
Generalized Linear Models
Lecture 3. Hypothesis testing.

Goodness of fit. Model diagnostics
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Models

Let M(Xr ) be a model with design matrix Xr (with r columns)
r ≤ n (n – number of rows), design matrix must be nonsingular

Full model or saturated model: r = n
Null model or constant model: r = 1, design matrix is vector of 1s, X1 = 1.

We get sequences of models (from constant to saturated), where the null model is
the smallest model and the saturated model is the most complex:

M(1), M(X2), . . . , M(Xr )

Let us fix a design matrix X = Xr . To obtain some (simpler) design matrix Xl and
corresponding model M(Xl ), one can think of two ways:

1 select some columns {j1, j2, . . . , jl} from X
2 delete s columns {j ′1, j ′2, . . . , j ′s} from design matrix X, so Xl has l = r − s

columns.
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Models. Restrictions

Let us have a model M(Xl ) with design matrix Xl (obtained as described on
previous slide).

Then we say that:
M(Xl ) is lower model (restricted), M(X) is upper model (non-restricted)
M(Xl ) is submodel of M(X)
M(Xl ) is nested in M(X), some of the parameters in M(X) are set equal to
zero in M(Xl )

Restrictions on M(X): βj′
1

= . . . = βj′
s

= 0, or, in general Cβ = d ,

where
C is s × r restriction matrix (with linearly independent columns)
d is a constant s × 1 vector (often d = 0)
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Hypothesis testing

Look at two arbitrary models, say M(X1) and M(X2), with r1 and r2 parameters,
respectively
Assume that M(X1) is nested in M(X2), r2 > r1{

H0 : M(X1) ∼ M(X2), models are as good
H1 : M(X2) is better

Let us assume that X1 is obtained from X2 by deleting columns j1, . . . , jq. Then

H0 : βj1 = . . . = βjq = 0; H1 : ∃i , βji 6= 0, i = 1, . . . , q

General hypotheses

H0 : Cβ = d ; H1 : Cβ 6= d

C – known deterministic full rank matrix (q × r2, q = r2 − r1)
d – known deterministic vector (q × 1)
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Statistics for testing general hypothesis

Likelihood ratio statistic
Wald statistic
Score statistic

All mentioned statistics have asymptotically χ2-distribution with degrees of
freedom equal to the difference in the number of parameters estimated by the two
models (r2 − r1).
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Likelihood ratio statistic

The likelihood ratio test is performed by estimating two models and comparing the
fit of one model to the fit of the other (comparing maximum values of likelihood).

Let us have upper model M2 = M(X2) and lower model M1 = M(X1), and their
maximum values of likelihood, respectively:

L(β̂M1 ; y) = max
βM1

L(β; y), L(β̂M2 ; y) = max
βM2

L(β; y)

Definition. Likelihood ratio (λ∗)

λ∗ =
L(β̂M1 ; y)
L(β̂M2 ; y)

0 ≤ λ∗ ≤ 1 Under regularity conditions λ = −2 lnλ∗ ∼ χ2
r2−r1

Common form of likelihood ratio statistic: λ = −2 lnλ∗ = −2(l(β̂M1 )− l(β̂M2 ))
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Wald statistic

The Wald test is a parametric statistical test named after Hungarian statistician
Abraham Wald (1943).

Statistic is based on the asymptotic normality property of MLE (under regularity
conditions):

β̂
a∼ N(β,F−1(β̂))

Definition. Wald statistic (w)
Wald statistic w is defined as

w = (Cβ̂ − d)T [CF−1(β̂)CT ]−1(Cβ̂ − d)

and used for testing hypotheses H0 : Cβ = d vs H1 : Cβ 6= d

Wald statistic measures certain weighted distance between Cβ̂ and d .

The Wald statistic uses the behaviour of the likelihood function at the ML
estimate β̂.
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A special case of Wald statistic

Let us have M2 = M(X2) (upper model) and M1 = M(X1) (lower model)
Let us partition the vector of coefficients into two components:

βM2 = (βT
M1
,βT )T ,

where β are parameters which are not in M1, but are in M2 (q – number of extra
parameters)
Consider the hypothesis (d = 0)

H0 : β = 0, H1 : β 6= 0

Wald statistic: w = βT Σ−1
β β ∼ χ2

q

If q = 1, we get w = β2

s2
β

and we recognize that its square root is t-statistic:

t = β

sβ
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Score statistic

The score statistic is also known as the Rao efficient score statistic or Lagrange
multiplier statistic (Rao, 1948)

