Generalized Linear Models

Lecture 4. Models with normally distributed response

Formulation of the problem

Assumptions:

- Observations y_i are realizations of (conditional) r.v. Y_i
- $Y_i \sim N(\mu_i, \sigma^2)$
- Independence: $cov(Y_i, Y_j) = 0, i \neq j$

R.v.-s Y_i constitute r.v. $\mathbf{Y} = (Y_1, \dots, Y_n)^T$

$$\Rightarrow$$
 $\mathbf{Y} \sim N_n(\boldsymbol{\mu}, \sigma^2 \mathbf{I})$

Sample \mathbf{y} is a random realization of n observations from \mathbf{Y} , $\mathbf{y} = (y_1, \dots, y_n)^T$ Design matrix \mathbf{X}

Classical linear model:

$$\mu_i = \mathbf{x}_i^T \boldsymbol{\beta}, \quad \boldsymbol{\mu} = \mathbf{X} \boldsymbol{\beta}$$

Link function: identity $g(\mu_i) = \mu_i$

Depending on the type of arguments we reach different classical models

Advantages of classical linear model

Models with normal response are simpler as compared to other members of exponential family:

- canonical link is identity
- variance function does not depend on the mean
- all cumulants except for first two are equal to 0
- in case of multivariate normal setup, the dependency structure is determined by covariance or correlation matrix

In case of other distributions, situation is not as simple nor clear

Assessing the normality assumption

Question

How important is the assumption of normality?

- important if n is small
- if $n \to \infty$, asymptotic normality follows from the central limit theorem

Central limit theorem assumes homogenous (constant) variance!

 \Rightarrow outliers may violate this assumption and void the convergence to normal distribution even if $n\to\infty$

Thus, we consider models where the response has constant variance

Estimation of β (fixed σ^2), 1

Consider the model $\mu_i = \mathbf{x}_i^T \boldsymbol{\beta}$

Question

How to estimate the parameters eta (model parameter) and σ^2 (parameter of dist.)?

In case of independent observations, the sample log-likelihood is

$$\ln L(\beta, \sigma^2) = -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2} \sum \frac{(y_i - \mu_i)^2}{\sigma^2}$$

where $\mu_i = \mathbf{x}_i^T \boldsymbol{\beta}$ (and assume that σ^2 is fixed)

NB! Maximizing the log-likelikood is equivalent to minimizing the residual sum of squares:

$$RSS(\beta) = \sum (y_i - \mu_i)^2 = (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta)$$

Derivative w.r.t. β leads us to normal equations:

$$\mathbf{X}^T \mathbf{X} \boldsymbol{\beta} = \mathbf{X}^T \mathbf{y}$$

GLM (MTMS.01.011) Lecture 4 5 / 28

Estimation of β (fixed σ^2), 2

If ${\bf X}$ has full rank, so has ${\bf X}^T{\bf X}$, which implies that $\exists ({\bf X}^T{\bf X})^{-1}$ so that

$$\hat{oldsymbol{eta}} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$$

If the inverse matrix does not exist, generalized inverse can be used (but the solution is not unique!)

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^- \mathbf{X}^T \mathbf{y}$$

Estimation of parameter β . Algorithmic solutions

Main difficulty: estimation of $(\mathbf{X}^T\mathbf{X})^{-1}$

- **Gauss elimination method**. Beaton (1964) *SWEEP*-operator technique
- Cholesky decomposition

Main idea is to find a triangular matrix \mathbf{L} such that $\mathbf{X}^T\mathbf{X} = \mathbf{L}\mathbf{L}^T$, which implies $(\mathbf{X}^T\mathbf{X})^{-1} = (\mathbf{L}^{-1})^T\mathbf{L}^{-1}$

• **QR decomposition** (*Gram-Schmidt orthogonalization*) Matrix **X** is decomposed as a product $\mathbf{X} = \mathbf{Q}\mathbf{R}$, where **Q** is a $n \times n$ orthogonal matrix, i.e $\mathbf{Q}^T\mathbf{Q} = \mathbf{Q}\mathbf{Q}^T = \mathbf{I}$ $\mathbf{R} - n \times p$ (upper) triangular matrix such that $\mathbf{R}^T\mathbf{R} = \mathbf{R}^T\mathbf{Q}^T\mathbf{Q}\mathbf{R} = \mathbf{X}^T\mathbf{X}$ **Q**, **R** can be found using different methods (Householder's method, Givens rotation, and more)

