
Generalized Linear Models
Lecture 1. Introduction. Background
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Statistical model
A statistical model is a class of mathematical models, with random error.

y = f (β, x) + ε

y → dependent variable (response, outcome), the one we want to describe (to
explain, to predict)
x → explanatory variables (independent variables, factors or covariates), the ones
we use to explain (to describe or to predict) the dependent variable
β → unknown parameters
ε → random errors, usual assumption: iid – independent identically distributed.
f (·) → known function, usually linear to parameters
= → optimization (least squares, maximum likelihood)

A statistical model is a stochastic model that contains parameters (unknown
constants) that need to be estimated based on assumptions about the model and
the observed data.
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History

Normal distribution: linear regression (Legendre, Gauss; 19. century),
analysis of variance (Fisher, 1920-1935).
Likelihood (Fisher, 1922). Binomial distribution: dilution analysis, log-log
transformation (Fisher, 1922).
Family of exponential distributions (Fisher, 1934).
Binomial distribution: Probit (Bliss, 1935), Logit (Berkson, 1944; Dyke,
Patterson, 1952).
Poisson distribution: count data, Log transformation (Birch, 1963).
Exponential distribution, gamma distribution: survival models, inverse and
log transformations (Feigl, Zelen, 1965; Zipin, Armitage, 1966; Nelder, 1966;
Glasser, 1967).
Generalized Linear Models: Nelder, Wedderburn (1972) family of models,
estimation of parameters – MLE
Count data models with zero-truncation and zero-inflation problems (21st
century)
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Before we begin with math...

The objects used in this course (try to) follow some notation rules so it’s hopefully
easier to follow the formulas. The rules mainly apply to letters at the end of the
alphabet (x,y,z, sometimes w and few others).

X ,Y – italic capital letters usually denote random variables
x , y – italic small letters usually denote realizations of those random variables
(they may have subscripts that specify the details)
x, y – bold small letters usually denote column vectors of realizations, their
elements are denoted by xi and yi , respectively
X,Y – bold straight capital letters usually denote matrices, their elements are
denoted by xij and yij , respectively
you should still look at the context, there are other quantities that are
defined which don’t always follow these rules
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Linear model

y = Xβ + ε

y = (y1, . . . , yn)T – dependent variable, response
X = (1, x1, . . . , xk) – design matrix n × p, 1 vector of 1s
β = (β0, . . . , βk)T – vector of unknown parameters
k – number of explanatory variables (number of unknown parameters p = k + 1)
ε = (ε1, . . . , εn)T – vector of random errors
Responses are regarded as random variables. Explanatory variables are usually
treated as non-random measurements or observations; for example, they may be
fixed by the experimental design.
Responses and explanatory variables are measured on one of the following scales:
nominal, ordinal, continuous.
Methods of statistical analysis depend on the measurement scales of the response
and explanatory variables.
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Model fitting. Estimation

Model fitting is estimation of unknown parameters.
Methods of estimation:

Least Squares (LS)
Maximum Likelihood (ML)

Comments
An important distinction between the methods of ML and LS is that the
method of LS can be used without making assumptions about the
distributions of the response variables. To obtain ML estimators, we need to
specify the probability distribution of the response.
In many situations, ML and LS estimations give the same estimators.
Often, numerical methods may be needed to obtain parameter estimates that
maximize the likelihood or log-likelihood function or minimize the sum of
squares.
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Least Squares Estimation (LSE)

Ordinary least squares (OLS) or linear least squares

Method for estimating the unknown parameters in a model, with the goal of
minimizing the sum of squares of the differences between the observed responses
(values of the variable being predicted) in the given dataset and those predicted
by a linear function of a set of explanatory variables.

