
Generalized Linear Models
Lecture 6. Models with binary response
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Model with binary response

Response has two possible values: yes/no, success/failure, exists/does not exist

Values are usually coded as 1/0, so that

P(Y = 1) = π; P(Y = 0) = 1− π

Question of interest
How is the occurrence probability π related to the arguments?
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Distribution of a binary random variable

Bernoulli distribution (Swiss mathem. Jacob Bernoulli, 1654–1705)
Random variable Y has Bernoulli distribution, Y ∼ B(1, π) if its pmf is

p(y ;π) = πy (1− π)1−y , y ∈ {0, 1}

If Y ∼ B(1, π) then EY = π and DY = π(1− π)

If Y1, . . . ,Yn, Yi ∼ B(1, π) are mutually independent then
∑n

i=1 Yi ∼ B(n, π),
π is often interpreted as the probability of ’success’

Binomial distribution
Random variable Y has binomial distribution, Y ∼ B(n, π) if its pmf is

p(y ; n, π) = C y
n π

y (1− π)n−y , C y
n = n!

y !(n − y)!

If Y ∼ B(n, π) then EY = nπ and DY = nπ(1− π)

If n→∞ then B(n, π) converges to normal N(nπ, nπ(1− π))
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Grouped and ungrouped data

Grouped data: group sizes n1, . . . , nn (n – number of groups)
Observations can be treated as proportions:

y1
n1
, . . . ,

yn
nn
,

yi – number of successes in ni trials

If the observations are independent and the probability of success is constant for
each element in a group, then the response has binomial distribution

For ungrouped data n1 = . . . = nn = 1

In case of grouped data, response has binomial distribution
In case of ungrouped data, response has Bernoulli distribution
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Example. Ungrouped data

Vasoconstriction data, Finney (1947)
Reaction at fingertips while breathing in deeply (narrowing of blood vessels)
y = 1 (reaction); y = 0 (no reaction)
Arguments: volume of inhaled air and rate of inhalation (both continuous)

y volume rate
1 3.70 0.285
1 3.50 1.090

....
0 0.60 0.750
0 1.10 1.700
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Example. Grouped data
Data about seed sprouting
n – cultivated seeds, r – sprouted seeds
cult = 0/1 – two different cultures, soil = 0/1 – two different soil conditions

n r cult soil
16 8 0 0
51 26 0 0
81 23 1 0
30 10 1 0

....
51 32 0 1
72 55 0 1
74 53 1 1
56 12 1 1
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Bernoulli distribution and exponential family

Let us start with Bernoulli pmf

p(yi ;πi) = πyii (1− πi)1−yi

and rewrite it as
p(yi ;πi) = exp[yi ln

πi
1− πi

+ ln(1− πi)]

Thus we have
θi = ln πi

1−πi

b(θi) = − ln(1− πi) = ln(1 + eθi )
ϕi = 1

We can also derive mean µi = b′ (θi) = πi and variance ϕib
′′ (θi) = πi(1− πi)

Prove it!

Canonical link is logit: g(µi) = g(πi) = ln πi
1−πi
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Binomial distribution and exponential family, 1
Let us start with binomial pmf (assume ni is known)

p(yi ; ni , πi) = C yi
ni π

yi
i (1− πi)ni−yi

and rewrite it as

p(yi ; ni , πi) = exp[yi ln(πi) + ni ln(1− πi)− yi ln(1− πi) + lnC yi
ni ]

= exp[yi ln
πi

1− πi
+ ni ln(1− πi) + lnC yi

ni ]

Thus we have
θi = ln πi

1−πi

b(θi) = −ni ln(1− πi) = ni ln(1 + eθi )
ϕi = 1

We can also derive mean µi = b′ (θi) = niπi and variance ϕb′′ (θi) = niπi(1− πi)
Prove it!

Canonical link is g(µi) = ln πi
1−πi
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Binomial distribution and exponential family, 2
Consider a GLM setup with yi being a realization from B(ni , πi)

Question(s)
Are yi -s comparable? Do we actually want to model yi -s against arguments?

Answer
Not really, it would be more informative to consider yi

ni instead.