Properties of the ordinary least squares (OLS) estimator

By Gauss-Markov theorem (provided that the assumptions hold)

- ullet OLS estimator is unbiased: $\mathbf{E}\hat{oldsymbol{eta}}=oldsymbol{eta}$
- OLS estimator is effective (has minimal variance)

i.e. OLS estimate is BLUE - best linear unbiased estimate

Assumptions:

- $\mathbf{E}\varepsilon_i = 0$, $\mathbf{D}\varepsilon_i = \sigma^2$, $\forall i$
- $cov(\varepsilon_i, \varepsilon_j) = 0, i \neq j$

If $\mathbf{Y} \sim N_n(\boldsymbol{\mu}, \sigma^2 \mathbf{I})$ then OLS estimate is also ML estimate and

$$\hat{\boldsymbol{\beta}} \sim N_p(\boldsymbol{\beta}, (\mathbf{X}^T\mathbf{X})^{-1}\sigma^2)$$

GLM (MTMS.01.011) Lecture 4 8 / 2

Estimation of σ^2

Log-likelihood of a sample:

$$\ln L(\beta, \sigma^2) = -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2} \sum \frac{(y_i - \mu_i)^2}{\sigma^2}$$

where $\mu_i = \mathbf{x}_i^T \boldsymbol{\beta}$

Now, substitute the obtained estimate $\hat{oldsymbol{eta}}$ to the equation

$$\ln L(\sigma^2) = -\frac{n}{2}\ln(2\pi\sigma^2) - \frac{1}{2}\frac{RSS(\hat{\beta})}{\sigma^2}$$

to get so-called **profile likelihood** for σ^2

As usual, take the derivative by σ^2 , equate it to zero to obtain the following (biased!) estimate

$$\hat{\sigma}^2 = \frac{RSS(\hat{\beta})}{n}$$

Unbiased estimate is given by:

$$\hat{\sigma}^2 = \frac{RSS(\hat{\beta})}{n-p}$$

GLM (MTMS.01.011) Lecture 4 9 / 1

Hypotesis testing. Wald test

A. To test a single parameter H_0 : $\beta_j = 0$

$$t = \frac{\hat{\beta}_j}{\sqrt{\sigma_{\hat{\beta}_j}^2}}$$

If σ^2 is **estimated** then $t \sim t_{n-p}$; If σ^2 is **known** then $t \sim N(0,1)$ In case of big samples $(n \to \infty)$ $t \stackrel{a}{\sim} N(0,1)$

B. To test more than one parameter H_0 : $\beta_2 = 0$ $\beta = (\beta_1^T, \beta_2^T)^T$, $(p_1 + p_2)$ -dimensional

$$w = \hat{\boldsymbol{\beta}}_2^T \boldsymbol{\Sigma}_{\hat{\boldsymbol{\beta}}_2}^{-2} \hat{\boldsymbol{\beta}}_2$$

Under the normality assumption, $w \sim \chi_{p_2}^2$, if σ^2 is **known** If σ^2 is **estimated** then $\frac{w}{p_2} \sim F_{p_2,n-p}, \ p = p_1 + p_2$ If $n \to \infty$ then $n - p \to \infty$ and (scaled!) F-distribution $\to \chi_{p_2}^2$

GLM (MTMS.01.011) Lecture 4 10 /

Hypothesis testing. Likelihood ratio test

To test more than one parameter
$$H_0: \beta_2 = 0$$
 $\beta = (\beta_1^T, \beta_2^T)^T$, $(p_1 + p_2)$ -dimensional

$$\mathbf{X} = (\mathbf{X}_1, \mathbf{X}_2)$$
 is divided into two parts $(p_1 \text{ and } p_2 \text{ parameters})$

