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Introduction

While investigating nature, computational methods are used according to
the following scheme:

1) an object, a phenomenon or a process is investigated. Some of the
more important ones: heat spreading in a body, electric current in
semiconductors, infiltration of a liquid through soil, weather, sea
waves, nuclear reactor, burning (more generally: a chemical reac-
tion), the price of stocks on the stock exchange.

2) a mathematical model is formed. These are, e.g., function, equation
(system of equations), differential equation (including ordinary or
partial) and initial value problem or boundary value problem, inte-
gral equation, random process, optimization problem. Usually the
laws of nature have been relied on here.

3) the mathematical model is explored: properties of the function, the
existence and uniqueness of the solutions of the equations, proper-
ties of the solutions. This is the part that the classical disciplines –
algebra, calculus, geometry, probability theory – deal with.

4) the true solution (function) is found. In practical applications it is
almost always found approximately. Computers are used for this.

Numerical methods deal with the 4. step. Our goal is to answer the ques-
tion: Which is the best way to carry out step 4?

In this course the main topics are:

1) solving equations;

2) solving systems of equations;

3) approximating functions;

4) approximating definite integrals.

Before going to the main topics we take a brief look at errors.
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6 INTRODUCTION

§1. A brief overview of errors

Errors do not mean anything bad, they are an inevitability instead. The ex-
istence of an error means that the solution, that has been found practically
from the real world, differs from the absolutely exact solution.

Mistakes on the other hand are bad: a mistake occurs when something
that can be done correctly has been done wrongly.

1.1 Types of errors

1) Errors of mathematical formulation or errors of model. This comes
from the fact that mathematical models (equations, systems of equa-
tions) describe real phenomena approximately.

Example. The differential equation

l
d2 ϕ

dt2
+ k

dϕ

dt
+ g sin ϕ = 0

describes the oscillation of a pendulum. The notation is the follow-
ing:

ϕ
l

t time;
ϕ angle of deviation from vertical position;
l length of the pendulum;
k friction coefficient of air;
g acceleration of gravity.

The unknown is usually the function ϕ = ϕ(t).

While forming the equation it is assumed that the gravitational field
has parallel field lines, but in reality they are centrosymmetric; the

resistance force k
dϕ
dt depends proportionately on the velocity (

dϕ
dt is

proportional to tangential velocity), but that only takes place at low
speeds. Parameters l, k and g need to be measured and that can
only be done approximately. When the oscillation is small, we have
sin ϕ ≈ ϕ. Such a substitution simplifies the equation, because then
we get a linear equation with constant coefficients, but that is addi-
tional approximation.

c© Author and University of Tartu. All rights reserved



1. A BRIEF OVERVIEW OF ERRORS 7

2) Errors of method. Methods are divided into exact and approximate
ones. A method is called exact if it gives the exact solution after ex-
act performing a finite number of arithmetic operations. Otherwise
the method is called approximate. An example of an exact method
is solving a system of linear equations using determinants. This
course deals with approximate methods. It turns out that approx-
imate methods have much bigger practical significance than exact
methods.

3) Round-off errors. For finding the solution a computer is usually
used, but any computer can operate only with a finite number of
rational numbers. Therefore we cannot get by without rounding real
numbers (or the real and imaginary part of a complex number).

An error of mathematical formulation is called unconditional error, error of
method and round-off error is called conditional error. An unconditional
error cannot be changed, it is determined by the model. A conditional
error can be modified to be however small (usually it is accompanied by
growing costs), but it is not reasonable to make it much smaller than the
unconditional error. For this we must have at least some idea what is the
magnitude of the unconditional error.

1.2 Absolute and relative error of a number

Consider a number a, which is approximately equal to number A. Call
number A exact; in practical applications it is usually impossible to find
the value of A. The actual error is ∆a = A− a, which can also be expressed
with the equality A = a + ∆a.

Definition. The absolute error of an approximate number a is any number
∆ > 0 that satisfies the inequality |A − a| 6 ∆, i.e., |∆a| 6 ∆.

It is clear that the absolute error is not uniquely determined. E.g., if
A = π, a = 3.14, then ∆ = 1, ∆ = 0.0016 or ∆ = 0.001593.

The inequality |A − a| 6 ∆ is equivalent to the inequalities −∆ 6 A −
a 6 ∆ or a − ∆ 6 A 6 a + ∆. This situation is also denoted by A = a ± ∆,
meaning still that A ∈ [a − ∆, a + ∆].

The actual relative error is δa = ∆a
a .

Definition. The relative error of an approximate number a is any number
δ > 0 that satisfies the inequality |∆a

a | 6 δ, i.e., |δa| 6 δ.

c© Author and University of Tartu. All rights reserved



8 INTRODUCTION

If ∆ is known, we may take δ = ∆

|a| . If δ is known, then ∆ = δ · |a| suits.

The absolute error has the same unit as a or A. The relative error δ has
no unit, it is often given in percentages.

It is clear from the context that the requirements A 6= 0 and a 6= 0 are
assumed.

1.3 Finding the error of the value of a function

Consider a function u = u(x1, . . . , xn), approximate numbers x1, . . . , xn

as the approximations of exact numbers X1, . . . , Xn, the absolute errors
∆1, . . . , ∆n of numbers x1, . . . , xn. We find u(x1, . . . , xn) and ask the ques-
tion: what is the absolute error ∆u of this number, also, what is its relative
error δu.

Assume that function u is differentiable. We know that Xi = xi + ∆xi,
|∆xi| 6 ∆i, i = 1, . . . , n. Now

∆u = u(X1, . . . , Xn)− u(x1, . . . , xn) =

= u(x1 + ∆x1, . . . , xn + ∆xn)− u(x1, . . . , xn) =

=
n∑

i=1

∂u

∂x1
(x1, . . . , xn)∆xi + R,

where the last equation is the Taylor’s or Lagrange’s formula, which holds
for every differentiable u, R is the remainder.

Assume additionally, that the numbers ∆i are small. Then the numbers
∆xi are also small and since u is differentiable then R is also small. If we
ignore the remainder R, then we obtain

|∆u| ≈
∣∣∣∣∣∣

n∑

i=1

∂u

∂xi
∆xi

∣∣∣∣∣∣
6

n∑

i=1

∣∣∣∣∣
∂u

∂xi

∣∣∣∣∣ |∆xi| 6
n∑

i=1

∣∣∣∣∣
∂u

∂xi

∣∣∣∣∣∆i.

We take

∆u ⩳

n∑

i=1

∣∣∣∣∣
∂u

∂xi

∣∣∣∣∣∆i,

whereas the approximation sign means here that we may estimate down
the absolute error by |R|. Additionally we obtain

δu =
1

|u|∆u ⩳
1

|u|
n∑

i=1

∣∣∣∣∣
∂u

∂xi

∣∣∣∣∣∆i =
n∑

i=1

∣∣∣∣∣
∂

∂xi
ln u

∣∣∣∣∣∆i,

i.e.,

δu ⩳

n∑

i=1

∣∣∣∣∣
∂

∂xi
ln u

∣∣∣∣∣∆i.

c© Author and University of Tartu. All rights reserved



1. A BRIEF OVERVIEW OF ERRORS 9

We have solved the problem of finding the absolute and relative error at
computing the value of a function approximately, but this is natural taking
into account the generality of the situation.

Example. Consider u = x1 + . . .+ xn, then ∂u
∂xi

= 1 and ∆u = ∆1 + . . .+∆n.

Example. Consider u = x1 − x2, then
∣∣∣ ∂u

∂xi

∣∣∣ = 1 and ∆u = ∆1 + ∆2.

Exercise 1. Prove that the formulae of absolute error for addition and sub-
traction are exact (without approximation unlike the general case) and that
they hold for any size of errors (not just for small ones).

Exercise 2. Prove that if the summands have the same sign, then δ 6

max
16i6n

δi, i.e., the relative error of the sum does not exceed the biggest rela-

tive error of the summands. This claim also holds for any size of errors.

Exercise 3. Consider S = ab, approximate numbers a = 3 and b = 4 with
relative errors ∆a = 2 and ∆b = 3. Find the relative error of the product
∆S. Take into account that in this case the absolute errors of the arguments
are not small.

1.4 Finding the errors of the arguments of a function

Consider the function u(x1, . . . , xn), approximate numbers x1, . . . , xn and
∆u. We need to find the absolute errors ∆1, . . . , ∆n of arguments x1, . . . , xn

or the relative errors δ1, . . . , δn. If n > 2 then there is no unique way for
finding those errors. Sometimes the errors are known for some of the ar-
guments. The following variants are used

1) ∆1 = . . . = ∆n,

2) δ1 = . . . = δn,

they determine the errors of the arguments on the basis of the formula for
evaluating the overall error ∆u (or δu).

Example. The floor of the room has sizes 3 m and 4 m. How precisely these
should be measured to compute the area of the floor with the accuracy of
at least 0.01 m2?

Make the natural assumption that the room is rectangular. Then the
area is computable by the formula S = ab, where a = 3 and b = 4.
Whereas the error ∆S = 0.01 has also been given. Now ∆S = a∆b + b∆a =

c© Author and University of Tartu. All rights reserved



10 INTRODUCTION

(a + b)∆, as we assume that ∆ = ∆a = ∆b and we may use the formula for
finding ∆S because the errors are small. Then

∆ =
∆S

a + b
=

0.01

3 + 4
= 0.0014 . . . ≈ 0.001 m = 1 mm.

1.5 Rounding of errors

Error of the value of a function is to be rounded up, errors of the arguments
are to be rounded down. The explanation of this principle is the following.
Keeping in mind the notation from the previous two paragraphs, we see
that the relation between the errors of arguments and the error of function
value is following:

Xi ∈[xi − ∆i, xi + ∆i], i = 1, . . . , n =⇒
=⇒ u(X1, . . . , Xn) ∈ [u(x1, . . . , xn)− ∆u, u(x1, . . . , xn) + ∆u].

If the numbers ∆i increase, the implication fails to hold; the implication
does not hold either if ∆u decreases.

c© Author and University of Tartu. All rights reserved



I Solving equations

Introduction

Most well known equations are algebraic equations

a0xn + a1xn−1 + . . . + an−1x + an = 0, a0 6= 0.

Such an equation can be solved by radicals (using roots) for the cases
n = 1, . . . , 4. For n > 5 it is generally impossible. We will look mainly
equations

f (x) = 0,

where f is any function. A great majority of the equations appearing in
practical applications are solved approximately. For this, iteration meth-
ods are mostly used. These are as follows: a collection of initial values
x0, . . . , xk is given or chosen (there may also be only one initial value).
Then, step by step, next approximations are found using previous ones

x0, . . . , xk → xk+1 → xk+2 → . . . .

So a sequence xn is found by a method of iteration.
When dealing with iteration methods one must always study the con-

vergence, i.e., one must answer the question: does the sequence xn con-
verge to the solution? If it does not, then there is no reason to use this
sequence in order to find an approximate solution.

Example. Bisection method. Consider a function f : [a, b] → R, which is
continuous and f (a) f (b) < 0. It is known that under such assumptions
there exists a point x∗ ∈ (a, b) such that f (x∗) = 0, i.e., x∗ is the solution to
equation f (x) = 0. We take x0 = a, x1 = b, x2 = x0+x1

2 and check whether

f (x0) f (x2) < 0 or f (x2) f (x1) < 0. In the first case we take x3 = x0+x2
2 ,

in the second case x3 = x1+x2
2 . Then we continue by dividing into halves

the interval in which the function f changes its sign. With this method the
estimate

|xn − x∗| 6 b − a

2n−1
→ 0

11



12 CHAPTER 1. SOLVING EQUATIONS

holds as n → ∞. It means that the error ( b−a
2n−1 is the absolute error, |xn − x∗|

is the absolute value of the actual error) decreases in geometric progression
with the common ratio 1

2 . In practice this is considered slow.

§1. Ordinary iteration method

1.1 Description of the method and convergence theorem

Consider the equation

x = g(x). (1.1)

In the ordinary iteration method, one initial value x0 is needed, after that
we find

xn+1 = g(xn), n = 0, 1, . . . .

Theorem 1 (Convergence Theorem). Assume that

1) g : [a, b] → [a, b], i.e., x ∈ [a, b] =⇒ g(x) ∈ [a, b],

2) g is a contraction on interval [a, b], i.e., ∃q < 1 such that

|g(x1)− g(x2)| 6 q|x1 − x2| ∀x1, x2 ∈ [a, b], x1 6= x2.

Then equation (1.1) has exactly one solution x∗ in interval [a, b]. For every x0 ∈
[a, b] it holds xn → x∗ with the estimate

|xn − x∗| 6 qn

1 − q
|x0 − x1|. (1.2)

Proof. Choose arbitrarily x0 ∈ [a, b] and form the sequence

xn+1 = g(xn), n = 0, 1, . . . .

Then

x0 ∈ [a, b] =⇒ x1 = g(x0) ∈ [a, b] =⇒ x2 = g(x1) ∈ [a, b] =⇒ . . . ,

i.e., xn ∈ [a, b] for every n. Show that xn is a Cauchy sequence. Firstly

|xn − xn+1| = |g(xn−1)− g(xn)| 6 q|xn−1 − xn| 6
6 q2|xn−2 − xn−1| 6 . . . 6 qn|x0 − x1|.

c© Author and University of Tartu. All rights reserved



1. ORDINARY ITERATION METHOD 13

Then

|xn − xn+p| 6 |xn − xn+1|+ |xn+1 − xn+2|+ . . . + |xn+p−1 − xn+p| 6
6 qn|x0 − x1|+ . . . + qn+p−1|x0 − x1| 6

6

Ñ

∞∑

k=n

qk

é

|x0 − x1| = qn(1 + q + . . .)|x0 − x1| =

=
qn

1 − q
|x0 − x1| → 0, (2’)

as n → ∞ independently of the index p. With that it has been shown that
the sequence xn is fundamental.

Every Cauchy sequence, consisting of real numbers, converges, there-
fore ∃x∗ ∈ R such that xn → x∗. Since [a, b] is closed, we have x∗ ∈ [a, b].
From the equalities xn+1 = g(xn), going to the limit n → ∞, we obtain
that x∗ = g(x∗), because g is continuous (every contractive mapping is
continuous).

Show the uniqueness of the solution. Having x∗, x∗∗ ∈ [a, b] such that
x∗ = g(x∗) and x∗∗ = g(x∗∗), we obtain that

|x∗ − x∗∗| = |g(x∗)− g(x∗∗)| 6 q|x∗ − x∗∗|.

In general, |x∗ − x∗∗| = 0 or |x∗ − x∗∗| > 0. Last case gives q|x∗ − x∗∗| <
|x∗ − x∗∗| which contradicts to the inequality established above. Thus,
|x∗ − x∗∗| = 0 or x∗ = x∗∗.

Now only the inequality (1.2) should be established, but this follows
from the inequality (2’), if we go to the limit p → ∞. Then xn+p → x∗,
xn − xn+p → xn − x∗ and |xn − xn+p| → |xn − x∗|.
Corollary 2 (From the proof of Convergence Theorem). The theorem remains
valid if the interval [a, b] is replaced by the set of all real numbers R or any half-
line [a, ∞) or (−∞, b].

Corollary 3. In Convergence Theorem and in Corollary 2 the requirement of
contraction 2) may be replaced by the assumption that g is differentiable and

|g′(x)| 6 q < 1 ∀x ∈ [a, b] (or ∀x ∈ R, [a, ∞), (−∞, b]).

Proof. Note that from the assumptions made,

g(x1)− g(x2) = g′(ξ)(x1 − x2), ξ ∈ (x1, x2).

Also, if x1, x2 ∈ [a, b], then ξ ∈ [a, b] and g is a contraction since |g′(ξ)| 6
q < 1.

c© Author and University of Tartu. All rights reserved



14 CHAPTER 1. SOLVING EQUATIONS

Exercise 4. Let the equation x = g(x) have a solution x∗ and g be a
contraction on an interval (x∗ − δ, x∗ + δ), δ > 0. Prove that if x0 ∈
(x∗ − δ, x∗ + δ), then the ordinary iteration method converges to the so-
lution x∗.

Exercise 5. Let the equation x = g(x) have a solution x∗ ∈ [a, b] and
0 6 g′(x) 6 q < 1 ∀x ∈ [a, b]. Prove that at every x0 ∈ [a, b] the ordinary
iteration method converges to the solution x∗.

Exercise 6. Find an example of a function g : R → R, where |g(x1) −
g(x2)| < |x1 − x2| ∀x1, x2 ∈ R, x1 6= x2, while the equation x = g(x)
does not have a solution.

Exercise 7. The same as exercise 6, but the set R is replaced with some
half-line [a, ∞).

Remark. If g : [a, b] → [a, b] and |g(x1)− g(x2)| < |x1 − x2| ∀x1, x2 ∈ [a, b],
x1 6= x2, then there exists x∗ ∈ [a, b] such that x∗ = g(x∗).

1.2 Geometric interpretation

Here we present figures that show how the ordinary iteration method be-
haves.

x0x1x2x∗

x1 = g(x0)

x2 = g(x1)

y = x y = g(x)
y

x

In this figure 0 < g′(x) < 1, the method converges.

x2x1x0x∗

x2 = g(x1)

x1 = g(x0)

y = x
y = g(x)y

x

In this figure g′(x) > 1, the method does not converge.

c© Author and University of Tartu. All rights reserved



1. ORDINARY ITERATION METHOD 15

x0x1 x2x∗
x1 = g(x0)

x2 = g(x1)

y = x

y = g(x)

y

x

In this figure −1 < g′(x) < 0, the method converges.

Exercise 8. Draw a figure describing the case g′(x) < −1.

1.3 Behaviour of the ordinary iteration method near the so-

lution

Assume that the function g is continuously differentiable. Let x∗ be a so-
lution of equation (1.1), i.e., x∗ = g(x∗). Let xn be a sequence of iterations
that has been found according to the rule xn+1 = g(xn), n = 0, 1, . . . . Then
according to Lagrange’s formula,

xn+1 − x∗ = g(xn)− g(x∗) = g′(ξn)(xn − x∗),

where either ξn ∈ (xn, x∗) or ξn ∈ (x∗, xn) if xn < x∗ or xn > x∗, respec-
tively. If xn ≈ x∗ (i.e., if |xn − x∗| is small), then ξn ≈ x∗ and g′(ξn) ≈
g′(x∗), because g′ is continuous. Therefore

xn+1 − x∗ ≈ g′(x∗)(xn − x∗).

The essence of this relation is that near the solution x∗ the error xn − x∗

behaves approximately like the geometric progression with the common
ratio g′(x∗).

If 0 < |g′(x∗)| < 1 then (at least if we start form a small enough
neighbourhood of the solution) the ordinary iteration method converges
with the rate of geometric progression having the common ratio g′(x∗). If
g′(x∗) = 0, then the ordinary iteration method converges faster than any
geometric progression, which means that for any q > 0 it holds the con-

vergence |xn−x∗|
qn → 0 as n → ∞ (here we consider arbitrarily small values

of q).

Exercise 9. Prove that if g′(x∗) = 0 then for any q > 0 it holds
|xn − x∗|

qn
→

0 as n → ∞.

c© Author and University of Tartu. All rights reserved



16 CHAPTER 1. SOLVING EQUATIONS

If |g′(x∗)| > 1 then the ordinary iteration method does not converge to
the solution.

In any case, the sign of g′(ξn) shows whether the approximations xn

and xn+1 lie on one side of the solution x∗ or on different sides. The figures
in the previous paragraph also illustrate that claim.

1.4 Examples

We need to solve the equation x2 − a = 0, i.e., we need to find the square
root of number a. We may assume that a > 0. This equation is not in the
form (1.1), we shall present two ways of converting it to that form.

1) Put the equation in the form x = a
x , meaning that g(x) = a

x . Then the

iteration formula is xn+1 = a
xn

. Here g′(x) = − a
x2 and if (x∗)2 = a,

then g′(x∗) = − a
(x∗)2 = −1. According to the argumentation given

in the previous paragraph, we cannot decide whether this sequence
converges. After more extensive research, that we shall not show
here, we can affirm, that for the case a > 1 the sequence diverges, and
converges if a < 1, but more slowly than any geometric progression,

which means that for any q ∈ (0, 1) it holds |xn−x∗|
qn → ∞ as n → ∞

(here we are considering the case when q is arbitrarily close to 1).

