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Sissejuhatus

Meenutame mõningaid tulemusi funktsioonide lähendamisest polünoomidega.
Olgu antud reaalarvud xi, i = 0, . . . , n, kus xi ̸= xj, kui i ̸= j, ning fi,

i = 0, . . . , n. Siis on olemas parajasti üks ülimalt n astme polünoom Pn(x) =
= c0+c1x+. . .+cnx

n, kus c0, . . . , cn on reaalarvud, nii, et Pn(xi) = fi, i = 0, . . . , n.
Selle nn. interpoleeriva polünoomi saab leida näiteks Lagrange'i või Newtoni vale-
mi abil, kumbki nõuab O(n2) aritmeetilist tehet, mille all peetakse silmas eelkõige
korrutamisi ja jagamisi. Antud funktsiooni f : [a, b] → R korral, kui xi ∈ [a, b],
i = 0, . . . , n, on seega olemas parajasti üks interpoleeriv polünoom Pn(x) =
= c0+c1x+. . .+cnx

n nii, et Pn(xi) = f(xi), i = 0, . . . , n. Loomulik on näiteks pide-
va funktsiooni f korral küsida, kuidas käitub max

a⩽x⩽b
|Pn(x)−f(x)| = ∥Pn − f∥C[a,b],

kui n → ∞? Sel juhul muidugi xi = xni ehk iga n korral on oma interpolat-
sioonisõlmede komplekt. Üldisemal juhul, kui f ei tarvitse olla pidev, võib uurida
sup
a⩽x⩽b

|Pn(x)− f(x)| käitumist.

Weierstrassi teoreem väidab, et igat pidevat funktsiooni f : [a, b] → R saab üht-
lasusnormis kuitahes hästi lähendada polünoomidega, s.t. iga ε > 0 korral on
olemas polünoom P nii, et ∥P − f∥C[a,b] = max

a⩽x⩽b
|P (x) − f(x)| < ε. Tähistades

Pn = {Pn(x) = c0 + c1x+ . . .+ cnx
n | c0, . . . , cn ∈ R} � kõigi ülimalt n astme po-

lünoomide hulk, siis antud f ∈ C[a, b] ja antud n korral on olemas parajasti üks
polünoom P n ∈ Pn nii, et

∥P n − f∥C[a,b] = min
P∈Pn

∥P − f∥C[a,b],

seda polünoomi P n nimetatakse parimaks ühtlase lähenduse polünoomiks funkt-
sioonile f . Weierstrassi teoreemile tuginedes võib väita, et ∥P n − f∥C[a,b] → 0, kui
n → ∞. Lisaks leiab aset T²ebõ²ovi alternanss, mille kohaselt on olemas punktid
ξi ∈ [a, b], ξ0 < ξ1 < . . . < ξn+1 nii, et P n(ξi) − f(ξi) = (−1)iδ∥P n − f∥C[a,b], kus
δ = 1 või δ = −1. Sellest aga järeldub, et on olemas punktid xi, i = 0, . . . , n, nii, et
ξi < xi < ξi+1 ja P n(xi) = f(xi), mistõttu parimad ühtlase lähenduse polünoomid
on ühtlasi funktsiooni f interpoleerivad polünoomid mingites lõigu [a, b] punktides.
Väärib märkimist, et parimaid ühtlase lähenduse polünoome ei saa kaugeltki nii
lihtsalt leida kui näiteks interpolatsioonipolünoome Lagrange'i või Newtoni valemi
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abil.
Äärmiselt heidutav polünoomidega ühtlasel lähendamisel on järgmine Faberi

teoreem: igasuguse sõlmede süsteemi xni ∈ [a, b], n = 0, 1, . . ., i = 0, . . . , n, kor-
ral on olemas funktsioon f ∈ C[a, b] nii, et sõlmedega xni interpolatsioonipolü-
noomide jada Pn (siis Pn ∈ Pn ja Pn(xni) = f(xni), n = 0, 1, . . ., i = 0, . . . , n)
korral ∥Pn − f∥C[a,b] → ∞, kui n → ∞. Näiteks lõigus [−1, 1] punktide x00 = 0,

xni = −1+i
2

n
, n ⩾ 1, i = 0, . . . , n, (mida tavaliselt nimetatakse ühtlaseks võrguks)

korral sobib funktsioon f(x) = |x|, x ∈ [−1, 1]. Ühtlase võrgu korral ei paranda
olukorda funktsiooni f suurem siledus (pidevate tuletiste olemasolu): funktsioonil

f(x) =
1

1 + 25x2
, x ∈ [−1, 1], (seda nimetatakse C. Runge näiteks) on olemas kõik

tuletised, kuid ikkagi ∥Pn − f∥C[a,b] → ∞, kui n → ∞. Selline polünoomidega in-
terpolatsiooniprotsessi praktilisteks rakendusteks sobimatu käitumine oli tugevasti
motiveeriv asjaolu splainide teooria arendamiseks.
Esimeseks spetsiaalselt splainidele pühendatud tööks loetakse ühte I. J. Sc-

hoenbergi 1946. aastal avaldatud artiklit. Splainid kui matemaatilised objektid
esinesid muidugi juba varem ja neid näeme esituse käigus. Splainide teooria inten-
siivsem areng algas 1960. aastate alguses. Eraldi väärib märkimist J. C. Holladay
artikkel aastast 1957, mis oli lähtekohaks splainide variatsioonteooria arengus.
Järgnevas materjali esituses peame silmas loomulikku võimalust, et lugejal ei

ole varasemat kokkupuudet splainide teooriaga. Küll aga eeldame, et tuttavad
on mitmed põhimõisted ja tulemused matemaatilisest analüüsist, lineaaralgebrast,
arvutusmeetoditest ning mõningal määral funktsionaalanalüüsist.



�1. Splaini mõiste

Alustame enim kasutatavatest splainidest. Olgu antud võrk ∆: a = x0 < x1 <
< . . . < xn = b.

De�nitsioon. Funktsiooni S : [a, b] → R nimetatakse m astme splainiks defektiga
k, kui

1) S ∈ Pm[xi−1, xi], i = 1, . . . , n,

2) S ∈ Cm−k[a, b].

Siin Pm[xi−1, xi] on kõigi ülimalt m astme polünoomide hulk ning neid polünoo-
me vaadeldakse määratuna lõigus [xi−1, xi]. Hulk C

k[a, b] koosneb funktsioonidest
f : [a, b] → R, mille korral f (k) ∈ C[a, b], seejuures C0[a, b] = C[a, b].
Punkte x0, . . . , xn nimetatakse splaini sõlmedeks, punkte x1, . . . , xn−1 splaini

sisesõlmedeks.
De�nitsioonis toodud funktsioonide hulka tähistatakse Sm,k, Sm,k

∆ või Sm,k
∆ [a, b].

Näide 1. Olgu m = 1, k = 1, siis S ∈ S1,1. Et S ∈ P 1[xi−1, xi], siis igas osalõigus
on S ülimalt esimese astme polünoom ja tema graa�k lõigus [xi−1, xi] on sirglõik.
Need sirglõigud peavad tingimuse S ∈ C[a, b] tõttu olema ühendatud nii, et S
graa�kul tervikuna ei ole katkevuspunkte ehk graa�k on pidev murdjoon.

x0 x1 x2 xn

Sellist splaini nimetatakse lineaarsplainiks. Ta esineb (mõningal määral ilmutama-
tult) määratud integraali arvutamisel trapetsvalemiga, kus integraali täpse väär-
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7

tuse asemel kasutatakse integraali lineaarsplainist ehk

b∫
a

f(x) dx =

b∫
a

S(x) dx+R(f).

Seda saab piltlikult näha näiteks järgmisel joonisel, kus kõverjoon on funktsiooni
f graa�k.

a = x0 x1 x2 x3 = b

Taolisi pidevaid murdjooni esineb tihti andmete graa�lisel esitamisel, mida kasutati
ammu enne splainide teooria arendamist.

Näide 2. Olgu m = 2, k = 1, siis S ∈ S2,1. Selles näites S ∈ P 2[xi−1, xi], mis
tähendab, et igas osalõigus on splaini S graa�k sirglõik või ruutparabool. Tingimus
S ∈ C1[a, b] tähendab, et graa�ku osad on sisesõlmedes x1, . . . , xn−1 ühendatud nii,
et splaini S tuletis oleks pidev, mis ei luba S graa�ku puutuja hüppelist muutumist.
Võimalik pilt on toodud järgmisel joonisel.

x0 x1 x2 x3 x4

Selles näites toodud splaine nimetatakse ruutsplainideks.

Näide 3. Olgu m = 3, k = 1, siis S ∈ S3,1 ning vadeldavaid splaine nimetatakse
kuupsplainideks, sest tingimus S ∈ P 3[xi−1, xi] tähendab, et S võib olla osalõigus
[xi−1, xi] kuni 3. astme polünoom. Nõue S ∈ C2[a, b] tähendab, et splainil S peab
olema lõigus [a, b] pidev teist järku tuletis. Kui võtta elastne varras ja kinnitada
see mingis arvus punktides nagu näha allpool oleval joonisel, siis see varras on
kuupsplaini kujuline.



8 �1. Splaini mõiste

Taolise joonestamisvahendi nimest splain ongi tulnud üldnimi funktsioonide klas-
sile.

Raudteed, samuti maanteed ei saa ehitada täiesti sirgena, paratamatult esinevad

kurvid. Kurvis mõjub liikuvale kehale massiga m jõud F =
mv2

R
, kus v on liiku-

miskiirus ja R kõverusraadius, näiteks ringjoont mööda liikumisel on R ringjoone
raadius. Täiesti kõlbmatu on sirgelt teeosalt kurvi alustades minna edasi mööda
ringjoone kaart, sest siis tekib hetkeliselt jõud, mis viskab näiteks rongireisija ist-
melt vastu vaguni külgseina. Kõvera teeosa õige ligikaudne kuju on splain S ∈ S3,1.
Püüame seda põhjendada, pidades silmas ka järgnevat joonist.

S

R

x0 x1

Joone S kõverus κ ja kõverusraadius R on seotud võrdusega

κ =
S ′′(x)

(1 + (S ′(x))2)3/2
=

1

R
, R = R(x), κ = κ(x).

Arvestame seda, et x ∈ [x0, x1] korral S
′′(x) ≈ 1

R
. Sobiv on olukord, kus S ′′(x) ehk

1

R
, mis on võrdeline jõuga F , kasvab lineaarselt, s.t. S ′′(x) = c(x− x0), c = const,

seejuures S ′′(x0) = 0. Siis S ∈ P 3[x0, x1]. Niiviisi jätkates suurendatakse kõverust
κ (ehk vähendatakse kõverusraadiust R) sujuvalt kurvi keskpaigani, pärast seda
vähendatakse sujuvalt κ väärtuseni 0, kus jätkub sirge teeosa.

Näide 4. Olgum suvaline, k = 0. Siis iga i korral S ∈ Pm[xi−1, xi] ja S ∈ Cm[a, b].
Näitame, et siis S ∈ Pm[a, b]. Tingimuse S ∈ Pm[xi−1, xi] tõttu S(m)(x) = di,
x ∈ [xi−1, xi]. Et S

(m) on pidev, siis arvud di peavad olema kõik omavahel võrd-
sed ehk S(m)(x) = c0, x ∈ [a, b]. Siis S(m−1)(x) = c0x + c1, x ∈ [a, b], seejärel

S(m−2)(x) = c0
x2

2
+ c1x+ c2, x ∈ [a, b], ja jätkates jõuame selleni, et S on ülimalt

m astme polünoom.

Näide 4 kinnitab juba de�nitsioonist tulenevat asjaolu, et kõik polünoomid on
ühtlasi ka splainid.
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Kui defektist ei räägita, siis vaikimisi eeldatakse, et see on 1. Lisaks juba vaadel-
dud lineaar-, ruut- ja kuupsplainidele on mõningase tähtsusega kvartsplainid S4,1

ja kvintsplainid S5,1, enamasti küll abivahendina teoreetilistes küsimustes.
Igat polünoomi P (x) = c0 + c1x + . . . + cmx

m, x ∈ [a, b], võib vaadelda kui
funktsiooni P (x) = c0 + c1x + . . . + cmx

m, x ∈ R, samuti vastupidi: polünoomi
P : R → R võib vaadelda kui funktsiooni P : [a, b] → R. Splaini S ∈ Sm,k

∆ [a, b]
korral S(x) = c0 + c1x + . . . + cmx

m, x ∈ [x0, x1], ning võime määrata S(x) =
= c0+c1x+ . . .+cmx

m, x ∈ (−∞, x1]. Analoogiliselt, S(x) = c0+c1x+ . . .+cmx
m,

x ∈ [xn−1, xn], võimaldab vaadelda S(x) = c0 + c1x + . . . + cmx
m, x ∈ [xn−1,∞),

seega S : R → R. Kui on �kseeritud võrk ∆: x0 < x1 < . . . < xn, siis mõnikord
kirjutis S ∈ Sm,k

∆,R tähendab, et S ∈ Pm(−∞, x0], S ∈ Pm[xi−1, xi], i = 1, . . . , n,
S ∈ Pm[xn,∞), S ∈ Cm−k(−∞,∞). Viimane tingimus tähendab seejuures, et
S(m−k) on pidev, kuid ei tarvitse olla tõkestatud.



�2. Splainide ruumid

Olgu antud ∆: a = x0 < x1 < . . . < xn = b, loeme selle �kseerituks, antud m, k
loeme samuti �kseerituks. Vaatleme hulka Sm,k

∆ . See on vektorruum, sest vahetult
saab kontrollida, et

1) S1, S2 ∈ Sm,k
∆ ⇒ S1 + S2 ∈ Sm,k

∆ ,

2) λ ∈ R, S ∈ Sm,k
∆ ⇒ λS ∈ Sm,k

∆ ,

seejuures Sm,k
∆ ⊂ C[a, b]. Märgime, et siiani oleme vaikimisi eeldanud, et k ⩽ m,

mis on mõneti loomulik eeldus. Seame eesmärgiks leida vektorruumi Sm,k
∆ dimen-

sioon.
Vaatleme hulka

Pm
∆ = {P : [a, b] → R, P ∈ Pm[x0, x1], P ∈ Pm(xi−1, xi], i = 2, . . . , n},

mille ühte tüüpilist esindajat võib näha järgneval joonisel.

x0 x1 x2 x3 · · · xn−1 xn

· · · · · ·

Igas vahemikus (xi−1, xi) on P ∈ Pm
∆ ülimalt m astme polünoom, seejuures sõlme-

des x1, . . . , xn−1 ei seata mingisuguseid pidevuse nõudeid. Sõlmedes xi, i = 0, . . . , n,
tuleb funktsioonile P määrata väärtused ja kokkuleppeliselt loeme näiteks, et P
on vasakult pidev, samuti paremalt pidev punktis x0. Mõnikord loetakse ka tao-
line Pm

∆ splainide klassi osaks, kasutades tähistust Sm,m+1
∆ , s.t. defekt on m + 1.

Hulk Pm
∆ on vektorruum, seejuures Sm,k

∆ ⊂ Pm
∆ . Leiame esialgu Pm

∆ dimensioo-
ni. Iga i = 1, . . . , n korral on Pm(xi−1, xi] dimensioon m + 1, sest niipalju on
ülimalt m astme polünoomi määramiseks vabu kordajaid. Kokku annab see, et
dimPm

∆ = (m + 1)n. Kui S ∈ Sm,k
∆ , siis funktsioonid S, S ′, . . . , S(m−k) on pidevad

10
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sisesõlmedes x1, . . . , xn−1, mis annab (m − k + 1)(n − 1) tingimust lisaks kuulu-
misele ruumi Pm

∆ . Nüüd (m + 1)n − (m − k + 1)(n − 1) = (m + 1) + k(n − 1),
seepärast dimSm,k

∆ = m + 1 + k(n − 1). Splainidele kõige tüüpilisemal eriju-
hul k = 1 saame dimSm,1

∆ = m + n. Samuti tuleb üldjuhust juba teadaolev
dimSm,0

∆ = dimPm = m+ 1.

Ülesanne 1. Leida dimSm,k
∆,R.

Märgime, et ülaltoodud dimSm,k
∆ leidmine ei ole esitatud kõigi detailidega. Ter-

vikliku tõestuse esitus viiks meid põhiteemast natuke kõrvale, seepärast anname
siin võimaluse seda iseseisvalt teha.

Lemma. Olgu X vektorruum ja dimX = n. Kui lineaarsed funktsionaalid
φi : X → R, i = 1, . . . , p, on lineaarselt sõltumatud, siis

dim

(
p⋂

i=1

kerφi

)
= n− p.

Selgituseks lisame, et kerφi = {x ∈ X | φi(x) = 0}.
Ülesanne∗ 1. Tõestada lemma ja näidata selle abil, et dimSm,k

∆ = m+1+k(n−1).

Lemma kasutamisel tuleb võtta X = Pm
∆ , leida sobivad funktsionaalid ja näidata

nende lineaarset sõltumatust.

Järgnevas leiame ruumis Sm,k
∆ baasi. De�neerime

xn+ =

{
xn, kui x ⩾ 0,

0, kui x < 0.

Nende graa�kud on esitatud joonisel

1

1 n = 0
n = 1

n = 2

Taolisi funktsioone nimetatakse lõigatud astmefunktsioonideks. Nende abil moo-
dustame

(x− c)n+ =

{
(x− c)n, kui x ⩾ c,

0, kui x < c,
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c

mida nimetatakse samuti lõigatud astmefunktsioonideks.

Teoreem. Funktsioonid xα, α = 0, 1, . . . ,m, (x− xi)
α
+, i = 1, . . . , n− 1 (vastavad

∆ sisesõlmedele), α = m− k + 1, . . . ,m, moodustavad baasi ruumis Sm,k
∆ .

Lisame, et osa neist funktsioonidest on tavalised astmefunktsioonid, lõigatud
astmefunktsioonid aga paiknevad järgmise joonise kohaselt:

x0 x1 x2 · · · xn−1 xn

Tõestus. Meenutame, et kui X on vektorruum ja dimX = n, siis baas ruumis
X on lineaarselt sõltumatute elementide komplekt e1, . . . , en ∈ X. Samaväärne
tingimus on, et iga x ∈ X esitub üheselt elementide e1, . . . , en ∈ X kaudu kujul

x =
n∑

i=1

ciei.

Alustuseks vaatame, kas teoreemis toodud funktsioonid kuuluvad ruumi Sm,k
∆ .

Polünoomid xα, α = 0, . . . ,m, muidugi sinna kuuluvad. Vaatleme funktsioone
(x− xi)

α
+, α = m− k + 1, . . . ,m. Punktist xi vasakul ja paremal on tegemist po-

lünoomiga, seega tingimus, et funktsioon oleks osalõikudes ülimalt m astme polü-
noom, on täidetud. Tuleb veel veenduda funktsiooni küllaldane arv korda pidevalt
diferentseeruvuses ja sedagi ainult punktis xi. Leiame(

(x− xi)
α
+

)′
= α(x− xi)

α−1
+ ,(

(x− xi)
α
+

)′′
= α(α− 1)(x− xi)

α−2
+ ,

. . .(
(x− xi)

α
+

)(m−k)
= α(α− 1) . . . (α− (m− k − 1)) (x− xi)

α−(m−k)
+ ,

seejuures minimaalne α väärtus on m− k + 1, seega α − (m− k) ⩾ m− k + 1−
(m−k) = 1, mis tähendab, et diferentseerimisel saadud lõigatud astmefunktsiooni
aste on alati vähemalt 1 ja on tagatud selle pidevus.
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Küsimus, kas toodud elementide arv on võrdne dimensiooniga, saab vastuse nii:
astmefunktsioone xα onm+1, lõigatud astmefunktsioone (x−xi)α+ on ühe xi kohta
m− (m− k + 1) + 1 = k, sisesõlmi on n− 1, seega kokku on toodud funktsioone
m+ 1 + k(n− 1).
Näitame esitatud funktsioonide lineaarset sõltumatust. Oletame, et

m∑
α=0

cα0x
α +

n−1∑
i=1

m∑
α=m−k+1

cαi(x− xi)
α
+ = 0, x ∈ [x0, xn].

Olgu x0 ⩽ x < x1. Siis (x−xi)α+ = 0 iga i = 1, . . . , n−1 ja iga α = m−k+1, . . . ,m

korral. Võrdus
m∑

α=0

cα0x
α = 0 annab siis, et cα0 = 0 iga α = 0, . . . ,m korral. Seejärel

x1 < x < x2 korral
m∑

α=m−k+1

cα1(x−x1)α = 0, millest cα1 = 0, α = m−k+1, . . . ,m.

Analoogiliselt jätkates näeme, et funktsioonide lineaarses kombinatsioonis on kõik
kordajad võrdsed nulliga ja sellega on teoreem tõestatud.

Järeldusena näeme, et iga splain S ∈ Sm,k
∆ esitub üheselt

S(x) =
m∑

α=0

cα0x
α +

n−1∑
i=1

m∑
α=m−k+1

cαi(x− xi)
α
+, x ∈ [x0, xn].

Märkus. Arvutuslikult ei ole toodud baas stabiilne. Kui kõrvuti eespool tooduga
veel

S̃(x) =
m∑

α=0

c̃α0x
α +

n−1∑
i=1

m∑
α=m−k+1

c̃αi(x− xi)
α
+,

siis arvude |cαi − c̃αi| väiksus (arvutuste mõttes) ei taga seda, et |S̃(x) − S(x)|
oleks väike ja see avaldub eriti siis, kui mingid naabersõlmed xj ja xj+1 asuvad
lähestikku. Seepärast ei ole toodud baas sobiv praktilistes arvutustes. Samal ajal
on selle kasutamine efektiivne mitmete teoreetiliste probleemide lahendamisel.

Ülesanne 2. Leida astmefunktsioonidest ja lõigatud astmefunktsioonidest koos-
nev baas ruumis Sm,k

∆,R.

Soovitus: vaadelda ruumi Sm,k
∆,R ruumina Sm,k

∆′ , kus ∆′ : a < x0 < . . . < xn < b ja
∆: x0 < . . . < xn.

Üldistame siiani vaadeldud splainide ruumi mõistet. Nagu varemgi, olgu ∆: a =
= x0 < x1 < . . . < xn = b, lisaks olgu antud m ja k1, . . . , kn−1. De�neerime

S
m,k1,...,kn−1

∆ =
{
S : [a, b] → R | S ∈ Pm[xi−1, xi], i = 1, . . . , n,
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S, S ′, . . . , S(m−ki) on pidevad punktis xi, i = 1, . . . , n− 1
}
.

Varasemaga võrreldes on siin igas sisesõlmes oma sileduse nõuded ehk igale sise-
sõlmele vastab oma defekt.

Ülesanne 3. Leida dimS
m,k1,...,kn−1

∆ ja sama tüüpi baas nagu eelmistes ruumides.



�3. B-splainid

Esitame siin B-splainide teooria juhul, kui defekt on 1. Üldisem juht, eriti selline,
kus igas sisesõlmes on sõlmele omane defekt, nõuaks kordsete sõlmedega splainide
käsitlemist, mis teeks esituse tehniliselt tunduvalt keerukamaks.
On üldiselt aktsepteeritud väide, et B-splainide kasutamine on tööstuslik stan-

dard. See tähendab seda, et nende asemel millegi muu kasutamiseks praktikas peab
olema väga kaalukas põhjus. Ka seetõttu pöörame B-splainidele erilist tähelepanu.
Olgu antud võrk ∆: x0 < x1 < . . . < xn ja täisarv m ⩾ 0. Kasutame funktsiooni

φm(x, t) = (x− t)m+ =

{
(x− t)m, kui x ⩾ t,

0, kui x < t.

Funktsioon φm on määratud kõikjal tasandil R2 ja järgneval joonisel, mis kujutab
tema määramispiirkonda, on ta sirgest x = t ülalpool määratuna kahe muutuja
polünoom, sirgest x = t allpool määratuna nullfunktsioon.

x = t

x > t

x < t

t

x

Laiendame võrku ∆ lisapunktidega

∆′ : x−m < . . . < x−1 < x0 < x1 < . . . < xn < xn+1 < . . . < xn+m.

De�neerime funktsioonid

Bi
m(x) = (−1)m+1φm(x;xi, . . . , xi+m+1), x ∈ R, i = −m, . . . , n− 1.

15
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Siin võetakse argumendi t järgi m+1 järku diferentssuhted. Meenutame, et funkt-
siooni f diferentssuhted de�neeritakse rekurrentselt paarikaupa erinevate sõlmede
jaoks (xi ̸= xj, kui i ̸= j) :

f(xi), 0. järku diferentssuhted,

f(xi, xj) =
f(xi)− f(xj)

xi − xj
, 1. järku diferentssuhted,

. . .

f(xi, . . . , xi+k) =
f(xi, . . . , xi+k−1)− f(xi+1, . . . , xi+k)

xi − xi+k

, k. järku diferentssuhted.

Lisame, et kui näiteks f ∈ Cn[x0, xn], siis on olemas ξ ∈ (x0, xn) nii, et kehtib

f(x0, . . . , xn) =
f (n)(ξ)

n!
. Järgnevalt jooniselt on näha, millised sõlmed esinevad

Bi
m de�neerimisel:

x−m . . . x−1 x0 x1 . . . xn−1 xn xn+1 . . . xn+m

kasutab B−m
m kasutab Bn−1

m

Funktsioone Bi
m nimetatakse B-splainideks. Meie esimeseks eesmärgiks on näidata,

et saadud funktsioonid on ruumist Sm,1
∆′,R.

Diferentssuhtel on esitus

f(xi, . . . , xk) =
k∑

j=i

f(xj)

ω′(xj)
,

kus ω(x) = (x− xi) . . . (x− xk). Selle põhjal

Bi
m(x) = (−1)m+1

i+m+1∑
j=i

(x− xj)
m
+

ω′(xj)
, (1)

kus ω(x) = (x − xi) . . . (x − xi+m+1). Funktsioonid Bi
m on lõigatud astmefunkt-

sioonide lineaarne kombinatsioon, seepärast (tuginedes ülesandele 2) Bi
m ∈ Sm,1

∆′,R

või Bi
m ∈ Sm,1

∆′ [x−m, xn+m]. Ühtlasi võib öelda, et Bi
m ∈ Sm,1

∆ , kui peame silmas
funktsioonide Bi

m ahendeid lõigule [x0, xn]. Kui ahendamiseks vajadust ei ole, siis
edaspidi arvestame ikka, et Bi

m on määratud kõikjal reaalarvude hulgas R.
Märgime, et (x−t)m+ = (x−t)m+(−1)m+1(t−x)m+ ningm+1 järku diferentssuhe

sõlmede xi, . . . , xi+m+1 järgi polünoomist (x − t)m võrdub nulliga, seepärast võib
võrduse (1) kirjutada ka

Bi
m(x) =

i+m+1∑
j=i

(xj − x)m+
ω′(xj)

. (1')



17

Ülesanne 4. Tõestada võrdus

(x− t)m+ = (x− t)m + (−1)m+1(t− x)m+ .

Lause 1. Kehtib võrdus

Bi
m(x) =

x− xi
xi+m+1 − xi

Bi
m−1(x) +

xi+m+1 − x

xi+m+1 − xi
Bi+1

m−1(x), x ∈ R. (2)

Tõestus. Alustame ühe tehnilise vahendiga, mida hiljem kasutame.
Vaatleme olukorda, kus f(t) = f1(t)f2(t). Väidame, et siis

f(x0, . . . , xn) =
n∑

j=0

f1(x0, . . . , xj)f2(xj, . . . , xn). (3)

Tõestame selle induktsiooniga. Kui n = 0, siis f(x0) = f1(x0)f2(x0) ning väide
kehtib. Induktsioonisammuna näitame ülemineku n sõlmelt n+ 1 sõlmele. Saame

f(x0, . . . , xn) =
f(x0, . . . , xn−1)− f(x0, . . . , xn−2, xn)

xn−1 − xn
=

/ kasutame diferentssuhete omadusi ja induktsioonieeldust /

=
1

xn−1 − xn

(n−1∑
j=0

f1(x0, . . . , xj)f2(xj, . . . , xn−1)−

−
n∑

j=0
j ̸=n−1

f1(x0, . . . , xj)
↑

puudub
sõlm xn−1

f2(xj, . . . , xn)
↑

puudub
sõlm xn−1

)
=

=
n−2∑
j=0

f1(x0, . . . , xj)
f2(xj, . . . , xn−1)− f2(xj, . . . , xn−2, xn)

xn−1 − xn
+

+
1

xn−1 − xn

(
f1(x0, . . . , xn−1)f2(xn−1)− f1(x0, . . . , xn−2, xn)f2(xn)

)
=

=
n−2∑
j=0

f1(x0, . . . , xj)f2(xj, . . . , xn) +

+
1

xn−1 − xn
(f1(x0, . . . , xn−1)(f2(xn−1)− f2(xn)) +

+ f1(x0, . . . , xn−1)f2(xn)− f1(x0, . . . , xn−2, xn)f2(xn)),

kus summamärgiga osale lisanduv liidetav annab

f1(x0, . . . , xn−1)f2(xn−1, xn) + f1(x0, . . . , xn)f2(xn),

millega on (3) kehtivus tõestatud. Võrdust (3) nimetatakse Leibnizi valemiks (di-
ferentssuhete jaoks).
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Lisatulemusena märgime, et kuna n korda pidevalt diferentseeruvate funktsioo-
nide korral

f(x0, . . . , xn) =
f (n)(ξ)

n!
, ξ ∈ (x0, xn),

ja kui x0, . . . , xn → x, siis ξ → x, ning piirväärtusena saame võrduse

(f1(x)f2(x))
(n) =

n∑
i=0

(
n

i

)
f
(i)
1 (x)f

(n−i)
2 (x),

mida tuntakse samuti Leibnizi valemina (tuletiste jaoks). See on tegelikult korru-
tise diferentseerimise valem.
Lause 1 tõestuse jätkuna esitame

φm(x, t) = (x− t)m+ = (x− t)m−1
+ (x− t) = φm−1(x, t)ψ(x, t),

kus kasutasime tähistust ψ(x, t) = x − t. Funktsioonist ψ diferentssuhted t järgi
esituvad tuletistena

d

dt
ψ(x, t) = −1,

d2

dt2
ψ(x, t) = 0, . . . ,

seega valemi (3) põhjal

Bi
m(x) = (−1)m+1

(
φm−1(x;xi, . . . , xi+m)ψ(x;xi+m, xi+m+1) +

+ φm−1(x;xi, . . . , xi+m+1)ψ(x;xi+m+1)
)
.