Compare the models:

$$M = M(X)$$
 (upper model, all arguments)

$$M_1 = M(\mathbf{X}_1)$$
 (lower model, p_1 parameters, $k_1 = p_1 - 1$ arguments)

Compare the corresponding log-likelihoods (σ^2 known)

$$\max \ln L(\beta_1) = C - \frac{1}{2} \frac{RSS(\mathbf{X}_1)}{\sigma^2}$$
, where $C = -\frac{n}{2} \ln(2\pi\sigma^2)$ does not depend on β $\max \ln L(\beta) = C - \frac{1}{2} \frac{RSS(\mathbf{X}_1 + \mathbf{X}_2)}{\sigma^2}$

Likelihood ratio statistic (λ)

$$-2\ln\lambda = \frac{RSS(\mathbf{X}_1) - RSS(\mathbf{X}_1 + \mathbf{X}_2)}{\sigma^2}$$

If σ^2 is **not known**, it will be estimated from the upper model:

$$\hat{\sigma}^2 = RSS(\mathbf{X}_1 + \mathbf{X}_2)/(n-p)$$

In case of big samples $-2 \ln \lambda \sim \chi_{p_2}^2$

Regression diagnostics. Residual analysis

Model
$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

Model residuals $\hat{\varepsilon}$ (or e) are the estimates of random error ε $\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$, $\hat{\mathbf{y}} = \mathbf{X} \hat{\beta} = \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$

$$\hat{\varepsilon} = \mathbf{y} - \hat{\mathbf{y}} = (\mathbf{I} - \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T)\mathbf{y} = (\mathbf{I} - \mathbf{H})\mathbf{y},$$

where
$$\mathbf{H} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$$
 is the "hat" matrix $\hat{\mathbf{y}} = \mathbf{H}\mathbf{y}$
 $\hat{\mathbf{c}} = (\mathbf{I} - \mathbf{H})\mathbf{y}, \quad \mathbf{D}\hat{\mathbf{c}} = (\mathbf{I} - \mathbf{H})\sigma^2\mathbf{I}$

Variance of *i*-th residual is thus $\sigma_{\hat{\varepsilon}_i}^2 = (1-h_{ii})\sigma^2$

 \Rightarrow residuals may have different variances even if the observations have constant variance (σ^2), since the estimates also depend on the arguments!

GLM (MTMS.01.011) Lecture 4 12 / 28

Standarized/Studentized residuals

Standardized residuals (also internally studentized)

$$e_{iS} = \frac{e_i}{\sqrt{1 - h_{ii}} \hat{\sigma}}$$

Studentized residuals (also externally studentized, studentized deleted)

$$e_{iT} = \frac{e_i}{\sqrt{1 - h_{ii}} \hat{\sigma}_{(i)}}$$

Standardized/Studentized residual is too big if it is ≈ 3 (already > 2 can be considered)

Leverage and influence

Leverage is the diagonal element h_{ii} of hat matrix H (Hat diag)

$$\mathbf{H} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$$
, $rank(\mathbf{X}) = k+1 = tr(\mathbf{H}) = \sum_{i=1}^n h_{ii} \Rightarrow \text{average } h_{ii} \text{ is } \frac{k+1}{n}$
Leverage is too big: $h_{ii} > \frac{2(k+1)}{n}$

Influence is the observation's effect on parameters (prediction, parameters' variance)

Observation's influence is estimated by Cook's statistic (cooks.distance, in R package stats)

Observation's influence to a particular parameter estimate: dfbetas (*Difference of Betas*, in R package stats)

$$\texttt{dfbetas(model)}_{i,j} = \frac{\hat{\beta}_j - \hat{\beta}_{(i)j}}{\hat{\sigma}_{(i)} \sqrt{(\mathbf{X}^T \mathbf{X})_{jj}^{-1}}}$$

Empirical estimate: influence is too big if dfbetas $> \frac{2}{\sqrt{n}}$

GLM (MTMS.01.011) Lecture 4 14 / 28

Transformations

Transformations are used to transform non-symmetric distributions close to normal and also to stabilize the variance

George Edward Pelham Box (b. 1919), Sir David Roxbee Cox (b. 1924)

