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Sissejuhatus

Meenutame moningaid tulemusi funktsioonide lihendamisest poliinoomidega.

Olgu antud reaalarvud z;, ¢ = 0,...,n, kus z; # =z;, kui ¢ # j, ning f;,
i = 0,...,n. Siis on olemas parajasti iiks tilimalt n astme poliinoom P,(z) =
= cotcax+...+cx", kus ¢, . . ., ¢, on reaalarvud, nii, et P,(z;) = f;,i=0,...,n.
Selle nn. interpoleeriva poliinoomi saab leida néiteks Lagrange’i voi Newtoni vale-
mi abil, kumbki nduab O(n?) aritmeetilist tehet, mille all peetakse silmas eelkdige
korrutamisi ja jagamisi. Antud funktsiooni f: [a,b] — R korral, kui z; € [a,b],

i = 0,...,n, on seega olemas parajasti iiks interpoleeriv poliinoom P,(x) =
= cotcix+. . .4cx” nii, et By (x;) = f(2),4 =0, ...,n. Loomulik on néiteks pide-
va funktsiooni f korral kiisida, kuidas kiitub max |Pa(2) = f(@)] = [P = fllcjan

kui n — o007 Sel juhul muidugi z; = z,; ehk iga n korral on oma interpolat-
sioonisolmede komplekt. Uldisemal juhul, kui f ei tarvitse olla pidev, voib uurida
sup |P,(z) — f(z)| kditumist.
a<z<b

Weierstrassi teoreem véidab, et igat pidevat funktsiooni f: [a,b] — R saab iiht-
lasusnormis kuitahes hasti ldhendada poliinoomidega, s.t. iga ¢ > 0 korral on

olemas poliinoom P nii, et ||P — f|clay = n<1ai<b\P(:c) — f(z)| < e. Tahistades

P, =A{P.(x)=co+crx+ ...+ ca" | co,...,cn € R} — koigi iilimalt n astme po-
liinoomide hulk, siis antud f € Cla,b] ja antud n korral on olemas parajasti iiks
poliinoom P,, € P, nii, et

1P — fllctas = ]lgléigiup — flletan;

seda poliinoomi P,, nimetatakse parimaks iihtlase ldhenduse poliinoomiks funkt-
sioonile f. Weierstrassi teoreemile tuginedes véib viita, et | P, — f|lclapn — 0, kui
n — oo. Lisaks leiab aset TSebosovi alternanss, mille kohaselt on olemas punktid
& € [a,b], & <& < ... <& mily et Po(&) — f(&) = (=1)"0]|Pn — fllcpy, kus
0 = 1voi 0 = —1. Sellest aga jéreldub, et on olemas punktid x;, i = 0,...,n, nii, et
& < x; < &iy1 ja Pp(z;) = f(x;), mistottu parimad iihtlase lihenduse poliinoomid
on iihtlasi funktsiooni f interpoleerivad poliinoomid mingites 16igu [a, b] punktides.
Vaarib markimist, et parimaid iihtlase ldhenduse poliinoome ei saa kaugeltki nii
lihtsalt leida kui nditeks interpolatsioonipoliinoome Lagrange’i voi Newtoni valemi
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Sissejuhatus 5

abil.
Adrmiselt heidutav poliinoomidega iihtlasel lihendamisel on jargmine Faberi
teoreem: igasuguse solmede siisteemi z,,; € [a,b], n = 0,1,..., i = 0,...,n, kor-

ral on olemas funktsioon f € Cfa,b] nii, et s6lmedega x,; interpolatsioonipolii-
noomide jada P, (siis P, € P, ja P,(xn) = f(zpi), n = 0,1,...,4=0,...,n)
korral || P, — f|lcfap) — 00, kui n — oo. Néiteks 16igus [—1,1] punktide zoy = 0,

Tpi = —14+i—,n>1,1=0,...,n, (mida tavaliselt nimetatakse iihtlaseks vorguks)
n

korral sobib funktsioon f(z) = |z|, # € [~1,1]. Uhtlase vorgu korral ei paranda
olukorda funktsiooni f suurem siledus (pidevate tuletiste olemasolu): funktsioonil

J@) = o5
tuletised, kuid ikkagi || P, — fl|¢ja,) — 00, kui n — oo. Selline poliinoomidega in-
terpolatsiooniprotsessi praktilisteks rakendusteks sobimatu kiitumine oli tugevasti
motiveeriv asjaolu splainide teooria arendamiseks.

Esimeseks spetsiaalselt splainidele piithendatud téoks loetakse iihte I. J. Sc-
hoenbergi 1946. aastal avaldatud artiklit. Splainid kui matemaatilised objektid
esinesid muidugi juba varem ja neid ndeme esituse kdigus. Splainide teooria inten-
siivsem areng algas 1960. aastate alguses. Eraldi vadrib méarkimist J. C. Holladay
artikkel aastast 1957, mis oli ldhtekohaks splainide variatsioonteooria arengus.

Jargnevas materjali esituses peame silmas loomulikku voimalust, et lugejal ei
ole varasemat kokkupuudet splainide teooriaga. Kiill aga eeldame, et tuttavad
on mitmed pohimoisted ja tulemused matemaatilisest analiiiisist, lineaaralgebrast,
arvutusmeetoditest ning moningal méaéral funktsionaalanaliiiisist.

x € [—1,1], (seda nimetatakse C. Runge niiteks) on olemas koik



§1. Splaini moiste

Alustame enim kasutatavatest splainidest. Olgu antud vork A: a = g < 21 <
<...<zxz,=b

Definitsioon. Funktsiooni S: [a,b] — R nimetatakse m astme splainiks defektiga
k, kui

1) S e Pm[:ci,l,xi], 1= 1,...,71,
2) S € " *[a,b].

Siin P™[x;_1, ;] on koigi ilimalt m astme poliinoomide hulk ning neid poliinoo-
me vaadeldakse m#dratuna 18igus [2;_y, z;]. Hulk C*[a, b] koosneb funktsioonidest
f: [a,b] = R, mille korral f*) € C[a, b], seejuures C°[a,b] = Cla, b].

Punkte xg,...,r, nimetatakse splaini solmedeks, punkte zi,...,x,_; splaini
sisesolmedeks.

Definitsioonis toodud funktsioonide hulka téhistatakse S™*, S%* voi Sv*a, b].

Niide 1. Olgu m =1, k = 1, siis S € S™'. Et S € P'[x;_y, ], siis igas osaldigus
on S iilimalt esimese astme poliinoom ja tema graafik 16igus [x;_1, z;] on sirgloik.
Need sirgloigud peavad tingimuse S € Cla,b] tottu olema ithendatud nii, et S
graafikul tervikuna ei ole katkevuspunkte ehk graafik on pidev murdjoon.

A

Sellist splaini nimetatakse lineaarsplainiks. Ta esineb (méningal méa#ral ilmutama-
tult) médratud integraali arvutamisel trapetsvalemiga, kus integraali tépse véir-
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tuse asemel kasutatakse integraali lineaarsplainist ehk

/bf(x)dx:/bS(x)da:+R(f).

Seda saab piltlikult ndha niiteks jargmisel joonisel, kus kdverjoon on funktsiooni
f graafik.

a = To T T2 r3=2>

Taolisi pidevaid murdjooni esineb tihti andmete graafilisel esitamisel, mida kasutati
ammu enne splainide teooria arendamist.

Niide 2. Olgu m = 2, k = 1, siis S € S%!. Selles niiites S € P*[z;_1,2;], mis
tdhendab, et igas osaloigus on splaini S graafik sirgloik voi ruutparabool. Tingimus
S € C'a, b] tihendab, et graafiku osad on sisesdlmedes 1, .. ., x,_; iihendatud nii,
et splaini S tuletis oleks pidev, mis ei luba S graafiku puutuja hiippelist muutumist.
Voimalik pilt on toodud jargmisel joonisel.

A

T T T T T kel

o il T T3 Ty

Selles naites toodud splaine nimetatakse ruutsplainideks.

Niide 3. Olgu m = 3, k = 1, siis S € S*! ning vadeldavaid splaine nimetatakse
kuupsplainideks, sest tingimus S € P?[z;_, z;] tihendab, et S vaib olla osaldigus
[z;_1,2;] kuni 3. astme poliinoom. Noue S € C?[a, b] tihendab, et splainil S peab
olema 16igus [a,b] pidev teist jarku tuletis. Kui votta elastne varras ja kinnitada
see mingis arvus punktides nagu ndha allpool oleval joonisel, siis see varras on
kuupsplaini kujuline.



8 §1. Splaini moiste

b

Taolise joonestamisvahendi nimest splain ongi tulnud {ildnimi funktsioonide klas-
sile.

Raudteed, samuti maanteed ei saa ehitada tdiesti sirgena, paratamatult esinevad

kurvid. Kurvis mojub liikuvale kehale massiga m joud F' = ——, kus v on liiku-

miskiirus ja R koverusraadius, néiteks ringjoont méoda litkumisel on R ringjoone
raadius. Téiesti kolbmatu on sirgelt teeosalt kurvi alustades minna edasi méoda
ringjoone kaart, sest siis tekib hetkeliselt joud, mis viskab néiteks rongireisija ist-
melt vastu vaguni kiilgseina. Kovera teeosa dige ligikaudne kuju on splain S € S>*.
Piitiame seda pohjendada, pidades silmas ka jéargnevat joonist.

R

S

Zo x1
Joone S koverus s ja koverusraadius R on seotud vordusega

SN(.T) B l
T+ E@PF R

w =

1
Arvestame seda, et x € [xg, 1] korral S”(x) &~ —. Sobiv on olukord, kus S”(x) ehk

1
B mis on vordeline jouga F', kasvab lineaarselt, s.t. S”(x) = ¢(x — xy), ¢ = const,

seejuures S”(z¢) = 0. Siis S € P3[xg, x]. Niiviisi jitkates suurendatakse kdverust
» (ehk vihendatakse koverusraadiust R) sujuvalt kurvi keskpaigani, pirast seda
vihendatakse sujuvalt s viartuseni 0, kus jatkub sirge teeosa.

Naiide 4. Olgu m suvaline, k = 0. Siis iga i korral S € P™[x;_1, ;] ja S € C™[a, b].

Niitame, et siis S € P™[a,b]. Tingimuse S € P™[x;_1,z;] tottu S™(z) = d;,

x € i1, 1. Et S0 on pidev, siis arvud d; peavad olema koik omavahel vord-

sed ehk S (z) = ¢, = € [a,b]. Siis S™ V(z) = cox + ¢1, = € [a,b], seejirel
2

Sm=2)(z) = Co% + 1z + ¢, x € [a, b, ja jitkates jouame selleni, et .S on iilimalt

m astme poliinoom.

Néide [] kinnitab juba definitsioonist tulenevat asjaolu, et koik poliinoomid on
iihtlasi ka splainid.



Kui defektist ei rdfigita, siis vaikimisi eeldatakse, et see on 1. Lisaks juba vaadel-
dud lineaar-, ruut- ja kuupsplainidele on méningase tihtsusega kvartsplainid S*!
ja kvintsplainid S>', enamasti kiill abivahendina teoreetilistes kiisimustes.

Igat poliinoomi P(x) = ¢y + c1x + ... + ¢pa™, x € [a,b], voib vaadelda kui
funktsiooni P(x) = ¢o + c1x + ... + ¢pa™, © € R, samuti vastupidi: poliinoomi
P:R — R véib vaadelda kui funktsiooni P: [a,b] — R. Splaini S € S%"*[a, b]
korral S(x) = ¢o + 1 + ... + cpa™, © € [xg, x1], ning voime madrata S(z) =
=ctar+...+cpr™, v € (—oo, xq]. Analoogiliselt, S(z) = ¢+ +...+Cpa™,
x € [x,_1,T,), voimaldab vaadelda S(x) = ¢+ ¢z + ... + 2™, © € [T,-1,00),
seega S: R — R. Kui on fikseeritud vork A: xqg < z7 < ... < x,, siis monikord
kirjutis S € Sg”ﬁ tahendab, et S € P™(—o00,x0|, S € P"[x;_1,24],i =1,...,n,
S € P™x,,0), S € C™¥(—~o00,00). Viimane tingimus tihendab seejuures, et
Sm=k) on pidev, kuid ei tarvitse olla tokestatud.



§2. Splainide ruumid

Olgu antud A: a =29 < z1 < ... < x, = b, loeme selle fikseerituks, antud m, k
loeme samuti fikseerituks. Vaatleme hulka SZ’k. See on vektorruum, sest vahetult
saab kontrollida, et

1) 81,8 € SmF = 8, + 8, € STF,
2) AER,S € SAF = AS € SPF,

seejuures SZ’k C Cla,b]. Mérgime, et siiani oleme vaikimisi eeldanud, et k& < m,
. ~ . . . . . . m’k .
mis on moneti loomulik eeldus. Seame eesmérgiks leida vektorruumi S, dimen-
sioon.
Vaatleme hulka

Py ={P:la,b] = R, P € P"[xg,21], P € P"(xj_1, 2], i = 2,...,n},

mille iihte tiiiipilist esindajat voib niha jargneval joonisel.

Igas vahemikus (z;_1, ;) on P € Py' iilimalt m astme poliinoom, seejuures solme-
des x1, ..., 7, ei seata mingisuguseid pidevuse noudeid. Solmedes z;,7 =0, ..., n,
tuleb funktsioonile P mé#arata vadrtused ja kokkuleppeliselt loeme néiiteks, et P
on vasakult pidev, samuti paremalt pidev punktis xy. Monikord loetakse ka tao-
line PY splainide klassi osaks, kasutades tihistust Sv""*", s.t. defekt on m + 1.
Hulk PX" on vektorruum, seejuures Sz’k C P)'. Leiame esialgu P." dimensioo-
ni. Iga i = 1,...,n korral on P™(x;_1,z;] dimensioon m + 1, sest niipalju on
iilimalt m astme poliinoomi maidramiseks vabu kordajaid. Kokku annab see, et
dim PP = (m + 1)n. Kui S € S%*, siis funktsioonid S, S, ..., S™* on pidevad
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11

sisesolmedes x1,..., 2, 1, mis annab (m — k + 1)(n — 1) tingimust lisaks kuulu-
misele ruumi Py Nitid (m+1)n—(m—k+1)(n—-1) = (m+1) + k(n — 1),
seeparast dim SZ’k = m + 1+ k(n — 1). Splainidele kdige tiiiipilisemal eriju-
hul £ = 1 saame dim SZ“ = m + n. Samuti tuleb iildjuhust juba teadaolev
dim S7° = dim P™ = m + 1.

Ulesanne 1. Leida dim Sgbﬁ.

Margime, et iilaltoodud dim STA”’k leidmine ei ole esitatud koigi detailidega. Ter-
vikliku toestuse esitus viiks meid pohiteemast natuke korvale, seepirast anname
siin voimaluse seda iseseisvalt teha.

Lemma. Olgu X wektorruum joa dim X = n. Kui lineaarsed funktsionaalid
pi: X =R, i =1,...,p, on lineaarselt soltumatud, siis
p
dim <ﬂ ker g01-> =n-—p.
i=1

Selgituseks lisame, et ker o, = {x € X | p;(x) = 0}.
Ulesanne* 1. Tdestada lemma ja niidata selle abil, et dim SX* = m+1+k(n—1).

Lemma kasutamisel tuleb votta X = P{’, leida sobivad funktsionaalid ja ndidata
nende lineaarset soltumatust.

. . . k . .
Jérgnevas leiame ruumis SR baasi. Defineerime

", kuiz >0,
X =
T ]0, kuiz<o.

Nende graafikud on esitatud joonisel

N n=2

%nzl
1 n=>0

Taolisi funktsioone nimetatakse loigatud astmefunktsioonideks. Nende abil moo-
dustame

(o) (x — )", ku% T >,
0, kui x < ¢,



12 §2. Splainide ruumid

mida nimetatakse samuti loigatud astmefunktsioonideks.

Teoreem. Funktsioonid 2%, « =0,1,...,m, (v —;)%, i =1,...,n—1 (vastavad
A sisesolmedele), « =m — k +1,...,m, moodustavad baasi ruumis Sz’k.

Lisame, et osa neist funktsioonidest on tavalised astmefunktsioonid, loigatud
astmefunktsioonid aga paiknevad jiargmise joonise kohaselt:

Toestus. Meenutame, et kui X on vektorruum ja dim X = n, siis baas ruumis

X on lineaarselt soltumatute elementide komplekt eq,...,e, € X. Samaviirne

tingimus on, et iga x € X esitub {iheselt elementide ey, ...,e, € X kaudu kujul
n

xr = E C;€;.

i=1

Alustuseks vaatame, kas teoreemis toodud funktsioonid kuuluvad ruumi Sg"k.
Poliinoomid z%, o = 0,...,m, muidugi sinna kuuluvad. Vaatleme funktsioone
(x — )%, a =m —k+1,...,m. Punktist z; vasakul ja paremal on tegemist po-
liinoomiga, seega tingimus, et funktsioon oleks osaloikudes iilimalt m astme polii-
noom, on tdidetud. Tuleb veel veenduda funktsiooni kiillaldane arv korda pidevalt
diferentseeruvuses ja sedagi ainult punktis x;. Leiame

((z —a)5) = ale —2)7,

((z—2)%)" = ala — 1)(z — ;)72

(e = 2)9) "™ = ala = 1) (0 = (m— k= 1) (z — 27 "),

seejuures minimaalne o vadrtus on m —k +1, seega oo — (m —k) >m—k+1—
(m—k) = 1, mis tdhendab, et diferentseerimisel saadud 16igatud astmefunktsiooni
aste on alati vihemalt 1 ja on tagatud selle pidevus.
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Kiisimus, kas toodud elementide arv on vordne dimensiooniga, saab vastuse nii:
astmefunktsioone z* on m+-1, 1digatud astmefunktsioone (z —x;)% on iihe x; kohta
m— (m—k+1)+ 1=k, sisesdlmi on n — 1, seega kokku on toodud funktsioone
m+1+k(n—1).

Néitame esitatud funktsioonide lineaarset soltumatust. Oletame, et

n—1 m

anoxa + Z Z Cai(® — ;)8 =0, € [zg, 2]
a=0

=1 a=m—k+1

Olguzy <z < xq. Siis (v —a;)7 =0igai=1,...,n—1ljaigaa=m—k+1,...,m
korral. Vordus Z caox™ = 0 annab siis, et c,o = 0iga o = 0, ..., m korral. Seejarel
a=0
r1 < x < x5 korral Z Cor(x—x1)* =0, millest ¢,y =0, a =m—Fk+1,...,m.
a=m—k+1

Analoogiliselt jitkates ndeme, et funktsioonide lineaarses kombinatsioonis on koik
kordajad vordsed nulliga ja sellega on teoreem toestatud.

Jareldusena nieme, et iga splain S € SZ’]C esitub iiheselt

m

m n—1
S(x) = anoxo‘ + Z Z Cai(® —2;)%, € |20, Ty).
a=0

i=1 a=m—k+1

Markus. Arvutuslikult ei ole toodud baas stabiilne. Kui korvuti eespool tooduga

veel
n—1 m

m
S'(x) = Z CaoT™ + Z Z Cai(® — 2;)%,
a=0 i=1 a=m—k+1
sits arvude |co; — Goi| viiksus (arvutuste mottes) ei taga seda, et |S(z) — S(z)|
oleks viike ja see avaldub eriti siis, kui mingid naabersolmed z; ja z,4; asuvad

ldhestikku. Seepérast ei ole toodud baas sobiv praktilistes arvutustes. Samal ajal
on selle kasutamine efektiivne mitmete teoreetiliste probleemide lahendamisel.

Ulesanne 2. Leida astmefunktsioonidest ja 16igatud astmefunktsioonidest koos-
nev baas ruumis SZ’HIQ.

Soovitus: vaadelda ruumi S3% ruumina ST, kus A a < xg < ... <z, <bja
A:xg<...<ux,

Uldistame siiani vaadeldud splainide ruumi moistet. Nagu varemgi, olgu A: a =
=1x9 <11 <...<ux,=>b lisaks olgu antud m ja ki, ..., k,_1. Defineerime

Sttt = {8 [a, b)) 5 R | S € PPl a, i=1,...,n,
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S, S ..., 8™ k) on pidevad punktis z;, i=1,...,n — 1}.

Varasemaga vorreldes on siin igas sisesolmes oma sileduse nouded ehk igale sise-
solmele vastab oma defekt.

Ulesanne 3. Leida dim S ! ja sama tiilipi baas nagu eelmistes ruumides.



§3. B-splainid

Esitame siin B-splainide teooria juhul, kui defekt on 1. Uldisem juht, eriti selline,
kus igas sisesolmes on solmele omane defekt, nouaks kordsete solmedega splainide
kisitlemist, mis teeks esituse tehniliselt tunduvalt keerukamaks.

On iildiselt aktsepteeritud viide, et B-splainide kasutamine on to6stuslik stan-
dard. See tdhendab seda, et nende asemel millegi muu kasutamiseks praktikas peab
olema viga kaalukas pohjus. Ka seetottu podrame B-splainidele erilist tdhelepanu.

Olgu antud vork A: xg < z1 < ... < x, ja tidisarv m > 0. Kasutame funktsiooni

(x—t)", kuiz >t
0, kuix<t.

pm(,1) = (z =)} = {

Funktsioon ¢,, on mé#iratud koikjal tasandil R? ja jirgneval joonisel, mis kujutab
tema madramispiirkonda, on ta sirgest x = t iilalpool méddratuna kahe muutuja
poliinoom, sirgest x = t allpool méaratuna nullfunktsioon.

€y r=1t

x>t

T <t

~Y

Laiendame vorku A lisapunktidega
ANia_ <., . <2 <20<11<...<Tp < Tpy1<...< Tpim.
Defineerime funktsioonid
Bl (z) = (=)Mo (z;24, .., Tigmy1), TER i=—-m,....n—1

15
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Siin voetakse argumendi ¢ jargi m+ 1 jarku diferentssuhted. Meenutame, et funkt-
siooni f diferentssuhted defineeritakse rekurrentselt paarikaupa erinevate solmede

jaoks (x; # x;, kui i # j)
f(z;), 0. jarku diferentssuhted,
fxi) — f(z))

f(z, x;) = ——————=, 1. jarku diferentssuhted,
Ty — Ty
flziy . migy) = J@ir o ivh1) = S @i, ’Ii+k), k. jarku diferentssuhted.
Ti— Titk

Lisame, et kui nditeks f € C"[zg,x,], siis on olemas & € (zg,x,) nii, et kehtib

F()

flzo, ... x,) = T Jérgnevalt jooniselt on ndha, millised solmed esinevad
n!

B, defineerimisel:

T_m Ce r_1 g I Ce Tn—1 Tp Tpt1 Ce Tn+m
kasutab B, ™ kasutab B!

Funktsioone B’ nimetatakse B-splainideks. Meie esimeseks eesmiirgiks on niidata,
et saadud funktsioonid on ruumist SK;%.
Diferentssuhtel on esitus

e e =3y

kus w(z) = (x — ;) ... (x — xy). Selle pohjal

Byfe) = (-urt 30 D )

kus w(z) = (x — ;) ... (¢ — Titms1). Funktsioonid B’ on ldigatud astmefunkt-

. . . . . . . . ) 1
sioonide lineaarne kombinatsioon, seepérast (tuginedes iilesandele [2) B,, € S\

voi B!, € ST s Tpym). Uhtlasi voib delda, et BY, € SX', kui peame silmas
funktsioonide B’ ahendeid ldigule [z, z,]. Kui ahendamiseks vajadust ei ole, siis
edaspidi arvestame ikka, et B’ on miiratud koikjal reaalarvude hulgas R.