Based on the asymptotic normality property of score function (under regularity
conditions)

s(β̂) a∼ N(0,F(β̂))

Definition. Score statistic (u)

u = sT (β̂)F−1(β̂)s(β̂)

The score statistic is based on behaviour of the likelihood function close to the
value stated by H0.
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Comparison of statistics (w ≥ λ ≥ u )

The likelihood ratio statistic uses more information than the Wald and score
statistic. For this reason LR statistic is suggested as most reliable of the three.
Source: J. Fox (1997). Applied regression analysis.
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Goodness of Fit. Deviance

The fitted values produced by the model are most likely not to match the
values of the observations perfectly.
The size of the discrepancy between the model and the data is a measure of
the inadequacy of the model (Goodness of Fit).
The saturated model fits the data exactly by assuming as many parameters
as observations.
Deviance compares the current model to the saturated model.

Deviance is a measure for discrepancy that is based on the likelihood ratio
statistic for comparing nested models.

To assess goodness of fit for a model, we compare the model by the saturated
model.
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Deviance
M1 – our current model (estimates are denoted by hat)
µ̂i – estimate of conditional mean,
µ̂ – corresponding vector
M – saturated model (estimates are denoted by tilde)
µ̃i – estimate of conditional mean, equals to observation yi ,
y – corresponding vector

Deviance D(y , µ̂)
Deviance is −2ϕ times the difference in log-likelihood between the current model
and a saturated model: D(y , µ̂) = −2ϕ(l(µ̂; y)− l(y ; y))

Note that deviance is related likelihood ratio statistic λ where we also compare
the current model by the saturated model: D = −2ϕ lnλ
The ratio D(y,µ̂)

ϕ is called scaled deviance

D(y , µ̂) = 2
n∑

i=1
ni [yi (θ̃i − θ̂i )− b(θ̃i ) + b(θ̂i )]
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Goodness of Fit (GOF)

The idea of GOF tests is to test the following hypotheses:{
H0 : Model M1 fits as good as saturated model M, is adequate
H1 : Model M1 is not adequate

Statistics
Deviance: D = −2ϕ lnλ
Pearson χ2–statistic: χ2 =

∑
i

(yi−µ̂i )2

ν(µ̂i ) ,
where ν(·) is the variance function corresponding to model M1

Both statistics are asymptotically ϕχ2
n−p distributed

(n – sample size, p – number of parameters in M1):

D a∼ ϕχ2
n−p, χ2 a∼ ϕχ2

n−p
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Difference of deviances

Deviance is asymptotically ϕχ2
n−p distributed, D a∼ ϕχ2

n−p
(n – sample size, p – number of parameters in model)

If the distribution of deviance is not χ2, it is recommended to use difference of
deviances

Let us have Mq – lower model (q parameters), Mr – upper model (r parameters),
r > q

If ϕ is known then

DMq − DMr

ϕ

a∼ χ2
r−q

If ϕ is not known, normal approximation is used

DMq − DMr

ϕ̂(r − q)
a∼ Fr−q,n−r
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GOF statistics

An important question
How should we compare two candidate models (especially when one is not a
special case of the other)?

(One possible) answer
We can apply certain penalty function to the model that has more parameters

Let us recall that likelihood ratio test can be interpreted as follows:
we should choose more complicated model (with r − q extra parameters) if

ln Lr > ln Lq + cr−q,α
2 ,

where
Lr is the max. value of likelihood function for the more complicated model
Lq is the max. value of likelihood function for the simpler model
cr−q,α is the 1-α-quantile of the distribution χ2(r − q)

Thus, the likelihood ratio test suggests more complicated model if the r − q extra
parameters increase the log-likelihood by at least cr−q,α/2.
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GOF statistics. Akaike information criterion (AIC)

Goodness of fit of a model can be measured by different information criteria
(which are also based on log-likelihood)

The most well-known of them is Akaike information criterion AIC (Akaike, 1974):

AIC = −2 ln L + 2p,

where
L is the maximized value of the likelihood function
p is the number of parameters in a model under consideration

So, AIC measures the goodness of fit as certain tradeoff between two components:
goodness of fit (measured by the log-likelihood),
model complexity (measured by the number of parameters p)

One should also note that when the number of parameters is equal then the
decision is essentially based on the likelihood function value.
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GOF statistics. Bayesian IC and corrected AIC

Information criteria can also take the sample size into account.

