8

Ax. By the linearity of A,

Axn “ Apxn ´ x ` zq ´ Az ` Ax ÝÝÝÑ
nÑ8

Az ´ Az ` Ax “ Ax

(because xn ´x` z ÝÝÝÑ
nÑ8

z, and thus Apxn ´x` zq ÝÝÝÑ
nÑ8

Az by the continuity of A

at z).
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Definition 13.2. Let X and Y be normed spaces. A linear operator A : X Ñ Y is
said to be bounded, if there exists an M ě 0 such that

}Ax} ď M }x} for all x P X. (13.1)

The term “bounded” linear operator is justified by

Proposition 13.2. Let X and Y be normed spaces and let A : X Ñ Y be a linear
operator. The following assertions are equivalent:

(i) A is bounded;

(ii) A maps bounded sets in X into bounded sets in Y , i.e., whenever B is a
bounded subset of X, its image ArBs :“ tAx : x P Bu is a bounded subset
of Y .

Proof.

Exercise 13.2. Prove Proposition 13.2.

Solution. (i)ñ(ii). Suppose that A is bounded, and let B be a bounded subset of X. We must
show that ArBs “

␣

Ax : x P B
(

is a bounded subset of Y , i.e. (see Proposition 2.2), there is a
K ě 0 such that

}y} ď K for all y P ArBs, i.e., }Ax} ď K for all x P B.

Since A is a bounded operator, there is an M ě 0 satisfying (13.1). Since B is a bounded set, there
is an L ě 0 such that }x} ď L for all x P B. Now, for all x P B,

}Ax} ď M}x} ď M L.

(ii)ñ(i). Let the images underA of bounded sets inX be bounded sets in Y . Then, in particular,
the image ArSX s “ tAx : x P SXu of the unit sphere SX of X is a bounded set in Y ; thus there
exists an M ě 0 such that

}y} ď M for all y P ArSX s, i.e., }Ax} ď M for all x P SX .

For all x P Xzt0u, one has
x

}x}
P SX , thus

1

}x}
}Ax} “

›

›

›

1

}x}
Ax

›

›

›
“

›

›

›
A
´ x

}x}

¯›

›

›
ď M,

i.e., }Ax} ď M}x}. The latter clearly holds also for x “ 0, thus A is bounded.

Theorem 13.3. A linear operator between normed spaces is continuous if and only
if it is bounded.

Proof. Sufficiency. A bounded linear operator between normed spaces satisfies the
Lipschitz condition, hence it is continuous.

Necessity. Let X and Y be normed spaces and let A : X Ñ Y be a continuous
linear operator. Suppose for contradiction that A is not bounded. Then, for every
n P N, there is an xn P X such that

}Axn} ą n}xn}.
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Now zn :“
xn

n}xn}
ÝÝÝÑ
nÑ8

0, because

}zn} “

›

›

›

xn

n}xn}

›

›

›
“

1

n}xn}
}xn} “

1

n
ÝÝÝÑ
nÑ8

0

On the other hand, for every n P N,

}Azn} “

›

›

›
A
´ xn

n}xn}

¯›

›

›
“

›

›

›

1

n}xn}
Axn

›

›

›
“

1

n}xn}
}Axn} ą

1

n}xn}
n}xn} “ 1,

thus Azn ÝÝ{ÝÝÑ
nÑ8

0. This contradicts the continuity of A at 0.

13.2. The norm of an operator

Let X and Y be normed spaces (over the same scalar field K). In this subsection,
we shall give the set of continuous linear operators from X to Y the structure of a
normed space.

First, letting A,B : X Ñ Y be continuous linear operators and α P K, one
defines the sum A ` B : X Ñ Y and scalar multiple αA : X Ñ Y by

pA ` Bqpxq :“ Ax ` Bx and pαAqx :“ αpAxq, x P X. (13.2)

It is straightforward to verify that A ` B and αA are linear and continuous.

Exercise 13.3. Prove that the operators A ` B and αA are linear and bounded.

It is also straightforward to verify that the set of continuous linear operators
X Ñ Y is a linear space with respect to the operations (13.2). This linear space is
denoted by LpX, Y q.

Define, for A P LpX,Y q,
}A} :“ sup

xPBX

}Ax}. (13.3)

Observe that }A} ă 8. Indeed, since A is bounded, there is an M ě 0 such that }Ax} ď M}x}

for all x P X. For such M ,

}A} “ sup
xPBX

}Ax} ď sup
xPBX

M }x} “ M.