Mirgime, et (z—t)7 = (z—)"+(=1)"*(t—2)7 ning m+1 jirku diferentssuhe
solmede x;, ..., T;ym11 jrgl poliinoomist (x — ¢)™ vordub nulliga, seepérast voib
vorduse (1)) kirjutada ka

B = Y L )
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Ulesanne 4. Toestada vordus
(&= 07 = (@ — )" + (1) (¢ — )7
Lause 1. Kehtib vordus
i L — i Litm+1 — i+1
Bmx——B —I——B , x€R. 2
( ) Titm4+1 — T4 ( ) Titm+1 — T4 ( ) ( )

Toestus. Alustame iihe tehnilise vahendiga, mida hiljem kasutame.
Vaatleme olukorda, kus f(t) = fi(t) fo(t). Vdidame, et siis

f(l’[),..., Zfl Loy -y fg(l’],...,l'n). (3)

Toestame selle induktsiooniga. Kui n = 0, siis f(xg) = fi(z0)f2(x) ning viide
kehtib. Induktsioonisammuna nditame iilemineku n solmelt n + 1 solmele. Saame

Fzo,- .. 1) = f(zoy- - yxn1) — f(To,. - Tp_2,Ty) _

Tp—1 — Tn
/ kasutame diferentssuhete omadusi ja induktsioonieeldust /

= — <Zf1 1’07... fg(f[’],...,{,(]n_l)_

7=0

_ Z fi(zo, ..., j)f2($j""’x”)> B

i— )
j;n% puudub puudub
solm x,_1 solm x,,_1
n—2
TiyeooyTp_1) — folTi, ..., Tp_o, Ty
_ fl(IO,--~,xj)f2( 7 1) f2( J 2 )+
. Tp—1 — Ty,
7=0
1
+ ﬁ(fl(xm cee 7xn71)f2(xn71) - fl(x07 s 7wn72>xn)f2(xn)) =
n—1 = 4n
n—2
= Zfl(l’o, e ,Ij)fg(l’j, e 7l’n) +
7=0
1
+ ———— (fi(xo; - -, Tn1) (foTn1) — fa(zn)) +
Tp—1 — Tn

+ fi(@o, - -y 1) fo@n) — fi(Tos - - T2, T0) fo(2n)),
kus summamargiga osale lisanduv liidetav annab
Ji(@o, -y 1) fo(@no1, 20) + fi(To, - -, T0) fon),

millega on kehtivus toestatud. Vordust nimetatakse Leibnizi valemiks (di-
ferentssuhete jaoks).
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Lisatulemusena maéargime, et kuna n korda pidevalt diferentseeruvate funktsioo-
nide korral

F(E)
f('r07"'7'xn> = nl ) é-E (x()?xn)7
ja kui xg, ..., x, — x, siis £ — z, ning piirvadrtusena saame vorduse

n

() a)® =3 (1)@ )

1=0

mida tuntakse samuti Leibnizi valemina (tuletiste jaoks). See on tegelikult korru-
tise diferentseerimise valem.
Lause [If toestuse jatkuna esitame

me(xvt) - (l’ - t)T - (l’ - t)T_l(x - t) = me—l(wiw(x?t)a

kus kasutasime tdhistust ¢(x,t) = z — t. Funktsioonist ¢ diferentssuhted ¢ jérgi
esituvad tuletistena

d d?
— ty=-1, — t)=0, ...
dtw(x’ ) Y dt2w($’ ) 9 9

seega valemi pohjal

B:n(f) = (—1)m+1 (SOm—l(x; Liy. .. ,$i+m)¢(fﬂ; Titm, $i+m+1) +
+ Om1 (T Tis - s Tigm1)Y(T; $i+m+1))-
Selles
1/)(55333i+m7$z‘+m+1) =—1,
V(T Tigme1) = T — Tigmeit,
o (T30, Trme) = Pm=1 (T3 i1, - Timrt) = Pt (T84, Tipm)
Litm+1 — L
Niiud

Bfn(‘r) = (—1)mgpm71(m7 Tiyon 7xi+m> +

L — Titm+1 m+1
+ —(—1) SOmfl(SU; LTit1y--- ,ilfi+m+1) +
Litm41 — L4

xr —XI;
) 1 (25T, Tim) =
Titm+1 — T4
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T — Titm
=(-1)" (1 + —+H) Om-1(T; Ty o Tim) +
Titm4+1 — T4

T; —x
m *i+m—+1 i

+ (_1) —SOmfl(l’; Liglye-- 7$i+m+1),

Titmy1 — T4

mis annabki vorduse (2)).
Lause 2. Juhulm > 1

B! (x) >0, kuix € (TiTizme1),
B:n(x) 0, kui x ¢ (xiyxi-&-m-i-l)a

ning
Bi(z) >0, kuix € [v;,711),
Bé(x) =0, kuizx ¢ [r;xi1).

Toestus. Esitame toestuse osade kaupa.

1) Vaatleme juhtu, kus x < x;, Siis (z — 2;)" = 0, sest * < z;, kui j =

=1i,...,i+m+ 1. Vorduse (1) pohjal B’ (r) = 0 olenemata m viirtusest.

2) Olgu & > Tjymy1. Siis B! (7) defineerivas vorduses o, (7;2;, ..., Titmi1) ar-
vutatakse funktsiooni ¢,,(x,t) = (x —t)™ ehk muutuja ¢ jargi m astme poliinoomi
vaartusi kasutades. Kuid m + 1 jarku diferentssuhe esitub

dm—i—l
Om (T Ty Titma1) = W(m —1)" =0,

mistottu B’ (z) = 0 iga m korral.
3) Kui x € [z, 2;41), siis
By(z) = (=1)po(; 24, Ti41) =
_po(w; i) — po(w; Tis1) 1

= = > 0,
Ti — Tit1 Tit1 — Ti

sest @o(x; ;) = 1 ja @o(w;2;41) = 0. Sellega on toestatud kdik viited B viirtuste
kohta.

4) Olgu m > 1 ja z € (24, ipms1). Kasutame induktsiooni ja vordust (2).

Vorduses
r — T .
>0 ja
Litm+1 — Li Litm+1 — Li
Induktsiooni alustades, kui votta m = 1, siis x € (z;, x;12) ja vihemalt {iks vidrtus-
test Bi(xz), B4 () on rangelt positiivne, millest jireldub abil, et Bj(z) > 0.
Jirgmistel sammudel m > 2 ja vihemalt iiks véirtustest B’ (), B! () on
x € (2, Tiymy1) Korral rangelt positiivne, seepérast B, () > 0.

Litm41 — L
— > 0.
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5) Kui m > 1, siis B! on pidev ja B! (z;) = lim B! (z) = 0. Sellega on koik
33<:CZ‘L

lause [2] viited toestatud.

Analiitisime lihemalt B-splainide erijuhte soltuvalt m vaartustest.
Kui m = 0, siis B, graafik on esitatud jargmisel joonisel.

By

v

1
Tit1—Ti

N| l
M I
T Tit1

algul toodud splaini definitsiooni tuleb siin modifitseerida. Kuuluvus S € S%'
tihendab, et S € P°[x;,7,41) iga i korral ning S € C~'[a,b], seejuures defineeri-
takse

C~a,b = {f: [a,b] — R | funktsioonil f on iilimalt

16plik arv esimest liiki katkevuspunkte}.

Esimest liiki katkevuspunkti moéistame siin nii, et funktsioon on pidev kas paremalt
voi vasakult, seejuures eksisteerivad molemad iihepoolsed loplikud piirvdartused,
kuid need ei ole vordsed. Tiiiipilised néaited on jirgmistel joonistel.

N — T

L >

Meile praegu ebaolulise kisitlusena voib defineerida ka m > 1 korral
St =18 [a,0) = R|S € P™(x;_1,2:),i=1,...,n, S € C '[a,b]},

mis sisuliselt iihtib eespool vaadeldud hulgaga PX', kus on funktsiooni vaartused
solmedes iiheselt madratud.
Kui m = 1, siis B-splain on pidev, tema graafik on kujutatud jargmisel joonisel.

By

T T
T Tit1 Tit2
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Kui m = 2, siis B-splaini tuletis on pidev, tema graafik on jargmisel joonisel.
By

T; Tit1 Tit2 Tit+3

Kuim = 3, siis B-splainil on juba pidev teine tuletis ja graafikut ndeme jargmisel
joonisel.

By

—] i —
Ti Tit1  Tiy2  Tig3  Litd

Mdrkus. Defineerisime B-splainid, kasutades funktsiooni ¢,, diferentssuhteid teise
argumendi jargi. Teine voimalus B-splaine defineerida on rekurrentse seose abil,
lihtudes suhteliselt lihtsalt kirjeldatavatest splainidest B, ja minnes sammhaaval
jarjest korgema astme splainideni. Lisame, et vorduses on r € [T, Tiym1)
korral B! (x) kumer kombinatsioon kahest madalama astme splaini viirtusest.
Funktsiooni f kandjaks nimetatakse hulka {z | f(x) # 0}, see on sellise hulga
sulund, kus funktsioon erineb nullist. Kandjat tdhistatakse supp f. Lause [2| pohjal

supp Bfn = [%’; 13z‘+m+1]-

Lause 3. B-splainid on minimaalse kandjaga splainid hulka SZL% kuuluvate nullist
erinevate splainide hulgas.

Enne toestust mérgime, et 0 € S%a ning supp 0 = (.

Téestus. Vaatleme olukorda, kus S € SK’EIQ, S # 0jasupp S C [z, Tiym1]- Paneme
tahele, et ei ole voimalik jargmisel joonisel kujutatud olukord,

Zj Tjt1

sest igas osaloigus on splain poliinoom ja nullist erineval poliinoomil on iilimalt
16plik arv nullkohti. Formaalsemalt, kui & = min{x | = € supp S}, siis ei ole voi-
malik, et z; < £ < z,41, sama olukord on ka juhul { = max{z | z € supp S}.
Seeparast peab kandja algama ja loppema solmes. Oletame néaiteks vastuviiteli-
selt, et supp S C [x;, Tivm)|. VOoime lugeda, et splaini S sdlmedeks on x;, ..., Ziym.
Esitame splaini S baasi kaudu

i+m

S(z) = anxa + Z cmj(x —x;)Y, xeR.
a=0 Jj=t
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Kui z < x;, siis S(z) = 0 ehk Z cex® =0, millest ¢, =0, « =0,...,m. Seega
a=0

i+m

S(x) = Zcmj(x — ), zeR

j=i
Kui > x; 1y, siis = ¢ supp S, seepéirast

i+m

Z Cmj(z — ;)™ = 0.
=i

Korvalise méarkusena juhime tdhelepanu sellele, et siin ei saa otse jireldada, et
Cmj = 0, j =1i,...,1+ m, sest me veel ei tea, kas funktsioonid z — (z — z;)™,
Jj=1,...,7+ m, on lineaarsed soltumatud.

Vaadeldavate z viidrtuste korral S'(z) = 0,..., S (z) = 0, seega

i+m

Zcmj(x—mj)m_k =0, k=0,...,m,
j=i

mis on homogeenne siisteem kordajate c,,; mddramiseks. Siisteemi determinant on

(x—z)" .. (x—2im)"
(x — ;)" (& = Tigm)™ "
# 0,
T — e T = Tiym
1 o 1
sest tegemist on Vandermonde’i determinandiga. Niisiis, ¢,,; =0, j =4,...,7i+m.

Kuid siis S = 0, mis on vastuolus eeldusega, ja sellega on lause [3| toestatud.

Teoreem. Splainid B! ,i = —m,...,n—1, moodustavad baasi ruumis SrA”’l[xo, Tnl,
kus A:xg < a1 < ...< Xy

Enne otseselt toestuse juurde asumist mirgime, et B-splainid B’ on méiratud
koikjal reaalteljel R ning nad ahendatakse 16igule [z, x,]. Teoreemi viide on selliste
ahendite kohta.

Toestus. On arusaadav, et algselt hulgal R defineeritud B-splainide ahendid 16igule
[20, 2,,], mida tihistame ikka B! | kuuluvad hulka SX'. Nende arv on m + n, mis
on iihtlasi dim S3', seepérast niitame nende lineaarset soltumatust 16igul [z, z,).
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Tdestame koigepealt, et BY i = —m,...,n—1, on lineaarselt soltumatud hulgal
R. Olgu
n—1
> Bl(x)=0, z€eR

Votame = € (T_pm, Tomi1), siis ¢, B, (x) = 0. Et B,,™(z) > 0, siis c_,,, = 0.
Seejirel votame © € (r_,,41,T_ o) ning saame, et c¢_,,y1 = 0. Analoogiliselt
jatkates ndeme, et ¢; = 0,72 =—m,...,n — 1.

Niitame jirgnevas, et B’ on lineaarselt sdltumatud 16igul [xg, ,,]. Olgu

n—1
Z ciB! (v) =0, € [xg,7,).

i=—m
Valime z € (z;,x;11), kus ¢ on iiks viértustest 0,...,n — 1, loeme ta fikseerituks.
Arvestades splainide B;, kandjate ulatust (vt. joonist),
Bim Bt
xi;m 96“1' i‘z‘+1 $i+ﬁ+1

niieme, et valitud z korral B? (z) =0, kui j < i —m voi j > i. Seega

)

Z ¢;Bl(x) =0, x € (52i11).

j=t—m

i

Kasutame tdhistust S;(z) = Z ¢;B} (z), = € R. Teame, et S;(x) = 0, kui
Jj=i—m

T < Tiogpm VOL T > Tiime1, samuti @ € (x;, r;11) korral. Seega S; voib olla nullist

erinev intervallides [z;_,,, ;] ja [Tiv1, Titmi1]-

1 1 1
Ti—m N\ \-/ilUl Ti1 \/ Titm+1

S\(z) = {Si(x), T € [Tiim, T4,

0 mujal.

Defineerime

Analoogiliselt midrame S? ehk S? = S;—S; voi S; +S7 = S;. Seejuures S7, S? € S™!,

kuid supp S; C [Zi_m, 23], Supp S? C [Tit1, Tiymo1], mis on lause |3 pohjal voimalik
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vaid siis, kui S} =0, S? = 0 ehk S;(z) =0, v € R. Vordus

%

Si(z)= Y ¢Bl(x)=0, z€R,

j=i—m
annab niitid, et ¢; = 0, j = @ —m,... 4. Sellise arutelu saab libi viia iga ¢ =
=0,...,n —1 korral. Kui ¢ = 0, siis saame c_,, = 0,...,co = 0; kui ¢ = 1, siis
Comi1 = 0,...,¢c; = 0; lopuks, kui ¢ = n — 1, siis c_ppyn-1 = 0,...,ch1 = 0.
Kokkuvottes, ¢_,, =0,...,¢,_1 = 0, mis lIopetab teoreemi toestuse.

Jareldus. Iga splain S € SZ’l on theselt esitatav

n—1
S(x) = Z B (), € [x0,2n)
Miirkus. B-splainide B! , i = —m,...,n — 1, defineerimisel laiendasime vorku A
lisasolmedega ©_,p, ..., T _1,Tpa1,- -, Tnim- On selge, et need B-splainid, mis ka-

sutavad lisas6lmi, soltuvad nende valikust (erinevad vorgu A laiendid annavad
erinevad B-splainid). Splainide B’ ahendid Idigule [zg,,] séltuvad samuti vorgu
A laiendist ning B-splainidest baas ei ole iiheselt madratud vorguga A. Seepérast
tuleb teoreemile jargnevat jareldust moista nii, et kui vorgu A laiend on véilja va-
litud ja fikseeritud, siis on B-splainid kui baas ruumis Sg“l ja splaini esitus selle
kaudu iiheselt maaratud.

B-splainidest baasi kasutamisel ilmneb iiks soodne asjaolu. Praktikas kasuta-
tavatel splainidel ei ole aste suur, enamasti m = 1,2, 3. Fikseeritud x korral on

n—1
summas Z ¢; B! (x) iilimalt m + 1 nullist erinevat liidetavat, mida illustreerib
i=—m

juba esinenud joonis:

i—m %
Bm Bm
Ticm i T X1 Tigmal
Kui z € [x;,x;41], siis ainult m + 1 B-splaini véértust B, ™(x),..., B, (x) saavad

olla nullist erinevad. Seejuures solmede arvu maédrav n voib olla suur, praktikas
isegi tuhandetes.

Ulesanne 5. Tdestada, et minimaalse kandjaga splainid iihtivad kordaja tipsuseni
B-splainidega.
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Formaalselt tdhendab selle iilesande véide, et kui S € SZ’]% on selline, et kehtib
supp S C [Ti, Tiymy1), siis S(x) = B! (z), * € R, kus ¢ = const. Soovitus:
iilesande lahendamisel kasutada esitust B-splainidest baasi kaudu.

Lisame, et on moéeldav sonastada iilesande viide, et kui S € Sm,’jR ja seejuures
supp S C [i, Titms1], siis S(x) = eB! (r), z € R, ¢ = const. Sel juhul tuleb A’
laiendada vorguks A”: 2 5, < ... <2T_p < ... <20 < ...<Tp < ...< Tnipom ja
votta B-splainidest baas, mis kasutab vorku A”, ning arendada S selle jirgi.



§4. Normaliseeritud B-splainid

Kui vektorruumi baasielemendid korrutada mingite nullist erinevate arvudega,
siis saadakse ikka baas. Vaatleme siin sellist votet B-splainide korral.

Defineerime .
B:n(m) = (xi+m+1 - xz)B;n(x)v S R’
s.t. eespool toodud B-splainid korrutatakse kandja pikkusega. Splaine Fm nime-
tatakse normaliseeritud B-splainideks. Eespool toodud vordusest
i L=y i Titm+1 — L ;11
B (vr) = ——B, (x)+ ———B, ", (x
( ) Titm+1 — T4 1( ) Titm+1 — L 1( )

saadakse peale korrutamist arvuga x; ,,+1 — x; vordus

B = Titm+1 — T —itl
B, (r)= B, (x)+ ———B,,_,(x), zekR 1
(@) = 37— B @) + B, (@) 1)
Teoreem. Kehtib
n—1
Z E:n(x) =1, x€lxg,z,), kuim>1,
ning
n—1

Eé(x) =1, x € [zg,zn).

Il
o

i

Toestus. Eespool nidgime, et

1
. — kui € |x;,Ti01),
By(r) = { Tit1 — T | +1)
0 mujal.
Sellest saame, et
-5t 17 kui € iy L3 )
Bl (2) = u1' T € [T, mit1)
0 mujal.

Niiiid on selge teoreemis toodud véite kehtivus m = 0 korral ning seda illustreerib
jargnev joonis.
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—=0 =1 —n—1
By, Bo, . Do,
| Zo 21 I Tp-1 Tpn

Toestame vorduse m > 1 korral induktsiooniga. Eeldame, et on toestatud vordus
n—1

Z Ejnfl(x) =1, z € (xg, x,). Siis x € (x9, x,) korral vorduse abil

i=—(m—1)

n—1 n—1 n—1

—1 r—T; —=i €X; 1 — T —i+l
E:Bl ZE:—ZB +§:LB =
m('x) Tim — T m—l(x) Tivmt1 — Titl m—l(x)

i=—m i=—m i=—m

. T=—m
/ paremas pooles esimeses summas B,, ;(z) =0,

[Z_pn, To), teises summas B,, | (z) =0, /

-m
m—1

sest supp By, = [Tn, Tnim] /

sest supp B

n—1 n—2

r—T; —i LTitm+1l — T —i+1
= Y ——B.@+ ) ———B, )=

Z; — I Z; — X;
i=—(m—1) +m 7 m i+m+1 +1

/ teises summas teeme indeksi nihke i + 1 = j, siis
i=—-m<+j=—(m—-1),i=n—-2+j=n—1,

aga jitkame vana indeksi tdhisega /

n—1 n—1
r—T; —=—=i Titm — T =i
i:%r;l) Tim = Li Frale) s iz(zml) ikm T P
n—1 ‘
= Y B,i@=1
i=—(m—1)

Punktidesse zy ja x, laiendame vorduse pidevuse jirgi (vottes piirviirtuse), sest
m > 1 korral on splainid Fzm pidevad. Sellega on teoreem toestatud.

Kirjeldame veel erijuhte. Sisuliselt juba niagime eespool joonist m = 0 korral:
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Juhul m = 1 on normaliseeritud B-splainid kujutatud jargmisel joonisel:

Ty Tyl Tig2

Juhul m = 2 on splainide E; graafikud joonisel

A
—i-1 —i —it1
]_“ B2 32 B2
Ti1 T Tiy1 T2 T3 T4

Siin splaini E; vidrtus punktis x € (x;, x;13) on E;(x) < 1, sest ka mingi teine
B-splain on samas punktis x positiivse viédrtusega.

B-splaine voib vaadelda ka mitmete normeeritud ruumide elementidena ning siis
voib neid korrutada selliste arvudega, et nende normid oleksid vordsed arvuga 1.

Selliseid B-splaine v6ib nimetada normeerituteks. Néiteks ruumis L;(—o0,00) on
o0

B-splainid B}, normeeritud, sest nende norm on / Bl(r)dx = 1.

—00

Ulesanne 6. Niidata B-splainide vahelist rekurrentset seost kasutades, et
[o.¢] [o.¢]

, 1 , 1 . .
/ Bi(z)dx = 5 ja / Bi(z)dx = 3 (need on B-splainide Bj ja Bj normid ruumis
Lq(—00,00)).
Tehniline soovitus: kasutada tdhistusi h; = z; — x;_1, ¢ = 1,...,n, kirjutiste
liihendamiseks.

Ulesandes @ vaidetuga on kooskolas jirgmine tulemus.

Lause. Kehtib /Bfn(x) de = ——.
m+ 1

Toestus. Kasutame siin Taylori valemit jadkliikmega integraalsel kujul

f"(a) 2 [V (a) -1
o (x —a) +...+W(x—a) +

f(@) = fla) + f'(a)(z —a) +
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T

+ (l—;l)' /(x —5)7 1 f0(s) ds

Ulesanne 7. T(N)estegcda esitatud valem. Soovitus: ldhtudes Newton—Leibnizi vale-
mist f(x) = f(a) —I—/f’(s) ds kasutada ositi integreerimist, vottes algul u = f(s),

dv = ds, v = s — x ning edaspidi induktsiooni jargu [ jérgi.
Kui a < z < b, siis saab jadkliikme kirjutada kujul

b

=y [ = O as )

a

sest a < s < korral (v — s)7! = (2 — )", kuid z < s < b korral (z —s)7! = 0.
Leiame Taylori valemis molemas pooles dlferentssuhte muutuja x jargi solmedega
Tiy. o, Tirms1 € [a,b]. Siis vasakul saame, kasutades diferentssuhte esitust tuletise
kaudu,

Frmh(e)
(m+1)!7
Kui votta [ = m + 1, siis Taylori valemis poliinoomidest astmeni m tulevad dife-
rentssuhted nullid (nende poliinoomide m + 1 jérku tuletised on nullid). Integraali
alla tekib jaskliiget silmas pidades vastav diferentssuhe x jirgi, mille esitame
funktsiooni vadrtuste kaudu. Sellega saame vorduse

f(xiv s 7$i+m+1) - § S (l’i,ﬂfi+m+1).

f(m+1 z+m+1

m—m'/ Z s

Kui niitid votame f(z) = 2™+, siis f(z) = (m + 1)! ning vordust :
silmas pidades jouame vorduseni

Ti+m+1
1=(m+1) / B! (s)ds,

T

millega oleme lause toestanud.



§5. Ulevaade funktsionaalruumidest ja monedest abi-
tulemustest

Edaspidi vaatleme funktsioonide lihendamist splainidega, seejuures eeldame l4-
hendatavate funktsioonide kuulumist kindlatesse funktsionaalruumidesse. See on
oluline sellepérast, et teha kindlaks ldhendamise veahinnangud, mis iseloomusta-
vad koonduvuskiirust.

Loigus pidevate funktsioonide ruum on Cla,b] = {f | f: [a,b] — R, f on pidev}.
Ruumi norm on || f{|ciey = || fllc = max |f(z)|.

Loigus k korda pidevalt diferentseeruvate funktsioonide ruum on C*[a,b] =
={f | f:]a,b] = R, f%® on pidev}, seejuures k > 1. Tépsustuseks lisame, et
noutakse funktsioonil f: (a,b) — R tuletise f*: (a,b) — R olemasolu (teata-
vasti saab tuletise moistest rddkida funktsiooni puhul, mis on defineeritud lahti-
ses hulgas), kusjuures on olemas 16plikud piirviadrtused lim f®(z) ja ilgll) F® ().

v>a 2<b
k
Norm ruumis C*[a, b] defineeritakse || f||cap = Z 1D || cpas vOi ekvivalentsena
=0
max || £/ ¢, kusjuures siin moistetakse f© = f.

o<i<k
Integreeruva astmega funktsioonide ruum on

b
Ly(a,b)={f|f:[a,b] > R, fon m66tuv,/]f(x)|pdx<oo}, 1 <p<oo,

kusjuures ruumi L,(a,b) elemendid on ekvivalentsete funktsioonide klassid, s.t.
f =g parajasti siis, kui f(x) = g(z) peaaegu koikjal intervallis [a,b] ehk
p({z | f(z) # g(x)}) = 0. Norm selles ruumis on

b 1/p
1 ey = / )P de

30
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Tokestatud (modtuvate) funktsioonide ruum defineeritakse

Loo(a,b) ={f | f: [a,b] = R, f on mootuv, esssup|f(x)| < oo},

a<z<b
kus funktsiooni | f| oluline toke on

esssup |f(x)] =inf {¢ > 0| |f(z)| < ¢ peaaegu koikide x € [a,b] vadrtuste korral} .

a<lz<b

Siin || f|| £ (ap) = esssup | f(x)|. Illustreerime funktsiooni olulist toket joonisega
a<lz<b

esssup | ()] ---------

a b
1

samuti nditega, kus f: [0,1] — R, f (5) =n,néeN, flx) =1,z € [0,1]\

1
\ {— | n € N}, milles esssup |f(z)| = 1, kuigi f on tavalise funktsioonina tokes-
n

tamata. Seepérast oleks tdpsem nimetada seda oluliselt tokestatud funktsioonide
ruumiks, mis ei ole aga eriti téhtis, sest ka see ruum koosneb nagu eespool L,(a, b),
1 < p < o0, ekvivalentsete funktsioonide klassidest ja igas klassis on olemas tokes-
tatud liige.