In other words, instead of Yi ∼ B(ni , pi) we consider Y ∗i = Yi/ni
For Y ∗i we have

θi = ln πi
1−πi

b(θi) = − ln(1− πi) = ln(1 + eθi )
ϕ = 1, ai = 1

ni , ϕi = 1
ni

µi = b′ (θi) = πi
ϕb′′ (θi) = πi(1− πi)

Prove it!

Canonical link is logit: g(µi) = ln πi
1−πi

= ln µi
1−µi
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Goodness of fit. Grouped data
Let us denote y∗i = yi/ni , y∗ = (y∗i , . . . , y∗n )T
Deviance for (scaled) binomial model:

D = −2[l(π̂)− l(y∗)] = 2[l(y∗)− l(π̂)]

= 2
∑(

ni [y∗i ln y∗i
π̂i

+ (1− y∗i ) ln 1− y∗i
1− π̂i

]
)

= 2
∑

o ln o
e

Pearson χ2-statistic

χ2
P =

∑ ni(y∗i − π̂i)2

π̂i(1− π̂i)
=
∑ (o − e)2

e ,

o – observed e – expected

If H0 holds (NB! in case of grouped data the asymptotic means ni →∞)

D a∼ χ2
n−p, χ2

P
a∼ χ2

n−p
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Goodness of fit. Ungrouped data

Hosmer-Lemeshow’ test (1989): used in case of ungrouped data

Idea: subjects will be decided into classes (e.g. by estimated deciles, 10 classes).
Pearson’s χ2-statistic is used to measure the agreement between observed and
expected values

Pros: simple to use, implemented in most statistical packages

Cons:
– conservative test, often has too low power
– arbitrary to choice of bins and method of computing quantiles
– in case of small number of classes (less than 5) almost always shows fit

Hallett (1999) Goodness of fit tests in logistic regression
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Example. Goodness of fit

Vaso data:

> v1=glm("y~volume+rate",family="binomial",data=vaso)
> library(ResourceSelection)
> hoslem.test(x=vaso$y,y=predict(v1,type="response"))
Hosmer and Lemeshow goodness of fit (GOF) test

data: vaso$y, predict(v1, type = "response")
X-squared = 17.812, df = 8, p-value = 0.02268

Conclusion?
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Measures for goodness of fit

Akaike information criterion AIC = −2 log L + 2p
Schwarz (Bayes) criterion BIC = −2 log L + p ln n
Generalized coefficients of determination R2

Cox & Snell generalized coefficient of determination (1989):

R2
CS = 1−

{
L(0)
L(β̂)

}2/n

L(0) – likelihood of constant model, L(β̂) – likelihood of current model
R2
CS < 1 since R2

CSmax
= {L(0)}2/n, n – sample size

Others:
Nagelkerke (1991) max-rescaled R2: R̃2 = R2

CS
R2
CSmax

McFadden’s R2: R2
McF = 1 − l(M)

l(0)

Deviance R2: R2
D = l(M)−l(0)

l(S)−l(0)
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Remarks about generalized R2

R2 ∈ (0, 1), the bigger, the better model
values are relatively small
empirical estimates: R2

MF ∈ (0.2, 0.4) is considered satisfactory
are used to compare models with same number of arguments
does not have nice reasonable explanation

NB! Definitely can not be interpreted as a measure describing the response’s
variability!
> library(DescTools)
> PseudoR2(v1,which="all")

McFadden McFaddenAdj CoxSnell Nagelkerke AldrichNelson VeallZimmermann Effron
0.4490675 0.3380383 0.4632616 0.6178176 0.1590559 0.5366965 0.5344613

McKelveyZavoina Tjur AIC BIC logLik logLik0 G2
0.7326604 0.5198015 35.7723045 40.7629894 -14.8861522 -27.0199181 24.2675318
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Remark about coding (ordering) the response

Usual assumption for binary response is that we estimate the probability of
"success" (i.e. value 1)

logit(πi) = ln πi
1− πi

; πi = P(Yi = 1)

logit(πi) = −logit(1− πi)

⇒ estimating model for Yi = 0 means the change of signs for the coefficients

R: for grouped data (Seeds example):

s1 = glm(cbind(r,n-r)~cult+soil, family="binomial", data=seeds)

vs

s2 = glm(cbind(n-r,r)~cult+soil, family="binomial", data=seeds)
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Choices of link function
GLM with binary/binomial response:

Model: ηi = xT
i β, ηi = g(πi), πi = h(xT

i β)
As µi = πi is a probability, it is restricted to [0, 1]
Linear predictor ηi can take any values on real line
Canonical link: logit-function

In general, any one-to-one continuous and differentiable transformation that maps
probabilities into real line could be used to produce a GLM

Now, consider some cdf F such that

πi = F (ηi), −∞ < ηi <∞

Then the inverse ηi = F−1(πi) can be considered as a link function
Popular choices:

normal distribution
logistic distribution (gives canonical link)
extreme value distribution
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A latent variable formulation
Yi – binary r.v., manifest response
Y ∗i – continuous r.v., latent (unobservable) such that

Yi =
{
1, iff Y ∗i ≥ θ
0, iff Y ∗i < θ,

where θ is some threshold
The latent variable defining the binary process is also called tolerance
⇒ probability of success is given by

πi = P(Yi = 1) = P(Y ∗i > θ)

Now, as location and scale Y ∗i are arbitrary, we take θ = 0 and standardize Y ∗i to
identify the model:

Y ∗i = xT
i β + Ui , Ui ∼ F

πi = P(Y ∗i > 0) = P(Ui > −ηi) = 1− F (−ηi)

symmetric F : 1− F (−ηi) = F (ηi), ηi = g(πi) = F−1(πi)
general F : ηi = g(πi) = −F−1(1− πi)
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Latent variable and manifest response

 

GLM (MTMS.01.011) Lecture 6 18 / 55



Distribution of tolerance
Ui ∼ N(0, 1) – probit link

πi = F (ηi) = Φ(ηi), ηi = Φ−1(πi)

Ui (standard) logistic – logit link

πi = F (ηi) = exp(ηi)
1 + exp(ηi)

, ηi = ln πi
1− πi

Ui extreme min distributed (Gompertz dist.) – complementary log-log (also
CLL, Gombit, Gompit)

πi = F (ηi) = 1− exp(− exp(ηi)), ηi = log(− log(1− πi))

Ui extreme max distributed (Gumbel dist.) – log-log link

πi = F (ηi) = exp(− exp(ηi)), ηi = log(− log(πi))

Ui Cauchy distributed (also called Cauchy-Lorentz)

πi = F (ηi) = π−1 arctan(ηi) + 1
2 , ηi = tan[π(πi −

1
2 )], π = 3.1415...

Note: Cauchy distribution has heavy tails, moments do not exist
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Distributions of tolerance
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Less known link functions

Ui exponentially distributed – complementary log link

πi = 1− exp(ηi), ηi = − log(1− πi)

or log-link, if 1− πi is chosen instead of πi :

πi = exp(ηi), ηi = log(πi)

id-model, identity link πi = ηi (seldom used, only if the range of arguments is
restricted)

Nagler (1994): Scobit link (Skewed Logit) – an alternative to logit and probit

Scobit is not symmetric w.r.t. 0.5 but 0.5α: if α = 1, it reduces to logit model
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Probit model

Distribution of tolerance is normal, Ui ∼ N(0, 1)

πi = F (ηi) = Φ(ηi), ηi = Φ−1(πi)

In general, one can take Ui ∼ N(0, σ2)
Using normal Ui , the latent variable model Y ∗i = xT

i β + Ui gives

πi = P(Y ∗ > 0) = P(Ui > −ηi) = P(Ui
σ
>
−ηi
σ

) = 1− Φ(−ηi
σ

) = Φ(ηi
σ

)

⇒ we can not separately estimate β and σ, i.e. scale of the latent variable is not
uniquely defined

Choosing σ = 1 means that we interpret parameters β in units of std. dev. of the
latent variable

Pros: good numerical solution methods

Cons: no analytic form, hard to interpret
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Logit model

Distribution of tolerance is logistic distribution

πi = F (ηi) = exp(ηi)
1 + exp(ηi)

, ηi = ln πi
1− πi

Standard logistic distribution is symmetric: µ = 0, σ2 = π2

3 ≈
3.142

3 ≈ 3.29

Alternative to probit model, shape similar to normal, tails a bit heavier, simple
analytic form, easy to interpret, logit-link is canonical for binary response.