Bayes information criterion BIC (Schwarz criterion, SC (Schwarz,1978))

BIC = −2 ln L + p ln n,

One can interpret this as:
when there are r − q extra parameters and the sample size is n then we
should reduce the log-likelihood by r−q

2 ln n
each additional parameter is deemed worthy when the log-likelihood is
increased by 0.5 ln n

When this is not the case then a simpler model should be preferred

The corrected AIC takes the sample size into account as well:

AICc = AIC + 2p(p + 1)
n − p − 1 = −2 ln L + 2p + 2p(p + 1)

n − p − 1
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Remarks about AIC and BIC

Does not require the assumption that one of the candidate models is the
’true’ or ’correct’ model

Can be used to compare nested as well as non-nested models

Can be considered as a generalization of the idea of likelihood ratio

Can be used to compare models based on different families of probability
distributions (same data, same response, NB! missing values!)

AIC penalizes the extra parameters less than BIC
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BIC in comparing non-nested models

Let M1 and M2 be two non-nested models with calculated BIC1 and BIC2,
respectively.

Comparison of non-nested models is based on the difference between the BICs for
the two models:

If BIC1 − BIC2 < 0, then model M1 is preferred
If BIC1 − BIC2 > 0, then model M2 is preferred

The scale given by Raftery for determining the relative preference is:

Abs. difference Degree of preference
0–2 weak
2–8 positive
6–10 strong
> 10 very strong

Source: J.W. Hardin, J.M. Hilbe (2007), Raftery (1996)
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Generalized R2

Recall that in case of linear models, one of the most useful quantities to measure
the suitability of the model was the coefficient of determination (R2).

In case of a GLM, there are several attempts to generalize the classical R2, but
none of them has such nice and clear interpretation.

One of the most known generalizations of R2 is the following:

Pseudo-R2 statistic or likelihood ratio index (McFadden, 1974)

R2
McF = 1− l(Mβ)

l(Mα)

l(Mβ) - log-likelihood for current model, l(Mα) - log-likelihood for null model

It is usually scaled so that R2
McF ∈ [0; 1]

Others: Cox-Snell-R2, Nagelkerke-R2, deviance-R2
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Summary of GOF

The asymptotic distribution of deviance is usually, but not always
χ2-distributed

Deviance is additive, the difference of deviances is asymptotically
χ2–distributed

Pearson χ2–statistic is preferred and more often used than deviance (but the
difference of Pearson statistics is not χ2-distributed)

BIC may be preferred as compared to AIC

Generalized R2 has no reasonable interpretation
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Model checking/diagnostics

The fit of the model to the data can be explored by diagnostics tools

The purpose of the model diagnostics is to examine whether the model provides a
reasonable approximation to the data

If there are indications of systematic deviations between data and model, the
model should be modified

The diagnostics tools are the following:
Residuals plots, to detect outliers, problems with distribution, etc
Identifying influential observations, which have unusual impact to results
Detecting overdispersion and modifying the model

Source: Olsson (2002)
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Generalized Hat matrix, 1

Let us first recall the classical linear model y = Xβ + ε, where
y = (y1, . . . , yn) – response
X – design matrix
β = (β0, . . . , βk) – unknown parameters
ε = (ε1, . . . , εn) – random errors

Then the parameters β are found using the normal equation (XT X)β = XT y ,
which yields β̂ = (XT X)−1XT y and ŷ = Xβ̂ = Hy , where H is the hat matrix,
H = X(XT X)−1XT , i.e. the matrix that projects the data onto the fitted values.

The diagonal elements hii of H are called leverages. A large value of hii indicates
that the fit may be sensitive to the response in case i .
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Generalized Hat matrix, 2

One important difference in GLM model is that the leverages now depend on the
response through the weights W = W(β) and through the parameters itself, so
Ĥ = H(β̂).

The generalized hat matrix H is defined in terms of the design matrix X and a
diagonal weight matrix W

H = W1/2X(XT WX)−1XT W1/2,

where W1/2 is the diagonal matrix with diagonal elements √wii

Source: Faraway (2006)
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Generalized residuals (1)

Residuals ri are estimates of random error εi and are usually defined as observed
minus fitted values ri = yi − ŷi (raw residuals).

We would like the residuals for GLMs to be defined so that they can be used in a
similar way as in the classical linear model.

Residuals measure the agreement between single observations and their fitted
values and help to identify poorly fitting observations that may have a strong
impact on the overall fit of the model.

