Generalized Linear Models

Lecture 4. Models with normally distributed response
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Formulation of the problem

Assumptions:
@ Observations y; are realizations of (conditional) r.v. Y;
o Yi~ N(uj,o0?)
o Independence: cov(Y;, Y;) =0, i #j

R.v.-s Y; constitute r.v. Y = (Yq,..., Y,)"

= Y ~ N,(p, 0°1)

Sample y is a random realization of n observations from Y, y = (y1,...,yn)"
Design matrix X

Classical linear model:

pi=x{B, p=XpB

Link function: identity g(ui) = i
Depending on the type of arguments we reach different classical models
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Advantages of classical linear model

Models with normal response are simpler as compared to other members of
exponential family:

@ canonical link is identity
@ variance function does not depend on the mean
@ all cumulants except for first two are equal to 0

@ in case of multivariate normal setup, the dependency structure is determined
by covariance or correlation matrix

In case of other distributions, situation is not as simple nor clear
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Assessing the normality assumption

How important is the assumption of normality?

@ important if n is small

e if n — oo, asymptotic normality follows from the central limit theorem

Central limit theorem assumes homogenous (constant) variance!
= outliers may violate this assumption and void the convergence to normal
distribution even if n — oo

Thus, we consider models where the response has constant variance
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Estimation of 3 (fixed 02), 1

Consider the model y; = x] B

i

How to estimate the parameters B (model parameter) and o2 (parameter of dist.)?

In case of independent observations, the sample log-likelihood is
2

InL(8,0%) = —g In(2r0?) — %Z %

where p1; = x] B (and assume that o2 is fixed)
NB! Maximizing the log-likelikood is equivalent to minimizing the residual sum of
squares:

RSS(B) = (vi—mi)* = (y — XB)"(y — XB)

Derivative w.r.t. B leads us to normal equations:

XTXB=XTy
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Estimation of 3 (fixed 02), 2

If X has full rank, so has X7 X, which implies that 3(X7X)~?! so that

B=(X"X)"'X"y

If the inverse matrix does not exist, generalized inverse can be used (but the
solution is not unique!)

B=(X"X)"X"y
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Estimation of parameter 8. Algorithmic solutions

Main difficulty: estimation of (X7 X)~1

e Gauss elimination method. Beaton (1964)
SWEEP-operator technique

@ Cholesky decomposition
Main idea is to find a triangular matrix L such that
XTX = LL", which implies (XTX)"! = (L=1)7L"?
e QR decomposition (Gram-Schmidt orthogonalization)
Matrix X is decomposed as a product X = QR,
where Q is a n x n orthogonal matrix, i,e Q7Q = QQ" =1
R — n x p (upper) triangular matrix such that RTR =RTQ7QR = X"X
Q, R can be found using different methods (Householder's method, Givens
rotation, and more)
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Properties of the ordinary least squares (OLS) estimator

By Gauss-Markov theorem (provided that the assumptions hold)

@ OLS estimator is unbiased: E3 = 8

@ OLS estimator is effective (has minimal variance)

i.e. OLS estimate is BLUE — best linear unbiased estimate

Assumptions:
@ Ec; =0, Deg; =02, Vi
e cov(ej,ej) =0,i #j

If Y ~ N,(w,0°l) then OLS estimate is also ML estimate and

B~ Np(B.(XTX)0?)

GLM (MTMS.01.011) Lecture 4



Estimation of o2

H H . 2y n 2 1 (yl — M
Log-likelihood of a sample: InL(B,0°) = 3 In(27o?) — 5 Z R
where p; = x] 8
Now, substitute the obtained estimate 3 to the equation

In L(0'2) 2 ( 2) _ ERSS(B)

to get so-called profile likelihood for o
As usual, take the derivative by o2, equate it to zero to obtain the following
(biased!) estimate

O'

n

Unbiased estimate is given by:

2 _ RSS(B)
n—p
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Hypotesis testing. Wald test