Tiikiti pidevate funktsioonide ruum

C~'a,bl ={f | f: [a,b] — R, funktsioonil f on iilimalt 15plik

arv esimest liiki katkevuspunkte, mis asuvad vahemikus (a,b)}.
Tavaliselt piisab sellisest kiisitlusest, kus C~![a, b] vaadeldakse alamruumina ruumis
Lo (a,b), milles ei ole funktsiooni véédrtused katkevuspunktides olulised. Kui aga
C'[a, b] elemente vaadeldakse funktsioonidena, siis lepitakse kokku, et funktsioo-
nid on katkevuspunktides néiteks paremalt pidevad.

Ruume L,,1 < p < oo, voib vaadelda ka tokestamata piirkondade korral ja
eespool juba esines meil L (—o0, 00).

1 1
Olgu p,q € [1,00] sellised, et — + — = 1 (siis p = 1 korral ¢ = o0 ja p = 0
p q
korral ¢ = 1). Kui f € L,(a,b) ja g € Ly(a,b), siis kehtib Hélderi vorratus
b

/}mqux<nm%wm¢

a
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Juhul p = ¢ = 2 on see Cauchy-Bunjakovski-Schwarzi vorratus.
Sobolevi ruumid on

WP a,b) = {f | f € Ly(a,b), f!"Yon absoluutselt pidev, f € L,(a,b)},
kus 1 < p < oo, [ € N. Siin peetakse silmas funktsiooni tavalist tuletist ehk

piirvadrtust

Terviklikkuse huvides toome ka funktsiooni f: [a,b] — R absoluutse pidevuse
moiste: iga ¢ > 0 korral eksisteerib ¢ > 0 nii, et kui o;, 5; € [a, b], (o, Bi)N (e, ;) =

= (), kui i # 7, siis
Z Bi —au| <
i=1

korral

Z|f@ f(a;)| <e, neN.

Margime, et n = 1 korral tihendab see rohkem tuntud {ihtlase pidevuse moistet,
aga absoluutses pidevuses on noue koikide naturaalarvude n korral. lllustratsioo-
niks toome veel joonise intervallide (o, 3;) paiknemise kohta:

1 hY hY rd
T 7 7 AN

Y
7
a @ B Qg T Qn gy b

Absoluutselt pidev funktsioon on iihtlaselt pidev, iihtlaselt pidev funktsioon on
pidev ning a,b € R korral on 16igus [a, b] pidev funktsioon ka iihtlaselt pidev.

Kui f on absoluutselt pidev, siis peaaegu koikjal on olemas (tavalises mottes) f”.
Sobolevi ruumis toodud ndudest, et £~V on absoluutselt pidev, jireldub peaaegu
kaikjal £ olemasolu, kuid tingimus on, et f& ¢ L,.

Teine voimalus Sobolevi ruume defineerida on

WPl a,b) = {f € Ly(a,b) | f', f",..., f¥ € L,(a,b)},

kus tuletisi moistetakse distributsioonide mottes. Need tuletised eksisteerivad iga
f € Ly(a,b) korral, noue on f tuletiste kuulumine ruumi L,(a, b).
Norm ruumis W?!(a, b) defineeritakse

1/p 1/p

1w = (Zufm,,(ab) Z/\f D] . 1<p<oo,
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tavaliselt

||f||W°°l (a,b) = (I)Y<la<>§ ||f ||Loo (a,b)-

Olgu antud vork A: a =x9 < 21 < ... <z, = b. Defineerime
C*CL\[a,b] = {f | f € C¥[a,b], f € Cai_1,m], i =1,...,n},
see on moaistlik, kui [ > k. Veel olgu
C*WR'a,b] = {f | f € C*[a,b], f € WP'[z,_y,2), i=1,...,n}.

Teoreem (pidevate funktsioonide keskvéértusteoreem). Kui f € Cla, b ja af > 0,
siis on olemas & € [a, b] nii, et

af(a) +Bf(b) = (a+ B)f(E)-
Toestus. Olgu p(z) = af(a) + Bf(b) — (o + B)f(x), x € [a,b]. Siis ¢ € C[a,b].

Saame

Kui f(a) = f(b), siis voib votta £ = a voi & = b. Kui aga f(a) # f(b), siis
w(a)p(b) <0 ((p vadrtused on vastandmaérgilised), seepirast eksisteerib & € (a,b)
nii, et p(§) =

Teoreem (keskviirtusteoreem integraalide jaoks). Kui f: [a,b] — R on pidev,
g: la,b] = R integreeruv ja g(x) > 0 iga x € [a,b] korral voi g(z) < 0 iga x € [a, b]
korral (g sailitab marki loigus [a,b]), siis on olemas & € [a,b] nii, et

/bf(iﬁ)g(x) def(f)/g(:U) de.

b
Téestus. Oletame néiteks, et g(x) > 0 iga x € [a,b] korral. Siis /g(x) dx > 0.

Pidev funktsioon f on tokestatud, seepirast on olemas arvud m ja M nii, et
m = min f(x) < f(z) < M = maxbf(x) iga x € [a, b] korral. Seepérast mg(x) <

<\ L

f(z)g(z) < Mg(zx) ja integreerides

m/g(x) iz < /f(x)g(x) iz < M/bg(x) iz
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b b
Kui /g(x) dx = 0, siis viimase kahepoolse vorratuse pohjal /f(x)g(x) dr =0 ja

a

b
teoreemis toodud vordus kehtib iga £ € [a,b] korral. Kui aga /g(x) dr > 0, siis

Saame

Loigus [a, b] pidev funkstioon f saavutab koik vadrtused miinimumi ja maksimumi
vahel ehk on olemas £ € [a, b] nii, et

mis annabki soovitud vaite.

Kui on antud vork A:a = 2y < 2y < ... < x, = bja f:[a,b] — R, siis
defineerime

wi(f)= sup  |f(z') = f(a")],

a! x! €lxi—1,%4]
see on funktsiooni f vonkumine intervallis [z;_1, x;]. Olgu veel w(f) = max wi(f).
<i<n
Funktsiooni f € Cla, b] korral w(f) — 0, kui 1n<1;x<x|xi — x;-1| — 0 (siis vaadatakse
<i<n

vorkude jada voi peret). Sel juhul muidugi n — oo ja x; =2, i =1,...,n — 1.



§6. Lineaarsplainidega interpoleerimine

Olgu antud vork A: a = z < r, < ... < x, = b ja veel vastavad arvud
fo, -+, fu- Olgu vajaleida S € SA nii, et S(x;) = fi, i =0,...,n, sellist funktsioo-
ni S mmetatakse interpoleerivaks lineaarsplainiks. Sellise splaini saab leida lokaal-
selt, igas 16igu [a, b] osaldigus eraldi. Leitakse S € P'[x;_y, z;] nii, et S(x;_1) = fi_1
ja S(x;) = f;. Selleks voib kasutada Lagrange’i interpolatsioonivalemit

r — T T — Tj—1

+ fi

Ti—1 — T3 Xy — Tj—1

S(x) = fia

voi Newtoni interpolatsioonivalemit

f le

Ty — Tj—1

S(x)=fian+———(@—21),

kus = € [r;_1,x;]. Graafiliselt voib lineaarsplainidega interpoleerimist néha viga
tihti andmete esitamisel, vt. néiteks joonist

Siin punktide (z;, f;), ¢ = 0,...,n, hulgas naaberpunktid iithendatakse sirgloiku-
dega, mis on esimese astme poliinoomide graafikud osaloikudel. Korgema astme
poliinoomidega interpoleerimist praktiliselt ei kasutatagi, sest seda ei osata ja po-
legi vaja, sest see kditub halvasti.

Téahistame h; = x; —x;_1, i =1,...,n, need on jaotuses A osaldikude pikkused.
f f f f f f f
Zo T T2 Ti—1 L Tn—1 Tn,
. Nt -t =
hi ha h; hn,

35
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Interpoleeriva lineaarsplaini saab = € [z;_1, x;] korral esitada

T — X T — Tj— i — Ji—
S)= Tt p T g ST )

Vaatleme olukorda, kus lisaks vorgule A on antud funktsioon f: [a,b] — R, siis
saab leida f; = f(x;),7 =0,...,n. Olgu S neid andmeid interpoleeriv lineaarsplain.
Kasutame t&histust R(x) = S(x) — f(x) (ménikord voetakse R(x) = f(x) — S(z),

siis f(xz) = S(x) + R(x)). Téhistame veel h = max h;. Jargmises teoreemis (ja ka

hiljem) ||f||s tdhendab funktsiooni f normi ruumis L. (a,b), mis pideva funkt-
siooni f korral iihtib normiga ruumis C|a, b].

Teoreem. Interpoleeriva lineaarsplaini korral kehtivad hinnangud

fe [Rlloe < | 1R loo <

Cla, 0] w(f) -

- h
Wl | Sl | -

CCxla,b] | —w(f) | w(f)

- h? h
CW ] | 1o | 157N

Tabeli viimases reas toodud hinnangud on olulised ruumis C?[a, b] € CW>*[a, b].

Toestus. Paneme tédhele, et hinnangud piisab toestada suvaliselt valitud osaloi-
gus [r;_1,r;]. Kasutame muutujavahetust © = x; 1 + th;, kus = € [x;_1, ;. Siis
vastavalt ¢ € [0, 1].

Leiame veel z; — x = z; — (z;_1 + th;) = (1 — t)h; ning Lagrange’i valemi pohjal
x € [x;_1, ;) korral S(x) = (1 —1t)fi_1 +tfi.
Juhul f € C|a, b] saame keskvidrtusteoreemi kasutades

S(x) = f(x) = A=) fia +tfi = f(2) = (&) = f(z), &€ lwi,m]
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Sellest
|R(z)| = |S(z) = f(x)] = [f(§) — f(2)] Swi(f) Sw(f).
Olgu f € CW[a,b], siis f € W*?[z;_y, z,;]. Kasutame Taylori valemit jizik-
litkmega integraalsel kujul. Selle abil

Ti—1

ﬁ4=fmFﬂ=fu»+f@x%4—x»+/Yaq—sﬁ%@da

T
T

fi=f(x) = fl)+ f(z)(z; — x) + /(;El — ) f"(s)ds.

xT

Nendest vordustest esimese korrutame teguriga 1 —t, teise teguriga ¢ ja liidame tu-
lemused, kusjuures veel asendame z; ; —x = —th; ja x; —x = (1—1t)h;, tulemusena
saame Lagrange’i valemi abil

Ti—1 x;

S(x) — f(z) = (1—1) / (xi1—8)f"(s)ds +t/(:vi —5)f"(s) ds.
Sellest
R <=0 [(s=ao)lf@)lds+t [ -9l ©)lds <

/ molemas integraalis hindame |f”(s)| < ||/l /
. 9 |S=x 2N 5=
. ((1 Syl (e ) e =
s=x;_1 s=x
(1—0)t2+t(1—1)

2
($ — xi—l)Q (xl — x)2 "
= thHf”H = 1t(l — 0[] "l < b 11l

9 7 o] 9 7 SN 8 00y

kus viimases hinnangus kasutasime seda, et ¢ € [0, 1] korral ¢(1 —t) < n

Mirgime, et kui f € C?[a,b], siis saab kasutada interpolatsioonivalemi jiikliik-
me esitust .
1)

R(a)| = T @ = i) @i — @),

millest tuleb kohe noutud hinnang.




38 §6. Lineaarsplainidega interpoleerimine

Ulesanne 8. Tdestada teoreemis toodud iilejasinud hinnangud.

Lisame, et f € Cla,b] korral, kui h — 0, siis w(f) — 0 funktsiooni f iihtlase
pidevuse tottu.

Lineaarsplainidega andmete voi funktsioonide lihendamise puuduseks on see,
et splain ei ole sile, tema graafikul esinevad murdepunktid. Teine puudus on suh-
teliselt madal lihendamisjirk O(h?), mida ei saa parandada lihendatava funkt-
siooni suuremat siledust (korgemat jarku diferentseeruvust) eeldades. Kui néiteks
f"(z) = const (sobib f(z) = x%), siis raumi C*[a, b] jaoks saadud ||R| . hinnang
realiseerub tépselt. Meie lahemaks eesmérgiks on vaadelda korgema astme splai-
nidega (eelkoige kuupsplainidega) interpoleerimist. Sellega iiletame mélemad mai-
nitud puudused: 1ldhendav splain on ise sile ja vihemalt siledamate funktsioonide
lahendamisjark on korgem.



§7. Hermite’i kuupsplainid

Olgu antud vork A:a = 29 < ¥ < ... < x, = b ja vastavad arvud f;, f/,
i=0,...,n. Seame eesmirgiks leida S € S¥*[a,b] nii, et S(z;) = f;, " (x;) = f!
i =0,...,n. Uldisest splainide ruumi dimensioonivalemist dim S%* = m + 1 +

+ k(n — 1) saame niiiid dim S3* = 341+ 2(n — 1) = 2n + 2, samapalju on ka in-
terpolatsioonitingimusi. Taolisi noudeid rahuldavaid splaine nimetatakse Hermite’i
kuupsplainideks, mis seostub sellega, et iildisemas Hermite’i interpoleerimisiiles-
andes esinevad interpolatsioonitingimused ka tuletiste kohta ehk interpolatsiooni-
solmed on kordsed.

Meie esmane eesmérk on niidata, kuidas Hermite’i kuupsplaine leida. Need saab
leida lokaalselt (nagu interpoleerivad lineaarsplainid) igas osaloigus eraldi. Piisab
leida S € P? [x;_1, x;], mis rahuldab nelja interpolatsioonitingimust

S(xi—1) = fic1, S(zi) = fi, S'(wim1) = fi_y, S'(xi) = fi. (1)

Interpolatsioonitingimuste tiidetus kdigis solmedes tagab ka selle, et S € C*[a, b],
mis kaasneb tingimusega S € 52’2. Uks voimalus on vaadelda splaini S hulga
P?[x;_1, 1] elemendina o € [z;_1, ;] korral kujul S(x) = cy+ c10+ cox® + c32° voi,
veelgi sobivamalt, S(z) = co+ci (v —x;_1)+ea(r—2;_1)*+c3(z—2;_1)" jalahendada
lineaarne vorrandisiisteem nelja tundmatuga co,...,c3 ja nelja vorrandiga, mis
tulevad interpolatsioonitingimustest (L.

Ulesanne 9. Moodustada tingimustest vorrandisiisteem kordajate co, ..., c3
médramiseks ja ndidata, et see on iiheselt lahenduv (sellega saame, et interpo-
leeriv Hermite’i kuupsplain eksisteerib ja on {iheselt méadratud igasuguste f;, f/
i=0,...,n, korral).

Toimime Hermite’i kuupsplaini leidmiseks jargmiselt. Nagu varemgi, teeme muu-

r — Ti—
tujavahetuse r = x;_1 + th; ehk t = Tl

S(x) = @o(t) ficr + 01(t) fi + w2(t)hi fi_1 + w3(t)hifi,

,hi = T; — Tj—1- Olgu

kus

po(t) = (1= )*(1+2t),

39
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©1(t) = t3(3 — 2t),
pa(t) = t(1 —t)*,
p3(t) = —t*(1 — ¢).

Et @, ..., s on kuuppoliinoomid, siis S € P*[z;_1, ;). Jiib kontrollida inter-

polatsioonitingimuste taidetust. Ndeme, et po(0) = 1, »1(0) = 0, p2(0) = 0,

©3(0) = 0, seepérast S(x;_1) = fi_1, sest vordusele x = x;_; vastab ¢ = 0. Lisaks,

wo(1) = 0,01(1) = 1,p9(1) = 0,¢3(1) = 0, seepéiéast S(z;) = fi, sest ¥ = x; té-
d

hendab, et ¢t = 1. Tuletiste juures arvestame, et — = d—Sﬁ ja dx = h; dt, millest
dr  dt dx
dt 1 _1dS

— = —, seepéarast S'(z) = I

i (t). Siis

§'() = 2 (@b(0)fior + A0+ ORI, + AhhF)).

Vahetult arvutades saab leida, et

wo(t) = 6t(t — 1),
pa(t) = (1= 1)(1 = 3t),
(1) = t(3t — 2).

Siis p(0) = 0, ¢7(0) = 0,¢5(0) = 1,¢5(0) = 0 ning seepérast S'(z;_1) = fi_,. Veel

2

leiame, et ¢(1) = 0,1 (1) =0, ¢h(1) = 0,¢5(1) = 1 ning seega S'(z;) = f;.
Vaatleme jirgnevas olukorda, kus on antud funktsioon f € C'[a, b] ning voetud

fi= f(xy), fi = f'(x5),i=0,...,n.

Teoreem. Interpoleeriva Hermite’i kuupsplaini S € SiQ korral kehtivad jadklitkme
R(x) = S(z) — f(x) hinnangud

fe Rl < R ||oo < [R oo < | IR ]loo <

3 3

C'la, b] ~hw(f") ~w(f’) - -
8 2
1

We2(a,b) 1—6h2||f”|]oo 0.24750h|| f"|| oo - -
1 4

C?la, b] 3—2h2w( Jid) 0.12375hw(f") gw( Ji) —
1 V3 1 1

1757004 L g4y plv VO3 eIV 2y IV - v
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Viimases reas toodud hinnangud on tdhtsad muuhulgas laialdaselt kasutatavas
ruumis C4[a, b € C*W*a, b].

Téestus. Toestame hinnangud || R| o jaoks ruumide C*a, b] ja C*WR>"[a, b] juhul.
1) Olgu f € C*[a,b). Arvestame, et R(z;_;) = R(x;) = 0, seepirast voime votta
x € (w1, x;). Siis
S(x) — f(x) = @o(t) ficr + o1(t) fi + p2(O)hifi_y + w3(t)hif] — f(x) =
= @o(t)(f(2) + [1(E) (i1 — @) + o1 () (f(2) + f'(n)(wi — x)) +
/siin € € (x;_1,2), n € (x,2;) /
+oa(t)hifiy +e3(Ohifi — f(x) =
/ f(x) kordaja tuleb @o(t) + 1 (t) — 1 =1 — 3> +2¢> +
+ 3t2 — 2t3 — 1 = 0; jirgnevas kasutame seda, et
xiqg—x=—thyz;,—x=(1—-1t)h; /
= —to(t)hif'(§) + (L = )1 (t)hif'(n) +
+o2(Ohifi_y + p3(Dhif] =
/ siin —tpo(t) < 0, (1 —t)p1(t) = 0,02(t) 2 0,¢3(t) <O,

kasutame keskviirtusteoreemi pidevate funktsioonide jaoks /

= (1 = t)pu(t) + () hif () + (—to(t) + @s(t))hif'(€) =

/ siin 7 € [z;_1,7), € € [€, i),
(1 —t)1(t) + o(t) = (1 = )t*(3 = 2t) +t(1—1)* =
=t(1—t)(1+2t —2t%) =
=t(1 —t)(1+ 2t(1 — 1)),
—too(t) +o3(t) = —t(1 = t)*(1+2t) — *(1 - 1) =
= —t(1—t)(1+2t —2t*) =
—t(1—t)(1+2t(1 —t)) /

= t(1 =)L+ 2t(1 = 1))h(f'(7) — F(£))-
Kasutame asjaolu, et funktsioon t — ¢(1 — ¢)(1 4 2¢(1 — t)) saavutab 1igus [0, 1]

1
maksimumi punktis ¢ = 5 (sest t — t(1 — t) maksimum on punktis ¢ = = ja seda

juba eespool kasutasime). Sellest saame

86 = f) < 7 (1207 ) eal) < S
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2) Olgu f € C'WR>"[a, b]. Ka siin pitiiame saada z € (;_y, z;) korral hinnangut
jaakliikmele
R(x) = @o(t) fir + o1(t)fi + e2(O)hi fiy + ps()haf; — [ ().

Arendame f;_y, fi, fi_;, f| Taylori valemi abil punktis x jaikliikmega integraalsel
kujul. Nendes tekivad liikmed x;_; — x ja x; — x, mille asemel kirjutame vastavalt
—th; ja (1 — t)h;. Saame

i = S = F) + P th) + S gz D gy
1 N 3 IV
—1—5 (i1 —s)° [V (s) ds,
. )
o= f@) = 1)+ P - o+ T2 @ - nyr+
LD omy+ 5 =) as,
fio = ) = P+ ) m) + T
+ % (251 — )2V (s) ds,
=P = @)+ @) - b+ L '"< i —nny+
1

+ o1 (z; — 5)*fYV(s) ds

T

Asetame need R(z) avaldisse. Eraldi maksab vilja arvutada funktsiooni f véértuse
f(x) ja tuletiste vidrtuste kordajad. Ndeme, et f(x) kordaja on ¢q(t) + ¢1(t) — 1 =
= 0, mis juba esines eespool. Analoogiliselt tuleb vahetu arvutamisega, et f'(x),
f"(z) ja f"(x) kordajad on vordsed nulliga, seda me siin iiksikasjalikult vélja ei
kirjuta. Niisiis séilib

Ti—1

R@)_ﬂ—ﬁ)u+20;l/CMJ—sfﬁW@ds+

x
Ty

+#@—2w;/k-—gWW@yw+

T
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Z;

1
— 31— t)hig /(xl —5)2fV(s)ds
Teeme integraalides muutujavahetuse s = x; 1 + 7hy, siis ds = h;d1, v; 1 — s =
= —7h;, v; — s = (1 — 7)h;, integraali rajades vordusele s = x;_; vastab 7 = 0,
vordus s = x; annab 7 = 1 ja s = x tdhendab 7 = t. Selle tulemusena

R(z) = (1—1t)"(1+2t) 3' / )P Y (@i + Thy) dT +

42 (3 28) %hi / (1= 1) B)* £V (i1 + 7he) dr +

t
0
+t(1—1t) 5hf/( ha)? f7V (@i + The) dr +
t
1

+(—t*(1—1)) Ly / (L =7)h)* Y (wimy + Thy) dr =

o1
(1—1) / (1 +2t) 7% = 3t72) 1V (w1 + 7hy) dT +
0
4
+ ZZ, tQ/ (B=20)(1=7)* =3(1=1) (1 =7)°) STV (w1 +7hy) dr.

t

Uurime lihemalt integraalialuseid funktsioone. Saame (1 +2t)7% —3t7% = 72 ((1+
+ 2t)T — 3t), milles tegur (1 + 2¢)7 — 3t on 7 suhtes lineaarne funktsioon (esimese
astme poliinoom). Integreerimisloigus [0,t] saame 7 = 0 korral —3t < 0, 7 = ¢
korral (1+2t)t — 3t = 2t* — 2t = 2t(t — 1) < 0, mis tihendab mittepositiivsust, kui
7 € [0,t]. Teises integraalis (3—2t)(1—7)*—3(1—t)(1—7)* = (1—-7)*((3—2t)(1—
—7) — 3(1 — t)) on samuti teine tegur 7 suhtes lineaarne funktsioon. Integreeri-
misloigu otspunktides 7 = t korral (3 — 2t)(1 —¢) —3(1 —t) = (1 — t)(—2t) < 0,
7 = 1 korral —3(1 —¢) < 0 ja ka siin on vastav funktsioon mittepositiivne, kui
7 € [t, 1]. Integraalide hindamisel votame arvesse, et | f"" (z;-1 + 7h)| < ||/ ||
Siis saame
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h4

R@)| < | 5

N

1—t2/ (3tr* — (1 +2t) 7%) d7 +
0

1
i
e t2/ (B0 B—20)(1 -7 dr | [/ ]
t
Leiame eraldi integraalid
t

1+2t N\
/ (3tr* — (14 2t)7°) dr = (t7‘3 — —Z 74) =
0

7=0

1 12, t4(3 —2t)
4 4 7

/ (11— 7 — (3—2)(1— 7)) dr =

= (~0-na- e+ B0 —r>4)”

T=t
3—2t 1+ 2t
= (11— - (1 - 1—t) ——=.
(-t = 22—t = (-t
Niitid saame
h’L
|R(z)] < 4,t2(1 t)* (t*(3 — 2t) + (1 — )*(1 + 2t)) IIfWIIOO\384||fIV||oo,

sest (1 — 1)% < G)Q _ 1—16 ja 203 — 26) + (1— 1)2(1+ 26) = o1 (£) + wo(t) = 1.