Selles

ψ(x;xi+m, xi+m+1) = −1,

ψ(x;xi+m+1) = x− xi+m+1,

φm−1(x;xi, . . . , xi+m+1) =
φm−1(x;xi+1, . . . , xi+m+1)− φm−1(x;xi, . . . , xi+m)

xi+m+1 − xi
.

Nüüd

Bi
m(x) = (−1)mφm−1(x;xi, . . . , xi+m) +

+
x− xi+m+1

xi+m+1 − xi
(−1)m+1φm−1(x;xi+1, . . . , xi+m+1) +

+
x− xi+m+1

xi+m+1 − xi
(−1)mφm−1(x;xi, . . . , xi+m) =
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= (−1)m
(
1 +

x− xi+m+1

xi+m+1 − xi

)
φm−1(x;xi, . . . , xi+m) +

+ (−1)m
xi+m+1 − x

xi+m+1 − xi
φm−1(x;xi+1, . . . , xi+m+1),

mis annabki võrduse (2).

Lause 2. Juhul m ⩾ 1{
Bi

m(x) > 0, kui x ∈ (xi, xi+m+1),

Bi
m(x) = 0, kui x /∈ (xi, xi+m+1),

ning {
Bi

0(x) > 0, kui x ∈ [xi, xi+1),

Bi
0(x) = 0, kui x /∈ [xi, xi+1).

Tõestus. Esitame tõestuse osade kaupa.

1) Vaatleme juhtu, kus x < xi, Siis (x − xj)
m
+ = 0, sest x < xj, kui j =

= i, . . . , i+m+ 1. Võrduse (1) põhjal Bi
m(x) = 0 olenemata m väärtusest.

2) Olgu x ⩾ xi+m+1. Siis B
i
m(x) de�neerivas võrduses φm(x;xi, . . . , xi+m+1) ar-

vutatakse funktsiooni φm(x, t) = (x− t)m ehk muutuja t järgi m astme polünoomi
väärtusi kasutades. Kuid m+ 1 järku diferentssuhe esitub

φm(x;xi, . . . , xi+m+1) =
dm+1

dtm+1
(x− t)m = 0,

mistõttu Bi
m(x) = 0 iga m korral.

3) Kui x ∈ [xi, xi+1), siis

Bi
0(x) = (−1)φ0(x;xi, xi+1) =

= −φ0(x;xi)− φ0(x;xi+1)

xi − xi+1

=
1

xi+1 − xi
> 0,

sest φ0(x;xi) = 1 ja φ0(x;xi+1) = 0. Sellega on tõestatud kõik väited Bi
0 väärtuste

kohta.

4) Olgu m ⩾ 1 ja x ∈ (xi, xi+m+1). Kasutame induktsiooni ja võrdust (2).
Võrduses (2)

x− xi
xi+m+1 − xi

> 0 ja
xi+m+1 − x

xi+m+1 − xi
> 0.

Induktsiooni alustades, kui võttam = 1, siis x ∈ (xi, xi+2) ja vähemalt üks väärtus-
test Bi

0(x), B
i+1
0 (x) on rangelt positiivne, millest järeldub (2) abil, et Bi

1(x) > 0.
Järgmistel sammudel m ⩾ 2 ja vähemalt üks väärtustest Bi

m−1(x), B
i+1
m−1(x) on

x ∈ (xi, xi+m+1) korral rangelt positiivne, seepärast B
i
m(x) > 0.
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5) Kui m ⩾ 1, siis Bi
m on pidev ja Bi

m(xi) = lim
x→xi
x<xi

Bi
m(x) = 0. Sellega on kõik

lause 2 väited tõestatud.

Analüüsime lähemalt B-splainide erijuhte sõltuvalt m väärtustest.
Kui m = 0, siis Bi

0 graa�k on esitatud järgmisel joonisel.

1
xi+1−xi

xi xi+1

Bi
0

�1 algul toodud splaini de�nitsiooni tuleb siin modi�tseerida. Kuuluvus S ∈ S0,1
∆

tähendab, et S ∈ P 0[xi, xi+1) iga i korral ning S ∈ C−1[a, b], seejuures de�neeri-
takse

C−1[a, b] = {f : [a, b] → R | funktsioonil f on ülimalt

lõplik arv esimest liiki katkevuspunkte}.
Esimest liiki katkevuspunkti mõistame siin nii, et funktsioon on pidev kas paremalt
või vasakult, seejuures eksisteerivad mõlemad ühepoolsed lõplikud piirväärtused,
kuid need ei ole võrdsed. Tüüpilised näited on järgmistel joonistel.

Meile praegu ebaolulise käsitlusena võib de�neerida ka m ⩾ 1 korral

Sm,m+1
∆ = {S : [a, b] → R | S ∈ Pm(xi−1, xi), i = 1, . . . , n, S ∈ C−1[a, b]},

mis sisuliselt ühtib eespool vaadeldud hulgaga Pm
∆ , kus on funktsiooni väärtused

sõlmedes üheselt määratud.
Kui m = 1, siis B-splain on pidev, tema graa�k on kujutatud järgmisel joonisel.

xi xi+1 xi+2

Bi
1
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Kui m = 2, siis B-splaini tuletis on pidev, tema graa�k on järgmisel joonisel.

xi xi+1 xi+2 xi+3

Bi
2

Kuim = 3, siis B-splainil on juba pidev teine tuletis ja graa�kut näeme järgmisel
joonisel.

xi xi+1 xi+2 xi+3 xi+4

Bi
3

Märkus. De�neerisime B-splainid, kasutades funktsiooni φm diferentssuhteid teise
argumendi järgi. Teine võimalus B-splaine de�neerida on rekurrentse seose (2) abil,
lähtudes suhteliselt lihtsalt kirjeldatavatest splainidest Bi

0 ja minnes sammhaaval
järjest kõrgema astme splainideni. Lisame, et võrduses (2) on x ∈ [xi, xi+m+1]
korral Bi

m(x) kumer kombinatsioon kahest madalama astme splaini väärtusest.

Funktsiooni f kandjaks nimetatakse hulka {x | f(x) ̸= 0}, see on sellise hulga
sulund, kus funktsioon erineb nullist. Kandjat tähistatakse supp f . Lause 2 põhjal
suppBi

m = [xi, xi+m+1].

Lause 3. B-splainid on minimaalse kandjaga splainid hulka Sm,1
∆,R kuuluvate nullist

erinevate splainide hulgas.

Enne tõestust märgime, et 0 ∈ Sm,1
∆,R ning supp 0 = ∅.

Tõestus. Vaatleme olukorda, kus S ∈ Sm,1
∆,R, S ̸= 0 ja suppS ⊂ [xi, xi+m+1]. Paneme

tähele, et ei ole võimalik järgmisel joonisel kujutatud olukord,

xj xj+1

sest igas osalõigus on splain polünoom ja nullist erineval polünoomil on ülimalt
lõplik arv nullkohti. Formaalsemalt, kui ξ = min{x | x ∈ suppS}, siis ei ole või-
malik, et xj < ξ < xj+1, sama olukord on ka juhul ξ = max{x | x ∈ suppS}.
Seepärast peab kandja algama ja lõppema sõlmes. Oletame näiteks vastuväiteli-
selt, et suppS ⊂ [xi, xi+m]. Võime lugeda, et splaini S sõlmedeks on xi, . . . , xi+m.
Esitame splaini S baasi kaudu

S(x) =
m∑

α=0

cαx
α +

i+m∑
j=i

cmj(x− xj)
m
+ , x ∈ R.
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Kui x < xi, siis S(x) = 0 ehk
m∑

α=0

cαx
α = 0, millest cα = 0, α = 0, . . . ,m. Seega

S(x) =
i+m∑
j=i

cmj(x− xj)
m
+ , x ∈ R.

Kui x > xi+m, siis x /∈ suppS, seepärast

i+m∑
j=i

cmj(x− xj)
m = 0.

Kõrvalise märkusena juhime tähelepanu sellele, et siin ei saa otse järeldada, et
cmj = 0, j = i, . . . , i + m, sest me veel ei tea, kas funktsioonid x → (x − xj)

m,
j = i, . . . , i+m, on lineaarsed sõltumatud.
Vaadeldavate x väärtuste korral S ′(x) = 0, . . . , S(m)(x) = 0, seega

i+m∑
j=i

cmj(x− xj)
m−k = 0, k = 0, . . . ,m,

mis on homogeenne süsteem kordajate cmj määramiseks. Süsteemi determinant on∣∣∣∣∣∣∣∣∣∣∣∣∣

(x− xi)
m . . . (x− xi+m)

m

(x− xi)
m−1 . . . (x− xi+m)

m−1

...
...

...

x− xi . . . x− xi+m

1 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
̸= 0,

sest tegemist on Vandermonde'i determinandiga. Niisiis, cmj = 0, j = i, . . . , i+m.
Kuid siis S = 0, mis on vastuolus eeldusega, ja sellega on lause 3 tõestatud.

Teoreem. Splainid Bi
m, i = −m, . . . , n−1, moodustavad baasi ruumis Sm,1

∆ [x0, xn],
kus ∆: x0 < x1 < . . . < xn.

Enne otseselt tõestuse juurde asumist märgime, et B-splainid Bi
m on määratud

kõikjal reaalteljel R ning nad ahendatakse lõigule [x0, xn]. Teoreemi väide on selliste
ahendite kohta.

Tõestus. On arusaadav, et algselt hulgal R de�neeritud B-splainide ahendid lõigule
[x0, xn], mida tähistame ikka Bi

m, kuuluvad hulka Sm,1
∆ . Nende arv on m+ n, mis

on ühtlasi dimSm,1
∆ , seepärast näitame nende lineaarset sõltumatust lõigul [x0, xn].
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Tõestame kõigepealt, et Bi
m, i = −m, . . . , n−1, on lineaarselt sõltumatud hulgal

R. Olgu
n−1∑
i=−m

ciB
i
m(x) = 0, x ∈ R.

Võtame x ∈ (x−m, x−m+1), siis c−mB
−m
m (x) = 0. Et B−m

m (x) > 0, siis c−m = 0.
Seejärel võtame x ∈ (x−m+1, x−m+2) ning saame, et c−m+1 = 0. Analoogiliselt
jätkates näeme, et ci = 0, i = −m, . . . , n− 1.
Näitame järgnevas, et Bi

m on lineaarselt sõltumatud lõigul [x0, xn]. Olgu

n−1∑
i=−m

ciB
i
m(x) = 0, x ∈ [x0, xn].

Valime x ∈ (xi, xi+1), kus i on üks väärtustest 0, . . . , n− 1, loeme ta �kseerituks.
Arvestades splainide Bi

m kandjate ulatust (vt. joonist),

xi−m xi xi+1 xi+m+1

Bi−m
m Bi

m

näeme, et valitud x korral Bj
m(x) = 0, kui j < i−m või j > i. Seega

i∑
j=i−m

cjB
j
m(x) = 0, x ∈ (xi, xi+1).

Kasutame tähistust Si(x) =
i∑

j=i−m

cjB
j
m(x), x ∈ R. Teame, et Si(x) = 0, kui

x < xi−m või x > xi+m+1, samuti x ∈ (xi, xi+1) korral. Seega Si võib olla nullist
erinev intervallides [xi−m, xi] ja [xi+1, xi+m+1].

xi−m xi xi+1 xi+m+1

S1
i S2

i

De�neerime

S1
i (x) =

{
Si(x), x ∈ [xi−m, xi],

0 mujal.

Analoogiliselt määrame S2
i ehk S

2
i = Si−S1

i või S
1
i +S

2
i = Si. Seejuures S

2
i , S

2
i ∈ Sm,1,

kuid suppS1
i ⊂ [xi−m, xi], suppS

2
i ⊂ [xi+1, xi+m+1], mis on lause 3 põhjal võimalik
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vaid siis, kui S1
i = 0, S2

i = 0 ehk Si(x) = 0, x ∈ R. Võrdus

Si(x) =
i∑

j=i−m

cjB
j
m(x) = 0, x ∈ R,

annab nüüd, et cj = 0, j = i − m, . . . , i. Sellise arutelu saab läbi viia iga i =
= 0, . . . , n − 1 korral. Kui i = 0, siis saame c−m = 0, . . . , c0 = 0; kui i = 1, siis
c−m+1 = 0, . . . , c1 = 0; lõpuks, kui i = n − 1, siis c−m+n−1 = 0, . . . , cn−1 = 0.
Kokkuvõttes, c−m = 0, . . . , cn−1 = 0, mis lõpetab teoreemi tõestuse.

Järeldus. Iga splain S ∈ Sm,1
∆ on üheselt esitatav

S(x) =
n−1∑
i=−m

ciB
i
m(x), x ∈ [x0, xn].

Märkus. B-splainide Bi
m, i = −m, . . . , n − 1, de�neerimisel laiendasime võrku ∆

lisasõlmedega x−m, . . . , x−1, xn+1, . . . , xn+m. On selge, et need B-splainid, mis ka-
sutavad lisasõlmi, sõltuvad nende valikust (erinevad võrgu ∆ laiendid annavad
erinevad B-splainid). Splainide Bi

m ahendid lõigule [x0, xn] sõltuvad samuti võrgu
∆ laiendist ning B-splainidest baas ei ole üheselt määratud võrguga ∆. Seepärast
tuleb teoreemile järgnevat järeldust mõista nii, et kui võrgu ∆ laiend on välja va-
litud ja �kseeritud, siis on B-splainid kui baas ruumis Sm,1

∆ ja splaini esitus selle
kaudu üheselt määratud.

B-splainidest baasi kasutamisel ilmneb üks soodne asjaolu. Praktikas kasuta-
tavatel splainidel ei ole aste suur, enamasti m = 1, 2, 3. Fikseeritud x korral on

summas
n−1∑
i=−m

ciB
i
m(x) ülimalt m + 1 nullist erinevat liidetavat, mida illustreerib

juba esinenud joonis:

xi−m xi xi+1 xi+m+1x

Bi−m
m Bi

m

Kui x ∈ [xi, xi+1], siis ainult m+ 1 B-splaini väärtust Bi−m
m (x), . . . , Bi

m(x) saavad
olla nullist erinevad. Seejuures sõlmede arvu määrav n võib olla suur, praktikas
isegi tuhandetes.

Ülesanne 5. Tõestada, et minimaalse kandjaga splainid ühtivad kordaja täpsuseni
B-splainidega.
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Formaalselt tähendab selle ülesande väide, et kui S ∈ Sm,1
∆,R on selline, et kehtib

suppS ⊂ [xi, xi+m+1], siis S(x) = cBi
m(x), x ∈ R, kus c = const. Soovitus:

ülesande lahendamisel kasutada esitust B-splainidest baasi kaudu.
Lisame, et on mõeldav sõnastada ülesande väide, et kui S ∈ Sm,1

∆′,R ja seejuures
suppS ⊂ [xi, xi+m+1], siis S(x) = cBi

m(x), x ∈ R, c = const. Sel juhul tuleb ∆′

laiendada võrguks ∆′′ : x−2m < . . . < x−m < . . . < x0 < . . . < xn < . . . < xn+2m ja
võtta B-splainidest baas, mis kasutab võrku ∆′′, ning arendada S selle järgi.



�4. Normaliseeritud B-splainid

Kui vektorruumi baasielemendid korrutada mingite nullist erinevate arvudega,
siis saadakse ikka baas. Vaatleme siin sellist võtet B-splainide korral.
De�neerime

B
i

m(x) = (xi+m+1 − xi)B
i
m(x), x ∈ R,

s.t. eespool toodud B-splainid korrutatakse kandja pikkusega. Splaine B
i

m nime-
tatakse normaliseeritud B-splainideks. Eespool toodud võrdusest

Bi
m(x) =

x− xi
xi+m+1 − xi

Bi
m−1(x) +

xi+m+1 − x

xi+m+1 − xi
Bi+1

m−1(x)

saadakse peale korrutamist arvuga xi+m+1 − xi võrdus

B
i

m(x) =
x− xi

xi+m − xi
B

i

m−1(x) +
xi+m+1 − x

xi+m+1 − xi+1

B
i+1

m−1(x), x ∈ R. (1)

Teoreem. Kehtib

n−1∑
i=−m

B
i

m(x) = 1, x ∈ [x0, xn], kui m ⩾ 1,

ning
n−1∑
i=0

B
i

0(x) = 1, x ∈ [x0, xn).

Tõestus. Eespool nägime, et

Bi
0(x) =


1

xi+1 − xi
, kui x ∈ [xi, xi+1),

0 mujal.

Sellest saame, et

B
i

0(x) =

{
1, kui x ∈ [xi, xi+1),

0 mujal.

Nüüd on selge teoreemis toodud väite kehtivus m = 0 korral ning seda illustreerib
järgnev joonis.
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x0 x1 x2 xn−1 xn

B
0
0 B

1
0 B

n−1
01

Tõestame võrduse m ⩾ 1 korral induktsiooniga. Eeldame, et on tõestatud võrdus
n−1∑

i=−(m−1)

B
i

m−1(x) = 1, x ∈ (x0, xn). Siis x ∈ (x0, xn) korral võrduse (1) abil

n−1∑
i=−m

B
i

m(x) =
n−1∑
i=−m

x− xi
xi+m − xi

B
i

m−1(x) +
n−1∑
i=−m

xi+m+1 − x

xi+m+1 − xi+1

B
i+1

m−1(x) =

/ paremas pooles esimeses summas B
−m

m−1(x) = 0,

sest suppB−m
m−1 = [x−m, x0], teises summas B

n

m−1(x) = 0, /

sest suppBn
m−1 = [xn, xn+m] /

=
n−1∑

i=−(m−1)

x− xi
xi+m − xi

B
i

m−1(x) +
n−2∑
i=−m

xi+m+1 − x

xi+m+1 − xi+1

B
i+1

m−1(x) =

/ teises summas teeme indeksi nihke i+ 1 = j, siis

i = −m↔ j = −(m− 1), i = n− 2 ↔ j = n− 1,

aga jätkame vana indeksi tähisega /

=
n−1∑

i=−(m−1)

x− xi
xi+m − xi

B
i

m−1(x) +
n−1∑

i=−(m−1)

xi+m − x

xi+m − xi
B

i

m−1(x) =

=
n−1∑

i=−(m−1)

B
i

m−1(x) = 1.

Punktidesse x0 ja xn laiendame võrduse pidevuse järgi (võttes piirväärtuse), sest

m ⩾ 1 korral on splainid B
i

m pidevad. Sellega on teoreem tõestatud.

Kirjeldame veel erijuhte. Sisuliselt juba nägime eespool joonist m = 0 korral:

xi xi+1

B
i

01



28 �4. Normaliseeritud B-splainid

Juhul m = 1 on normaliseeritud B-splainid kujutatud järgmisel joonisel:

xi xi+1 xi+2

1 B
i−1
1 B

i
1 B

i+1
1

Juhul m = 2 on splainide B
i

2 graa�kud joonisel

xi−1 xi xi+1 xi+2 xi+3 xi+4

1 B
i−1
2 B

i
2 B

i+1
2

Siin splaini B
i

2 väärtus punktis x ∈ (xi, xi+3) on B
i

2(x) < 1, sest ka mingi teine
B-splain on samas punktis x positiivse väärtusega.
B-splaine võib vaadelda ka mitmete normeeritud ruumide elementidena ning siis

võib neid korrutada selliste arvudega, et nende normid oleksid võrdsed arvuga 1.
Selliseid B-splaine võib nimetada normeerituteks. Näiteks ruumis L1(−∞,∞) on

B-splainid Bi
0 normeeritud, sest nende norm on

∞∫
−∞

Bi
0(x) dx = 1.

Ülesanne 6. Näidata B-splainide vahelist rekurrentset seost kasutades, et
∞∫

−∞

Bi
1(x) dx =

1

2
ja

∞∫
−∞

Bi
2(x) dx =

1

3
(need on B-splainide Bi

1 ja B
i
2 normid ruumis

L1(−∞,∞)).
Tehniline soovitus: kasutada tähistusi hi = xi − xi−1, i = 1, . . . , n, kirjutiste

lühendamiseks.

Ülesandes 6 väidetuga on kooskõlas järgmine tulemus.

Lause. Kehtib

∞∫
−∞

Bi
m(x) dx =

1

m+ 1
.

Tõestus. Kasutame siin Taylori valemit jääkliikmega integraalsel kujul

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + . . .+

f (l−1)(a)

(l − 1)!
(x− a)l−1 +
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+
1

(l − 1)!

x∫
a

(x− s)l−1f (l)(s) ds.

Ülesanne 7. Tõestada esitatud valem. Soovitus: lähtudes Newton�Leibnizi vale-

mist f(x) = f(a)+

x∫
a

f ′(s) ds kasutada ositi integreerimist, võttes algul u = f ′(s),

dv = ds, v = s− x ning edaspidi induktsiooni järgu l järgi.

Kui a ⩽ x ⩽ b, siis saab jääkliikme kirjutada kujul

1

(l − 1)!

b∫
a

(x− s)l−1
+ f (l)(s) ds, (2)

sest a ⩽ s ⩽ x korral (x− s)l−1
+ = (x− s)l−1, kuid x < s ⩽ b korral (x− s)l−1

+ = 0.
Leiame Taylori valemis mõlemas pooles diferentssuhte muutuja x järgi sõlmedega
xi, . . . , xi+m+1 ∈ [a, b]. Siis vasakul saame, kasutades diferentssuhte esitust tuletise
kaudu,

f(xi, . . . , xi+m+1) =
f (m+1)(ξ)

(m+ 1)!
, ξ ∈ (xi, xi+m+1).

Kui võtta l = m + 1, siis Taylori valemis polünoomidest astmeni m tulevad dife-
rentssuhted nullid (nende polünoomide m+1 järku tuletised on nullid). Integraali
alla tekib jääkliiget (2) silmas pidades vastav diferentssuhe x järgi, mille esitame
funktsiooni väärtuste kaudu. Sellega saame võrduse

f (m+1)(ξ)

(m+ 1)!
=

1

m!

b∫
a

i+m+1∑
j=i

(xj − s)m+
ω′(xj)

f (m+1)(s) ds.

Kui nüüd võtame f(x) = xm+1, siis f (m+1)(x) = (m + 1)! ning võrdust (1') , �3,
silmas pidades jõuame võrduseni

1 = (m+ 1)

xi+m+1∫
xi

Bi
m(s) ds,

millega oleme lause tõestanud.



�5. Ülevaade funktsionaalruumidest ja mõnedest abi-
tulemustest

Edaspidi vaatleme funktsioonide lähendamist splainidega, seejuures eeldame lä-
hendatavate funktsioonide kuulumist kindlatesse funktsionaalruumidesse. See on
oluline sellepärast, et teha kindlaks lähendamise veahinnangud, mis iseloomusta-
vad koonduvuskiirust.
Lõigus pidevate funktsioonide ruum on C[a, b] = {f | f : [a, b] → R, f on pidev}.

Ruumi norm on ∥f∥C[a,b] = ∥f∥C = max
a⩽x⩽b

|f(x)|.
Lõigus k korda pidevalt diferentseeruvate funktsioonide ruum on Ck[a, b] =

= {f | f : [a, b] → R, f (k) on pidev}, seejuures k ⩾ 1. Täpsustuseks lisame, et
nõutakse funktsioonil f : (a, b) → R tuletise f (k) : (a, b) → R olemasolu (teata-
vasti saab tuletise mõistest rääkida funktsiooni puhul, mis on de�neeritud lahti-
ses hulgas), kusjuures on olemas lõplikud piirväärtused lim

x→a
x>a

f (k)(x) ja lim
x→b
x<b

f (k)(x).

Norm ruumis Ck[a, b] de�neeritakse ∥f∥Ck[a,b] =
k∑

i=0

∥f (i)∥C[a,b] või ekvivalentsena

max
0⩽i⩽k

∥f (i)∥C[a,b], kusjuures siin mõistetakse f (0) = f.

Integreeruva astmega funktsioonide ruum on

Lp(a, b) = {f | f : [a, b] → R, f on mõõtuv,

b∫
a

|f(x)|p dx <∞}, 1 ⩽ p <∞,

kusjuures ruumi Lp(a, b) elemendid on ekvivalentsete funktsioonide klassid, s.t.
f = g parajasti siis, kui f(x) = g(x) peaaegu kõikjal intervallis [a, b] ehk
µ({x | f(x) ̸= g(x)}) = 0. Norm selles ruumis on

∥f∥Lp(a,b) =

 b∫
a

|f(x)|p dx

1/p

.
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Tõkestatud (mõõtuvate) funktsioonide ruum de�neeritakse

L∞(a, b) = {f | f : [a, b] → R, f on mõõtuv, esssup
a⩽x⩽b

|f(x)| <∞},

kus funktsiooni |f | oluline tõke on

esssup
a⩽x⩽b

|f(x)| = inf {c > 0 | |f(x)| ⩽ c peaaegu kõikide x ∈ [a, b] väärtuste korral} .

Siin ∥f∥L∞(a,b) = esssup
a⩽x⩽b

|f(x)|. Illustreerime funktsiooni olulist tõket joonisega

a b

esssup |f(x)|

samuti näitega, kus f : [0, 1] → R, f
(
1

n

)
= n, n ∈ N, f(x) = 1, x ∈ [0, 1] \

\
{
1

n
| n ∈ N

}
, milles esssup |f(x)| = 1, kuigi f on tavalise funktsioonina tõkes-

tamata. Seepärast oleks täpsem nimetada seda oluliselt tõkestatud funktsioonide
ruumiks, mis ei ole aga eriti tähtis, sest ka see ruum koosneb nagu eespool Lp(a, b),
1 ⩽ p <∞, ekvivalentsete funktsioonide klassidest ja igas klassis on olemas tõkes-
tatud liige.
Tükiti pidevate funktsioonide ruum

C−1[a, b] = {f | f : [a, b] → R, funktsioonil f on ülimalt lõplik

arv esimest liiki katkevuspunkte, mis asuvad vahemikus (a, b)}.

Tavaliselt piisab sellisest käsitlusest, kus C−1[a, b] vaadeldakse alamruumina ruumis
L∞(a, b), milles ei ole funktsiooni väärtused katkevuspunktides olulised. Kui aga
C−1[a, b] elemente vaadeldakse funktsioonidena, siis lepitakse kokku, et funktsioo-
nid on katkevuspunktides näiteks paremalt pidevad.
Ruume Lp, 1 ⩽ p ⩽ ∞, võib vaadelda ka tõkestamata piirkondade korral ja

eespool juba esines meil L1(−∞,∞).

Olgu p, q ∈ [1,∞] sellised, et
1

p
+

1

q
= 1 (siis p = 1 korral q = ∞ ja p = ∞

korral q = 1). Kui f ∈ Lp(a, b) ja g ∈ Lq(a, b), siis kehtib Hölderi võrratus∣∣∣∣∣∣
b∫

a

f(x)g(x) dx

∣∣∣∣∣∣ ⩽ ∥f∥Lp∥g∥Lq .
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Juhul p = q = 2 on see Cauchy�Bunjakovski�Schwarzi võrratus.
Sobolevi ruumid on

W p,l(a, b) = {f | f ∈ Lp(a, b), f
(l−1)on absoluutselt pidev, f (l) ∈ Lp(a, b)},

kus 1 ⩽ p ⩽ ∞, l ∈ N. Siin peetakse silmas funktsiooni tavalist tuletist ehk
piirväärtust

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

Terviklikkuse huvides toome ka funktsiooni f : [a, b] → R absoluutse pidevuse
mõiste: iga ε > 0 korral eksisteerib δ > 0 nii, et kui αi, βi ∈ [a, b], (αi, βi)∩(αj, βj) =
= ∅, kui i ̸= j, siis

n∑
i=1

|βi − αi| < δ

korral
n∑

i=1

|f(βi)− f(αi)| < ε, n ∈ N.

Märgime, et n = 1 korral tähendab see rohkem tuntud ühtlase pidevuse mõistet,
aga absoluutses pidevuses on nõue kõikide naturaalarvude n korral. Illustratsioo-
niks toome veel joonise intervallide (αi, βi) paiknemise kohta:

a bα1 β1 α2 β2
. . . αn βn

Absoluutselt pidev funktsioon on ühtlaselt pidev, ühtlaselt pidev funktsioon on
pidev ning a, b ∈ R korral on lõigus [a, b] pidev funktsioon ka ühtlaselt pidev.
Kui f on absoluutselt pidev, siis peaaegu kõikjal on olemas (tavalises mõttes) f ′.

Sobolevi ruumis toodud nõudest, et f (l−1) on absoluutselt pidev, järeldub peaaegu
kõikjal f (l) olemasolu, kuid tingimus on, et f (l) ∈ Lp.
Teine võimalus Sobolevi ruume de�neerida on

W p,l(a, b) = {f ∈ Lp(a, b) | f ′, f ′′, . . . , f (l) ∈ Lp(a, b)},

kus tuletisi mõistetakse distributsioonide mõttes. Need tuletised eksisteerivad iga
f ∈ Lp(a, b) korral, nõue on f tuletiste kuulumine ruumi Lp(a, b).
Norm ruumis W p,l(a, b) de�neeritakse

∥f∥W p,l(a,b) =

(
l∑

i=0

∥f (i)∥pLp(a,b)

)1/p

=

 l∑
i=0

b∫
a

|f (i)(x)|p dx

1/p

, 1 ⩽ p <∞,
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tavaliselt
∥f∥W∞,l(a,b) = max

0⩽i⩽l
∥f (i)∥L∞(a,b).

Olgu antud võrk ∆: a = x0 < x1 < . . . < xn = b. De�neerime

CkC l
∆[a, b] = {f | f ∈ Ck[a, b], f ∈ C l[xi−1, xi], i = 1, . . . , n},

see on mõistlik, kui l > k. Veel olgu

CkW p,l
∆ [a, b] = {f | f ∈ Ck[a, b], f ∈ W p,l[xi−1, xi], i = 1, . . . , n}.

Teoreem (pidevate funktsioonide keskväärtusteoreem). Kui f ∈ C[a, b] ja αβ > 0,
siis on olemas ξ ∈ [a, b] nii, et

αf(a) + βf(b) = (α + β)f(ξ).

Tõestus. Olgu φ(x) = αf(a) + βf(b) − (α + β)f(x), x ∈ [a, b]. Siis φ ∈ C[a, b].
Saame

φ(a) = β(f(b)− f(a)),

φ(b) = α(f(a)− f(b)).

Kui f(a) = f(b), siis võib võtta ξ = a või ξ = b. Kui aga f(a) ̸= f(b), siis
φ(a)φ(b) < 0 (φ väärtused on vastandmärgilised), seepärast eksisteerib ξ ∈ (a, b)
nii, et φ(ξ) = 0.