2) Write the equation x = a
x or 2x = x + a

x in the form x = 1
2(x + a

x ),

i.e., here g(x) = 1
2(x + a

x ) and the iteration is done by the formula

xn+1 = 1
2(xn + a

xn
). In this case g′(x) = 1

2(1 − a
x2 ) and g′(x∗) = 0,

which means that this iteration method converges faster than any
geometric progression.

Exercise 10. Prove that if g is m times differentiable, g(m) is bounded and

g′(x∗) = 0, . . . , g(m−1)(x∗) = 0, then the estimate

|xn+1 − x∗| 6 const |xn − x∗|m (1.3)

holds in the ordinary method of iteration.

Convergence with estimate (1.3) is called m-th order convergence. If m = 2
then it is called quadratic convergence and if m = 3 then cubic convergence.
More generally, if the estimation |xn+1 − x∗| 6 const |xn − x∗|α, α > 1
holds, then we may speak about order convergence, this is faster than any
geometrical progression.

Exercise 11. With the help of exercise 10 prove that the method xn+1 =
1
2(xn +

a
xn
) for finding a square root has quadratic convergence.
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2. NEWTON’S METHOD 17

§2. Newton’s method

2.1 Description of the method

Consider the equation
f (x) = 0, (1.4)

with this equation we also assume that f is differentiable. In the New-
ton’s method, one initial value is given, next approximations are found
according to the formula

xn+1 = xn −
f (xn)

f ′(xn)
, n = 0, 1, . . . .

In this method a step can be carried out if f ′(xn) 6= 0.
Newton’s method can be viewed as a special case of the ordinary iter-

ation method, where the equation has been transformed to the form

x = g(x) = x − f (x)

f ′(x)
,

where g is defined in those points of the domain of f in which f ′(x) 6= 0.
For that reason, all the results that we obtained for the ordinary iteration
method, can be applied here.

Exercise 12. Prove that if f is twice continuously differentiable, f (x∗) = 0
(i.e., x∗ is the solution of equation (1.4)) and f ′(x∗) 6= 0, then the cor-
responding function g has property g′(x∗) = 0, i.e., Newton’s method
converges faster than any geometric progression.

Exercise 13. Prove that if f is three times continuously differentiable with
f (x∗) = 0, f ′(x∗) 6= 0, then Newton’s method has quadratic convergence.
Use exercise 10 from the previous paragraph.

Assume that, while solving equation (1.4), xn has been found (here x0

may also be considered as xn). Then, according to Taylor’s formula, we
see that

f (x) = f (xn) + f ′(xn)(x − xn) + R(xn; x).

The equation (1.4) is equivalent to the equation

f (xn) + f ′(xn)(x − xn) + R(xn; x) = 0.

If we omit the remainder R(xn; x), then we obtain the (linear) equation

f (xn) + f ′(xn)(x − xn) = 0,
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18 CHAPTER 1. SOLVING EQUATIONS

the solution of this equation is

xn −
f (xn)

f ′(xn)
= xn+1.

So, at every step of Newton’s method the initial equation is replaced by its
linearization, every step consists of solving a linear equation. Newton’s
method is one of linearization methods.

2.2 Rate of convergence of Newton’s method

In the previous paragraph, many results that were given (as exercises) ap-
ply to the rate of convergence of Newton’s method. Here we show that
many of the assumptions in those exercises can be weakened.

Assume that f is continuously differentiable, f (x∗) = 0 and f ′(x∗) 6= 0
(solution x∗ has multiplicity one). Denote εn = xn − x∗. From the formula
of Newton’s method, we obtain

εn+1 = εn −
f (xn)

f ′(xn)
.

Using Taylor’s expansion, we obtain

f (xn) = f (x∗) + f ′(ξn)(xn − x∗) = f ′(ξn)εn,

where ξn ∈ (xn, x∗) or ξn ∈ (x∗, xn). Now

εn+1 = εn −
f ′(ξn)

f ′(xn)
εn =

Ç

1 − f ′(ξn)

f ′(xn)

å

εn.

If xn → x∗ then ξn → x∗, f ′(ξn) → f ′(x∗) 6= 0, f ′(xn) → f ′(x∗), hence

1 − f ′(ξn)
f ′(xn)

→ 0. This gives |εn+1| = qn|εn|, where qn → 0, which means

that Newton’s method converges faster than any geometric progression.
To emphasize the importance of this result, we present it as a proposition.

Proposition 4. If f is continuously differentiable and the solution to (1.4) has
multiplicity one, then Newton’s method converges faster than any geometric pro-
gression.

Assume that f ′ satisfies Lipschitz condition, i.e., there exists a number
L such that | f ′(x)− f ′(y)| 6 L|x − y|. Then
∣∣∣∣∣1 −

f ′(ξn)

f ′(xn)

∣∣∣∣∣ =
| f ′(xn)− f ′(ξn)|

| f ′(xn)|
6

L|xn − ξn|
| f ′(xn)|

6
L|εn|

1
2 | f ′(x∗)|

= const |εn|,
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2. NEWTON’S METHOD 19

because |xn − ξn| 6 |xn − x∗| = |εn| and due to the convergence f ′(xn) →
f ′(x∗) we get | f ′(xn)| 6 1

2 | f ′(x∗)| if xn is close enough to the solution x∗.

Therefore |εn+1| 6 const |εn|2 and we formulate this result as a proposition
as well.

Proposition 5. If f ′ satisfies Lipschitz condition, then Newton’s method has
quadratic convergence in the case of solution having multiplicity one.

Note that f ′ satisfies Lipschitz condition, if f ′′ is continuous (more ge-
nerally, f ′′ is bounded), because f ′(x)− f ′(y) = f ′′(ξ)(x − y), ξ ∈ (x, y).

2.3 Rate of convergence of Newton’s method in the case of

multiple solution

Let f be m times continuously differentiable and f (x∗) = 0, f ′(x∗) = 0, . . .,

f (m−1)(x∗) = 0, f (m)(x∗) 6= 0. In this case we say that the solution x∗ has
multiplicity m. In the equality

εn+1 = εn −
f (xn)

f ′(xn)
,

which we obtained from the calculation rule of Newton’s method, we ex-
pand f (xn) and f ′(xn) according to Taylor’s formula in the point x∗, then

f (xn) = f (x∗) + f ′(x∗)(xn − x∗) +
f ′′(x∗)

2!
(xn − x∗)2 + . . .+

+
f (m)(ξn)

m!
(xn − x∗)m =

f (m)(ξn)

m!
εm

n , ξn ∈ (xm, x∗),

f ′(xn) = f ′(x∗) + f ′′(x∗)(xn − x∗) + . . . +
f (m)(ηn)

(m − 1)!
(xn − x∗)m−1 =

=
f (m)(ηn)

(m − 1)!
εm−1

n , ηn ∈ (xn, x∗).

Now

εn+1 = εn −
f (m)(ξn)(m − 1)!

m! f (m)(ηn)
εn =

(
1 − 1

m

f (m)(ξn)

f (m)(ηn)

)
εn.

If xn → x∗, then ξn → x∗, ηn → x∗, f (m)(ξn) → f (m)(x∗) 6= 0, f (m)(ηn) →
f (m)(x∗), thus εn+1 = qnεn, where qn → 1 − 1

m (for instance, if m = 2

then qn → 1
2 , if m = 3 then qn → 2

3 ). The greater is m, the slower is the
convergence.
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20 CHAPTER 1. SOLVING EQUATIONS

Proposition 6. If f is m times continuously differentiable and the solution of
equation (1.4) has multiplicity m, then Newton’s method converges as fast as a
geometric progression with common ratio 1 − 1

m .

To improve this situation Newton–Schröder’s method is used

xn+1 = xn − m
f (xn)

f ′(xn)
, n = 0, 1, . . . ,

where m is the multiplicity of the solution.

Exercise 14. Show that if f (m) is continuous, then Newton–Schröder’s

method converges faster than any geometric progression, and if f (m) sat-
isfies Lipschitz condition, then Newton–Schröder’s method has quadratic
convergence.

It is natural to ask that how do we find the multiplicity in Newton–
Schröder’s method from the initial equation (1.4), i.e., from the function
f , if we do not know the solution x∗ (this will not be found, but only its
approximation) and we cannot find the derivatives at x∗.

Exercise 15. Prove that if solution has multiplicity m and sequence xn is
found by Newton’s method, then

xn+1 − xn

xn − xn−1
→ 1 − 1

m
and

xn − xn−1

−xn+1 + 2xn − xn−1
→ m.

Therefore, we may begin solving the equation with Newton’s method
and if after some steps the multiplicity of the solution is known, then we
may continue with Newton–Schröder’s method.

2.4 Geometric interpretation of Newton’s method

In this paragraph we represent Newton’s method geometrically. Look at
the figure
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2. NEWTON’S METHOD 21

xnxn+1
xn+2

x∗

f (xn)

α

y = g(x)
y

x

At the point xn we move vertically till the graph, there we draw the tan-
gent. Let us show that the point where the tangent intersects the x-axis
gives us xn+1. We have

f (xn)

xn − xn+1
= tan α = f ′(xn),

where the first equality comes from a right-angled triangle, and the sec-
ond equality comes from the geometric interpretation of derivative. From
the established equality (if we omit the middle term tan α) we obtain the

equality xn+1 = xn − f (xn)
f ′(xn)

. In the presented figure f ′(x) > 0, f ′′(x) > 0,

xn > x∗.

Exercise 16. Draw figures for the cases

1) f ′(x) > 0, f ′′(x) < 0;

2) f ′(x) < 0, f ′′(x) > 0;

3) f ′(x) < 0, f ′′(x) < 0.

For all the cases consider the situations xn > x∗ and xn < x∗. Draw three
consecutive approximations xn, xn+1 and xn+2 in the figures.

Exercise 17. Find a geometric figure, where

a) the equation f (x) = 0 has a solution, but Newton’s method cannot
be applied, because f ′(xn) = 0;
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22 CHAPTER 1. SOLVING EQUATIONS

b) the equation f (x) = 0 has a solution and all members of the se-
quence xn can be found using Newton’s method, but the sequence
xn is unbounded and therefore does not converge;

c) the equation f (x) = 0 has a solution and all members of the se-
quence xn can be found using Newton’s method, the sequence xn is
bounded, but does not converge.

Due to the geometric interpretation, Newton’s method is sometimes
called the method of tangents.

2.5 Modified Newton’s method

In modified Newton’s method, the computational formula for solving equa-
tion (1.4) is

xn+1 = xn −
f (xn)

f ′(x0)
, n = 0, 1, . . . ,

i.e., on every step the derivative f ′(x0) at initial value x0 is used. If we

take g(x) = x − f (x)
f ′(x0)

, then we see that the modified Newton’s method

is a special case of the ordinary method of iteration. At that case g′(x) =

1 − f ′(x)
f ′(x0)

and g′(x∗) = 1 − f ′(x∗)
f ′(x0)

. Generally f ′(x∗) 6= f ′(x0), which yields

g′(x∗) 6= 0 and the modified Newton’s method converges with the rate of
a geometric progression, under the assumption that it converges at all.

2.6 Examples

1) Consider the equation f (x) = x2 − a = 0. Then f ′(x) = 2x, New-
ton’s method is

xn+1 = xn −
x2

n − a

2xn
=

2x2
n − x2

n + a

2xn
=

1

2

Ç

xn +
a

xn

å

.

That is familiar from the paragraph about the ordinary method of
iteration, we know that it has quadratic convergence. It converges
for any initial value x0.

2) Consider the equation f (x) = x3 − a = 0, then f ′(x) = 3x2 and the
calculation formula is

xn+1 = xn −
x3

n − a

3x2
n

=
1

3

Ç

2xn +
a

x2
n

å

.
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3. OTHER ITERATION METHODS 23

Exercise 18. How many initial values are in Example 2), and what
do they look like, where Newton’s method does not converge?
Hint: study the geometric interpretation.

§3. Other iteration methods

3.1 Secant method

Consider the equation f (x) = 0. Let x0, x1, x0 6= x1 be given initial values.
We connect the points (x0, f (x0)) and (x1, f (x1)) by a straight line. Let
the first coordinate of the intersection point of this line and the x-axis be
x2. Then we repeat the same procedure with points x1 and x2 and then so
on. Let us derive the computational formula, where we find xn+1 using
similarily the approximations xn−1 and xn.

xn xn−1xn+1
x∗

f (xn−1)

f (xn)

y = g(x)
y

x

Using right-angled triangles, we obtain

f (xn−1)

f (xn)
=

xn−1 − xn+1

xn − xn+1
.

Hence

f (xn−1)(xn − xn+1) = f (xn)(xn−1 − xn+1),

( f (xn)− f (xn−1))xn+1 = xn−1 f (xn)− xn f (xn−1),

xn+1 =
xn−1 f (xn)− xn f (xn−1)

f (xn)− f (xn−1)
,

this last formula can be used to find xn+1. If we write ±xn f (xn) into the
numerator, we obtain

xn+1 = xn −
xn − xn−1

f (xn)− f (xn−1)
f (xn).
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24 CHAPTER 1. SOLVING EQUATIONS

If f is differentiable, then according to Lagrange’s formula f (xn)− f (xn−1) =
f ′(ξn)(xn − xn−1), ξn ∈ (xn, xn−1), therefore

xn+1 = xn −
f (xn)

f ′(ξn)
.

The last formula shows that the secant method is similar to Newton’s for-
mula, where in the secant method there is f ′(ξn) instead of f ′(xn). How-
ever, the secant method is not a particular case of the ordinary iteration
method, because, on every step, two previous approximations are used to
find the next approximation.

3.2 Rate of convergence of secant method

In this paragraph we will establish the rate of convergence of the secant
method, assuming that the method converges.

We assume that function f is smooth enough and f (x∗) = 0, f ′(x∗) 6=
0, f ′′(x∗) 6= 0 (hence the solution x∗ has multiplicity one). Additionally
assume that in the secant method xn → x∗ at least with the rate of some
geometric progression, i.e., |xn+1 − x∗| 6 q|xn − x∗|, q < 1. The aim is to
find out, which is the actual rate of convergence.

We begin with the equality

xn+1 =
xn−1 f (xn)− xn f (xn−1)

f (xn)− f (xn−1)
.

If we subtract x∗ from both sides of the equality and take into account that
εn = xn − x∗, we obtain

εn+1 =
εn−1 f (xn)− εn f (xn−1)

f (xn)− f (xn−1)
,

which we shall study as the main relation between errors. In the numera-
tor of the right hand side of the equality, we use Taylor’s expansions

f (xn) = f (x∗) + f ′(x∗)(xn − x∗) +
1

2
f ′′(x∗)(xn − x∗)2 +

1

6
f ′′′(ξn)(xn − x∗)3,

f (xn−1) = f (x∗) + f ′(x∗)εn−1 +
1

2
f ′′(x∗)ε2

n−1 +
1

6
f ′′′(ξn−1)ε

3
n−1,

where ξn ∈ (xn, x∗) and ξn−1 ∈ (xn−1, x∗). Then in the main relation

numerator =
1

2
f ′′(x∗)εn−1εn(εn − εn−1) +

1

6
f ′′′(ξn)εn−1εn(ε

2
n − ε2

n−1)+

+
1

6
εn−1εn( f ′′′(ξn)− f ′′′(ξn−1))ε

2
n−1.
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3. OTHER ITERATION METHODS 25

We verify, that the first term is main, i.e., the other terms converge faster.
Compared to the first term, in the second one ε2

n − ε2
n−1 = (εn − εn−1)(εn +

εn−1) has the factor εn + εn−1 → 0 and f ′′′(ξn) is bounded if f is smooth

enough. In the last term f ′′′(ξn)− f ′′′(ξn−1) = f IV(ξ̂n)(ξn − ξn−1), ξ̂n ∈
(ξn, ξn−1) and again due to f being smooth, f IV(ξ̂n) is bounded. If xn−1

and xn are on different sides of the solution x∗, e.g., xn−1 < x∗ < xn,
then xn−1 < ξn−1 < x∗ < ξn < xn giving |ξn − ξn−1| 6 |xn−1 − xn| =
|εn−1 − εn| and the faster convergence of the last term compared to the
first term has been proved. But if xn−1 and xn are on the same side of the
solution x∗, e.g., x∗ < xn < xn−1, then |ξn − ξn−1| 6 |xn−1 − x∗| since
x∗ < ξn−1 < xn−1 and x∗ < ξn < xn. However,

|xn−1 − x∗| 6 |xn−1 − xn|+ |xn − x∗| 6 |xn−1 − xn|+ q|xn−1 − x∗|,
(1 − q)|xn−1 − x∗| 6 |xn−1 − xn|,

from which we obtain

|ξn − ξn−1| 6
1

1 − q
|xn−1 − xn| =

1

1 − q
|εn−1 − εn|

and also in this case we have shown that last term converges faster than
first one. So, in the main relation numerator ≈ 1

2 f ′′(x∗)εn−1εn(εn − εn−1).
We proceed similarly with the denominator in the right hand side of the
main relation of errors, expanding

f (xn) = f (x∗) + f ′(x∗)εn +
1

2
f ′′(ηn)ε

2
n, ηn ∈ (xn, x∗),

f (xn−1) = f (x∗) + f ′(x∗)εn−1 +
1

2
f ′′(ηn−1)ε

2
n−1, ηn−1 ∈ (xn−1, x∗).

Then

denominator = f ′(x∗)(εn − εn−1) +
1

2
f ′′(ηn)(ε

2
n − ε2

n−1)+

+
1

2
( f ′′(ηn)− f ′′(ηn−1))ε

2
n−1.

Here also second term converges faster than first one. In addition, f ′′(ηn)−
f ′′(ηn−1) = f ′′′(η̂n)(ηn − ηn−1), η̂n ∈ (ηn−1, ηn) and |ηn − ηn−1| 6 1

1−q |εn −
εn−1|. Therefore in the main relation the denominator ≈ f ′(x∗)(εn − εn−1).
All in all

εn+1 ≈
1
2 f ′′(x∗)εnεn−1

f ′(x∗)
= aεnεn−1,
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where we have denoted a = f ′′(x∗)
2 f ′(x∗) .

We are looking for a solution of the equation εn+1 = aεnεn−1, where
εn → 0 and εn+1 = bεα

n. We are mostly interested in the order of the con-

vergence α. Then εn = bεα
n−1 and εn+1 = bεα

n = b(bεα
n−1)

α = b1+αεα2

n−1. On

the other hand, εn+1 = aεnεn−1 = a(bεα
n−1)εn−1 = abεα+1

n−1, which leads to

the equation α2 = α + 1 or α2 − α − 1 = 0. This equation has the solutions

α = 1
2 ±

√
5

2 . Solution α = 1
2 −

√
5

2 < 0 does not allow convergence εn → 0,

therefore we are left with a suitable solution α = 1+
√

5
2 = 1.618 . . . and

convergence εn → 0 takes place with the estimate

|xn+1 − x∗| 6 const |xn − x∗|1.618....

3.3 Steffensen’s method

If we apply the ordinary iteration method to the equation x = g(x) and,
e.g., |g′(x∗)| = 0.99, then we need many iteration steps to get reasonable
accuracy. Steffensen’s method is one way to increase the convergence rate
in such case. There are several ways to describe this method.

1) To solve the equation x = g(x), we begin with the initial value x0

and find x1 = g(x0), then x2 = g(x1) and

x̃2 = x2 −
(x2 − x1)

2

x2 − 2x1 + x0
=

x0x2 − x2
1

x2 − 2x1 − x0
.

We continue with the approximation x̃2 and find x3 = g(x̃2), x4 =
g(x3), then we find x̃4 similarly to x̃2 and so on. In general, if x̃n has
been found (n is even), then xn+1 = g(x̃n), xn+2 = g(xn+1) and

x̃n+2 = xn+2 −
(xn+2 − xn+1)

2

xn+2 − 2xn+1 + x̃n
.