A. To test a single parameter Hp : 8; =0

b

[ 2

O'ﬂAj
If 02 is estimated then t ~ t,_,; If 0% is known then t ~ N(0, 1)
In case of big samples (n — o0) t < N(0,1)

t =

B. To test more than one parameter Hy : 8, =0
B = (ﬁlT, ﬂzT)Tr (p1 + p2)-dimensional

Ny
W:ﬂzzf_}jﬂ2

Under the normality assumption, w ~ x2,, if o is known
If o2 is estimated then 2 ~ Fy, ,_p, p= p1 + p2
If n— oo then n — p — oo and (scaled!) F-distribution — X3,
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Hypothesis testing. Likelihood ratio test

To test more than one parameter Hy : B, =0
B= (,517-, BQT)T, (p1 + p2)-dimensional J

X = (X1, Xp) is divided into two parts (p; and p, parameters)

Compare the models:

M = M(X) (upper model, all arguments)

M; = M(X;) (lower model, p; parameters, k; = p; — 1 arguments)
Compare the corresponding log-likelihoods (o2 known)

maxInL(B;) = C — %%&Xﬂ where C = 7§ |n(27mz) does not depend on 3
maxInL(B)=C — %%

Likelihood ratio statistic ()

RSS(X1) — RSS(X1 + X2)
2
If 02 is not known, it will be estimated from the upper model:
62 = RSS(X1 + X2)/(n— p)
In case of big samples —2In X ~ x2,

—2In\ =

GLM (MTMS.01.011) Lecture 4



Regression diagnostics. Residual analysis

Model y = X8 + ¢

Model residuals & (or €) are the estimates of random error &
B=(XTX)"XTy, y=XB=XX"X)"X"y

e=y—9=0-XXX)XT)y = (1-Hy, )

where H = X(XTX)~!XT is the "hat" matrix § = Hy
&= (1-H)y, Dé=(I-H)ol

Variance of i-th residual is thus 03 = (1 — hjj)o?

= residuals may have different variances even if the observations have
constant variance (02), since the estimates also depend on the arguments!
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Standarized /Studentized residuals

Standardized residuals (also internally studentized)

Studentized residuals (also externally studentized, studentized deleted)

or = ————
V31— hi6

Standardized/Studentized residual is too big if it is &~ 3 (already > 2 can be
considered)
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Leverage and influence

Leverage is the diagonal element hj; of hat matrix H (Hat diag) J

H = X(XTX)"*XT, rank(X) = k +1 = tr(H) = }_7_, h; = average h; is X2

Leverage is too big: h; > (Hl)
Influence is the observation’s effect on parameters (prediction, parameters’
variance)

Observation's influence is estimated by Cook's statistic (cooks.distance, in R
package stats)

Observation's influence to a particular parameter estimate: dfbetas (Difference of
Betas, in R package stats)

N

B — By

dfbetas(model);; = -
G\ (XTX);

Empirical estimate: influence is too big if dfbetas > %
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Transformations

Transformations are used to transform non-symmetric distributions close to
normal and also to stabilize the variance

George Edward Pelham Box (b. 1919), Sir David Roxbee Cox (b. 1924)
@ Box-Cox (1964) family of power-transformations

@ Yeo-Johnson (2000) family of power-transformations

Box-Cox transforms are modified, because
@ Not all data can be transformed to be close to normal
@ Initial restriction y > 0

© Work well if the transformation is applied to a unimodal non-symmetric
distribution

@ Do not work well in case of U-shaped distributions
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Box-Cox family of transformations

Box and Cox (1964) — there exist non-symmetric distributions that can be
transformed quite close to a normal distribution

General form of the transformation:

y(A)z{ =2, A#O}

Iny, A=0

y >0, A\ — parameter of the transformation, usually A € (—2,2)
The transformation is simplified to y* if A # 0 (Cleveland, 1993)

Known transformations:
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Box-Cox transformation. General schema

Assume that 3\, such that the transformed data is normal:

Yi(A) ~ N(x] B,0?)