Teoreem (keskväärtusteoreem integraalide jaoks). Kui f : [a, b] → R on pidev,
g : [a, b] → R integreeruv ja g(x) ⩾ 0 iga x ∈ [a, b] korral või g(x) ⩽ 0 iga x ∈ [a, b]
korral (g säilitab märki lõigus [a, b]), siis on olemas ξ ∈ [a, b] nii, et

b∫
a

f(x)g(x) dx = f(ξ)

b∫
a

g(x) dx.

Tõestus. Oletame näiteks, et g(x) ⩾ 0 iga x ∈ [a, b] korral. Siis

b∫
a

g(x) dx ⩾ 0.

Pidev funktsioon f on tõkestatud, seepärast on olemas arvud m ja M nii, et
m = min

a⩽x⩽b
f(x) ⩽ f(x) ⩽ M = max

a⩽x⩽b
f(x) iga x ∈ [a, b] korral. Seepärast mg(x) ⩽

f(x)g(x) ⩽Mg(x) ja integreerides

m

b∫
a

g(x) dx ⩽

b∫
a

f(x)g(x) dx ⩽M

b∫
a

g(x) dx.
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Kui

b∫
a

g(x) dx = 0, siis viimase kahepoolse võrratuse põhjal

b∫
a

f(x)g(x) dx = 0 ja

teoreemis toodud võrdus kehtib iga ξ ∈ [a, b] korral. Kui aga

b∫
a

g(x) dx > 0, siis

saame

m ⩽

b∫
a

f(x)g(x) dx

b∫
a

g(x) dx

⩽M.

Lõigus [a, b] pidev funkstioon f saavutab kõik väärtused miinimumi ja maksimumi
vahel ehk on olemas ξ ∈ [a, b] nii, et

f(ξ) =

b∫
a

f(x)g(x) dx

b∫
a

g(x) dx

,

mis annabki soovitud väite.

Kui on antud võrk ∆: a = x0 < x1 < . . . < xn = b ja f : [a, b] → R, siis
de�neerime

ωi(f) = sup
x′,x′′∈[xi−1,xi]

|f(x′)− f(x′′)|,

see on funktsiooni f võnkumine intervallis [xi−1, xi]. Olgu veel ω(f) = max
1⩽i⩽n

ωi(f).

Funktsiooni f ∈ C[a, b] korral ω(f) → 0, kui max
1⩽i⩽n

|xi − xi−1| → 0 (siis vaadatakse

võrkude jada või peret). Sel juhul muidugi n→ ∞ ja xi = xni, i = 1, . . . , n− 1.
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Olgu antud võrk ∆: a = x0 < x1 < . . . < xn = b ja veel vastavad arvud
f0, . . . , fn. Olgu vaja leida S ∈ S1,1

∆ nii, et S(xi) = fi, i = 0, . . . , n, sellist funktsioo-
ni S nimetatakse interpoleerivaks lineaarsplainiks. Sellise splaini saab leida lokaal-
selt, igas lõigu [a, b] osalõigus eraldi. Leitakse S ∈ P 1[xi−1, xi] nii, et S(xi−1) = fi−1

ja S(xi) = fi. Selleks võib kasutada Lagrange'i interpolatsioonivalemit

S(x) = fi−1
x− xi
xi−1 − xi

+ fi
x− xi−1

xi − xi−1

või Newtoni interpolatsioonivalemit

S(x) = fi−1 +
fi − fi−1

xi − xi−1

(x− xi−1),

kus x ∈ [xi−1, xi]. Graa�liselt võib lineaarsplainidega interpoleerimist näha väga
tihti andmete esitamisel, vt. näiteks joonist

x0 x1 x2 xn

Siin punktide (xi, fi), i = 0, . . . , n, hulgas naaberpunktid ühendatakse sirglõiku-
dega, mis on esimese astme polünoomide graa�kud osalõikudel. Kõrgema astme
polünoomidega interpoleerimist praktiliselt ei kasutatagi, sest seda ei osata ja po-
legi vaja, sest see käitub halvasti.
Tähistame hi = xi−xi−1, i = 1, . . . , n, need on jaotuses ∆ osalõikude pikkused.

x0 x1 x2 xi−1 xi xn−1 xn

h1 h2 hi hn

35
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Interpoleeriva lineaarsplaini saab x ∈ [xi−1, xi] korral esitada

S(x) =
xi − x

hi
fi−1 +

x− xi−1

hi
fi = fi−1 +

fi − fi−1

hi
(x− xi−1).

Vaatleme olukorda, kus lisaks võrgule ∆ on antud funktsioon f : [a, b] → R, siis
saab leida fi = f(xi), i = 0, . . . , n. Olgu S neid andmeid interpoleeriv lineaarsplain.
Kasutame tähistust R(x) = S(x)− f(x) (mõnikord võetakse R(x) = f(x)− S(x),
siis f(x) = S(x) + R(x)). Tähistame veel h = max

1⩽i⩽n
hi. Järgmises teoreemis (ja ka

hiljem) ∥f∥∞ tähendab funktsiooni f normi ruumis L∞(a, b), mis pideva funkt-
siooni f korral ühtib normiga ruumis C[a, b].

Teoreem. Interpoleeriva lineaarsplaini korral kehtivad hinnangud

f ∈ ∥R∥∞ ⩽ ∥R′∥∞ ⩽

C[a, b] ω(f) �

W∞,1(a, b)
h

2
∥f ′∥∞ �

CC1
∆[a, b]

h

4
ω(f ′) ω(f ′)

CW∞,2
∆ [a, b]

h2

8
∥f ′′∥∞

h

2
∥f ′′∥∞

Tabeli viimases reas toodud hinnangud on olulised ruumis C2[a, b] ⊂ CW∞,2
∆ [a, b].

Tõestus. Paneme tähele, et hinnangud piisab tõestada suvaliselt valitud osalõi-
gus [xi−1, xi]. Kasutame muutujavahetust x = xi−1 + thi, kus x ∈ [xi−1, xi]. Siis
vastavalt t ∈ [0, 1].

0 1

xi−1 xi
x

t

Leiame veel xi − x = xi − (xi−1 + thi) = (1 − t)hi ning Lagrange'i valemi põhjal
x ∈ [xi−1, xi] korral S(x) = (1− t)fi−1 + tfi.
Juhul f ∈ C[a, b] saame keskväärtusteoreemi kasutades

S(x)− f(x) = (1− t)fi−1 + tfi − f(x) = f(ξ)− f(x), ξ ∈ [xi−1, xi].
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Sellest
|R(x)| = |S(x)− f(x)| = |f(ξ)− f(x)| ⩽ ωi(f) ⩽ ω(f).

Olgu f ∈ CW∞,2
∆ [a, b], siis f ∈ W∞,2[xi−1, xi]. Kasutame Taylori valemit jääk-

liikmega integraalsel kujul. Selle abil

fi−1 = f(xi−1) = f(x) + f ′(x)(xi−1 − x) +

xi−1∫
x

(xi−1 − s)f ′′(s) ds,

fi = f(xi) = f(x) + f ′(x)(xi − x) +

xi∫
x

(xi − s)f ′′(s) ds.

Nendest võrdustest esimese korrutame teguriga 1−t, teise teguriga t ja liidame tu-
lemused, kusjuures veel asendame xi−1−x = −thi ja xi−x = (1−t)hi, tulemusena
saame Lagrange'i valemi abil

S(x)− f(x) = (1− t)

xi−1∫
x

(xi−1 − s)f ′′(s) ds+ t

xi∫
x

(xi − s)f ′′(s) ds.

Sellest

|R(x)| ⩽ (1− t)

x∫
xi−1

(s− xi−1)|f ′′(s)| ds+ t

xi∫
x

(xi − s)|f ′′(s)| ds ⩽

/ mõlemas integraalis hindame |f ′′(s)| ⩽ ∥f ′′∥∞ /

⩽

(
(1− t)

(s− xi−1)
2

2

∣∣∣∣s=x

s=xi−1

+ t

(
−(xi − s)2

2

)∣∣∣∣s=xi

s=x

)
∥f ′′∥∞ =

=

(
(1− t)

(x− xi−1)
2

2
+ t

(xi − x)2

2

)
∥f ′′∥∞ =

=
(1− t)t2 + t(1− t)2

2
h2i ∥f ′′∥∞ =

1

2
t(1− t)h2i ∥f ′′∥∞ ⩽

h2i
8
∥f ′′∥∞,

kus viimases hinnangus kasutasime seda, et t ∈ [0, 1] korral t(1− t) ⩽
1

4
.

Märgime, et kui f ∈ C2[a, b], siis saab kasutada interpolatsioonivalemi jääkliik-
me esitust

|R(x)| = |f ′′(ξ)|
2!

(x− xi−1)(xi − x),

millest tuleb kohe nõutud hinnang.
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Ülesanne 8. Tõestada teoreemis toodud ülejäänud hinnangud.

Lisame, et f ∈ C[a, b] korral, kui h → 0, siis ω(f) → 0 funktsiooni f ühtlase
pidevuse tõttu.
Lineaarsplainidega andmete või funktsioonide lähendamise puuduseks on see,

et splain ei ole sile, tema graa�kul esinevad murdepunktid. Teine puudus on suh-
teliselt madal lähendamisjärk O(h2), mida ei saa parandada lähendatava funkt-
siooni suuremat siledust (kõrgemat järku diferentseeruvust) eeldades. Kui näiteks
f ′′(x) = const (sobib f(x) = x2), siis ruumi C2[a, b] jaoks saadud ∥R∥∞ hinnang
realiseerub täpselt. Meie lähemaks eesmärgiks on vaadelda kõrgema astme splai-
nidega (eelkõige kuupsplainidega) interpoleerimist. Sellega ületame mõlemad mai-
nitud puudused: lähendav splain on ise sile ja vähemalt siledamate funktsioonide
lähendamisjärk on kõrgem.



�7. Hermite'i kuupsplainid

Olgu antud võrk ∆: a = x0 < x1 < . . . < xn = b ja vastavad arvud fi, f
′
i ,

i = 0, . . . , n. Seame eesmärgiks leida S ∈ S3,2
∆ [a, b] nii, et S(xi) = fi, S

′(xi) = f ′
i ,

i = 0, . . . , n. Üldisest splainide ruumi dimensioonivalemist dimSm,k
∆ = m + 1 +

+ k(n− 1) saame nüüd dimS3,2
∆ = 3+ 1+ 2(n− 1) = 2n+ 2, samapalju on ka in-

terpolatsioonitingimusi. Taolisi nõudeid rahuldavaid splaine nimetatakse Hermite'i
kuupsplainideks, mis seostub sellega, et üldisemas Hermite'i interpoleerimisüles-
andes esinevad interpolatsioonitingimused ka tuletiste kohta ehk interpolatsiooni-
sõlmed on kordsed.
Meie esmane eesmärk on näidata, kuidas Hermite'i kuupsplaine leida. Need saab

leida lokaalselt (nagu interpoleerivad lineaarsplainid) igas osalõigus eraldi. Piisab
leida S ∈ P 3[xi−1, xi], mis rahuldab nelja interpolatsioonitingimust

S(xi−1) = fi−1, S(xi) = fi, S
′(xi−1) = f ′

i−1, S
′(xi) = f ′

i . (1)

Interpolatsioonitingimuste täidetus kõigis sõlmedes tagab ka selle, et S ∈ C1[a, b],
mis kaasneb tingimusega S ∈ S3,2

∆ . Üks võimalus on vaadelda splaini S hulga
P 3[xi−1, xi] elemendina x ∈ [xi−1, xi] korral kujul S(x) = c0+ c1x+ c2x

2+ c3x
3 või,

veelgi sobivamalt, S(x) = c0+c1(x−xi−1)+c2(x−xi−1)
2+c3(x−xi−1)

3 ja lahendada
lineaarne võrrandisüsteem nelja tundmatuga c0, . . . , c3 ja nelja võrrandiga, mis
tulevad interpolatsioonitingimustest (1).

Ülesanne 9. Moodustada tingimustest (1) võrrandisüsteem kordajate c0, . . . , c3
määramiseks ja näidata, et see on üheselt lahenduv (sellega saame, et interpo-
leeriv Hermite'i kuupsplain eksisteerib ja on üheselt määratud igasuguste fi, f

′
i ,

i = 0, . . . , n, korral).

Toimime Hermite'i kuupsplaini leidmiseks järgmiselt. Nagu varemgi, teeme muu-

tujavahetuse x = xi−1 + thi ehk t =
x− xi−1

hi
, hi = xi − xi−1. Olgu

S(x) = φ0(t)fi−1 + φ1(t)fi + φ2(t)hif
′
i−1 + φ3(t)hif

′
i ,

kus

φ0(t) = (1− t)2(1 + 2t),

39
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φ1(t) = t2(3− 2t),

φ2(t) = t(1− t)2,

φ3(t) = −t2(1− t).

Et φ0, . . . , φ3 on kuuppolünoomid, siis S ∈ P 3[xi−1, xi]. Jääb kontrollida inter-
polatsioonitingimuste (1) täidetust. Näeme, et φ0(0) = 1, φ1(0) = 0, φ2(0) = 0,
φ3(0) = 0, seepärast S(xi−1) = fi−1, sest võrdusele x = xi−1 vastab t = 0. Lisaks,
φ0(1) = 0, φ1(1) = 1, φ2(1) = 0, φ3(1) = 0, seepärast S(xi) = fi, sest x = xi tä-

hendab, et t = 1. Tuletiste juures arvestame, et
dS

dx
=
dS

dt

dt

dx
ja dx = hi dt, millest

dt

dx
=

1

hi
, seepärast S ′(x) =

1

hi

dS

dt
(t). Siis

S ′(x) =
1

hi

(
φ′
0(t)fi−1 + φ′

1(t)fi + φ′
2(t)hif

′
i−1 + φ′

3(t)hif
′
i

)
.

Vahetult arvutades saab leida, et

φ′
0(t) = 6t(t− 1),

φ′
1(t) = 6t(1− t),

φ′
2(t) = (1− t)(1− 3t),

φ′
3(t) = t(3t− 2).

Siis φ′
0(0) = 0, φ′

1(0) = 0, φ′
2(0) = 1, φ′

3(0) = 0 ning seepärast S ′(xi−1) = f ′
i−1. Veel

leiame, et φ′
0(1) = 0, φ′

1(1) = 0, φ′
2(1) = 0, φ′

3(1) = 1 ning seega S ′(xi) = f ′
i .

Vaatleme järgnevas olukorda, kus on antud funktsioon f ∈ C1[a, b] ning võetud
fi = f(xi), f

′
i = f ′(xi), i = 0, . . . , n.

Teoreem. Interpoleeriva Hermite'i kuupsplaini S ∈ S3,2
∆ korral kehtivad jääkliikme

R(x) = S(x)− f(x) hinnangud

f ∈ ∥R∥∞ ⩽ ∥R′∥∞ ⩽ ∥R′′∥∞ ⩽ ∥R′′′∥∞ ⩽

C1[a, b]
3

8
hω(f ′)

3

2
ω(f ′) � �

W∞,2(a, b)
1

16
h2∥f ′′∥∞ 0.24750h∥f ′′∥∞ � �

C2[a, b]
1

32
h2ω(f ′′) 0.12375hω(f ′′)

4

3
ω(f ′′) �

C1W∞,4
∆ [a, b]

1

384
h4∥f IV∥∞

√
3

216
h3∥f IV∥∞

1

12
h2∥f IV∥∞

1

2
h∥f IV∥∞
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Viimases reas toodud hinnangud on tähtsad muuhulgas laialdaselt kasutatavas
ruumis C4[a, b] ⊂ C1W∞,4

∆ [a, b].

Tõestus. Tõestame hinnangud ∥R∥∞ jaoks ruumide C1[a, b] ja C1W∞,4
∆ [a, b] juhul.

1) Olgu f ∈ C1[a, b]. Arvestame, et R(xi−1) = R(xi) = 0, seepärast võime võtta
x ∈ (xi−1, xi). Siis

S(x)− f(x) = φ0(t)fi−1 + φ1(t)fi + φ2(t)hif
′
i−1 + φ3(t)hif

′
i − f(x) =

= φ0(t)(f(x) + f ′(ξ)(xi−1 − x)) + φ1(t)(f(x) + f ′(η)(xi − x)) +

/ siin ξ ∈ (xi−1, x), η ∈ (x, xi) /

+ φ2(t)hif
′
i−1 + φ3(t)hif

′
i − f(x) =

/ f(x) kordaja tuleb φ0(t) + φ1(t)− 1 = 1− 3t2 + 2t3 +

+ 3t2 − 2t3 − 1 = 0; järgnevas kasutame seda, et

xi−1 − x = −thi, xi − x = (1− t)hi /

= −tφ0(t)hif
′(ξ) + (1− t)φ1(t)hif

′(η) +

+ φ2(t)hif
′
i−1 + φ3(t)hif

′
i =

/ siin −tφ0(t) ⩽ 0, (1− t)φ1(t) ⩾ 0, φ2(t) ⩾ 0, φ3(t) ⩽ 0,

kasutame keskväärtusteoreemi pidevate funktsioonide jaoks /

= ((1− t)φ1(t) + φ2(t))hif
′(η) + (−tφ0(t) + φ3(t))hif

′(ξ) =

/ siin η ∈ [xi−1, η], ξ ∈ [ξ, xi],

(1− t)φ1(t) + φ2(t) = (1− t)t2(3− 2t) + t(1− t)2 =

= t(1− t)(1 + 2t− 2t2) =

= t(1− t)(1 + 2t(1− t)),

−tφ0(t) + φ3(t) = −t(1− t)2(1 + 2t)− t2(1− t) =

= −t(1− t)(1 + 2t− 2t2) =

= −t(1− t)(1 + 2t(1− t)) /

= t(1− t)(1 + 2t(1− t))hi(f
′(η)− f ′(ξ)).

Kasutame asjaolu, et funktsioon t 7→ t(1 − t)(1 + 2t(1 − t)) saavutab lõigus [0, 1]

maksimumi punktis t =
1

2
(sest t 7→ t(1− t) maksimum on punktis t =

1

2
ja seda

juba eespool kasutasime). Sellest saame

|S(x)− f(x)| ⩽ 1

4

(
1 + 2 · 1

4

)
hiωi(f

′) ⩽
3

8
hω(f ′).
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2) Olgu f ∈ C1W∞,4
∆ [a, b]. Ka siin püüame saada x ∈ (xi−1, xi) korral hinnangut

jääkliikmele

R(x) = φ0(t)fi−1 + φ1(t)fi + φ2(t)hif
′
i−1 + φ3(t)hif

′
i − f(x).

Arendame fi−1, fi, f
′
i−1, f

′
i Taylori valemi abil punktis x jääkliikmega integraalsel

kujul. Nendes tekivad liikmed xi−1 − x ja xi − x, mille asemel kirjutame vastavalt
−thi ja (1− t)hi. Saame

fi−1 = f(xi−1) = f(x) + f ′(x)(−thi) +
f ′′(x)

2!
(−thi)2 +

f ′′′(x)

3!
(−thi)3 +

+
1

3!

xi−1∫
x

(xi−1 − s)3f IV(s) ds,

fi = f(xi) = f(x) + f ′(x)(1− t)hi +
f ′′(x)

2!
((1− t)hi)

2 +

+
f ′′′(x)

3!
((1− t)hi)

3 +
1

3!

xi∫
x

(xi − s)3f IV(s) ds,

f ′
i−1 = f ′(xi−1) = f ′(x) + f ′′(x)(−thi) +

f ′′′(x)

2!
(−thi)2 +

+
1

2!

xi−1∫
x

(xi−1 − s)2f IV(s) ds,

f ′
i = f ′(xi) = f ′(x) + f ′′(x)(1− t)hi +

f ′′′(x)

2!
((1− t)hi)

2 +

+
1

2!

xi∫
x

(xi − s)2f IV(s) ds.

Asetame need R(x) avaldisse. Eraldi maksab välja arvutada funktsiooni f väärtuse
f(x) ja tuletiste väärtuste kordajad. Näeme, et f(x) kordaja on φ0(t) + φ1(t)− 1 =
= 0, mis juba esines eespool. Analoogiliselt tuleb vahetu arvutamisega, et f ′(x),
f ′′(x) ja f ′′′(x) kordajad on võrdsed nulliga, seda me siin üksikasjalikult välja ei
kirjuta. Niisiis säilib

R(x) = (1− t)2(1 + 2t)
1

3!

xi−1∫
x

(xi−1 − s)3f IV(s) ds+

+ t2(3− 2t)
1

3!

xi∫
x

(xi − s)3f IV(s) ds+
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+ t(1− t)2hi
1

2!

xi−1∫
x

(xi−1 − s)2f IV(s) ds−

− t2(1− t)hi
1

2!

xi∫
x

(xi − s)2f IV(s) ds.

Teeme integraalides muutujavahetuse s = xi−1 + τhi, siis ds = hi dτ , xi−1 − s =
= −τhi, xi − s = (1 − τ)hi, integraali rajades võrdusele s = xi−1 vastab τ = 0,
võrdus s = xi annab τ = 1 ja s = x tähendab τ = t. Selle tulemusena

R (x) = (1− t)2 (1 + 2t)
1

3!
hi

0∫
t

(−τhi)3 f IV (xi−1 + τhi) dτ +

+ t2 (3− 2t)
1

3!
hi

1∫
t

((1− τ)hi)
3 f IV (xi−1 + τhi) dτ +

+ t (1− t)2
1

2!
h2i

0∫
t

(−τhi)2 f IV (xi−1 + τhi) dτ +

+
(
−t2 (1− t)

) 1

2!
h2i

1∫
t

((1− τ)hi)
2 f IV (xi−1 + τhi) dτ =

=
h4i
3!

(1− t)2
t∫

0

(
(1 + 2t) τ 3 − 3tτ 2

)
f IV (xi−1 + τhi) dτ +

+
h4i
3!
t2

1∫
t

(
(3− 2t) (1− τ)3 − 3 (1− t) (1− τ)2

)
f IV (xi−1 + τhi) dτ.

Uurime lähemalt integraalialuseid funktsioone. Saame (1+2t)τ 3−3tτ 2 = τ 2 ((1+
+ 2t)τ − 3t), milles tegur (1 + 2t)τ − 3t on τ suhtes lineaarne funktsioon (esimese
astme polünoom). Integreerimislõigus [0, t] saame τ = 0 korral −3t ⩽ 0, τ = t
korral (1+2t)t−3t = 2t2−2t = 2t(t−1) ⩽ 0, mis tähendab mittepositiivsust, kui
τ ∈ [0, t]. Teises integraalis (3−2t)(1−τ)3−3(1−t)(1−τ)2 = (1−τ)2((3−2t)(1−
− τ) − 3(1 − t)) on samuti teine tegur τ suhtes lineaarne funktsioon. Integreeri-
mislõigu otspunktides τ = t korral (3 − 2t)(1 − t) − 3(1 − t) = (1 − t)(−2t) ⩽ 0,
τ = 1 korral −3(1 − t) ⩽ 0 ja ka siin on vastav funktsioon mittepositiivne, kui
τ ∈ [t, 1]. Integraalide hindamisel võtame arvesse, et

∣∣f IV (xi−1 + τhi)
∣∣ ⩽ ∥f IV ∥∞.

Siis saame



44 �7. Hermite'i kuupsplainid

|R(x)| ⩽

h4i
3!
(1− t)2

t∫
0

(
3tτ 2 − (1 + 2t) τ 3

)
dτ +

+
h4i
3!
t2

1∫
t

(
3 (1− t) (1− τ)2 − (3− 2t) (1− τ)3

)
dτ

 ∥f IV ∥∞.

Leiame eraldi integraalid
t∫

0

(
3tτ 2 − (1 + 2t)τ 3

)
dτ =

(
tτ 3 − 1 + 2t

4
τ 4
)τ=t

τ=0

=

= t4 − 1 + 2t

4
t4 =

t4(3− 2t)

4
,

1∫
t

(
3(1− t)(1− τ)2 − (3− 2t)(1− τ)3

)
dτ =

=

(
−(1− t)(1− τ)3 +

(3− 2t)(1− τ)4

4

)τ=1

τ=t

=

= (1− t)4 − 3− 2t

4
(1− t)4 = (1− t)4

1 + 2t

4
.

Nüüd saame

|R(x)| ⩽ h4i
4!
t2(1− t)2

(
t2(3− 2t) + (1− t)2(1 + 2t)

)
∥f IV ∥∞ ⩽

h4

384
∥f IV ∥∞,

sest t2(1− t)2 ⩽

(
1

4

)2

=
1

16
ja t2(3− 2t) + (1− t)2(1 + 2t) = φ1(t) + φ0(t) = 1.

Ülesanne 10. Tõestada ∥R∥∞ hinnangud ruumides W∞,2(a, b) ja C2[a, b].

Märkus. Kui f ∈ C4[a, b], siis x ∈ [xi−1, xi] korral

R(x) = −f
IV (ξ)

4!
(x− xi−1)

2(x− xi)
2, ξ ∈ [xi−1, xi],

ja sellest saab kohe ∥R∥∞ hinnangu kätte, ilma et peaks teoreemi tõestuses toodud
suhteliselt komplitseeritud tehnikat kasutama. Iseasi on sellisel kordsete sõlmedega
interpoleerimisel jääkliikme esituse saamine, mida tavalistes polünoomidega inter-
poleerimist käsitlevates algkursustes ei vaadelda. Materjali terviklikkuse huvides
sõnastame järgmise ülesande.

Ülesanne∗ 2. Lugedes teadaolevaks ühekordsete sõlmede juhul polünoomidega
interpoleerimise jääkliikme esituse, tuletada märkuses toodud jääkliikme esitus
kahekordsete sõlmede juhul.
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Eeldame, et on antud võrk ∆: a = x0 < x1 < . . . < xn = b, sõlmedele vas-
tavad arvud f0, . . . , fn, soovitakse leida kuupsplain S ∈ S3,1

∆ nii, et S(xi) = fi,
i = 0, . . . , n. Meenutame, et saime üldise valemi dimSm,1

∆ = m+ n, kuupsplainide
juhul m = 3, seega dimS3,1

∆ = n + 3. Interpolatsioonitingimusi on n + 1, see-
pärast on splaini määramiseks vaja lisatingimusi. Enimkasutatavad on järgnevas
toodavad, mida nimetatakse rajatingimusteks, sest need seatakse rajapunktides
või rajapunktidele lähedastes punktides:

(I) S ′(a) = α′, S ′(b) = β′ (α′ ja β′ on antud),

(II) S ′′(a) = α′′, S ′′(b) = β′′,

(III) S(x−1) = α, S(xn+1) = β, kus x−1 ja xn+1 on lisapunktid, x−1 ̸= xi ja
xn+1 ̸= xi, i = 0, . . . , n,

(IV) S ′′′(x1 − 0) = S ′′′(x1 + 0), S ′′′(xn−1 − 0) = S ′′′(xn−1 + 0), seejuures üldiselt
f(x1 − 0) = lim

x→x1
x<x1

f(x) ja f(x1 + 0) = lim
x→x1
x>x1

f(x),

(V) S ′(a) = S ′(b), S ′′(a) = S ′′(b), mida nimetatakse perioodilisteks tingimusteks
ning neid on sobiv kasutada siis, kui f0 = fn, mis tagab ühtlasi selle, et
S(a) = S(b).

Tingimusi (I)�(IV) võib kasutada segavariandina, ühes lõigu [a, b] otspunktis ühte
tüüpi tingimus, teises otspunktis teist tüüpi tingimus. Märgime esialgu tõestuseta,
et kui kasutada näiteks lisatingimustena S ′(a) = α′, S ′′(a) = α′′, siis saadakse
eelkõige arvutuslikult halb ülesanne.
Kuupsplaini S ∈ S3,1

∆ võib esitada näiteks vastavate B-splainide kui baasi kaudu,
interpoleerimisel saadakse siis esituses olevate baasikordajate määramiseks lineaar-
ne süsteem, mis on üheselt lahenduv, ja interpoleerimisülesandel on olemas ühene
lahend (selle väite tõestust näeme hiljem). B-splainid kui baas on väga üldine töö-
vahend ning erijuhtudel võib sageli leida üldistest vahenditest paremaid. Vaatame
siin kuupsplainide esitamist momentide kaudu, mis otseselt võttes on baasideväline
meetod.

45
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1. Interpoleeriva kuupsplaini konstrueerimine teiste momen-

tide abil

Tähistame Si = S(xi), Mi = S ′′(xi), i = 0, . . . , n. Meenutame, et S ∈ S3,1
∆

sisaldab endas tingimust S ∈ C2[a, b], seepärast eksisteerivad S ′′(xi). Arve Mi

nimetatakse splaini teisteks momentideks. Kui on teada arvud Si−1, Si, Mi−1, Mi,
saame moodustada funktsiooni

S(x) =Mi−1
(xi − x)3

6hi
+Mi

(x− xi−1)
3

6hi
+

+

(
Si−1 −

Mi−1

6
h2i

)
xi − x

hi
+

(
Si −

Mi

6
h2i

)
x− xi−1

hi
, (1)

mida vaatleme määratuna x ∈ [xi−1, xi] korral. On selge, et võrdusega (1) de�nee-
ritult S ∈ P 3[xi−1, xi]. Näitame, et sellise funktsiooni S korral

S(xi−1) = Si−1, S(xi) = Si, S
′′(xi−1) =Mi−1, S

′′(xi) =Mi. (2)

Arvutades näeme, et

S(xi−1) =Mi−1
h3i
6hi

+Mi · 0 +
(
Si−1 −

Mi−1

6
h2i

)
hi
hi

+

+

(
Si −

Mi

6
h2i

)
· 0 = Si−1,

S(xi) =Mi−1 · 0 +Mi
h3i
6hi

+

(
Si−1 −

Mi−1

6
h2i

)
· 0 +

+

(
Si −

Mi

6
h2i

)
hi
hi

= Si.

Esitusest (1) leiame

S ′(x) = −Mi−1
(xi − x)2

2hi
+Mi

(x− xi−1)
2

2hi
+

+

(
Si−1 −

Mi−1

6
h2i

)(
− 1

hi

)
+

(
Si −

Mi

6
h2i

)
1

hi
, (3)

millest omakorda
S ′′(x) =Mi−1

xi − x

hi
+Mi

x− xi−1

hi
(4)

ja (4) põhjal S ′′(xi−1) = Mi−1, S
′′(xi) = Mi. Märgime, et võrdus (4) on sisuli-

selt Lagrange'i interpolatsioonivalem, sest S ′′ on osalõigus [xi−1, xi] esimese astme
polünoom ja Mi−1, Mi on selle väärtused sõlmedes.
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On loomulik küsida, kuidas esitust (1) leida. Teame, et S on osalõigus [xi−1, xi]
kuuppolünoom, seega näiteks S(x) = c0i + c1ix+ c2ix

2 + c3ix
3 ning tingimused (2)

määravad lineaarse süsteemina kordajad c0i, c1i, c2i, c3i.