The previous formula for finding x̃n+2 is called Aitken’s transform. So
we may describe the method as follows:

x0
o. it.−→ x1

o. it.−→ x2
A. t.−→ x̃2

o. it.−→ x3
o. it.−→ x4

A. t.−→ x̃4 −→ . . . .

2) We find x1 = g(x0) and apply the secant method at points x0 and x1
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to the equation f (x) ≡ x − g(x) = 0. Then

f (x0) = x0 − g(x0) = x0 − x1,

f (x1) = x1 − g(x1) = x1 − x2,

x0 f (x1)− x1 f (x0)

f (x1)− f (x0)
=

x0(x1 − x2)− x1(x0 − x1)

x1 − x2 − (x0 − x1)
=

=
−x0x2 + x2

1

−x2 + 2x1 − x0
= x̃2.

Therefore we may present Steffensen’s method as

x0
o. it.−→

x=g(x)
x1

s. m.−→
x−g(x)=0

x̃2
o. it.−→

x=g(x)
x3

s. m.−→
x−g(x)=0

x̃4 −→ . . . .

3) Steffensen’s method may also be considered as the ordinary iteration
method applied to the equation x = ϕ(x), where

ϕ(x) =
xg(g(x)) − (g(x))2

g(g(x)) − 2g(x) + x
,

i.e.,

x0
o. it.−→

x=ϕ(x)
x̃2

o. it.−→
x=ϕ(x)

x̃4 −→ . . . .

We study the rate of convergence of Steffensen’s method by using re-
sults about the ordinary iteration method and the third description of the
method.

Assume that g is continuously differentiable, x∗ = g(x∗), g′(x∗) 6= 0,
g′(x∗) 6= 1. Previously given formula does not define ϕ(x∗) as for x = x∗

the value of the denominator is 0. Define ϕ(x∗) = x∗. Let us find ϕ′(x∗) =

lim
x→x∗

ϕ(x)− ϕ(x∗)
x − x∗

. According to Lagrange’s formula,

g(g(x)) − g(x) = g′(ξ)(g(x) − x), ξ ∈ (x, g(x)),

and if x → x∗, then g(x) → g(x∗) = x∗, hence ξ → x∗. Therefore

ϕ(x) =
xg(g(x)) − xg(x) + xg(x)− (g(x))2

g(g(x)) − g(x)− (g(x)− x)
=

=
xg′(ξ)(g(x) − x)− g(x)(g(x) − x)

(g′(ξ) − 1)(g(x) − x)
=

=
xg′(ξ) − g(x)

g′(ξ) − 1
,

c© Author and University of Tartu. All rights reserved



28 CHAPTER 1. SOLVING EQUATIONS

and to obtain the last equality, we use the fact g(x) 6= 0 for x 6= x∗, which
holds if x is in a small enough neighbourhood of x∗ taking into account
g′(x∗) 6= 0. Using the expansion g(x) = g(x∗) + g′(ξ1)(x − x∗), ξ1 ∈
(x, x∗) where we also substitute g(x∗) with x∗, we get

ϕ(x)− ϕ(x∗) =
xg′(ξ) − g(x)

g′(ξ) − 1
− x∗ =

=
xg′(ξ) − x∗ − g′(ξ1)(x − x∗)− x∗g′(ξ) + x∗

g′(ξ) − 1
=

=
(g′(ξ) − g′(ξ1))(x − x∗)

g′(ξ)− 1
.

Now

lim
x→x∗

ϕ(x)− ϕ(x∗)
x − x∗

= lim
x→x∗

g′(ξ) − g′(ξ1)

g′(ξ) − 1
=

g′(x∗)− g′(x∗)
g′(x∗)− 1

= 0,

which means that ϕ′(x∗) = 0 and under such assumptions Steffensen’s
method converges faster than any geometric progression.

Exercise 19. Show, using exercise 10, that if g is smooth enough, then, un-
der the assumptions done above, Steffensen’s method has quadratic con-
vergence.

3.4 Müller’s method

Consider the equation f (x) = 0. Let x0, x1, x2 be given initial values
that are pairwise different, i.e., x0 6= x1, x1 6= x2, x2 6= x0. There exists
exactly one polynomial P(x) = c0 + c1x + c2x2, which satisfies the condi-
tions P(xi) = f (xi), i = 0, 1, 2, or, its graph, a quadratic parabola, goes
through the points (xi, f (xi)), i = 0, 1, 2. We see it by checking, that the
system c0 + c1xi + c2x2

i = f (xi), i = 0, 1, 2, to determine the coefficients
c0, c1, c2 has non-zero determinant. Denote this polynomial P012 and solve
the quadratic equation P012(x) = 0. Let that solution, which is closer to the
number x2, be approximation x3. We repeat this process with approxima-
tions x1, x2, x3, by finding the polynomial P123 and solving the quadratic
equation P123(x) = 0 to determine x4 and so on. Such process of finding
the sequence xn is called Müller’s method or method of parabolas. For com-
parison, recall that in the secant method a straight line (the graph of a first
degree polynomial) was put through two points on the graph of function
f .
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It can be proved, that if the equation f (x) = 0 has a solution having
multiplicity one, then the rate of convergence of Müller’s method can be

described by the estimate |xn+1 − x∗| 6 const |xn − x∗|1.84...; if the solution

has multiplicity 2, then |xn+1 − x∗| 6 const |xn − x∗|1.23....

3.5 Higher order iteration methods

Consider the solution of the equation f (x) = 0 with some iteration method.
Let xn be found. Recall that in Newton’s method we expanded

f (x) = f (xn) + f ′(xn)(x − xn) + R1(x),

then we dropped the remainder R1 and solving the equation f (xn)+ f ′(xn)(x−
xn) = 0 we obtained

x − xn = − f (xn)

f ′(xn)
and xn+1 = xn −

f (xn)

f ′(xn)
.

Take a longer expansion

f (x) = f (xn) + f ′(xn)(x − xn) +
f ′′(xn)

2
(x − xn)

2 + R2(x),

abandon the remainder R2 and obtain the equation

f (xn) + f ′(xn)(x − xn) +
f ′′(xn)

2
(x − xn)

2 = 0.

Here we have the following possibilities:

1) solve the quadratic equation and take as xn+1 its solution, which is
closer to the approximation xn.

Exercise 20. Assuming, that the solution has multiplicity one, derive
the algorithm for finding the approximation xn+1 (determine, which
root of the quadratic equation must be taken), if xn is close enough
to the solution.

2) in the quadratic equation, substitute (x − xn)
2 =

Å

f (xn)
f ′(xn)

ã2
, which is

obtained from Newton’s method. From the remaining linear equa-
tion, we obtain

xn+1 = xn −
f (xn)

f ′(xn)
− f ′′(xn)

2 f ′(xn)

Ç

f (xn)

f ′(xn)

å2

as a solution. This method is called Euler–Chebyshev’s method.
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3) in the quadratic equation, replace the quadratic term as (x − xn)
2 =

− f (xn)
f ′(xn)

(x − xn), i.e., only one factor in the term (x − xn)
2 is replaced

according to Newton’s method. The solution of the obtained linear
equation is

xn+1 = xn −
f (xn) f ′(xn)

( f ′(xn))2 − 1
2 f ′′(xn) f (xn)

.

Such a method is called Halley’s method.

Exercise 21. Prove that both, Euler–Chebyshev’s and Halley’s methods
have cubic convergence, if the solution has multiplicity one and f ′′ satis-
fies Lipschitz condition.

In practice these methods are almost not used, because they need the
calculation of second derivative and it is usually impossible to do, e.g.,
usually it cannot be found from data obtained from an experiment. In

addition if εn = |xn − x∗|, then at cubic convergence from εn ∼ 10−1

we have εn+1 ∼ 10−3, εn+2 ∼ 10−9, but at quadratic convergence we

have εn+1 ∼ 10−2, εn+2 ∼ 10−4, εn+3 ∼ 10−8, i.e., usually the necessary
accuracy can be obtained at quadratic convergence by adding only one
more step, keeping in mind the fact, that before achieving the accuracy

εn ∼ 10−1 cubic convergence has no advantage in rate of convergence.
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II Solving systems of equations

Consider the system of equations





f1(x1, . . . , xn) = 0,

. . . . . . . . . . . . . . . . . . . .

fn(x1, . . . , xn) = 0,

where f1, . . . , fn are given functions, x1, . . . , xn are unknown numbers. De-
note x = (x1, . . . , xn), F(x) = ( f1(x), . . . , fn(x)), then we may write the
given system as

F(x) = 0,

where F : R
n → R

n or F : D → R
n, D ⊂ R

n. Consider also the system
x = G(x), which, written by the equations, is





x1 = g1(x1, . . . , xn),

. . . . . . . . . . . . . . . . . . . . .

xn = gn(x1, . . . , xn),

i.e., here G(x) = (g1(x), . . . , gn(x)). The solution of such systems is a
vector x∗ ∈ R

n, where F(x∗) = 0 or x∗ = G(x∗), which means, that x∗

satisfies every equation in the system.
In an iteration method a sequence of vectors xm, m = 0, 1, . . ., xm =

(xm
1 , . . . , xm

n ) ∈ R
n, is found. Consider some norm ‖ · ‖ in the space R

n. We
say that xm → x∗, if ‖xm − x∗‖ → 0 as m → ∞. Actually, ‖xm − x∗‖ → 0 is
equivalent to xm

i → x∗i , i = 1, . . . , n, as m → ∞, regardless of the norm we
use. Most common norms in the space R

n are

‖x‖2 = (x2
1 + . . . + x2

n)
1
2 ,

‖x‖1 = |x1|+ . . . + |xn|,
‖x‖∞ = max

16i6n
|xi|,

31
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also ‖x‖p =

Ñ

n∑

i=1

|xi|p
é

1
p

, 1 6 p < ∞. With it, for every x ∈ R
n,

lim
p→∞

‖x‖p = ‖x‖∞. In the case n = 1 every considered norm is |x|.

§1. Ordinary iteration method

Consider the system x = G(x). In the ordinary iteration method an initial

value x0 ∈ R
n is needed, next approximations are found as xm+1 = G(xm),

m = 0, 1, . . ., which is coordinatewise





xm+1
1 = g1(x

m
1 , . . . , xm

n ),

. . . . . . . . . . . . . . . . . . . . . . . . .

xm+1
n = gn(x

m
1 , . . . , xm

n ).

Let ‖ · ‖ be a norm in space R
n. A closed ball is a set B = B(a, r) = {x :

‖x − a‖ 6 r}, the number r is the radius of the ball, a ∈ R
n is the centre

of the ball. In the case n = 1, {x : |x − a| 6 r} = [a − r, a + r] is a closed
interval.

Theorem 7 (Convergence theorem for the ordinary iteration method). If
1) G : B → B and 2) ∃q < 1 such, that ‖G(x) − G(y)‖ 6 q‖x − y‖ for every
x, y ∈ B, x 6= y, then the equation x = G(x) has exactly one solution x∗ in the
ball B, for every initial value x0 ∈ B the ordinary iteration method converges to
this solution (xm → x∗) with the estimate

‖xm − x∗‖ 6
qm

1 − q
‖x0 − x1‖.

The proof of this theorem is absolutely similar to the proof in the case
n = 1, if we replace | · | by the norm ‖ · ‖.

Additional results

1. Instead of the assumptions made in the theorem, we may also as-
sume that ‖G(x) − G(y)‖ 6 q‖x − y‖ for every x, y ∈ R

n, x 6= y (of
course, then G : R

n → R
n). For justification, note that, in this case

everywhere in the proof of the theorem we have to replace the ball B
by space R

n.
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2. Assume that G is a contraction 2) as in the theorem, but instead of
G : B → B, we pose the condition ‖G(a) − a‖ 6 (1 − q)r (this is a
restriction to a shift of the centre a of the ball B). For justification
let us verify that under these assumptions G : B → B. If x ∈ B, i.e.,
‖x − a‖ 6 r, then ‖G(x) − a‖ 6 ‖G(x) − G(a)‖ + ‖G(a) − a‖ 6

q‖x − a‖+ (1 − q)r 6 r, hence G(x) ∈ B.

In the following we shall try to find sufficient conditions for G to be a con-
traction, keeping in mind the conditions obtained for the case n = 1 using
the derivative. The differentiability of function G (we do not give here
the definition of it) is equivalent to the differentiability of the functions gi,
i = 1, . . . , n (as the differentiability of a function of n variables). Then the
derivative of the function G is

G′(x) =

â

∂g1

∂x1
(x) . . .

∂g1

∂xn
(x)

. . . . . . . . . . . . . . . . . . . . . .
∂gn

∂x1
(x) . . .

∂gn

∂xn
(x)

ì

.

Note that the differentiability of functions gi is not equivalent to the exis-

tence of partial derivatives
∂gi
∂xj

, i, j = 1, . . . , n. In the case of n = 1, we used

Lagrange’s formula, but here, when n > 2, the equality G(x) − G(y) =
G′(ξ)(x − y) does not hold, but Lagrange’s mean value estimate

‖G(x)− G(y)‖ 6 sup
0<λ<1

‖G′(λx + (1 − λ)y)‖‖x − y‖

holds instead. From this, we obtain the general result: if ‖G′(x)‖ 6 q < 1
for every x ∈ B, then G is a contraction in the ball B. For justification, note
that, if x, y ∈ B, x 6= y, then for every λ ∈ (0, 1) we have λx+(1−λ)y ∈ B:

x, y ∈ B =⇒ ‖x − a‖ 6 r, ‖y − a‖ 6 r =⇒
=⇒ ‖λx + (1 − λ)y − a‖ = ‖λ(x − a) + (1 − λ)(y − a)‖ 6

6 λ‖x − a‖+ (1 − λ)‖y − a‖ 6 λr + (1 − λ)r = r,

i.e.,
λx + (1 − λ)y ∈ B.

To check the condition ‖G′(x)‖ 6 q < 1, we have to explain, what is the
norm of a matrix and how to find it.

If A is a matrix, then we define ‖A‖ = sup
‖x‖61

‖Ax‖. As we can see,

the norm of a vector has been used in two places, therefore, e.g., we can
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consider ‖A‖p→q = sup
‖x‖p61

‖Ax‖q, where 1 6 p, q 6 ∞. If A = (aij), then

‖A‖∞→∞ = max
16i6n

n∑

j=1

|aij|,

‖A‖1→1 = max
16j6n

n∑

i=1

|aij|,

‖A‖2→2 6

Ñ

n∑

i,j=1

|aij|2
é

1
2

.

According to the statements above, we obtain the following results:

1) if max
16i6n

n∑

j=1

∣∣∣∣∣
∂gi

∂xj
(x)

∣∣∣∣∣ 6 q < 1 ∀x ∈ B = {x : ‖x − a‖∞ 6 r},

then G is a contraction in the ball B with respect to the ∞-norm;

2) if max
16j6n

n∑

i=1

∣∣∣∣∣
∂gi

∂xj
(x)

∣∣∣∣∣ 6 q < 1 ∀x ∈ B = {x : ‖x − a‖1 6 r},

then G is a contraction in the ball B with respect to the 1-norm;

3) if
n∑

i,j=1

(
∂gi

∂xj
(x)

)2

6 q < 1 ∀x ∈ B = {x : ‖x − a‖2 6 r},

then G is a contraction in the ball B with respect to the 2-norm.

§2. Seidel’s method

Consider the system x = G(x) or




x1 = g1(x1, . . . , xn),

. . . . . . . . . . . . . . . . . . . . .

xn = gn(x1, . . . , xn).

Seidel’s method requires one initial value x0. Let us describe the transition

xm → xm+1. If xm = (xm
1 , . . . , xm

n ), then xm+1 = (xm+1
1 , . . . , xm+1

n ) will be
found by the formulae

xm+1
1 = g1(x

m
1 , xm

2 , . . . , xm
n ),

xm+1
2 = g2(x

m+1
1 , xm

2 , . . . , xm
n ),

. . . . . .

xm+1
n = gn(x

m+1
1 , . . . , xm+1

n−1 , xm
n ).

c© Author and University of Tartu. All rights reserved



2. SEIDEL’S METHOD 35

Thus, the components xm+1
i of the approximation xm+1 are found in such

a way that the components with a smaller index xm+1
j , j = 1, . . . , i − 1,

having already been found, are used to find xm+1
i by the corresponding

equation.

Theorem 8. Let ‖G(x) − G(y)‖∞ 6 q‖x − y‖∞ (q < 1) for every x, y ∈ B,
x 6= y, where B = {x : ‖x − a‖∞ 6 r} and ‖G(a) − a‖∞ 6 (1 − q)r. Then
the system x = G(x) has exactly one solution x∗ in the ball B, Seidel’s method
converges to this solution for every x0 ∈ B with the estimate

‖xm − x∗‖∞ 6
qm

1 − q
‖x0 − x1‖∞.

Proof. We do not need to prove the existence and uniqueness of the solu-
tion, because in the theorem given in the previous paragraph, the existence
and uniqueness of the solution has been shown under the assumptions of
this theorem (let us point out that the existence and uniqueness of the so-
lution is a property of the system and does not depend on the method
used to solve it). To prove this theorem we now only need to prove the
estimation of error.

Denote xm,i = (xm+1
1 , . . . , xm+1

i−1 , xm
i , . . . , xm

n ), here xm,1 = xm, xm,n+1 =

xm+1 = xm+1,1. Then the calculation formula for Seidel’s method is

xm+1
i = gi(x

m,i), i = 1, . . . , n.

We show that xm,i ∈ B for all m, i. For this it is sufficient to solve the
following exercise which contains a more general result.

Exercise 22. Let G : B → B, B = {x : ‖x − a‖∞ 6 r} and xm,i be vectors
appearing at solving the system x = G(x) by Seidel’s method. Prove that

if x0 ∈ B, then xm,i ∈ B for every m, i.

As the next step we formulate:

Exercise 23. Prove that under the assumptions of the theorem, the inequal-

ity ‖xm+1 − x∗‖∞ 6 q‖xm − x∗‖∞ holds.

From the previous exercise we obtain ‖xm − x∗‖∞ 6 q‖xm−1 − x∗‖∞ 6

. . . 6 qm‖x0 − x∗‖∞, from which the convergence already follows. To ob-
tain the estimate of error given in the theorem, we estimate

‖x0 − x∗‖∞ 6 ‖x0 − x1‖∞ + ‖x1 − x∗‖∞ 6 ‖x0 − x1‖∞ + q‖x0 − x∗‖∞,
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from which
(1 − q)‖x0 − x∗‖∞ 6 ‖x0 − x1‖∞

or
‖x0 − x∗‖∞ 6 1

1−q‖x0 − x1‖∞

and we use it in the last estimate of ‖xm − x∗‖∞.

Note that in the theorem, we may assume ‖G(x) − G(y)‖∞ 6 q‖x −
y‖∞ for every x, y ∈ R

n, x 6= y, then all assertions still hold in the form,
where the ball B has been replaced by the space R

n.
It is natural to ask about the comparison of the ordinary iteration method

and Seidel’s method: which of them is the better? We will answer the
question about the convergence later. From the aspect of carrying out the
calculations, the ordinary iteration method has one advantage: the compo-

nents of the approximation xm+1 can be calculated from the components
of xm at the same time with so called parallel computations, but the Seidel’s
method lacks this option.

§3. Newton’s method

We are familiar with this method for equations, but it can also be used for
solving systems of equations. Newton’s method can be viewed as the ordi-
nary iteration method, but its basic idea is different: the system is replaced
by an approximate linear system.

Consider the system




f1(x1, . . . , xn) = 0,

. . . . . . . . . . . . . . . . . . . .

fn(x1, . . . , xn) = 0,

(2.1)

which can be written as F(x) = 0, where, as before, x = (x1, . . . , xn),
F(x) = ( f1(x), . . . , fn(x)). Let F be differentiable, it is equivalent for func-
tions f1, . . . , fn to be differentiable. For Newton’s method one initial value
x0 is needed, the following approximations are found as

xm+1 = xm − (F′(xm))−1F(xm), m = 0, 1, . . . , (2.2)

where

F′(x) =

â

∂ f1

∂x1
(x) . . .

∂ f1

∂xn
(x)

. . . . . . . . . . . . . . . . . . . . . .
∂ fn

∂x1
(x) . . .