Pearson residuals
riP = ri√

νi (µ̂i )

Pearson residuals are raw residuals scaled by the estimated standard error.
Pearson residuals are related to the Pearson χ2-statistic: χ2 =

∑
r2
iP
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Generalized residuals (2)

Anscombe residuals

riA = A(yi )− A(µ̂i )
A′(µ̂i )

√
ν(A(µ̂i ))

Anscombe proposed to define a residual using a function A(y) in place of y , where
A(·) is chosen to make the distribution of A(y) as normal as possible

Barndorff-Nielsen (1978): A(·) =
∫ dµ
ν1/3(µ)

Deviance residuals
riD = sign(ri )

√
di

di – ith component of model deviance. Sign of the raw residual indicates the
direction of deviance

Sum of squares of deviance residuals is the model deviance, D =
∑

d2
i

GLM (MTMS.01.011) Lecture 3 26 / 34



Generalized standardized residuals

Standardized residuals
Standardized residuals are simply the residuals divided by their standard deviation

Generalized standardized deviance residuals
riDS = riD√

ϕ̂ · (1− hii )

ϕ̂ – estimated scale parameter
hii – ith diagonal element of generalized hat matrix

Generalized standardized Pearson residuals
riPS = riP√

ϕ̂ · (1− hii )
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Generalized Studentized residuals

Generalized studentized residuals
Studentized residuals are obtained by dividing the residual by its standard
deviation calculated without ith observation

In a linear model, Studentized residuals can be calculated without actually
applying the model n more times, in a GLM this is not possible.
Thus, approximations are used, e.g. likelihood residuals:

Likelihood residuals

riL = sign(ri )
√

(1− hii )r2
iDS + hii r2

iPS

where hii is ith diagonal element of generalized hat matrix

Likelihood residuals are a combination of Pearson and deviance residuals, and can
also be useful when using software that does not produce Anscombe residuals.
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Remarks

McCullagh and Nelder (1989) showed that Anscombe and deviance residuals
are numerically similar, even though they are mathematically quite different.
This means that the deviance residuals are also approximately normally
distributed, if the response distribution has been correctly specified
Typically residuals are visualized on a graph. In an index plot, the residuals
are plotted against the observation number, or index. It shows which
observations have large values and may be considered outliers
For finding systematic deviations from the model it is often more informative
to plot the residuals against the fitted linear predictor
An alternative graph compares the standardized residuals to the
corresponding quantiles of a normal distribution. If the model is correct and
residuals can be expected to be approximately normally distributed
(depending on sample size), the plot should show approximately a straight
line as long as outliers are absent
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Model diagnostics (1)

Regression diagnostics aim to identify observations of outlier, leverage and
influence. These observations may have significant impact on model fitting and
should be examined for whether they should be included.

Sometimes, these observations may be the result of typing error and should be
corrected.

Outlier
An observation with large residual

Leverage
An observation with an extreme value on an argument variable (xij)
Leverage is a measure of how far an argument variable deviates from its mean

Influence
An observation is influential if it influences any part of a regression analysis,
the estimated parameters, or the hypothesis test results
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Model diagnostics (2)

Summary statistics for outlier, leverage and influence are
standardized/studentized residuals, hat values and Cook’s distance.

They can be easily visualized with graphs and formally tested.
Outlier. Generalized standardized/studentized residuals, residuals > 3 are too
large.
Leverage. Generalized hat matrix, leverages hii are given by the diagonal of H
and represent the potential leverage of the point (but not always)
Influence. Cook’s distance (influence to parameter estimates)

Ci = (β̂
∗
(i) − β̂)T F(β̂)(β̂

∗
(i) − β̂),

where β̂
∗
(i) is the estimate at first iteration step (without ith observation)
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Model diagnostics (3)

Single Case Deletion Diagnostics
Delta χ2 statistic (observation’s influence to Pearson χ2 statistic)

∆χ2
i = χ2 − χ2

(i),

where χ2
(i) is the estimate without ith observation

Delta deviance statistic (observation’s influence to deviance)

∆Di = D − D(i),

where D – deviance, D(i) – deviance without ith observation

NB! Note that influential observations need not be outliers in the sense of having
large residuals, nor need they be leverages. Similarly, the outliers need not be
always highly influential.
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Example. Delta χ2 statistic
Vaso-constriction data

Source: A. Powne (2011). Diagnostic Measures for Generalized Linear Models (2011). Department of Mathematical Sciences, University of Durham
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Summary. Steps of statistical modelling

1 Specifying the model:
the probability distribution of the response variable
equation linking the response and explanatory variables

2 Estimating parameters used in the model
3 Making inference about the parameters

calculating confidence intervals
testing statistical hypothesis

4 Checking how well the model fits the real data (general fit)
Goodness of Fit statistics

5 Model diagnostics (fit in each point)
generalized residuals
leverages, influential points

6 Interpreting the final model
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