Ülesanne 11. Tuletada esitus (1), lahendades nelja tundmatu ja nelja võrrandiga
lineaarse süsteemi, mis tekib esituses S(x) = c0i + c1ix + c2ix

2 + c3ix
3 kordajate

määramisel tingimuste (2) abil.

Kui Si, Mi, i = 0, . . . , n, on teada, saab (1) abil üheselt määrata funktsioo-
ni S : [a, b] → R. Seejuures S ∈ P 3[xi−1, xi], i = 1, . . . , n. Lisaks näeme, et
S(xi − 0) = Si, S(xi + 0) = Si, i = 1, . . . , n − 1, samuti S ′′(xi − 0) = S ′′(xi + 0),
i = 1, . . . , n − 1. Kui Si, Mi, i = 0, . . . , n, valida suvaliselt, siis ei tarvitse S ′ (on
määratud osalõikudel) olla pidev ja S ei tarvitse olla splain ruumis S3,1

∆ . Ruu-
mi S3,1

∆ kuulumiseks on seejuures tarvilik ja piisav, et S ′(xi − 0) = S ′(xi + 0),
i = 1, . . . , n − 1 (tuletise S ′ pidevus sisesõlmedes). Võttes võrduses (3) x = xi−1,
saame

S ′(xi−1 + 0) = −Mi−1
hi
2
+

(
Si−1 −

Mi−1

6
h2i

)(
− 1

hi

)
+

(
Si −

Mi

6
h2i

)
1

hi

ja indeksi nihkega (sisuliselt naaberintervallist)

S ′(xi + 0) = −Mi
hi+1

2
+

(
Si −

Mi

6
h2i+1

)(
− 1

hi+1

)
+

(
Si+1 −

Mi+1

6
h2i+1

)
1

hi+1

.

Kui võtame võrduses (3) x = xi, saame

S ′(xi − 0) =Mi
hi
2
+

(
Si−1 −

Mi−1

6
h2i

)(
− 1

hi

)
+

(
Si −

Mi

6
h2i

)
1

hi
.

Tuletise S ′ pidevuse tingimused tulevad

Mi
hi
2
+

(
Si−1 −

Mi−1

6
h2i

)(
− 1

hi

)
+

(
Si −

Mi

6
h2i

)
1

hi
=

= −Mi
hi+1

2
+

(
Si −

Mi

6
h2i+1

)(
− 1

hi+1

)
+

(
Si+1 −

Mi+1

6
h2i+1

)
1

hi+1

ehk
hi
6
Mi−1 +

(
hi
3
+
hi+1

3

)
Mi +

hi+1

6
Mi+1 =

Si+1 − Si

hi+1

− Si − Si−1

hi
,
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mis peale korrutamist teguriga
6

hi + hi+1

on

hi
hi + hi+1

Mi−1 + 2Mi +
hi+1

hi + hi+1

Mi+1 = 6

Si+1 − Si

hi+1

− Si − Si−1

hi
hi + hi+1

, (5)

i = 1, . . . , n− 1.

Võrrandeid (5) nimetatakse kuupsplaini sisevõrranditeks (kui vaja, siis täpsus-
tatakse, et esituse (1) korral) ja nad on kuupsplainide teooria ühed olulisemad
võrrandid. Sõnastame saadud tulemuse eraldi.

Lause. Suvaliste arvude Si,Mi, i = 0, . . . , n, korral kuulub võrdusega (1) määratud
funktsioon S ruumi S3,1

∆ [x0, xn] parajasti siis, kui kehtivad võrdused (5).

Tähistades

µi =
hi

hi + hi+1

, λi =
hi+1

hi + hi+1

, di = 6

Si+1 − Si

hi+1

− Si − Si−1

hi
hi + hi+1

,

saab sisevõrrandid kirjutada

µiMi−1 + 2Mi + λiMi+1 = di, i = 1, . . . , n− 1,

seejuures µi + λi = 1. Märgime, et

Si+1 − Si

hi+1

− Si − Si−1

hi
hi + hi+1

=
S(xi, xi+1)− S(xi−1, xi)

xi+1 − xi−1

=

= S(xi−1, xi, xi+1) =

=
S ′′(ξi)

2
, ξi ∈ (xi−1, xi+1), di = 3S ′′(ξi).

Kui on vaja leida interpoleerivat kuupsplaini, siis võetakse Si = S(xi) = fi,
i = 0, . . . , n, sellega on arvud Si teada. Et leida Mi, i = 0, . . . , n, võetakse sisevõr-

randites (neid on n − 1) di = 6

fi+1 − fi
hi+1

− fi − fi−1

hi
hi + hi+1

ja lisatakse kaks lisatingi-

must, millega saadakse n+1 võrrandist koosnev lineaarne süsteem n+1 tundmatu
M0, . . . ,Mn määramiseks.
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1.1. Kasutame rajatingimusi (II). Siis saadakse süsteem
M0 = α′′,

µiMi−1 + 2Mi + λiMi+1 = di, i = 1, . . . , n− 1,

Mn = β′′.

Kirjutame süsteemi veel maatrikskujul

1 0 0 0 . . . 0

µ1 2 λ1 0 . . . 0

0 µ2 2 λ2 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . . . . µn−1 2 λn−1

0 . . . . . . 0 0 1





M0

M1

M2

. . .

Mn−1

Mn


=



α′′

d1

d2

. . .

dn−1

β′′


.

Selles süsteemis on M0 ja Mn teada, need võib asendada vastavalt võrrandites
indeksitega 1 ja n− 1, mille tulemusena saadakse

2M1 + λ1M2 = d1 − µ1α
′′,

µiMi−1 + 2Mi + λiMi+1 = di, i = 2, . . . , n− 2,

µn−1Mn−2 + 2Mn−1 = dn−1 − λn−1β
′′.

Maatrikskujul on see süsteem
2 λ1 0 0 . . . 0

µ2 2 λ2 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . . . . µn−2 2 λn−2

0 . . . . . . 0 µn−1 2




M1

M2

. . .

Mn−2

Mn−1

 =


d1 − µ1α

′′

d2

. . .

dn−2

dn−1 − λn−1β
′′

 .

Meenutame, et maatriksis

A = (aij)
n
i,j=1 =


a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . . . . . . . .

an1 an2 . . . ann


diagonaal (peadiagonaal) domineerib ridade kaupa, kui |aii| >

n∑
j=1
j ̸=i

|aij|, i = 1, . . . , n.

Punktis 1.1 saadud süsteemides maatriksi diagonaal domineerib ridade kaupa, sest
µi + λi = 1 < 2.
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1.2. Kasutame rajatingimusi (I), mis on S ′(x0) = α′, S ′(xn) = β′. Eespool
leidsime

S ′(x0) = S ′(x0 + 0) = −M0
h1
2

+

(
S0 −

M0

6
h21

)(
− 1

h1

)
+

(
S1 −

M1

6
h21

)
1

h1
=

= −h1
3
M0 −

h1
6
M1 +

S1 − S0

h1
.

Võrdus S ′(x0) = α′ on siis

−h1
3
M0 −

h1
6
M1 +

S1 − S0

h1
= α′

ehk peale teguriga − 6

h1
korrutamist

2M0 +M1 =
6

h1

(
S1 − S0

h1
− α′

)
= d0,

kus võtsime kasutusele tähise d0. Analoogiliselt saame

S ′(xn − 0) =Mn
hn
2

+

(
Sn−1 −

Mn−1

6
h2n

)(
− 1

hn

)
+

(
Sn −

Mn

6
h2n

)
1

hn
=

=
hn
3
Mn +

hn
6
Mn−1 +

Sn − Sn−1

hn
= β′

ehk

Mn−1 + 2Mn =
6

hn

(
β′ − Sn − Sn−1

hn

)
= dn.

Lisades need kaks rajatingimustest saadud võrrandit sisevõrranditele, jõuame süs-
teemini 

2M0 +M1 = d0,

µiMi−1 + 2Mi + λiMi+1 = di, i = 1, . . . , n− 1,

Mn−1 + 2Mn = dn,

mis maatrikskujul on

2 1 0 0 . . . 0

µ1 2 λ1 0 . . . 0

0 µ2 2 λ2 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . 0 µn−1 2 λn−1

0 . . . 0 0 1 2





M0

M1

M2

. . .

Mn−1

Mn


=



d0

d1

d2

. . .

dn−1

dn


.

Ka siin süsteemi maatriksi diagonaal domineerib ridade kaupa.
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1.3. Vaatame rajatingimuste (IV) kasutamist. Nägime, et esituse (1) kasutamine
annab võrduse (4)

S ′′(x) =Mi−1
xi − x

hi
+Mi

x− xi−1

hi
, x ∈ [xi−1, xi].

Sellest leiame

S ′′′(x) = −Mi−1

hi
+
Mi

hi
=
Mi −Mi−1

hi
, x ∈ [xi−1, xi].

Juhul i = 1 saab sellest

S ′′′(x1 − 0) =
M1 −M0

h1
,

i = 2 korral

S ′′′(x1 + 0) =
M2 −M1

h2
.

Siis võrdus S ′′′(x1 − 0) = S ′′′(x1 + 0) on

M1 −M0

h1
=
M2 −M1

h2
.

Avaldame sellest

M0 =

(
1 +

h1
h2

)
M1 −

h1
h2
M2,

mille asendame esimeses sisevõrrandis

h1
h1 + h2

M0 + 2M1 +
h2

h1 + h2
M2 = d1.

Selle tulemusena

h1
h1 + h2

((
1 +

h1
h2

)
M1 −

h1
h2
M2

)
+ 2M1 +

h2
h1 + h2

M2 = d1.

Saadud võrrandis on M1 kordaja 2 +
h1
h2

ja M2 kordaja

h2
h1 + h2

− h21
h2(h1 + h2)

=
h22 − h21

h2(h1 + h2)
=
h2 − h1
h2

= 1− h1
h2

ning võrrandiks jääb (
2 +

h1
h2

)
M1 +

(
1− h1

h2

)
M2 = d1.
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Analoogilised arvutused teeme ka tingimuse S ′′′(xn−1 − 0) = S ′′′(xn−1 + 0) korral
ning koos teisendamisel puutumata jäänud sisevõrranditega saame süsteemi

(
2 +

h1
h2

)
M1 +

(
1− h1

h2

)
M2 = d1,

µiMi−1 + 2Mi + λiMi+1 = di, i = 2, . . . , n− 2,(
1− hn

hn−1

)
Mn−2 +

(
2 +

hn
hn−1

)
Mn−1 = dn−1.

Selle süsteemi maatriksi diagonaal domineerib ridade kaupa, sest näiteks∣∣∣∣2 + h1
h2

∣∣∣∣− ∣∣∣∣1− h1
h2

∣∣∣∣ ⩾ 2 +
h1
h2

−
(
1 +

h1
h2

)
= 1.

Märkus. Kui jätta süsteemi algselt tuletatud võrrand

M1 −M0

h1
=
M2 −M1

h2

ehk

− 1

h1
M0 +

(
1

h1
+

1

h2

)
M1 −

1

h2
M2 = 0,

siis saadud süsteemi maatriksis ei ole diagonaali domineerimist, sest diagonaalil on
M0 kordaja.

Punktides 1.1�1.3 saadud süsteemide maatriksid on kolmediagonaalsed, mis tä-
hendab seda, et nullist erinevad elemendid on ainult peadiagonaalil ja sellest all-
ja ülalpool olevatel naaberdiagonaalidel.

1.4. Vaatame tingimusi (III), s.t. S(x−1) = α, S(xn+1) = β. Näitame, et need
saab taandada tingimustele (IV). Olgu esialgu x−1 < x0 < x1 ja xn−1 < xn < xn+1,
millega tekib võrk

∆′ : x−1 < x0 < x1 < . . . < xn−1 < xn < xn+1.

x−1 x0 x1 . . . xn−1 xn xn+1

Teeme analüüsi ühes otspunktis, teises toimitakse analoogiliselt. Tekib loomulik
küsimus, mida tingimus S(x−1) = α tähendab, sest S on mõeldud olema funktsioon
S : [x0, xn] → R ja S ei pea olema de�neeritud punktis x−1. Meie algseks eesmärgiks
on leida splain S ∈ S3,1

∆ [x0, xn], mis interpoleerib andmeid sõlmedes xi, i = 0, . . . , n.
Muuhulgas tähendab see, et S ∈ P 3[x0, x1] ehk S(x) = c0 + c1x+ c2x

2 + c3x
3,
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x ∈ [x0, x1]. Sama polünoomi (sama analüütilise avaldisega) vaadeldakse ka x ∈
∈ [x−1, x1] korral, mistõttu S ∈ P 3[x−1, x1]. Sellisel puhul S

′′′(x0−0) = S ′′′(x0+0),
mis tähendab tingimuse (IV) täidetust võrgu ∆′ esimeses sisepunktis x0. Tingimus
S(x−1) = α lisab ühe interpolatsioonitingimuse võrgu ∆′ punktis x−1. Analoogi-
liselt viib tingimus S(xn+1) = β ülesande ümberformuleerimiseni, kus nõutakse,
et S ∈ P 3[xn−1, xn+1], mistõttu S ′′′(xn − 0) = S ′′′(xn + 0), ja S(xn+1) = β on
interpolatsioonitingimus võrgu ∆′ parempoolses otspunktis xn+1. Vaatame nüüd
olukorda, kus x0 < x−1 < x1 ja xn−1 < xn+1 < xn. Sellisel juhul võtame võrgu

∆′ : x0 < x−1 < x1 < . . . < xn−1 < xn+1 < xn

ja saame ülesande leida S ∈ S3,1
∆′ [x0, xn], mille korral on kõigis võrgu ∆′ sõlmedes

rahuldatud interpolatsioonitingimused, kusjuures S ∈ P 3[x0, x1] tõttu S
′′′(x−1−0)

= S ′′′(x−1 + 0) ja S ∈ P 3[xn−1, xn] tähendab, et S
′′′(xn+1 − 0) = S ′′′(xn+1 + 0).

Muidugi võib võrgu ∆ erinevates otstes olla erinev olukord, näiteks x−1 < x0 < x1
ja xn−1 < xn+1 < xn, kuid eelnevast on selge, kuidas siis tuleb ülesanne samaväär-
selt ümber formuleerida.

Kõigil vaadeldud juhtudel suureneb ümbersõnastamisel interpolatsioonitingi-
muste arv kahe võrra ja rajatingimused (III) teisenevad rajatingimusteks (IV).

1.5. Vaatleme perioodilisi rajatingimusi (V), s.t. nõuame, et S ′(a) = S ′(b),
S ′′(a) = S ′′(b). Tingimus S ′′(a) = S ′′(b) on samaväärne tingimusega M0 = Mn.
Interpolatsioonitingimustest S(xi) = fi, i = 0, . . . , n, on teada S0, . . . , Sn. Splaini
määramiseks esituse (1) abil on vaja veel leida M1, . . . ,Mn, milleks peab olema n
võrrandit. Kasutada on sisevõrrandid

µiMi−1 + 2Mi + λiMi+1 = di, i = 1, . . . , n− 1.

Neist esimene on võrduse M0 =Mn tõttu

µ1Mn + 2M1 + λ1M2 = d1,

milles on diagonaali domineerimine, kui diagonaalielemendiks on M1 kordaja. Pa-
neme kirja tingimuse S ′(a) = S ′(b). Selles

S ′(a) = S ′(x0 + 0) = −h1
3
M0 −

h1
6
M1 +

S1 − S0

h1
,

S ′(b) = S ′(xn − 0) =
hn
3
Mn +

hn
6
Mn−1 +

Sn − Sn−1

hn
,

mis olid leitud punktis 1.2. Nende võrdumine annab

−h1
3
M0 −

h1
6
M1 +

S1 − S0

h1
=
hn
3
Mn +

hn
6
Mn−1 +

Sn − Sn−1

hn
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ehk võrdust M0 =Mn arvestades

h1 + hn
3

Mn +
h1
6
M1 +

hn
6
Mn−1 =

S1 − S0

h1
− Sn − Sn−1

hn

või

h1
h1 + hn

M1 + 2Mn +
hn

h1 + hn
Mn−1 = 6

S1 − S0

h1
− Sn − Sn−1

hn
h1 + hn

.

Kui tähistada λn =
h1

h1 + hn
, µn =

hn
h1 + hn

, dn = 6

S1 − S0

h1
− Sn − Sn−1

hn
h1 + hn

, võib

saadud võrrandi kirjutada

µnMn−1 + 2Mn + λnM1 = dn.

Kokkuvõttes oleme saanud süsteemi
2M1 + λ1M2 + µ1Mn = d1,

µiMi−1 + 2Mi + λiMi+1 = di, i = 2, . . . , n− 1,

λnM1 + µnMn−1 + 2Mn = dn,

mis maatrikskujul kirjutatuna on

2 λ1 0 0 . . . µ1

µ2 2 λ2 0 . . . 0

0 µ3 2 λ3 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . µn−1 2 λn−1

λn 0 . . . 0 µn 2





M1

M2

M3

...

Mn−1

Mn


=



d1

d2

d3
...

dn−1

dn


.

Selle süsteemi maatriksi diagonaal domineerib ridade kaupa, kuid punktides 1.1�1.3
saadud maatriksitega võrreldes ei ole see enam kolmediagonaalne.

2. Interpoleeriva kuupsplaini konstrueerimine esimeste mo-

mentide abil

Splaini esimesteks momentideks nimetatakse esimese tuletise väärtusi sõlmedes,
s.o. mi = S ′(xi), i = 0, . . . , n. Kui on antud suvalised arvud Si,mi, i = 0, . . . , n,
siis võib x ∈ [xi−1, xi] korral moodustada

S(x) = φ0(t)Si−1 + φ1(t)Si + φ2(t)himi−1 + φ3(t)himi, (6)
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kus x = xi−1 + thi. Hermite'i kuupsplainide käsitlemisel nägime, et sellise esituse
juures S(xi) = Si, S

′(xi) = mi, i = 0, . . . , n. See tagab, et esitusega (6) mää-
ratud funktsioon S on selline, et S ∈ P 3[xi−1, xi], i = 1, . . . , n, ja S ning S ′ on
pidevad. Tingimuse S ∈ C2[a, b] täidetuseks nõuame, et S ′′(xi − 0) = S ′′(xi + 0),
i = 1, . . . , n− 1. Muutujavahetus x = xi−1 + thi annab dx = hidt, seepärast

dS

dx
=
dS

dt

dt

dx
=

1

hi

dS

dt
,

d2S

dx2
=

1

h2i

d2S

dt2

ning

S ′′(x) =
1

h2i
(φ′′

0(t)Si−1 + φ′′
1(t)Si + φ′′

2(t)himi−1 + φ′′
3(t)himi).

Ülesanne 12. Tuletada esituse (6) abil moodustatud kuupsplaini S ∈ S3,1
∆ sise-

võrrandid

λimi−1 + 2mi + µimi+1 = 3µi
Si+1 − Si

hi+1

+ 3λi
Si − Si−1

hi
, i = 1, . . . , n− 1, (7)

mis on tegelikult tingimused S ′′(xi − 0) = S ′′(xi + 0), i = 1, . . . , n− 1.

Käesolevas punktis toodud esituse (6) kasutamisel interpoleeriva kuupsplaini
konstrueerimiseks saab arvud S0, . . . , Sn interpolatsioonitingimustest. Arvude
m0, . . . ,mn määramiseks ei piisa n − 1 sisevõrrandist (7), neile lisatakse, nagu
eelmises punktis, kaks võrrandit, mis saadakse rajatingimustest (I)�(V). Kui näi-
teks kasutada rajatingimusi (I), siis saadakse süsteem

m0 = α′,

λimi−1 + 2mi + µimi+1 = di, i = 1, . . . , n− 1,

mn = β′,

kus di tähistab võrdustes (7) paremat poolt.

Ülesanne 13. Tuletada esimeste momentide mi, i = 0, . . . , n, määramiseks saa-
davad võrrandisüsteemid rajatingimuste (II), (IV) ja (V) korral.

3. Splainidega interpoleerimisel tekkivate lineaarsete süsteemi-

de lahendamisest

Vaatleme lineaarset süsteemi
n∑

j=1

aijxj = fi, i = 1, . . . , n, (8)
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kus kasutame veel tähiseid

A =


a11 . . . . . . . . . . . a1n

. . . . . . . . . . . . . . . . . . . . .

ai1 . . . aii . . . ann

. . . . . . . . . . . . . . . . . . . . .

an1 . . . . . . . . . . . ann

 , x =


x1
...

xn

 , f =


f1
...

fn

 ,

ja süsteemi (8) võib siis kirjutada Ax = f . Meenutame, et maatriksi A diagonaal
on domineeriv ridade kaupa, kui

|aii| >
n∑

j=1
j ̸=i

|aij|, i = 1, . . . , n.

Sellisel juhul on olemas q > 0 nii, et

|aii| −
n∑

j=1
j ̸=i

|aij| ⩾ q, i = 1, . . . , n,

ning öeldakse, et diagonaal domineerib ridade kaupa vahega q (on diagonaali do-
mineerimine ridade kaupa vahega q). Nägime, et kuupsplainidega interpoleerimisel
nii teiste kui ka esimeste momentide kasutamine andis süsteemid, kus maatriksi
diagonaal domineeris ridade kaupa vahega 1.

Lause. Kui lineaarse süsteemi (8) maatriksi diagonaal domineerib ridade kaupa
vahega q, siis süsteem on üheselt lahenduv ja lahendi korral kehtib hinnang

max
1⩽i⩽n

|xi| ⩽
1

q
max
1⩽i⩽n

|fi|.

Tõestus. Süsteem (8) on üheselt lahenduv, kui tingimusest Ax = 0 järeldub, et
x = 0. Seega piisab tõestada toodud hinnang: kui Ax = 0, siis hinnangust, kus
f = 0, saadakse, et x = 0. Niisiis, olgu x selline, et Ax = f . Olgu |xk| = max

1⩽i⩽n
|xi|.

Võtame vaatluse alla võrrandi indeksiga k

n∑
j=1

akjxj = fk

ehk

akkxk +
n∑

j=1
j ̸=k

akjxj = fk.
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Siis

|fk| ⩾ |akk||xk| −
n∑

j=1
j ̸=k

|akj||xj| ⩾

/ kasutame seda, et |xj| ⩽ |xk| ja |akk| −
n∑

j=1
j ̸=k

|akj| ⩾ q /

⩾ (|akk| −
n∑

j=1
j ̸=k

|akj|)|xk| ⩾ q|xk|,

millest saame

|xk| ⩽
1

q
|fk| ⩽

1

q
max
1⩽i⩽n

|fi|.

Järeldus. Kuupsplainidega interpoleerimisel tuletatud süsteemid on üheselt lahen-
duvad ja seega on ka vastavad interpoleerimisülesanded kõikide vaadeldud rajatin-
gimuste korral üheselt lahenduvad.

Märkus. Kuupsplainidega interpoleerimisel võib kasutada kuup-B-splaine, need

moodustavad baasi ruumis S3,1
∆ . Summas S(x) =

n−1∑
j=−3

cjB
j
3(x) on iga x ∈ [a, b]

korral maksimaalselt neli nullist erinevat liidetavat. Interpolatsioonitingimustes

S(xi) = fi, s.o.
n−1∑
j=−3

cjB
j
3(xi) = fi, on kolm nullist erinevat liidetavat. Rajatingi-

mustest saadavaid võrrandeid on mitteperioodilisel juhul võimalik nii teisendada,
et arvude cj määramiseks tuleb kolmediagonaalne süsteem. Kui aga jaotus ∆ on
tugevalt ebaühtlane, siis selles süsteemis ei ole maatriksi diagonaali domineerimist
interpolatsioonitingimustele vastavates ridades.
Järgnevas käsitleme kolmediagonaalse maatriksiga süsteemi lahendamist Gaussi

elimineerimismeetodil. Meetod on tuntud suvalise maatriksiga süsteemi lahenda-
misel, kuid kolmediagonaalsel juhul saab mõningaid aspekte käsitleda detailsemalt.
Olgu antud süsteem

b1 c1 0 0 . . . 0

a2 b2 c2 0 . . . 0

0 a3 b3 c3 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . 0 an−1 bn−1 cn−1

0 . . . 0 0 an bn





x1

x2

x3

. . .

xn−1

xn


=



f1

f2

f3

. . .

fn−1

fn

 .
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Esimene võrrand süsteemis on b1x1 + c1x2 = f1 ning see jagatakse arvuga b1:

x1 +
c1
b1
x2 =

f1
b1
. De�neerime

e1 =
c1
b1
, g1 =

f1
b1
, (9.1)

millega saame esimese võrrandi kujule x1 + e1x2 = g1. Teise sammuna vaatleme
koos võrrandeid {

x1 + e1x2 = g1,

a2x1 + b2x2 + c2x3 = f2.

Korrutame esimese neist arvuga −a2 ja liidame teisele võrrandile. Selle tulemusena

(b2 − e1a2)x2 + c2x3 = f2 − a2g1,

mis peale jagamist x2 kordajaga annab

x2 +
c2

b2 − e1a2
x3 =

f2 − a2g1
b2 − e1a2

.

De�neerime

e2 =
c2

b2 − e1a2
, g2 =

f2 − a2g1
b2 − e1a2

, (9.2)

millega saame võrrandi x2 + e2x3 = g2 . Teeme läbi i. sammu, milles on koos
võrrandid {

xi−1 + ei−1xi =gi−1,

aixi−1 + bixi + cixi+1 =fi.

Siin korrutame esimese võrrandi arvuga −ai ja liidame teisele. Saame

(bi − ei−1ai)xi + cixi+1 = fi − aigi−1

ja peale jagamist xi kordajaga

xi +
ci

bi − ei−1ai
xi+1 =

fi − aigi−1

bi − ei−1ai
.

De�neerime

ei =
ci

bi − ei−1ai
, gi =

fi − aigi−1

bi − ei−1ai
(9.i)

(siin i = 2, . . . , n− 1) ja niiviisi oleme saanud võrrandid

xi + eixi+1 = gi, i = 1, . . . , n− 1. (10)



3. Splainidega interpoleerimisel tekkivate lineaarsete süsteemide. . . 59

Eraldi vaatleme koos võrrandeid{
xn−1 + en−1xn = gn−1,

anxn−1 + bnxn = fn.

Ka siin korrutame esimese võrrandi arvuga −an ja liidame teisele, mis annab

(bn − en−1an)xn = fn − angn−1.

Sellest

xn =
fn − angn−1

bn − en−1an
,

kus võime veel de�neerida

gn =
fn − angn−1

bn − en−1an
(9.n)

ning siis xn = gn. Siiani tehtud arvutused (9.i), i = 1, . . . , n, on tegelikult peadia-
gonaali all olevate arvude elimineerimised, ühtlasi on leitud xn. Lahendi ülejäänud
komponendid leitakse võrdustest (10) saadava eeskirja abil

xi = gi − eixi+1, i = n− 1, . . . , 1. (11)

Tegelikult teostatavad arvutused on (9.i), i = 1, . . . , n, ja (11). Loeme veel kokku
nendes tehtavad korrutamised ja jagamised. Kõigepealt, (9.1) nõuab 2 jagamist.
Arvutused (9.i), i = 2, . . . , n − 1, sisaldavad igaüks 2 korrutamist ja 2 jagamist,
kokku 4(n− 2) tehet. Arvutus (9.n) lisab kaks korrutamist ja ühe jagamise, kokku
3 tehet. Arvutustes (11) tehakse igaühes üks korrutamine, kokku on neid n − 1.
Kõik arvutused kokku sisaldavad 2 + 4(n − 2) + 3 + n − 1 = 5n − 4 korruta-
mist, jagamist. Märgime võrdluseks, et n × n täismaatriksiga süsteemis tehakse

elimineerimismeetodis ∼ n3

3
korrutamist, jagamist.

Loomulik on küsida, millal selline elimineerimismeetod on teostatav? Eeldame,
et lisaks kolmediagonaalsusele on süsteemi maatriksi diagonaal domineeriv ridade
kaupa, mis tähendab, et |b1| > |c1|, |bi| > |ai| + |ci|, i = 2, . . . , n − 1, |bn| > |an|.
Siis b1 ̸= 0, mistõttu on leitavad e1 ja g1, seejuures |e1| =

|c1|
|b1|

< 1. Oletame üldise

sammu jaoks, et |ei−1| < 1. Siis |bi−ei−1ai| ⩾ |bi|−|ei−1||ai| ⩾ |bi|−|ai| > |ci| ⩾ 0,

mistõttu bi−ei−1ai ̸= 0 ning ei, gi on leitavad. Lisaks |ei| =
|ci|

|bi − ei−1ai|
< 1. Selle-

ga on selge, et kõik elimineerimisel vajalikud arvutused on teostatavad. Sõnastame
tulemuse eraldi.

Lause. Gaussi elimineerimismeetod on teostatav süsteemis, kus maatriks on kol-
mediagonaalne ja peadiagonaal domineerib ridade kaupa.
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Lisame, et toodud olukorras on elimineerimismeetod stabiilne, mis tähendab
järgmist. Lisaks süsteemile

n∑
j=1

aijxj = fi, i = 1, . . . , n,

vaatleme veel süsteemi

n∑
j=1

aijxj = f i, i = 1, . . . , n.

Kui |aij−aij| ja |f i−fi| on iga i, j korral �väikesed� (see hõlmab ka ümardamisvigu
aij ja fi esitamisel), siis on �väikesed� ka |xi − xi| iga i korral. Sellise stabiilsuse
detailne põhjendamine on suhteliselt töömahukas, väide leiab aset ka üldisemate
eelduste korral (ei ole iseloomulik ainult splainide teooriale) ja käesolevas kursuses
me seda ei esita.
Perioodiliste rajatingimuste kasutamisel jõudsime süsteemini, mille võib üldise-

malt kirjutada kujul

b1 c1 0 0 . . . a1

a2 b2 c2 0 . . . 0

0 a3 b3 c3 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . 0 an−1 bn−1 cn−1

cn . . . . . . 0 an bn





x1

x2

x3

. . .

xn−1

xn


=



f1

f2

f3

. . .

fn−1

fn

 .

Ülesanne∗ 3. Panna kirja elimineerimismeetodi algoritm selle süsteemi lahenda-
miseks ning uurida meetodi teostatavust, kui süsteemi maatriksi diagonaal domi-
neerib ridade kaupa. Leida, kui palju korrutamisi ja jagamisi on elimineerimismee-
todis vaja teha.
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Antud on funktsioon f : [a, b] → R, lõigu jaotus ∆: a = x0 < x1 < . . . < xn = b,
on võimalik leida S ∈ S3,1

∆ nii, et S(xi) = f(xi), i = 0, . . . , n, lisaks on rahuldatud
kaks rajatingimust. Loomulik on rajatingimustes arvestada funktsiooniga f , näi-
teks S ′′(a) = f ′′(a), S ′′(b) = f ′′(b), kui f ∈ C2[a, b]. Osades rajatingimustes f ei
esine. Üldine eesmärk on hinnata ∥S − f∥∞, ∥S ′ − f ′∥∞, . . ..
Üks võimalik lähenemine probleemile on järgmine. Eeldame, et f ∈ C1[a, b].