∂ fn

∂xn
(x)

ì

,
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in the formula (2.2) (F′(xm))−1 is the inverse matrix. Here the step of tran-
sition (2.2) is equivalent to solving the linear system

F′(xm)xm+1 = F′(xm)xm − F(xm)

(xm+1 is unknown, all the rest are known). The step can be performed, if

(F′(xm))−1 exists, i.e., det F′(xm) 6= 0.

Theorem 9. Let F be continuously differentiable in some neighbourhood of the

solution x∗ of system (2.1) and let (F′(x∗))−1 exist. Then Newton’s method
is implementable in the neighbourhood of x∗ and the method converges to the
solution x∗ faster than any geometric progression, if the initial value x0 has been
chosen close enough to x∗.

Theorem 10. If, additionally to the assumptions of theorem 9, we assume that in
some neighbourhood of x∗

‖F′(x)− F′(y)‖ 6 L‖x − y‖,

then

‖xm+1 − x∗‖ 6 const ‖xm − x∗‖2.

As can be seen, these theorems directly generalise the results obtained
for the method for equations. We will not prove these theorems, because
the basic scheme of these proofs is the same as for the method for equa-
tions, but to completely understand all the details, quite severe results
from functional analysis must be used. We will only note that to satisfy

Lipschitz condition in theorem 10 it suffices that the functions
∂2 fi

∂xj∂xk
are

continuous for all i, j, k in a neighbourhood of the solution x∗.

§4. Solving linear systems of equations

4.1 About the importance of iteration methods

Consider a linear system





a11x1 + a12x2 + . . . + a1nxn = b1,

a21x1 + a22x2 + . . . + a2nxn = b2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

an1x1 + an2x2 + . . . + annxn = bn.
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Use notation

A =

Ö

a11 . . . a1n

. . . . . . . . . . . . .
an1 . . . ann

è

, x =

Ü

x1
...

xn

ê

, b =

Ü

b1
...

bn

ê

,

then we may write the system as Ax = b.
This system has exactly one solution if and only if det A 6= 0. If det A =

0, then there may be no solution or there may be infinitely many solutions.
From linear algebra, Cramer’s rule (solving linear systems using de-

terminants) is known, which can be implemented if det A 6= 0. A widely
used method is Gaussian elimination, while applying this method, there
is no difference if det A 6= 0 or det A = 0.

Now we find out, how many calculations are needed for the Gaussian
elimination method. We count all the multiplications and divisions (these
are long operations), we shall not take into account the additions and sub-
tractions (short operations). Assume that det A 6= 0.

Firstly the 1. equation is divided by the number a11, for this n divi-

sions are performed: a12
a11

, . . . , a1n
a11

, b1
a11

. Then the new 1. equation has been

multiplied by −a21 and added to the 2. equation, the 1. equation has been
multiplied by −a31 and added to the 3. equation and so on, this takes
(n − 1)n multiplications. As a result of these operations, the 1. column

is in the form (1 0 . . . 0)T, n2 multiplications and divisions have been
performed. Then the same is done with system, which is smaller by one
dimension, having the new equations with numbers from 2 to n. While
repeating these calculations, a situation is achieved, where the main diag-
onal consists of numbers 1 and there are only zeros below that, the number
of calculations performed is

n2 + (n − 1)2 + . . . + 1 =
n(n + 1)(2n + 1)

6
.

Now the numbers above the main diagonal are eliminated, e.g., the last
column needs n − 1 multiplications, because only the free term is multi-
plied by the corresponding numbers. To eliminate the numbers above the
main diagonal, we need

(n − 1) + (n − 2) + . . . + 1 =
(n − 1)n

2

multiplications. For the whole Gaussian elimination method, the number
of calculations needed is

n(n + 1)(2n + 1)

6
+

(n − 1)n

2
∼ n3

3
,
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if we consider the process n → ∞. The sign ∼ means here, that the quo-
tient of its both sides converges to the number 1 as n → ∞, about such a

situation is said, that the order of the operations is n3

3 .
Now we look at the number of operations in Cramer’s method, in

which n + 1 determinants must be calculated and then n divisions of these
determinants must be performed. Every determinant can be calculated
by transforming it to the triangular form and then multiplying the num-

bers on the main diagonal. For this method it takes ∼ n3

3 operations per

determinant, as a whole it takes ∼ n4

4 for the method.
We note that to calculate n-th order determinant by multiplying ele-

ments of one row with minors takes at least n! multiplications. But, e.g.,
30! > 1030, which means, that this scheme for calculating determinants
cannot be used in the case of a little larger systems of linear equations.

A step of an iteration method usually requires an application of a ma-
trix to a vector, which has n2 multiplications for a system of n equations. If
for example n = 1000 (in practice this is not a very large system), then an
iteration method that converges at some dozen steps is considerably faster
than the Gaussian elimination method.

In addition to the advantage in the quantity of calculations, there is
another great reason, why iteration methods are needed for solving lin-
ear systems of equations. It is the existence of rounding errors, which
are inevitable at using computers. Gaussian elimination and especially
Cramer’s method are sensitive to rounding errors, but iteration methods
eliminate the influence of rounding errors made in previous steps, because
nothing is lost, if due to rounding errors one extra step of iteration is made,
compared to the number of steps at calculation with exact numbers.

4.2 Ordinary iteration method, conditions of convergence

Consider the system





x1 = b11x1 + . . . + b1nxn + b1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xn = bn1x1 + . . . + bnnxn + bn,

or x = Bx + b, where x = (xj), B = (bij), b = (bi) are corresponding
vectors and the matrix similar to the ones used in the previous section.
The ordinary iteration method requires one initial value x0, further we
find

xm+1 = Bxm + b, m = 0, 1, . . . .

c© Author and University of Tartu. All rights reserved



40 CHAPTER 2. SOLVING SYSTEMS OF EQUATIONS

The ordinary iteration method for solving linear system is a special case
of the more general method which we considered earlier, here G(x) =
Bx+ b. We know a sufficient condition for convergence: for some q < 1 we
have ‖G(x) − G(y)‖ 6 q‖x − y‖ ∀x, y ∈ R

n, x 6= y. Then G(x)− G(y) =
Bx + b − (By + b) = B(x − y), therefore

‖G(x)− G(y)‖ 6 q‖x − y‖ ∀x, y ∈ R
n ⇐⇒

‖B(x − y)‖ 6 q‖x − y‖ ∀x, y ∈ R
n ⇐⇒

‖Bx‖ 6 q‖x‖ ∀x ∈ R
n ⇐⇒

‖B‖ 6 q,

where the last equivalence is an elementary result from functional analy-
sis. With this we have obtained the following result.

Proposition 11. If ‖B‖ < 1, then the ordinary iteration method converges for
any initial value to the unique solution of the system x = Bx + b.

We showed earlier how to find the norms of matrices corresponding
to specific norm in space R

n. Considering this, we have shown that the
following theorem holds.

Theorem 12. If max
16i6n

n∑

j=1

|bij| < 1 or max
16j6n

n∑

i=1

|bij| < 1 or
∑

i,j=1

b2
ij < 1, then the

ordinary iteration method converges for any initial value to the unique solution
of the system x = Bx + b.

Let us point out, that the given conditions guarantee the unique solv-
ability of the system.

Consider a n × n matrix A. Number λ is called an eigenvalue of matrix
A, if there exists a vector x 6= 0 such, that Ax = λx. Relying on linear
algebra, it can be directly verified, that λ is an eigenvalue of A if and only
if det(A − λI) = 0, i.e.,

∣∣∣∣∣∣∣∣∣∣

a11 − λ a12 . . . a1n

a21 a22 − λ . . . a2n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
an1 an2 . . . ann − λ

∣∣∣∣∣∣∣∣∣∣

= 0.

This equation is called the characteristic equation of the matrix A, its degree
is n and, as an algebraic equation, it has, counted with multiplicity, exactly
n solutions. The set of all eigenvalues of matrix A is called its spectrum and
is denoted σ(A).
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Theorem 13. The ordinary iteration method for solving the system x = Bx + b
converges to the unique solution for any initial value if and only if the moduli of
all eigenvalues of matrix B are smaller than 1 (λ ∈ σ(B) =⇒ |λ| < 1).

Geometrically this necessary and sufficient condition means, that the
spectrum of matrix B is contained inside the unit circle of the complex
plane.

We do not give the proof of this theorem here, it relies on fundamental
results of the theory of matrices, e.g., Jordan or Schur normal form of a
matrix could be used.

Exercise 24. Prove that if ‖B‖ < 1, then |λ| < 1 for every λ ∈ σ(B).

So the claim given in exercise 24 links together the conditions given in
theorems 12 and 13.

Although, there exists a necessary and sufficient condition to detect the
convergence of the ordinary iteration method, it is not effective in practice,
because the problem of finding the eigenvalues of a matrix is considerably
more complicated than the problem of solving a system of linear equa-
tions. Therefore the sufficient conditions given in theorem 12 are impor-
tant in practice.

4.3 Jacobi method

Consider the system Ax = b. Denote the matrix containing only the ele-
ments of the (main) diagonal of A by

D =

Ü

a11 0
. . .

0 ann

ê

and R = A − D, then A = D + R. We write the system Ax = b equiva-
lently as (D + R)x = b or Dx = −Rx + b.

Assume that the (main) diagonal of matrix A is such that aii 6= 0, i =
1, . . . , n. Then

D−1 =

Ü

a−1
11 0

. . .

0 a−1
nn ,

ê

as the direct computation gives DD−1 = I. Therefore Ax = b is equiva-

lently representable as x = −D−1Rx + D−1b. Let us apply here the ordi-
nary iteration method

xm+1 = −D−1Rxm + D−1b.

c© Author and University of Tartu. All rights reserved



42 CHAPTER 2. SOLVING SYSTEMS OF EQUATIONS

Such two-part operation (expression of the diagonal + ordinary iteration
method) is called Jacobi method for solving the system Ax = b.

Expressing the diagonal by the equations means that the system

n∑

j=1

aijxj = bi, i = 1, . . . , n,

or

aiixi +
n∑

j=1
j 6=i

aijxj = bi, i = 1, . . . , n,

is converted to the form

xi =
n∑

j=1
j 6=i

Ç

− aij

aii

å

xj +
bi

aii
, i = 1, . . . , n,

i.e., x = Bx + D−1b, where in the matrix B = (bij) the elements are in the

form bij = − aij

aii
, j 6= i, bii = 0.

Let us present some notions.
It is said that the (main) diangonal of matrix A is dominant in rows if

|aii| >
n∑

j=1
j 6=i

|aij|, i = 1, . . . , n .

Such dominance means, that absolute values of diagonal elements are
greater than the sum of absolute values of other elements in the same row.
This requirement must be satisfied for each row. Note that sometimes such
a situation may be achieved by changing the order of the equations in the
system.

It is said that the (main) diagonal of matrix A is dominant in columns if

|aii| >
n∑

j=1
j 6=i

|aji|, i = 1, . . . , n .

Here this condition means, that absolute values of diagonal elements are
greater than the sum of absolute values of other elements in the same col-
umn. Such a situation may sometimes be achieved by changing the order
of the unknowns in the system.
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If matrix A has diagonal dominance in rows or columns, then aii 6= 0,
i = 1, . . . , n, therefore Jacobi method is applicable to the system Ax = b.

Let matrix A have diagonal dominance in rows. Then, after expressing
the diagonal, in the obtained matrix B

‖B‖∞→∞ = max
16i6n

n∑

j=1

|bij| = max
16i6n

n∑

j=1
j 6=i

|aij|
|aii |

= max
16i6n

1

|aii|
∑

j=1
j 6=i

|aij| <

< max
16i6n

|aii|
|aii|

= 1.

Thus, if in A diagonal is dominant in rows, then Jacobi method converges.
In this case, the condition ‖B‖∞→∞ < 1 also guarantees, that the system
has exactly one solution or det A 6= 0.

Exercise 25. Prove without using the theory of iteration methods, that if A
has diagonal dominance in rows, then det A 6= 0.

What can be said, if A has diagonal dominance in columns?
If A has diagonal dominance in columns, then the transposed ma-

trix AT has diagonal dominance in rows and therefore det AT 6= 0. As

det AT = det A, it holds det A 6= 0.

Example. Consider the matrix A =

Ç

1 2
0 4

å

having diagonal dominance in

columns. Expressing the diagonal gives us the matrix B =

Ç

0 −2
0 0

å

. Esti-

mate the norm of matrix B by using the previously considered traditional

p-norms, 1 6 p 6 ∞, in space R
2. Let x =

Ç

0
1

å

, then ‖x‖p = 1, 1 6 p 6 ∞.

At the same time Bx =

Ç−2
0

å

and ‖Bx‖p = 2 for every p-norm. We get

‖B‖p→p = sup
‖x‖p61

‖Bx‖p > ‖Bx‖p = 2.

This example shows, that the diagonal dominance in columns of matrix A
is not sufficient to assert, that for some p-norm it holds ‖B‖p→p < 1.

Warning: we do not assert that there does not exist such a norm in space
R

2 which gives in the corresponding matrix norm that ‖B‖ < 1.
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Exercise 26. Prove that if A has diagonal dominance in columns, then all

the eigenvalues of the matrix B = −D−1R (obtained by expressing the
diagonal of A) are smaller than 1 by modulus (λ ∈ σ(B) =⇒ |λ| < 1).
Hint: prove that if |λ| > 1 and λ ∈ σ(B), then det(λD + R) = 0, which is
impossible if A has diagonal dominance.

According to the last exercise we may say, that if matrix A has diagonal
dominance in columns, then Jacobi method converges.

4.4 Seidel’s method

Consider the system x = Bx + b, which was written by equations in sec-
tion 4.2. In Seidel’s method an initial value is chosen and the transition
from approximation xm = (am

1 , . . . , xm
n ) to the next approximation xm+1 =

(xm+1
1 , . . . , xm+1

n ) is carried out as follows:





xm+1
1 = b11xm

1 + b12xm
2 + . . . + b1nxm

n + b1,

xm+1
2 = b21xm+1

1 + b22xm
2 + . . . + b2nxm

n + b2,

. . . . . . . . .

xm+1
1 = bn1xm+1

1 + . . . + bn,n−1xm+1
n−1 + bnnxm

n + bn.

Let B = L + D + U, where D has been obtained from the diagonal of
matrix A as in section 4.3,

L =

á

0 . . . . . . . . . . . 0
b21 0 . . . 0
. . . . . . . . . . . . . . . . . . .
bn1 . . . bn,n−1 0

ë

, U =

á

0 b12 . . . b1n

0 0 . . . b2n

. . . . . . . . . . . . . . . .
0 . . . . . . . . 0

ë

(matrix L contains the elements of A that are below its diagonal, matrix
U contains the elements of A that are above its diagonal). Then we may
present Seidel’s method as

xm+1 = Lxm+1 + (D + U)xm + b,

or
(I − L)xm+1 = (D + U)xm + b.

Here

det(I − L) = det

Ö

1 0 . . . 0

(−bij) 1

è

= 1,
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therefore (I − L)−1 exists. The step of Seidel’s method can be written as

xm+1 = (I − L)−1(D + U)xm + (I − L)−1b,

which means, that Seidel’s method can be considered as the ordinary it-

eration method for solving the transformed system x = (I − L)−1(D +

U)x + (I − L)−1b. We have a necessary and sufficient condition for the or-
dinary iteration method to converge to the unique solution of the system.
From this we obtain here, that Seidel’s method converges if and only if the
solutions of the equation

det((I − L)−1(D + U)− λI) = 0

are smaller than 1 by modulus. Thereby

det((I − L)−1(D + U)− λI) = 0 ⇐⇒ det(D + U − λ(I − L)) = 0 ⇐⇒
⇐⇒ det(λL + D + U − λI) = 0.

With this we proved the next theorem.

Theorem 14. Seidel’s method for solving the system x = Bx + b converges if
and only if all solutions of the equation det(λL + D + U − λI) = 0 are smaller
than 1 by modulus (taking in view that B = L + D + U).

The equation given in the previous theorem is

∣∣∣∣∣∣∣∣∣∣

b11 − λ b12 . . . b1n

λb21 b22 − λ . . . b2n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
λbn1 . . . λbn,n−1 bnn − λ

∣∣∣∣∣∣∣∣∣∣

= 0.

Recall that for the ordinary iteration method we had requirements for the
solutions of the characteristic equation

∣∣∣∣∣∣∣

b11 − λ . . . b1n

. . . . . . . . . . . . . . . . . . . . . .
bn1 . . . bnn − λ

∣∣∣∣∣∣∣
= 0.

Keeping in view these conditions, we may answer the question about
the relation between the regions of convergence of the ordinary iteration
method and Seidel’s method.

Exercise 27. Prove that if in the system x = Bx+ b we take the 2× 2 matrix
B as
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1) B =

Ç

2 −1.5
1.5 −1

å

,

then the ordinary iteration method converges, but Seidel’s method
does not;

2) B =

Ç

2 −2
1 −0.1

å

,

then Seidel’s method converges, but the ordinary iteration method
does not.

As for the ordinary iteration method, for Seidel’s method there are also
the conditions to check immediately not requiring the solving of equations
similar to the characteristic equation. We present them in the next result.

Theorem 15. If max
16i6n

n∑

j=1

|bij| < 1 or max
16j6n

n∑

i=1

|bij| < 1, then Seidel’s method

converges.

Proof. Note that the first condition gives ‖B‖∞→∞ < 1, which means, that
G(x) = Bx + b is a contraction in ∞-norm in space R

n and we may apply
the convergence theorem for general nonlinear systems. About the second
condition we formulate an exercise.

Exercise 28. Prove that if max
16j6n

n∑

i=1

|bij| < 1, then the number λ with |λ| >

1, cannot be a solution of the equation det(λL + D + U − λI) = 0.
Hint: show that if |λ| > 1, then the matrix λL + D + U − λI has diagonal
dominance in columns.

4.5 Gauss–Seidel method

Consider the system of equations Ax = b. Gauss–Seidel method is ex-
pressing the diagonal of the matrix A and solving the obtained system
using Seidel’s method.

Let us represent the matrix A as A = RL + D + RU where the diagonal
matrix D has the same meaning as before, RL and RU are the matrices
containing the elements of A that are either below or above the diagonal,

respectively. Assume that aii 6= 0, i = 1, . . . , n, then the matrix D−1 exists.
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Transform the system Ax = b as

Ax = b ⇐⇒ (RL + D + RU)x = b ⇐⇒
⇐⇒ Dx = −RLx − RUx + b ⇐⇒
⇐⇒ x = −D−1RLx − D−1RUx + D−1b.

Direct calculations show that multiplication by the diagonal matrix D−1

does not change the form of matrices −RL and −RU (does not create any
new non-zero elements), therefore all possibly non-zero elements of ma-

trices −D−1RL and −D−1RU are either below or above the diagonal, re-
spectively. Application of Seidel’s method to the last system looks like

xm+1 = −D−1RLxm+1 − D−1RUxm + D−1b, m = 0, 1, . . . ,

starting from the initial value x0.

Exercise 29. Show that the observed step of iteration can be written in the
form

xm+1 = −(I + D−1RL)
−1D−1RUxm + (I + D−1RL)

−1D−1b

or

xm+1 = −(D + RL)
−1RUxm + (D + RL)

−1b.

Exercise 30. Prove that if the matrix A has diagonal dominance (in rows
or columns) then Gauss–Seidel method converges.

4.6 Richardson’s method

Consider the system Ax = b. In Richardson’s method we begin with the
initial value x0 and calculate the following approximations as

xm+1 = xm + ω(Axm − b), m = 0, 1, . . . ,

where ω ∈ C, ω 6= 0, is fixed. This method may be viewed as the ordinary
iteration method, which has been applied to the system

x = (I − ωA)x + ωb.

We know that convergence depends only on the matrix B = I − ωA, the
necessary and sufficient condition is that if λ ∈ σ(B), then |λ| < 1.
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Note, that

λ ∈ σ(A) ⇐⇒ ∃x 6= 0 : Ax = λx ⇐⇒
⇐⇒ ∃x 6= 0 : − ωAx = −ωλx ⇐⇒
⇐⇒ ∃x 6= 0 : x − ωAx = x − ωλx ⇐⇒
⇐⇒ ∃x 6= 0 : (I − ωA)x = (1 − ωλ)x.