Proposition 13.4. LpX,Y q is a normed space with respect to the norm (13.3).

Proof.

Exercise 13.4. Prove that (13.3) is a norm in LpX,Y q.

Exercise 13.5. Let A P LpX,Y qzt0u and suppose that }A} “ }Ax} for some x P BX . Prove that
x P SX , i.e., }x} “ 1.

Exercise 13.6. Let X ‰ 0. Prove that, for every A P LpX,Y q,

}A} :“ sup
xPBX

}Ax}
p‚q
“ sup

xPB˝
X

}Ax} “ sup
xPSX

}Ax}.

Notice that the equality p‚q holds also if X “ 0 while SX “ H in this case.
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The following proposition is a handy tool for estimating the norm of a continuous
linear operator from above.

Proposition 13.5. Let A P LpX, Y q. Then

}A} “ min
␣

M ě 0: }Ax} ď M}x} for all x P X
(

Proof. In the paragraph following (13.3), we proved that

• }A} ď M whenever M ě 0 satisfies }Ax} ď M}x} for all x P X.

Thus it remains to prove that

}Ax} ď }A} }x} for all x P X.

If x “ 0, then clearly }Ax} “ }A0} “ }0} “ 0 ď }A} }x}. If x ‰ 0, then
x

}x}
P BX

and thus

}Ax} “
1

}x}
}Ax} }x} “

›

›

›

›

1

}x}
Ax

›

›

›

›

}x} “

›

›

›

›

A
´ x

}x}

¯

›

›

›

›

}x} ď }A} }x}.

Definition 13.3. The normed space LpX,Kq of continuous linear functionals X Ñ

K is called the dual space of X, and denoted by X˚:

X˚ :“ LpX,Kq.

Exercise 13.7. Prove that convergence in LpX,Y q implies pointwise convergence, i.e., whenever
Tn, T P LpX,Y q, n P N, are such that Tn ÝÝÝÑ

nÑ8
T in LpX,Y q, i.e., }Tn ´ T } ÝÝÝÑ

nÑ8
0, then

Tn ÝÝÝÑ
nÑ8

T pointwise, i.e.,

Tnx ÝÝÝÑ
nÑ8

Tx for all x P X.

13.3. Completeness of the space of linear operators

It is natural to ask when the space LpX,Y q is complete. This question is answered
by

Theorem 13.6. Let X ‰ t0u. Then LpX, Y q is a Banach space if and only if Y is
a Banach space.

In the trivial case X “ t0u, the space LpX, Y q “ t0u is, of course, always complete.

In particular, Theorem 13.6 implies that, since X˚ “ LpX,Kq and the space K
is complete, the dual space X˚ of a normed space X is always complete.

The proof of the necessity in Theorem 13.6 relies on

Theorem 13.7. Whenever X ‰ t0u, the dual space X˚ contains non-zero functio-
nals. Moreover, for every x P X, there exists an x˚ P SX˚ such that x˚pxq “ }x}.
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Theorem 13.7 is a consequence of the Hahn-Banach theorem which is not included
in this introductory course; we omit its proof here. (Note, that the proof of the
Hahn–Banach theorem, of course, does not make use of Theorem 13.6).

For the proof of Theorem 13.6 it is also convenient to point out the following
exercise.

Exercise 13.8. Let x˚ P X˚ and y P Y . Define an operator

x˚ b y : X Q x ÞÝÑ x˚pxq y P Y.

Prove that x˚ b y P LpX,Y q with }x˚ b y} “ }x˚} }y}.

Proof of Theorem 13.6. Necessity. Suppose that LpX,Y q is complete, and let
pynq8

n“1 be a Cauchy sequence in Y . We must show that the sequence pynq converges
in Y .