Leiame Hermite'i kuupsplaini S ∈ S3,2
∆ nii, et S(xi) = f(xi), S

′
(xi) = f ′(xi),

i = 0, . . . , n. Siis

∥S − f∥∞ = ∥S − S + S − f∥∞ ⩽ ∥S − S∥∞ + ∥S − f∥∞,
analoogilised hinnangud saab anda tuletiste jaoks. Me oleme juba hinnanud
∥S − f∥∞, ∥S − f ′∥∞, . . ., seega piisab hinnata ∥S − S∥∞, ∥S ′ − S

′∥∞, . . .. Nende
jaoks hinnangute saamine peaks olema lootusrikas, sest on vaja toimetada splai-
nidega.
Kasutame tähistusi fi = f(xi), f

′
i = f ′(xi), i = 0, . . . , n. Siis

S(x) = φ0(t)fi−1 + φ1(t)fi + φ2(t)hif
′
i−1 + φ3(t)hif

′
i ,

x ∈ [xi−1, xi], hi = xi − xi−1, x = xi−1 + thi.

Sisalduvus S3,1
∆ ⊂ S3,2

∆ lubab kasutada interpolandi S ∈ S3,1
∆ korral esitust

S(x) = φ0(t)fi−1 + φ1(t)fi + φ2(t)himi−1 + φ3(t)himi, x ∈ [xi−1, xi],

kus mi = S ′(xi), i = 0, . . . , n. Seepärast

S(x)− S(x) = φ2(t)hi(mi−1 − f ′
i−1) + φ3(t)hi(mi − f ′

i),

mille juures meenutame, et φ2(t) = t(1− t)2, φ3(t) = −t2(1− t). Sellest saame

|S(x)− S(x)| ⩽ t(1− t)hi max
0⩽i⩽n

|mi − f ′
i |, x ∈ [xi−1, xi]. (1)

Püüame saada hinnangut tuletise jaoks. Võrdus x = xi−1 + thi annab dx = hi dt,
d

dx
=

1

hi

d

dt
, seega

S ′(x)− S
′
(x) = φ′

2(t)(mi−1 − f ′
i−1) + φ′

3(t)(mi − f ′
i).

61
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Leiame

φ′
2(t) = (t− 2t2 + t3)′ = 1− 4t+ 3t2 = (1− t)(1− 3t),

φ′
3(t) = (−t2 + t3)′ = −2t+ 3t2 = t(3t− 2),

nende abil jõuame hinnanguni

|S ′(x)− S
′
(x)| ⩽ ((1− t)|1− 3t|+ t|3t− 2|) max

0⩽i⩽n
|mi − f ′

i |,

x ∈ [xi−1, xi].
(2)

Järgmisi tuletisi hindame teist esitust lähtekohaks võttes. Eeldame, et f ∈ C2[a, b].
Et S ′′ on osalõigus [xi−1, xi] ülimalt esimese astme polünoom ja S ′′(xi−1) =Mi−1,
S ′′(xi) =Mi, siis S

′′(x) = (1− t)Mi−1 + tMi ja

S ′′(x)− f ′′(x) = (1− t)Mi−1 + tMi − f ′′(x) =

= (1− t)(Mi−1 − f ′′(xi−1)) + t(Mi − f ′′(xi)) + (1− t)f ′′(xi−1) + tf ′′(xi)− f ′′(x).

Seejuures S1(x; f
′′) = (1 − t)f ′′(xi−1) + tf ′′(xi) on funktsiooni f ′′ punktides xi−1

ja xi interpoleeriv lineaarsplain. Seega

|S ′′(x)− f ′′(x)| ⩽ max
0⩽i⩽n

|Mi − f ′′(xi)|+ |S1(x; f
′′)− f ′′(x)|,

x ∈ [xi−1, xi],
(3)

kusjuures |S1(x; f
′′)− f ′′(x)| kohta oleme eespool hinnangud leidnud. Veel saame

f ′′′ olemasolu korral tähistust f ′′
i = f ′′(xi) kasutades

S ′′′(x)− f ′′′(x) =
1

hi
(−(Mi−1 − f ′′

i−1) + (Mi − f ′′
i )) + S ′

1(x; f
′′)− f ′′′(x),

millest

|S ′′′(x)− f ′′′(x)| ⩽ 2

hi
max
0⩽i⩽n

|Mi − f ′′
i |+ |S ′

1(x; f
′′)− f ′′′(x)|,

x ∈ [xi−1, xi],
(4)

ning ka siin oleme |S ′
1(x; f

′′)− f ′′′(x)| varem hinnanud. Võrratused (1)�(4) näita-
vad, et peaksime hindama interpoleeriva kuupsplaini esimeste ja teiste momentide
kõrvalekaldeid funktsiooni f tuletistest, s.o. |mi − f ′

i | ja |Mi − f ′′
i |.

Teoreem 1. Kui S ∈ S3,1
∆ rahuldab interpolatsioonitingimusi S(xi) = f(xi),

i = 0, . . . , n, ja rajatingimusi

(I) S ′(a) = f ′(a), S ′(b) = f ′(b),

(II) S ′′(a) = f ′′(a), S ′′(b) = f ′′(b),
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(V) S ′(a) = S ′(b), S ′′(a) = S ′′(b),

siis tähistust h = max
1⩽i⩽n

hi silmas pidades kehtivad hinnangud

f ∈ |mi − f ′
i | ⩽ |Mi − f ′′

i | ⩽

C1[a, b] 3ω(f ′) �

C2[a, b]
2

3
hω(f ′′) 3ω(f ′′)

C2C3
∆[a, b]

2

27
h2ω(f ′′′)

2
√
3

9
hω(f ′′′)

C2W∞,4
∆ [a, b]

1

24
h3∥f IV ∥∞

1

4
h2∥f IV ∥∞

Tõestus. Märgime, et f ∈ C1[a, b] korral rajatingimusi (II) ei vaadelda. Eespool
nägime, et rajatingimuste (I) korral, kui märkida mi = S ′(xi), i = 0, . . . , n, saame
süsteemi 

m0 = f ′
0

λimi−1 + 2mi + µimi+1 = 3µi
fi+1 − fi
hi+1

+ 3λi
fi − fi−1

hi
,

i = 1, . . . , n− 1,

mn = f ′
n.

Tähistades qi = mi − f ′
i , saame

q0 = 0,

λiqi−1 + 2qi + µiqi+1 = 3µi
fi+1 − fi
hi+1

+ 3λi
fi − fi−1

hi
−

− (λif
′
i−1 + 2f ′

i + µif
′
i+1) = ci, i = 1, . . . , n− 1,

qn = 0,

(5)

kus võtame võrrandite paremate poolte tähisena kasutusele ci, i = 0, . . . , n. Süs-
teemis (5) maatriksi diagonaal domineerib ridade kaupa vahega 1, seepärast

max
0⩽i⩽n

|qi| ⩽ max
0⩽i⩽n

|ci| = max
1⩽i⩽n−1

|ci|.

1) Eeldame, et f ∈ C1[a, b]. Siis

ci = 3µif
′(ξi+1) + 3λif

′(ξi)− (λif
′(xi−1) + 2f ′(xi) + µif

′(xi+1)) =
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/ siin ξi+1 ∈ (xi, xi+1), ξi ∈ (xi−1, xi),

veel kirjutame f ′(xi) kordajaks 2(µi + λi) /

= µi(f
′(ξi+1)− f ′(xi+1)) + 2µi(f

′(ξi+1)− f ′(xi)) +

+ 2λi(f
′(ξi)− f ′(xi)) + λi(f

′(ξi)− f ′(xi−1)).

Sellest saame hinnangu

|ci| ⩽ µi|f ′(ξi+1)− f ′(xi+1)|+ 2µi|f ′(ξi+1)− f ′(xi)|+
+ 2λi|f ′(ξi)− f ′(xi)|+ λi|f ′(ξi)− f ′(xi−1)| ⩽

⩽ 3µiωi+1(f
′) + 3λiωi(f

′) ⩽ 3(µi + λi)ω(f
′) = 3ω(f ′).

2) Olgu f ∈ C2[a, b]. Kasutame süsteemi (5) võrrandite paremates pooltes esi-
nevate ci avaldistes Taylori arendisi

fi+1 = fi + hi+1f
′
i +

h2i+1

2
f ′′(ξi), ξi ∈ (xi, xi+1),

fi−1 = fi − hif
′
i +

h2i
2
f ′′(ηi), ηi ∈ (xi−1, xi),

f ′
i+1 = f ′

i + hi+1f
′′(ξi), ξi ∈ (xi, xi+1),

f ′
i−1 = f ′

i − hif
′′(ηi), ηi ∈ (xi−1, xi).

Siis asendamise järel fi kordaja tuleb 0, f ′
i kordaja on 3µi +3λi − λi − 2− µi = 0,

ci =
3

2
µihi+1f

′′(ξi)−
3

2
λihif

′′(ηi) + λihif
′′(ηi)− µihi+1f

′′(ξi) =

/ meenutame, et µi =
hi

hi + hi+1

, λi =
hi+1

hi + hi+1

/

=
hihi+1

hi + hi+1

(
3

2
f ′′(ξi)−

3

2
f ′′(ηi) + f ′′(ηi)− f ′′(ξi)

)
=

=
hihi+1

hi + hi+1

(
f ′′(ξi)− f ′′(ξi) + f ′′(ηi)− f ′′(ηi) +

1

2
(f ′′(ξi)− f ′′(ηi))

)
.

Selles
hihi+1

hi + hi+1

⩽
h

2
(sest hi ⩽ hi+1 korral

hihi+1

hi + hi+1

=
hi

hi + hi+1

hi+1 ⩽
1

2
hi+1 ⩽

1

2
h,

analoogiliselt hindame hi+1 ⩽ hi korral). Veel saame

|f ′′(ξi)− f ′′(ξi)| ⩽ ωi+1(f
′′) ⩽ ω(f ′′),
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|f ′′(ηi)− f ′′(ηi)| ⩽ ωi(f
′′) ⩽ ω(f ′′),

|f ′′(ξi)− f ′′(ηi)| ⩽ |f ′′(ξi)− f ′′(xi)|+ |f ′′(xi)− f ′′(ηi)| ⩽
⩽ ωi+1(f

′′) + ωi(f
′′) ⩽ 2ω(f ′′)

ning kokkuvõttes

|ci| ⩽
h

2
· 3ω(f ′′) =

3

2
hω(f ′′).

Esitame veel teise viisi hinnangu saamiseks. Kasutame Taylori valemis jääkliik-
meid integraalsel kujul:

fi+1 = fi + hi+1f
′
i +

xi+1∫
xi

(xi+1 − s)f ′′(s) ds,

fi−1 = fi − hif
′
i +

xi−1∫
xi

(xi−1 − s)f ′′(s) ds,

f ′
i−1 = f ′

i +

xi−1∫
xi

f ′′(s) ds,

f ′
i+1 = f ′

i +

xi+1∫
xi

f ′′(s) ds.

Siis saame

ci = 3µi
1

hi+1

xi+1∫
xi

(xi+1 − s)f ′′(s) ds− 3λi
1

hi

xi−1∫
xi

(xi−1 − s)f ′′(s) ds−

− λi

xi−1∫
xi

f ′′(s) ds− µi

xi+1∫
xi

f ′′(s) ds =

= µi

xi+1∫
xi

(
3

hi+1

(xi+1 − s)− 1

)
f ′′(s) ds+

+ λi

xi∫
xi−1

(
3

hi
(xi−1 − s) + 1

)
f ′′(s) ds.
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Teeme esimeses integraalis muutujavahetuse s = xi + τhi+1, teises integraalis
s = xi−1 + τhi, selle tulemusena

ci = µihi+1

1∫
0

(2− 3τ)f ′′(xi + τhi+1) dτ + λihi

1∫
0

(1− 3τ)f ′′(xi−1 + τhi) dτ.

Integraalialused funktsioonid 2− 3τ ja 1− 3τ muudavad integreerimislõigus [0, 1]
märki, samal ajal on teised tegurid pidevad. Kasutades integraalide jaoks kesk-
väärtusteoreemi, saame

ci = µihi+1

f ′′(ξi)

2/3∫
0

(2− 3τ) dτ + f ′′(ξi)

1∫
2/3

(2− 3τ) dτ

+

+ λihi

f ′′(ηi)

1/3∫
0

(1− 3τ) dτ + f ′′(ηi)

1∫
1/3

(1− 3τ) dτ

 =

/ siin ξi, ξi ∈ [xi, xi+1], ηi, ηi ∈ [xi−1, xi] /

=µihi+1

(
2

3
f ′′(ξi)−

1

6
f ′′(ξi)

)
+ λihi

(
1

6
f ′′(ηi)−

2

3
f ′′(ηi)

)
=

=
hihi+1

hi + hi+1

(
1

6

(
f ′′(ξi)− f ′′(ξi)

)
+

1

6
(f ′′(ηi)− f ′′(ηi)) +

1

2
(f ′′(ξi)− f ′′(ηi))

)
.

Hinnates siin nagu eespool, saame

|ci| ⩽
h

2

(
1

6
ωi+1(f

′′) +
1

6
ωi(f

′′) + ω(f ′′)

)
⩽

2

3
hω(f ′′).

3) Vaatleme juhtu, kus f ∈ C2W∞,4
∆ [a, b]. Siis f ∈ C2[a, b] ja f ∈ W∞,4(xi−1, xi),

i = 1, . . . , n. Kasutame jälle ci avaldises Taylori valemit jääkliikmega integraalsel
kujul. Leiame

fi+1 = fi + hi+1f
′
i +

h2i+1

2
f ′′
i +

h3i+1

6
f ′′′
i+0 +

1

6

xi+1∫
xi

(xi+1 − s)3f IV (s) ds,

/ siin f ′′′
i+0 = lim

x→xi
x>xi

f ′′′(x), sest f ∈ C2[a, b] korral võib f ′′′ olla katkev /

fi−1 = fi − hif
′
i +

h2i
2
f ′′
i − h3i

6
f ′′′
i−0 +

1

6

xi−1∫
xi

(xi−1 − s)3f IV (s) ds,
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f ′
i+1 = f ′

i + hi+1f
′′
i +

h2i+1

2
f ′′′
i+0 +

1

2

xi+1∫
xi

(xi+1 − s)2f IV (s) ds,

f ′
i−1 = f ′

i − hif
′′
i +

h2i
2
f ′′′
i−0 +

1

2

xi−1∫
xi

(xi−1 − s)2f IV (s) ds.

Nende ci avaldisse asetamise järel tulevad fi ja f
′
i kordajad nullid, sest need on

täpselt samad, mis ruumi C2[a, b] juhul. Veel saame f ′′
i kordaja

3

2
µihi+1 −

3

2
λihi + λihi − µihi+1 =

1

2
(µihi+1 − λihi) =

=
1

2

(
hi

hi + hi+1

hi+1 −
hi+1

hi + hi+1

hi

)
= 0,

f ′′′
i+0 kordaja

1

2
µih

2
i+1 −

1

2
µih

2
i+1 = 0,

f ′′′
i−0 kordaja

1

2
λih

2
i −

1

2
λih

2
i = 0.

Alles jääb ci avaldises

ci =
1

2

µi

hi+1

xi+1∫
xi

(xi+1 − s)3f IV (s) ds− 1

2

λi
hi

xi−1∫
xi

(xi−1 − s)3f IV (s) ds−

− µi

2

xi+1∫
xi

(xi+1 − s)2f IV (s) ds− λi
2

xi−1∫
xi

(xi−1 − s)2f IV (s) ds =

=
µi

2

xi+1∫
xi

(
(xi+1 − s)3

hi+1

− (xi+1 − s)2
)
f IV (s) ds+

+
λi
2

xi∫
xi−1

(
(xi−1 − s)3

hi
+ (xi−1 − s)2

)
f IV (s) ds.

Teeme esimeses integraalis muutujavahetuse s = xi + τhi+1, teises integraalis
s = xi−1 + τhi. Peale seda jõuame võrduseni

ci =
µih

3
i+1

2

1∫
0

(
(1− τ)3 − (1− τ)2

)
f IV (xi + τhi+1) dτ +
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+
λih

3
i

2

1∫
0

(
(−τ)3 + (−τ)2

)
f IV (xi−1 + τhi) dτ.

Integraali all on funktsioonid

(1− τ)3 − (1− τ)2 = (1− τ)2(1− τ − 1) = −τ(1− τ)2 ⩽ 0,

(−τ)3 + (−τ)2 = τ 2(−τ + 1) = τ 2(1− τ) ⩾ 0.

Neid arvestades saame hinnangu

|ci| ⩽

µih
3
i+1

2

1∫
0

τ(1− τ)2 dτ +
λih

3
i

2

1∫
0

τ 2(1− τ) dτ

 ∥f IV ∥∞.

Seejuures

1∫
0

τ(1− τ)2 dτ =

1∫
0

τ 2(1− τ) dτ =
1

12
ning hi ⩽ h, hi+1 ⩽ h tõttu

|ci| ⩽
1

24
h3(µi + λi)∥f IV ∥∞ =

1

24
h3∥f IV ∥∞.

Ülesanne 14. Tõestada ülejäänud teoreemis 1 toodud hinnangud ja analüüsida,
millised muutused tuleb tõestuses teha teiste rajatingimuste korral.

Teoreem 2. Teoreemi 1 eeldustel kehtivad hinnangud

f ∈ ∥S − f∥∞ ⩽ ∥S′ − f ′∥∞ ⩽ ∥S′′ − f ′′∥∞ ⩽ ∥S′′′ − f ′′′∥∞ ⩽

C1[a, b]
9

8
hω(f ′) 4ω(f ′) � �

W∞,2(a, b) ch2∥f ′′∥∞ ch∥f ′′∥∞ � �

C2[a, b]
19

96
h2ω(f ′′)

2

3
hω(f ′′) 4ω(f ′′) �

W∞,3(a, b) ch3∥f ′′′∥∞ ch2∥f ′′′∥∞ ch∥f ′′′∥∞ �

C2C3
∆[a, b] ch3ω(f ′′′) ch2ω(f ′′′) chω(f ′′′)

(
1 +

4
√
3

3

h

hmin

)
ω(f ′′′)

C2W∞,4
∆ [a, b]

5

384
h4∥f IV ∥∞

1

24
h3∥f IV ∥∞

3

8
h2∥f IV ∥∞

1

2

(
h

hmin
+

hmin

h

)
h∥f IV ∥∞
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Siin oleme tähistanud hmin = min
1⩽i⩽n

hi ning c tähendab hinnangutes konstanti, mis

ei sõltu funktsioonist f ega jaotusest ∆. Tabeli eelviimases reas toodud hinnangud on
iseloomulikud ka ruumis C3[a, b] ⊂ C2C3

∆[a, b], viimases reas aga ruumis C4[a, b] ⊂
C2W∞,4

∆ [a, b].

Tõestusest. Tõestused erinevates ruumides kasutavad suhteliselt sarnast tehnikat,
seepärast vaatleme ainult ruumi C2W∞,4

∆ [a, b]. Olgu S ∈ S3,2
∆ interpoleeriv Hermi-

te'i kuupsplain, seega S(xi) = f(xi), S
′
(xi) = f ′(xi), i = 0, . . . , n. Eespool nägime,

et kui kasutada x = xi−1 + thi, hi = xi − xi−1, siis

|S(x)− f(x)| ⩽ |S(x)− S(x)|+ |S(x)− f(x)| ⩽
⩽ hit(1− t) max

0⩽i⩽n
|mi − f ′

i |+ |S(x)− f(x)|, (6)

x ∈ [xi−1, xi].

Analoogiliselt

|S ′(x)− f ′(x)| ⩽ ((1− t)|1− 3t|+ t|3t− 2|) max
0⩽i⩽n

|mi − f ′
i |+ (7)

+ |S ′
(x)− f ′(x)|, x ∈ [xi−1, xi].

Teise ja kolmanda tuletisega seotud hinnangud saame võrratustest (3) ja (4).

Teame, et |S(x) − f(x)| ⩽ 1

384
h4∥f IV ∥∞. Teoreemis 1 saime max

0⩽i⩽n
|mi − f ′

i | ⩽

⩽
1

24
h3∥f IV ∥∞. Arvestades veel, et t(1 − t) ⩽

1

4
, saame hinnangus (6) teguriks

h4∥f IV ∥∞ ees
1

4
· 1

24
+

1

384
=

5

384
.

Vaatleme veel kolmandate tuletiste hindamist, kasutades võrratust(4). Teame,

et |S ′
1(x; f

′′)− f ′′′(x)| ⩽ 1

2
hi∥f IV ∥∞ ja max

0⩽i⩽n
|Mi − f ′′

i | ⩽
1

4
h2∥f IV ∥∞. Siis

|S ′′′(x)− f ′′′(x)| ⩽ 2

hi
· 1
4
h2∥f IV ∥∞ +

1

2
hi∥f IV ∥∞ =

=
1

2

(
h

hi
+
hi
h

)
h∥f IV ∥∞.

Vaatleme funktsiooni φ(x) =
h

x
+
x

h
, hmin ⩽ x ⩽ h. Siis φ′(x) = − h

x2
+

1

h
=

=
x2 − h2

hx2
⩽ 0, mis tähendab, et funktsioon φ on monotoonselt kahanev ning

seepärast
h

hi
+
hi
h

⩽
h

hmin

+
hmin

h
.
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Märkus. Oletame, et h→ 0, mis tähendab, et �kseeritud lõigu [a, b] korral vaadel-
dakse näiteks jaotuste ∆ jada (sel juhul muidugi jaotustes osalõikude arv n→ ∞).

Samas võib juhtuda, et
h2

hmin

→ 0 ei leia aset (see on võimalik ebaühtlase võr-

gu korral) ja leitud |S ′′′(x) − f ′′′(x)| hinnangust ei saa järeldada koondumist
∥S ′′′ − f ′′′∥∞ −→ 0.

Näitame, et teoreemis toodud hinnang ∥S − f∥∞ kohta ruumis C2W∞,4
∆ [a, b] ei

ole parandatav. Kasutame ühtlast võrku, s.t. h =
b− a

n
, xi = a+ ih, i = 0, . . . , n.

Vaatleme funktsiooni φ(x) =
1

24
(x4 − 2hx3 + h3x). De�neerime

f(x) =

{
φ(x− xi), x ∈ [xi, xi+1], i paaris,

−φ(x− xi), x ∈ [xi, xi+1], i paaritu.

Saame, et φ(0) = 0, φ(h) = 0, seepärast f(xi + 0) = φ(0) = 0, f(xi+1 − 0) =

= φ(h) = 0, mistõttu f ∈ C[a, b]. Leiame veel φ′(x) =
1

24
(4x3−6hx2+h3), millest

φ′(0) =
h3

24
, φ′(h) = −h

3

24
. Selle abil saame, kui i on paaris, siis f ′(x) = φ′(x− xi),

x ∈ [xi, xi+1], ja f
′(xi + 0) = φ′(0) =

h3

24
, f(xi+1 − 0) = φ′(h) = −h

3

24
; kui aga i

on paaritu, siis f ′(x) = −φ′(x− xi), x ∈ [xi, xi+1], ja f
′(xi + 0) = −φ′(0) = −h

3

24
,

f ′(xi+1 − 0) = −φ′(h) =
h3

24
. Nendest järeldub, et kui i on paaris, siis f ′(xi − 0) =

=
h3

24
ja f ′(xi+0) =

h3

24
, kui aga i on paaritu, siis f ′(xi−0) = −h

3

24
, f ′(xi + 0) = −h

3

24
.

Järgnevalt saame φ′′(x) =
1

24
(12x2 − 12hx), φ′′(0) = 0, φ′′(h) = 0, seepärast

f ′′(xi − 0) = f ′′(xi + 0) = 0 ja f ∈ C2[a, b]. Veel φ′′′(x) =
1

24
(24x − 12h),

φ′′′(0) = −h
2
, φ′′′(h) =

h

2
, mis annab, et f ′′′ on pidev (analüüs on samasugune

nagu f ′ pidevuse näitamisel). Lõpuks leiame φIV (x) = 1 ning

f IV (x) =

{
1, x ∈ [xi, xi+1], i paaris,

−1, x ∈ [xi, xi+1], i paaritu.

Funktsiooni f käitumine on ette kujutatav järgmiselt jooniselt

x0 x1 x2 x3 x4 xn
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Oleme näidanud, et f ∈ C2W∞,4
∆ [a, b], ∥f IV ∥∞ = 1. Interpoleeriv kuupsplain

näiteks rajatingimustel S ′′(x0) = f ′′(x0), S
′′(xn) = f ′′(xn) tuleb S = 0, sest

S(xi) = f(xi) = 0, i = 0, . . . , n. Seepärast ∥S − f∥∞ = ∥f∥∞. Näiteks osalõi-
gus [x0, x1] on f(x) = φ(x − x0) ning meil on vaja leida selle funktsiooni abso-

luutväärtuse maksimaalne väärtus. Vahetu arvutus näitab, et φ

(
h

2

)
=

5

384
h4,

φ′
(
h

2

)
= 0, φ′′(x) =

1

2
x(x − h) ⩽ 0, mis ütleb, et vahemikus (0, h) on φ′ kaha-

nev ja
h

2
on ainus φ maksimumpunkt. Niisiis, ∥f∥∞ =

5

384
h4, mis tõestab tabelis

toodud hinnangu mitteparandatavuse.



�10. Silumisülesanded

Eeldame, et on antud argumendi väärtused a = x0 < x1 < . . . < xn = b, lisaks
vastavad arvud fi, i = 0, . . . , n. Soovitakse saada funktsiooni f : [a, b] → R, mis
kuidagi kirjeldaks andmete sõltuvust. Interpoleerimine ei ole alati mõistlik, kui
näiteks fi on antud mõõtmisvigadega, sest need on saadud mingi eksperimendi
käigus. Arv n võib olla suur, s.t. mõõtmisi tehakse palju. Interpoleerimisel võib
pilt olla järgmine:

interpolant

tegelik sõltuvus

Üks võimalus reaalset sõltuvust leida on vähimruutude meetod. Valitakse funkt-
sioon φ(x, c0, . . . , cm), kus c0, . . . , cm on määramisele tulevad parameetrid, ja nõu-

takse, et
n∑

i=0

(φ(xi, c0, . . . , cm)− fi)
2 oleks minimaalne. See on optimiseerimise

valdkonna ülesanne ja üldiselt väga komplitseeritud. Kui φ on näiteks polünoom:
φ(x, c0, . . . , cm) = c0+ c1x+ . . .+ cmx

m, siis saadakse parameetrite ci määramiseks
lineaarne süsteem, tihti mõeldaksegi vähimruutude meetodi all seda varianti. Mõ-
nikord mõeldakse vähimruutude meetodi all ainult varianti, kus φ(x, c1, c2) =
= c0 + c1x, selle graa�k on sirge. Silumisülesannetes, mida siin vaatame, ei ole
funktsioon φ ette antud.

1. Sobolevi ruum Hm(a, b) = W 2,m(a, b)

De�neerime

Hm(a, b) =
{
u ∈ L2(a, b) | u′, . . . , u(m) ∈ L2(a, b)

}
=

/ siin mõeldakse tuletisi distributsioonide mõttes;

72
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kui u ∈ L2(a, b), siis on olemas u(k) ∈ D′(a, b), k = 1, 2, . . . /

=
{
u ∈ L2(a, b) | u(m−1) on absoluutselt pidev, u(m) ∈ L2(a, b)

}
.

Viimases määrangus mõeldakse tavalist tuletist, s.o. u′(x) = lim
h→0

u(x+ h)− u(x)

h
.

Kui u on absoluutselt pidev, siis on olemas u′(x) peaaegu kõikide x ∈ (a, b) korral
(nende x väärtuste hulk, kus tuletist ei eksisteeri, on nullmõõduline). Kui u on
absoluutselt pidev, siis

u(x) = u(a) +

x∫
a

u′(s) ds.

Kui u ja v on absoluutselt pidevad, siis

b∫
a

u′v dx = uv
∣∣∣b
a
−

b∫
a

uv′ dx.

Meenutame, et f : [a, b] → R nimetatakse absoluutselt pidevaks, kui iga ε > 0

korral on olemas δ > 0 nii, et kui
n∑

i=1

|bi − ai| < δ, (ai, bi) ⊂ [a, b] iga i korral,

n ∈ N on suvaline, (ai, bi) ∩ (aj, bj) = ∅, kui i ̸= j, siis
n∑

i=1

|f(bi) − f(ai)| < ε.

Kui n = 1, siis on tegemist ühtlase pidevusega. Kehtivad implikatsioonid: f on
absoluutselt pidev ⇒ f on ühtlaselt pidev ⇒ f on pidev, seejuures antud juhul,
kus f : [a, b] → R, on viimane implikatsioon pööratav. Hulk Hm(a, b) on Hilberti
ruum, selles on skalaarkorrutis

(u, v)Hm(a,b) =
m∑
j=0

(
u(j), v(j)

)
L2(a,b)

=
m∑
j=0

b∫
a

u(j)(x)v(j)(x) dx.

Kehtivad sisalduvused Cm[a, b] ⊂ Hm(a, b) ⊂ Cm−1[a, b].

2. Silumisülesannete püstitused

Antud on lõigu [a, b] jaotus ∆: a = x0 < x1 < . . . < xn = b, sõlmedele xi
vastavad arvud f0, f1, . . . , fn, arvud pi > 0, i = 0, . . . , n, veel p > 0. Arve pi ja p
nimetatakse kaaludeks.
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Silumisülesanne 1. Leida f ∈ H2(a, b), mille korral funktsionaali

J(f) =

 n∑
i=0

pi (f(xi)− fi)
2 + p

b∫
a

(f ′′(x))
2
dx

1/2

väärtus oleks minimaalne.
Lühidalt võib selle kirjutada min

f∈H2(a,b)
J(f).

Silumisülesanne 2. Antud on xi, fi, pi, ε > 0. Leida f ∈ H2(a, b), mille korral

J0(f) =

 b∫
a

(f ′′(x))
2
dx

1/2

oleks minimaalne tingimusel

(
n∑

i=0

pi (f(xi)− fi)
2

)1/2

⩽ ε.

Lühidalt saab selle kirjutada ülesandena min
f∈Kε

J0(f), kus

Kε =

f ∈ H2(a, b)

∣∣∣∣∣
(

n∑
i=0

pi (f(xi)− fi)
2

)1/2

⩽ ε

 .