Ulesanne 10. Téestada || R||s hinnangud ruumides W?(a, b) ja C?[a, b).
Mirkus. Kui f € C*[a,b], siis x € [z;_1, ;] korral

()
4!
ja sellest saab kohe || R||o hinnangu kétte, ilma et peaks teoreemi toestuses toodud
suhteliselt komplitseeritud tehnikat kasutama. Iseasi on sellisel kordsete solmedega
interpoleerimisel jadkliikme esituse saamine, mida tavalistes poliinoomidega inter-
poleerimist késitlevates algkursustes ei vaadelda. Materjali terviklikkuse huvides

sonastame jargmise iilesande.

R(z) = —

(l’ — ZL‘Z‘_l)2(CC — ZL’i)Z, 5 - [xi_l,xi},

Ulesanne* 2. Lugedes teadaolevaks iithekordsete solmede juhul poliinoomidega
interpoleerimise jadkliikme esituse, tuletada markuses toodud jadkliitkme esitus
kahekordsete solmede juhul.
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Eeldame, et on antud vork A:a = 29 < 77 < ... < x, = b, solmedele vas-
tavad arvud fy, ..., f,, soovitakse leida kuupsplain S € Sil nii, et S(z;) = fi,
1 =0,...,n. Meenutame, et saime iildise valemi dim SZ’l = m + n, kuupsplainide
juhul m = 3, seega dim Sil = n + 3. Interpolatsioonitingimusi on n + 1, see-
pérast on splaini médramiseks vaja lisatingimusi. Enimkasutatavad on jargnevas
toodavad, mida nimetatakse rajatingimusteks, sest need seatakse rajapunktides
voi rajapunktidele lihedastes punktides:

(I) S’(a) =d, S'(b) =B ( ja /' on antud),
(II) S//(a) — &//7 S//(b) — /8//7

(IIT) S(x_1) = a, S(zpy1) = B, kus x_1 ja z,41 on lisapunktid, x_; # xz; ja
Tpi1 T30 =0,...,n,

(IV) S"(x1 —0) = 8" (x1+0), S"(xp_1 — 0) = 5" (2,1 + 0), seejuures iildiselt
f(zr = 0) = lim f(z) ja f(z1+0) = lim f(z),

r<T1 r>x1

(V) S'(a) = S'(b), S"(a) = S"(b), mida nimetatakse perioodilisteks tingimusteks
ning neid on sobiv kasutada siis, kui fy = f,, mis tagab iihtlasi selle, et

S(a) = S(b).

Tingimusi voib kasutada segavariandina, tihes 16igu [a, b] otspunktis iihte
tiitlipi tingimus, teises otspunktis teist tiiiipi tingimus. Méargime esialgu toestuseta,
et kui kasutada niiteks lisatingimustena S'(a) = o', S”(a) = o, siis saadakse
eelkoige arvutuslikult halb iilesanne.

Kuupsplaini S € Sil voib esitada néiteks vastavate B-splainide kui baasi kaudu,
interpoleerimisel saadakse siis esituses olevate baasikordajate madramiseks lineaar-
ne siisteem, mis on iiheselt lahenduv, ja interpoleerimisiilesandel on olemas iihene
lahend (selle véite toestust ndeme hiljem). B-splainid kui baas on véga iildine t66-
vahend ning erijuhtudel voib sageli leida iildistest vahenditest paremaid. Vaatame
siin kuupsplainide esitamist momentide kaudu, mis otseselt vottes on baasideviline
meetod.

45
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1. Interpoleeriva kuupsplaini konstrueerimine teiste momen-
tide abil

Tahistame S; = S(z;), M; = S"(z;), i = 0,...,n. Meenutame, et S € S3'
sisaldab endas tingimust S € C?[a,b], seepirast eksisteerivad S”(x;). Arve M;
nimetatakse splaini teisteks momentideks. Kui on teada arvud S;_1, S;, M;_1, M;,
saame moodustada funktsiooni

(r; — x)? (x — ;)3
— M, g ey
5(z) 6k, M 6h;
Mi,1 9\ Li — X Mz 2\ T — Ti—1
o ¥ e Y e 1
+ (SZ 1 5 Z) B + (SZ G Z> o (1)

mida vaatleme méédratuna = € [x;_1, ;] korral. On selge, et vordusega definee-
ritult S € P3[z;_1, ;). Niitame, et sellise funktsiooni S korral

S<xi71> = Si_1, S(%) = 5, S//(%fl) = M;_, S”(%’) = M;. (2)

Arvutades ndeme, et

h3 M4 h;
Y= M — 4 M- TR 2
S(:L'z 1) 7 IGhZ + 7 0+ (Sz 1 6 z) h@ +

M;

h3 M;_
S(xz):Mz—10+Mz L +<Si_1— 1h?)0+

6h; 6
M, h;
" < 6 Z) hi
Esitusest leiame
N g (v; — ) 4(1’ — zi1)’?
S(@) = =M ——p= o+ My —— +
M;_, 1 M, 1
S, 1 — ——h? —_ S, — —h?| = 3
(s te) ()« (s-T)n ®
millest omakorda o o
§"(x) = My =— + M~ (4

ja pohjal S"(x;_y) = M;_y, S"(x;) = M,. Mérgime, et vordus on sisuli-
selt Lagrange’i interpolatsioonivalem, sest S” on osaldigus [z;_1, 2;] esimese astme
poliinoom ja M;_q, M; on selle vaartused solmedes.
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On loomulik kiisida, kuidas esitust leida. Teame, et S on osaldigus [z;_1, ;]
kuuppoliinoom, seega niiteks S(z) = co; + ¢z + co:2* + c3,2° ning tingimused
médravad lineaarse siisteemina kordajad cy;, cy;, coi, C3i-

Ulesanne 11. Tuletada esitus , lahendades nelja tundmatu ja nelja vorrandiga
lineaarse siisteemi, mis tekib esituses S(z) = co; + cu + ¢ + c32° kordajate

médramisel tingimuste (2) abil.

Kui S;, M;, « = 0,...,n, on teada, saab abil iiheselt méadrata funktsioo-

ni S:[a,b] — R. Seejuures S € P3[x;_1, 23], i = 1,...,n. Lisaks nieme, et
S(x; —0)=2S5;, S(x; +0) = S;, i =1,...,n — 1, samuti S"(z; — 0) = S"(x; + 0),
i=1,...,n—1. Kui S;, M;, i =0,...,n, valida suvaliselt, siis ei tarvitse S’ (on

méiratud osaldikudel) olla pidev ja S ei tarvitse olla splain ruumis Sil. Ruu-
mi 53" kuulumiseks on seejuures tarvilik ja piisav, et S'(z; — 0) = S'(z; + 0),
i=1,...,n—1 (tuletise S’ pidevus sisesolmedes). Vottes vorduses T = Tiq,
saame

h; M;_, 1 M; )\ 1
o VAL oo Mie ) (L2 _ Miga) L
S'(z;_1 + 0) i1y + (Sz_l ; hz) ( hz-) + (S, ; hz) »

ja indeksi nihkega (sisuliselt naaberintervallist)

S'(xi +0) = —M; 2+1 + (Si - 7’%&1) (_h“) + (Sz‘+1 - T+1h12+1)

Kui votame vorduses (3) x = z;, saame

/ ol M1, 1 M; 5\ 1
a0l (50 i) () (5 M) 1

Tuletise S’ pidevuse tingimused tulevad

hi Mi—l 2 1 Ml 2 1 B
le(sz_l . h>( h_i)+(sz ?hl)h_i_

hz’+1 Mz 2 1 Mi+1 2 1
— M, [y R ) (R Sipy — L2
2 + < 6 ’H—l) ( hi+1 > + < +1 6 i+1 hz’+1

hi hz h’i+1 hi+1 SiJrl - Sz Sz - Sifl
— V- Py M; + —— M = - )
6 1+(3+ 3) g M hit1 hi

ehk
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6
mis peale korrutamist teguriga ————— on
P sue hi + hiq
Siv1—S;i S5 —Sia1
hi iy hiiq a h
— M, +2M;+ —+— M, 1 =6 i u , 5
hi + hia ' hi + hiq i hi + hia (5)
1=1,...,n—1

Vorrandeid nimetatakse kuupsplaini sisevorranditeks (kui vaja, siis tdpsus-
tatakse, et esituse korral) ja nad on kuupsplainide teooria iihed olulisemad
vorrandid. Sonastame saadud tulemuse eraldi.

Lause. Suvaliste arvude S;, M;, 1 =0, ..., n, korral kuulub vordusega mddratud
funktsioon S ruumi S¥' [z, z,] parajasti siis, kui kehtivad vordused (B)).

Tahistades

Sit1 — 5 B Si — Si-1
hit1 h
hi + hiyq

_ hi o hin
o hithig T hit+ R

di =6

K
saab sisevorrandid kirjutada
/LZM171+2MZ+)\1MZ+1 :di, ?::1,...,71—1,

seejuures p; + A; = 1. Mérgime, et

Siv1 =S Si— S
hivi b S(riwig) = S(wiog, )
hi + hita B Tiy1 — Tio1 B
= S(l’iflwxiaxiﬂ) =
S"(&)

=5 &€ (w1, xip), di =35"(&).

Kui on vaja leida interpoleerivat kuupsplaini, siis voetakse S; = S(z;) = f,
1 =0,...,n, sellega on arvud S; teada. Et leida M;, i =0, ..., n, voetakse sisevor-
Jiv1 — [ B Ji— fia
hit1 hi
hi + hiyq
must, millega saadakse n+ 1 vorrandist koosnev lineaarne siisteem n+ 1 tundmatu
My, ..., M, midramiseks.

randites (neid on n — 1) d; = 6 ja lisatakse kaks lisatingi-
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1.1. Kasutame rajatingimusi Siis saadakse siisteem

MO = CYH,
piM;_y + 2M; + A\iMi = d;,
M, = 3",

Kirjutame siisteemi veel maatrikskujul

I 0 0 o ... O M,y
[25% 2 )\1 0 ce 0 Ml
0 125 2 )\2 MQ
0 B o | 2 /\n—l Mn—l
0O ... ... 0 0 1 M,

5//

49

Selles siisteemis on M, ja M, teada, need voib asendada vastavalt vorrandites

indeksitega 1 ja n — 1, mille tulemusena saadakse

2My + MMy = dy —

piMi g +2M; + MMy = d;, 1=2,...,n—2,
,un—an—2 +2M, 1 = dn—l - )\n—lﬁﬂ-

Maatrikskujul on see siisteem

2 )\1 0 0 R 0 M1 d1 — ,ulo//
2 2 )\2 0 .. 0 M2 d2
Hn—2 2 )\n—2 Mn—2 dn—2
0 Mn—1 2 Mnfl dnfl - )\nflﬁu
Meenutame, et maatriksis
aix Q12 Q1n
n 21 Q22 Q2n,
A= (ay; )m’:l
ap1  An2 Ann
diagonaal (peadiagonaal) domineerib ridade kaupa, kui |a;;| > Z lai;],i=1,...,n.
j=1

J#

Punktis saadud siisteemides maatriksi diagonaal domineerib ridade kaupa, sest
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1.2. Kasutame rajatingimusi [} mis on S'(z) = o/, S'(z,) = 5. Eespool
leidsime

! ! h M 1 M 1
§'(@o) = §'(zg +0) = =My + (SO RELL h) (_h_l) (51 B _hQ) LN

hl hl Sl — SO
RN YR YA .
370 60Ty
Vordus S’(zg) = o' on siis
ha h S1—=5
L A —
306 T T

6
ehk peale teguriga —— korrutamist
1

6 /S — 5 ,
2My + M, = — =d
o+ My = h1 < I Oé) 05

kus votsime kasutusele tdhise dy. Analoogiliselt saame

, B hy M,_1 4 1 M, ,\ 1

h h S, —S,_1
:_”Mn _"Mn_ n Fnel _ pof
5 g 1+ h,, 8

ehk 6 s g
M, +2M, = — [ -2 1) —q .
Lt o (5 h )

n
Lisades need kaks rajatingimustest saadud vorrandit sisevorranditele, jouame siis-

teemini
2My + M, = dy,

NiMi—1+2Mi+/\iMi+1 :di7 1= 1,...,7’L— 1,
Mnfl + 2Mn = dna

mis maatrikskujul on

2 1. 0 0 ... 0 M, do
M1 2 )\1 0 ce 0 M1 dl
0 125] 2 )\2 Ce 0 M2 . d2
0 e 0 Mn—1 2 )\n—l Mn—l dn—l
o ... 0 0 1 2 M, d,

Ka siin siisteemi maatriksi diagonaal domineerib ridade kaupa.
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1.3. Vaatame rajatingimuste [(IV)| kasutamist. Négime, et esituse (L) kasutamine
annab vorduse (4
T; — X T — Tj—1

neoN g i
S <I> - Mz—l hz + Mz hz 5

x € [.Ti_l,l’i].
Sellest leiame

S”/(x) —

My  M;  M;— M; €|
hi hz - hz ) X Li—1, Tj)-
Juhul 7 = 1 saab sellest MM
S///(wl_o): 1}: 07
1
1 = 2 korral VY
S/”(Ztl + O) — %
2
Siis vordus S (z1 — 0) = S"(z1 4+ 0) on

My — M, M, — M,

hq ho

Avaldame sellest

hy hy
My=|1+— | M ——M
0 ( +h2> 1 o 2

mille asendame esimeses sisevorrandis

h h
L My +2M, + —2

My = d;.
h1+h2 h1+h2 ? '

Selle tulemusena

hl hl hl h2
1+ — ) My — =My ) +2M;, + ——=— M, = d;.
h1+h2(( hQ) Yk 2) YU hy 2

h
Saadud vorrandis on M; kordaja 2 + h—l ja M, kordaja
2

he B h3—hl  hg=h . My
hi+hy  ha(hi+he)  ho(hi + ho) ha ho

ning vorrandiks jaab
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Analoogilised arvutused teeme ka tingimuse S (x,_1 —0) = S"(2,—1 + 0) korral
ning koos teisendamisel puutumata jadnud sisevorranditega saame siisteemi

( hq hq
24+ — | M 1—— ) My=d
(+h2) 1+( h2) 2 15
piMi oy +2M; + MMy =d;, 1=2,...,n— 2,

h h
1— = M,,_ 2 L M,_1=d,_.
\ ( hnl) 2+( +hnl) ' '

Selle siisteemi maatriksi diagonaal domineerib ridade kaupa, sest néiteks

hy hy
>2+——(1+—) =1
" (+h2>

1-— 2

24 =
+ Iy

ha
ho

_‘ u

Mdrkus. Kui jatta siisteemi algselt tuletatud vorrand

My — My, M, — M,

ha ho

chie 1 1 1 1
——M, —+— | My — —My,=0,
I 0+<h1+h2) 1 I 2
siis saadud siisteemi maatriksis ei ole diagonaali domineerimist, sest diagonaalil on
M, kordaja.

Punktides saadud siisteemide maatriksid on kolmediagonaalsed, mis t&-
hendab seda, et nullist erinevad elemendid on ainult peadiagonaalil ja sellest all-
ja iilalpool olevatel naaberdiagonaalidel.

1.4. Vaatame tingimusi |(IID)} s.t. S(z_1) = a, S(x,41) = B. Néitame, et need
saab taandada tingimustele [(IV)] Olgu esialgu z_1 < zy < 21 ja Tp_1 < T < Tpy1,
millega tekib vork

Ao <xg<z1<...<Tph1 <Tp < Tpit

| | | |
.Z"_l ZLIQ 1‘1 Tn—1 xln -:Enl-‘rl

Teeme analiiiisi iihes otspunktis, teises toimitakse analoogiliselt. Tekib loomulik
kiisimus, mida tingimus S(z_1) = « tdhendab, sest S on méeldud olema funktsioon
S: [xo, xn] — Rja S ei pea olema defineeritud punktis z_;. Meie algseks eesméirgiks
on leida splain S € Szl[aco, x|, mis interpoleerib andmeid s6lmedes z;, i = 0,. .., n.
Muuhulgas tihendab see, et S € P3[zg, 1] ehk S(z) = co + 17 + 2 + c32?,
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x € [xg,x1]. Sama poliinoomi (sama analiiiitilise avaldisega) vaadeldakse ka z €
€ [z_y1, z1] korral, mistSttu S € P3[z_y, z1]. Sellisel puhul §”(zo—0) = S" (20 +0),
mis tahendab tingimuse t'aiidetust vorgu A’ esimeses sisepunktis z. Tingimus
S(x_1) = « lisab iihe interpolatsioonitingimuse vorgu A’ punktis z_;. Analoogi-
liselt viib tingimus S(z,,1) = [ iilesande timberformuleerimiseni, kus noutakse,
et S € P’w,_1,7,11], mistottu S”(z, — 0) = S"”(z, +0), ja S(zns1) = B on
interpolatsioonitingimus vorgu A’ parempoolses otspunktis z,,;. Vaatame niiiid
olukorda, kus x¢p < v_1 < 1 ja 21 < Tpi1 < x,. Sellisel juhul votame vorgu

Aixg<z <31 <...<Tp1<Tpy1 < Ty

ja saame iilesande leida S € Si’,l [0, 2], mille korral on koigis vorgu A’ solmedes
rahuldatud interpolatsioonitingimused, kusjuures S € P*[z¢, z,] tottu S (z_; —0)
= S8"(x_1 +0)ja S € Pz, 1,m,] tihendab, et S”(z,41 — 0) = S (2,11 + 0).
Muidugi voib vorgu A erinevates otstes olla erinev olukord, niiteks x| < z¢ < 21
ja Tp_1 < Tpa1 < T, kuid eelnevast on selge, kuidas siis tuleb iilesanne samavair-
selt iimber formuleerida.

Koigil vaadeldud juhtudel suureneb i{imbersonastamisel interpolatsioonitingi-
muste arv kahe vorra ja rajatingimused teisenevad rajatingimusteks |(IV)|

1.5. Vaatleme perioodilisi rajatingimusi [(V)] s.t. nduame, et S'(a) = S'(b),
S"(a) = S"(b). Tingimus S”(a) = S”(b) on samaviidrne tingimusega My = M,,.
Interpolatsioonitingimustest S(x;) = f;, ¢ = 0,...,n, on teada Sy, ...,S,. Splaini
médramiseks esituse (1) abil on vaja veel leida M, ..., M,, milleks peab olema n
vorrandit. Kasutada on sisevorrandid

M1M1—1+2Mz+)\zMz+1 :d“ 2:1,,n—1
Neist esimene on vorduse My = M,, tottu
pr My, + 2My + A\ My = dy,

milles on diagonaali domineerimine, kui diagonaalielemendiks on M; kordaja. Pa-
neme kirja tingimuse S’(a) = S’(b). Selles

h h S — 5
S,(G)ZSI(.CEO“‘O):__lMO__lMl“‘ 1 0’

3 6 hy

h h Sn — Sn—1
S'(b) =5 n—20)= _nM'rL _nMn— ua
mis olid leitud punktis [I.2] Nende vérdumine annab
h h Si—5S hy h, Sy — Sp—
SIS VRIS VAN Tl RS VRIS V. k.

3 6 hy 3 6 hy,
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ehk vordust My = M,, arvestades

hi + hy, hq I, Si =S50 Sp—Sna1
M, +—M — M, = —
3 gt e hy B

vOl

Sl - S() Sn - S’n—l

My +2M, + — " ap ! n
g Mt 2My e M = 6 byt
Sl_SO Sn_Snfl
Kui tihistada \, — P S S n ysib
u1l tanistada h1+hn ,u h1_|—hn h1+hn VOl

saadud vorrandi kirjutada
,U/nMn—l + 2Mn + )\an - dn
Kokkuvottes oleme saanud stisteemi

2My + MMy + py My, = dy,
MiMi_1+2Mi+)\iMi+1:di, i:2,...,n—1,
/\an + ﬂ'nMn—l + 2Mn = dn7

mis maatrikskujul kirjutatuna on

2 AN 0 0 ... M, dy
125 2 /\2 0 . 0 M2 d2
0 ps 2 A3 ... 0 Ms | | ds
0 Hn—1 2 Ay M, 1 dp—

Selle siisteemi maatriksi diagonaal domineerib ridade kaupa, kuid punktides [.THI.3]
saadud maatriksitega vorreldes ei ole see enam kolmediagonaalne.

2. Interpoleeriva kuupsplaini konstrueerimine esimeste mo-
mentide abil

Splaini esimesteks momentideks nimetatakse esimese tuletise vadrtusi solmedes,
s.0. m; = S'(x;), i = 0,...,n. Kui on antud suvalised arvud S;,m;, i = 0,...,n,
siis voib = € [z;_1, x;] korral moodustada

S(x) = @o(t)Si—1 + 01(t)S; 4+ w2 (t)himi_1 + p3(t)him,, (6)
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kus x = ;1 + th;. Hermite’i kuupsplainide késitlemisel négime, et sellise esituse
juures S(z;) = S;, S'(x;) = my, i = 0,...,n. See tagab, et esitusega () mii-

ratud funktsioon S on selline, et S € P*[z;_1,2], 7 = 1,...,n, ja S ning S’ on
pidevad. Tingimuse S € C?[a, b] tiidetuseks nouame, et S”(z; — 0) = S”(x; + 0),
1 =1,...,n— 1. Muutujavahetus x = z;_| + th; annab dx = h;dt, seepérast

ds dS dt 1dS &S 1 &S

dr  dt dz  h; dt' da® R d®
ning

1! 1 /! /! /! 1
S"(z) = ﬁ(% (t)Si—1 + &1 (1) Si + 5 (t) hami—1 + @5 (t) himy).

Ulesanne 12. Tuletada esituse @ abil moodustatud kuupsplaini S € SZI sise-
vorrandid
Siy1 — S

hi+1

Si—Sis

)\imi_l +2mi+,uimi+1 :B,Uz +3)\z . , 1= 1,...,n— 1, (7)

mis on tegelikult tingimused S”(z; — 0) = S"(z; +0),i=1,...,n— 1.

Kaesolevas punktis toodud esituse @ kasutamisel interpoleeriva kuupsplaini

konstrueerimiseks saab arvud Sp,...,S, interpolatsioonitingimustest. Arvude
my, ..., m, mairamiseks ei piisa n — 1 sisevorrandist (7)), neile lisatakse, nagu

eelmises punktis, kaks vorrandit, mis saadakse rajatingimustest Kui néi-
teks kasutada rajatingimusi siis saadakse slisteem

mo = o,

Aimi_y +2m; + pimi = d;, i=1,...,n—1,

my = 6/7
kus d; tihistab vordustes paremat poolt.

Ulesanne 13. Tuletada esimeste momentide m;, i = 0, ..., n, miiramiseks saa-
davad vorrandisiisteemid rajatingimuste [(IT)], [[TV)] ja [[V)] korral.

3. Splainidega interpoleerimisel tekkivate lineaarsete siisteemi-
de lahendamisest

Vaatleme lineaarset siisteemi

Za’ijxj:fiv izl,...,n, (8)
7=1
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kus kasutame veel tdhiseid

[0 5 Q1np

..................... T fi
A= ay Qi Qpn |, = ., f= : ;

..................... T, fn

[0 2 N Anpn

ja siisteemi voib siis kirjutada Az = f. Meenutame, et maatriksi A diagonaal
on domineeriv ridade kaupa, kui

n
|aii|>Z]aij\, 2:1,,n
j=1
J#i
Sellisel juhul on olemas ¢ > 0 nii, et

n

|l _Zlaij| >q, 1=1,...,n,
j=1
J#

ning Geldakse, et diagonaal domineerib ridade kaupa vahega ¢ (on diagonaali do-
mineerimine ridade kaupa vahega ¢). Ndgime, et kuupsplainidega interpoleerimisel

nii teiste kui ka esimeste momentide kasutamine andis siisteemid, kus maatriksi
diagonaal domineeris ridade kaupa vahega 1.