Logit vs probit
– both symmetric w.r.t.0.5
– similar results if π ∈ (0.1, 0.9)
Note that only the comparison of ratio β/σ makes sense. Why?

In case of probit model σ = 1, in case of logit model σ = π√
3 ≈

3.14√
3 ≈ 1.814

⇒ it is reasonable to compare β̂logit with 1.81β̂probit or, equivalently,
β̂probit with 0.55β̂logit
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Clog-log model, log-log model

Clog-log model: distribution of tolerance is extreme min distribution (Gompertz):

F (ηi) = 1− exp(− exp(ηi)), ηi = log(− log(1− πi))

Log-log model: distribution of tolerance is extreme max distribution (Gumbel)

F (ηi) = exp(− exp(ηi)), ηi = log(− log(πi))

NB! Gompertz and Gumbel distributions are not symmetric
If Ui is Gompertz-distributed then 1− Ui is Gumbel-distributed
modelling successes with Gompertz (for tolerance) is equivalent to modelling
failures with Gumbel
Standard Gumbel distribution: µ = γ, σ2 = π2

6 ; γ = 0.5772156649 is Euler
constant, transcendental number (number that is not algebraic)

1735 Euler, 1790 Mascheroni calculated 16 digits, 1999 Gourdon, Demichel 108 mln digits
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Link functions. Conclusion

Logit link is canonical
Logit link is preferred due to its good interpretability
Logit and probit are symmetric w.r.t. πi = 0.5 and are fairly similar unless
some πi -s are very big or very small
Logit, probit and clog-log are similar in case of small probabilities
Cauchy is not sensitive to big probabilities, fits if the probabilities are > 0.9.
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Interpretation of logistic model
Odds
Odds of an event is defined as

Πi = πi
1− πi

⇒ Logit function is log-odds: logit(πi) = ln πi
1−πi

Odds ratio
Odds ratio is defined as

Πk
Πi

=
πk

1−πk
πi

1−πi

Change in argument value xij by c units corresponds to ecβ̂j times change in odds
(if other conditions remain the same), i.e. the odds ratio is ecβ̂j

In practice, odds ratio is often used as it provides nice interpretation for the
model (especially if c = 1)
Also, if (aj , bj) is confidence interval for parameter βj , (eaj , ebj ) is CI
corresponding to odds ratio
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Example. Interpretation of logit model

Seeds example (grouped data)

> s1=glm(cbind(r,n-r)~cult+soil,family="binomial",data=seeds)
> library(MASS)
> exp(cbind(coef(s1), confint(s1)))
Waiting for profiling to be done...

2.5 % 97.5 %
(Intercept) 0.7092206 0.5536289 0.9063096
cult 0.6971842 0.5303025 0.9152451
soil 2.4750647 1.8925019 3.2466015

Interpretation?
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Interpretation of probit model

We predict the probability and assume probit link, ηi = Φ−1(πi)

π̂i = Φ(ηi) = Φ(xT
i β)

Positive coefficients increase the probability of an event and negative coefficients
decrease

Interpretation of the intercept: Calculating Φ(β̂0) gives the probability of the
event if all arguments are 0

Interpretation of a coefficient βj : change in argument value (xij) influences
response through the change in the argument of standard normal cdf

NB! The relation is not linear, result depends on the values of other arguments as
well as the starting value xij
To interpret a model, a base level of other arguments is chosen (e.g. mean)
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Example. Interpretation of probit model
Question: how does the admission (binary variable) depend on GRE (Graduate
Record Exam scores), GPA (grade point average) and prestige of the
undergraduate institution (n = 400)
Probit model: π = Φ(−2.09 + 0.00140gre + 0.464gpa − 0.332rank)
Let us interpret the dependence from school rank (1–2–3)
(1) taking other arguments to zero:

Φ(−2.09− 0.332 · 1) = 0.0077

Φ(−2.09− 0.332 · 2) = 0.0029
Φ(−2.09− 0.332 · 3) = 0.0010

(2) taking other arguments equal to their means:

Φ(−2.09 + 0.0014 · 587.7 + 0.464 · 3.4− 0.332 · 1) = 0.491

Φ(−2.09 + 0.0014 · 587.7 + 0.464 · 3.4− 0.332 · 2) = 0.362
Φ(−2.09 + 0.0014 · 587.7 + 0.464 · 3.4− 0.332 · 3) = 0.246

Source: https://stats.idre.ucla.edu/r/dae/probit-regression/
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Interpretation of clog-log model

Probability of the event and the linear predictor are connected through

πi = 1− exp(− exp(ηi)), ηi = log(− log(1− πi))

Obviously the link is not linear w.r.t. probability

The effect of change in argument value can be analyzed similarly to probit model:
fix the remaining arguments to their mean level and compare the change of value
of function 1− exp(− exp(ηi))

NB! It is actually possible to derive the effect of the change without assuming
anything about the remaining arguments. How?
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Estimation of parameters

Model ηi = xTi β, ηi = g(πi), πi = h(xTi β)
Estimation of parameters:

Start from sample log-likelihood
Take the derivatives, solve the score equations s(β) = 0

Two main options: Newton-Raphson or Fisher method of scoring (equivalent
to weighted least squares)
Both methods give estimates on the form (r – iteration step)

β̂r = β̂r−1 + F̃−1
r−1(β̂r−1)sr−1(β̂r−1)

Estimated covariance matrices are slightly different
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Confidence intervals for parameters, 1

Two approaches:
1 CI based on profile likelihood

(iterative algorithm, based on asymptotic chi-square distribution of
log-likelihood test)

2 CI based on asymptotic normality (simply using SEs), also called Wald’s CI:
100(1− α)% CI for βj is

β̂j ± z1−α
2
σ̂j

z1−α
2
– standard normal quantile

β̂j – MLE estimate for βj
σ̂j – SE for β̂j

The asymptotics for Wald’s method works if sample size is big and probabilities lie
within (0.1, 0.9)
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Confidence intervals for parameters, 2

In R:
for Wald’s CI: function

confint in package stats

confint.default if package MASS is loaded

for profile likelihood CI: confint (or confint.glm) in package MASS
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Overdispersion and underdispersion
For a properly chosen model

χ2
P

n − p ≈ 1 D
n − p ≈ 1

If the ratio is > 1, there is overdispersion, if the ratio is < 1, there is
underdispersion

In other words: the variability estimated from data does not match the theoretical

Causes:
data has an error or an outlier
too big or too small probabilities of the observed event (’success’)
bad link function choice
missing covariate, wrong scale of a covariate or some covariate has different
effect on subjects
correlated observations

In case of ungrouped data, over/underdispersion issues are rare
GLM (MTMS.01.011) Lecture 6 34 / 55



The essence of over/underdispersion (Tutz, 2012)
Let Yij ∼ B(1, πi) and Yi =

∑ni
j=1 Yij , Yi ∼ B(ni , πi)

A usual assumption is that observations are independent. If this is violated, i.e. if
Yi1,Yi2, . . . ,Yini are correlated, we have

DYi = D(
ni∑
j=1

Yij) =
ni∑
j=1

DYij +
∑
r 6=s

cov(Yir ,Yis)

Taking into account that DYij = πi(1− πi) and cov(Yir ,Yis) = ρ
√
DYirDYis , we

get
DYi = niπi(1− πi)[(1 + (ni − 1)ρ] = niπi(1− πi)ϕi ,

where ϕi = 1 + (ni − 1)ρ and ρ is the coefficient of correlation

Thus
if ni = 1 (ungrouped data), overdispersion is not present
if ρ > 0 (pos. correlation between observations) ⇒ overdispersion
if ρ < 0 (neg. correlation between observations) ⇒ underdispersion
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Taking over/underdispersion into account
Taking over- or underdispersion into account means adjusting the (variability)
parameter estimates

1 Use quasi-likelihood instead on likelihood: change the covariance matrix of
parameter estimates based on estimated scale ϕ̂
(a) group sizes ni are almost equal: estimate ϕ̂ using Pearson χ2-statistic or

deviance
ϕ̂ = χ2

P
n − p , ϕ̂ = D

n − p
In R: use option family="quasibinomial"

(b) group sizes ni are different: estimate ϕ̂ using Williams (1982) method that
proposes iterative algorithm for ρ and then ϕi takes into account the group
size ϕ̂i = 1 + (ni − 1)ρ
In R: use function glm.binomial.disp from package dismpod