Silumisülesanne 3. Antud on xi, fi, pi, M > 0. Leida f ∈ H2(a, b), mille korral

J1(f) =

(
n∑

i=0

pi(f(xi)− fi)
2

)1/2

oleks minimaalne tingimusel

 b∫
a

(f ′′(x))
2
dx

1/2

⩽M .

Lühidalt on see ülesanne min
f∈LM

J1(f), kus

LM =

f ∈ H2(a, b)

∣∣∣∣∣
 b∫

a

(f ′′(x))
2
dx

1/2

⩽M

 .

Silumisülesandes 2 on antud lubatav kõrvalekalle f(xi) ja fi vahel, täpsemalt,
nende kõikide kõrvalekallete kombinatsioon etteantud kaaludega ei tohi ületada
antud määra. Minimiseeritakse seejuures funktsiooni tervet kõverust lõigus [a, b],
mida võib ette kujutada järgmisel joonisel, kus punktid näitavad antud (xi, fi)
asukohta, pidev joon tähendab lahendit, üks katkendlik joon interpolanti ja teine
katkendlik joon lubatavate kõrvalekalletega funktsiooni:
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Silumisülesandes 3 on antud joone lubatav kõverus (seda väljendab kõvera kuju),
minimiseeritakse kõrvalekallete kombinatsiooni:

Silumisülesandes 1 tuleb minimiseerida terve funktsionaal

J(f) =
(
J2
0 (f) + pJ2

1 (f)
)1/2

,

seda võib käsitleda kompromissina silumisülesannete 2 ja 3 vahel.
Silumisülesanded 1�3 on kaaludega silumisülesanded, seejuures silumisülesan-

net 1 võib nimetada klassikaliseks silumisülesandeks. Kõrvuti nendega on loomulik
vaadelda tõketega silumisülesannet, milles on antud xi, fi, εi ⩾ 0, i = 0, . . . , n,
de�neeritakse

K =
{
f ∈ H2(a, b)

∣∣ |f(xi)− fi| ⩽ εi, i = 0, . . . , n
}

ning on vaja leida f ∈ H2(a, b), mille korral J0(f) oleks minimaalne tingimusel
f ∈ K. Tõketega silumisülesande sarnasus silumisülesandega 2 on näiline, tegeli-
kult on nad väga erinevad. Kuigi tõketega silumisülesanne on palju praktilisem, on
teda oluliselt raskem lahendada kui kaaludega ülesandeid. See on üks põhjustest,
miks me selles kursuses tõketega silumisülesandeid ei käsitle.

3. Minimaalse poolnormiga interpolant

Siin vaatleme ülesannet

Alusülesanne. Antud on xi, fi, i = 0, . . . , n, leida f ∈ H2(a, b), mille korral

J0(f) =

 b∫
a

(f ′′(x))
2
dx

1/2

oleks minimaalne tingimustel f(xi) = fi, i = 0, . . . , n.
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Seda võib vaadata ka silumisülesandena 2, kus on võetud ε = 0, kuid säilitame
silumisülesandes 2 ikka ε > 0. Märgime, et J0 on poolnorm ruumis H2(a, b).

Lemma (Holladay, 1957). Alusülesande ainsaks lahendiks on kuupsplain S ∈ S3,1
∆ ,

mis rahuldab interpolatsioonitingimusi S(xi) = fi, i = 0, . . . , n, ja rajatingimusi
S ′′(a) = S ′′(b) = 0.

Seda lahendit nimetatakse loomulikuks kuupsplainiks või naturaalsplainiks. Vaa-
deldavaid rajatingimusi nimetatakse loomulikeks rajatingimusteks. Lemma on üks
olulisemaid lähtetulemusi splainide teoorias.

Tõestus. Eespool toodud kuupsplainidega interpoleerimise teooriast teame, et sel-
line kuupsplain S on üheselt määratud, S ∈ C2[a, b] ⊂ H2(a, b). Tarvilik ja piisav
on näidata, et selline S on alusülesande ainus lahend.
Võtame suvalise f ∈ H2(a, b), mille korral f(xi) = fi, i = 0, . . . , n. Tõestame

esialgu võrduse

b∫
a

(f ′′(x))
2
dx =

b∫
a

(S ′′(x))
2
dx+

b∫
a

(f ′′(x)− S ′′(x))
2
dx. (1)

Selle võrduse võib ka kirjutada

J2
0 (f) = J2

0 (S) + J2
0 (f − S),

kuid praegu ei ole see oluline. Teisendades saame

b∫
a

(f ′′(x))
2
dx =

b∫
a

(f ′′(x)− S ′′(x) + S ′′(x))
2
dx =

=

b∫
a

(f ′′(x)− S ′′(x))
2
dx+ 2

b∫
a

(f ′′(x)− S ′′(x))S ′′(x) dx+

+

b∫
a

(S ′′(x))
2
dx.

Näitame, et

b∫
a

(f ′′(x)− S ′′(x))S ′′(x) dx = 0. Ositi integreerides saame

b∫
a

(f ′′(x)− S ′′(x))S ′′(x) dx =
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= (f ′(x)− S ′(x))S ′′(x)
∣∣∣x=b

x=a
−

b∫
a

(f ′(x)− S ′(x))S ′′′(x) dx.

Selles (f ′(x)− S ′(x))S ′′(x)
∣∣∣x=b

x=a
= 0, sest S ′′(a) = S ′′(b) = 0. Veel saame

b∫
a

(f ′(x)− S ′(x))S ′′′(x) dx =
n∑

i=1

xi∫
xi−1

(f ′(x)− S ′(x))S ′′′(x) dx =

/ kasutame asjaolu, et S ′′′ on intervallides (xi−1, xi) konstantne,

sest ta on kuuppolünoomi kolmas tuletis /

=
n∑

i=1

S ′′′
(
xi−1 + xi

2

) xi∫
xi−1

(f ′(x)− S ′(x)) dx,

seejuures
xi∫

xi−1

(f ′(x)− S ′(x)) dx = (f(x)− S(x))

∣∣∣∣x=xi

x=xi−1

= 0,

mis tuleb interpolatsioonitingimustest f(xi) = S(xi), i = 0, . . . , n. Sellega on võr-
dus (1) tõestatud.
Võrdusest (1) järeldub, et J0(f) ⩾ J0(S), sest J

2
0 (f − S) ⩾ 0 ja ka J0(f) ⩾ 0,

J0(S) ⩾ 0. Oleme tõestanud, et vaadeldav interpolant S on alusülesande lahend.
Näitame, et S on ainus lahend. Oletame, et f ∈ H2(a, b) on samuti alusüles-

ande lahend. Siis J0(f) = J0(S) ja

b∫
a

(f ′′(x)− S ′′(x))
2
dx = 0. Sellest järeldub

integraalialuse funktsiooni mittenegatiivsuse tõttu, et f ′′(x)− S ′′(x) = 0 peaaegu
kõikjal. Kehtib võrdus

f ′(x)− S ′(x) = f ′(a)− S ′(a) +

x∫
a

(f ′′(s)− S ′′(s)) ds,

mida saab väita ruumi H2(a, b) kuuluva funktsiooni f − S korral. Kuid et

f ′′(s)− S ′′(s) = 0 peaaegu kõikjal, siis

x∫
a

(f ′′(s)− S ′′(s)) ds = 0 ja f ′(x)−S ′(x) =

= f ′(a)− S ′(a) = α (kasutame siin tähte α konstandi tähisena). Nüüd kasvõi ha-
riliku diferentsiaalvõrrandi f ′(x) − S ′(x) = α lahendina leiame, et f(x) − S(x) =
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= αx + β. Kasutades jälle interpolatsioonitingimuste täidetust, S(xi) = f(xi),
saame αxi + β = 0, i = 0, . . . , n, n ⩾ 1, seepärast αx + β = 0, x ∈ [a, b]. See aga
tähendab, et f = S.

4. Klassikalise kaaludega silumisülesande lahendi olemasolu

Näitame siin, et silumisülesandel 1 on olemas lahend. See oli ülesanne

min
f∈H2(a,b)

J(f), J(f) =

 n∑
i=0

pi (f(xi)− fi)
2 + p

b∫
a

(f ′′(x))
2
dx

1/2

,

antud oli xi, fi, pi, p. Tähistame d = inf
f∈H2(a,b)

J(f). Siin inf
f∈H2(a,b)

J(f) eksistee-

rib reaalarvuna, sest J(f) ⩾ 0 iga f ∈ H2(a, b) korral, seejuures d ⩾ 0. Võ-
tame minimiseeriva jada fm ∈ H2(a, b), see on jada, mille korral J(fm) → d,
kui m → ∞. Minimiseeriv jada eksisteerib alati, sest in�imumi mõiste koha-
selt võib funktsionaali väärtustega sellele kuitahes lähedale jõuda. Muidugi leiab
aset võrratus d ⩽ J(fm). Leiame interpoleerivad kuupsplainid Sm ∈ S3,1

∆ nii, et
Sm(xi) = fm(xi), i = 0, . . . , n, S ′′

m(a) = S ′′
m(b) = 0, seejuures kuupsplainide in-

terpoleerimise teooriast teame, et splainid Sm on olemas ja üheselt määratud.
Alusülesande põhjal võime öelda, et J0(Sm) ⩽ J0(fm). Lisaks, interpoleerimisest
järeldub, et J1(Sm) = J1(fm), seepärast J(Sm) ⩽ J(fm). Arvestades veel võrratust
d ⩽ J(Sm), saame d ⩽ J(Sm) ⩽ J(fm) ning J(fm) → d tõttu J(Sm) → d, s.t. ka
Sm on minimiseeriv jada.
Vaatleme ruumi S3,1

0,∆ =
{
S ∈ S3,1

∆ | S ′′(a) = S ′′(b) = 0
}
. See ruum on lõpliku-

mõõtmeline, sest ta on lõplikumõõtmelise ruumi S3,1
∆ alamruum. Kasutame ruumis

S3,1
0,∆ kahte normi. Olgu

∥S∥1 = ∥S∥C2[a,b] = ∥S∥C[a,b] + ∥S ′∥C[a,b] + ∥S ′′∥C[a,b],

∥S∥2 = max
0⩽i⩽n

|S(xi)|.

Esimene neist on norm ruumi C2[a, b] alamruumis. Näitame, et teine on norm. On
selge, et

∥λS∥2 = |λ|∥S∥2,
∥S1 + S2∥2 ⩽ ∥S1∥2 + ∥S2∥2.

Olgu ∥S∥2 = 0. Siis S(xi) = 0, i = 0, . . . , n, ning et S ′′(a) = S ′′(b) = 0, siis
interpolatsiooniülesande ühese lahenduvuse põhjal S = 0.
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Näitame järgnevas, et ∥Sm∥2 on tõkestatud. Teame, et J(Sm) ⩽ c1, sest J(Sm)
on koonduv jada, c1 on tõkke tähis. Siis

n∑
i=0

pi (Sm(xi)− fi)
2 ⩽ c21,

millest järeldub, et

pi (Sm(xi)− fi)
2 ⩽ c21, i = 0, . . . , n.

Sellest omakorda saame iga i = 0, . . . , n korral

|Sm(xi)− fi| ⩽
c1

min
0⩽i⩽n

√
pi

= c2,

kus võtsime kasutusele c2 uue konstandi tähisena. Viimasest võrratusest tuleb

|Sm(xi)| ⩽ |Sm(xi)− fi|+ |fi| ⩽ c2 + max
0⩽i⩽n

|fi| = c3,

kus c3 on jälle konstandi tähis. Oleme saanud, et ∥Sm∥2 ⩽ c3. Lõplikumõõtmelises
ruumis on igal tõkestatud jadal olemas koonduv osajada, seepärast on olemas
N ′ ⊂ N (lõpmatu indeksite osahulk), S ∈ S3,1

0,∆ nii, et ∥Sm −S∥2 → 0, kui m ∈ N ′.
Lõplikumõõtmelises ruumis on kõik normid paarikaupa ekvivalentsed, seepärast
∥Sm − S∥1 → 0,m ∈ N ′. Viimasest järeldub, et S ′′

m(x) → S ′′(x) ühtlaselt lõigus
[a, b], samuti Sm(xi) → S(xi), i = 0, . . . , n, kui m ∈ N ′. Siis ikka m ∈ N ′ korral
nende koondumiste tõttu

J(Sm) =

 n∑
i=0

pi (Sm(xi)− fi)
2 + p

b∫
a

(S ′′
m(x))

2
dx

1/2

→

→ J(S) =

 n∑
i=0

pi (S(xi)− fi)
2 + p

b∫
a

(S ′′(x))
2
dx

1/2

.

Et J(Sm) → d, siis J(S) = d, mis ütleb, et S on silumisülesande 1 lahend.

Ülesanne 15. Tõestada, et silumisülesannetel 2 ja 3 on olemas lahendid hulgas
S3,1
0,∆. Soovitus: püüda modi�tseerida eelnevat tõestust. Hoiatus: olla tähelepanelik

arutluse jälgimisel, tervikuna arutelu ei sobi silumisülesannete 2 ja 3 puhul.

Olgu X vektorruum, funktsiooni (või funktsionaali) f : X → R nimetatakse
rangelt kumeraks, kui iga x1, x2 ∈ X, x1 ̸= x2, ja iga λ ∈ (0, 1) korral

f (λx1 + (1− λ)x2) < λf(x1) + (1− λ)f(x2).
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Lause. Kui f on rangelt kumer, siis ülesandel min
x∈X

f(x) ei saa olla kahte erinevat

lahendit.

Põhjenduseks märgime, et kui elemendid x1, x2 ∈ X, x1 ̸= x2, on lahendid, siis

f

(
1

2
(x1 + x2)

)
<

1

2
f(x1) +

1

2
f(x2) = min

x∈X
f(x), mis on vastuolu.

Ülesanne∗ 4. Tõestada, et klassikalises silumisülesandes 1 vaadeldud funktsionaal
J : H2(a, b) → R on rangelt kumer.

Järeldus. Klassikalise silumisülesande 1 lahend on ühene.

5. Tehniline abitulemus

Lemma. Iga f ∈ H2(a, b) ja iga S ∈ S3,1
0,∆ korral kehtib

J2(f)− J2(S) =
n∑

i=0

pi (f(xi)− S(xi))
2 + p

b∫
a

(f ′′(x)− S ′′(x))
2
dx+ (2)

+ 2
n∑

i=0

(f(xi)− S(xi)) (pi (S(xi)− fi) + p (S ′′′(xi + 0)− S ′′′(xi − 0))) ,

kus S ′′′(x0 − 0) = 0, S ′′′(xn + 0) = 0.

Tõestus. Teisendame

J2(f)− J2(S) =
n∑

i=0

pi (f(xi)− fi)
2 + p

b∫
a

(f ′′(x))
2
dx−

−
n∑

i=0

pi (S(xi)− fi)
2 − p

b∫
a

(S ′′(x))
2
dx =

/ kasutame siin vahetult kontrollitavat võrdust A2 −B2 = (A−B)2 +

+ 2(A−B)B, võttes summas A = f(xi)− fi, B = S(xi)− fi

ja integraalis A = f ′′(x), B = S ′′(x) /

=
n∑

i=0

pi (f(xi)− S(xi))
2 + p

b∫
a

(f ′′(x)− S ′′(x))
2
dx+

+ 2
n∑

i=0

pi (f(xi)− S(xi)) (S(xi)− fi) +
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+ 2p

b∫
a

(f ′′(x)− S ′′(x))S ′′(x) dx.

Siin on vaja teisendada ainult viimast liidetavat, milles integreerime ositi:

b∫
a

(
f ′′(x)− S ′′(x)

)
S ′′(x) dx =

=
(
f ′(x)− S ′(x)

)
S ′′(x)

∣∣∣x=b

x=a
−

b∫
a

(
f ′(x)− S ′(x)

)
S ′′′(x) dx =

/ esimene liidetav on 0, sest S ′′(a) = 0, S ′′(b) = 0 /

= −
n∑

i=1

xi∫
xi−1

(
f ′(x)− S ′(x)

)
S ′′′(x)dx =

= −
n∑

i=1

S ′′′
(xi−1 + xi

2

)(
f(x)− S(x)

)∣∣∣x=xi

x=xi−1

=

= −
n∑

i=1

S ′′′(xi − 0)
(
f(xi)− S(xi)

)
+

n∑
i=1

S ′′′(xi−1 + 0)
(
f(xi−1)− S(xi−1)

)
=

/ esimeses summas võime lisada indeksi 0, sest S ′′′(x0 − 0) = 0,

teises summas teeme indeksi nihke /

= −
n∑

i=0

S ′′′(xi − 0)
(
f(xi)− S(xi)

)
+

n−1∑
i=0

S ′′′(xi + 0)
(
f(xi)− S(xi)

)
=

/ lisame teises summas indeksi n, sest S ′′′(xn + 0) = 0 /

=
n∑

i=0

(
S ′′′(xi + 0)− S ′′′(xi − 0)

)(
f(xi)− S(xi)

)
.

6. Klassikalise kaaludega silumisülesande lahendit iseloomus-

tav tarvilik ja piisav tingimus

Lause. Loomulik splain S ∈ S3,1
0,∆ on silumisülesande 1 lahend parajasti siis, kui

pi

(
S(xi)− fi

)
+ p
(
S ′′′(xi + 0)− S ′′′(xi − 0)

)
= 0, i = 0, . . . , n, (3)

kus S ′′′(x0 − 0) = 0, S ′′′(xn + 0) = 0.
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Tõestus. Tingimuse (3) piisavus. Kui splaini S ∈ S3,1
0,∆ korral (3) kehtib, siis võr-

duse (2) põhjal iga f ∈ H2(a, b) korral J2(f) ⩾ J2(S), mis tähendab, et S on
silumisülesande 1 lahend.
Tingimuse (3) tarvilikkus. Olgu S ∈ S3,1

0,∆ silumisülesande 1 lahend. Oletame
vastuväiteliselt, et (3) ei kehti. Siis on olemas indeks k ∈ {0, . . . , n} nii, et

K = pk (S(xk)− fk) + p (S ′′′(xk + 0)− S ′′′(xk − 0)) ̸= 0.

Võtame splaini S ∈ S3,1
0,∆ nii, et S(xk) = 1, S(xi) = 0, i = 0, . . . , n, i ̸= k. Olgu

f(x) = S(x) + δS(x), kus δ ̸= 0, mille valime hiljem. Võib öelda, et f ∈ H2(a, b),
isegi f ∈ S3,1

0,∆. Siis võrdusele (2) tuginedes saame

J2(f)− J2(S) =
n∑

i=0

piδ
2
(
S(xi)

)2
+ pδ2

b∫
a

(
S
′′
(x)
)2
dx+ 2δS(xk)K = cδ2 + 2Kδ,

kus c = pk + p

b∫
a

(
S
′′
(x)
)2
dx > 0, sest S(xi) = 0, i ̸= k.

Kui K > 0, siis vaatleme protsessi δ → 0−, kui aga K < 0, siis olgu δ → 0+.
See tagab, et küllalt väikese |δ| ≠ 0 korral cδ2 + 2Kδ < 0, mis annab vastuolulise
J(f) < J(S). Liidetavate cδ2 ja 2Kδ käitumist iseloomustab joonis

δ

cδ2

K < 0K > 0

2Kδ2Kδ

7. Klassikalise kaaludega silumisülesande lahendi ühesus

Siiani oleme tõestanud silumisülesande 1 lahendi olemasolu ja näidanud, kuidas
on võimalik näidata lahendi ühesust. Selles punktis esitame veel teise võimaluse
lahendi ühesuse saamiseks.
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Olgu S ∈ S3,1
0,∆ silumisülesande 1 lahend. Siis iga f ∈ H2(a, b) korral on võrdus

(2) tingimuse (3) põhjal

J2(f)− J2(S) =
n∑

i=0

pi (f(xi)− S(xi))
2 + p

b∫
a

(f ′′(x)− S ′′(x))
2
dx.

Kui f ∈ H2(a, b) on silumisülesande 1 lahend, siis J(f) = J(S) ja seega

f(xi)− S(xi) = 0, i = 0, . . . , n,

f ′′(x)− S ′′(x) = 0 peaaegu kõikjal.

Eespool juba nägime, et siis f(x)−S(x) = αx+ β ja n ⩾ 1 tõttu f(x)−S(x) = 0
iga x ∈ [a, b] korral ehk f = S.

8. Klassikalise kaaludega silumisülesande lahendi leidmine

Teame, et silumisülesandel 1 on olemas ühene lahend S ∈ S3,1
0,∆, mille korral

on rahuldatud tingimused (3). Splain S on osalõigus [xi−1, xi] selline, et S
′′ on

lineaarne, S ′′′ on konstantne, seepärast S ′′′(xi−1+0) = S ′′′(xi−0) =
Mi −Mi−1

xi − xi−1

=

=
Mi −Mi−1

hi
, kus Mi = S ′′(xi). Illustreerivaks on joonis

xi−1 xi

Mi−1

Mi

S ′′

Võrdused (3) saame nüüd kirjutada (tähistades Si = S(xi))

p0(S0 − f0) + p
M1 −M0

h1
= 0,

pi(Si − fi) + p

(
Mi+1 −Mi

hi+1

− Mi −Mi−1

hi

)
= 0, i = 1, . . . , n− 1,

pn(Sn − fn) + p

(
−Mn −Mn−1

hn

)
= 0.

(4)
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Splaini määramiseks on meil praegu kasutada tundmatud S0, . . . , Sn, M0, . . . ,Mn,
võrrandite arv süsteemis (4) on n+ 1. Lisame veel n+ 1 võrrandit

M0 = 0,

µiMi−1 + 2Mi + λiMi+1 = 6

Si+1 − Si

hi+1

− Si − Si−1

hi
hi + hi+1

, i = 1, . . . , n− 1,

Mn = 0,

(5)

kus on kirjas loomulikud rajatingimused ja alati kehtivad splaini sisevõrrandid.
Võrdustest (4) saame avaldada

S0 = f0 −
p

p0

M1 −M0

h1
,

Si = fi −
p

pi

(
Mi+1 −Mi

hi+1

− Mi −Mi−1

hi

)
, i = 1, . . . , n− 1,

Sn = fn −
p

pn

(
−Mn −Mn−1

hn

)
.

(6)

Asendame need võrranditesse (5). Sellega tekib lineaarne võrrandisüsteem, mil-
le tähistame AM = d, kus M = (M0, . . . ,Mn) ja A on viiediagonaalne, sest
võrrand indeksiga i sisaldab tundmatuid Mi−2,Mi−1,Mi,Mi+1,Mi+2, seda küll
i = 2, . . . , n − 2 korral. Muidugi on selles süsteemis esimene ja viimane võrrand
triviaalsed, need annavad M0 = 0,Mn = 0 ning teistes võrrandites saab need ära
jätta, millega tekib n− 1 tundmatuga M1, . . . ,Mn−1 süsteem, milles on n− 1 võr-
randit. Eelneva käsitluse põhjal on see süsteem üheselt lahenduv, sest selle lahen-
damine annab üheselt splaini kui lahendi parameetrid Mi. Arvud Si saab seejärel
arvutada võrdustest (6) ning sellega on määratud splain S : [a, b] → R eraldi igas
osalõigus [xi−1, xi].

Ülesanne∗ 5. Tõestada, et splaini parameetreid Mi määravas süsteemis AM = d
võib diagonaali ridade kaupa domineerimine puududa. Soovitus: vaadelda ühtlast
võrku ja juhtu, kus kaalud pi on kõik võrdsed.

Märkus. Silumisülesannete 2 ja 3 lahendid ei tarvitse olla ühesed. Näiteks piisab
võtta punktid (xi, fi), i = 0, . . . , n, ühel sirgel ning siis on interpolandiks ülimalt
esimese astme polünoom S (sellega ka ruumis S3,1

0,∆), mille korral J0(S) = 0 ja
J1(S) = 0. Silumisülesandes 2 on sirgele S lähedase sirge S ∈ Kε korral ikka
J0
(
S
)
= 0. Silumisülesandes 3 aga tarvitseb võtta sirgest S vähe erinev interpolant

S ∈ LM , siis J1(S) = 0.



�11. Harilike diferentsiaalvõrrandite rajaülesannete
lahendamine kuupsplainidega kollokatsioonimee-
todil

1. Rajaülesande püstitus

Vaatleme diferentsiaalvõrrandit

(Lu)(x) = p(x)u′′(x) + q(x)u′(x) + r(x)u(x) = f(x), x ∈ (a, b), (1)

millele on lisatud rajatingimused

α1u(a) + β1u
′(a) = γ1,

α2u(b) + β2u
′(b) = γ2.

(2)

Siin p, q, r, f on antud funktsioonid, α1, α2, β1, β2, γ1, γ2 on antud arvud,
u : [a, b] → R on otsitav funktsioon, Lu tähistab diferentsiaaloperaatori raken-
damisel saadud funktsiooni (L on niisiis lineaarne diferentsiaaloperaator). Raja-
tingimuste tähtis erijuht on α1 = α2 = 1, β1 = β2 = 0, mis annab

u(a) = γ1,

u(b) = γ2.

Eeldame, et rajaülesandel (1), (2) on olemas lahend u ∈ C2[a, b]. Ühesuseks lahendi
olemasolul on piisav, et p, q, r, f ∈ C[a, b], p(x) ⩾ pc > 0, r(x) ⩽ rc < 0, x ∈ [a, b],
α1, α2, β2 ⩾ 0, β1 ⩽ 0, |αi|+ |βi| ≠ 0, i = 1, 2.

2. Kuupsplainidega kollokatsioonimeetod

Olgu antud rajaülesanne (1), (2). Valime võrgu ∆: a = x0 < x1 < . . . < xn = b.
Siis dimS3,1

∆ = n+ 3. Rajaülesandele (1), (2) otsime lähislahendit un ∈ S3,1
∆ . Selle

määramiseks peaks olema n+ 3 sobivat tingimust. Nõuame, et

(Lun)(xi) = f(xi), i = 0, . . . , n,

85
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α1un(a) + β1u
′
n(a) = γ1, (3)

α2un(b) + β2u
′
n(b) = γ2,

neid tingimusi on kokku n + 3. Seega nõuame, et lähislahend rahuldaks täpselt
rajatingimusi ning rahuldaks diferentsiaalvõrrandit võrgu sõlmedes. Viimaseid ni-
metatakse kollokatsioonitingimusteks. Seame eesmärgiks vastata järgmistele loo-
mulikele küsimustele: kas selline splain un ∈ S3,1

∆ eksisteerib (lähislahendi ole-
masolu ehk lähismeetodi rakendatavus), kas un on üheselt määratud (lähislahendi
ühesus), kuidas lähislahendit un leida?
Kasutame siin normaliseeritud kuup-B-splaine. Võtame lisasõlmed nii, et

x−3 < x−2 < x−1 < x0 < . . . < xn < xn+1 < xn+1 < xn+3.

Siis saame moodustada (normaliseeritud) B-splainid B−3, . . . , Bn−1, nad on küll
algselt määratud reaalsirgel R, aga nende ahendid lõigule [a, b] moodustavad baasi
ruumis S3,1

∆ [a, b]. Normaliseerituse tõttu

n−1∑
i=−3

Bi(x) = 1, x ∈ [a, b].

Seejuures suppBi = [xi, xi+4] ning maksab silmas pidada järgmist joonist

xi−3 xi−2 xi−1 xi xi+1 xi+2 xi+3 xi+4

Bi−3 Bi−2 Bi−1 Bi

Näeme, et

Bj(xi) = 0, B′
j(xi) = 0, B′′

j (xi) = 0, kui j < i− 3 või j > i− 1, (4)

mis järeldub kandjat arvestades asjaolust, et kuup-B-splainid on kaks korda pide-
valt diferentseeruvad tervel reaalteljel.
Kasutame lähislahendi un esituses neid B-splaine, siis

un(x) =
n−1∑
i=−3

ciBi(x)

ning un teadmiseks on tarvilik ja piisav määrata kordajad ci. Omadusi (4) arves-
tades saame

(Lun)(xi) =

(
L

(
n−1∑
j=−3

cjBj

))
(xi) =

n−1∑
j=−3

cj(LBj)(xi) =
i−1∑

j=i−3

cj(LBj)(xi).
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Selles
(LBj)(xi) = p(xi)B

′′
j (xi) + q(xi)B

′
j(xi) + r(xi)Bj(xi)

ning kollokatsioonitingimused ehk kollokatsioonivõrrandid saame kirjutada

ci−3(LBi−3)(xi) + ci−2(LBi−2)(xi) + ci−1(LBi−1)(xi) = f(xi), i = 0, . . . , n.

Tähistame selles võrduses Ai = (LBi−3)(xi), Bi = (LBi−2)(xi), Ci = (LBi−1)(xi),
siis kollokatsioonivõrrandid on

Aici−3 +Bici−2 + Cici−1 = f(xi), i = 0, . . . , n.

Kordajad Ai, Bi, Ci saab välja arvutada ja seda me hiljem (erijuhul) teemegi.
Loodame, et kordaja Bi ei lähe segi B-splainiga, sest kontekstist on selge, et üks
neist on arv, teine aga funktsioon. Esimene rajatingimus on kirjutatav un esitust
arvestades kujul

α1(c−3B−3(x0) + c−2B−2(x0) + c−1B−1(x0)) +

+ β1(c−3B
′
−3(x0) + c−2B

′
−2(x0) + c−1B

′
−1(x0)) = γ1

ehk

c−3(α1B−3(x0) + β1B
′
−3(x0)) + c−2(α1B−2(x0) + β1B

′
−2(x0)) +

+ c−1(α1B−1(x0) + β1B
′
−1(x0)) = γ1

või
c−3B−1 + c−2C−1 + c−1D−1 = γ1,

kus B−1, C−1, D−1 tähistavad vastavaid kordajaid.

Ülesanne 16. Kirjutada välja teine rajatingimus analoogiliselt esimese rajatingi-
musega, tähistada sobivalt tundmatute ci kordajad teist rajatingimust väljendavas
võrrandis.

Ühendades rajatingimused ja kollokatsioonivõrrandid, jõuame süsteemini

B−1 C−1 D−1 0 0 . . . 0

A0 B0 C0 0 0 . . . 0

0 A1 B1 C1 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .





c−3

c−2

c−1

...

...

cn−1


=



γ1

f(x0)

f(x1)
...

f(xn)

γ2


.
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Eelistatavam on kolmediagonaalse maatriksiga süsteem, seepärast avaldame esi-
mesest rajatingimusest

c−3 =
γ1
B−1

− C−1

B−1

c−2 −
D−1

B−1

c−1

ning asendame selle esimeses kollokatsioonivõrrandis

A0c−3 +B0c−2 + C0c−1 = f(x0).