Pick an x P SX . By Theorem 13.7, there is an x˚ P SX˚ such that x˚pxq “

}x} “ 1. Observe that the operators x˚ b yn, n P N (see Exercise 13.8), form a
Cauchy sequence:

}x˚ b yn ´ x˚ b ym} “ }x˚ b pyn ´ ymq} “ }x˚} }yn ´ ym} “ }yn ´ ym} ÝÝÝÝÝÑ
n,mÑ8

0

(because pynq is a Cauchy sequence). Since LpX,Y q is complete, the Cauchy sequence
px˚ b ynq converges in LpX, Y q, say x˚ b yn ÝÝÝÑ

nÑ8
T for some T P LpX,Y q. In

particular, px˚ b ynqx ÝÝÝÑ
nÑ8

Tx, i.e.,

}px˚ b ynqx ´ Tx} “ }x˚px qyn ´ Tx} “ }yn ´ Tx} ÝÝÝÑ
nÑ8

0,

i.e., yn Ñ Tx in Y .

Sufficiency. Let Y be a Banach space, and let
ř8

k“1 Tk be an absolutely conver-
gent series in LpX, Y q. In order that LpX,Y q were a Banach space, by Theorem
12.2, it suffices to show that the series

ř8

k“1 Tk converges in LpX, Y q. To this end
observe that, for every x P X,

8
ÿ

k“1

}Tkx} ď

8
ÿ

k“1

}Tk} }x} “ }x}

8
ÿ

k“1

}Tk} ă 8,

i.e., the series
ř8

k“1 Tkx is absolutely convergent in Y , and, hence, since Y is a Banach
space, the series

ř8

k“1 Tkx converges in Y by Theorem 12.2. Define an operator
T : X Ñ Y by

Tx :“
8
ÿ

k“1

Tkx, x P X.

It is straightforward to verify that T P LpX,Y q.

Exercise 13.9. Prove that T is linear and bounded.
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It remains to observe that
ř8

k“1 Tk “ T in LpX, Y q, i.e.,
›

›

›
T ´

řn
k“1 Tk

›

›

›
ÝÝÝÑ
nÑ8

0:

›

›

›
T ´

n
ÿ

k“1

Tk

›

›

›
“ sup

xPBX

›

›

›
Tx ´

n
ÿ

k“1

Tkx
›

›

›
“ sup

xPBX

›

›

›

8
ÿ

k“n`1

Tkx
›

›

›
ď sup

xPBX

8
ÿ

k“n`1

}Tkx}

ď sup
xPBX

8
ÿ

k“n`1

}Tk} }x} “

8
ÿ

k“n`1

}Tk} ÝÝÝÑ
nÑ8

0

because the remainder term
ř8

k“n`1 }Tk} of the covergent (in R) series
ř8

k“1 }Tk}

tends to 0 as n Ñ 8.

Exercise 13.10. Let
ř8

k“1 xk be a convergent series in X, and let T P LpX,Y q. Prove that

T

ˆ 8
ÿ

k“1

xk

˙

“

8
ÿ

k“1

Txk.
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14.1. The composition of continuous linear operators

Proposition 14.1. Let X, Y , and Z be normed spaces, and let A : X Ñ Y and
B : Y Ñ Z be continuous linear operators, i.e., A P LpX, Y q and B P LpY, Zq.
Then the composition BA : X Ñ Z is linear and continuous, i.e., BA P LpX,Zq,
and }BA} ď }B} }A}.

Proof. The linearity of the composition BA is (or, at least, ought to be) known
from the introductory course in linear algebra.

Exercise 14.1. Prove that the composition BA : X Ñ Z is linear.

For every x P X,

}pBAqx} “ }BpAxq} ď }B}}Ax} ď }B}}A}}x},

thus BA is bounded and }BA} ď }B}}A}.

Proposition 14.2. Let X, Y , and Z be normed spaces, and let A,An P LpX, Y q

and B,Bn P LpY, Zq, n P N, be such that

An ÝÝÝÑ
nÑ8

A in LpX,Y q and Bn ÝÝÝÑ
nÑ8

B in LpY, Zq. (14.1)

Then BnAn ÝÝÝÑ
nÑ8

BA in LpX,Zq.

Proof. For every n P N,

}BnAn ´ BA} “ }BnAn ´ BnA ` BnA ´ BA} “ }BnpAn ´ Aq ` pBn ´ BqA}

ď }BnpAn ´ Aq} ` }pBn ´ BqA} ď }Bn}}An ´ A} ` }Bn ´ B}}A}.

The convergent sequence pBnq8
n“1 is bounded in LpY, Zq, i.e., there is an M ě 0

such that
}Bn} ď M for every n P N.