2 Use link function that stabilizes the variance ηi = arcsin√πi or Cauchy link
ηi = tan[π(πi − 1

2 )], π = 3.14
3 Use another distribution...
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Using quasi-likelihood

Quasi-likelihood function has similar properties to likelihood function but does not
correspond to any probability distribution

Some remarks:
We assume that the means µi = h(xTi β) are specified correctly but the
variance differs from theoretical

Estimates are based on quasi-score function and are found solving the GEE
(Generalized Estimating Equations)

The estimate for parameter β does not depend on scale ϕ ⇒ parameter
estimates are the same as for regular likelihood, but the covariance matrix is
multiplied by ϕ̂, i.e. standard errors are multiplied by

√
ϕ̂
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Example. Overdispersion, 1
Let us look again the seeds data:
> s1=glm(cbind(r,n-r)~cult+soil,family="binomial",data=seeds)
> summary(s1)
...
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.3436 0.1256 -2.735 0.00624 **
cult -0.3607 0.1392 -2.592 0.00954 **
soil 0.9063 0.1376 6.585 4.55e-11 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 118.195 on 19 degrees of freedom
Residual deviance: 68.544 on 17 degrees of freedom
AIC: 154.73

Number of Fisher Scoring iterations: 4
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Example. Overdispersion, 2

> s1q=glm(cbind(r,n-r)~cult+soil,family="quasibinomial",data=seeds)
> summary(s1q)
...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.3436 0.2491 -1.379 0.18562
cult -0.3607 0.2759 -1.307 0.20850
soil 0.9063 0.2729 3.321 0.00404 **
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for quasibinomial family taken to be 3.931169)

Null deviance: 118.195 on 19 degrees of freedom
Residual deviance: 68.544 on 17 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 4
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Example. Overdispersion, 3
> library(dispmod)
> s1w=glm.binomial.disp(s1)
Binomial overdispersed logit model fitting...
...
Estimated dispersion parameter: 0.06958442
...
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.3785 0.2454 -1.542 0.12296
cult -0.2907 0.2825 -1.029 0.30342
soil 0.8059 0.2822 2.856 0.00429 **
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 26.677 on 19 degrees of freedom
Residual deviance: 17.485 on 17 degrees of freedom
AIC: 44.888

Number of Fisher Scoring iterations: 3
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Model diagnostics. Residuals
Pearson residuals:

rPi = y∗i − π̂i√
π̂i(1− π̂i)/ni

Deviance residuals (for scaled binomial model):

rDi = sign(y∗i − π̂i)
√
2ni [y∗i ln y∗i

π̂i
+ (1− y∗i ) ln 1− y∗i

1− π̂i
]

Deviance residuals for ni = 1 (binary model):

rDi = sign(yi − π̂i)
√
−2 ln(1− |yi − π̂i |)

Remarks:∑
r2
Pi = χ2

Pi
for small ni , r2

Pi are rather skewed, transformation to Anscombe residuals can
be considered as an alternative∑

r2
Di = D

standardization: divide the residuals by
√
1− hii

Rule of thumb: standardized residuals > 3 are too large
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Model diagnostics. Leverage. Influential observations

Leverage: measures how far the argument values of an observation are from
those of the other observations. Leverage of observation i is the
corresponding diagonal element of the generalized hat matrix, hii = (H)ii .
Elements that are >2 times larger than the average are considered large
Recall the generalized hat matrix:

H = W1/2X(XTWX)−1XTW1/2,

where the (diagonal) weight matrix W depends on parameter estimates,
W = W(β̂)
Influential observations: have big influence to the model (parameters).
Influence of ith observation is measured by comparing the models with and
without the ith observation.

Cook’s distance – influence of i-th observation to the model (response)
difference of betas dfbetasij – influence of i-th observation to β̂j
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Models with binary response. Summary

1 Choosing the model
– Choosing arguments and scale
– Choosing the link function

2 Parameter estimation
– Does an estimate exist?

3 Model fit
– Is there overdispersion?

4 Model diagnostics
5 Choosing the best model
6 Interpreting the model
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Existence of estimates

Lemma (Claudia Czado, München, 2004)
The log-likelihood ln L(β) in logistic regression is strict concave in β if
rank(X) = p.