Therefore λ ∈ σ(A) if and only if 1 − ωλ ∈ σ(B). Thus, Richardson’s
method converges if and only if |1 − ωλ| < 1, i.e., |ωλ − 1| < 1 for every
λ ∈ σ(A). The set {z ∈ C | |z − 1| < 1} is a disc with centre 1 and
radius 1, the necessary and sufficient condition says that all the numbers
ωλ, λ ∈ σ(A), must be inside this disc.

Re

Im

1

ωλ

It is natural to ask whether it is possible (or when it is possible) to find
ω ∈ C so that |ωλ − 1| < 1 for every λ ∈ σ(A)? As ω 6= 0, we have

|ωλ − 1| < 1 ⇐⇒
∣∣∣∣∣λ − 1

ω

∣∣∣∣∣ <
1

|ω|
and the necessary and sufficient condition of convergence is that there ex-
ists ω ∈ C such, that

σ(A) ⊂


λ ∈ C

∣∣∣∣∣∣

∣∣∣∣∣λ − 1

ω

∣∣∣∣∣ <
1

|ω|



 ,

which is a disc with centre 1
ω and radius 1

|ω| and therefore the boundary

of this disc passes through the point 0. As 1
ω can be an arbitrary non-zero

complex number, we have obtained the following result.

Proposition 16. The number ω ∈ C, ω 6= 0, which is suitable for Richardson’s
method to converge, exists if and only if all the eigenvalues of the matrix A lie
inside some circle that passes through the point 0.

Corollary 17. If σ(A) ⊂ (0, ∞), then there exists an ω such that Richardson’s
method converges. The suitable ω is such that 0 < ω <

2
λmax

, where λmax is the
greatest eigenvalue of matrix A.
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Proof. Let σ(A) ⊂ (0, ∞). If we choose ω such that 0 < ω <
2

λmax
and

λ ∈ σ(A), then 0 < ωλ <
2λ

λmax
6 2, i.e., 0 < ωλ < 2 or −1 < ωλ − 1 < 1,

this yields that |ωλ − 1| < 1.

Corollary 18. If σ(A) ⊂ (0, ∞) and 0 < ω <
2

‖A‖ , then Richardson’s method
converges.

Proof. Earlier we actually used the fact that |λ| 6 ‖A‖ for every λ ∈ σ(A).
Under the assumptions made, λ > 0 for every λ ∈ σ(A) and therefore

2
‖A‖ 6 2

λmax
. Hence if 0 < ω <

2
‖A‖ , then 0 < ω <

2
λmax

and we only need

to use corollary 17.

The importance of Corollary 18 is in the fact that finding the eigenval-
ues of matrix A may be considerably more complicated than calculation
of its norm.

Corollary 19. If matrix A is positive definite, then there exists ω > 0 such that
Richardson’s method converges.

Proof. Positive definiteness of matrix A means that (Ax, x) > 0 for every
x 6= 0. But then we obtain from Ax = λx, x 6= 0, that (Ax, x) = λ(x, x) > 0
and (x, x) > 0, therefore λ > 0, i.e., σ(A) ⊂ (0, ∞).

Consider the case where none of the eigenvalues of the matrix A in
the system Ax = b, are in any circle that passes through the zero point,
but A is regular (det A 6= 0). Then we can solve the equivalent sys-

tem AT Ax = ATb, where AT is the transposed matrix. These systems

are equivalent, because det AT = det A 6= 0 and AT is regular or invert-

ible. Matrix AT A is positive definite, because if x 6= 0, then Ax 6= 0 and

(AT Ax, x) = (Ax, Ax) > 0. According to Corollary 19 it is possible to find
ω so, that Richardson’s method

xm+1 = xm − ω(AT Axm − ATb)

converges. At it there is no need to calculate the product AT A (it takes

n3 operations), but on each step, we may find Axm and then AT(Axm),

which requires 2n2 operations on each step. The term ATb is calculated
only once, we do not need to calculate it again on each step.

An extensive modern field of research is finding methods for solving
the system Ax = b by the iteration method

xm+1 = xm − Mm(Axm − b),

where Mm is a sequence of n × n matrices. As a special case of those meth-
ods, we considered Richardson’s method here, where Mm = ωI, and the
choice Mm = ωAT.
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III Function approximation

§1. Interpolation problem

1.1 Problem formulation

Let us have given real numbers x0, . . . , xn, where xi 6= xj if i 6= j, and let the
corresponding numbers be f0, . . . , fn. It may be that fi = f (xi) for a cer-
tain function f , but in practice the numbers fi are results of measurement
or data from experiments, which express some real dependence within
limits of measurement errors. If there is a need for function values based
on the argument values different from x0, . . . , xn, then it is often proceeded
as follows: find a function ϕ so that ϕ(xi) = fi, i = 0, . . . , n, then use ϕ(x),
x 6= xi. Function ϕ is called the interpolant, the points x0, . . . , xn are the
interpolation knots, requirements ϕ(xi) = fi, i = 0, . . . , n, the interpolation
conditions. The interpolants are usually functions that are easy to oper-
ate with, e.g., polynomials, trigonometric polynomials, rational functions,
splines (including piecewise polynomials). It is usually known whether
the function f that is being interpolated, is continuous, continuously dif-
ferentiable a number of times, or analytical.

In a more general interpolation problem it is necessary to find ϕ such
that

ϕ(j)(xi) = fij, i = 0, . . . , n, j = 0, . . . , ki,

where it is possible that, e.g., fij = f (j)(xi) with an usually unknown func-
tion f . This is the interpolation problem with multiple knots, the number ki + 1
is the multiplicity of the knot xi. If there are no derivatives in the formula-
tion, then every knot is simple.

1.2 Existence and uniqueness of the interpolant

Consider the situation where every knot x0, . . . , xn is simple. Assume that
the so called coordinate functions ψ0, . . . , ψm are given. Our aim is to find

50



1. INTERPOLATION PROBLEM 51

the interpolant

ϕm = c0ψ0 + . . . + cmψm,

where c0, . . . , cm will be determined from the interpolation conditions.
This problem can be called a linear interpolation problem, because the in-
terpolation conditions ϕm(xi) = fi, i = 0, . . . , n, give a system of linear
equations, namely

c0ψ0(xi) + . . . + cmψm(xi) = fi, i = 0, . . . , n,

for finding the coefficients ci. For the unique solvability of the system with
arbitrary numbers fi, it is necessary that m = n. Therefore we consider the
system

c0ψ0(xi) + . . . + cnψn(xi) = fi, i = 0, . . . , n.

This system is uniquely solvable for arbitrary numbers fi, i = 0, . . . , n, if
and only if

∣∣∣∣∣∣∣

ψ0(x0) . . . ψn(x0)
. . . . . . . . . . . . . . . . . . . . .
ψ0(xn) . . . ψn(xn)

∣∣∣∣∣∣∣
6= 0.

Consider the case, where ψj(x) = xj, therefore

ϕ(x) = c0 + c1x + . . . + cnxn.

In this case we speak about interpolation polynomial. Then the correspond-
ing determinant is the Vandermonde determinant

∣∣∣∣∣∣∣∣∣∣

1 x0 x0
2 . . . x0

n

1 x1 x1
2 . . . x1

n

. . . . . . . . . . . . . . . . . . . . .

1 xn xn
2 . . . xn

n

∣∣∣∣∣∣∣∣∣∣

=
∏

i>j

(xi − xj) =

= (xn − x0) . . . (xn − xn−1)·
· (xn−1 − x0) . . . (xn−1 − xn−2)·
. . . . . .

· (x1 − x0) 6= 0.

With that we proved the following
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Proposition 20. For arbitrary numbers f0, . . . , fn, there exists exactly one poly-
nomial Pn(x) = c0 + c1x + . . . + cnxn such that Pn(xi) = fi, i = 0, . . . , n.

In the following we will look at different methods for finding such
polynomials. One such method is described in the following exercise.

Exercise 31. Let it be given x0, . . . , xn, xi 6= xj, if i 6= j, and f0, . . . , fn. Let
Pi,...,i+k be a polynomial, whose degree does not exceed k, and Pi,...,i+k(xj) =
f j, j = i, . . . , i + k. Prove, that

Pi,...,i+k(x) =
(x − xi)Pi+1,...,i+k(x) + (xi+k − x)Pi,...,i+k−1(x)

xi+k − xi
,

if Pj(x) = f j for every x and j.

This exercise is the basis of Neville’s scheme or algorithm for finding
the interpolation polynomial stated in Proposition 20.

P0(x) = f0
++❳

❳❳
❳❳

❳❳

P01(x)
))❙

❙

P1(x) = f1

33❢❢❢❢❢❢❢

++❳
❳❳

❳❳
❳❳

P012(x)

P12(x)
55❦❦

P2(x) = f2

33❢❢❢❢❢❢❢

... P0...n(x)

Pn−1(x) = fn−1
++❳

❳❳

Pn−1,n(x)

Pn(x) = fn

33❢❢❢❢❢

1.3 Lagrange fundamental polynomials

Let it be given x0, . . . , xn, xi 6= xj, if i 6= j. Fix i ∈ {0, . . . , n}. We already
know that there exists exactly one polynomial ℓni of degree at most n such
that

ℓni(xj) = δij =





1, if j = i,

0, if j ∈ {0, . . . , n} \ {i}.

The knots x0, . . . , xi−1, xi+1, . . . , xn are the zeroes of the polynomial ℓni,
therefore

ℓni(x) = ai(x − x0) . . . (x − xi−1)(x − xi+1) . . . (x − xn),
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where ai is a constant, because if it was a polynomial of the first or higher
degree, then the degree of ℓni would exceed n. Besides the condition of
zeroes we also have ℓni(xi) = 1, i.e.,

ai(xi − x0) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xn) = 1,

from which we get

ℓni(x) =
(x − x0) . . . (x − xi−1)(x − xi+1) . . . (x − xn)

(xi − x0) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xn)
,

or

ℓni(x) =
n∏

j=0
j 6=i

x − xj

xi − xj
.

Exercise 32. Let ωn(x) = (x − x0) . . . (x − xn). Show that

ℓni(x) =
ωn(x)

(x − xi)ω′
n(xi)

.

The polynomials ℓni, i = 0, . . . , n, are called the Lagrange fundamental
polynomials. They are uniquely defined by the knots x0, . . . , xn, and there-
fore it can be said that they are the Lagrange fundamental polynomials
corresponding to the knots x0, . . . , xn.

Exercise 33. Prove that ℓni, i = 0, . . . , n, are linearly independent.

1.4 Lagrange’s interpolation formula

Let it be given knots x0, . . . , xn, xi 6= xj, if i 6= j, and the corresponding
numbers f0, . . . , fn. We assert that then the polynomial

Pn(x) =
n∑

i=0

fiℓni(x) = f0ℓn0(x) + · · ·+ fnℓnn(x),

is an interpolation polynomial, which satisfies the interpolation conditions
Pn(xi) = fi, i = 0, . . . , n. To justify this we first notice that because ℓni are
polynomials of degree n, then the degree of their linear combination Pn

does not exceed n. Additionally

Pn(xj) =
n∑

i=0

fiℓni(xj) = f j, j = 0, . . . , n,
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as ℓni(xj) = δij.

By the previous expressions of ℓni we can write

Pn(x) =
n∑

i=0

fi
(x − x0) . . . (x − xi−1)(x − xi+1) . . . (x − xn)

(xi − x0) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xn)
=

=
n∑

i=0

fi

n∏

j=0
j 6=i

x − xj

xi − xj
=

n∑

i=0

fi
ωn(x)

(x − xi)ω′
n(xi)

.

This formula is called Lagrange’s interpolation formula.

Additional remarks

1) The interpolation polynomial does not change if we change the order
of the knots in Lagrange’s interpolation formula.

Note for justification that if we change the order of the knots, then
the order of the summands in the Lagrange’s formula changes, but
the summands themselves do not. E.g., summand

fi
ωn(x)

(x − xi)ω′
n(xi)

is defined by the knot set x0, . . . , xn, and the index i, because ωn does
not change if we change the order of the knots.

2) Lagrange fundamental polynomials ℓn0, . . . , ℓnn form the basis of the
set Pn of all polynomials of degree at most n, since dimPn = n + 1,
and Lagrange fundamental polynomials are linearly independent.
For every P ∈ Pn

P(x) =
n∑

i=0

P(xi)lni(x),

which comes from the fact that P and
n∑

i=0

P(xi)lni both satisfy the

same interpolation conditions, their degree does not exceed n, but
the interpolation polynomial is unique.
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1.5 Divided differences

Let it be given the arguments x0, . . . , xn, xi 6= xj if i 6= j, and f (x0), . . . , f (xn).
We define the divided differences of the first order as

f (xi , xj) =
f (xj)− f (xi)

xj − xi
, i 6= j.

Values f (xi) are called the divided differences of the order 0. The divided dif-
ferences of the second order are defined as

f (xi , xj, xk) =
f (xj, xk)− f (xi, xj)

xk − xi
, i 6= j, i 6= k, j 6= k.

In general, the divided differences of the kth order are defined as

f (xi0 , xi1 , . . . , xik
) =

f (xi1 , . . . , xik
)− f (xi0 , . . . , xik−1

)

xik
− xi0

.

Remark. It is not important for the data f (xi) to be values of some func-
tion f , simply numbers f0, . . . , fn may be given. (For given f0, . . . , fn there
always exists a function f for which fi = f (xi), i = 0, . . . , n). Besides the
notation given above for divided differences, also the symbols fij, fijk, f0...k

are used.

Proposition 21. It holds

f (x0, x1, . . . , xn) =
n∑

i=0

f (xi)

(xi − x0) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xn))
=

=
n∑

i=0

f (xi)
n∏

j=0
j 6=i

(xi − xj)

=
n∑

i=0

f (xi)

w′
n(xi)

. (3.1)

Proof. For easier understanding, the equality (3.1) is written for knots
x0, . . . , xn, but it certainly holds for any set of pairwise different knots.

Let us prove the equality (3.1) with the use of induction on the number
of knots.

For n = 1,

f (x0, x1) =
f (x1)− f (x0)

x1 − x0
=

f (x0)

x0 − x1
+

f (x1)

x1 − x0
.
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Assume that the equality (3.1) holds for k knots, and let us show that it
holds for k + 1 knots. From the definiton and the assumption we get that

f (x0, x1, . . . , xk) =
f (x1, . . . , xk)− f (x0, . . . , xk−1)

xk − x0
=

=
1

xk − x0

Ñ

f (x1)
k∏

j=2

(x1 − xj)

+ · · ·+ f (xk)
k−1∏

j=1

(xk − xj)

−

− f (x0)
k−1∏

j=1

(x0 − xj)

− · · · − f (xk−1)
k−2∏

j=0

(xk−1 − xj)

é

.

We see that the coefficients of f (x0) and f (xk) are appropriate. Let
i ∈ {1, . . . , k − 1}. Then the members containing f (xi) give

1

xk − x0

Ñ

f (xi)
k∏

j=1
j 6=i

(xi − xj)

− f (xi)
k−1∏

j=0
j 6=i

(xi − xj)

é

=

=
f (xi)
k−1∏

j=1
j 6=i

· 1

xk − x0

Ñ

1

xi − xk
− 1

xi − x0

é

=

=
f (xi)

k∏

j=0
j 6=i

(xi − xj)

.

Corollary 22.

( f1 + f2)(x0, . . . , xn) = f1(x0, . . . , xn) + f2(x0, . . . , xn).

Corollary 23.

(c f )(x0, . . . , xn) = c f (x0, . . . , xn).

Corollary 24. Divided differences are symmetric with respect to arguments.
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The first two corollaries mean that the divided differences are linear
(additive and homogeneous) with respect to the functions to take the dif-
ferences. For the justification of the third corollary note that if we change
the order of the knots in the divided differences, then only the order of
summands in the right hand side of the formula (3.1) changes, but the
sum itself remains unchanged.

1.6 Newton’s interpolation formula

Let it be given knots x0, . . . , xn and corresponding values f (x0), . . . , f (xn).

Proposition 25. The polynomial of degree n which satisfies the interpolation
conditions Pn(xi) = f (xi), i = 0, . . . , n, is

Pn(x) = f (x0) + f (x0, x1)(x − x0) + f (x0, x1, x2)(x − x0)(x − x1) + · · ·+
+ f (x0, . . . , xn)(x − x0) . . . (x − xn−1).

Proof. It is clear that the degree of Pn does not exceed n, hence it is only
necessary to prove the validity of the interpolation conditions. We prove
this by induction on n.

If n = 0 then P0(x) = f (x0) for every x, therefore P0(x0) = f (x0).
Assume now that the representation of the interpolating polynomial holds
for n − 1, which means that for

Pn−1(x) = f (x0) + · · ·+ f (x0, . . . , xn−1)(x − x0) . . . (x − xn−2)

the conditions

Pn−1(xi) = f (xi), i = 0, . . . , n − 1,

are satisfied. Consider the polynomial

Pn(x) = Pn−1(x) + f (x0, . . . , xn)(x − x0) . . . (x − xn−1).

Then

Pn(xi) = Pn−1(xi) = f (xi), i = 0, . . . , n − 1.
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In addition,

Pn(xn) = Pn−1(xn) + (xn − x0) . . . (xn − xn−1)
n∑

i=0

f (xi)
n∏

j=0
j 6=i

(xi − xj)

=

= Pn−1(xn) +
n−1∑

i=0

(xn − x0) . . . (xn − xi) . . . (xn − xn−1)
n∏

j=0
j 6=i

(xi − xj)

f (xi)+

+
(xn − x0) . . . (xn − xn−1

(xn − x0) . . . (xn − xn−1)
f (xn) = f (xn),

because

(xn − x0) . . . (xn − xi) . . . (xn − xn−1)
n∏

j=0
j 6=i

(xi − xj)

= −
n−1∏

j=0
j 6=i

xn − xj

xi − xj
= −ℓn−1,i(xn),

and from the Lagrange formula

−
n−1∑

i=0

ℓn−1,i(xn) f (xi) = −Pn−1(xn).

The calculations of divided differences in the Newton’s interpolation
formula could be implemented using the triangle scheme

x0 f (x0)
f (x0, x1)

x1 f (x1) f (x0, x1, x2)
f (x1, x2)

x2 f (x2)... f (x0, x1, . . . , xn),
xn−1 f (xn−1)

f (xn−1, xn)
xn f (xn)

from which the interpolation formula only uses the first elements of each
column.

Exercise 34. Find how many multiplications and divisions are necessary
to calculate Pn(x), x 6= xi, i = 0, . . . , n, when using the Lagrange interpo-
lation formula. Same question for the Newton’s formula.
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1.7 Remainder term of interpolation formula

Denote Rn(x) = f (x)− Pn(x), where f is the function to interpolate, and
Pn is the interpolation polynomial. Hence f (x) = Pn(x) + Rn(x), where
the term Rn is the remainder term. We see that Rn(xi) = f (xi)− Pn(xi) =
0, i = 0, . . . , n. We cannot say anything else about the remainder term
without any additional assumptions, it may be arbitrary function whose
value in the knots is 0.

Assume that x0, . . . , xn ∈ [a, b] and f ∈ Cn+1[a, b]. Fix x ∈ [a, b],
consider at first the case x 6= xi, i = 0, . . . , n. Consider the auxiliary
function ϕ(z) = f (z) − Pn(z) − Kωn(z) = Rn(z) − Kωn(z), where K is
a constant and ωn(z) = (z − x0) . . . (z − xn). We see that ϕ(xi) = 0,
i = 0, . . . , n for every K. Let K be such that ϕ(x) = 0, which means that

Rn(x) − Kωn(x) = 0 or K =
Rn(x)

ωn(x)
. The function ϕ has n + 2 different

zeroes in the interval [a, b]. According to Rolle’s theorem, the function ϕ′

has at least n + 1 different zeroes in the interval (a, b), and they are lo-
cated between the zeroes of function ϕ. Analogically we get that ϕ′′ has

n different zeroes until we finally have that ϕ(n+1) has at least one zero

ξ in the interval (a, b), ϕ(n+1)(ξ) = 0. Now we differentiate the function

ϕ n + 1 times and we get ϕ(n+1)(z) = f (n+1)(z) − K(n + 1)!, from which

ϕ(n+1)(ξ) = f (n+1)(ξ) − Rn(x)

ωn(x)
(n + 1)! = 0, or Rn(x) =

f (n+1)(ξ)

(n + 1)!
ωn(x).