Now,

}BnAn ´ BA} ď }Bn}}An ´ A} ` }Bn ´ B}}A}

ď M}An ´ A} ` }Bn ´ B}}A} ÝÝÝÑ
nÑ8

0,

because }An ´ A} ÝÝÝÑ
nÑ8

0 and }Bn ´ B} ÝÝÝÑ
nÑ8

0 by the assumption (14.1).

14.2. The “geometric series formula” for operators

For a normed space X, a linear operator A : X Ñ X, and a number n P t0u Y N,
the n-th power An of the operator A is defined by

A0 :“ I, A1 :“ A, and An “ AAn´1 for n ě 2.

(here I denotes the identity operator on X). From Proposition 14.1, it follows by
induction that

}An} ď }A}n for all n P t0u Y N.
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Theorem 14.3 (“the geometric series formula” for operators). Let X be a Banach
space (i.e. a complete normed space), and let A P LpX,Xq.

(a) Suppose that }A} ă 1. Then the operator I ´ A is invertible and pI ´ Aq´1 is
continuous (i.e., pI ´ Aq´1 P LpX,Xq). More precisely,

pI ´ Aq´1 “

8
ÿ

n“0

An

where the latter series converges in LpX,Xq.

(b) Suppose that }I ´ A} ă 1. Then the operator A is invertible and A´1 is conti-
nuous (i.e., A´1 P LpX,Xq). More precisely,

A´1 “

8
ÿ

n“0

pI ´ Aqn

where the latter series converges in LpX,Xq.

Proof. (b) follows immediately from (a), because A “ I ´ pI ´ Aq.

(a). First observe that the series
ř8

n“0A
n is absolutely convergent, because

8
ÿ

n“0

}An} ď

8
ÿ

n“0

}A}n ă 8

(the latter series is a geometric series where the multiplier }A} ă 1). Since the
space X is complete, also LpX,Xq is complete (by Theorem 13.6), and thus the
absolutely convergent series

ř8

n“0 A
n converges in LpX,Xq (by Theorem 12.2). Put

B :“
ř8

n“0A
n P LpX,Xq. In order to prove that B “ pI ´ Aq´1, it suffices to show

that
BpI ´ Aq “ I and pI ´ AqB “ I. (14.2)

To this end, putting, for every m P N,

Bm :“
m
ÿ

n“0

An,

it suffices to show that

BmpI ´ Aq ÝÝÝÑ
mÑ8

I and pI ´ AqBm ÝÝÝÑ
mÑ8

I in LpX,Xq, (14.3)

because, since Bm ÝÝÝÑ
mÑ8

B, by Proposition 14.2,

BmpI ´ Aq ÝÝÝÑ
mÑ8

BpI ´ Aq and pI ´ AqBm ÝÝÝÑ
mÑ8

pI ´ AqB in LpX,Xq;

therefore, if (14.3) holds, then one has (14.2) by the uniqueness of the limit.
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It remains to verify the conditions (14.3):

pI ´ AqBm “ pI ´ Aq

m
ÿ

n“0

An “

m
ÿ

n“0

An ´ A
m
ÿ

n“0

An “

m
ÿ

n“0

An ´

m
ÿ

n“0

AAn

“

m
ÿ

n“0

An ´

m
ÿ

n“0

An`1 “

m
ÿ

n“0

An ´

m`1
ÿ

n“1

An “ A0 ´ Am “ I ´ Am;

since }A} ă 1, one has }Am} ď }A}m ÝÝÝÑ
mÑ8

0, thus Am ÝÝÝÑ
mÑ8

0 and

pI ´ AqBm “ I ´ Am ÝÝÝÑ
mÑ8

I;

similarly one obtains that BmpI ´ Aq ÝÝÝÑ
mÑ8

I, and the proof is complete.

Corollary 14.4. Let X and Y be normed spaces with one of them being complete,
and let A,B P LpX, Y q be such that A is invertible and the inverse A´1 is continuous
(i.e., A´1 P LpY,Xq), and

}B ´ A} ă
1

}A´1}
.

Then also B is invertible and the inverse B´1 is continuous, i.e., B´1 P LpY,Xq.

Proof. [I] First consider the case when Y is complete. In this case, one can write

B “
`

I ´ pA ´ BqA´1
˘

A.