Lause. Ku: lineaarse ststeem: maalriksi diagonaal domineerib ridade kaupa
vahega q, siis stisteem on theselt lahenduv ja lahendi korral kehtib hinnang

1
max |z;] < — max |f;l.
1<i<n q 1<i<n

Toestus. Siisteem on iiheselt lahenduv, kui tingimusest Az = 0 jareldub, et
x = 0. Seega piisab toestada toodud hinnang: kui Az = 0, siis hinnangust, kus
f =0, saadakse, et x = 0. Niisiis, olgu x selline, et Az = f. Olgu |x)| = max |4

Votame vaatluse alla vorrandi indeksiga k

n

Z akjri = [

=1
ehk
n
QrpTr + E Ap;Tj = fk

Jj=1
i7k
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Siis
n
|l = lawelfoe] =) larg]|25] =
=1
Jk
n
/ kasutame seda, et |z;| < |zg| ja |ark| — Z lakj| = q /
=1
Jk
n
> (lare] = Y lars)lex] > alzl,
=1
;7%
millest saame

1

1
|$k’<§5Wf%|<§&'ggg§LﬁY

Jareldus. Kuupsplainidega interpoleerimisel tuletatud siisteemid on theselt lahen-

duvad ja seega on ka vastavad interpoleerimisilesanded koikide vaadeldud rajatin-

gimuste korral tiheselt lahenduvad.

Mirkus. Kuupsplainidega interpoleerimisel voib kasutada kuup-B-splaine, need
n—1

moodustavad baasi ruumis S3'. Summas S(z) = Z ¢;B}(x) on iga z € [a, D]
j=-3

korral maksimaalselt neli nullist erinevat liidetavat. Interpolatsioonitingimustes
n—1

S(z;) = fi, s.o. Z ¢;B}(x;) = fi, on kolm nullist erinevat liidetavat. Rajatingi-
j=—3

mustest saadavaid vorrandeid on mitteperioodilisel juhul voimalik nii teisendada,

et arvude c¢; médramiseks tuleb kolmediagonaalne siisteem. Kui aga jaotus A on

tugevalt ebaiihtlane, siis selles siisteemis ei ole maatriksi diagonaali domineerimist

interpolatsioonitingimustele vastavates ridades.

Jérgnevas késitleme kolmediagonaalse maatriksiga siisteemi lahendamist Gaussi
elimineerimismeetodil. Meetod on tuntud suvalise maatriksiga siisteemi lahenda-
misel, kuid kolmediagonaalsel juhul saab moningaid aspekte késitleda detailsemalt.
Olgu antud siisteem

bl C1 0 0 . 0 T fl
as bg Co 0 . 0 T f2
0 as b3 C3 Ce 0 T3 . fg
0 ... 0 (p—1 bn—l Cn—1 Tn—1 fn—l
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Esimene vorrand siisteemis on bixy + cixo = fi ning see jagatakse arvuga b:
c
T+ —1x2 = ﬂ Defineerime
by b1
C1 f 1
e = — === 9.1
1 bl ) g1 bl 3 ( )

millega saame esimese vorrandi kujule z; + e;zo = ¢;. Teise sammuna vaatleme
koos vorrandeid
T1 + e129 = 01,

asx1 + bgl’Q + Coly = fQ.

Korrutame esimese neist arvuga —as ja liidame teisele vorrandile. Selle tulemusena
(bo — e1a2)xy + cox3 = fo — azgn,

mis peale jagamist xs kordajaga annab

Co fo — azq:
T9g+ ———ox3 = ———.
by — ejas by — ejas
Defineerime
o C2 _ Ja — azg1
=\ gy= (9.2)
by — e1as by — e1as

millega saame vorrandi xy 4+ esxr3 = ¢o . Teeme ldbi ¢. sammu, milles on koos
vorrandid
Ti—1 + €i—17; =0gi-1,

a;xi—1 + bz, + cixiy =fi.

Siin korrutame esimese vorrandi arvuga —a; ja lildame teisele. Saame
(bi — €i—10i)w; + cixip1 = fi — a;igia

ja peale jagamist x; kordajaga

C; fi —aigia
Ti+t———————Tjy = — .
b; — €10, bi —e;_1a;
Defineerime
C; fz — G;gi—1 .
i — €i—10; i — €i—104
(siin i = 2,...,n — 1) ja niiviisi oleme saanud vorrandid

$i+€ﬂii+12gi, izl,...,n—l. (10)
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Eraldi vaatleme koos vorrandeid

Tp_1+ epn_1Ty = 9n—1,
ApTp—1 + bnxn = fn

Ka siin korrutame esimese vorrandi arvuga —a,, ja liidame teisele, mis annab

(bn - en—lan)xn - fn — QpQn—1-

Sellest
T = fn — Angn-1
" bn — €Ep—10Qp ’
kus voime veel defineerida
o fn - angnfl
gp = (9.n)

b, — €n_10n
ning siis x,, = g,. Siiani tehtud arvutused , 1 =1,...,n, on tegelikult peadia-
gonaali all olevate arvude elimineerimised, {ihtlasi on leitud x,,. Lahendi tilejadnud
komponendid leitakse vordustest saadava eeskirja abil

Ty = g — €541, Z:n—l,,l (1].)

Tegelikult teostatavad arvutused on , i=1,...,n,ja (11). Loeme veel kokku
nendes tehtavad korrutamised ja jagamised. Koigepealt, nouab 2 jagamist.
Arvutused , 1= 2,...,n — 1, sisaldavad igaiiks 2 korrutamist ja 2 jagamist,
kokku 4(n — 2) tehet. Arvutus lisab kaks korrutamist ja iihe jagamise, kokku
3 tehet. Arvutustes tehakse igaiihes iiks korrutamine, kokku on neid n — 1.
Koik arvutused kokku sisaldavad 2 + 4(n — 2) +3 4+ n — 1 = 5n — 4 korruta-

mist, jagamist. Margime vordluseks, et n X n tdismaatriksiga siisteemis tehakse
3

elimineerimismeetodis ~ Y korrutamist, jagamist.

Loomulik on kiisida, millal selline elimineerimismeetod on teostatav? Eeldame,
et lisaks kolmediagonaalsusele on siisteemi maatriksi diagonaal domineeriv ridade

kaupa, mis tdhendab, et |by| > |c1], |bi] > |ai| + |ci|, ¢ = 2,...,n — 1, |by| > |an].
Siis by # 0, mistottu on leitavad e; ja g1, seejuures |e;| = ’;)3_1‘ < 1. Oletame iildise
1
sammu jaoks, et |e;_1| < 1. Siis |b; —e;_1a;| = |b;| — |ei—1]|a;| = \bﬂy—]a,\ > |ei| =0,
Ci

mistottu b; —e;_ja; # 0 ning e;, g; on leitavad. Lisaks |e;| = < 1. Selle-

|bi — ei_1a4
ga on selge, et koik elimineerimisel vajalikud arvutused on teostatavad. Sonastame

tulemuse eraldi.

Lause. Gaussi elimineerimismeetod on teostatav siisteemis, kus maatriks on kol-
mediagonaalne ja peadiagonaal domineerib ridade kaupa.
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Lisame, et toodud olukorras on elimineerimismeetod stabiilne, mis tdhendab
jargmist. Lisaks siisteemile

n
E aijwj:fi7 Z:L...,TL,
j=1

vaatleme veel siisteemi
n
E Eijfj:fi, Z:L...,’n.
j=1

Kui [@;; —ajj| ja | f;— fi| on iga i, j korral ,yiikesed (see holmab ka {imardamisvigu
a;; ja f; esitamisel), siis on ,viikesed ka |T; — z;| iga ¢ korral. Sellise stabiilsuse
detailne pohjendamine on suhteliselt to6mahukas, viide leiab aset ka iildisemate
eelduste korral (ei ole iseloomulik ainult splainide teooriale) ja kdesolevas kursuses
me seda ei esita.

Perioodiliste rajatingimuste kasutamisel joudsime siisteemini, mille voib iildise-
malt kirjutada kujul

bl C1 0 0 c. aq T fl
(05} b2 (&) 0 ce 0 i) f2
0 as bg C3 C 0 XT3 B f3
0 s 0 an—1 bn—l Cn—1 Tpn—1 fn—l
Cn --- ... O an b, Tp fn

Ulesanne* 3. Panna kirja elimineerimismeetodi algoritm selle siisteemi lahenda-
miseks ning uurida meetodi teostatavust, kui siisteemi maatriksi diagonaal domi-
neerib ridade kaupa. Leida, kui palju korrutamisi ja jagamisi on elimineerimismee-
todis vaja teha.



§9. Interpoleerivate kuupsplainide veahinnangud

Antud on funktsioon f: [a,b] — R, 16igu jaotus A: a =xg <1 < ... <z, = b,
on voimalik leida S € S3" nii, et S(z;) = f(z;), i =0,...,n, lisaks on rahuldatud
kaks rajatingimust. Loomulik on rajatingimustes arvestada funktsiooniga f, néi-
teks S”(a) = f"(a), S"(b) = f"(b), kui f € C?[a,b]. Osades rajatingimustes f ei
esine. Uldine eesmiirk on hinnata ||S — f|loo; [|S” — 'llcc; - - --

Uks voimalik lihenemine probleemile on jirgmine. Eeldame, et f € C'[a,b).
Leiame Hermite’i kuupsplaini S € S nii, et S(z;) = f(z;), S () = f'(:),
1 =20,...,n. Siis

IS = flloe = 1S =S+ 8 = flloo < IS = Slloo + IS = flle
analoogilised hinnangud saab anda tuletiste jaoks. Me oleme juba hinnanud
— — — —
IS = flloos IS = f|locs - - -, seega piisab hinnata [|S — S|, [|S” — S ||scs - - -- Nende
jaoks hinnangute saamine peaks olema lootusrikas, sest on vaja toimetada splai-
nidega.
Kasutame tahistusi f; = f(x;), f{ = f'(2;),i =0,...,n. Siis
S(x) = ¢o(t) ficr +o1(8) fi + pa(O)hifi_y + s(t)hif},
T € [xii,xi), hi=x;—x1, x=ux,1+th,.
Sisalduvus S%' C S%* lubab kasutada interpolandi S € S&' korral esitust
S(x) = wo(t) fic1 + 01(t) fi + w2(t)himi1 + @s(t)himy, € [2-1, T4,
kus m; = S'(z;), 1 =0, ...,n. Seepirast
S(x) = S(x) = @a(thi(mir — fi) + @s(t)hi(m; = f7),
mille juures meenutame, et py(t) = t(1 —t)%, p3(t) = —t*(1 — t). Sellest saame
|S(2) = S(2)| < t(1 = t)hi max [m; — fi], @ € [z, 2], (1)

Piitiame saada hinnangut tuletise jaoks. Vordus x = z;_1 + th; annab dx = h; dt,
d 1d

% = h—la7 seega

— /

§'(x) = 8 (z) = wa(t)(mimy — fi_1) + $5(t) (ms — f).

61
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Leiame

Oh(t) = (t — 262 +13) =1 — 4t + 3t = (1 — t)(1 — 3t),
Oh(t) = (=2 +13) = =2t + 3% = (3t — 2),

nende abil jouame hinnanguni

!/

$) =S @] < (@ - ol -3+ - D axpm— £

T e [%’—17 IZ]

Jargmisi tuletisi hindame teist esitust lihtekohaks vottes. Eeldame, et f € C?[a, b).
Et S” on osaldigus [x;_1, ;] Gilimalt esimese astme poliinoom ja S”(z;_1) = M;_,
S”(l’i) = Mi7 siis SN(J}> = (1 - t)Mi_l + tMl ja

S"(x) — f"(x) = (1 — )My + tM; — f"(z) =
= (1= t)(Mi—1 = f"(@i-1)) + t(M; — f"(23)) + (1= ) f"(@ia) + 0" (@) = [ ().

Seejuures Sy(x; f") = (1 —t) f"(x;_1) + tf"(x;) on funktsiooni f” punktides z; ;
ja x; interpoleeriv lineaarsplain. Seega

[5%(2) = f*(2)] < max |M; — ()| + [S1(x; f7) = f(2)],

T € [mi1, xi),

(3)

kusjuures |Sy(z; f”) — f”(x)| kohta oleme eespool hinnangud leidnud. Veel saame
1" olemasolu korral tahistust f = f”(x;) kasutades

§"(x) = () = hl(_(Mi—l — i) + (M = f7) + Si(; /1) = (=),

millest

5" () = ()] < o~ max |M; = | +[S1(x; f7) = [ (2)],

2
h; 0<i<n (4)
T € [ri1, 24,

ning ka siin oleme |S}(z; f) — f"(z)| varem hinnanud. Vérratused (1)) naita-
vad, et peaksime hindama interpoleeriva kuupsplaini esimeste ja teiste momentide
korvalekaldeid funktsiooni f tuletistest, s.o. |m; — fi| ja |M; — f!'].

Teoreem 1. Kui S € S%' rahuldab interpolatsioonitingimusi S(x;) = f(x;),
1=0,...,n, ja rajatingimuss

(I) 5(a) = f'(a), S(b) = f(b),
(I) §"(a) = f"(a), 5"(b) = f"(b),
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(V) S'(a) = 5'(b), S"(a) = S"(b),

sus tahistust h = max h; silmas pidades kehtivad hinnangud

53
fe Imi — fil < | [M; = '] <
Cllat] | 3u(f) :
Clat] | she(f”) | 3elf)
C2C3 [a, b] %h%( ) %ghw(f’”)
CWE o] | W o | 7

Téestus. Mirgime, et f € C*[a,b] korral rajatingimusi el vaadelda. Eespool

nigime, et rajatingimuste |(I)| korral, kui mérkida m; = S'(z;), i = 0, ..., n, saame
siisteemi
mo = f(l)
Aimi—1 + 2m; + pimigy = 3p——— fir1 = + 3N ———— fi— fio -,
hz—i—l hz
1=1,...,n—1,
(70 = [
Tahistades ¢; = m; — f], saame
do = 07
fH—l fz f fz 1
ANiGi—1 + 2q; + i1 = 3 ———— + 3\ ————— —
di—1 qi T Hidi+1 H Bt I, (5)
_<)\2f2/71+2fz/+/ﬁlfz/+l)zcl7 ?::17"'7”_17
an = 07
kus votame vorrandite paremate poolte tdhisena kasutusele ¢;, @ = 0,...,n. Siis-

teemis maatriksi diagonaal domineerib ridade kaupa vahega 1, seeparast

qax |l < max fei] = | max Jei]

1) Eeldame, et f € C'[a,b]. Siis

Ci = 3Mif/(§i+1) + 3/\z'f/(§i) - ()‘if/@;ifl) + QfI(ZUz') + Nif/(1:i+1)) =
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/ siin iy € (i, ig1), & € (Tim1, T4),
veel kirjutame f'(x;) kordajaks 2(p; + \;) /

= wi(f (1) = [ (@ir1)) + 20:(f (Girr) — f'(2)) +
+20(f(&) — () + X (&) — fximn)).
Sellest saame hinnangu
el < pal f'(Gv) = f(@ir)| + 20 f/(Gir) — f/ ()| +
+ 20N f1(&) = f1(@)| + Nl f (&) — fl(@ima)| <
< 3w (f) 4+ 3Nw;i (f") < 3(pi + Ni)w(f') = 3w(f').

2) Olgu f € C?a,b]. Kasutame siisteemi vorrandite paremates pooltes esi-
nevate ¢; avaldistes Taylori arendisi

hy
fivi=fi+hiaf] + Tﬂf”(f& & € (i, wigq),

h2
fici=fi—hif] + jf”(m), ni € (i1, x;),

fz'/+1 = fz/ + hi+1f//(§i)7 gz S (Iiv xi-l—l)?
fioa=1=hif" @), W€ (w1, 2).

Siis asendamise jérel f; kordaja tuleb 0, f; kordaja on 3u; +3X\; — X\ — 2 — p; = 0,

3 3 _ -
ci = §Mz‘hi+1f”(§i) - 5)\z‘hif"(7h) + Nihi f"(7;) — pihia f7(€) =
hi hiv1
t t o = y A =
/ meenutame, et Wb P /
_ hihi—i-l 3 " 3 1" "(— s _
= e (3116 - S+ 1) - 6 =
_ hiliya "(e "¢ e "ne 1 MiEN _ fH (o
= ————— | [7(&) — f7&) + ) — ) + 5 (F(&) — () ) -
hi + hiq 2
hihiq h hihiyy hi 1 1
—— < o i i 1 = i1 S shipn <
Selles ot S 2 (sest h; < hiyq korra bt b hiv1 2h 1< g

<
analoogiliselt hindame h; 1 < h; korral). Veel saame

(&) = f7(€)] < wira (f) S w(f),
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@) = ()] < wi(f7) < w(f7),
(&) = S )l < (&) = " (@) + 7 (i) = 7 (mi)] <

S wipa (") +wi(f7) < 2w(f”)
ning kokkuvottes
h " 3 1
5 3w(f") = Shw(f).

lei| <

Esitame veel teise viisi hinnangu saamiseks. Kasutame Taylori valemis jaakliik-
meid integraalsel kujul:

Tit1

fix1 = fi + hipa f] + / (wis1 — s)f"(s) ds,

x;

Ti—1

fici=fi — hif{ + / (zim1 — s)f"(s) ds,

ﬂ4=ﬂ+/f%Ms

Tit+1

ﬁﬂzﬂ+/f@m&

Siis saame
Tip1 Ti1
¢ = 3;@%“ / (xig1 — 8)f"(s)ds — 3)\ihli / (xi —8)f"(s)ds —
iyl "
—A/ﬂ %—m/f(ﬂ
is1
= i / (%(%H —s)— 1) f'(s)ds +

+)\i/ (%(x“—s)ﬂ) (s) ds.

Ti—1
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Teeme esimeses integraalis muutujavahetuse s = x; + Th;;1, teises integraalis
s = xj_1 + Thy, selle tulemusena

1 1
C'L_,UihiJrl/ 2—37' $Z+Thz+1 dT—F)\hl/ 1—37' I‘Z 1+Th)d
0 0

Integraalialused funktsioonid 2 — 37 ja 1 — 37 muudavad integreerimisloigus [0, 1]
mérki, samal ajal on teised tegurid pidevad. Kasutades integraalide jaoks kesk-
vaartusteoreemi, saame

2/3 1
¢ = pihivr | f(&) [ (2—=37)dr + f"(&) [ (2—=37)dr | +
/ /
1/3 1
+Nhi | () [ (A =37)dr+ f"(m;) [ (1 =37)dr | =
/ /

/ siin &,& € (v, xiva], mi, Ti € [wim1, wi] /

=pihiq (%f”(fz') - éf”(g)) + Aihy (%f//<77i) - %f”(%)) =

= (16~ 116 + 5 ) — S + 5 (6~ ') ).

Hinnates siin nagu eespool, saame

h
el < § (Gouml") + geals”) + (")) < 2l

3) Vaatleme juhtu, kus f € C?W3>*[a, b]. Siis f € C?[a,b]ja f € W (z,_1, z;),
1 =1,...,n. Kasutame jalle ¢; avaldises Taylori valemit jadkliikmega integraalsel
kujul. Leiame

Ti+1

h? h? 1
fir1 = fi+hia fi + 2+1fi” + glfi/lo + 6 / (i1 — )° f1V(s) ds,

T

o " " 2 ~ "n
/siin fi) = Ih;gcl " (x), sest f € C*[a,b] korral voib " olla katkev /

Ti—1

) . ~—h~/ h_zzl/_h/_':is/// 1 ) . 3 eIV d
fici=fi i + 9 i 6 Jico + 6 (i1 —8)°f7 (s)ds

T
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Tit1
B2 1
o= it 74 P 5 [ i = 927 (),
Ti—1
/Y R Nl hz2 " 1 2 IV
fico = 1i = hif; +?fi*0+§ (i1 —8)°f 7 (s) ds.

z;

Nende ¢; avaldisse asetamise jérel tulevad f; ja f; kordajad nullid, sest need on
tipselt samad, mis ruumi C?[a, b] juhul. Veel saame f;’ kordaja

3 3
Stiliv1 — 5)\#% + Aihi — pihip1 =

9 (Nz‘hi+1 - /\ihi) =

— N =

h; hi1
2 <hi Fhi Y hi+ hig )

filo kordaja

Z 1 1
Eﬂihfﬂ - §Mz‘h?+1 =0,
1" kordaja

11—

1 1
2 (2 2 (2
Alles jéab ¢; avaldises
) Tit1 L) Ti—1
¢ = éh’iil / (i1 — 8)2f1V(s) ds — Eh_z (251 — 8)3f1V(s) ds —
Titl N Ti—1
— % / (zip1 — 8)2fV(s)ds — é / (zio1 — 8)2f1V(s)ds =
_ & (xi+1 B S) . (xi—l—l i 8)2 fIV(S) ds +
2 hita
N[ [ (@i - s)?
+ . / u + (mi—l — 3)2 fIV(S> ds'
2 h;
Ti—1
Teeme esimeses integraalis muutujavahetuse s = x; + Th;;1, teises integraalis

s = x;_1 + 7h;. Peale seda jouame vorduseni

1
ih}
C; = %/ (A=7)°= 1 =7)) fV (2 + This) dT +

0
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“’CAD
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7')2) fIV(.Z'i_l + Thl) d’T.

Integraali all on funktsioonid

(1

— )R-

(1—-7)=
(=) + (=71)?

Neid arvestades saame hinnangu

1
.
;] < %/7(1—

1

0

Seejuures /7’(1 —7)

0

Ulesanne 14. Téestada iilejiinud teoreemis [1] toodud hinnangud ja analiiiisida,

||<1
Ci| X 77
24

1
/7’21—7
0

B2 (i + )Y e =

1-7)P1-7-1)=
(=7 +1)

7)2 dr +

3
[

0

1
E ning h;

—7(

=71 —-7) >

< h, hi+1 < h tottu

1-7)*<0,
0.

1
Aih;
o[- | 1Y)

1
—h3 v -
SR

millised muutused tuleb toestuses teha teiste rajatingimuste korral.

Teoreem 2. Teoreem:|l| eeldustel kehtivad hinnangud

Fe IS flloo < IS = e <[ 18" = £l < /18" = "o <
Clatl | She(f) | () - -
Wo2(a,b) | oo | chllf oo : :
1 2
Chat] | R | che() | Aw() :
96 3
Wda,b) | ¥ e | R e | oo
CQCz[a, b] Chgw(fm) ChQW(f/”) chw(f/”) < \3/> . >w<f///)
5 1 3 1
217700,4 BAFIV 3 IV D9 fIV 1 hmin v
AW 0| b e | g | S0V |5 (e + 2 Y
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Siin oleme tahistanud Ry, = 1min h; ning ¢ tihendab hinnangutes konstanti, mis

<i<n

et soltu funktsioonist f ega jaotusest . Tabeli eelviimases reas toodud hinnangud on
iseloomulikud ka ruumis C*[a,b] C C*CX [a, b], viimases reas aga ruumis C*[a,b] C
C*W X a, b).

Toestusest. Toestused erinevates ruumides kasutavad suhteliselt sarnast tehnikat,
seepirast vaatleme ainult ruumi C2W3>*[a, b]. Olgu S € S%” interpoleeriv Hermi-
te’i kuupsplain, seega S(z;) = f(z;), S (z;) = f'(z;), i =0, ..., n. Eespool nigime,
et kui kasutada x = x;_1 + th;, h; = ©; — x;_1, siis

|S(2) = f(2)] < |S(z) = S(@)| +[S(2) = f(2)] <
<

hit(1 = 1) max |m; — fi| + |S(z) = f(2)]; (6)
x € |1, 1)
Analoogiliselt
[5"(@) = f'(2)] < (1 =)L = 3¢| + 13t = 2]) max m; — fi] + (7)
+[S(x) = f'(@)], € [z,

Teise ja kolmanda tuletisega seotud hinnangud saame vorratustest ( . ja (4 .

Teame, et |S(z) — f(2)] < =—=h*||f""|ls. Teoreemis [1| saime max |m; — fi| <

384

1 1
< —h3||flv|\oo. Arvestades veel, et t(1 — t) < 7 saame hinnangus (6)) teguriks

1 1 5
h4 1A% ~ _

17 oo ees 7+ 50+ 387 = 381
Vaatleme veel kolmandate tuletiste hindamist, kasutades vorratust. Teame,

et [Sy(z; f7) — [ (2)] < h||fW||ooJa max [M; — ff| < hzllflvlloo Siis

2

5(@) = @) < 5+ TN o+ il o =
1(h h
N _Z h A% -
! (h E) bl
h h 1
Vaatleme funktsiooni p(z) = — + f) hin < @ < h. Siis /() = —— + + =
2 g2 x h x h
— e < 0, mis tahendab, et funktsioon ¢ on monotoonselt kahanev ning
x
seeparast

h + hmin
hmm h .