Of course we note that ξ depends on the chosen number x, which means
that it is more in details to write ξ(x) instead of ξ. If x = xi then ωn(x) = 0
and Rn(x) = 0, and hence in this case the same formula for Rn(x) is valid,
where ξ can be taken arbitrary.

It is natural to ask whether the function x → f (n+1)(ξ(x)) is continu-
ous? Is it a certain number of times continuously differentiable?

Exercise 35. Prove that lim
x→xi

f (n+1)(ξ(x)) exists. Suggestion: use L’Hospital’s

rule.

Exercise 36. Prove that there is a ξi ∈ [a, b] such that

f (n+1)(ξi) = lim
x→xi

f (n+1)(ξ(x)).

Exercise 37. Prove that the function x → f (n+1)(ξ(x)) is continuously dif-
ferentiable.
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Since f (n+1) is continuous, it is also bounded in the interval [a, b]. Let

Mn+1 = max
a6x6b

| f (n+1)(x)|. Then |Rn(x)| 6
Mn+1

(n + 1)!
|ωn(x)|, which allows

to estimate the accuracy of interpolation.

Exercise 38. Prove that if f ∈ Cn+1[a, b] and xi → x, i = 1, . . . , n, then the
limit of the interpolation formula gives the Taylor’s formula

f (x) = f (x0) + f ′(x0)(x − x0) + . . . +
f (n)(x0)

n!
(x − x0)

n +

+
f (n+1)(ξ)

(n + 1)!
(x − x0)

n+1.

Let x 6= xi, i = 0, . . . , n. From the formula (3.1) we get that

f (x, x0, . . . , xn) =
f (x)

(x − x0) . . . (x − xn)
+

+
f (x0)

(x0 − x)(x0 − x1) . . . (x0 − xn)
+ · · ·+ f (xn)

(xn − x)(xn − x0) . . . (xn − xn−1)
.

Having expressed f (x) from this equality, we get

f (x) = f (x0)
(x − x1) . . . (x − xn)

(x0 − x1) . . . (x0 − xn)
+ · · ·+

+ f (xn)
(x − x0) . . . (x − xn−1)

(xn − x0) . . . (xn − xn−1)
+

+ f (x, x0, . . . , xn)ωn(x).

In the part with fractions we recognize the interpolation polynomial in
Lagrange form. Therefore the rest is the remainder term, i.e.,

Rn(x) = f (x, x0, . . . , xn)ωn(x).

Let us point out that the remainder term in such a form does not require
the function f to be smooth or continuous. Under the assumption f ∈
Cn+1[a, b] we have already obtained above that

Rn(x) =
f (n+1)(ξ)

(n + 1)!
ωn(x).

The comparison of the two remainder terms gives us that

f (x, x0, . . . , xn) =
f (n+1)(ξ)

(n + 1)!
, ξ ∈ (a, b).

We formulate this result as follows.
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Theorem 26 (representation theorem for divided differences). If f ∈ Cn[a, b]
and x0, . . . , xn ∈ [a, b], then

f (x0, . . . , xn) =
f (n)(ξ)

n!
, ξ ∈ (a, b).

For particular case n = 1 we get well known Lagrange formula

f (x0, x1) =
f (x1)− f (x0)

x1 − x0
= f ′(ξ).

.

1.8 On convergence of interpolation process

Let it be given an interval [a, b] and a knot system xni ∈ [a, b], n = 0, 1, . . . ,
i = 0, . . . , n, which we write in triangular form

x00

x10, x11

x20, x21, x22

. . . . . . . . . . . . . . . .

Consider a function f : [a, b] → R. For each n, construct the interpolation
polynomial Pn having the degree not exceeding n, and satisfying condi-
tions Pn(xni) = f (xni), i = 0, . . . , n. This gives us the sequence of interpo-
lation polynomials Pn, n = 0, 1, . . . . It is natural to ask whether

max
a6x6b

|Pn(x)− f (x)| → 0, as n → ∞?

Theorem 27 (Faber, 1914). For arbitrary knot system xni ∈ [a, b], n = 0, 1, . . . ,
i = 0, . . . , n, there exists a function f ∈ C[a, b] such that it does not take place
max

a6x6b
|Pn(x) − f (x)| → 0, as n → ∞. In fact, there is a function f for which

max
a6x6b

|Pn(x)− f (x)| → ∞ as n → ∞.

Additional result. For each knot system max
a6x6b

n∑

i=0

|ℓni(x)| > c ln n, where c is

a positive constant.

Basing on this result, let us analyse the influence of errors in data at
interpolation. Assume that instead of exact values f (xni) we have values
fni for which

| fni − f (xni)| 6 ε.
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With the help of fni construct the interpolation polynomials

P̃n(x) =
n∑

i=0

fniℓni(x),

which are, in general, different from the polynomials

Pn(x) =
n∑

i=0

f (xni)ℓni(x).

Then

max
a6x6b

|P̃n(x)− Pn(x)| = max
a6x6b

|
n∑

i=0

( fni − f (xni))ℓni(x)| 6

6 max
a6x6b

n∑

i=0

| fni − f (xni)||ℓni(x)| 6

6 ε max
a6x6b

n∑

i=0

|ℓni(x)| → ∞, as n → ∞.

In our estimates the inequalities can be equalities because

max
a6x6b

n∑

i=0

|ℓni(x)| =
n∑

i=0

|ℓni(x0)|

for some x0 ∈ [a, b], and depending on the signs of ℓni(x0) it can happen
that

fni − f (xni) = ±ε

so that

max
a6x6b

|
n∑

i=0

( fni − f (xni))ℓni(x)| > |
n∑

i=0

( fni − f (xni))ℓni(x0)| =

=
n∑

i=0

| fni − f (xni)||ℓni(x0)| = ε
n∑

i=0

|ℓni(x0)|.

From this discussion we conclude that polynomial interpolation is un-
stable with respect to the errors in data as the degree of polynomials in-
creases.
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1.9 Interpolation of functions of several variables

Let us consider the differences which do not appear at interpolation of one
variable functions. These phenomena appear even when we interpolate
two variable functions.

Let it be given pairwise distinct points (x0, y0), . . . , (xn, yn) in the plane,
let us also have f0, . . . , fn, which may be the values of some function f ,
i.e., fi = f (xi, yi), i = 0, . . . , n. It is required to to find a polynomial Pm of
degree at most m satisfying Pm(xi, yi) = fi, i = 0, . . . , n. The general form
of polynomial Pm is

Pm(x, y) = c00 + c10x + c20x2 + . . . + cm0xm+

+ c01y + c11xy + c21x2y + . . . + cm−1,1xm−1y+

. . .

+ c0,m−1ym−1 + c1,m−1xym−1+

+ c0mym.

The interpolation conditions give a linear system to determine the coeffi-

cients cij. There are in total (m + 1) + m + . . . + 1 =
(m + 1)(m + 2)

2
co-

efficients, and n + 1 interpolation conditions or equations. For the unique

solvability of the system for any fi, it is necessary that n+ 1 =
(m + 1)(m + 2)

2
.

If m = 0, then n = 0 (1 knot), if m = 1, then n = 2 (3 knots), if m = 2 then
n = 5 (6 knots), if m = 3 then n = 9 (10 knots), and so on. Thus for
the unique determination of the interpolation polynomial the number of
knots cannot be arbitrary.

Next, examine the system’s determinant. If m = 1 and n = 2, then for
the unique solvability of the system

c00 + c10xi + c01yi = fi, i = 0, 1, 2,

the necessary and sufficient condition is that

∣∣∣∣∣∣∣

1 x0 y0

1 x1 y1

1 x2 y2

∣∣∣∣∣∣∣
6= 0.

The condition
∣∣∣∣∣∣∣

1 x0 y0

1 x1 y1

1 x2 y2

∣∣∣∣∣∣∣
= 0
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is equivalent to the condition that the linear homogeneous system

Ö

1 x0 y0

1 x1 y1

1 x2 y2

èÖ

a1

a2

a3

è

= 0

has a nontrivial solution: |a1|+ |a2|+ |a3| 6= 0 or

a1 + a2xi + a3yi = 0, i = 0, 1, 2, |a1|+ |a2|+ |a3| 6= 0.

Geometrically this means that the points (xi, yi), i = 0, 1, 2, are on the
straight line a1 + a2x + a3y = 0. This discussion tells us that for the unique
solvability of an interpolation problem with three knots (xi, yi), i = 0, 1, 2,
it is necessary and sufficient for the three points (xi, yi) not to be on the
same straight line. Analogically it is possible to show that for the unique
solvability of an interpolation problem with six knots (xi, yi), i = 0, . . . , 5,
it is necessary and sufficient for the knots not to be on the same second
order curve (ellipse, parabola, hyperbola, two straight lines), a ten knot
problem’s knots cannot be on the same third order curve and so on. In
comparison to the one variable situation here we see another difference.
Even though the number of knots is appropriate, they cannot be located
arbitrarily.

The third problem is that it is not possible to get good expressions for
a remainder term as it is for an one variable situation because Rolle’s the-
orem does not apply here.

Let us now examine a different way of two variable interpolation with
a special knot placement. Assume that it is a given rectangular grid of
knots (xi, yj), i = 0, . . . , n, j = 0, . . . , m.

j = 1

xx0 xn

y

y0

ym

It is also given numbers fij, i = 0, . . . , n, j = 0, . . . , m. We solve the
interpolation problem in the following way. Fix j ∈ {0, . . . , m} and find
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one variable polynomial Pnj of degree at most n such that

Pnj(xi) = fij, i = 0, . . . , n.

Proceed so for every j and as a result we get the polynomials Pn0, . . . , Pnm

of variable x. Then find the two variable polynomial Pnm = Pnm(x, y) of
degree at most m with respect to y such that

Pnm(x, yj) = Pnj(x), j = 0, . . . , m,

where for every x the different Pnj(x) are used as the values of the function
at interpolation. The obtained two variable polynomial Pnm(x, y) is at most
n + m degree polynomial (for a fixed x the degree with respect to y does
not exceed m and for a fixed y the degree with respect to x does not exceed
n). At the same time Pnm(xi, yj) = Pnj(xi) = fij for all i and j. We cannot
assert, though, that Pnm = Pnm(x, y) is a polynomial of minimal degree
satisfying interpolation conditions.

It is possible to interpolate in the other order, first by fixing i ∈ {0, . . . , n},
then finding P̃im such that P̃im(yj) = fij, j = 0, . . . , m. Doing so for ev-
ery index i and then interpolating with respect to x we get a two variable
polynomial P̃nm = P̃nm(x, y) by using P̃im(y) as the function values, which
means that

P̃nm(xi, y) = P̃im(y), i = 0, . . . , n.

Exercise 39. Prove that P̃nm(x, y) = Pnm(x, y). Suggestion: use the La-
grange’s interpolation formula.

§2. Function approximation by

least squares method

Let us recall some circumstances at interpolation with polynomials. In
practice it is common to have experimental data f0, . . . , fn with errors. A
lot of experiments or measurements are done to minimize the influence of
random errors. But we know that if n increases then the sequence of inter-
polation polynomials Pn may not converge to the function f to interpolate.
Recall also that enlarging n the influence of errors in data increases. To
compensate these troubles the least squares method for function approxi-
mation is used.
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2.1 Solving linear systems using least squares method

Consider the system





a11x1 + . . . + a1nxn = f1,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

am1x1 + . . . + amnxn = fn,

(3.2)

where, in general, m 6= n. E.g., it can happen that m > n.
Using the notation

A =

Ü

a11 . . . a1n
...

. . .
...

am1 . . . amn

ê

, x =

Ü

x1
...

xn

ê

, f =

Ü

f1
...

fm

ê

,

we write the system (3.2) as
Ax = f .

Generally, this system need not have a solution. For x ∈ R
n let

ri(x) = fi −
n∑

j=1

aijxj,

R(x) = f − Ax = (r1(x), . . . , rm(x))
T ,

‖R(x)‖2 = ‖ f − Ax‖2 =
m∑

i=1

r2
i (x) =

m∑

i=1

Ñ

fi −
n∑

j=1

aijxj

é2

where ‖ · ‖ is Euclidean norm or 2-norm.

Definition. A vector x ∈ R
n is called the least squares solution of the

system (3.2) if
‖R(x)‖2 = min

y∈Rn
‖R(y)‖2 .

We see that a least squares solution x is ordinary solution if and only if
‖R(x)‖ = 0.

The function x → ‖R(x)‖2 = g(x1, . . . , xn) is a n variable differen-
tiable function because it is a polynomial. If x is its minimum point, then
∂g

∂xk
(x) = 0, k = 1, . . . , n, which means that in the minimum point x

∂g

∂xk
(x) =

m∑

i=1

2

Ñ

fi −
n∑

j=1

aijxj

é

(−aik) = 0, k = 1, . . . , n,
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i.e.
m∑

i=1

n∑

j=1

aijaikxj =
m∑

i=1

aik fi, k = 1, . . . , n

or
n∑

j=1

Ñ

m∑

i=1

aikaij

é

xj =
m∑

i=1

aik fi, k = 1, . . . , n.

This set of equalities can be written as

AT Ax = AT f , (3.3)

where

AT =

Ü

a11 . . . am1
...

. . .
...

a1n . . . amn

ê

is transposed matrix. System (3.2) is called the normal system of equations,

its matrix AT A is a n×n matrix because A is a m×n matrix and AT is a n×
m matrix. The free term of system (3.2) is a vector having n components.

Above we saw that the least squares solution of system (3.2) is the solu-
tion of system (3.3). Now we will show that every solution of system (3.3)
is a least squares solution of problem (3.2). Let x be a solution of system
(3.3). Take an arbitrary y ∈ R

n. Then

‖ f − Ay‖2 = ‖ f − Ax + Ax − Ay‖2

= ( f − Ax + A(x − y), f − Ax + A(x − y)) =

= ‖ f − Ax‖2 + 2(A(x − y), f − Ax) + ‖A(x − y)‖2 =

= ‖ f − Ax‖2 + 2(x − y, AT( f − Ax)) + ‖A(x − y]‖2
>

> ‖ f − Ax‖2,

because AT( f − Ax) = 0 and ‖A(x − y)‖2
> 0. Thus the finding a least

squares solution of the system (3.2) is equivalent to the solution of the
normal system of equations.

Exercise 40. Prove that the normal system of equations always has a solu-

tion. Suggestion: prove that ran AT A = ran AT, where

ran A = {Ax| x ∈ R
n}

for a m × n matrix A.
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Theorem 28. The normal system of equations (3.3) is uniquely solvable if and
only if the columns of matrix A are linearly independent.

Proof. Let

a1 =

Ü

a11
...

am1

ê

, . . . , an =

Ü

a1n
...

amn

ê

,

then for a y ∈ R
n

Ay =

Ö

a11 . . . a1n

. . . . . . . . . . . . . .
am1 . . . amn

è

Ü

y1
...

yn

ê

=

=

Ö

a11y1 + . . . + a1nyn

. . . . . . . . . . . . . . . . . . . . .
am1y1 + . . . + amnyn

è

= y1a1 + . . . + ynan.

Now

a1, . . . , an are linearly independent ⇐⇒
⇐⇒ {y1a1 + . . . + ynan = 0 ⇒ y1 = . . . = yn = 0} ⇐⇒
⇐⇒ {Ay = 0 ⇒ y = 0} ⇐⇒ {AT Ay = 0 ⇒ y = 0} ⇐⇒
⇐⇒ the system (3.3) is uniquely solvable.

In the proof we used the assertion of the next

Exercise 41. Prove that, if AT Ay = 0, then Ay = 0.

Clearly if Ay = 0, then AT Ay = 0. Hence there holds the equality

ker AT A = ker A,

where

ker A = {x ∈ R| Ax = 0}.

This equality could be used in one of the possible solutions of exercise 40.
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2.2 Function approximation by least squares method

Let us have given knots x0, . . . , xm and the corresponding numbers f0, . . . , fm

(e.g., the values of a function in the knots or their approximations). Con-

sider the approximate function ϕ(x) =
n∑

j=0

cjϕj(x), where the coordinate

functions ϕ0, . . . , ϕn are given. If m = n and the coefficients cj are found
from the system

ϕ(xi) = fi i = 0, . . . , m,

or, in other words,

n∑

j=0

cjϕj(xi) = fi, i = 0, . . . , m, (3.4)

then an interpolant is obtained. If the system (3.4) fails to have a solution
(which is natural for m > n), then solving the system (3.4) with respect to
the unknowns cj using the least squares method, we are talking about the
least squares approximation.

In this situation the matrix of the system (3.4) is

A =

Ü

ϕ0(x0) . . . ϕn(x0)
...

. . .
...

ϕ0(xm) . . . ϕn(xm)

ê

,

which means that aij = ϕj(xi). Thus the normal system of equations is

n∑

j=0

Ñ

m∑

i=0

ϕk(xi)ϕj(xi)

é

cj =
m∑

i=0

ϕk(xi) fi, k = 0, . . . , n.

Here, the normal system of equations is uniquely solvable if and only if
the columns of matrix A,

Ü

ϕj(x0)
...

ϕj(xm)

ê

, j = 0, . . . , n,

are linearly independent.
Note that at least squares approximation, it is allowed that there are

equal numbers among the knots x0, . . . , xm, e.g., a number (10 or 100) mea-
surements are done for every distinct of others value xi. It may be that
xi = xj, but fi 6= f j.
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2.3 Example: least squares approximation using polyno-

mials

Choose ϕ0(x) = 1, ϕ1(x) = x, . . . , ϕn(x) = xn, therefore the approximant
is a polynomial Pn(x) = c0 + c1x + . . . + cnxn. Here the coefficients of the

system (3.4) are ϕj(xi) = x
j
i , the normal system of equations is

n∑

j=0

Ñ

m∑

i=0

xi
k+j

é

cj =
m∑

i=0

xi
k fi, k = 0, . . . , n. (3.5)

Theorem 29. The system (3.5) is uniquely solvable if and only if there are at least
n + 1 pairwise distinct knots among x0, . . . , xm.

Proof. Let us rely on Theorem 28 about the unique solvability of a normal
system of equations. For this it is necessary and sufficient that the columns
of the initial system of equations

Ü

1
...
1

ê

,

Ü

x0
...

xm

ê

, . . . ,

Ü

x0
n

...
xm

n

ê

are linearly independent. This takes place if and only if the rank of matrix

A =

Ü

1 x0 . . . x0
n

...
...

. . .
...

1 xm . . . xm
n

ê

r(A) is equal to the number n + 1 of columns. If there are n + 1 pairwise
distinct knots then there exists a nonzero minor of degree n + 1 (Vander-
monde determinant), and therefore r(A) = n + 1. If it is not possible to
find n + 1 pairwise distinct knots, then, in every minor of degree n + 1
there are at least two equal rows, and the minor itself is equal to 0, which
means that r(A) < n + 1.

In section 2 we considered the least squares approximation for a func-
tion which is a linear combination of coordinate functions. Let us now
consider an essentially more general problem.

Let it be given the knots x0, . . . , xm, not necessarily pairwise distinct,
and the values f0, . . . , fm. Additionally, let it be possible that xi = xj but
fi 6= f j. The approximating function has the form ϕ(x, c0, . . . , cn), where
the dependence (in general, nonlinear) on parameters ci is known. Usually
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in practice a particular object to study determines this dependence. The
unknown parameters ci have to be determined from the condition, that
the expression

m∑

i=0

(ϕ(xi , c0, . . . , cn)− fi)
2

has to be minimal, where (c0, . . . , cn) ∈ D ⊂ R
n+1 (it can also be that D =

R
n+1). In general case, this is a complicated problem and the methods

used to find the suitable solution belong to the field of optimization.