Selle tulemusena saame

c−2

(
B0 − A0

C−1

B−1

)
+ c−1

(
C0 − A0

D−1

B−1

)
= f(x0)− A0

γ1
B−1

,

milles tähistame ümber vastavad kordajad ja võrrand on siis

c−2B0 + c−1C0 = f 0.

Analoogiliselt toimime ka teise rajatingimusega ning jõuame kolmediagonaalse
maatriksiga süsteemini

B0c−2 + C0c−1 = f 0,

Aici−3 +Bici−2 + Cici−1 = fi, i = 0, . . . , n− 1, / siin fi = f(xi) /

Ancn−3 +Bncn−2 = fn

(5)

ehk 
B0 C0 0 0 . . . 0

A1 B1 C1 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . 0 An−1 Bn−1 Cn−1

0 . . . 0 0 An Bn





c−2

c−1

...

cn−3

cn−2


=



f 0

f1
...

fn−1

fn


. (5)

3. Lähislahendi olemasolu ja ühesus, koondumine

Eeldame, et ülesandel (1), (2) on olemas lahend u ∈ C4[a, b] ning on täidetud
punktis 1 toodud lahendi ühesust tagavad tingimused. Vaatleme punktis 2 kä-
sitletud kuupsplainidega kollokatsioonimeetodit. Olgu un ∈ S3,1

∆ interpolant, mis
määratakse tingimustega un(xi) = u(xi), i = 0, . . . , n, u′n(a) = u′(a), u′n(b) = u′(b).
Oleme tõestanud, et ∥un − u∥∞ = O(h4). Edaspidi vaatleme ühtlase võrgu juhtu,
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kus hi = h, i = 1, . . . , n, h =
b− a

n
. Näitame hiljem, et kollokatsioonimeetodil

saadav un ∈ S3,1
∆ on olemas ja ühene, kui h on piisavalt väike. Võime kasutada

hinnangut
∥un − u∥∞ ⩽ ∥un − un∥∞ + ∥un − u∥∞

ning näitame edaspidi, et ∥un − un∥∞ = O(h2). Siis muidugi ∥un − u∥∞ = O(h2).
Splainide un, un ∈ S3,1

∆ esitamiseks kasutame arendisi

un(x) =
n−1∑
i=−3

ciBi(x), un(x) =
n−1∑
i=−3

ciBi(x),

millest esimest juba kasutasime ja, nagu varemgi, Bi on normaliseeritud kuup-B-
splainid. Siis

un(x)− un(x) =
n−1∑
i=−3

(ci − ci)Bi(x),

mille abil

∥un − un∥∞ = max
a⩽x⩽b

∣∣∣ n−1∑
i=−3

(ci − ci)Bi(x)
∣∣∣ ⩽

⩽ max
a⩽x⩽b

n−1∑
i=−3

|ci − ci|Bi(x) ⩽

⩽ max
−3⩽i⩽n−1

|ci − ci| max
a⩽x⩽b

n−1∑
i=−3

Bi(x) =

= max
−3⩽i⩽n−1

|ci − ci|,

sest B-splainide normaliseerituse tõttu
n−1∑
i=−3

Bi(x) = 1 iga x ∈ [a, b] korral. Tähis-

tame ξi = ci − ci, i = −3, . . . , n− 1. Siis

un(x)− un(x) =
n−1∑
i=−3

ξiBi(x).

Saame

(L(un − un))(xi) = (Lun)(xi)− (Lun)(xi) =

/ kasutame kollokatsioonitingimusi (Lun)(xi) = f(xi), i = 0, . . . , n,
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seejärel asjaolu, et u on diferentsiaalvõrrandi lahend /

= (Lun)(xi)− f(xi) = (Lun)(xi)− (Lu)(xi) = (L(un − u))(xi) =

= p(xi)(u
′′
n(xi)− u′′(xi)) + q(xi)(u

′
n(xi)− u′(xi)) +

+ r(xi)(un(xi)− u(xi)) = δi,

kus võtsime kasutusele tähise δi. Eespool nägime, et un(xi)−u(xi) = O(h4) (tegeli-
kult un(xi)−u(xi) = 0), u′n(xi)−u′(xi) = O(h3), u′′n(xi)−u′′(xi) = O(h2), seepärast
δi = O(h2). Vaatame, milliseid rajatingimusi rahuldab splain un − un. Teame, et
α1un(a) + β1u

′
n(a) = γ1 ning α1u(a) + β1u

′(a) = γ1. Lisaks un(a) = u(a) inter-
polatsioonist ning u′n(a) = u′(a) interpolandi rajatingimustest. Nüüd α1un(a) +
+ β1u

′
n(a) = γ1 ja α1un(a) + β1u

′
n(a) = γ1 annavad, et α1(un − un)(a) +

+β1(un−un)
′(a) = 0. Sarnaselt näeme, et ka teises otspunktis b rahuldab un−un

vastavat homogeenset rajatingimust. Kokkuvõttes näeme, et kordajad ξi määra-
takse süsteemist 

α1(un − un)(a) + β1(un − un)
′(a) = 0,

(L(un − un)(xi) = δi, i = 0, . . . , n,

α2(un − un)(b) + β2(un − un)
′(b) = 0.

(6)

Eespool nägime, et un määratakse süsteemist (3), süsteemis (6) on un asemel
un−un ja võrrandite paremad pooled on teised. Süsteemi (6) alusel saame süsteemi
(5) analoogi kordajate ξi määramiseks, see tuleb

B0ξ−2 + C0ξ−1 = δ0,

Aiξi−3 +Biξi−2 + Ciξi−1 = δi, i = 1, . . . , n− 1,

Anξn−3 +Bnξn−2 = δn,

(7)

kus arvestasime seda, et süsteemis (3) olevate γ1 ja γ2 asemel tuleb süsteemis (7)
arv 0. Muidugi saab süsteemi (7) lahendite ξi abil määrata ξ−3 ja ξn−1 nagu ees-
pool elimineerimise käigus c−3 ja cn−1. Järgmine eesmärk on meil leida kordajad
Ai, Bi, Ci. Meenutame, et normaliseeritud B-splainide väärtusi saab leida rekur-
rentse seose abil, see oli varasemates tähistustes

B
i

m(x) =
x− xi

xi+m − xi
B

i

m−1(x) +
xi+m+1 − x

xi+m+1 − xi+1

B
i+1

m−1(x).

Ülesanne∗ 6. Tõestada, et ühtlase võrgu korral, kus hi = h iga i korral, leiavad
normaliseeritud B-splainide Bi = B

i

3 jaoks aset võrdused

Bi(xi+1) =
1

6
, Bi(xi+2) =

4

6
, Bi(xi+3) =

1

6
,
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B′
i(xi+1) =

1

2h
, B′

i(xi+2) = 0, B′
i(xi+3) = − 1

2h
,

B′′
i (xi+1) =

1

h2
, B′′

i (xi+2) = − 2

h2
, B′′

i (xi+3) =
1

h2
,

mida illustreerime ka joonisel

xi xi+1 xi+2 xi+3 xi+4

1
6

4
6

1
6

Bi

Soovitus: lähtepunktina kasutada võrduseid

B
i

1(xi) = 0, B
i

1(xi+1) = 1, B
i

1(xi+2) = 0.

xi xi+1 xi+2

1
B

i
1

Hoiatus: tuletiste väärtuste leidmisel võib mõnes kohas olla vajadus kasutada ühe-
poolseid piirväärtusi.

Meenutame veel, et algse rajaülesande lahendi ühesuse tagamiseks eeldasime,
et p(x) ⩾ pc > 0, r(x) ⩽ rc < 0. Kasutades *-ülesandes 6 toodud B-splainide ja
nende tuletiste väärtusi, saame leida i = 0, . . . , n korral

Ai = (LBi−3)(xi) = piB
′′
i−3(xi) + qiB

′
i−3(xi) + riBi−3(xi) =

=
pi
h2

− qi
2h

+
ri
6

ning Ai ⩾ 0, kui h on küllalt väike,

Bi = (LBi−2)(xi) = piB
′′
i−2(xi) + qiB

′
i−2(xi) + riBi−2(xi) = −2pi

h2
+

4ri
6

ning Bi < 0 igasuguse h korral,

Ci = (LBi−1)(xi) = piB
′′
i−1(xi) + qiB

′
i−1(xi) + riBi−1(xi) =

=
pi
h2

+
qi
2h

+
ri
6
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ning Ci ⩾ 0, kui h on küllalt väike. Nendes kordajates kasutasime lühemaid tähis-
tusi pi = p(xi), qi = q(xi), ri = r(xi). Kui on tegemist olukorraga, kus Ai ⩾ 0 ja
Ci ⩾ 0, siis

|Bi| − |Ai| − |Ci| = −Bi − Ai − Ci =

=
2pi
h2

− 4ri
6

− pi
h2

+
qi
2h

− ri
6
− pi
h2

− qi
2h

− ri
6
=

= −ri ⩾ −rc > 0,

mis tähendab, et süsteemi (7) sisemises võrrandis indeksiga i on rahuldatud dia-
gonaali ridade kaupa domineerimise võrratus, see leiab aset funktsioonide p ja r
kohta tehtud eeldustel küllalt väikese h korral.

Ülesanne 17. Tõestada, et kui Ai ⩽ 0 ja Ci ⩽ 0, siis süsteemi (7) sisemises võr-
randis indeksiga i on rahuldatud diagonaali ridade kaupa domineerimise võrratus.

Ülesanne 18. Näidata, et kui Ai > 0 ja Ci < 0, siis võib juhtuda, et süstee-
mi (7) sisemises võrrandis indeksiga i ei ole rahuldatud diagonaali ridade kaupa
domineerimise võrratus. Näidata sama väite kehtivust juhul Ai < 0 ja Ci > 0.

Järgnevalt analüüsime võrrandeid, mis tekivad rajatingimuste tõttu.
Olgu algul rajatingimused u(a) = γ1, u(b) = γ2, mis tähendab, et α1 = 1,

β1 = 0, α2 = 1, β2 = 0. Süsteemi (5) kordajate leidmisel tegime arvutused

B0 = B0 − A0
C−1

B−1

, C0 = C0 − A0
D−1

B−1

. Siis otseselt rajatingimuste abil saame

B−1 = B−3(x0) =
1

6
, C−1 = B−2(x0) =

4

6
, D−1 = B−1(x0) =

1

6
.

Kollokatsioonivõrranditest leidsime juba eespool

A0 =
p0
h2

− q0
2h

+
r0
6
, B0 = −2p0

h2
+

4r0
6
, C0 =

p0
h2

+
q0
2h

+
r0
6
.

Neid väärtusi arvestades leiame

B0 = −2p0
h2

+
4r0
6

− 4
(p0
h2

− q0
2h

+
r0
6

)
= −6p0

h2
+

2q0
h
.

Näeme, et kui h on väike, siis B0 < 0. Leiame veel

C0 =
p0
h2

+
q0
2h

+
r0
6
−
(p0
h2

− q0
2h

+
r0
6

)
=
q0
h
.

Üldiselt on C0 märk määramata, see sõltub arvust q0. Väikese h korral, kui B0 < 0,
siis ∣∣B0

∣∣− ∣∣C0

∣∣ = 6p0
h2

− 2q0
h

− |q0|
h

,



3. Lähislahendi olemasolu ja ühesus, koondumine 93

mis on küllalt väikese h korral positiivne. Analoogiliselt näeme, et süsteemi (7)
viimases võrrandis on väikese h korral diagonaali domineerimise võrratus rahulda-
tud. Süsteemis (7) δi = O(h2), i = 0, . . . , n, seepärast väikese h korral ξi = O(h2),
i = −2, . . . , n − 2. Eraldi tuleb vaadata ξ−3 ja ξn−1 hinnanguid. Eespool saime
võrduse

c−3 =
γ1
B−1

− C−1

B−1

c−2 −
D−1

B−1

c−1.

Kordajate ξi vahekorras on rajatingimustes vabaliikme γ1 asemel 0, seepärast

ξ−3 = −C−1

B−1

ξ−2 −
D−1

B−1

ξ−1.

Arvestades hiljuti leitud B−1 =
1

6
, C−1 =

4

6
, D−1 =

1

6
, saame

ξ−3 = −4 ξ−2 − ξ−1.

Sellest
|ξ−3| ⩽ 5 max{|ξ−2| , |ξ−1|} = O(h2).

Niisiis oleme saanud, et ξi = O(h2), i = −3, . . . , n − 1, seepärast ∥un − un∥∞ =
= O(h2) ja ∥un − u∥∞ = O(h2).

Ülesanne 19. Näidata rajatingimustel 1) α1 = 0, β1 > 0; 2) α1 > 0, β1 < 0
diagonaali domineerimise võrratuse rahuldatust süsteemi (7) esimeses võrrandis ja
ξ−3 hinnangut, kui h on küllalt väike.

Sõnastame tehtu kokkuvõtvalt.

Teoreem. Olgu rajaülesandel (1),(2) lahend u ∈ C4[a, b] ning täidetud punktis
1 toodud eeldused, mis tagavad lahendi ühesuse. Olgu lõigul [a, b] jaotus ∆ ühtla-
ne sammuga h. Siis küllalt väikese h korral on olemas parajasti üks tingimustega
(3) nääratud splain un ∈ S3,1

∆ . Splaini un kordajad normaliseeritud B-splainide
abil tehtud arendises määratakse kolmediagonaalsest süsteemist (5), mille maat-
riks on küllalt väikese h korral ridade kaupa domineeriva diagonaaliga. Leiab aset
koonduvus un → u ruumis C[a, b] koonduvuskiirust iseloomustava hinnanguga
∥un − u∥C[a,b] ⩽ const ·h2.



�12. Integraalvõrrandite lahendamine splainidega
kollokatsioonimeetodil

Integraalvõrrandeid saab praktikas lahendada peaaegu eranditult ainult ligi-
kaudselt. Üks põhilisi meetodeid selleks on kollokatsioonimeetod.

1. Splaine kasutava kollokatsioonimeetodi kirjeldus

Vaatleme integraalvõrrandit

u(x) =

b∫
a

K(x, s)u(s) ds+ f(x), x ∈ [a, b], (1)

kus f : [a, b] → R ja K : [a, b] × [a, b] → R on antud, funktsioon u : [a, b] → R
on otsitav. Funktsiooni K nimetatakse tuumaks, f vabaliikmeks. Võrrand (1) on
Fredholmi II liiki integraalvõrrand. Edaspidi eeldame, et võrrandil (1) on olemas
ühene lahend u ∈ C[a, b].

1.1 Lineaarsplainide kasutamine

Olgu valitud võrk ∆n : a = x0 < x1 < . . . < xn = b, lähislahendiks otsime
un ∈ S1,1

∆n
. Teame, et dimS1,1

∆n
= n + 1, seepärast peaks un määramiseks olema

n+ 1 tingimust. Võtame n+ 1 kollokatsioonitingimust

un(xi) =

b∫
a

K(xi, s)un(s) ds+ f(xi), i = 0, . . . , n, (2)

s.t. nõuame, et un rahuldaks integraalvõrrandit võrgu punktides, mitte kõikjal
terves lõigus [a, b]. Hiljem näeme, et sellest piisab. Kasutame tähistusi Si = un(xi),
i = 0, . . . , n, teame eelnevast, et

un(x) = Si−1
x− xi
xi−1 − xi

+ Si
x− xi−1

xi − xi−1

= (Lagrange'i valem)

94
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= Si−1
xi − x

hi
+ Si

x− xi−1

hi
, x ∈ [xi−1, xi],

kus hi = xi − xi−1. Kollokatsioonitingimused (2) on kirjutatavad

Si =

b∫
a

K(xi, s)un(s) ds+ f(xi), i = 0, . . . , n, (3)

milles teisendame eraldi integraali. Selles saame

b∫
a

K(xi, s)un(s) ds =
n∑

j=1

xj∫
xj−1

K(xi, s)un(s) ds =

=
n∑

j=1

xj∫
xj−1

K(xi, s)

(
Sj−1

xj − s

hj
+ Sj

s− xj−1

hj

)
ds =

=
n∑

j=1


 xj∫
xj−1

K(xi, s)
xj − s

hj
ds

Sj−1 +

 xj∫
xj−1

K(xi, s)
s− xj−1

hj
ds

Sj

 .

Kui tähistame

aij =

xj∫
xj−1

K(xi, s)
xj − s

hj
ds, bij =

xj∫
xj−1

K(xi, s)
s− xj−1

hj
ds

ja fi = f(xi), siis on kollokatsioonitingimused (3) kirjutatavad

Si =
n∑

j=1

aij Sj−1 +
n∑

j=1

bij Sj + fi, i = 0, . . . , n, (4)

mis on lineaarne süsteem kordajate S0, . . . , Sn määramiseks.

Ülesanne 20. Süsteem (4) maatrikskujul on S = AS + g, kus S = (S0, . . . , Sn)
T ,

g = (f0, . . . , fn)
T . Kirjutada välja maatriks A arvude aij ja bij kaudu.

Kollokatsioonimeetodis tekivad loomulikud küsimused: kas süsteem (4) on (ühe-
selt) lahenduv, kas un → u, kui h = max

1⩽i⩽n
hi → 0? Enne selle juurde asumist

formaliseerime probleemi. De�neerime integraaloperaatori K : C[a, b] → C[a, b]
võrdusega

(Ku)(x) =

b∫
a

K(x, s)u(s) ds, x ∈ [a, b],
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milleks piisab näiteks funktsiooni K pidevusest. Võrrandi (1) võib siis kirjutada

u = Ku+ f, (5)

seejuures K on lineaarne ja pidev, s.t. K ∈ L(C[a, b], C[a, b]). De�neerime ope-
raatori P∆n : C[a, b] → C[a, b], mis igale funktsioonile u ∈ C[a, b] seab vastavusse
P∆nu ∈ S1,1

∆n
nii, et (P∆nu)(xi) = u(xi), i = 0, . . . , n, s.t. funktsioonile u seatakse

vastavusse seda võrgu sõlmedes interpoleeriv lineaarsplain. Seega

(P∆nu)(x) = u(xi−1)
xi − x

hi
+ u(xi)

x− xi−1

hi
, x ∈ [xi−1, xi].

On selge, et P∆n(P∆nu) = P∆nu ehk P 2
∆n

= P∆n , mis tähendab, et P∆n on projek-
tor, seejuures lineaarne ja pidev. Näeme, et P∆nu = 0 parajasti siis, kui u(xi) = 0,
i = 0, . . . , n: kui u(xi) = 0, i = 0, . . . , n, siis P∆nu avaldise põhjal P∆nu = 0; kui
aga P∆nu = 0 ehk tegemist on kõikjal nulliga võrduva lineaarsplainiga, siis on ka
splaini väärtused sõlmedes võrdsed nulliga ehk u(xi) = 0, i = 0, . . . , n. Kollokat-
sioonitingimused (2) võib kirjutada

un(xi)− (Kun)(xi)− f(xi) = 0, i = 0, . . . , n,

mis on samaväärne sellega, et

P∆n(un −Kun − f) = 0

ehk võrdust P∆nun = un arvestades

un = P∆n K un + P∆nf. (6)

1.2 Kuupsplainide kasutamine

Lisaks antud võrrandile (1) on valitud võrk ∆n : a = x0 < x1 < . . . < xn = b,
lähislahendina otsime kuupsplaini un ∈ S3,1

∆n
. Nõuame kollokatsioonitingimuste (2)

täidetust. Kuna dimS3,1
∆n

= n+3, siis on veel vaja kahte tingimust, milleks võtame
rajatingimused (IV):

u′′′n (x1 − 0) = u′′′n (x1 + 0),

u′′′n (xn−1 − 0) = u′′′n (xn−1 + 0).

Olgu nüüd P∆n : C[a, b] → C[a, b] operaator, mis igale funktsioonile u ∈ C[a, b]
seab vastavusse P∆nu ∈ S3,1

∆n
nii, et oleks rahuldatud interpolatsioonitingimused

võrgu sõlmedes ja P∆nu rahuldaks rajatingimusi (IV). Teame, et sellega on inter-
poleeriv kuupsplain üheselt määratud. Operaator P∆n on siingi pidev lineaarne
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projektor ruumis C[a, b] ning P∆nu = 0 parajasti siis, kui u(xi) = 0, i = 0, . . ., n.
Seepärast määratakse un ∈ S3,1

∆n
võrrandiga (6), kuigi lineaarsplainidega võrreldes

on siin sisu teine, sest projektorid P∆n on erinevad ja ka otsitavad lahendid on
erinevad.
Alati on oluline splaini esituse valik. Kasutame siin splaini väärtusi Si = un(xi)

ja teisi momente Mi = u′′n(xi), i = 0, . . . , n. Varasemalt on teada splaini esitus
nende kaudu:

un(x) =Mi−1
(xi − x)3

6hi
+Mi

(x− xi−1)
3

6hi
+

+

(
Si−1 −

Mi−1

6
h2i

)
xi − x

hi
+

(
Si −

Mi

6
h2i

)
x− xi−1

hi
, x ∈ [xi−1, xi].

Sarnaselt lineaarsplainide juhuga kirjutame kollokatsioonitingimused (3) võrran-
ditena

Si =
n∑

j=1

xj∫
xj−1

K(xi, s)un(s) ds+ fi, i = 0, . . . , n. (7)

Siin igas integraalis tuleb kasutada un esitust osalõigus [xj−1, xj], mis sisaldab
Sj−1, Sj, Mj−1, Mj. Lisaks paneme kirja kuupsplaini sisevõrrandid ja kaks (IV)
tüüpi rajatingimust, mis on

M1 −M0

h1
=
M2 −M1

h2
,

µiMi−1 + 2Mi + λiMi+1 = 6

Si+1 − Si

hi+1

− Si − Si−1

hi
hi + hi+1

, i = 1, . . . , n− 1,

Mn−1 −Mn−2

hn−1

=
Mn −Mn−1

hn
.

(8)

Süsteemis (7), (8) on 2n+2 võrrandit ja 2n+2 tundmatut S0, . . . , Sn,M0, . . . ,Mn.
Kui süsteem on lahendatud, saame igas osalõigus kuupsplaini leida eespool toodud
esituse abil.
Vaatleme antud integraalvõrrandi (1) ja seega �kseeritud lõigu [a, b] korral võr-

kude jada ∆n : a = x0 < x1 < . . . < xn = b, kus n → ∞ nii, et seejuures
h = max

1⩽i⩽n
(xi − xi−1) → 0, kui n → ∞. Võrgu sisesõlmed x1, . . . , xn−1 sõltuvad

arvust n ja protsessis n→ ∞ nad ei jää muutumatuks. Iga jaotuse ∆n korral või-
me püstitada kollokatsiooniülesande, kus lähislahend on lineaar- või kuupsplain.
Eeldame, et integraalvõrrandil (1) on ühene lahend u. Lähislahend un määratakse
võrrandist (6), mis on samaväärne võrrandisüsteemiga. Võib küsida, kas (6) on
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(üheselt) lahenduv? Kas un → u, kui n → ∞? Nendele küsimustele anname järg-
nevas vastuse ja arendame selleks suhteliselt üldist teooriat operaatorvõrrandite
kohta.

2. Klassikaline projektsioonimeetodite koonduvusteoreem

Olgu E Banachi ruum, antud olgu K ∈ L(E, E), f ∈ E. Vaatleme II liiki
operaatorvõrrandit

u = Ku+ f, (9)

kus u ∈ E on otsitav. Eeldame veel, et on antud projektorite jada Pn, s.t.
Pn ∈ L(E,E), P 2

n = Pn, n = 1, 2, . . .. Moodustame lähisvõrrandid

un = PnKun + Pnf, (10)

kus un ∈ E on otsitav. Selliselt võrrandi (9) lahendamist nimetatakse projektsioo-
nimeetodiks.

Teoreem (klassikaline projektsioonimeetodite koonduvusteoreem). Eeldame, et
K on kompaktne; võrdusest u = Ku järeldub, et u = 0; Pn → I punktiviisi (s.t.
Pnu→ u iga u ∈ E korral), kui n→ ∞. Siis

1) võrrandil (9) on parajasti üks lahend u∗ ∈ E;

2) leidub n0 nii, et iga n ⩾ n0 korral on võrrandil (10) parajasti üks lahend
u∗n ∈ E;

3) u∗n → u∗, kui n→ ∞;

4) leiduvad arvud c1,c2 > 0 nii, et

c1∥Pnu
∗ − u∗∥ ⩽ ∥u∗n − u∗∥ ⩽ c2∥Pnu

∗ − u∗∥.

Enne tõestuse esitamist meenutame mõnda teoreemi sõnastuses esinevat mõis-
tet. Operaatorit K : E → E nimetatakse kompaktseks, kui iga tõkestatud hul-
ga X ⊂ E korral KX on suhteliselt kompaktne. See on samaväärne sellega, et
KB(0, 1) on suhteliselt kompaktne, siin B(0, 1) = {x ∈ E | ∥x∥ < 1}. Operaatori
K kompaktsus on veel samaväärne sellega, et kui jada un on tõkestatud, siis Kun
on kompaktne jada. Hulk X on suhteliselt kompaktne, kui igast hulga X elementi-
dest moodustatud jadast saab eraldada koonduva osajada, s.t. kui un ∈ X, n ∈ N,
siis eksisteerivad N ′ ⊂ N ja u ∈ E nii, et un → u, n ∈ N ′. Jada un, n ∈ N, on
kompaktne, kui iga N ′ ⊂ N korral eksisteerivad N ′′ ⊂ N ′ ja u ∈ E nii, et un → u,
n ∈ N ′′.
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Teoreemi tõestus. 1) Selle osa väide järeldub Fredholmi alternatiivist, mis on järg-
mine. Teist liiki võrrandis (9), kui K on kompaktne, leiab aset parajasti üks kahest
teineteist välistavast võimalusest:

a) võrrandil u = Ku on olemas mittetriviaalne lahend (I−K ei ole injektiivne);

b) võrrandil (9) on iga f ∈ E korral olemas lahend (I −K on sürjektiivne).

Teoreemis tehtud eeldusel, et I −K on injektiivne, võimalus a) välistatakse, seega
leiab aset b). Lahendi ühesus tuleb I − K injektiivsusest: kui u = Ku + f ja
v = Kv + f , siis u− v = K(u− v), millest u− v = 0 ehk u = v.
2) Osas 1) nägime, et iga f ∈ E korral on olemas parajasti üks u ∈ E nii,

et u = Ku + f ehk (I − K)u = f . Seega on I − K : E → E bijektsioon. On
olemas teoreem pööratavale operaatorile lähedase operaatori pööratavusest: kui
A,B ∈ L(E,F ), E ja F on Banachi ruumid, eksisteerib A−1 (siis A−1 ∈ L(F,E))
ja ∥A−1∥∥B∥ < 1, siis eksisteerib (A + B)−1 (muidugi (A + B)−1 ∈ L(F,E)) ja
∥(A + B)−1∥ ⩽

∥A−1∥
1− ∥A−1∥∥B∥ . Rakendame seda siin järgmises olukorras. Olgu

A = I −K, soovime saada, et A+B = I −PnK, seega võtame B = (I −PnK)−
−A = (I − PnK)− (I −K) = K − PnK. Näitame, et ∥K − PnK∥ → 0. Oletame
vastuväiteliselt, et see ei kehti. Siis on olemas osajada indeksite hulgaga N ′ ⊂ N
ja δ > 0 nii, et ∥K − PnK∥ ⩾ δ, n ∈ N ′. Operaatori normi mõiste kohaselt
∥K − PnK∥ = sup

u∈E
∥u∥=1

∥(K − PnK)u∥. Supreemumile saab minna kuitahes lähedale,

seega on olemas un ∈ E, ∥un∥ = 1, nii, et ∥K−PnK∥ ⩽ ∥(K−PnK)un∥+
1

n
. Siis

∥(K − PnK)un∥ ⩾ ∥K − PnK∥ − 1

n
⩾ δ − 1

n
⩾
δ

2
, kui n ∈ N ′, n suur. Jada un on

tõkestatud, K on kompaktne, seega Kun on kompaktne ja seetõttu eksisteerivad
N ′′ ⊂ N ′ ja u ∈ E nii, et Kun → u, n ∈ N ′′. Hindame nüüd

∥(K − PnK)un∥ = ∥Kun − u− PnKun + Pnu+ u− Pnu∥ ⩽

⩽ ∥Kun − u∥+ ∥Pn(Kun − u)∥+ ∥Pnu− u∥.

Siin näeme, et ∥Pnu − u∥ → 0, n ∈ N, eelduse tõttu. Lisaks ∥Kun − u∥ → 0,
kui n ∈ N ′′, ∥Pn(Kun − u)∥ ⩽ ∥Pn∥∥Kun − u∥ → 0, kui n ∈ N ′′, sest ∥Pn∥
on tõkestatud Banach�Steinhausi teoreemi põhjal (on koondumine Pnu → u iga
u ∈ E korral). Niisiis, n ∈ N ′′ korral ∥(K−PnK)un∥ → 0, mis on vastuolus sellega,

et ∥(K−PnK)un∥ ⩾
δ

2
, n ∈ N ′ ja n on suur. Sellega on väide 2) tõestatud. Eespool

toodud teoreem pööratavale lähedase operaatori pööratavusest andis ka hinnangu
selle normile, mida nüüd kasutame. Nägime, et ∥K − PnK∥ → 0, s.t. on olemas
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n0 nii, et n ⩾ n0 korral ∥(I − K)−1∥∥K − PnK∥ ⩽ q < 1 (mingi arvu q korral).
Sellest saame hinnangu

∥(I − PnK)−1∥ ⩽
∥(I −K)−1∥

1− ∥(I −K)−1∥∥K − PnK∥ ⩽
∥(I −K)−1∥

1− q
= c2,

kus võtsime kasutusele arvu c2 > 0.
3) ja 4) Piisab tõestada 4), sest koondumisest ∥Pnu

∗−u∗∥ → 0 järeldub hinnangu
4) (selle parempoolse võrratuse) abil, et ∥u∗n − u∗∥ → 0 ehk u∗n → u∗. Tõestame
kahepoolse võrratuse 4). Teisendades saame

(I − PnK)(u∗n − u∗) = (I − PnK)u∗n − (I − PnK)u∗ =

/ kasutame võrdust (I − PnK)u∗n = Pnf , seejärel

võrdust (I −K)u∗ = f ja Pnf = Pn(I −K)u∗ /

= Pn(I −K)u∗ − (I − PnK)u∗ = Pnu
∗ − u∗.

Sellest tuleb n ⩾ n0 korral

u∗n − u∗ = (I − PnK)−1(Pnu
∗ − u∗)

ja
∥u∗n − u∗∥ ⩽ ∥(I − PnK)−1∥∥Pnu

∗ − u∗∥ ⩽ c2∥Pnu
∗ − u∗∥.