R
h

D‘|;A
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Markus. Oletame, et h — 0, mis tdhendab, et fikseeritud 16igu [a, b] korral vaadel-

dakse niiteks jaotuste A jada (sel juhul muidugi jaotustes osaloikude arv n — o).
2

Samas voib juhtuda, et — — 0 el leia aset (see on voimalik ebaiihtlase vor-

gu korral) ja leitud ]S”/(;)m— f"(x)] hinnangust ei saa jireldada koondumist

HS/N . f///HOo 0.

Niitame, et teoreemis toodud hinnang ||S — f||o kohta ruumis C*W>*[a, b] ei
b—a

ole parandatav. Kasutame iihtlast vorku, s.t. h = ,ri=a-+1th,1=0,...,n.

1
Vaatleme funktsiooni p(z) = ﬁ(xA‘ — 2ha® + hx). Defineerime

el — i), ¥ € [2;,Ti41], i paaris,
fx) = o
—p(z — ), € [x;,x41], @ paaritu.
Saame, et p(0) = 0, p(h) = 0, seepérast f(z; +0) = ¢(0) = 0, f(z;11 —0) =
= p(h) = 0, mistottu f € Cla,b]. Leiame veel ¢'(x) = ﬂ(élac?’ —6ha? +h?), millest

h3 h3
¢'(0) = o1 ¢'(h) = 51 Selle abil saame, kui ¢ on paaris, siis f'(z) = ¢'(z — ;),
3 h3

r € [15, 1], ja f'(xi +0) = ¢'(0) = o f(@is1 = 0) = ¢'(h) = —ﬂ§ kui aga 7

h3

on paaritu, siis f'(z) = —¢'(v — 2;), ¥ € [zi, v11], ja f'(z; +0) = —¢'(0) = o0

h3

f(xi1—0)=—¢'(h) = YL Nendest jareldub, et kui ¢ on paaris, siis f'(z; — 0) =
" £/(01-0) = - ki aga i on paaitu,sis £/(5-0) = - f/(a +0) = —
= —ja ; = — aga i on paa siis i—0) = —— ; = ——.
51 T 5 Kui aga i on paaritu, siis f*(z; YA 51

1
Jargnevalt saame ¢"(z) = ﬂ(12w2 — 12hz), ¢"(0) = 0, ¢"(h) = 0, seepérast

1

f'(x; —0) = f"(z; +0) = 0 ja f € C?a,b]. Veel " (z) = ﬂ(?éll‘ — 12h),
h

0" (0) = —5 ©"(h) = 5 on pidev (analiiiis on samasugune

nagu f’ pidevuse niitamisel). Lopuks leiame ¢’V (x) = 1 ning

mis annab, et f”

£V () = L, € [z, i), Z Paal"?sa
—1, z € [z, mi11], 7 paaritu.

o T i) T3 Ty Tn
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Oleme niidanud, et f € C*W*a,b], ||f!V]l.e = 1. Interpoleeriv kuupsplain
niiteks rajatingimustel S”(x¢) = f"(x¢), S"(x,) = f"(x,) tuleb S = 0, sest
S(z;) = f(x;)) = 0,1 =0,...,n. Seepérast ||S — f|looc = ||f||cc. Néiteks osaloi-
gus [zg,x1] on f(z) = ¢(x — x0) ning meil on vaja leida selle funktsiooni abso-

h 5
luutvddrtuse maksimaalne vaartus. Vahetu arvutus néitab, et ¢ (5) = @h{

1
¢’ (g) =0, ¢"(x) = §x(m — h) < 0, mis iitleb, et vahemikus (0, ) on ¢ kaha-

: : . - 5 . :
nev ja o on ainus ¢ maksimumpunkt. Niisiis, || f|lcc = == h*, mis tdestab tabelis

384
toodud hinnangu mitteparandatavuse.
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Eeldame, et on antud argumendi vaédrtused a = o < 1 < ... < x,, = b, lisaks
vastavad arvud f;, ¢ = 0,...,n. Soovitakse saada funktsiooni f: [a,b] — R, mis
kuidagi kirjeldaks andmete soltuvust. Interpoleerimine ei ole alati moistlik, kui
nditeks f; on antud mootmisvigadega, sest need on saadud mingi eksperimendi
kidigus. Arv n voib olla suur, s.t. mootmisi tehakse palju. Interpoleerimisel voib
pilt olla jargmine:

/ interpolant
M‘/ tegelik soltuvus

Uks voimalus reaalset soltuvust leida on vihimruutude meetod. Valitakse funkt-

sioon p(x,co,...,cm), kus co, . .., ¢, on midramisele tulevad parameetrid, ja nou-
n

takse, et Z(gp(%,co,...,cm) — f1)? oleks minimaalne. See on optimiseerimise
i=0

valdkonna iilesanne ja iildiselt viga komplitseeritud. Kui ¢ on naiteks poliinoom:
o(x,coy.yCm) = Co+arx+...+epx™, siis saadakse parameetrite ¢; madramiseks
lineaarne siisteem, tihti moeldaksegi vihimruutude meetodi all seda varianti. Mo-
nikord moeldakse vdhimruutude meetodi all ainult varianti, kus o(z,cp,¢0) =
= ¢g + c1x, selle graafik on sirge. Silumisiilesannetes, mida siin vaatame, ei ole
funktsioon ¢ ette antud.

1. Sobolevi ruum H™(a,b) = W*™(a,b)
Defineerime

H™(a,b) = {u € Ly(a,b) | u/,...,u™ € Ly(a,b)} =

/ siin moeldakse tuletisi distributsioonide mottes;

72
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kui u € Ly(a,b), siis on olemas u*) € D'(a,b), k=1,2,.../
= {u € Ly(a,b) | u™ Y on absoluutselt pidev, u™ € Ly(a, b)}.

. . - . . . u(r+h) —u(r
Viimases midrangus moeldakse tavalist tuletist, s.o. u/(z) = }LIII%) ( })l (z) .
—

Kui u on absoluutselt pidev, siis on olemas «'(x) peaaegu koikide x € (a, b) korral
(nende x vadrtuste hulk, kus tuletist ei eksisteeri, on nullmooduline). Kui u on
absoluutselt pidev, siis

Kui u ja v on absoluutselt pidevad, siis

b
/u'vdm = wv
a

Meenutame, et f: [a,b] — R nimetatakse absoluutselt pidevaks, kui iga ¢ > 0

korral on olemas § > 0 nii, et kui Z |b; — a;| < 6, (a;,b;) C [a,b] iga i korral,

i=1
n € N on suvaline, (a;,b;) N (aj,b;) = 0, kui ¢ # j, siis Z |f(bi) — flai)| < e

Kui n = 1, siis on tegemist iihtlase pidevusega. Kehtlvad 1mphkat5100n1d f on
absoluutselt pidev = f on iihtlaselt pidev = f on pidev, seejuures antud juhul,
kus f: [a,b] — R, on viimane implikatsioon pooratav. Hulk H™(a,b) on Hilberti
ruum, selles on skalaarkorrutis

b
(w0 )mion = 30 (09 09) 0 = - [0 @) @) .
7=0 7=0

Kehtivad sisalduvused C™[a,b] C H™(a,b) C C™ '[a, b).

2. Silumisiilesannete piistitused

Antud on 16igu [a,b] jaotus A:a = 29 < 21 < ... < x, = b, solmedele z;
vastavad arvud fo, fi,..., fu, arvud p; > 0,0 =0,...,n, veel p > 0. Arve p; ja p
nimetatakse kaaludeks.
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Silumisiilesanne 1. Leida f € H?(a,b), mille korral funktsionaali

n b 12
Zpi (f(z;) — fz)2 +p/ (f”(av))2 dx

vaartus oleks minimaalne.

Liihidalt v6ib selle kirjutada min J(f).
feH?(ab)

Silumisiilesanne 2. Antud on z;, f;, p;, € > 0. Leida f € H?(a,b), mille korral

b 12

n 12
oleks minimaalne tingimusel (Z pi (f(z;) — fi)2> <e.

i=0
Liihidalt saab selle kirjutada iilesandena ?1}? Jo(f), kus
K.

1/2
(sz Ji > <€

Silumisiilesanne 3. Antud on w;, f;, p;, M > 0. Leida f € H?(a,b), mille korral

n 1/2
= (sz(f<xz> - fz’)z)

b 12

oleks minimaalne tingimusel /(f”(x))2 dx < M.

K. =X f e H*a,b)

Liihidalt on see iilesanne min J;(f), kus
f€Lm

b 12

[ur@yan | <u

a

Ly =< f € H*(a,b)

Silumisiilesandes [2[ on antud lubatav korvalekalle f(z;) ja f; vahel, tdpsemalt,
nende koikide korvalekallete kombinatsioon etteantud kaaludega ei tohi iiletada
antud médra. Minimiseeritakse seejuures funktsiooni tervet koverust 1oigus [a, bl
mida voib ette kujutada jargmisel joonisel, kus punktid néitavad antud (x;, f;)
asukohta, pidev joon tdhendab lahendit, {iks katkendlik joon interpolanti ja teine
katkendlik joon lubatavate korvalekalletega funktsiooni:
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Silumisiilesandes |3 on antud joone lubatav koverus (seda véiljendab kovera kuju),
minimiseeritakse korvalekallete kombinatsiooni:

Silumistilesandes [1l tuleb minimiseerida terve funktsionaal

J(f) = (S +pI2(5)",

seda voib kisitleda kompromissina silumisiilesannete [2] ja [3| vahel.

Silumisiilesanded on kaaludega silumisiilesanded, seejuures silumisiilesan-
net [1) voib nimetada klassikaliseks silumisiilesandeks. Korvuti nendega on loomulik
vaadelda toketega silumisiilesannet, milles on antud x;, f;, & > 0,7 = 0,...,n,
defineeritakse

K:{fGHz(a>b)“f($i)—fi| <ei,i=0,...,n}

ning on vaja leida f € H?*(a,b), mille korral Jo(f) oleks minimaalne tingimusel
f € K. Toketega silumisiilesande sarnasus silumisiilesandega [2| on néiline, tegeli-
kult on nad viga erinevad. Kuigi toketega silumisiilesanne on palju praktilisem, on
teda oluliselt raskem lahendada kui kaaludega iilesandeid. See on iiks pohjustest,
miks me selles kursuses toketega silumistilesandeid ei kisitle.

3. Minimaalse poolnormiga interpolant

Siin vaatleme iilesannet
Alusiilesanne. Antud on z;, fi, i = 0,...,n, leida f € H*(a,b), mille korral
b 12

ho(f) = / (f"(2))? de

a

oleks minimaalne tingimustel f(z;) = f;, i =0,...,n.
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Seda voib vaadata ka silumisiilesandena [2| kus on voetud ¢ = 0, kuid séilitame
silumisiilesandes [2| ikka ¢ > 0. Mirgime, et .Jy on poolnorm ruumis H?(a,b).

Lemma (Holladay, 1957). Alustlesande ainsaks lahendiks on kuupsplain S € Sil,
mis rahuldab interpolatsioonitingimusi S(x;) = fi, i = 0,...,n, ja rajatingimusi

S"(a) = S"(b) = 0

Seda lahendit nimetatakse loomulikuks kuupsplainiks voi naturaalsplainiks. Vaa-
deldavaid rajatingimusi nimetatakse loomulikeks rajatingimusteks. Lemma on iiks
olulisemaid ldhtetulemusi splainide teoorias.

Toestus. Eespool toodud kuupsplainidega interpoleerimise teooriast teame, et sel-
line kuupsplain S on iiheselt midratud, S € C%a,b] C H*(a,b). Tarvilik ja piisav
on néidata, et selline S on alusiilesande ainus lahend.

Votame suvalise f € H*(a,b), mille korral f(z;) = f;, i = 0,...,n. Toestame
esialgu vorduse

b b

tﬂﬂ@f@:/y’ m+j" — §"(x))? da. (1)

a a

Selle vorduse voib ka kirjutada

Jo(f) = J5(S) + I3 (f = 9).

kuid praegu ei ole see oluline. Teisendades saame

Jire

j — §"(z) 4+ S"(x))? dz =

/ (@) = S"@)* do+2 [ (1"(a) = 5"(0)) S"(w) do +

b

+/qu@.
b
Néitame, et /(f”(:r:) — 8"(z)) 8" (x) dx = 0. Ositi integreerides saame

a

[ @) - 8" ") de =
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= (f'(z) = 5'(x)) 5"(x)

e / (f'(z) — §'(x)) 8" () da.

r=a

x=b
=0, sest S”(a) = S”(b) = 0. Veel saame

r=a

Selles (f'(x) — S'(z)) S"(x)

/(f’(flr) — 5'(x)) 8" () dw = Z / (f'(z) = 5'(x)) 8" (z) du =

/ kasutame asjaolu, et S on intervallides (x;_1, z;) konstantne,

sest ta on kuuppoliinoomi kolmas tuletis /

- ZS (255 / (F (@) = 8'(a) da.

Ti—1

seejuures
[ @ -5 @) do= (@) - s@)| =0
- T=x;_1
mis tuleb interpolatsioonitingimustest f(z;) = S(x;), i = 0,...,n. Sellega on vor-

dus (1)) toestatud.
Vordusest (1)) jireldub, et Jo(f) = Jo(S), sest J3(f —S) = 0 ja ka Jo(f) = 0,
Jo(S) = 0. Oleme toestanud, et vaadeldav interpolant S on alusiilesande lahend.

Niitame, et S on ainus lahend. Oletame, et f € H?(a,b) on samuti alusiiles-
b

ande lahend. Siis Jo(f) = Jo(9) ja /(f”(x) — §"(2))* dz = 0. Sellest jireldub

integraalialuse funktsiooni mittenegatiivsuse tottu, et f(z) — S”(x) = 0 peaaegu
koikjal. Kehtib vordus

T

f(a) - S'(z) = f'(a) — §'(a) + / ("(s) — §"(s)) ds.

a

mida saab vilita ruumi H?(a,b) kuuluva funktsiooni f — S korral. Kuid et

1" (s) — S”"(s) = 0 peaaegu koikjal, siis / (f"(s) = S8"(s)) ds =0ja f'(x)—S'(x) =

= f'(a) — §'(a) = «a (kasutame siin tidhte o konstandi tihisena). Niiiid kasvoi ha-
riliku diferentsiaalvorrandi f'(z) — S’(z) = a lahendina leiame, et f(x) — S(z) =
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= ax + (. Kasutades jille interpolatsioonitingimuste taidetust, S(z;) = f(z;),
saame ax; + 5 =0,7=0,...,n, n > 1, seepirast ax + 8 =0, € [a,b]. See aga
tdhendab, et f = S.

4. Klassikalise kaaludega silumisiilesande lahendi olemasolu

Naitame siin, et silumisiilesandel [I| on olemas lahend. See oli iilesanne

b 12
J i (fla) — fi)" + (@) da |
eIlgllzl(Izlzb) (f), ZP P/(f ()" da
antud oli z;, fi,p;, p. Téhistame d = inf J(f). Siin  inf J(f) eksistee-
feH2(a,b) feH2(a,b)

rib reaalarvuna, sest J(f) > 0 iga f € H?*(a,b) korral, seejuures d > 0. Vo-
tame minimiseeriva jada f,, € H?(a,b), see on jada, mille korral J(f,) — d,
kui m — oo. Minimiseeriv jada eksisteerib alati, sest infiimumi moiste koha-
selt voib funktsionaali vadrtustega sellele kuitahes ldhedale jouda. Muidugi leiab
aset vorratus d < J(fn). Leiame interpoleerivad kuupsplainid S,, € Sil nii, et
Sm(x) = ful(x), 1 = 0,...,n, S/ (a) = S/ (b) = 0, seejuures kuupsplainide in-
terpoleerimise teooriast teame, et splainid S,, on olemas ja iiheselt méadratud.
Alusiilesande pohjal voime 6elda, et Jy(S,,) < Jo(fn). Lisaks, interpoleerimisest
jareldub, et J1(S,,) = Ji(fm), seepérast J(S,,) < J(fm). Arvestades veel vorratust
d < J(Sp), saame d < J(S,) < J(fn) ning J(f) — d tottu J(S,,) — d, s.t. ka
S, on minimiseeriv jada.

Vaatleme ruumi Sgy = {S € SX' | §”(a) = S"(b) = 0}. See ruum on I5pliku-
mootmeline, sest ta on loplikumootmelise ruumi SZI alamruum. Kasutame ruumis
So'a kahte normi. Olgu

151l = IS llc2taer = 1SNetas + 15" oo + 115" oo,

1512 = max [5(z;)]-

Esimene neist on norm ruumi C?[a, b] alamruumis. Niitame, et teine on norm. On
selge, et

IAS |2 = [AllS]l2,
151 + Salla < [[S1]2 + [|Sa]f2-

Olgu ||S||2 = 0. Siis S(x;) = 0, i = 0,...,n, ning et S"(a) = S"(b) = 0, siis
interpolatsiooniiilesande iihese lahenduvuse pohjal S = 0.
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Néitame jargnevas, et ||S,,||2 on tokestatud. Teame, et J(S,,) < c1, sest J(S,,)
on koonduv jada, ¢; on tokke téhis. Siis

sz Z) X

millest jareldub, et
Di (Sm<xl)_fl)2<c%7 ZZO,,TL

Sellest omakorda saame iga i = 0,...,n korral
a
S (i) — fil < = (2,
min ./p;
0<i<n

kus votsime kasutusele ¢y uue konstandi tdhisena. Viimasest vorratusest tuleb
|Sm(l‘z)| < |Sm(x ) fz| + |fz| c2 + maX |fz| = Cs,

kus ¢3 on jélle konstandi téhis. Oleme saanud, et ||S,,|l2 < c3. Loplikumootmelises
ruumis on igal tokestatud jadal olemas koonduv osajada, seepdrast on olemas
N’ C N (Iopmatu indeksite osahulk), S € SS'A nii, et ||.S,, — S|l — 0, kui m € N'.
Loplikumo6otmelises ruumis on koik normid paarikaupa ekvivalentsed, seepérast
|Sm — S|li = 0,m € N'. Viimasest jareldub, et S; (z) — S”(x) ihtlaselt 16igus
[a,b], samuti S,,(z;) — S(x;),4 = 0,...,n, kui m € N'. Siis ikka m € N’ korral
nende koondumiste tottu

b 2
T(Sw) = | Yo (Sula) = £* + 7 / (Sl (a -

b 12

sz 5) = 1) [ (8"@) da

Et J(Sn) — d, siis J(S) = d, mis iitleb, et S on silumisiilesande (1| lahend.

Ulesanne 15. Téestada, et silumisiilesannetel [2] ja [3] on olemas lahendid hulgas
Sg”’i. Soovitus: piitida modifitseerida eelnevat toestust. Hoiatus: olla tdhelepanelik
arutluse jalgimisel, tervikuna arutelu ei sobi silumisiilesannete [2| ja [3| puhul.

Olgu X vektorruum, funktsiooni (voi funktsionaali) f: X — R nimetatakse
rangelt kumeraks, kui iga xq, 2 € X, 11 # 29, jaiga A € (0,1) korral

f Az 4+ (1= Nag) < Af(21) + (1= A)f(22).
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Lause. Kui f on rangelt kumer, siis tilesandel Inl)I(l f(z) ei saa olla kahte erinevat
HAS
lahendit.

Pohjenduseks mirgime, et kui elemendid x1, 29 € X, 1 # 9, on lahendid, siis
1 1 1 : :
f (5(3:1 + 1’2)) < §f(w1) + 5]‘(3:2) = min f(z), mis on vastuolu.
Ulesanne* 4. Toestada, et klassikalises silumisiilesandesVaadeldud funktsionaal
J: H*(a,b) — R on rangelt kumer.

Jareldus. Klassikalise silumisiilesande [1l lahend on dihene.

5. Tehniline abitulemus

Lemma. Iga f € H*(a,b) ja iga S € SS’”Z korral kehtib

b

PP = (S) = S pi (@) = 8@ 4 p [ (@) =S de s (@)

a

+2 Z (f () = S(2:)) (pi (S(ws) — fi) +p (8" (i +0) — 5" (2; = 0))),

kus 8" (zg — 0) =0, S"(x, +0) = 0.

Toestus. Teisendame
b

P sz £ [ (@) do

a
b

- sz f = [ (8"@)* do =

a

/ kasutame siin vahetult kontrollitavat vordust A> — B? = (A — B)* +
+ 2(A — B)B, vottes summas A = f(x;) — fi, B = S(z;) — f;
ja integraalis A = f"(x), B =5"(z) /

= sz z) — () +p / (F(x) — $"(2)) d +

+2zpz v0) = S(0)) (S(w:) — fi) +
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b

+ 2p/ (f"(x) — S"(x)) S"(x) dx.
Siin on vaja teisendada ainult viimast liidetavat, milles integreerime ositi:

b

/ (@)~ 8(2))8"(x) o =

- / (@)~ '(2))8"(x) dr =

a

/ esimene liidetav on 0, sest S”(a) =0, S"(b) =0 /
=3 [ (1@ - 5w) s @ =
() - )

S i S"(x; —0) <f(xz) — S(xﬁ) + i S"(z;-1+0) (f(xi_l) — S(Ii_1)> —

r=b

= (/@) - 5@) 5" (@)

r=a

r=x;

T=Ti—1

/ esimeses summas voime lisada indeksi 0, sest S (xog — 0) = 0,

teises summas teeme indeksi nihke /

n n—1
= =38 = ) (fl@) = S(ws)) + D 8" (i + 0)(flw) — S(w)) =
i=0 i=0
/ lisame teises summas indeksi n, sest S”'(z, +0) =0 /

=3 (74 0) — 57— ) () - S().

6. Klassikalise kaaludega silumisiilesande lahendit iseloomus-
tav tarvilik ja piisav tingimus

Lause. Loomulik splain S € Sgi on silumisdlesande lahend parajasti siis, kui

pi<5(aji) - fi) + p(s"'m 4 0) = S"(x; — 0)) 0, i=0,....n, (3)
kus 8" (zo — 0) =0, 8" (z, +0) = 0.

.81



82 §10. Silumisiilesanded

Toestus. Tingimuse piisavus. Kui splaini S € Sgi korral kehtib, siis vor-
duse pohjal iga f € H?*(a,b) korral J*(f) > J*(S), mis tihendab, et S on
silumistilesande [I] lahend.

Tingimuse tarvilikkus. Olgu S € Sg”i silumisiilesande [1| lahend. Oletame
vastuviiteliselt, et ei kehti. Siis on olemas indeks k& € {0,...,n} nii, et

K = Pk (S(l‘k) - fk;) +p (S///(Jﬁk + 0) - S///(.Clﬁk — 0)) 7é 0.

Votame splaini S € Sgi nii, et S(z) = 1, S(z;) = 0,7 =0,...,n, i # k. Olgu
f(z) = S(x) + 8S(x), kus § # 0, mille valime hiljem. V&ib 6elda, et f € H?(a,b),
isegi f € Sgi. Siis vordusele (2) tuginedes saame

JA(f) = JX(S) = Xn:m? (S(x:))” + ps* / (E”(g;))z dz + 265 () K = c6? + 2K,

b
—11 2 —
kus ¢ = py +p/ (S (x)) dx >0, sest S(x;) =0, i#k.

Kui K > 0, giis vaatleme protsessi 6 — 0—, kui aga K < 0, siis olgu 6 — 0+.
See tagab, et kiillalt viiikese |d] # 0 korral ¢§* + 2K 6 < 0, mis annab vastuolulise
J(f) < J(S). Liidetavate c6? ja 2K kiitumist iseloomustab joonis

A

cd?

Q,)V

K >0 K <0

2K 2K

7. Klassikalise kaaludega silumisiilesande lahendi iihesus

Siiani oleme toestanud silumisiilesande [1| lahendi olemasolu ja naidanud, kuidas
on voimalik nédidata lahendi iihesust. Selles punktis esitame veel teise voimaluse
lahendi iihesuse saamiseks.
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Olgu S € S\ silumisiilesande [1| lahend. Siis iga f € H?(a,b) korral on vordus
tingimuse (3 pohjal

P = (8) = 3 s (fa) — S(o)? +p / (f"(x) - §"(2))” de.

Kui f € H?*(a,b) on silumisiilesande [1| lahend, siis J(f) = J(S) ja seega
f($7,)—S(ZL'1):0, i:O,...,n,
f"(z) — S"(x) =0 peaaegu koikjal.

Eespool juba négime, et siis f(z) — S(z) = ax+ 5 jan > 1 tottu f(z) — S(z) =0
iga x € [a,b] korral ehk f = 5.