This implies that the score equations can have at most one solution

⇒ if a ML estimate of β exists, it is unique and it is a solution to score equations
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Existence of estimates, R

> sep1=glm(y~x1+x2,data=separ,family="binomial")
Warning message:
glm.fit: fitted probabilities numerically 0 or 1 occurred

What’s going on?

What is the cause?

How to proceed?
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Infinite parameter estimates (1)
Parameter estimates β̂ are found using ML method

Estimates for parameters exist ⇔ iteration converges

The existence of a MLE depends on points in the observation space, i.e. data
(Albert & Anderson, 1984)

ML estimates exist if there exists no hyperplane separating the values of the
response

Three possible scenarios
complete separation
quasi-complete separation
overlap

Separation – a covariate or a set of covariates determine the response (yi = 0 or
yi = 1)

Large standard errors of parameters are an indication of possible separation issues
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Infinite parameter estimates (2)
Complete separation
Arguments can divide the response values to exact groups (prediction in each
group exactly 1 or 0)

ML estimates do not exist, log-likelihood tends to zero when the number of
iterations increases

Quasi-complete separation
For at least one subject, it is not exactly fixed to which response group it belongs

ML estimates do not exist, log-likelihood does not tend to zero, but the
information matrix is unbounded and the inverse does not exist

Overlap
If there is no separation, then there is overlap

ML estimate β̂ exists and is unique
One can describe overlap as a number observations that can be removed to reach
partial separation, i.e. situation when the parameters can no longer be estimated.
In Vaso example, overlap is only 3 observations
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How to solve the separation issue?

How to proceed?
Find out which arguments cause the problem, leave some arguments (or
observations) out, or re-code

Penalized likelihood (Firth, 1993) – add an adjustment term (which results in
skewed estimates), used for continuous arguments

Exact logistic regression – used when number of parameters is small, samples
are small and arguments are discrete
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Firth’s method (Firth, 1993)
Idea: add an adjustment (penalty) term to the log-likelihood and maximize the
penalized log-likelihood. Information matrix remains unchanged

Method is asymptotically consistent, i.e. the estimate converges to ML estimate

Idea is similar to ridge regression, which is used in case of multicollinearity

In R: function logistf (package logistf)
> logistf(y~x1+x2,data=separ)
logistf(formula = y ~ x1 + x2, data = separ)
Model fitted by Penalized ML
Confidence intervals and p-values by Profile Likelihood

coef se(coef) lower 0.95 upper 0.95 Chisq
(Intercept) -1.7984331 22.19477577 -52.60524094 65.3741588 0.006847239
x1 -0.1642127 0.72706874 -2.78341758 1.2547411 0.053029128
x2 0.1216285 0.06997688 0.02404056 0.3756169 7.380218208

p
(Intercept) 0.934051880
x1 0.817873779
x2 0.006594517

Likelihood ratio test=7.570012 on 2 df, p=0.02270872, n=10
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Classification problem
A GLM (eventually) predicts the probabilities of an event (or nonevent)

If we need to classify the results, how to do that?

Simplest way is to say that pii ≤ 0.5 means 0 and πi > 0.5 means 1, but is it
actually the best option? Maybe another cut-off point is better? Which one? How
to compare the classification ability of models using different cut-offs?

Confusion matrix:
Actual (true) value

1 0

Predicted value 1 True positives (TP) False positives (FP)
0 False negatives (FN) True negatives (TN)

Now
TP + FN = P – total actual positives
TN + FP = N – total actual negatives
TP
P – true positive rate (also sensitivity)
TN
N – true negative rate (also specificity)
TP+TN
P+N – accuracy of the model
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Receiver operating characteristic
ROC curve allows us to compare models based on their classification ability
The bigger area under ROC curve (AUC), the better

ROC Space. Source: Wikipedia
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Decisions

Which cut-off point (probability) to choose?

Possible options:
the point closest to perfect classification
the point farthest from the random guess line
the point that maximizes accuracy
the point that minimizes the cost (individual costs are specified by a cost
matrix)
the point where sensitivity = specificity

In R: library ROCR or pROC

A nice example by Arthur Charpentier:
https://freakonometrics.hypotheses.org/48285
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