Hinnangu 4) vasakpoolne võrratus saadakse järgmiselt. Eespool saadud võrdusest
tuleb

∥Pnu
∗ − u∗∥ = ∥(I − PnK)(u∗n − u∗)∥ ⩽

⩽ (1 + ∥Pn∥∥K∥)∥u∗n − u∗∥ ⩽ c∥u∗n − u∗∥
/ eespool nägime, et ∥Pn∥ on tõkestatud /

ning tarvitseb korrutada saadud võrratus arvuga c1 =
1

c
> 0. Sellega on teoreem

tõestatud.

Ülesanne 21. Tõestada, et koonduvusteoreemi eeldustel eksisteeerib c3 nii, et

∥un − Pnu
∗∥ ⩽ c3∥K(Pnu

∗ − u∗)∥.

3. Lineaarsplainidega kollokatsioonimeetodi koondumine

Antud on integraalvõrrand u(x) =

b∫
a

K(x, s)u(s) ds + f(x), x ∈ [a, b]. Valime

siin ruumi E = C[a, b], norm selles on ∥u∥C[a,b] = max
a⩽x⩽b

|u(x)|. De�neerime integ-

raaloperaatori
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(Ku)(x) =

b∫
a

K(x, s)u(s) ds.

Kui näiteks K on pidev, siis K : E → E on kompaktne. Eeldame, et u(x) =

=

b∫
a

K(x, s)u(s) ds, u ∈ C[a, b], korral u(x) ≡ 0. Olgu f ∈ C[a, b].

Olgu antud lõigu [a, b] jaotuste jada ∆n : a = x0 < x1 < . . . < xn = b, n ∈ N,
kus x1, . . . , xn−1 sõltuvad arvust n. De�neerime u ∈ C[a, b] korral Pnu ∈ S1,1

∆n
nii,

et (Pnu)(xi), i = 0, . . . , n. Kollokatsioonimeetod viis võrrandini

un = PnKun + Pnf .

Koonduvusteoreemi üks eeldusi oli, et Pn → I ehk ∥Pnu − u∥C[a,b] → 0 iga
u ∈ C[a, b] korral, kui n→ ∞. Meil on lineaarsplainidega interpoleerimisest teada,
et u ∈ C[a, b] korral ∥Pnu − u∥C[a,b] ⩽ ω(u). Kui max

1⩽i⩽n
(xi − xi−1) → 0 protsessis

n → ∞, siis ω(u) → 0, seepärast eeldamegi, et max
1⩽i⩽n

(xi − xi−1) → 0, kui n → ∞.

Kirjutame nüüd välja, mida klassikaline operaatorvõrrandite koonduvusteoreem
annab. Saame

1) integraalvõrrandil on parajasti üks lahend u∗ ∈ C[a, b];

2) küllalt suure n korral on kollokatsioonivõrrandil parajasti üks lahend u∗n ∈ S1,1
∆n
;

3) ∥u∗n − u∗∥C[a,b] → 0;

4) leiab aset kahepoolne veahinnang ∥u∗n − u∗∥∞ ∼ ∥Pnu
∗ − u∗∥∞,

seejuures ∥Pnu
∗ − u∗∥∞ = O(h2), kui u∗ ∈ C2[a, b], ∥Pnu

∗ − u∗∥∞ = O(h), kui
u∗ ∈ W∞,1(a, b), ∥Pnu

∗−u∗∥∞ ∼ hω((u∗)′), kui u∗ ∈ C1[a, b], h = max
1⩽i⩽n

(xi − xi−1).

Lahendi sileduse üle saab otsustada integraalvõrrandi andmete põhjal. Kui näi-
teks f ∈ C2[a, b] ja K on muutuja x järgi kaks korda pidevalt diferentseeruv, siis
u∗ ∈ C2[a, b].

4. Projektorite koondumine kuupsplainide juhul

Nägime klassikalises koonduvusteoreemis, et projektorite kohta eeldatakse punk-
tiviisi koondumist Pn → I. Käsitleme selles punktis selle tingimuse täidetust eraldi.
Vaatluse all on jaotuste jada ∆n : a = x0 < x1 < . . . < xn = b, n ∈ N. De�nee-
risime projektorid Pn, mis funktsioonile u ∈ C[a, b] seadsid vastavusse Pnu ∈ S3,1

∆n

nii, et (Pnu)(xi) = u(xi), i = 0, . . . , n, ja (Pnu)
′′′(x1 − 0) = (Pnu)

′′′(x1 + 0),



102 �12. Integraalvõrrandite lahendamine splainidega kollokatsioonimeetodil

(Pnu)
′′′(xn−1 − 0) = (Pnu)

′′′(xn−1 + 0). Soovime saada, et ∥Pnu − u∥∞ → 0 iga
u ∈ C[a, b] korral. Kasutame selle näitamiseks Banach�Steinhausi teoreemi, mille
formuleering on järgmine.
Olgu A,An ∈ L(E,F ), E,F Banachi ruumid. Siis Anu → Au iga u ∈ E korral

parajasti siis, kui

a) ∥An∥ ⩽ const;

b) Anu→ Au iga u ∈ D korral, kus D on põhihulk ruumis E, s.t. spanD = E.

Põhihulgaks olemise asemel võib nõuda, et D on kõikjal tihe ruumis E, s.t. D = E.
Kuupsplainide korral saame tingimuse b) täidetud nii, et võtame kõikjal tihe-

daks hulgaks C4[a, b]. Meil on teada, et iga u ∈ C4[a, b] korral Pnu → u. Hulga
C4[a, b] kõikjal tihedus ruumis C[a, b] järeldub kasvõi sellest, et P [a, b] ⊂ C4[a, b] ja
polünoomide hulga tihedus ruumis C[a, b] on hästi teada. Tingimuse a) täidetuseks
oleks vaja tõestada interpolatsiooniprojektorite Pn ühtlast tõkestatust ehk normi-
de jada ∥Pn∥C[a,b]→C[a,b] tõkestatust. Kasutame kuupsplaini esitust x ∈ [xi−1, xi]
korral

(Pnu)(x) =Mi−1
(xi − x)3

6hi
+Mi

(x− xi−1)
3

6hi
+

+

(
Si−1 −

Mi−1

6
h2i

)
xi − x

hi
+

(
Si −

Mi

6
h2i

)
x− xi−1

hi
,

kus hi = xi − xi−1, Si−1 = (Pnu)(xi−1) = u(xi−1), Si = (Pnu)(xi) = u(xi), Mi−1 =
= (Pnu)

′′(xi−1), Mi = (Pnu)
′′(xi). Parameetrid Mi määratakse süsteemist

(
2 +

h1
h2

)
M1 +

(
1− h1

h2

)
M2 = d1,

µiMi−1 + 2Mi + λiMi+1 = di, i = 2, . . . , n− 2,(
1− hn

hn−1

)
Mn−2 +

(
2 +

hn
hn−1

)
Mn−1 = dn−1,

(11)

seejuures

di = 6

Si+1 − Si

hi+1

− Si − Si−1

hi
h1 + hi+1

,

M0 =

(
1 +

h1
h2

)
M1 −

h1
h2
M2, Mn =

(
1 +

hn
hn−1

)
Mn−1 −

hn
hn−1

Mn−2.
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Süsteemis (11) diagonaal domineerib ridade kaupa vahega 1, seepärast max
1⩽i⩽n−1

|Mi| ⩽
⩽ max

1⩽i⩽n−1
|di|. Olgu hmin = min

1⩽i⩽n
hi. Varem oli hmax = h = max

1⩽i⩽n
hi. Arve di saame

hinnata

|di| ⩽ 6
4 max
0⩽i⩽n

|Si|
2h2min

⩽ 12
∥u∥C[a,b]

h2min

,

seejärel max
1⩽i⩽n−1

|Mi| ⩽ 12
∥u∥C[a,b]

2h2min

. Teeme eelduse, et
hmax

hmin

⩽ const, sel juhul nime-

tatakse jaotuste jada regulaarseks. Regulaarse jaotuste jada korral saame hinnata

|M0| ⩽ constmax{|M1|, |M2|}, |Mn| ⩽ constmax{|Mn−2|, |Mn−1|},

seega max
0⩽i⩽n

|Mi| ⩽ const
∥u∥C[a,b]

h2min

. Kasutades nüüd Pnu esitust osalõikudel, saame

∥Pnu∥C[a,b] ⩽ 4 max
0⩽i⩽n

(
|Mi|

h2i
6

)
+ 2∥u∥C[a,b] ⩽ const ∥u∥C[a,b].

5. Kuupsplainidega kollokatsioonimeetodi koondumine

Selles punktis vaatame, kuidas klassikalisest projektsioonimeetodite koonduvus-
teoreemist saadakse kuupsplainidega kollokatsioonimeetodi koondumine. Kasuta-
me punktis 1 toodud tähistusi ja alapunktis 1.2 esitatud meetodit. Valime esialgu
ruumi E = C[a, b]. Eeldame, et jaotuste jada ∆n on regulaarne. Eelmises punktis
näitasime, et siis Pnu → u ruumis C[a, b] iga u ∈ C[a, b] korral. Klassikalisest
projektsioonimeetodite koonduvusteoreemist saame järgmise tulemuse.

Teoreem. Olgu integraalvõrrandis (1) tuum K selline, et vastav integraaloperaator
K : C[a, b] → C[a, b] on kompaktne; f ∈ C[a, b]; u = Ku, u ∈ C[a, b], leiab aset
ainult siis, kui u = 0; lõigu [a, b] jaotuste jada ∆n on regulaarne. Siis võib väita
järgmist:

1) võrrandil (1) on parajasti üks lahend u∗ ∈ C[a, b];

2) leidub n0 nii, et n ⩾ n0 korral on süsteem (7),(8) üheselt lahenduv ja see
määrab kollokatsioonimeetodil saadud lahendi u∗n ∈ S3,1

∆n
;

3) u∗n → u∗ ruumis C[a, b];

4) leiab aset kahepoolne veahinnang ∥u∗n − u∗∥ ∼ ∥Pnu
∗ − u∗∥.

Kui u∗ ∈ Ck[a, b], k = 1, 2, 3, 4, siis ∥Pnu
∗ − u∗∥ = O(hk) ja seega ka ∥u∗n − u∗∥ =

= O(hk). Sõnastatud väidetes kõik normid on ruumis C[a, b].
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Valime järgnevalt E = C2[a, b]. On vaja, et oleks K : C2[a, b] → C2[a, b]. Piisab,
kui tuum K on kaks korda pidevalt diferentseeruv, sel juhul on integraaloperaator
K kompaktne. Eeldustes on veel vaja, et u = Ku, u ∈ C2[a, b], korral u = 0, see
on isegi nõrgem eeldus, kui ruumi C[a, b] juhul, sest C2[a, b] ⊂ C[a, b]. Kollokat-
sioonimeetodis on vaja, et ∥Pnu − u∥C2[a,b] → 0, kui u ∈ C2[a, b]. Meenutame, et
∥u∥C2[a,b] = ∥u∥C[a,b] + ∥u′∥C[a,b] + ∥u′′∥C[a,b]. Ka siin kasutame Banach�Steinhausi
teoreemi. Teame, et u ∈ C4[a, b] korral ∥Pnu − u∥∞ → 0, ∥(Pnu)

′ − u′∥∞ → 0,
∥(Pnu)

′′ − u′′∥∞ → 0, seega ∥Pnu − u∥C2[a,b] → 0. Ruum C4[a, b] on kõikjal tihe
ruumis C2[a, b].

Ülesanne 22. Tõestada, et P [a, b] = C2[a, b]. Soovitus: tugineda sellele, et
P [a, b] = C[a, b].

Banach�Steinhausi teoreemi kasutamiseks peame veel näitama, et ∥Pnu∥C2[a,b] ⩽
⩽ const ∥u∥C2[a,b] iga u ∈ C2[a, b] korral. Kasutame punkti 4 eeskujul Pnu esitust
splaini teiste momentide Mi ja väärtuste u(xi) abil. Nägime, et max

1⩽i⩽n−1
|Mi| ⩽

⩽ max
1⩽i⩽n−1

|di|. Seejuures di = 6u(xi−1, xi, xi+1) ning, et u(xi−1, xi, xi+1) =
u′′(ξi)

2
,

ξi ∈ (xi−1, xi+1), siis max
1⩽i⩽n−1

|Mi| ⩽ 3∥u′′∥C[a,b]. Lisaks saame hinnata

|M0| ⩽ constmax{|M1|, |M2|}, |Mn| ⩽ constmax{|Mn−2|, |Mn−1|}

ning max
0⩽i⩽n

|Mi| ⩽ const ∥u′′∥C[a,b]. Märgime, et siin piisab jaotuste jadas sellest, et

h1
h2

ja
hn
hn−1

oleksid tõkestatud. Splaini Pnu esitust osalõigus [xi−1, xi] kasutades

saame

∥Pnu∥C[a,b] ⩽ consth2i ∥u′′∥C[a,b] + 2∥u∥C[a,b] ⩽ const ∥u∥C2[a,b].

Leiame

(Pnu)
′(x) = −Mi−1

(xi − x)2

2hi
+Mi

(x− xi−1)
2

2hi
−

− 1

hi

(
ui−1 −

Mi−1

6
h2i

)
+

1

hi

(
ui −

Mi

6
h2i

)
, x ∈ [xi−1, xi].

Sellest

∥(Pnu)
′∥C[a,b] ⩽ max

0⩽i⩽n
|Mi|

(
1

2
hi +

1

2
hi +

1

6
hi +

1

6
hi

)
+ max

1⩽i⩽n

∣∣∣∣ui − ui−1

hi

∣∣∣∣ ⩽
/ kasutame seda, et

ui − ui−1

hi
= u′(ηi), ηi ∈ (xi−1, xi) /

⩽ const ∥u′′∥C[a,b] ·
4

3
hmax + ∥u′∥C[a,b] ⩽ const ∥u∥C2[a,b].
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Leiame veel (Pnu)
′′(x) =Mi−1

xi − x

hi
+Mi

x− xi−1

hi
, millest

∥(Pnu)
′′∥C[a,b] ⩽ max

0⩽i⩽n
|Mi| ⩽ const ∥u′′∥C[a,b] ⩽ const ∥u∥C2[a,b].

Sellega oleme saanud, et
h1
h2

ja
hn
hn−1

tõkestatuse korral

∥(Pnu)∥C2[a,b] ⩽ const ∥u∥C2[a,b], u ∈ C2[a, b].

Vaatame, mida annab klassikaline projektsioonimeetodite koonduvusteoreem. Li-
saks eespool toodud väidetele lahendi olemasolu ja ühesuse kohta (praegusel juhul
u∗ ∈ C2[a, b]) saame koondumise kahepoolse veahinnanguga

∥u∗n − u∗∥C2[a,b] ∼ ∥Pnu
∗ − u∗∥C2[a,b].

Kui u∗ ∈ C4[a, b], siis ∥Pnu
∗−u∗∥C2[a,b] = O(h2), millest järeldub ∥u∗n−u∗∥C2[a,b] =

= O(h2) ning seega ∥u∗n − u∗∥C[a,b] = O(h2), ∥(u∗n)′ − (u∗)′∥C[a,b] = O(h2),
∥(u∗n)′′ − (u∗)′′∥C[a,b] = O(h2). Hoiatus: üldisest teooriast rakendatuna ruumis
E = C2[a, b] ei järeldu, et kui u∗ ∈ C4[a, b], siis ∥u∗n − u∗∥C[a,b] = O(h4) (u∗n ei ole
interpoleeriv kuupsplain). Seejuures u∗ ∈ C4[a, b] korral küll ∥Pnu

∗ − u∗∥C[a,b] =
= O(h4), sest Pnu

∗ on interpoleeriv kuupsplain, ja ∥u∗n − u∗∥C[a,b] = O(h4)∥ järel-
dub üldisest teooriast rakendatuna ruumis E = C[a, b], kuigi seejuures tuleb teha
mõneti rangemad eeldused: jaotuste jada on regulaarne ja I − K on injektiivne
ruumis C[a, b].

Ülesanne 23. Uurida kuupsplainidega kollokatsioonimeetodi koonduvust ruumis
C1[a, b]. Soovitus: kasutada splaini määramiseks esimesi momente mi = u′n(xi) ja
väärtusi Si = un(xi), siis ei ole vaja eeldada jaotuste jada regulaarsust.
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Histopoleerimisülesanne seisneb järgnevas. Antud on lõigu [a, b] jaotus a = x0 <
< x1 < . . . < xn = b, arvud z1, . . . , zn, soovitakse leida funktsiooni f : [a, b] → R
nii, et

xi∫
xi−1

f(x) dx = hizi, i = 1, . . . , n, (1)

kus, nagu varemgi, hi = xi − xi−1, i = 1, . . . , n. Võrdused (1) võib veel kirjutada

1

hi

xi∫
xi−1

f(x) dx = zi, i = 1, . . . , n,

milles vasakud pooled on funktsiooni f keskmised väärtused osalõigus [xi−1, xi] ja
need on niisiis histopoleerimisülesandes ette antud. Graa�liselt võib olukorda ette
kujutada nii, et on antud histogramm,

x0

z1

x1

z2

x2

z3

x3

z4

x4

võrdused (1) tähendavad, et funktsiooni f graa�kualune pindala osalõikudel ühtiks
histogrammi vastava tulba pindalaga. Võrdluseks meenutame, et interpoleerimis-
ülesandes on antud funktsiooni väärtused võrgu sõlmedes ehk punktid (xi, fi),
i = 0, . . . , n, ja interpolandi graa�k peab neid punkte läbima. Märgime prakti-
kat silmas pidades, et väga suur osa statistilisest informatsioonist on antud his-
togrammidena, mille aluseks on mingi reaalne sõltuvus ning seda võidakse soovida
vähemalt ligikaudselt leida.
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1. Histopoleerimisülesannete ja interpoleerimisülesannete va-

hekord

Olgu antud histopoleerimisandmestik a = x0 < x1 < . . . < xn = b ja z1, . . . , zn.
Histopolant H : [a, b] → R on selline, et

1

hi

xi∫
xi−1

H(x)dx = zi, i = 1, . . . , n.

Valime suvaliselt f0 ∈ R ja moodustame fi = fi−1 + hizi, i = 1, . . . , n. Leiame
interpolandi I : [a, b] → R nii, et I(xi) = fi, i = 0, . . . , n. Kui interpolant I on
diferentseeruv, siis H = I ′ on algselt antud histopoleerimisülesande lahend:

1

hi

xi∫
xi−1

H(x) dx =
1

hi

xi∫
xi−1

I ′(x)dx =
1

hi
I(x)

∣∣∣x=xi

x=xi−1

=

=
1

hi
(I(xi)− I(xi−1)) =

1

hi
(fi − fi−1) = zi, i = 1, . . . , n.

Teistpidi, olgu antud interpolatsiooniandmestik, s.o. a = x0 < x1 < . . . < xn = b,

f0, . . . , fn. Moodustame arvud zi =
fi − fi−1

hi
, i = 1, . . . , n. Leiame histopolandi

H : [a, b] → R nii, et
1

hi

xi∫
xi−1

H(x)dx = zi, i = 1, . . . , n. Olgu I(x) = f0+

x∫
x0

H(s)ds.

Siis I on interpoleerimisülesande lahend:

I(x0) = f0, i ⩾ 1 korral I(xi) = f0 +

xi∫
x0

H(x)dx =

= f0 +

x1∫
x0

H(x)dx+ . . .+

xi∫
xi−1

H(x)dx =

= f0 + h1z1 + . . .+ hizi =

= f0 + h1
f1 − f0
h1

+ . . .+ hi
fi − fi−1

hi
= fi.

Nende kahe arutelu kokkuvõttes võib öelda, et histopoleerimis- ja interpolee-
rimisülesanded on vähemalt üldises plaanis vastastikku teineteisele taandatavad.
Sellele vaatamata on enamasti otstarbekam lahendada otse seda ülesannet, mil-
le jaoks on algandmestik antud, sest ühe ülesande andmestikult teisele üleminek
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nõuab täiendavaid arvutusi, samuti on vaja leida teise ülesande lahend kui uus
funktsioon. Kui näiteks on vaja leida histopoleeriv ruutsplain, siis vastavas inter-
poleerimisülesandes leitakse interpolant S ∈ S3,1

∆ ning S ′ ∈ S2,1
∆ on sobiv histo-

polant, kui rajatingimused on kooskõlas. Selline lähenemisviis on võimalik meie
kursuses vaadeldud polünomiaalsete splainide korral, kus splainid on osalõikudel
polünoomid. Kui aga käsitleda nn. ratsionaalsplaine, kus splainid on osalõikudel
ratsionaalfunktsioonid (neid me ei vaatle selles kursuses), siis näiteks tuletised ja
integraalid neist ei käitu sugugi sobivalt: kui arvutada näiteks tuletist või integ-
raali ratsionaalfunktsioonist, mille lugejas ja nimetajas on ruutpolünoom, ei ole
tulemus sugugi sobiva lihtsusega ratsionaalfunktsioon. Tuletis on küll ratsionaal-
funktsioon, kus lugejas on kuuppolünoom ja nimetajas neljanda astme polünoom,
kuid integraal kui algfunktsioon ei tarvitse olla ratsionaalfunktsioon.
Peatume veel lühidalt perioodilistel ülesannetel. Funktsiooni f : R → R nime-

tatakse p-perioodiliseks (võime eeldada, et p > 0), kui f(x + p) = f(x) iga x ∈ R
korral. Olgu antud funktsioon f : [a, b] → R ning f(a) = f(b), olgu p = b− a. Siis
võib funktsiooni f laiendada p-perioodiliseks funktsiooniks, de�neerides x ∈ R
korral f(x) = f(x + kp), kus k ∈ Z on selline, et x + kp ∈ [a, b]. Kui räägime
lõigul [a, b] määratud perioodilisest interpolandist või histopolandist, siis peame
silmas just seda laiendamist, mis on võimalik, kui funktsiooni väärtused punktides
a ja b on võrdsed. Kui interpolant on perioodiline (ja diferentseeruv), siis on seda
ka vastav histopolant, sest f(x + p) = f(x), x ∈ R, annab, et f ′(x + p) = f ′(x),
x ∈ R. Kui histopolant on perioodiline, siis vastav interpolant ei pea olema pe-
rioodiline, sest eespool toodud tähistustes on interpolandi perioodilisuses nõue, et
f0 = fn, mis tähendab, et f0 + h1z1 + . . . + hnzn = f0 ehk h1z1 + . . . + hnzn = 0

(või

b∫
a

H(x) dx = 0), ja see tingimus ei tarvitse olla perioodilise histopolandi

korral täidetud. Märgime, et suvalise algandmestiku korral (lõigu [a, b] jaotus ja
arvud zi) on olemas mingisugune perioodiline histopolant (näeme, et selleks võib
võtta ruutsplaini), interpolandi algandmestikul aga peab olema täidetud tingimus
f0 = fn.

2. Ruutsplainidega histopoleerimisülesanne

Olgu antud lõigu [a, b] jaotus ∆: a = x0 < x1 < . . . < xn = b. Ruutsplain
S ∈ S2,1

∆ on igal osalõigul [xi−1, xi] ülimalt teise astme polünoom, mille esita-
miseks on vaja kolme parameetrit. Nagu ikka splainide käsitlemisel, on oluline pa-
rameetrite valik ja splaini esitus nende kaudu. Märgime võrdluseks, et universaalne
esitusvõimalus on B-splainide kui baasi kaudu, kuid spetsii�liste ülesannete juu-
res võib enamasti leida vähem tehnilisi probleeme tekitavaid viise. Praegu peame
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silmas ruutsplainidega histopoleerimisülesannet, kus on antud z1, . . . , zn ja nõu-
takse, et S ∈ S2,1

∆ rahuldaks histopoleerimistingimusi (1), mille arv on n. Kuna
dimS2,1

∆ = n+ 2, siis on vaja kahte lisatingimust, milleks võivad olla

(I) S(a) = α, S(b) = β,

(II) S ′(a) = α′, S ′(b) = β′,

(III) S ′′(x1 − 0) = S ′′(x1 + 0), S ′′(xn−1 − 0) = S ′′(xn−1 + 0),

(IV) S(a) = S(b), S ′(a) = S ′(b),

viimaseid neist nimetatakse perioodilisteks. Tähistame Si = S(xi), i = 0, . . . , n,

σi =
1

hi

xi∫
xi−1

S(x)dx, i = 1, . . . , n. Proovime esitada ruutsplaini S osalõigul [xi−1, xi]

parameetrite Si−1, Si ja σi kaudu. Otstarbekas on otsida ruutpolünoomi esitust
S(x) = ai(x − xi−1)

2 + bi(xi − x)2 + ci, x ∈ [xi−1, xi], kus kordajad ai, bi ja ci
määratakse kolme tingimusega

S(xi−1) = Si−1, S(xi) = Si,
1

hi

xi∫
xi−1

S(x)dx = σi. (2)

Tulemuseks saadakse

S(x) =
Si−1 + 2Si − 3σi

hi
2 (x− xi−1)

2 +
2Si−1 + Si − 3σi

hi
2 (xi − x)2 +

+ 3σi − (Si−1 + Si), x ∈ [xi−1, xi].

(3)

Ülesanne 24. Näidata, et esituse (3) korral on rahuldatud tingimused (2). Tule-
tada esitus (3), määrates tingimuste (2) abil kordajad ai, bi, ci.

Esitus (3) tagab tingimuste (2) täidetuse tõttu, et S ∈ C[a, b]. Suvaliselt vali-
tud Si, i = 0, . . . , n, ja σi, i = 1, . . . , n, korral ei tarvitse S ′ olla pidev võrgu ∆
sisesõlmedes x1, . . . , xn−1.

Ülesanne 25. Näidata, et tingimused S ′(xi − 0) = S ′(xi + 0), i = 1, . . . , n − 1,
annavad võrdused

λiSi−1 + 2Si + µiSi+1 = 3(λiσi + µiσi+1), i = 1, . . . , n− 1, (4)

kus µi =
hi

hi + hi+1

, λi =
hi+1

hi + hi+1

.
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Võrduseid (4) nimetatakse ruutsplaini sisevõrranditeks esituse (3) puhul.
Olgu vaja leida S ∈ S2,1

∆ , mis rahuldab histopolatsioonitingimusi (1) ja raja-
tingimusi (I). Siis esituse (3) kasutamisel võtame σi = zi, i = 1, . . . , n, ja splaini
väärtused sõlmedes Si määratakse süsteemist

S0 = α,

λiSi−1 + 2Si + µiSi+1 = 3(λizi + µizi+1), i = 1, . . . , n− 1,

Sn = β.

Ülesanne 26. Esitada arve Si määravad süsteemid rajatingimuste (II) ja (III)
korral.
Ülesande lahendamise järel näeme, et kõigil juhtudel on arve Si määrav süs-

teem kolmediagonaalne ning peadiagonaal domineerib ridade kaupa (rajatingimus-
te (III) korral tuleb küll võrrandeid veel teisendada).
Peatume veel perioodiliste tingimuste (IV) kasutamisel. Võrdus S(a) = S(b)

annab, et S0 = Sn, millega jääb n tundmatut S1, . . . , Sn. Lisaks n−1 sisevõrrandile
paneme kirja võrduse S ′(a) = S ′(b). See on esitatav

λnSn−1 + 2Sn + µnS1 = 3(µnz1 + λnzn), (5)

kus µn =
hn

hn + h1
, λn =

h1
hn + h1

.

Ülesanne 27. Tuletada võrrand (5) võrdusest S ′(a) = S ′(b), lähtudes esitusest
(3).

Vastav süsteem tuleb
2S1 + µ1S2 + λ1Sn = 3(λ1z1 + µ1z2),

λiSi−1 + 2Si + µiSi+1 = 3(λizi + µizi+1), i = 2, . . . , n− 1,

µnS1 + λnSn−1 + 2Sn = 3(µnz1 + λnzn).

See ei ole enam kolmediagonaalne, kuid peadiagonaal domineerib ridade kaupa.
Perioodiliste rajatingimuste (IV) kasutamisel saadav histopoleeriv ruutsplain

S ∈ S2,1
∆ tuleb perioodiline. Nagu eespool selgitasime, tähendab see võrduse S(a) =

= S(b) tõttu, et S on laiendatav määratuks tervel reaalsirgel, kuid S ′(a) = S ′(b)
tagab ka selle, et splaini S laiend on kõikjal pidevalt diferentseeruv. Kui moodusta-
me vastava interpolatsiooniülesande, siis võrdus f0 = fn ei tarvitse olla täidetud.
Sellele vaatamata võime leida S ∈ S3,1

∆ , mis rahuldab interpolatsioonitingimusi
S(xi) = fi, i = 0, . . . , n, ja rajatingimusi S

′
(a) = S

′
(b), S

′′
(a) = S

′′
(b). Splain

S ei pea tulema perioodiline, kuid histopoleeriv S
′
= S tuleb perioodiline, sest

S(a) = S(b), S ′(a) = S ′(b).
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Olgu antud lõigu [a, b] jaotus ∆, nagu oleme siiani vaadelnud, ja funktsioon
f : [a, b] → R. Võtame

zi =
1

hi

xi∫
xi−1

f(x)dx, i = 1, . . . , n,

(seda eeldusel, et integraalid eksisteerivad). Võime leida histopoleeriva ruutsplaini

S ∈ S2,1
∆ , mille korral

xi∫
xi−1

S(x)dx = hizi, i = 1, . . . , n, ning on rahuldatud kaks

rajatingimust. Loomulik on uurida ∥S − f∥∞, ∥S ′ − f ′∥∞, ∥S ′′ − f ′′∥∞ hinnan-
guid, kui f on mingitest funktsioonide klassidest. See on eraldi tehtav, kuid teine

võimalus on moodustada g(x) = g0 +

x∫
x0

f(s)ds, x ∈ [a, b] (g0 ∈ R on suvaline),

võtta interpolatsiooniandmestik gi = gi−1+hizi, i = 1, . . . , n, ning leida vastavatel
rajatingimustel interpoleeriv kuupsplain S ∈ S3,1

∆ . Siis ∥S − f∥∞ = ∥S ′ − g′∥∞,
∥S ′ − f ′∥∞ = ∥S ′′ − g′′∥∞, ∥S ′′ − f ′′∥∞ = ∥S ′′′ − g′′′∥∞, mille jaoks olid meil
eespool hinnangud teada sõltuvalt g kuulumisest mingisse funktsioonide klassi.
Seejuures kui näiteks f ∈ Ck[a, b], siis g ∈ Ck+1[a, b], samuti f ∈ W∞,k(a, b) korral
g ∈ W∞,k+1(a, b).
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