8. Klassikalise kaaludega silumisiilesande lahendi leidmine

Teame, et silumisiilesandel [1| on olemas iihene lahend S € SS’:L mille korral
on rahuldatud tingimused (3)). Splain S on osaldigus [z;_1,z;] selline, et S” on

lineaarne, S on konstantne, seepérast 5" (z;_1 +0) = 8" (z;—0) = ————1 —

Ty — XTj—1
M; — M, . o
= h—l’ kus M; = S"(z;). Illustreerivaks on joonis
M, |
M, |-
95;71 ZL"z "
Vordused (3) saame niiiid kirjutada (tdhistades S; = S(x;))
( My — M
po(So — fo) +p% =0,
1
M — M;  M; — M, :
pi(Si—fz‘)+p( = - 1):0, i=1,...,n—1, (4)
hita h;
M, — M,_
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Splaini maaramiseks on meil praegu kasutada tundmatud Sy, ..., S,, Moy, ..., M,,
vorrandite arv slisteemis on n + 1. Lisame veel n + 1 vorrandit

Sit1 — St B Si — Sic1
hi1 h;
hi 4 Ritq

pi M+ 2M; + \iMi 1 = 6

\Mn:(),

kus on kirjas loomulikud rajatingimused ja alati kehtivad splaini sisevorrandid.
Vordustest (4]) saame avaldada

( M, — M,
Stoo—£ 1—0’
Po hy
P Mi-‘,—l — Mz Mz — Mz‘_l) .
S.=fi— & — , t=1...,n—1, 6
f- (s 3 (6)
M, — M, _
um gy 2 (A=)
Pn hy,

Asendame need vorranditesse . Sellega tekib lineaarne vorrandisiisteem, mil-
le tdhistame AM = d, kus M = (M,,...,M,) ja A on viiediagonaalne, sest
vorrand indeksiga ¢ sisaldab tundmatuid M; o, M; , M;, M;. 1, M;, o, seda kiill
t = 2,...,n — 2 korral. Muidugi on selles siisteemis esimene ja viimane vorrand
triviaalsed, need annavad M, = 0, M,, = 0 ning teistes vorrandites saab need &ra
jitta, millega tekib n — 1 tundmatuga M, ..., M,,_; siisteem, milles on n — 1 vor-
randit. Eelneva kasitluse pohjal on see siisteem iiheselt lahenduv, sest selle lahen-
damine annab iiheselt splaini kui lahendi parameetrid M;. Arvud S; saab seejérel
arvutada vordustest (@ ning sellega on médratud splain S: [a,b] — R eraldi igas
osaldigus [z;_1, z;].

Ulesanne* 5. Toestada, et splaini parameetreid M; miiravas siisteemis AM = d
voib diagonaali ridade kaupa domineerimine puududa. Soovitus: vaadelda iihtlast
vorku ja juhtu, kus kaalud p; on koik vordsed.

Midrkus. Silumisiilesannete 2] ja [3| lahendid ei tarvitse olla iihesed. Néaiteks piisab
votta punktid (x;, f;),i = 0,...,n, iihel sirgel ning siis on interpolandiks tilimalt
esimese astme poliinoom S (sellega ka ruumis Sg’:i), mille korral Jy(S) = 0 ja
J1(S) = 0. Silumisiilesandes [2| on sirgele S lihedase sirge S € K. korral ikka
Jo (?) = (. Silumisiilesandes|3|aga tarvitseb votta sirgest S vihe erinev interpolant
S € Ly, siis Ji(S) = 0.



§11. Harilike diferentsiaalvorrandite rajaiilesannete
lahendamine kuupsplainidega kollokatsioonimee-

todil

1. Rajaiilesande piistitus

Vaatleme diferentsiaalvorrandit

(Lu)(x) = p(x)u”(x) + q(z)u'(x) + r(z)u(z) = f(z), € (a,), (1)
millele on lisatud rajatingimused

aru(a) + v (a) = 7,
agu(b) + Bt (b) = 7.

(2)

Siin p, ¢, v, f on antud funktsioonid, ay, as, B1, B2, 71, 72 on antud arvud,
u: [a,b] — R on otsitav funktsioon, Lu tdhistab diferentsiaaloperaatori raken-
damisel saadud funktsiooni (L on niisiis lineaarne diferentsiaaloperaator). Raja-
tingimuste tahtis erijuht on a; = ap = 1, f; = P2 = 0, mis annab

Eeldame, et rajaiilesandel , on olemas lahend u € C?[a, b]. Uhesuseks lahendi
olemasolul on piisav, et p,q,r, f € Cla,b], p(x) = p. > 0, r(z) < r. <0, x € [a, bl
ap,a, B2 20, B <0, |ag| + (8| #0, 1= 1,2,

2. Kuupsplainidega kollokatsioonimeetod

Olgu antud rajaiilesanne , . Valime vorgu A:a=2xp <11 < ... <z, =b.
Siis dim S%" = n + 3. Rajaiilesandele (), ([2) otsime lihislahendit u, € S'. Selle
médramiseks peaks olema n + 3 sobivat tingimust. Nouame, et

(Lup)(z;) = f(zy), i=0,...,n,

85
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aqu,(a) + Bl (a) =y, (3)
iy (b) + Bous, (b) = 7o,

neid tingimusi on kokku n + 3. Seega nouame, et ldhislahend rahuldaks tapselt
rajatingimusi ning rahuldaks diferentsiaalvorrandit vorgu solmedes. Viimaseid ni-
metatakse kollokatsioonitingimusteks. Seame eesmérgiks vastata jargmistele loo-
mulikele kiisimustele: kas selline splain u,, € Si’l eksisteerib (ldhislahendi ole-
masolu ehk lihismeetodi rakendatavus), kas u, on itheselt méaratud (1&hislahendi
tihesus), kuidas lahislahendit u, leida?

Kasutame siin normaliseeritud kuup-B-splaine. Votame lisasolmed nii, et

T 3<T o<l <T)<...<Tp < Tpt1 < Tpt1 < Tpys.

Siis saame moodustada (normaliseeritud) B-splainid B_3, ..., B,_1, nad on kiill
algselt médratud reaalsirgel R, aga nende ahendid 16igule [a, b] moodustavad baasi
ruumis S5 [a, b]. Normaliseerituse tottu

2 Bi(x) =1, x € [a,b].

i=—3

Seejuures supp B; = [z;, ;4] ning maksab silmas pidada jargmist joonist

Bis Bis B, B,

Tio3 Ti—y T z; Tit1 Tivy  Ti43 Tigd
Néieme, et
Bj(x;) = 0, Bj(x;) = 0, B} (x;) =0, kuij <i—3v6ij>i-—1, (4)

mis jareldub kandjat arvestades asjaolust, et kuup-B-splainid on kaks korda pide-
valt diferentseeruvad tervel reaalteljel.
Kasutame ldhislahendi w,, esituses neid B-splaine, siis

Uy (z) = i ¢;iBi(x)

i=—3

ning u,, teadmiseks on tarvilik ja piisav méérata kordajad ¢;. Omadusi (4)) arves-
tades saame

(L)1) = (L (2 chj>> @)=Y LB)) = Y ei(LB))

j=—3
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Selles
(LBj)(x:) = p(a:) B (w5) + q(x:) Bj(;) + () Bj(;)
ning kollokatsioonitingimused ehk kollokatsioonivorrandid saame kirjutada
Ci—3(LBi—3)(xi) + ci—a(LBi—2)(xi) + cima(LBi—1)(z:) = f(x;), i=0,...,n.

Téhistame selles vorduses A; = (LB;_3)(x;), B; = (LB;_s)(x;), C; = (LB;_1)(x;),
siis kollokatsioonivorrandid on

Aicis + Bici_o + Cicioy = f(x;), i=0,...,n.

Kordajad A;, B;, C; saab vilja arvutada ja seda me hiljem (erijuhul) teemegi.
Loodame, et kordaja B; ei ldhe segi B-splainiga, sest kontekstist on selge, et {iks
neist on arv, teine aga funktsioon. Esimene rajatingimus on kirjutatav wu,, esitust
arvestades kujul

Oél(C_gB_g(ZEo) + C—QB—Q(xO) + C—IB—I(I())) +
+ B1(c—3B" 5(xg) + c_a B y(x0) + c-1 B {(x0)) =™
ehk
c_3(an B_3(wg) + B1 B’ 5(x0)) + c_2(a1 B_o(x0) + f1 B 5(x0)) +
+ co1(a1B-1 (o) + f1BL(70)) = m

VOl
c3B_1 +c2C_ 1 +c1D_y =,
kus B_1, C_1, D_; tadhistavad vastavaid kordajaid.

Ulesanne 16. Kirjutada vilja teine rajatingimus analoogiliselt esimese rajatingi-
musega, tihistada sobivalt tundmatute ¢; kordajad teist rajatingimust viljendavas
vorrandis.

Uhendades rajatingimused ja kollokatsioonivérrandid, jouame siisteemini

B*l C,l D*l 0O 0 ... 0 C-3 71
AO BO C() 0O 0 ... 0 C-2 f(xO)
0 Al Bl Cl 0O ... 0 C1 . f<$1>

............................... f(zn)
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Eelistatavam on kolmediagonaalse maatriksiga siisteem, seepédrast avaldame esi-

mesest rajatingimusest

_ ga! —C_lc —D_lc
B, B, * B, !

C_3

ning asendame selle esimeses kollokatsioonivorrandis
Apc_3 + Boc_a + Coc_1 = f(xo).

Selle tulemusena saame

C_ D_
C_9 (BO — AO—B 1) +c_q (Co - A0—1> = f(«%’o) - Ao—;1 )
1

B_y

-1

milles tdhistame iimber vastavad kordajad ja vorrand on siis

C_QEO + C_1ao = 70.

Analoogiliselt toimime ka teise rajatingimusega ning jouame kolmediagonaalse

maatriksiga siisteemini

Boc_g+ Coc_y = 7():

Aici s+ Bici o+ Cicia = fi, i=0,...,n—1, /siin f; = f(x;) /

chn—B + Fncn—Q = fn

ehk
PO 60 0 0 e 0 C_2
Al Bl Cl 0 e 0 C-1
0 0 Anfl anl Cnfl Cp—3
0 o o0 A4, B, Cn2

3. Lahislahendi olemasolu ja iihesus, koondumine

(5)

Eeldame, et iilesandel (), on olemas lahend u € C*[a,b] ning on tiidetud
punktis [I] toodud lahendi iihesust tagavad tingimused. Vaatleme punktis [2] k-
sitletud kuupsplainidega kollokatsioonimeetodit. Olgu w, € Si’l interpolant, mis

midratakse tingimustega @, (z;) = u(z;), 1 =0,...,n,w,(a) = u'(a), u

/
n

(b) = /' (b).

Oleme toestanud, et ||@, — u||o = O(h*). Edaspidi vaatleme iihtlase vorgu juhtu,
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kus h; = h, i =1,...,n, h = L Niitame hiljem, et kollokatsioonimeetodil
n

saadav u, € SZI on olemas ja iihene, kui h on piisavalt viike. Voime kasutada
hinnangut
[tun — ulloo < [tn — Unlloo + [T — ulloo

ning niitame edaspidi, et |[u, — Uyl = O(h?). Siis muidugi ||u, — ul/ = O(h?).
Splainide u,,, u,, € SZI esitamiseks kasutame arendisi

up(z) = Z ¢iBi(x), u,(zr)= Z ¢;Bi(z),

millest esimest juba kasutasime ja, nagu varemgi, B; on normaliseeritud kuup-B-
splainid. Siis

n—1
Un () — up(z) = Z (€ — c)Bi(z),
i=—3
mille abil
n—1
I = o = o 37 (2 - i) Bi(w)| <
—_
n—1
< Inax 23 i — ci| Bi(z) <
—
n—1
< max |¢ — ¢| max Bi(z) =
—3<i<n—1 alz<b Pt
= Jax [ —cil,
n—1
sest B-splainide normaliseerituse tGttu Z Bi(xz) =1iga z € [a,b] korral. Téhis-
i=—3
tame gi:Ei—Ci,i:—S, ,n—l Siis
n—1
U (7) = un(7) = Y &Bi(x)
i=—3
Saame

(L0 = un)) (@) = (Ltan) (i) = (L) (2:) =

/ kasutame kollokatsioonitingimusi (Lu,)(z;) = f(z;), i =0,...,n,
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seejirel asjaolu, et u on diferentsiaalvorrandi lahend /
= (Lun) (i) — f(:) = (Lun ) (2:) = (Lu) (i) = (L, — u))(2:) =
= pla) (W, () — u"(x)) + q(@i) (U, (2:) — u'(2:)) +
+ 7(@3) (U (1) — w(zi)) = i,

kus votsime kasutusele tithise ¢;. Eespool négime, et @, (x;) —u(x;) = O(h?*) (tegeli-
kult @, (2;) —u(z;) = 0), @, (v;) —u'(z;) = O(h*), u(z;)—u" (x;) = O(h?), seepiirast
8; = O(h?). Vaatame, milliseid rajatingimusi rahuldab splain @, — u,. Teame, et
ajup(a) + Biul,(a) = v ning ayu(a) + B1u'(a) = ;. Lisaks u,(a) = u(a) inter-
polatsioonist ning @, (a) = u'(a) interpolandi rajatingimustest. Niiiid aju,(a) +
+ Bul,(a) = v ja aqu,(a) + i, (a) = v annavad, et ag(w, — u,)(a) +
+ 51 (G, — u,)' (a) = 0. Sarnaselt nieme, et ka teises otspunktis b rahuldab @, — u,
vastavat homogeenset rajatingimust. Kokkuvottes ndeme, et kordajad & mééra-
takse siisteemist

a1 (T, — uy)(a) + B (U, — u,) (a) =0,
(L(uy —up)(z) =6;, i=0,...,n, (6)
(T, — uy)(b) 4+ Bo(@, — uy,) (b) = 0.

Eespool nédgime, et wu, mairatakse silisteemist , siisteemis @ on u, asemel
u, — U, ja vorrandite paremad pooled on teised. Siisteemi @ alusel saame siisteemi
() analoogi kordajate & méadramiseks, see tuleb

Boé o + Coéq = &y,
A3+ Bi&i o +Ci&io1 =05, i=1,..., n—1, (7)
ann—?) + En£n—2 == 5n7

kus arvestasime seda, et siisteemis olevate v; ja 2 asemel tuleb siisteemis
arv 0. Muidugi saab siisteemi lahendite & abil médarata £_3 ja &,_1 nagu ees-
pool elimineerimise kdigus c_3 ja c¢,_1. Jirgmine eesmirk on meil leida kordajad
A;, B;, C;. Meenutame, et normaliseeritud B-splainide vaartusi saab leida rekur-
rentse seose abil, see oli varasemates tahistustes

B (x)=—B__.(z)+
m() Titm — Ty m1(> Titm+1 — Ti41

imil 78 B ().

Ulesanne® 6. Tdestada, et tihtlase vorgu korral, kus h; = h iga i korral, leiavad
normaliseeritud B-splainide B; = By jaoks aset vordused

1 4 1
Bi(xi41) = 6 Bi(7i42) = 6 Bi(xi43) = 6’
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1 1
Bi(zi41) = S Bi(zi40) =0, Bl(wi3) = -
" 1 y 2 " 1
Bi (2i41) = n2’ B (wi42) = R B (ziy3) = 2

mida illustreerime ka joonisel

(o '=N

1

1 1
6 6
T Tiy1 Tiy2 Tiy3 Titd

Soovitus: lahtepunktina kasutada vorduseid

=Y -t

Bi(z;) =0, Bi(ziz1) =1, Bj(zi42)=0.

A

T Tit1  Tit2

Hoiatus: tuletiste vadrtuste leidmisel voib mones kohas olla vajadus kasutada iihe-
poolseid piirvadrtusi.

Meenutame veel, et algse rajaiilesande lahendi {ihesuse tagamiseks eeldasime,
et p(z) = p. > 0, r(z) < r. < 0. Kasutades *-iilesandes [6] toodud B-splainide ja
nende tuletiste vaartusi, saame leida i = 0, ..., n korral

A; = (LB;_3)(x;) = piBl_4(x:) + ¢ Bj_5(x;) + 1 Bi—s(x;) =
O

T
ning A; > 0, kui h on kiillalt viike,

2p;  Ary

2t

B = (LBi—s)(w:) = piB_5(w:) + i Bi_o(:) + 1:Bia(x:) = —
ning B; < 0 igasuguse h korral,

C@' = (LBzfl>(l’l) = plBéil(l}) -+ qlBLl(mz) + TiBifl('Ti) =
P, G, T

T h2 " 2n 6



92 §11. Harilike diferentsiaalvorrandite rajaiilesannete lahendamine. ..

ning C; > 0, kui h on kiillalt viike. Nendes kordajates kasutasime lithemaid t&his-
tusi p; = p(), ¢ = q(x;), 7 = r(x;). Kui on tegemist olukorraga, kus A; > 0 ja
C; = 0, siis

|Bi| — |Ai| = [Ci| = =B, — A; — C; =
2p; 4r; Di qi T Di q; T
h 6 h* 2h 6 h2 2h 6
=—r; = —r.>0,

mis tdhendab, et siisteemi sisemises vorrandis indeksiga ¢ on rahuldatud dia-
gonaali ridade kaupa domineerimise vorratus, see leiab aset funktsioonide p ja r
kohta tehtud eeldustel kiillalt vaikese h korral.

Ulesanne 17. Tdestada, et kui A4; < 0 ja C; < 0, siis siisteemi sisemises vor-
randis indeksiga ¢ on rahuldatud diagonaali ridade kaupa domineerimise vorratus.

Ulesanne 18. Niidata, et kui A; > 0 ja C; < 0, siis voib juhtuda, et siistee-
mi (7)) sisemises vorrandis indeksiga i ei ole rahuldatud diagonaali ridade kaupa
domineerimise vorratus. Néidata sama vaite kehtivust juhul A; < 0 ja C; > 0.

Jargnevalt analiilisime vorrandeid, mis tekivad rajatingimuste tottu.
Olgu algul rajatingimused u(a) = 71, u(b) = 72, mis tdhendab, et a3 = 1,
61 =0, apg = 1, By = 0. Siisteemi kordajate leidmisel tegime arvutused

By =By — AOB—_l, Co=0Cy— AOB—_l. Siis otseselt rajatingimuste abil saame
-1 -1

1 4 1
Bfl = B,g(.ﬁ(j‘o) = 67 Cfl = B*Q(:UO) = 67 Dfl = B,l(ﬂjo) = 6

Kollokatsioonivorranditest leidsime juba eespool

DPo qo To 2po 4rg Do qo To
Ay=—=—-——+—, By=—+—, Coy="7=+—+—.
0 + 0 2t Tt ts

Neid vaartusi arvestades leiame

= 2py  4rg Do qo . To
BOZ_ + 4(ﬁ—ﬁ+€

2po ): 6po . 2qo
h? 6 '

Nieme, et kui h on viike, siis By < 0. Leiame veel

- _ Do do To Do 0] To :@
Co = <h2 2h+6)

[T h

Uldiselt on Cy mirk méiiramata, see séltub arvust go. Viikese h korral, kui By < 0,
siis

_ _ 6 5
|BO}_’CO|=E—2_@
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mis on kiillalt viikese h korral positiivne. Analoogiliselt nédeme, et siisteemi
viimases vorrandis on viikese h korral diagonaali domineerimise vorratus rahulda-
tud. Siisteemis 6 =0(h?),i=0,...,n, seepirast viikese h korral & = O(h?),

1 = —2, ..., n— 2. Eraldi tuleb vaadata £_3 ja &, ; hinnanguid. Eespool saime
vorduse
e G Do
* B, B, ° B,
Kordajate & vahekorras on rajatingimustes vabaliikme v; asemel 0, seepérast
C,4 D_,
§-3 = —B_lé_z - B_lé—l-

1 4
Arvestades hiljuti leitud B_; = 6’ C.q= 6’ D_{ = —, saame

§s=—48 2 — &

Sellest
€3] < 5 max{[€ 5|, €1} = O(R?).

Niisiis oleme saanud, et & = O(h?), i = —3,...,n — 1, seepiirast |[&, — u,| . =
= O(l*) ja ||un — ull . = O(h?).

Ulesanne 19. Niidata rajatingimustel 1) a; = 0, f; > 0; 2) ay > 0, 3, < 0
diagonaali domineerimise vorratuse rahuldatust siisteemi esimeses vorrandis ja
¢_3 hinnangut, kui h on kiillalt vaike.

Sonastame tehtu kokkuvotvalt.

Teoreem. Olgu rajatilesandel , lahend u € C4[a, b ning tdidetud punktis
toodud eeldused, mis tagavad lahendi ihesuse. Olgu loigul [a,b] jaotus A dhtla-
ne sammuga h. Sis killalt vdikese h korral on olemas parajasti ks tingimustega
nddratud splain u, € Sil. Splaini u, kordajad normaliseeritud B-splainide
abil tehtud arendises mddratakse kolmediagonaalsest stisteemist , mille maat-
riks on killalt vdikese h korral ridade kaupa domineeriva diagonaaliga. Leiab aset
koonduvus w, — u ruumis Cla,b] koonduvuskiirust iseloomustava hinnanguga
[t — ullcpoy < const -h.



§12. Integraalvorrandite lahendamine splainidega
kollokatsioonimeetodil

Integraalvorrandeid saab praktikas lahendada peaaegu eranditult ainult ligi-
kaudselt. Uks pohilisi meetodeid selleks on kollokatsioonimeetod.

1. Splaine kasutava kollokatsioonimeetodi kirjeldus

Vaatleme integraalvorrandit

b

u(m):/lC(x,s)u(s)ds—i-f(x), € lab, (1)

a

kus f: [a,b] — R ja K: [a,b] X [a,b] — R on antud, funktsioon u: [a,0] — R
on otsitav. Funktsiooni K nimetatakse tuumaks, f vabaliikmeks. Vorrand on

Fredholmi II liiki integraalvorrand. Edaspidi eeldame, et vorrandil on olemas
tihene lahend u € Ca, b).

1.1 Lineaarsplainide kasutamine

Olgu valitud vork A,:a = 29 < 77 < ... < xz, = b, ldhislahendiks otsime
U, € Ski. Teame, et dim Ski = n + 1, seepirast peaks u, midramiseks olema
n + 1 tingimust. Votame n + 1 kollokatsioonitingimust

b

U () = /IC(a:i, S)un(s)ds+ f(z;), i=0,...,n, (2)

a

s.t. nouame, et w, rahuldaks integraalvorrandit vorgu punktides, mitte koikjal
terves 16igus [a, b]. Hiljem ndeme, et sellest piisab. Kasutame téhistusi S; = u,(x;),
1t =0,...,n, teame eelnevast, et

r — T r — i1

+5;

Ti—1 — T4 Ty — Tj—1

Un(l’) = 51;1

= (Lagrange’i valem)

94
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Ty — X T — Tij—1
+5,

= Si—l hz i hz ’

T € [T, T,

kus h; = x; — z;_,. Kollokatsioonitingimused on kirjutatavad
b

S; = //C(xi,s) un(s)ds+ f(z;), i=0,...,n, (3)

a

milles teisendame eraldi integraali. Selles saame

/bIC(:zci, s) p(s) ds = Z:; / K (i, 8) un(s) ds =

" f T;—s S —Tj_q
:; / K(z;, s) (Sj-l jhA —i—%%) ds =

J

= Z / K(x;, s)xjhf % ds Sij_1+ / K(z;, s)% ds | S;
j=1 ‘ J ‘ J
ZLj—1 Lj—1
Kui tdhistame
ajj = Kxi,suds, bij = Kxi,smds
J J
h; h;
Tj—1 Tj—1

ja f; = f(x;), siis on kollokatsioonitingimused kirjutatavad

n n
Si:Z(liij—l‘i‘Zbiij—l—fi, 1=0,...,n, (4)
J=1 j=1
mis on lineaarne siisteem kordajate Sy, ..., S, méiidramiseks.

Ulesanne 20. Siisteem maatrikskujul on S = AS + ¢, kus S = (S, ..., S,)7,
g=(fo,--, fa)". Kirjutada vilja maatriks A arvude a;; ja b;; kaudu.