Since

}pA ´ BqA´1} ď }A ´ B} }A´1} ă
1

}A´1}
}A´1} “ 1

and the space Y is complete, by “the geometric series formula” (Theorem 14.3), the
operator C :“ I ´ pA´BqA´1 P LpY, Y q is invertible and C´1 P LpY, Y q. Thus also
B “ CA in invertible and B´1 “ A´1C´1 P LpY,Xq.

[II] In the case when X is complete, write

B “ A
`

I ´ A´1pA ´ Bq
˘

.

The rest of the argument is symmetric to that in (I).
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15.1. Pairwise isomorphness of n-dimensional normed spaces

Definition 15.1. LetX and Y be normed spaces. An operator T P LpX,Y q is called
an isomorphism, if it is a bijection whose inverse is continuous, i.e., T´1 P LpY,Xq.
The spaces X and Y are said to be isomorphic, if there exists an isomorphism
T P LpX, Y q. In this case, one also says that X is isomorphic to Y or that Y is
isomorphic to X.

Proposition 15.1. Let X and Y be normed spaces. A linear surjection T : X Ñ Y
is an isomorphism if and only if there are constants α, β ą 0 such that, for every
x P X,

α}x} ď }Tx} ď β}x}. (15.1)

Proof.

Exercise 15.1. Prove Proposition 15.1.

Definition 15.2. Let n P N. One says that a normed space X is n-dimensional and
writes dimX “ n ifX is n-dimensional as a linear space, i.e., there are e1, . . . , en P X
such that every x P X admits a unique representation

x “

n
ÿ

j“1

ξjej where ξ1, . . . , ξn P K.

The system te1, . . . , enu is called a basis for X.
A normed space X is said to be finite dimensional if it is finite dimensional as a

linear space, i.e., either X is n-dimensional for some n P N or X “ t0u. In this case,
one writes dimX ă 8.

A normed space X is said to be infinite dimensional if it is not finite dimensional.
In this case, one writes dimX “ 8.

Remark 15.1. From the introductory course in linear algebra, one remembers that
a linear space X is n-dimensional if and only if there exists a linearly independent
system in X consisting of n vectors whereas every system consisting of n`1 vectors
in X is linearly dependent.

Example 15.1. The spaces ℓnp , where n P N and 1 ď p ď 8, are n-dimensional: the
system

e1 “ p1, 0, . . . , 0
loooomoooon

n

q, e2 “ p0, 1, 0, . . . , 0
looooomooooon

n

q, . . . . . . , en “ p0, . . . , 0, 1
loooomoooon

n

q

is a basis for ℓnp .
All the other normed spaces introduced in Section 4 are infinite dimensional.
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In this subsection, we shall show that any two n-dimensional (n P N) normed
spaces are isomorphic. Our first step towards this result is the following lemma.

Lemma 15.2. Let n P N and let X be an n-dimensional normed space with a basis
te1, . . . , enu. The mapping

T : ℓn8 Q pξjq
n
j“1 ÞÝÑ

n
ÿ

j“1

ξjej P X (15.2)

is an isomorphism. Thus every n-dimensional normed space is isomorphic to ℓn8.

Proof. Clearly T is a linear bijecton. In order to see that T is an isomorphism, it
remains to find α, β ą 0 satisfying (15.1) for every x P ℓn8.

On one hand, for every x “ pξjq
n
j“1 P ℓn8, one has

}Tx} “

›

›

›

›

n
ÿ

j“1

ξjej

›

›

›

›

ď

n
ÿ

j“1

|ξj|}ej} ď

ˆ n
ÿ

j“1

}ej}

˙

max
1ďjďn

|ξj| “

ˆ n
ÿ

j“1

}ej}

˙

}x},

i.e., the second inequality in (15.1) holds for β :“
řn

j“1 }ej}.
On the other hand, if x “ 0, the first inequality in (15.1) holds for every α ą 0.

If x ‰ 0, this inequality is equivalent to α ď
1

}x}
}Tx}, i.e., α ď

›

›

›

›

1

}x}
Tx

›

›

›

›

, i.e.,

›

›

›

›

T

ˆ

x

}x}

˙›

›

›

›

ě α.