- Box-Cox (1964) family of power-transformations
- Yeo-Johnson (2000) family of power-transformations

Box-Cox transforms are modified, because

- 1 Not all data can be transformed to be close to normal
- ② Initial restriction y > 0
- Work well if the transformation is applied to a unimodal non-symmetric distribution
- On not work well in case of U-shaped distributions

Box-Cox family of transformations

Box and Cox (1964) – there exist non-symmetric distributions that can be transformed quite close to a normal distribution

General form of the transformation:

$$y(\lambda) = \left\{ \begin{array}{l} \frac{y^{\lambda} - 1}{\lambda}, & \lambda \neq 0 \\ \ln y, & \lambda = 0 \end{array} \right\}$$

 $y>0,\ \lambda$ – parameter of the transformation, usually $\lambda\in(-2,2)$ The transformation is simplified to y^{λ} if $\lambda\neq0$ (Cleveland, 1993)

Known transformations:

$$\lambda = -1 \Rightarrow \frac{1}{y}$$

$$\lambda = 0 \Rightarrow \ln y$$

$$\lambda = 0.5 \Rightarrow \sqrt{y}$$

$$\lambda = 1 \Rightarrow y$$

$$\lambda = 2 \Rightarrow y^{2}$$

Box-Cox transformation. General schema

Assume that $\exists \lambda$, such that the transformed data is normal:

$$Y_i(\lambda) \sim N(\mathbf{x}_i^T \boldsymbol{\beta}, \sigma^2)$$

Estimation (using ML):

- ① fix λ , estimate β , σ^2
- ② substitute the obtained estimates to ML expression to get the function $pL(\lambda)$ $pL(\lambda)$ – **profile likelihood** of parameter λ

Lecture 4 17 / 28

Box-Cox transformation

NB! Don't forget the Jacobian $J(\lambda, y)$ while transforming $y \to y(\lambda)$

$$\lambda \neq 0, \ y(\lambda) = \frac{y^{\lambda} - 1}{\lambda}$$
$$f(y_i | \lambda, \mu_i, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \ y_i^{\lambda - 1} \exp\left[-\frac{1}{2\sigma^2} \left\{\frac{y_i^{\lambda} - 1}{\lambda} - \mu_i\right\}^2\right]$$

$$\lambda = 0, \ y(\lambda) = \ln y$$
$$f(y_i|0, \mu_i, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} y_i^{-1} \exp\left[-\frac{(\ln y_i - \mu_i)^2}{2\sigma^2}\right]$$

$$\mu = X\beta$$
, thus $\mu = \mu(\beta)$

Lecture 4

Box-Cox transformation (2)

Main steps:

- Find the log-likelihood of the sample
- ② Fix λ , find the partial derivatives of the log-likelihood by β and σ^2
- \P Substitute the estimates to the expression of likelihood, obtain the profile log-likelihood for λ :

$$pI(\lambda) = -\frac{n}{2} \ln RSS(\lambda) + (\lambda - 1) \sum \ln y_i$$

5 Maximizing over λ -s gives the optimal λ

R: function boxcox (package MASS), more advanced version: function boxCox (package car), SAS: proc TRANSREG

GLM (MTMS.01.011) Lecture 4 19 / 28

Box-Cox transform. Example 1

Data: distance (in km) and fuel consumption (in litres), n=107 Simple regression model: y – distance, x – fuel consumption Box-Cox transform was used

Results:

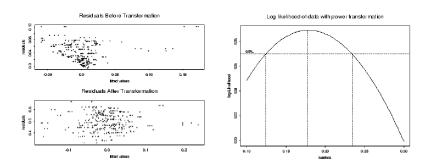
- model parameters: intercept $\hat{eta_0} = -636.9$, $\hat{eta_1} = 211.9$, $R^2 = 0.49$
- estimated $\lambda = 1.5$ 95% CI: (0.7; 2.4)

Can you write down the corresponding model?

NB! Box-Cox method gives a suggestion about the range of transformations NB! The transformation changes the scale, thus it is also important to consider the interpretability of the model!