This method obtains parameter estimates that minimize the sum of squared
differences ∑

i
(yi − ŷi )2 ⇒ min

Minimization of this function results in a set of normal equations, a set of
simultaneous linear equations in the parameters, which are solved to find the
parameter estimates.
In principle, the method can be used without making assumptions about the
distributions of the response variables.
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Example (LSE). Olympic winning times

To illustrate the method of least squares, consider the following 20 pairs of data
points, where x is the time in years since 1900 and y is the Olympic winning time
in seconds for men in the final round of the 100-meter event:

The data set covers all Olympic events held between 1900 and 1988. (Olympic
games were not held in 1916, 1940, and 1944.) For this data,
x̄ = 45.6, ȳ = 10.396, and the least squares estimates for slope and intercept are
-0.011 and 10.898, respectively.

Source: Mathematica Laboratories for Mathematical Statistics, Emphasizing Simulation and Computer Intensive Methods by Jenny A. Baglivo.
ASA-SIAM Series on Statistics and Applied Probability, Volume 14, 2005
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Example. Olympic winning times ...

The figure shows a scatter plot of the Olympic winning times data and also
includes the least squares fitted line. The results suggest that the winning times
have decreased at the rate of about 0.011 seconds per year during the 88 years of
the study.
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Maximum Likelihood Estimation

Notation
f (y ; θ) – pdf (continuous variable) or pmf (discrete variable), θ – vector of
parameters
L(θ, y) – likelihood function (function of parameters θ given data)
l(θ, y) = ln L(θ, y) – log-likelihood, natural logarithm of the likelihood
function

Maximum likelihood method
Method of estimating the parameters of a statistical model (based on given
observations) by finding the parameter values that maximize the likelihood of
getting these observations.

Because logarithm is a monotonic increasing function, the logarithm of a function
achieves its maximum value at the same points as the function itself, and hence
the log-likelihood can be used in place of the likelihood in maximum likelihood
estimation and related techniques.
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Example (MLE). Birthweight and gestational age, 1

The data (Table 2.3) shows the birthweights (in grams) and estimated gestational
ages (in weeks) of 12 male and female babies born in a certain hospital. The
mean ages are almost the same for both sexes but the mean birthweight for boys
is higher than the mean birthweight for girls.
Boys: mean ages 38.33 weeks, mean birthweight 3024 g
Girls: mean ages 38.75 weeks, mean birthweight 2911.33 g

The question of interest is whether the rate of increase of birth weight with
gestational age is the same for boys and girls.

Source: Dobson, A. J. (2001). An introduction to generalized linear models. Example 2.2.2
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Example (MLE). Birthweight and gestational age, 2

There is a linear trend of birth weight increasing with gestational age
and the girls tend to weigh less than the boys of the same gestational age.

GLM (MTMS.01.011) Lecture 1 12 / 20



Example (MLE). Models. Birthweight and ...
Model 1: (the growth rate of birthweight with gestational age is
different for boys and girls)

yij = αj + βjxij + εij

yij – random variable representing the birthweight of the ith baby in group j where
j = 1 for boys and j = 2 for girls and i = 1, . . . , 12
α1, α2 – intercept parameters
β1, β2 – parameters (depending on gender)
xij – explanatory variable , the gestational age of the ith baby, j = 1, 2
εij – random error, iid εij ∼ N(0, σ2)

Model 0: (the growth rates are equal)

yij = αj + βxij + εij

Hypothesis: Model 1 vs Model 0

H0 : β1 = β2(= β); H1 : β1 6= β2
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Example (MLE). Estimation. Birthweight and ...
Model 1: Likelihood

L1 =
∏

j

∏
i

1
(2πσ2)1/2 exp{− 1

2σ2 (yij − αj − βjxij)2}.

Maximum of log-likelihood

l̂1 = −12 ln(2πσ2)− 1
2σ2 Ŝ1

Ŝ1 =
2∑

j=1

12∑
i=1

(yij − aj − bjxij)2

Model 0: Likelihood

L0 =
∏

j

∏
i

1
(2πσ2)1/2 exp{− 1

2σ2 (yij − αj − βxij)2}.

