
Generalized Linear Models
Lecture 8. Count data models II. Negative binomial model
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Count data with (big) overdispersion

Big overdispersion, i.e DY > 5EY : Poisson distribution does not fit

One possible solution: negative binomial distribution
Keep in mind that negative binomial can also have overdispersion

Possible choices for negative binomial (NB) model:

"regular" NB model (sometimes also referred to as NB(2))
models with geometric distribution
zero-modified (ZINB, ZTNB, ZANB) models

+ NB(P), censored NB, NB with mixed effects, etc. Hilbe (2007) proposes 22
different types of NB models.

Remark: NB model with large parameter k can not be distinguished from Poisson
model

J. M. Hilbe (2007). Negative Binomial Regression. Cambridge University Press
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Negative binomial distribution NB(k , π) (classic notation)

Anscombe (1949) – First NB model (The Statistical Analysis of Insect Counts
Based on the Negative Binomial Distribution)
Plackett (1981), Lawless (1987) – log-likelihood for NB
Interpretation: NB distribution is known as the distribution of ’failures’ until k-th
’success’ in a Bernoulli process

Y ∼ NB(k, π), 0 < π < 1; k > 0, usually integer; π – probability of ’success’

Pmf of NB distribution:

p(y ; k, π) = Γ(k + y)
y ! Γ(k) πk(1− π)y

mean: EY = µ = k(1− π)/π
variance: DY = k(1− π)/π2 = µ+ 1

kµ
2
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Distributions related to NB

The following distributions can be considered as sub cases of NB(k, π):
1 Geometric distribution (k = 1)
2 Pascal distribution (integer k)
3 Polya distribution (real-valued k)

NB vs Poisson:
NB has more probability on zeros and heavier right tail (given the equal mean)
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Poisson vs NB (mean µ = 10)
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NB as a mixture of Poisson and Gamma

NB distribution can be interpreted as a Poisson-gamma mixture, i.e. conditional
on a gamma-distributed variable Z , the variable Y has a Poisson distribution with
mean Z

Y |Z = z ∼ Po(z), Z ∼ Γ(α, λ)

The resulting distribution is NB with k = α and π = λ
λ+1
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Example. NB with different parameters
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NB(k , πi) as a member of exponential family
Let us start with the pmf

p(yi ; k, πi ) = Γ(k + yi )
yi ! Γ(k) πk

i (1− πi )yi

and rewrite it in a form similar to exponential family

p(yi ; k, πi ) = exp{yi ln(1− πi ) + k lnπi + ln Γ(k + yi )− ln[yi !Γ(k)]}

Now
θi = ln(1− πi ) and πi = 1− exp(θi )
b(θi ) = −k lnπi = −k ln(1− exp θi )
ϕi = 1
mean b′ (θi ) = ... = k(1−πi )

πi
= µi

variance ϕi · b
′′ (θi ) = ... = µi + µ2

i
k

Prove it!
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NB(µi , k) as a member of exponential family
Since in GLM context we are interested in modelling the means, a reparametrized
version of NB (NB(µi , k) with µi = k(1−πi )

πi
) can be more useful:

p(yi ;µi , k) = Γ(k + yi )
yi ! Γ(k) ( k

k + µi
)k(1− k

k + µi
)yi

To show that this pmf belongs to exponential family, we rewrite it as

p(yi ;µi , k) = exp{yi ln
µi

k + µi
+ k ln k

k + µi
+ ln Γ(k + yi )− ln[yi !Γ(k)]}

Thus
θi = ln µi

k+µi

b(θi ) = −k ln k
k+µi

b′ (θi ) = µi

b′′ (θi ) = µi + µ2
i

k
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Link functions used in NB models

(1) Canonical link:

ηi = g(µi ) = ln µi
k + µi

= − ln( k
µi

+ 1)

The corresponding response function:

µi = h(ηi ) = k
exp(−ηi )− 1

(2) Log-link
ηi = g(µi ) = ln(µi ), µi = h(ηi ) = exp(ηi )