Thus, denoting by S the unit sphere of ℓn8, i.e. S :“
␣

x P ℓn8 : }x} “ 1
(

, in order to
find the desired α ą 0, it suffices to show that

inf
xPS

}Tx} ą 0, (15.3)

because, in this case, one can take α :“ infxPS }Tx} (observe that
x

}x}
P S whenever

x P ℓn8zt0u).
It remains to prove (15.3). To this end, first observe that the function

f : S Q x ÞÝÑ }Tx} P R

is continuous (because it is the composition of the continuous mappings T |S : S Ñ X
and } ¨ } : X Ñ R). The unit sphere S is relatively compact (because, by Example
9.2, bounded sets in ℓn8 are relatively compact) and closed (because every sphere in a
metric space is closed); thus S is compact. By Theorem 9.6, the continuous function
f on the compact set S attains its infimum, i.e., there is an x0 “ pξ0j qnj“1 P S such
that

fpx0q “ inf
xPS

fpxq “ inf
xPS

}Tx}.

It remains to show that fpx0q ą 0. Suppose for contradiction that fpx0q “ 0, i.e.,

}Tx0} “

›

›

›

řn
j“1 ξ

0
j ej

›

›

›
“ 0, i.e.

řn
j“1 ξ

0
j ej “ 0. Since te1, . . . , enu is a basis for X, it

follows that ξ01 “ ¨ ¨ ¨ “ ξ0n “ 0. On the other hand, }x0} “ max1ďjďn |ξ0j | “ 1, a
contradiction.
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Corollary 15.3. Let n P N. Any two n-dimensional normed spaces are isomorphic.

Proof. By Lemma 15.2, every n-dimensional normed space is isomorphic to ℓn8.
Thus it suffices to solve the following exercise.

Exercise 15.2. Let X, Y , and Z be normed spaces. Prove that

(a) if T : X Ñ Y and S : Y Ñ Z are isomorphisms, then also the composition ST : X Ñ Z is
an isomorphism;

(b) if X is isomorphic to Y , and Y is isomorphic to Z, then X is isomorphic to Z

Besides Corollary 15.3, Lemma 15.2 has some more nice corollaries.

Corollary 15.4. Any finite dimensional normed space is complete.

Proof. By Lemma 15.2, every n-dimensional normed space is isomorphic to ℓn8.
The space ℓn8 is complete (by Example 6.5). Thus it remains to solve the following
exercise.

Exercise 15.3. Prove that if one of two isomorphic normed spaces is complete, then so is the
other.

Corollary 15.5. A finite dimensional subspace of a normed space is closed.

Proof. By Corollary 15.4, any finite dimensional subspace of a normed space is
complete. By Proposition 6.2, (a), any complete subspace of a metric space is closed,
thus any finite dimensional subspace of a normed space is closed.

Corollary 15.6. Any bounded set in a finite dimensional normed space is relatively
compact.

Proof. Let B be a bounded subset of an n-dimensional normed space, and let
T : ℓn8 Ñ X be the isomorphism from Lemma 15.2. Then T´1pBq “ tT´1z : z P Bu

is a bounded subset of ℓn8 (because the bounded operator T´1 maps the bounded
set B into a bounded set by Proposition 13.2), thus T´1pBq is relatively compact
(because every bounded subset of ℓn8 is relatively compact by Example 9.2). It
follows that also B “ T

`

T´1pBq
˘

is relatively compact (because the continuous
operator T maps the relatively compact set T´1pBq to a relatively compact set by
Exercise 9.2).

Definition 15.3. Two norms } ¨ } and ~ ¨ ~ on a linear space X are said to be
equivalent if there are constants α, β ą 0 such that

α}x} ď ~x~ ď β}x} for every x P X.

By Proposition 15.1, it is clear that the equivalence of the norms } ¨ } and ~ ¨ ~

means that the formal identity operator
`

X, } ¨ }
˘

Q x ÞÝÑ x P
`

X,~ ¨ ~
˘

is an isomorphism.
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Corollary 15.7. Any two norms on a finite-dimensional linear space are equivalent.

Proof. Let X be an n-dimensional linear space with basis te1, . . . , enu. It suffices
to show that the formal identity operator

J :
`

X, } ¨ }
˘

Q x ÞÝÑ x P
`

X,~ ¨ ~
˘

is an isomorphism. To this end, recall that, by Lemma 15.2, the mappings

T : ℓn8 Q pξjq
n
j“1 ÞÝÑ

n
ÿ

j“1

ξjej P
`

X, }¨}
˘

and S : ℓn8 Q pξjq
n
j“1 ÞÝÑ

n
ÿ

j“1

ξjej P
`

X,~¨~
˘

are isomorphisms. Observing that J “ ST´1, it remains to apply Exercise 15.2, (a).