Maximum of log-likelihood

l̂0 = −12 ln(2πσ2)− 1
2σ2 Ŝ0, Ŝ0 =

2∑
j=1

12∑
i=1

(yij − aj − bxij)2

GLM (MTMS.01.011) Lecture 1 14 / 20



Example (MLE). Results. Birthweight and ...

If H0 is correct, the minimum values Ŝ1 and Ŝ0 should be nearly equal.
If H0 is correct, the improvement in fit is 1

σ2 (S0 − S1) ∼ χ21.
However, as σ2 is unknown, we have to eliminate σ2 using the ratio of Ŝ0−Ŝ1

σ2 to
Ŝ1
σ2 each divided by the relevant degrees of freedom, and get F -distribution.
F = (Ŝ0−Ŝ1)/(J−1)

Ŝ1/(JK−2J) = (658770.8−652424.5)/1
652424.5/20 = 0.19 (J = 2,K = 12). Conclusion?
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Motivating example (1)

Challenger Disaster Example
In January 1986, the space shuttle Challenger exploded shortly after launch. An
investigation was launched into the cause of the crash and attention focused on
the rubber O-ring seals in the rocket boosters. At lower temperatures, rubber
becomes more brittle and is a less effective sealant. At the time of the launch, the
temperature was 31°F.
Could the failure of the O-rings have been predicted?
In the 23 previous shuttle missions for which data exists, some evidence of damage
due to blow by and erosion was recorded on some O-rings. Each shuttle had two
boosters, each with three O-rings. For each mission, we know the number of
O-rings out of six showing some damage and the launch temperature.

The standard linear model is clearly not directly suitable here, it is better to
develop a model that is directly suited for binomial data.

Source: J.J.Faraway (2006). Extending the Linear Model with R. Generalized Linear, Mixed Effects and Nonparametric Regression Models.
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Motivating example (2)

Number of children
This data set contains the number of children for each of 141 pregnant women.
The age of each mother or mother-to-be is also recorded (Leader 1994). Figure
plots the number of children versus mother’s age. Since both variables are
integers, the points fall on a grid.
As the mother’s age increases there is a tendency for more children. However it is
not clear whether the relationship is linear or curvilinear.

Source: P. de Jong and G. Z. Heller (2008). Generalized Linear Models for Insurance Data.
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Motivating example (3)

Third party claims
Third party insurance is a compulsory insurance for vehicle owners in Australia. It
insures vehicle owners against injury caused to other drivers, passengers or
pedestrians, as a result of an accident.
This data set records the number of third party claims in a twelve-month period
between 1984 and 1986 in each of 176 geographical areas (local government
areas) in New South Wales, Australia. Areas are grouped into 13 statistical
divisions. Other recorded variables are the number of accidents, the number of
people killed or injured and population.

Source: P. de Jong and G. Z. Heller (2008). Generalized Linear Models for Insurance Data.
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Response distribution

In classical linear models the response variable is often assumed normally
distributed, but this is not the only type of responses we meet in practice.
Some examples:

Continuous response variable, symmetrical or non-symmetrical
Binary response variable
Count or rate as a response variable

In fact, the normal model is rarely adequate.
We have to consider

Discrete random variables (Bernoulli, Binomial, Poisson, Negative Binomial)
Continuous random variables (Normal, Inverse-Normal, Log-Normal, Gamma)
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Distributions related to Normal distribution

1. χ2-distribution
Sum of squares of n independent standard normal random variables follows
χ2-distribution: if Xi ∼ N(0, 1) and Y =

∑n
i=1 Xi

2 then Y ∼ χ2(n).
EY = n, DY = 2n, n – degrees of freedom

2. Student’s t-distribution

If X ∼ N(0, 1) and Yn ∼ χ2(n) are independent then r.v. T =
√

n X√
Yn

follows
t-distribution (with degrees of freedom n), T ∼ tn

3. F -distribution
Ratio of two independent χ2-distributed r.v.-s follows Fisher’s F -distribution:

Ym/m
Yn/n

∼ Fm,n

where Ym ∼ χ2(m) and Yn ∼ χ2(n)
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