Source: Chen, Lockhart, Stephens (2002)

Box-Cox transform. Example 2



Left figure shows the residuals before and after transform Right figure shows the log-likelihood of data under different λ -s, maximum is obtained if $\lambda=0.2$, i.e. the transformation is $\sqrt[5]{y}$

The necessity of a transform. Atkinson scores

Question

Is the Box-Cox transformation necessary at all?

To test that, an additional term will be added to the model:

$$a_i=y_i(\ln\frac{y_i}{\tilde{y}}-1),$$

where \tilde{y} is the geometric mean of y

Let us denote the coefficent of the extra term a_i by γ If the extra term is significant then the Box-Cox transform is necessary and

$$\hat{\lambda} \approx 1 - \hat{\gamma},$$

where $\hat{\gamma}$ is the estimate of γ from the model

Source: Atkinson (1985)

Argument transforms

Box, Tidwell (1962): similar approach as with Atkinson scores

Question

Is an argument transform necessary?

To test if, in case of a continuous argument x, it is necessary to add x^{λ} to a model (instead of x), an extra term $a=x\ln x$ is used so that the model contains x (coefficient β) and $x\ln x$ (coefficient γ)

If the extra term is significant, then the transform is necessary and $\hat{\lambda} \approx \frac{\hat{\gamma}}{\hat{\beta}} + 1$, where $\hat{\gamma}$ is the estimated coefficient of the extra term, $\hat{\beta}$ is the coefficient of argument x from the original model (without $x \ln x$)

Both Atkinson and Box-Tidwell method are based on the Taylor series expansion. Assume that the correct model is $y=\alpha+\beta x^\lambda+\epsilon$, using Taylor expansion x^λ at $\lambda=1$ yields $x^\lambda\approx x+(\lambda-1)x\ln x$ Substitute this into the model, get $y=\alpha+\beta x+\beta(\lambda-1)x\ln x+\epsilon$ and denote $\gamma=\beta(\lambda-1)$

R: function boxTidwell (package car)

Yeo-Johnson family of power-transformations

Box-Cox: restriction y > 0

New concepts: relative skewness (Zwet, 1964), more right-skewed, more left-skewed

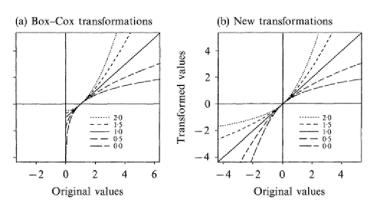
Yeo-Johnson family of power-transformations

$$\psi(y,\lambda) = \begin{cases} ((y+1)^{\lambda} - 1)/\lambda, & \lambda \neq 0, y \geq 0\\ \ln(y+1), & \lambda = 0, y \geq 0\\ -((-y+1)^{2-\lambda} - 1)/(2-\lambda), & \lambda \neq 2, y < 0\\ -\ln(-y+1), & \lambda = 2, y < 0 \end{cases}$$

If case y>0, this construction is equivalent to Box-Cox transformation R: function boxCox with parameter family="yjPower" (package car)

Yeo, I.-K., Johnson, R.A. (2000). A new family of power transformations to improve normality or symmetry. Biometrika, 87,4,954-959

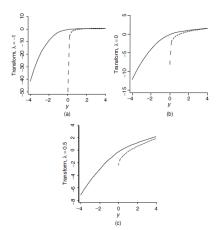
Comparison of transformations (1)



Comparison of Box-Cox transformations and new (Yeo-Johnson) transformations under different values of λ

GLM (MTMS.01.011) Lecture 4 25 / 28

Comparison of transformations (2)



Comparison of Box-Cox transformations and new (Yeo-Johnson) transformations if $y \to 0$

GLM (MTMS.01.011) Lecture 4 26 / 28

Comments about transformations

- Box-Cox method gives a suggestion about the range of transformations. The transformation changes the scale, thus it is also important to consider the interpretability of the model.
- Box-Cox transforms are empirical, based on data.
 There are also transforms for stabilizing the variance that are based on theoretical considerations
- John Tukey, Fred Mosteller (1977) 'bulging rule' two-dimensional graphs show which transformation to use

Bulging rule

Transformation depending on data

Figure 4.6 from Fox (1997)