§3. Numerical differentiation

Numerical differentiation stands for finding derivatives of functions using
a finite number of values. Thus the initial situation is the same as at inter-
polation: given are knots x0, . . . , xn and corresponding values f0, . . . , fn,
now instead of finding the function we find its derivative or derivatives
of higher order. It is clear that the derivatives can also be restored only
approximately.

One possible way to get numerical differentiation formulae is to use
interpolation formulae. From the differentiation of the interpolation for-
mula

f (x) = ϕ(x) + R(x)

we get

f ′(x) = ϕ′(x) + R′(x),

and instead of f ′(x) we can use ϕ′(x). Similarly

f (k)(x) = ϕ(k)(x) + R(k)(x)

and instead of f (k)(x) we can use ϕ(k)(x). However, the fact that R(x) is

small need not mean that R′(x), . . . , R(k)(x) are small.

3.1 Numerical differentiation formulae for equidistantly

distributed knots

Consider the situation where the knots are xi = x0 + ih, i = 0, . . . , n. We
will treat finding derivatives in these knots. Formulae with better prop-
erties are such where the differentiation in a knot xm uses the knots sym-
metrically around xm. Therefore if we use the knots x0, . . . , xn to find the
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derivative in knot xm, then n is an even number and n = 2m. Occasionally
it is inevitable also to use formulae where the knots are replaced asym-
metrically around the knot at which the derivative is calculated, e.g., for
reasons connected with the availability of the values fi. In the following
we consider the more important formulae commonly used in practice, for
which we fix the notation fi = f (xi). For n = 2 they are

f ′(x1) =
1

2h
( f2 − f0)−

h2

6
f ′′′(ξ), ξ ∈ [x0, x2],

f ′′(x1) =
1

h2
( f0 − 2 f1 + f2)−

h2

12
f (4)(ξ),

and for n = 4

f ′(x2) =
1

12h
( f0 − 8 f1 + 8 f3 − f4) +

h4

30
f (5)(ξ), ξ ∈ [x0, x4],

f ′′′(x2) =
1

2h3
(− f0 + 2 f1 − 2 f3 + f4)−

h2

4
f (5)(ξ).

Among them let us derive the first formula in the form

f ′(x) =
1

2h
( f (x + h)− f (x − h))− h2

6
f ′′′(ξ).

With the help of Taylor expansion we find

1

2h
( f (x + h)− f (x − h)) =

1

2h

Ñ

f (x) + h f ′(x) +
h2

2
f ′′(x) +

h3

6
f ′′′(ξ1)−

−
Å

f (x)− h f ′(x) +
h2

2
f ′′(x)− h3

6
f ′′′(ξ2)

ã

é

=

= f ′(x) +
h2

12
( f ′′′(ξ1) + f ′′′(ξ2)),

which can be done if f ∈ C3[x − h, x + h]. Under the same assumption we
get

2 min
x−h6z6x+h

f ′′′(z) 6 f ′′′(ξ1) + f ′′′(ξ2) 6 2 max
x−h6z6x+h

f ′′′(z),

or

min
x−h6z6x+h

f ′′′(z) 6
1

2
( f ′′′(ξ1) + f ′′′(ξ2)) 6 max

x−h6z6x+h
f ′′′(z).
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The continuous function f ′′′ takes all the values between its minimum and
maximum, thus there exists ξ ∈ [x − h, x + h] such that

f ′′′(ξ) =
1

2
( f ′′′(ξ1) + f ′′′(ξ2)).

Taking this into account, we have deduced the first of the formulae.

Exercise 42. Deduce three other numerical differentiation formulae under
the assumptions f ∈ C4 or f ∈ C5, respectively.

3.2 Influence of errors at numerical differentiation

At numerical differentiation (just like at interpolation) the unconditional
error stands for inaccuracies in function values fi, caused, e.g., by errors
in measurements or experiment data. The conditional error, though, is
the size of the remainder term or its estimate. Here we see the following
phenomenon: when decreasing the remainder term, the influence of the
unconditional error increases. We explain this in an example even though
this phenomenon takes place in any numerical differentiation formula.

From the Taylor expansion

f (x0 + h) = f (x0) + h f ′(x0) +
h2

2
f ′′(ξ)

we get the numerical differentiation formula

f ′(x0) =
f (x0 + h)− f (x0)

h
− h

2
f ′′(ξ).

Assume that f ∈ C2[x0, x0 + δ], | f ′′(x)| 6 M, fi = f (xi), i = 0, 1. One

finds f̃0 = f0 ± ε, f̃1 = f1 ± ε, and calculates
f̃1 − f̃0

h
as the approximation

of f ′(x0). Then

∣∣∣∣∣∣
f̃1 − f̃0

h
− f ′(x0)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
f̃1 − f̃0

h
− f1 − f0

h
+

f ′′(ξ)h
2

∣∣∣∣∣∣
=

=

∣∣∣∣∣∣
f̃1 − f1

h
− f̃0 − f0

h
+

f ′′(ξ)h
2

∣∣∣∣∣∣
6

6
2ε

h
+

M

2
h = g(h).
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If h → 0, then
M

2
h → 0 (the estimate of the remainder term or the con-

ditional error decreases), but
2ε

h
→ ∞ (the influence of the unconditional

error ε increases).

Studying the function g gives that g′(h) = −2ε

h2
+

M

2
, and g′(h) = 0

yields that h = 2

 

ε

M
. At it g′′(h) =

4ε

h3
> 0, which means that value

g(h) is minimal for h = 2

 

ε

M
. In practice, this may mean that data fi are

obtained with too small step and some of them should be dropped.

3.3 Convergence of numerical differentiation formulae

Consider a set of equidistant knots x0 − lh, . . . , x0 + rh, where l, r > 0.

x0 − lh x0 − h x0 x0 + h x0 + rh. . . . . .

Let it be given the numerical differentiation formula

f (k)(x0) =
1

hk

r∑

i=−l

bi f (x0 + ih) + Rh( f ). (3.6)

Take k, l, r, and the coefficients bi as fixed. We call the first part
1

hk

r∑

i=−l

bi f (x0 +

ih) in the formula (3.6) the difference expression.

Definition. We say that the formula (3.6) or the difference expression in it
converges, if

1

hk

r∑

i=−l

bi f (x0 + ih) → f (k)(x0) (or Rh( f ) → 0)

in the process of h → 0 for every function f ∈ Ck[x0 − δ, x0 + δ].

Let us point out the fact that the convergence is not considered with
adding knots but, instead, the distance between them decreases. At it the
knots in use are replaced according to the given stencil.

Let us introduce the characteristic function of the difference expression.

χ(z) =
r∑

i=−l

biz
i,
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where χ : C → C or χ : C \ {0} → C. It turns out that many properties of
the formula (3.6) depend on the behaviour of this function.

Theorem 30. For the convergence of the numerical differentiation formula (3.6)
it is necessary and sufficient that

χ(1) = 0, χ′(1) = 0, . . . , χ(k−1)(1) = 0, χ(k)(1) = k! (3.7)

Proof. Use Taylor expansions in the difference expression

1

hk

r∑

i=−l

bi f (x0 + ih) =
1

hk

r∑

i=−l

bi

Å

f (x0) + f ′(x0)ih+

+
f ′′(x0)

2
i2h2 + · · ·+ f (k)(x0)

k!
ikhk + αi

ã

,

where
αi

hk
→ 0 in the process h → 0, if f ∈ Ck. Consider equalities





r∑

i=−l

bi = 0 (coefficient of f (x0)),

r∑

i=−l

bii = 0 (coefficient of f ′(x0)),

r∑

i=−l

bii
2 = 0 (coefficient of f ′′(x0)),

. . . . . .
r∑

i=−l

bii
k−1 = 0,

r∑

i=−l

bi
ik

k!
= 1 or

r∑

i=−l

bii
k = k!

(3.8)

Taking into consideration that
r∑

i=−l

bi
αi

hk
→ 0 as h → 0, we get that if (3.8)

holds then (3.6) converges or Rh( f ) → 0 for every f ∈ Ck.
For the converse, assume that (3.6) converges, i.e., Rh( f ) → 0 for every

f ∈ Ck in the process h → 0. Use a test function f for which

f (x0) = 1, f ′(x0) = 0, . . . , f (k)(x0) = 0.

From this we get the first equality in (3.8). If we take f such that

f (x0) = 0, f ′(x0) = 1, f ′′(x0) = 0, . . . , f (k)(x0) = 0,
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then we get the second equality in (3.8). If we choose f such that

f (x0) = 0, . . . , f (k−1)(x0) = 0, f (k)(x0) = 1,

then we get the last equality in (3.8). The suitable test functions are, for

example, f (x) =
(x − x0)

j

j!
, j = 0, 1, . . . , k.

With the discussion so far we have shown that (3.6) converges if and
only if the equalities (3.8) hold. The equalities in the theorem’s assertion
are





χ(1) =
r∑

i=−l

bi = 0,

χ′(1) =
r∑

i=−l

bii = 0,

χ′′(1) =
r∑

i=−l

bii(i − 1) = 0,

. . .

χ(k−1)(1) =
r∑

i=−l

bii(i − 1) . . . (i − (k − 2)) = 0,

χ(k)(1) =
r∑

i=−l

bii(i − 1) . . . (i − (k − 1)) = k!

(3.9)

The first two equalities are the same in (3.8) and (3.9). Taking into consid-
eration the second equality we get that the third equalities are also equiv-
alent. Proceeding in a similar way we see the equivalence of (3.8) and
(3.9).

Exercise 43. Prove that formula (3.6) converges if and only if its charac-

teristic function can be expressed as χ(z) = z−l(z − 1)kQ(z), where Q is a
polynomial and Q(1) = 1.

As examples let us consider the following formulae

1) f ′(x) =
1

h
( f (x + h)− f (x))− h

2
f ′′(ξ);

2) f ′(x) =
1

2h
( f (x + h)− f (x − h))− h2

6
f ′′′(ξ);

3) f ′′(x) =
1

h2
( f (x + h)− 2 f (x) + f (x − h))− h2

12
f (4)(ξ).
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The remainder terms can be represented in such a form if f ∈ C2, f ∈ C3

or f ∈ C4, respectively.
The characteristic function in the first formula is χ(z) = z − 1, then

χ(1) = 0, χ′(z) = 1, χ′(1) = 1!.

In the second formula

χ(z) =
1

2

Ç

z − 1

z

å

, χ(1) = 0, χ′(z) =
1

2

Ç

1 +
1

z2

å

, χ′(1) = 1!.

In the third formula

χ(z) = z − 2 +
1

z
,

χ(1) = 0, χ′(z) = 1 − 1

z2
, χ′(1) = 0, χ′′(z) =

2

z3
, χ′′′(1) = 2!.

Thus, if f ∈ C1, then the difference expression in the first and in the sec-
ond formula converges to the derivative, but if f ∈ C2, then in the third
formula the difference expression converges to the second derivative as
h → 0.

We are able to judge about the rate of convergence from the remainder
terms. We say that the formula (3.6) converges at the rate hm, if |Rh( f )| 6
chm for a sufficiently smooth enough function f . For the first formula the
rate of convergence is h, for the second and third it is h2. The rate of conver-
gence for the formula (3.6) can be found using longer Taylor expansions.

c© Author and University of Tartu. All rights reserved



IV Numerical integration (approximate
calculation of definite integrals)

Introduction

Assume that one has to calculate the definite integral

b∫

a

f (x)dx.

If it is possible to find the primitive function F, i.e., F′(x) = f (x), then we
can use the Newton–Leibniz formula

b∫

a

f (x)dx = F(b) − F(a).

Sometimes it is not possible to find it as an elementary function. For ex-

ample,
∫

ex2
dx is not an elementary function (from this follows that un-

like the values of an elementary function, this function’s values are not so
easy to find, e.g., in a computer). We are also unable to use the Newton–
Leibniz formula if we only know a finite number of values of function f ,
e.g., from experimental data or measurement results. In this case approxi-
mation methods are used. If a finite number of values of function f is used
to find the integral, then the corresponding formulae are called quadrature
formulae. If a finite number of values of function f is used to find multiple

integrals
∫

Ω

f (x)dx, Ω ⊂ R
n, then the corresponding formulae are called

cubature formulae. We do not consider cubature formulae in this course.
Sometimes, for any n, these formulae are called quadrature formulae.

Quite well known are the following quadrature formulae

b∫

a

f (x)dx ≈
n∑

i=1

Ai f (xi),

78
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here the argument values xi are called knots of the quadrature formula,

numbers Ai coefficients of the quadrature formula, the expression
n∑

i=1

Ai f (xi)

the quadrature sum. It is natural to assume that xi ∈ [a, b].
Let f be an arbitrary Riemann integrable function. Based on the defi-

nition of integral we get

b∫

a

f (x)dx = lim
max ∆xi→0

n∑

i=1

f (ξi)∆xi,

where a = x0 < x1 < . . . < xn = b, ∆xi = xi − xi−1, i = 1, . . . , n,
ξi ∈ [xi−1, xi].

x0

=

a

x1 xi−1

ξi

xi xn

=
b

. . . . . .

△xi

From this we obtain a large amount of quadrature formulae

b∫

a

f (x)dx ≈
n∑

i=1

f (ξi)∆xi ,

where ξi are knots of the quadrature formula, ∆xi the coefficients, and the
integral sum is taken as quadrature sum.

This method cannot be used when the integral is improper, which means
that either the function f or the domain of integration is unbounded. In
this case the following quadrature formulae are used:

b∫

a

p(x) f (x)dx =
n∑

i=1

Ai f (xi) + Rn( f ).

Here the following new notions appear: the remainder Rn( f ), the weight
function p, properties of which reflect the improperness of the integral or
the singularities of the function to be integrated, and f is a function with
good properties (smooth, bounded).

To develop the theory the weight function is required to satisfy

1◦ p(x) > 0, x ∈ [a, b], there exists

b∫

a

p(x)dx > 0,
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2◦
b∫

a

p(x)xk dx, k = 1, 2, . . . , exist.

These assumptions yield that the integral

b∫

a

p(x)P(x)dx exists for every

polynomial P. For example, in an interval [a, b] the weight functions

p(x) = (x − a)α(b − x)β, α, β > −1,

are used, in the domain [0, ∞) the weight functions

p(x) = xαe−x, α > −1,

are used, and in the domain (−∞, ∞) the weight functions p(x) = e−x2
or

p(x) = e−|x| are used.
Let us look at an example where we separate the weight function. Write

1∫

−1

dx√
1 − x6

=

1∫

−1

1√
1 − x2

1√
1 + x2 + x4

dx,

from which for [a, b] = [−1, 1]

p(x) =
1√

1 − x2
= (1 + x)−

1
2 (1 − x)−

1
2 = (x − (−1))−

1
2 (1 − x)−

1
2 ,

i.e., α = β = −1

2
, f (x) =

1√
1 + x2 + x4

, and the function f is bounded

and smooth.

§1. Interpolatory quadrature rules

Definition. The quadrature formula

b∫

a

p(x) f (x)dx =
n∑

i=0

Ai f (xi) + Rn( f ) (4.1)

is said to be of the interpolation type or interpolatory quadrature rule, if
its quadrature sum is the integral of the interpolation polynomial with the
knots xi and the weight p. Thus

n∑

i=0

Ai f (xi) =

b∫

a

p(x)Pn(x)dx,

where Pn(xi) = f (xi), i = 0, . . . , n, and the degree of Pn does not exceed n.
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We have Pn(x) =
n∑

i=0

f (xi)ℓni(x) from the Lagrange formula, therefore

n∑

i=0

Ai f (xi) =

b∫

a

p(x)

Ñ

n∑

i=0

f (xi)ℓni(x)

é

dx =

=
n∑

i=0

Ö

b∫

a

p(x)ℓni(x)dx

è

f (xi)

for every function f if and only if Ai =

b∫

a

p(x)ℓni(x)dx. With this it is

proved the next

Proposition 31. The quadrature formula (4.1) is interpolatory quadrature rule

if and only if its coefficients are Ai =

b∫

a

p(x)ℓni(x)dx.

Thus the coefficients in interpolatory quadrature rule are uniquely de-
fined if the knots are given (of course, we keep in view that a, b and p are
also fixed).

From the interpolation formula f (x) = Pn(x) + Rn(x) we get

b∫

a

p(x) f (x)dx =

b∫

a

p(x)Pn(x)dx +

b∫

a

p(x)Rn(x)dx,

hence

b∫

a

p(x)Pn(x)dx =
n∑

i=0

Ai f (xi) if and only if

Rn( f ) =

b∫

a

p(x)Rn(x)dx.

This yields

Proposition 32. The quadrature formula (4.1) is interpolatory quadrature rule
if and only if its remainder term can be expressed by the interpolation formula’s

remainder term in the form Rn( f ) =

b∫

a

p(x)Rn(x)dx.
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A quadrature formula is called exact for a function f if, for the function
f , the integral and the quadrature sum are equal or Rn( f ) is equal to zero.

Theorem 33. Quadrature formula (4.1) is interpolatory quadrature rule if and
only if it is exact for all polynomials of degree at most n.

Proof. If (4.1) is exact for all polynomials of degree at most n, then it is also
exact for Lagrange fundamental polynomials ℓni. Therefore

b∫

a

p(x)ℓni(x)dx =
n∑

j=0

Ajℓni(xj) = Ai,

because ℓni(xj) = δij. With this we have shown that (4.1) is of the interpo-
lation type.

Now assume that (4.1) is interpolatory quadrature rule. Take an arbi-
trary polynomial P of degree at most n. It is its own interpolation poly-
nomial because its degree is at most n, it satisfies the interpolation condi-
tions, and the interpolation polynomial is uniquely defined. Therefore the
interpolation formula’s remainder term Rn(x) = 0 and the quadrature for-

mula’s remainder term Rn(P) =

b∫

a

p(x)Rn(x)dx = 0, which means that

(4.1) is exact for the polynomial P.

Recall that a function f is an even function, if f (−x) = f (x), and it is an
odd function, if f (−x) = − f (x) for every x from its domain of definition D,
which itself has to be symmetric with respect to the point 0: if x ∈ D, then
−x ∈ D. More generally, a function f is an even function with respect to a
point c, if f (x) = f (x′) for all x and x′ which are symmetric with respect
to the point c: x − c = c − x′ or x′ = 2c − x.

x′ c x

A natural assumption here is that the domain of definition D of function f
is symmetric with respect to the point c, which means that 2c − x ∈ D for
x ∈ D. Similarly we define an odd function with respect to a point.

Exercise 44. Prove that if in a quadrature formula of interpolation type the

weight function p is even with respect to centre c =
a + b

2
of the domain

of integration, and the knots are replaced symmetrically with respect to
c, then the coefficients corresponding to the symmetrical knots are equal,
i.e., if xi − c = c − xj, then Ai = Aj.
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Note that if f ∈ Cn+1[a, b], then the interpolation formula’s remainder

term has the form Rn(x) =
f (n+1)(ξ(x))

(n + 1)!
ωn(x), and in the interpolatory

quadrature rule the remainder term takes the form

Rn( f ) =
1

(n + 1)!

b∫

a

p(x) f (n+1)(ξ(x))ωn(x)dx.

§2. Newton–Cotes’ formulae

Newton–Cotes’ formulae are characterized by the following data:

1) they are interpolatory quadrature rules,

2) domain of integration is bounded, i.e., a, b ∈ R,

3) p(x) = 1 for every x ∈ [a, b],

4) xi = a + ih, i = 0, . . . , n, h =
b − a

n
.

Thus we are free to choose only a, b and n in the Newton–Cotes’ formulae.

2.1 Properties of the coefficients in Newton–Cotes’ formu-

lae

Newton–Cotes’ formulae have the form

b∫

a

f (x)dx =
n∑

i=0

Ai f (xi) + Rn( f ).

We get that Ai =

b∫

a

ℓni(x)dx because they are of the interpolation type. If

we take into consideration the form of ℓni then

Ai =

b∫

a

(x − x0) . . . (x − xi−1)(x − xi+1) . . . (x − xn)

(xi − x0) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xn)
dx.