Estimation (using ML):

@ fix )\, estimate B, o2

@ substitute the obtained estimates to ML expression to get the function pL())
pL(\) — profile likelihood of parameter A
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Box-Cox transformation (1)

NB! Don't forget the Jacobian J(A,y) while transforming y — y(\)

f(yilA, piyo) =

1
f(yil0, pi, o) = Jono? Yi eXP[—T

p = XpB, thus p = 1(B)
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Box-Cox transformation (2)

Main steps:
@ Find the log-likelihood of the sample
@ Fix ), find the partial derivatives of the log-likelihood by 3 and ¢?
@ Equate the derivatives to 0, obtain the estimates B and &

@ Substitute the estimates to the expression of likelihood, obtain the profile
log-likelihood for A:

p/(A)—”mRss A=1)) Iny

@ Maximizing over A-s gives the optimal A

R: function boxcox (package MASS), more advanced version: function boxCox
(package car), SAS: proc TRANSREG
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Box-Cox transform. Example 1

Data: distance (in km) and fuel consumption (in litres), n = 107
Simple regression model: y — distance, x — fuel consumption
Box-Cox transform was used

Results:
@ model parameters: intercept BAO = —636.9, ﬁAl =211.9, R? =0.49
@ estimated A =15 95% Cl: (0.7; 2.4)

Can you write down the corresponding model?

NB! Box-Cox method gives a suggestion about the range of transformations
NB! The transformation changes the scale, thus it is also important to consider
the interpretability of the model!

Source: Chen, Lockhart, Stephens (2002)
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Box-Cox transform. Example 2
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Left figure shows the residuals before and after transform
Right figure shows the log-likelihood of data under different A-s, maximum is
obtained if A = 0.2, i.e. the transformation is /y
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The necessity of a transform. Atkinson scores

Is the Box-Cox transformation necessary at all? I

To test that, an additional term will be added to the model:

Yi
aj = y,-(ln - — ].),
y

where ¥ is the geometric mean of y

Let us denote the coefficent of the extra term a; by ~y
If the extra term is significant then the Box-Cox transform is necessary and

3‘ ~1-— /}\/7
where 4 is the estimate of v from the model

Source: Atkinson (1985)
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Argument transforms

Box, Tidwell (1962): similar approach as with Atkinson scores

Is an argument transform necessary? I

To test if, in case of a continuous argument x, it is necessary to add x> to a
model (instead of x), an extra term a = x Inx is used so that the model contains
x (coefficient 8) and x In x (coefficient )

If the extra term is significant, then the transform is necessary and A~ 1,

k2>

where 4 is the estimated coefficient of the extra term,

A

B is the coefficient of argument x from the original model (without x In x)

Both Atkinson and Box-Tidwell method are based on the Taylor series expansion.
Assume that the correct model is y = o + x> + ¢, using Taylor expansion x* at
A =1 yields x* ~ x + (A — 1)xInx

Substitute this into the model, get y = o + Bx + (A — 1)xInx + € and denote
v =p5A-1)

R: function boxTidwell (package car)
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Yeo-Johnson family of power-transformations

Box-Cox: restriction y > 0

Idea: find a transform that minimizes Kullback-Leibler information and transforms
a skewed distribution to symmetric

New concepts: relative skewness (Zwet, 1964), more right-skewed, more
left-skewed

Yeo-Johnson family of power-transformations

(y+ 1) —1)/A, A£0,y >0
_ ln(Y+1)7 )‘:03)/20
YO =Yy r 1P D)2 ) A#£2y <0
—In(=y+1), A=2,y<0

If case y > 0, this construction is equivalent to Box-Cox transformation

R: function boxCox with parameter family="yjPower" (package car)

Yeo, 1.-K., Johnson, R.A. (2000). A new family of power transformations to improve normality or symmetry. Biometrika, 87,4,954-959
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Comparison of transformations

(a) Box—Cox transformations

-2 0 2 4
Original values

Comparison of Box-Cox transformations and new (Yeo-Johnson) transformations

under different values of A
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(b) New transformations
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Comparison of transformations (2)
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Comments about transformations

@ Box-Cox method gives a suggestion about the range of transformations. The
transformation changes the scale, thus it is also important to consider the
interpretability of the model.

@ Box-Cox transforms are empirical, based on data.

There are also transforms for stabilizing the variance that are based on
theoretical considerations

@ John Tukey, Fred Mosteller (1977) 'bulging rule’ — two-dimensional graphs
show which transformation to use
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Bulging rule

Transformation depending on data

Figure 4.6 from Fox (1997)
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