(3) Identity link

Remark: Model with canonical link is difficult to interpret, log-link is used
because of analogy with Poisson model and gives better results
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Deviance of NB model

By definition, D = 2((l(y , y)− l(y , µ̂))

Using the NB(µi , k) parametrization, the deviance can be expressed as (prove it!):

D = 2
∑

i
[yi ln

yi
µ̂i
− (yi + k) ln k + yi

k + µ̂i
]

Notice that the first term is the same as for deviance of Poisson model
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Poisson vs NB

Hypotheses: {
H0 : DYi = µi Poisson dist.
H1 : DYi = µi + αµ2

i NB dist., α = 1
k

or, in general,

H1 : DY = µi + αf (µi ), where f (·) is some function

The hypotheses can be written explicitly for α as:{
H0 : α = 0 (Poisson dist.)
H1 : α > 0 (NB dist.)

Main advantage of NB model compared to Poisson:
more flexible variance structure allows to estimate data with bigger variability, but
is not suitable to model underdispersion (Tutz, 2012)
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Testing Poisson vs NB (H0 means Poisson)

Cameron ja Trivedi (1996) test:
α is estimated from (yi − µ̂i )2 − yi = αµ̂2

i + εi , if α is significant ⇒ H1

Wooldridge (1996) test:
α is estimated from (yi − µ̂i )2 − µ̂i = αµ̂2

i + εi

Lagrange multiplier test (Greene, 2002), score test (Rao, 1973), Wald test
Likelihood ratio test (based on the fact that Poisson model is special case of
NB model):

2(ln LNB − ln LPois) ∼ χ2
1

NB! One-sided hypothesis: H1 : α > 0, i.e. one should use critical values
χ2
α2,1 (e.g. χ2

0.05,1 = 3.8, χ2
0.1,1 = 2.7)

Decision rules?
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Example. Cellular differentiation (1)
The effect of two agents of immuno-activating ability that may induce cell
differentiation was investigated. As response variable the number of cells that
exhibited markers after exposure was recorded. It is of interest if the agents TNF
(tumor necrosis factor) and IFN (interferon) stimulate cell differentiation
independently, or if there is a synergetic effect. 200 cells were examined at each
dose combination.

The data is also analyzed in Fahrmeir & Tutz (1994), and available in R package
Fahrmeir

The dataset contains 16 observations and 3 variables:
y – number of cells differentiating
TNF – dose of TNF, U/ml
IFN – dose of IFN, U/ml

Poisson model for estimating the number of differentiating cells based on doses of
TNF and IFN:

µ = exp(β0 + β1TNF + β2IFN + β3TNF ∗ IFN)
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Example. Cellular differentiation (2)
> library(Fahrmeir)
> data(cells)
> modelP=glm(y~TNF*IFN,family="poisson",data=cells)
> summary(modelP)
...

Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.43563627 0.06376778 53.877 < 2e-16 ***
TNF 0.01552810 0.00083085 18.689 < 2e-16 ***
IFN 0.00894613 0.00096685 9.253 < 2e-16 ***
TNF:IFN -0.00005670 0.00001348 -4.205 0.0000261 ***
...
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 707.03 on 15 degrees of freedom
Residual deviance: 142.39 on 12 degrees of freedom
AIC: 243.69

Clearly we have overdispersion, since:
> modelP$deviance/modelP$df.residual
[1] 11.86544
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Example. Cellular differentiation (3)
> modelQP=glm(y~TNF*IFN,family="quasipoisson",data=cells)
> summary(modelQP)
...