Consider the change of variable x = a + th, then dx = h dt,

x − xj = a + th − (a + jh) = (t − j)h,

xk − xj = a + kh − (a + jh) = (k − j)h,
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and the limits of integration a and b are replaced by the values 0 and n,
respectively. With this we calculate

Ai = h

n∫

0

t(t − 1) . . . (t − (i − 1))(t − (i + 1)) . . . (t − n)

i(i − 1) . . . 1 · (−1) . . . (i − n)
dt =

=
b − a

n

(−1)n−i

i!(n − i)!

n∫

0

t(t − 1) . . . (t − (i − 1))(t − (i + 1)) . . . (t − n)dt =

= (b − a)Bi ,

where the numbers Bi are not dependent on the integration domain [a, b],
but they do depend on the value n, which is why we write Bi = Bni if we
do not fixe n and it is important to emphasize the dependence. Therefore
the Newton–Cotes’ formulae can be written in the form

b∫

a

f (x)dx = (b − a)
n∑

i=0

Bi f (xi) + Rn( f ).

We present some of the properties of the coefficients Bi:

1)
n∑

i=0

Bni = 1, we get this if we take f (x) ≡ 1. This function is a poly-

nomial of degree 0 and thus the quadrature formula is exact;

2) Bni = Bn,n−i from Exercise 44 in the previous section;

3)
n∑

i=0

|Bni| → ∞, which we will not prove here.

Properties 1) and 3) allow us to claim that when n increases negative coef-
ficients appear, the first one appears when n = 8, and when n > 10 they
always appear. Property 3) also means that the influence of inaccuracies
in the data increase as n increases. Let us show it. Assume that instead of
the values f (xi) there are found f̃i such that

∣∣∣ f̃i − f (xi)
∣∣∣ 6 ε.

Instead of calculating the quadrature sum
n∑

i=0

Bni f (xi) we calculate
n∑

i=0

Bni f̃i.
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Then
∣∣∣∣∣∣

n∑

i=0

Bni f̃i −
n∑

i=0

Bni f (xi)

∣∣∣∣∣∣
=

∣∣∣∣∣∣

n∑

i=0

Bni

(
f̃i − f (xi)

)
∣∣∣∣∣∣
6

6

n∑

i=0

|Bni|
∣∣∣ f̃i − f (xi)

∣∣∣ 6

6

n∑

i=0

|Bni|ε → ∞,

as n → ∞.

2.2 Remainder term of Newton–Cotes’ formulae

At the end of the previous part we showed how to express in the interpo-
latory quadrature rule the remainder term for a smooth function. Using
this representation in Newton–Cotes’ formulae we get

Rn( f ) =
1

(n + 1)!

b∫

a

f (n+1)(ξ(x))ωn(x)dx,

if f ∈ Cn+1[a, b]. If we denote Mn+1 = max
a6x6b

| f (n)(x)| then we get the

estimate

|Rn( f )| 6 1

(n + 1)!
Mn+1

b∫

a

|ωn(x)|dx,

but this is a considerable overestimation because every time ωn passes a
knot, it changes the sign (this discussion is also valid for other interpola-
tory quadrature rules which, in general, contain a weight function p). It
turns out that we are able to get a much better form of the remainder term
in Newton–Cotes’ formulae.

We need the mean value theorem known from integral calculus. It
holds that

b∫

a

f (x)g(x)dx = f (ξ)

b∫

a

g(x)dx, ξ ∈ (a, b),

if f is continuous, g is integrable and keeps the sign (i.e., g(x) > 0 for all
x ∈ [a, b] or g(x) 6 0 for all x ∈ [a, b]). For the more known particular case
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g(x) = 1 for all x ∈ [a, b] it holds that

b∫

a

f (x)dx = f (ξ)(b − a).

Let it be n = 1 in Newton–Cotes’ formula and f ∈ C2[a, b]. Then

R1( f ) =
1

2!

b∫

a

f ′′(ξ(x))(x − a)(x − b)dx =

=
1

2
f ′′(ξ)

b∫

a

(x − a)(x − ib)dx =

= − (b − a)3

12
f ′′(ξ),

because at interpolation we have seen the continuity of the function

x → f ′′(ξ(x)),

and (x − a)(x − b) 6 0 for all x ∈ [a, b].
In a more general case it is possible to prove (it is based on the mean

value theorem but the proof is quite technical), that if n is even, then

Rn( f ) =
f (n+2)(ξ)

(n + 2)!

b∫

a

(x − c)ωn(x)dx,

where c ∈ R is arbitrary (as an explanation note that

b∫

a

ωn(x)dx = 0,

because here ωn is an odd function with respect to c =
a + b

2
); if n is odd,

then

Rn( f ) =
f (n+1)(ξ)

(n + 1)!

b∫

a

ωn(x)dx.

Of course these remainder term expressions are only valid if we assume

that f has the required smoothness: f ∈ Cn+2[a, b] for n even, f ∈ Cn+1[a, b]
for n odd.
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These results give us that

R2( f ) =
f (4)(ξ)

4!

b∫

a

(x − a)(x − c)2(x − b)dx =

= − 1

90

Ç

b − a

2

å5

f (4)(ξ), here we take c =
a + b

2
,

R3( f ) = − 3

80

Ç

b − a

3

å5

f (4)(ξ).

§3. Trapezoidal rule, Simpson’s rule, Newton’s
3

8
rule, rectangular rule

1. Consider Newton–Cotes’ formula in the case n = 1. We only need to
find the coefficients. They satisfy

B0 + B1 = 1,

B0 = B1,

from which B0 = B1 =
1

2
. The quadrature formula is

b∫

a

f (x)dx = (b − a)
f (a) + f (b)

2
− (b − a)3

12
f ′′(ξ), ξ ∈ (a, b),

where the remainder term is such if f ∈ C2[a, b]. The calculation by

this formula means geometrically that the area

b∫

a

f (x)dx under the

graph of function f is replaced by the quadrature sum, being the area
of a trapezoid.

a b

f (a)
f (b)

f (x)

f (a)
f (b)
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It is clear that the error here can be quite large. Because of that we
proceed as follows. Let us divide interval [a, b] into parts with the

length h =
b − a

n
, the subintervals have endpoints xi = a + ih, i =

0, . . . , n. Express

b∫

a

f (x)dx =
n∑

i=1

xi∫

xi−1

f (x)dx,

and apply on each subinterval the trapezoidal rule

xi∫

xi−1

f (x)dx =
h

2
( f (xi−1) + f (xi))−

h3

12
f ′′(ξi), ξi ∈ (xi−1, xi).

In sum we have the formula

b∫

a

f (x)dx =
h

2

n∑

i=1

( f (xi−1) + f (xi))−
h3

12

n∑

i=1

f ′′(ξi).

At it

n min
16i6n

f ′′(ξi) 6
n∑

i=1

f ′′(ξi) 6 n max
16i6n

f ′′(ξi),

from which

min
ξ16x6ξn

f ′′(x) 6 min
16i6n

f ′′(ξi) 6
1

n

n∑

i=1

f ′′(ξi) 6

6 max
16i6n

f ′′(ξi) 6 max
ξ16x6ξn

f ′′(x).

If f ′′ is continuous, then it attains all the values between its mini-
mum and maximum, and, consequently, there exists ξ ∈ (a, b) such

that f ′′(ξ) =
1

n

n∑

i=1

f ′′(ξi) or
n∑

i=1

f ′′(ξi) = n f ′′(ξ). As the result of

such averaging having general character the remainder term takes
the form

Rn( f ) = −nh3

12
f ′′(ξ) = − (b − a)3

12n2
f ′′(ξ).
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The quadrature formula is (here fi = f (xi))

b∫

a

f (x)dx =
b − a

2n
( f0 + 2 f1 + . . . + 2 fn−1 + fn)−

(b − a)3

12n2
f ′′(ξ).

Geometrically this means that at calculation by this formula the ac-
tual area is replaced by a sum of areas of trapezoids, which is illus-
trated in the next figure in the case n = 4.

a b

In the figure f ′′(x) < 0 for all x ∈ [a, b], thus − (b − a)3

12n2
f ′′(ξ) > 0

and the integral is greater than the quadrature sum.

If it is necessary to distinguish, then for n = 1 the term simple formula
or the elementary formula is used, and for n > 2 it is the term composite
formula or the generalized formula.

2. Take n = 2 in the Newton–Cotes’ formula, then x0 = a, x1 =
a + b

2
,

x2 = b. We are acquainted with the remainder term, we only have to
find the coefficients. The properties of the coefficients give us that

B0 + B1 + B2 = 1,

B0 = B2.

The coefficients Bi do not depend on the interval [a, b]. To simplify
the calculations we take the interval [a, b] = [0, 2] and the function

f (x) = x2,

for which the formula is exact. Then

2∫

0

x2 dx =
8

3
= 2(B0 · 0 + B1 · 1 + B2 · 4)
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or

B1 + 4B2 =
4

3
.

Taking into account the equality B1 + 2B2 = 1 we get

B0 = B2 =
1

6
, B1 =

4

6
.

Thus the Newton–Cotes’ formula for n = 2 is

b∫

a

f (x)dx =
b − a

6

Ç

f (a) + 4 f

Ç

a + b

2

å

+ f (b)

å

−

− 1

90

Ç

b − a

2

å5

f (4)(ξ).

This formula is called Simpson’s rule. Analogically to the trape-
zoidal rule divide interval [a, b] into n parts, where now let n be an

even number, but still h =
b − a

n
. Write the integral

b∫

a

f (x)dx

as a sum of integrals over the intervals [a, a + 2h], [a + 2h, a + 4h],. . . ,
[b− 2h, b], and apply Simpson’s rule to integrals on subintervals. The
result of this is

b∫

a

f (x)dx =

n
2∑

i=1

2h

6
( f (x2i−2 + 4 f (x2i−1) + f (x2i))−

n
2∑

i=1

h5

90
f (4)(ξi).

Analogically to the trapezoidal rule case, we now average the values

of f (4) and therefore

n
2∑

i=1

f (4)(ξi) =
n

2
f (4)(ξ), ξ ∈ (a, b).

In total we have the formula

b∫

a

f (x)dx =
b − a

3n
( f0 + 4 f1 + 2 f2 + 4 f3 + . . . + 4 fn−1 + fn)−

− (b − a)5

180n4
f (4)(ξ).
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3. Take n = 3 in the Newton–Cotes’ formula. We get the coefficients

B0 = B3 =
1

8
, B1 = B2 =

3

8
.

Exercise 45. Show how to find the coefficients B0, . . . , B3 in the Newton–
Cotes’ formula for n = 3.

Denoting h =
b − a

3
we get that

b∫

a

f (x)dx =
b − a

8

Ä

f (a) + 3 f (a + h) + 3 f (a + 2h) + f (b)
ä

− 3

80
h5 f (4)(ξ),

which is called the Newton’s
3

8
rule.

Proceeding as earlier, we take a number n which is multiple of 3, then

denote h =
b − a

n
, and finally decompose the integral

b∫

a

f (x)dx into

the sum of integrals on intervals [a, a + 3h], [a + 3h, a + 6h], . . . , [b −
3h, b]. Then apply Newton’s

3

8
rule to each integral on subinterval

and average the sum of the values of f (4) in the remainder terms. As
the result we get

b∫

a

f (x)dx =
3(b − a)

8n
( f0 + 3 f1 + 3 f2 + 2 f3 + 3 f4 + . . . + 3 fn−1 + fn)−

− (b − a)5

80n4
f (4)(ξ).

Comparing the remainder terms of Simpson’s rule and Newton’s
3

8
rule, e.g., for n = 12, then it is reasonable to use Simpson’s rule. But

if n = 9, then only Newton’s
3

8
rule could be used.

From the remainder terms of considered formulae we conclude that
in the process h → 0 or n → ∞ the quadratic sum in the trapezoidal
rule converges to the integral if f ∈ C2[a, b], as well in Simpson’s rule

and Newton’s
3

8
rule if f ∈ C4[a, b]. Actually, this convergence holds
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for all Riemann integrable functions, e.g., in the trapezoidal rule

h

2
( f0 + 2 f1 + · · ·+ 2 fn−1 + fn) =

=
1

2
h ( f0 + f1 + · · ·+ fn−1) +

1

2
h ( f1 + f2 + · · ·+ fn) →

→ 1

2

b∫

a

f (x)dx +
1

2

b∫

a

f (x)dx =

b∫

a

f (x)dx,

because we divided the quadrature sum into two summands in which

both are integral sums with coefficient
1

2
, in the first sum function

values are taken at left endpoints of the subintervals, in the second
sum at right endpoints.

Exercise 46. Prove that for all Riemann integrable functions Simp-

son’s rule and Newton’s
3

8
rule converge.

4. Let us consider the quadrature formula

b∫

a

f (x)dx = A0 f (x0) + R0( f ),

where only one knot x0 is used. Determine the coefficient A0 and the
knot x0 in a way that the formula is exact for polynomials of highest
possible degree. If f (x) = 1 for every x ∈ [a, b], then the exactness
gives that

b∫

a

f (x)dx = b − a = A0 · 1,

therefore A0 = b − a. If f (x) = x for every x ∈ [a, b], then

b∫

a

x dx =
x2

2

∣∣∣∣∣

b

a

=
b2 − a2

2
=

(b − a)(b + a)

2
,

the quadrature sum is (b − a)x0, and the equality of the quadrature

sum and integral gives us that x0 =
a + b

2
.

Assume that f ∈ C2[a, b], and let us try to find an appropriate form
for the remainder term. With the help of Taylor expansion we get
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that

R0( f ) =

b∫

a

f (x)dx − (b − a) f (x0) =

=

b∫

a

Ç

f (x0) + f ′(x0)(x − x0) +
f ′′(ξ(x))

2
(x − x0)

2
å

dx − (b − a) f (x0) =

=
1

2

b∫

a

f ′′(ξ(x))(x − x0)
2 dx,

because

b∫

a

(x − x0)dx = 0. In the following transformations we use

an assertion which we formulate in a more general way.

Exercise 47. Prove that in the Taylor expansion

f (x) = f (x0) + f ′(x0)(x − x0) + . . . +
f (n)(ξ(x))

n!
(x − x0)

n

the function x → f (n)(ξ(x)) is continuous if f ∈ Cn[x0 − δ, x0 + δ]
for some δ > 0.

Basing on the mean value theorem of integral calculus and Exercise
47, we get that

R0( f ) =
1

2
f ′′(ξ)

b∫

a

(x − x0)
2 dx =

(b − a)3

24
f ′′(ξ).

We now have the formula

b∫

a

f (x)dx = (b − a) f

Ç

a + b

2

å

+
(b − a)3

24
f ′′(ξ),

which is called the rectangular rule. Its name comes from the fact
that geometrically the quadratic sum is the area of a rectangle which
replaces the integral.
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a bx0
x

f (x)

f
(

a+b
2

)}
Here the composite rule is

b∫

a

f (x)dx = h

Ç

f (a +
h

2
) + f (a +

3

2
h) + . . . + f (b − h

2
)

å

+
(b − a)3

24n2
f ′′(ξ).

Geometrically this means that the quadrature sum of composite rule
is the sum of rectangle areas.

a b

f (x)

}

h
x
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It is clear that here the quadrature sum converges to the integral of
every Riemann integrable function, because the quadrature sum it-
self is an integral sum.

Exercise 48. Are the trapezoidal rule, Simpson’s rule, Newton’s
3

8
rule,

rectangular rule (composite rules) of the interpolation type?

§4. Main part of remainder term

Consider the quadrature formula

b∫

a

f (x)dx =
n∑

i=0

Ai f (xi) + Rh( f ),

where xi = a + ih, i = 0, . . . , n, h =
b − a

n
, Ai = Ani, and keep in view the

process, where n and h change so that n → ∞ and h → 0.

Definition. If for any function f smooth enough it holds

Rh( f ) = K( f )hq + ̺h( f ),

where ̺h( f ) = O(hq+1), K( f ) is a constant which does not depend on h,
and there exists a smooth function f such that K( f ) 6= 0, then the part
K( f )hq is called the main part of the remainder term.

As an example let us find the main part of the remainder term in trape-
zoidal rule. Above we saw that

Rh( f ) = −
n∑

i=1

h3

12
f ′′(ξi),

where ξi ∈ (xi−1, xi). Let us use here the Taylor expansion

f ′′(ξi) = f ′′
Ç

xi−1 +
h

2

å

+ f ′′′(ηi)

Ç

ξi −
Ç

xi−1 +
h

2

åå

,

where ηi ∈
Ç

xi−1 +
h

2
, ξi

å

or ηi ∈
Ç

ξi, xi−1 +
h

2

å

. Then

Rh( f ) = −
n∑

i=1

h3

12

Ç

f ′′
Ç

xi−1 +
h

2

å

+ f ′′′(ηi)

Ç

ξi −
Ç

xi−1 +
h

2

ååå

,
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and in the representation

n∑

i=1

h3

12
f ′′
Ç

xi−1 +
h

2

å

=
h2

12

n∑

i=1

h f ′′
Ç

xi−1 +
h

2

å

,

we recognize the quadrature sum of rectangular rule (with the coefficient
h2

12
). Therefore

n∑

i=1

h f ′′
Ç

xi−1 +
h

2

å

=

b∫

a

f ′′(x)dx − b − a

24
h2 f (4)(ξ),

and if, for example, f ∈ C4[a, b], we get from the part of Rh( f )

−
n∑

i=1

h3

12
f ′′
Ç

xi−1 +
h

2

å

= − h2

12

b∫

a

f ′′(x)dx + O(h4).

In the rest of Rh( f ) we have |ξi − (xi−1 +
h

2
)| 6 h

2
, and the whole rest part

is of order O(h3). Thus Rh( f ) = − h2

12

b∫

a

f ′′(x)dx + O(h3), which means

that in the trapezoidal rule q = 2 and

K( f ) = − 1

12

b∫

a

f ′′(x)dx =
1

12
( f ′(a)− f ′(b)).

Exercise 49. Find main parts of the remainder terms in Simpson’s rule and

Newton’s
3

8
rule.

The notion of remainder term’s main part can also be used for the rect-
angular formula, where, in general, we consider the formulae

b∫

a

f (x)dx =
n∑

i=1

Ai f (xi) + Rh( f ),

h =
b − a

n
, xi = x1 + (i − 1)h, i = 2, . . . , n, with xi ∈ [a, b], i = 1, . . . , n, and

Ai = Ani.

Exercise 50. Find the main part of remainder term in the rectangular for-
mula.
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§5. Runge’s method

Consider the situation from the previous section where we separated the
main part in a remainder term as follows:

Rh = Khq + ̺h, ̺h = O(hq+1).

Let us use the symbol I for the integral, and let the quadrature sum be Ih

at step h. Then I = Ih + Rh.
Assume that for finding the same integral we use a quadrature formula

with two different steps, h and H, which of course means that the number
of knots is different. In this situation

Rh = Khq + ̺h = I − Ih,

RH = KHq + ̺H = I − IH

and by subtraction we get

K(Hq − hq) + ̺H − ̺h = Ih − IH,

K =
Ih − IH

Hq − hq +
̺h − ̺H

Hq − hq .

Using this we have

Rh = Khq + ̺h =
Ih − IH
Ä

H
h

äq − 1
+

̺h − ̺H
Ä

H
h

äq − 1
+ ̺h.

Look at the situation, where H = kh, k = const > 1. Then

Rh =
Ih − IH

kq − 1
+

̺h − ̺H

kq − 1
+ ̺h.

At it ̺H = O(Hq+1) = O((kh)q+1) = O(hq+1), thus

̺h − ̺H

kq − 1
+ ̺h = O(hq+1)

and

Rh =
Ih − IH

kq − 1
+ O(hq+1).

Here we see that the approximate value of the remainder term is
Ih − IH

kq − 1
because it is of the same order as the main part Khq. The most com-
mon case is k = 2, where the approximate value of the remainder term
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is
Ih − I2h

2q − 1
. For example, for the trapezoidal rule q = 2 and Rh ≈ Ih − I2h

3
,

for Simpson’s rule and Newton’s
3

8
rule q = 4 and Rh ≈ Ih − I2h

15
. Let

us emphasize that by Runge’s method we find an approximate value of
remainder term, which may be either positive or negative.
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