Corollary 15.8. Let X and Y be normed spaces. Suppose that dimX ă 8. Then
every linear operator T : X Ñ Y is continuous.

Proof.
˚Exercise 15.4. Prove Corollary 15.8.

Exercise 15.5. Prove that a continuous linear operator between normed spaces X an Y remains
continuous if the original norms in X and Y are replaced by equivalent norms.

15.2. Riesz’s lemma. Non-compactness of the unit sphere in
infinite dimensional normed spaces

By Corollary 15.6, every bounded set in a finite dimensional normed space is rela-
tively compact. In particular, the unit sphere of a finite dimensional normed space
is relatively compact. In this subsection, we shall see that this is a characteristic
feature of finite dimensional normed spaces.

The crucial step in showing that the unit sphere of an infinite dimensional normed
space is always non-compact is the following theorem which is of interest in its own
right.

Theorem 15.9 (Riesz’s lemma). Let X be a normed space, let Y be a proper closed
subspace of X (i.e., Y is a closed subspace of X such that Y ‰ X), and let 0 ă ε ă 1.
Then there is an xε P X with }xε} “ 1 such that

}xε ´ y} ě 1 ´ ε for every y P Y , (15.4)

i.e., ρpxε, Y q ě 1 ´ ε.

Recall that in a metric space X, the distance ρpx,Aq between a point x P X and
a subset A Ă X is defined by ρpx,Aq :“ inf

yPA
ρpx, yq. It is clear that ρpx,Aq “ 0 if

and only if x P A.



74 Metric spaces

Proof of Theorem 15.9. Since Y is a proper subspace, there is an x P XzY .
Since Y is closed, Y “ Y , therefore x R Y , hence ρpx, Y q ą 0. Thus one can choose

a z P Y so that }x ´ z} ă
ρpx, Y q

1 ´ ε
. Putting xε :“

x ´ z

}x ´ z}
, one has }xε} “ 1, and it

remains to verify (15.4): whenever y P Y , one has

}xε ´ y} “

›

›

›

›

x ´ z

}x ´ z}
´ y

›

›

›

›

“

›

›

›

›

x ´ z ´ }x ´ z} y

}x ´ z}

›

›

›

›

“
1

}x ´ z}

›

›

›
x ´ z ´ }x ´ z} y

›

›

›
“

1

}x ´ z}

›

›

›
x ´

`

z ` }x ´ z} y
˘

›

›

›

ě
ρpx, Y q

}x ´ z}
ą 1 ´ ε.

Corollary 15.10. The unit sphere of an infinite dimensional normed space is not
compact.

Proof. Let X be an infinite dimensional normed space. It suffices to construct a
sequence pxkq8

k“1 in the unit sphere SX :“
␣

x P X : }x} “ 1u of X such that, for all
k, l P N with k ‰ l,

}xk ´ xl} ě
1

2
, (15.5)

because such a sequence pxkq does not contain any Cauchy subsequences, thus it
does not contain any convergent subsequences, and the non-compactness of the unit
sphere SX follows.

In order to construct the desired sequence pxkq, first choose an arbitrary x1 P SX

and proceed inductively as follows:

• given n P N and tx1, . . . , xnu satisfying (15.5) for all k, l P t1, . . . , nu with k ‰ l,

put Y :“ spantx1, . . . , xnu and choose an xn`1 P SX so that ρpxn`1, Y q ě
1

2
(since, by Corollary 15.5, the subspace Y is closed, such an xn`1 exists by
Riesz’s lemma).

The sequence pxkq obtained in this process clearly satisfies (15.5) for all k, l P N with
k ‰ l.

Corollary 15.11. Let X be a normed space. The following assertions are equivalent:

(i) X is finite dimensional;

(ii) every bounded set in X is relatively compact;

(iii) the unit sphere SX :“ tx P X : }x} “ 1u is compact.
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Proof. (i)ñ(ii) is Corollary 15.6.

(ii)ñ(iii). Assume that (ii) holds. Then SX is relatively compact (because it is
bounded). Since SX is closed (because every sphere in a metric space is closed), it
is compact.

(iii)ñ(i) follows from Corollary 15.10.