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.43563627 0.21844859 15.727 2.26e-09 ***
TNF 0.01552810 0.00284622 5.456 0.000146 ***
IFN 0.00894613 0.00331213 2.701 0.019273 *
TNF:IFN -0.00005670 0.00004619 -1.227 0.243176
...
(Dispersion parameter for quasipoisson family taken to be 11.73534)

Null deviance: 707.03 on 15 degrees of freedom
Residual deviance: 142.39 on 12 degrees of freedom

Notice that taking overdispersion into account makes the coefficient of the
interaction term nonsignificant. We can also see that the overdispersion is
estimated using Pearson residuals:
> sum(residuals(modelP,type="pearson")^2)/modelP$df.residual
[1] 11.73516
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Example. Cellular differentiation (4)

One can argue further that
overdispersion is too big to apply (quasi)Poisson model
the variance structure in data does not correspond to Poisson model (as
argued in Fahrmeir&Tutz):
> library(sqldf)
> sqldf("select TNF, avg(y) as mean_y,

variance(y) as var_y from cells group by TNF")
TNF mean_y var_y

1 0 22.00 143.3333
2 1 45.25 400.9167
3 10 74.00 1608.6667
4 100 161.50 1655.0000

It is questionable whether the variance has linear relation to mean
φµi as in quasipoisson or, e.g., µi + µ2

i
k (negative binomial)
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Example. Cellular differentiation (5)

> library(MASS)
> modelNB=glm.nb(y~TNF*IFN,data=cells)
> summary(modelNB)
...

Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.40042871 0.16254096 20.920 < 2e-16 ***
TNF 0.01613032 0.00308130 5.235 0.000000165 ***
IFN 0.00933325 0.00307969 3.031 0.00244 **
TNF:IFN -0.00005880 0.00005964 -0.986 0.32422
...
(Dispersion parameter for Negative Binomial(6.4237) family taken to be 1)

Null deviance: 61.881 on 15 degrees of freedom
Residual deviance: 16.763 on 12 degrees of freedom
AIC: 156.88

Theta: 6.42
Std. Err.: 2.59

2 x log-likelihood: -146.882
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Example. Cellular differentiation (6)

> modelQP=update(modelQP,.~.-TNF:IFN)
> modelNB=update(modelNB,.~.-TNF:IFN)
> cbind(coef(summary(modelQP))[,c(1,4)],

coef(summary(modelNB))[,c(1,4)])
Estimate Pr(>|t|) Estimate Pr(>|z|)

(Intercept) 3.573116655 4.371668e-11 3.451510118 1.223505e-108
TNF 0.013142274 2.851438e-05 0.014421179 8.685567e-09
IFN 0.005854408 2.206719e-02 0.007751195 3.046597e-03

As we can see, the results of QP and NB model are quite similar, but the
coefficients still differ. Taking into account the size of overdispersion, NB model is
preferred.
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Geometric distribution
Geometric distribution is a special case of NB distribution if k = α = 1

Starting from the classical form of NB pmf we get p(y ; 1, π) = (1− π)yπ,
y = 0, 1, 2, . . .
Mean is 1−π

π , variance is 1−π
π2

In GLM context, let us use the NB(µi , k)-parametrization:

p(yi ;µi , k) = exp{yi ln
µi

k + µi
+ k ln k

k + µi
+ ln Γ(yi + k)− ln[yi !Γ(k)]}

The formula simplifies since k = 1:

p(yi ;µi , 1) = exp[yi ln
µi

1 + µi
+ ln 1

1 + µi
] = exp[yi ln

µi
1 + µi

− ln(1 + µi )]

Canonical link:
g(µi ) = ln µi

1 + µi
= − ln( 1

µi
+ 1)

GLM (MTMS.01.011) Lecture 8 20 / 22



Geometric distribution. Example

Left: p(x) = (1 − p)x−1p, x = 1, 2, . . .

Right: p(x) = (1 − p)x p, x = 0, 1, 2, . . .
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NB models with fixed k in R

Negative binomial models in R:
if we don’t know k (k = theta in R): use glm.nb()

if we know (have estimated) k: use
glm(...,family="negative.binomial"(theta=...))

for geometric distribution:
glm(...,family="negative.binomial"(theta=1))
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