Kollokatsioonimeetodis tekivad loomulikud kiisimused: kas siisteem ({4)) on (iihe-

selt) lahenduv, kas u, — u, kui h = max h; — 0?7 Enne selle juurde asumist
<i<n

formaliseerime probleemi. Defineerime integraaloperaatori K: Cla,b] — Cla, b

vordusega
b

(Ku)(z) = /IC(x,s) u(s)ds, € [a,bl,

a
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milleks piisab néiteks funktsiooni IC pidevusest. Vorrandi (1) voib siis kirjutada
u=Ku+ f, (5)

seejuures K on lineaarne ja pidev, s.t. K € £(Cla,b],C[a,b]). Defineerime ope-
raatori P, : Cla,b] — Cla,b], mis igale funktsioonile u € Cla, b] seab vastavusse
Pa,u € SEL nii, et (Pa,u)(z;) = u(z;), i = 0,...,n, s.t. funktsioonile u seatakse
vastavusse seda vorgu solmedes interpoleeriv lineaarsplain. Seega

ri — X

hi

T —Ti—1

h;

(Pa,u)(z) = u(x;_q) + u(x;) T € |1, 1)

On selge, et Pa,(Pa,u) = Pa,u ehk P} = Pa,, mis tihendab, et Pa, on projek-
tor, seejuures lineaarne ja pidev. Ndeme, et Pa, u = 0 parajasti siis, kui u(x;) = 0,
i=0,...,n: kui u(z;) =0,7=0,...,n, siis Px,u avaldise pohjal Px,u = 0; kui
aga Pa,u = 0 ehk tegemist on koikjal nulliga vorduva lineaarsplainiga, siis on ka
splaini véidrtused solmedes vordsed nulliga ehk w(z;) = 0, ¢ = 0,...,n. Kollokat-

sioonitingimused (2)) voib kirjutada
Un () — (Kun)(zi) — f(z:) =0, i=0,...,n,
mis on samavaarne sellega, et
PA, (up — Ku, — f) =0
ehk vordust Pa u, = u, arvestades

Uy = PAn Ku, + PAn,f- (6)

1.2 Kuupsplainide kasutamine

Lisaks antud vorrandile on valitud vork A, :a =29 <21 < ... < 2, = b,
lahislahendina otsime kuupsplaini u,, € Sii. Nouame kollokatsioonitingimuste ((2))

taidetust. Kuna dim Sg’i = n—+ 3, siis on veel vaja kahte tingimust, milleks votame

rajatingimused

uy (xy — 0) = u, (21 + 0),

Uy, (Tt — 0) = wy (Tp-1 +0).

Olgu niiiid Pa,: Cla,b] — Cla,b] operaator, mis igale funktsioonile u € C|a, b]
seab vastavusse Pp u € Szi nii, et oleks rahuldatud interpolatsioonitingimused
vorgu solmedes ja Pa, u rahuldaks rajatingimusi . Teame, et sellega on inter-
poleeriv kuupsplain {iheselt madratud. Operaator Pa, on siingi pidev lineaarne
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projektor ruumis Cfa,b] ning Pa, u = 0 parajasti siis, kui u(z;) =0,i=0,..., n.
Seepirast madratakse u, € Sii vorrandiga (@, kuigi lineaarsplainidega vorreldes
on siin sisu teine, sest projektorid Pa, on erinevad ja ka otsitavad lahendid on
erinevad.

Alati on oluline splaini esituse valik. Kasutame siin splaini vadrtusi S; = wu,(z;)
ja teisi momente M; = u (x;), i = 0,...,n. Varasemalt on teada splaini esitus
nende kaudu:

x; —x)3 T —xq)°
U (T) = Mil% + Mz% +

Mi—l 2\ Ti — X Mz 2\ T — Ti—1
+ (Sz—l 6 hz) hz + (Sz th) T, T e [x,_l,xz].

Sarnaselt lineaarsplainide juhuga kirjutame kollokatsioonitingimused vorran-
ditena

Si = Z / K(x;, s)un(s)ds+ fi, i=0,...,n. (7)
=1,

Siin igas integraalis tuleb kasutada wu, esitust osaldigus [z;_1, x;], mis sisaldab
Sj_1, Sj, M;_1, M;. Lisaks paneme kirja kuupsplaini sisevorrandid ja kaks [(IV)
tiilipi rajatingimust, mis on

( My~ My M,— M,

h hy

Sit1 — S B Si — Si—1
it hi
hl‘ + hi+1

pi My + 2M; + \iM; 1 = 6
Mn—l - Mn—2 o Mn - Mn—l
\ hn—l B hn '

Stisteemis (7)), (8) on 2n+ 2 vorrandit ja 2n+2 tundmatut Sy, . .., Sn, My, ..., M,.
Kui siisteem on lahendatud, saame igas osaloigus kuupsplaini leida eespool toodud
esituse abil.

Vaatleme antud integraalvorrandi ja seega fikseeritud 16igu [a, b] korral vor-

kude jada A,:a = 29 < 1 < ... < x, = b, kus n — oo nii, et seejuures
= Inax (x; — x;—1) — 0, kui n — oo. Vorgu sisesolmed 1, ..., z, 1 soltuvad
<i<n

arvust n ja protsessis n — oo nad ei jadi muutumatuks. Iga jaotuse A, korral voi-
me piistitada kollokatsioonitilesande, kus ldhislahend on lineaar- voi kuupsplain.
Eeldame, et integraalvorrandil on iihene lahend u. Lahislahend u,, maaratakse
vorrandist (6]), mis on samavéddrne vorrandisiisteemiga. Voib kiisida, kas (6) on
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(itheselt) lahenduv? Kas u,, — u, kui n — oo? Nendele kiisimustele anname jirg-
nevas vastuse ja arendame selleks suhteliselt iildist teooriat operaatorvorrandite
kohta.

2. Klassikaline projektsioonimeetodite koonduvusteoreem

Olgu E Banachi ruum, antud olgu K € L(E, F), f € E. Vaatleme 11 liiki
operaatorvorrandit

u=Ku+ f, (9)

kus v € E on otsitav. Eeldame veel, et on antud projektorite jada P,, s.t.
P, € L(E,E), P>=P,,n=1,2,.... Moodustame lihisvorrandid

kus u,, € F on otsitav. Selliselt vorrandi @D lahendamist nimetatakse projektsioo-
nimeetodiks.

Teoreem (klassikaline projektsioonimeetodite koonduvusteoreem). FEeldame, et
K on kompaktne; vordusest w = Ku jareldub, et w = 0; P, — I punktiviisi (s.t.
P,u — u iga u € E korral), kui n — oo. Siis

1) vérrandil @D on parajasti tks lahend u* € E;

2) leidub ng nii, et iga n > ng korral on vorrandil parajasti ks lahend
u, € I;

3) wy — u*, kuin — oo;
4) leiduvad arvud ci,co > 0 nii, et
al|Pou” —u'|| < luy, — o] < cof|[Pouw” — 7.

Enne toestuse esitamist meenutame monda teoreemi sonastuses esinevat mois-
tet. Operaatorit K: E — FE nimetatakse kompaktseks, kui iga tokestatud hul-
ga X C FE korral KX on suhteliselt kompaktne. See on samaviirne sellega, et
K B(0,1) on suhteliselt kompaktne, siin B(0,1) = {x € E | ||z|| < 1}. Operaatori
K kompaktsus on veel samavaérne sellega, et kui jada u, on tokestatud, siis Ku,
on kompaktne jada. Hulk X on suhteliselt kompaktne, kui igast hulga X elementi-
dest moodustatud jadast saab eraldada koonduva osajada, s.t. kui u,, € X, n € N,
siis eksisteerivad N’ C N ja u € E nii, et u,, — u, n € N’. Jada u,, n € N, on
kompaktne, kui iga N’ C N korral eksisteerivad N’ C N’ ja u € F nii, et u, — u,
nc N”.
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Teoreemi toestus. [1)| Selle osa véide jareldub Fredholmi alternatiivist, mis on jirg-
mine. Teist liiki vorrandis @D, kui K on kompaktne, leiab aset parajasti iiks kahest
teineteist vilistavast voimalusest:

a) vorrandil u = Ku on olemas mittetriviaalne lahend (I — K ei ole injektiivne);
b) vorrandil (9) on iga f € E korral olemas lahend (I — K on siirjektiivne).

Teoreemis tehtud eeldusel, et I — K on injektiivne, voimalus @Véﬂistatakse, seega
leiab aset @ Lahendi iihesus tuleb I — K injektiivsusest: kui v = Ku + f ja
v=Kv+ f,siis u—v=K(u—v), millest u —v =0 ehk u = v.

Osas nigime, et iga f € FE korral on olemas parajasti iiks v € FE nii,
et u = Ku+ f ehk (I — K)u = f. Seega on [ — K: E — E bijektsioon. On
olemas teoreem podratavale operaatorile lahedase operaatori péoratavusest: kui
A,B € L(E,F), E ja F on Banachi ruumid, eksisteerib A~ (siis A™! € L(F, F))
ja [[A7Y|||B|| < 1, siis eksisteerib (A + B)™! (muidugi (A + B)™' € L(F, E)) ja

- A~
1A+ B0 < e
A =1— K, soovime saada, et A+ B =1— P,K, seega votame B = (I — P,K) —
—A=({I-P,K)— (I - K)=K — P,K. Niitame, et |K — P,K|| — 0. Oletame
vastuviiteliselt, et see ei kehti. Siis on olemas osajada indeksite hulgaga N’ C N
ja d > 0 nii, et |[K — P,K|| > 0, n € N'. Operaatori normi moiste kohaselt
|K — P,K| = sup ||(K — P,K)u|. Supreemumile saab minna kuitahes lihedale,
cE

Rakendame seda siin jargmises olukorras. Olgu

fufl=1
1
seega on olemas u,, € E, ||u,|| = 1, nii, et | K — P, K|| < |[(K — P,K)u,]|| + —. Siis
n
1
(6 = Pyl > [ = P =~
tokestatud, K on kompaktne, seega Ku, on kompaktne ja seetottu eksisteerivad
N" c N'jau € E nii, et Ku, — u, n € N”. Hindame niiiid

1.6 . .
>0——>—, kuin € N, nsuur. Jada u,, on

(K — P,K)u,| = ||Ku, —u— P,Ku, + P,u+u— P,u| <
< s = ull + [P (Kup = w)| + ([ Py = ul].

Siin ndeme, et ||P,u — u| — 0, n € N, eelduse tottu. Lisaks ||Ku, — ul| — 0,
kui n € N”, |Py(Ku, — )| < ||Pulll|Kun — ul| — 0, kui n € N”, sest || B,||
on tokestatud Banach—Steinhausi teoreemi pohjal (on koondumine P,u — u iga
u € F korral). Niisiis, n € N” korral || (K — P, K)u,|| — 0, mis on vastuolus sellega,

et |(K—P,K)u,| > 7 "€ N’ jan on suur. Sellega on viide [2)|toestatud. Eespool

toodud teoreem pdoratavale ldhedase operaatori pdoratavusest andis ka hinnangu
selle normile, mida niiiid kasutame. Négime, et |K — P, K| — 0, s.t. on olemas
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ng nii, et n > ng korral ||(I — K)7'||||K — P,K|| < ¢ < 1 (mingi arvu ¢ korral).
Sellest saame hinnangu
I = K)~* o (O Ol
L= (I = K) K = P.K[l ~ 1-¢ .
kus votsime kasutusele arvu ¢y > 0.
B)ja[d)| Piisab toestada[d)] sest koondumisest || P,u*—u*|| — 0 jéreldub hinnangu

(selle parempoolse vorratuse) abil, et ||u; — u*|| — 0 ehk w; — u*. Téestame
kahepoolse vorratuse [4)] Teisendades saame

(I — PK)(uf —u*) = (I — P,K)u — (I — P,K)u* =

I(1 = PK)7!| <

/ kasutame vordust (I — P,K)u, = P, f, seejirel
vordust (I — K)u* = fja P,f = P,(I — K)u" /
=P,(I-Ku —(I—-P,Ku =Pu" —u".
Sellest tuleb n > ng korral
ut —u* = (I — P,K) ' (Pu* — u*)
ja
luy, = w [l < (T = PoB) M Pov” — ' < el Pau™ — w?].

Hinnangu |4)| vasakpoolne vorratus saadakse jargmiselt. Eespool saadud vordusest
tuleb

[Pwu” — || = [[(1 = PuI)(uy, — )| <
< (L ([Pl D [, = vl < €flup, = w7

/ eespool nigime, et || P,|| on tokestatud /

1
ning tarvitseb korrutada saadud vorratus arvuga ¢; = — > 0. Sellega on teoreem
c

toestatud.
Ulesanne 21. Téestada, et koonduvusteoreemi eeldustel eksisteeerib s nii, et

lun — Pat'l| < es| K (Pou® — )]

3. Lineaarsplainidega kollokatsioonimeetodi koondumine
b

Antud on integraalvorrand u(z) = /K(x,s)u(s) ds + f(z), = € [a,b]. Valime

a
siin ruumi £ = Cla, b], norm selles on ||u|lcras = r?a§b|u(a:)| Defineerime integ-
AT

raaloperaatori
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b

(Ku)(z) = /IC(x,s)u(s) ds.

a

Kui néiteks K on pidev, siis K: F — FE on kompaktne. Eeldame, et u(z) =
b
= /K(x,s)u(s) ds, u € Cla,b], korral u(z) = 0. Olgu f € Cla,b].

a

Olgu antud 16igu [a, b] jaotuste jada A,:a =29 <21 < ... <z, =b,n €N,
kus z1,...,x,_1 soltuvad arvust n. Defineerime u € C|a, b] korral P,u € Ski nii,
et (Pyu)(z;), i =0,...,n. Kollokatsioonimeetod viis vorrandini

U, = P,Ku, + P,f.

Koonduvusteoreemi iiks eeldusi oli, et P, — I ehk ||Pu — ullcny — 0 iga
u € Cla, b] korral, kui n — oo. Meil on lineaarsplainidega interpoleerimisest teada,
et u € Cla,b] korral ||Pyu — ulcpp < w(u). Kui max(z; — 2;_1) — 0 protsessis

X

n — 0o, siis w(u) — 0, seepdrast eeldamegi, et max(x; — x;—1) — 0, kui n — oo.

Kirjutame niiiid védlja, mida klassikaline operaatorvorrandite koonduvusteoreem
annab. Saame

1) integraalvorrandil on parajasti iiks lahend u* € Cla, bl;

2) kiillalt suure n korral on kollokatsioonivorrandil parajasti iiks lahend u;, € Ski;

*
n

3 ||u —u*Hc[ayb] %O;

)
)
)
4) leiab aset kahepoolne veahinnang ||u), — u*||s ~ [|Pot™ — 0" ||oo,

seejuures ||P,u* — u*|lc = O(h?), kui u* € C?[a,b], ||Pou* — u*||oe = O(R), kui
u* € Wt (a,b), | Pou* —u*||oe ~ hw((u*)), kui u* € C'[a,b], h = max (2; — z;_1).

X

1<i<n
Lahendi sileduse iile saab otsustada integraalvorrandi andmete pohjal. Kui néi-
teks f € C*[a,b] ja K on muutuja z jirgi kaks korda pidevalt diferentseeruv, siis

u* € C?la,b].

4. Projektorite koondumine kuupsplainide juhul

Négime klassikalises koonduvusteoreemis, et projektorite kohta eeldatakse punk-
tiviisi koondumist P, — I. Késitleme selles punktis selle tingimuse tdidetust eraldi.
Vaatluse all on jaotuste jada A,:a =29 < 11 < ... < z, = b, n € N. Definee-
risime projektorid P,, mis funktsioonile u € Cfa, b] seadsid vastavusse P,u € SZi
nii, et (Pyu)(x;) = u(x;), i = 0,...,n, ja (Pu)"(xy —0) = (Pu)”(xy + 0),
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(Pou)"(xp—1 — 0) = (Pyu)"(x,-1 + 0). Soovime saada, et ||P,u — ulloc — 0 iga
u € Cla,b] korral. Kasutame selle niitamiseks Banach—Steinhausi teoreemi, mille
formuleering on jargmine.

Olgu A, A, € L(E,F), E, F Banachi ruumid. Siis A,u — Au iga u € E korral
parajasti siis, kui

a) |4, < const;
b) A,u — Auiga u € D korral, kus D on pohihulk ruumis E, s.t. span D = E.

Péhihulgaks olemise asemel voib nduda, et D on kéikjal tihe ruumis F, s.t. D = E.

Kuupsplainide korral saame tingimuse @ tdidetud nii, et votame koikjal tihe-
daks hulgaks C*[a,b]. Meil on teada, et iga u € C*[a,b] korral P,u — u. Hulga
C*[a, b] kaikjal tihedus ruumis C/[a, b] jireldub kasvoi sellest, et Pla,b] C C*[a, b] ja
poliinoomide hulga tihedus ruumis C'la, b] on histi teada. Tingimuse [a)| tdidetuseks
oleks vaja toestada interpolatsiooniprojektorite P, iihtlast tokestatust ehk normi-
de jada || Py ||cran—cClay tOkestatust. Kasutame kuupsplaini esitust = € [x;_1, 2;]
korral

(z; — )3 (x —xi1)3
P =M, _ M,
(Pou)() i—1 6h, + M; 6h, +
Mz'—l 2\ LTi — X Mz 2\ T — Tj—1
NERSTIEE Sy P

kus h; = x; — 21, Sic1 = (Pnu)(xifl) = U(ilfz'—l)7 S; = (Pnu)(%) = U(%); M;_, =
= (Pu)"(x;_1), M; = (Pyu)"(x;). Parameetrid M; méairatakse siisteemist

hy hy
24+ — | M 1——= | My=d
( +h2) 1+( h2> 2 1

3 ,uiMifl + 2Mz + )\/L'MiJrl = di, 1= 2, oo, = 2, (11)

h h
1= VM, o+ (242 \ M, =d,_,,
\ ( hn—l) 2+< +hn—1) ' !

(

seejuures
Sit1— S B Si— Sic1
4 =6 hia h; :
hi+ hig
hy hy I, hy,
My= (14— My — —My, M, = {1 M, 1 — M, _».
’ ( +h2) N ( +hn1> VT g
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Siisteemis (L1)) diagonaal domineerib ridade kaupa vahega 1, seepdrast max |M;|

1<i<n—1

N

< max |d;]. Olgu hpyi, = 1mm h;. Varem oli hp.x = h = max h;. Arve d; saame

1<i<n—1 <i<n 1<i<n
hinnata
|d;| < 6—40H<liagi|Si| < 1oltllce
e 2h?nln h hIZ'[llH ’
||U||0[a b Pma . .
seejarel max |M;| < 12————=. Teeme eelduse, et = < const, sel juhul nime-
1<i<n—1 2h2 hmln

tatakse jaotuste jada regulaarseks Regulaarse jaotuste jada korral saame hinnata
| M| < const max{|M|, |Ma|}, |M,| < const max{|M, |, |M,_1|},

el g

seega max |M;| < const —5—— 7 . Kasutades niiiid P,u esitust osaloikudel, saame
0<isn
min

h2
| P, U||cab] 40max (|M |—) + 2||u||c[a7b] < const ||u||c[a,b}.

5. Kuupsplainidega kollokatsioonimeetodi koondumine

Selles punktis vaatame, kuidas klassikalisest projektsioonimeetodite koonduvus-
teoreemist saadakse kuupsplainidega kollokatsioonimeetodi koondumine. Kasuta-
me punktis (1| toodud téhistusi ja alapunktis esitatud meetodit. Valime esialgu
ruumi F = Cla, b]. Eeldame, et jaotuste jada A, on regulaarne. Eelmises punktis
néitasime, et siis P,u — w ruumis Cla,b] iga u € C|a,b] korral. Klassikalisest
projektsioonimeetodite koonduvusteoreemist saame jargmise tulemuse.

Teoreem. Olgu integraalvorrandis tuum IC selline, et vastav integraaloperaator
K: Cla,b] — Cla,b] on kompaktne; f € Cla,b]; u = Ku, u € Cla,bl, leiab aset
ainult siis, kui u = 0; loigu [a,b] jaotuste jada A, on regulaarne. Siis voib vdiita
Jargmast:

1) vorrandil on parajasti ks lahend u* € Cla,bl;

2) leidub ny nii, et n > ng korral on sisteem . theselt lahenduv ja see
mddrab kollokatsioonimeetodil saadud lahendi u, € SAl,

3) wy — u* ruumis Cla, bl;
4) leiab aset kahepoolne veahinnang ||u) — u*|| ~ || Pyu® — u”||.

Kui u* € C¥a,b), k =1,2,3,4, siis | Pyu* —u*|| = O(hY) ja seega ka ||u} —u*|| =
= O(h*). Sonastatud viidetes koik normid on ruumis Cla, b].
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Valime jirgnevalt £ = C?[a,b]. On vaja, et oleks K : C?[a,b] — C*[a, b]. Piisab,
kui tuum C on kaks korda pidevalt diferentseeruv, sel juhul on integraaloperaator
K kompaktne. Eeldustes on veel vaja, et u = Ku, u € C?[a, b], korral u = 0, see
on isegi norgem eeldus, kui ruumi Cla, b] juhul, sest C*[a,b] C Cla, b]. Kollokat-
sioonimeetodis on vaja, et || Pyu — uc2y — 0, kui u € C*[a,b]. Meenutame, et
lullc2pap) = lullcfas + 1t [|can + [[@”]|clas- Ka siin kasutame Banach-Steinhausi
teoreemi. Teame, et u € C*[a,b] korral ||Pou — ullee — 0, ||(Pyu) — u/||oc — O,
[(Pou)” — u"||se = 0, seega || Pyu — ullc2ap — 0. Ruum C*[a,b] on koikjal tihe
ruumis C*[a, b].

Ulesanne 22. Téestada, et Pla,b] = C%[a,b]. Soovitus: tugineda sellele, et
Pla,b] = Cla,b].

Banach-Steinhausi teoreemi kasutamiseks peame veel néitama, et || P,u(|c2fq,5 <
< const ||ul|c2py iga u € C*[a,b] korral. Kasutame punkti [4] eeskujul P,u esitust
splaini teiste momentide M; ja vi#rtuste u(z;) abil. Nigime, et max |M;| <

1<i<n—1
//
< 1<m<ax |d;|. Seejuures d; = 6u(z;_1,x;, xip1) ning, et u(x;_1,x;, Tip1) = é&),
i

& € (w1, 2441), siis | Inax ]M\ 3||uw"||c[ap). Lisaks saame hinnata
n

| M| < Constmax{|M1| | Ms|}, | M| < const max{|M,_o|, |M,—1|}

ning max |M;| < const ||u”||cap). Margime, et siin piisab jaotuste jadas sellest, et

0<i<n
h
hl ja oleksid tokestatud. Splaini P,u esitust osaldigus [z;_ 1, ;] kasutades
saame
| Pott||cpa) < const hZ||u” ctap) + 2| ullcrasn < const ||[ul|c2iq -
Leiame
x; —x)? (x — 2 1)*
Pn ! = iVl ( Mz -
(Pou) (z) T o,
_h—l(uzl_ 6 1h22> +h—2(ul—?h?>, Z'E[l'i,l,l'i.
Sellest
/ U; — Uj—1
| (Pow)'[|clag < max |M| ( h; + 2h + 6h + Gh) —1—112%)7(1 | S
/ kasutame seda, et Ui yiil =u'(n;), mi € (wi_1,2;) /
4

< const |t || cfap) - 5Pmax + ||| cla) < const ||ul| ez,

3
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T, — X r — Tj—1 .
+ M;—————, millest
h; h;

Leiame veel (P,u)"(z) = M;_4

| (Put)llotmsy < max |M;| < const [[u”lega < const Jullcapes

" tokestatuse korral

h
Sellega oleme saanud, et - ja
h2 n—1

[(Pow)]|o2pap < const ||ullc2pay, u € C*[a,b].

Vaatame, mida annab klassikaline projektsioonimeetodite koonduvusteoreem. Li-
saks eespool toodud viidetele lahendi olemasolu ja iihesuse kohta (praegusel juhul
u* € C*[a, b]) saame koondumise kahepoolse veahinnanguga

|y, — u* || o2 (a0 ~ | Patt”™ — u™||o2a)-

Kui u* € C*a, b], siis || Pyu* —u* || c2py = O(R?), millest jireldub [ju} —u* || c2py =
— O(h?) ning seega |, — oy = O(R), () — () llomy = O(R?),
[(ut)" = (u)"||cap = O(h?). Hoiatus: iildisest teooriast rakendatuna ruumis
E = C?[a,b] ei jireldu, et kui u* € C*[a,b], siis |lu, — u*||clap = O(R*) (u; ei ole
interpoleeriv kuupsplain). Seejuures u* € C*[a,b] korral kiill || P,u* — | cap =
= O(h"), sest P,u* on interpoleeriv kuupsplain, ja ||u, — u*|cpay = O(h)|| jérel-
dub iildisest teooriast rakendatuna ruumis F = C|a, b], kuigi seejuures tuleb teha
moneti rangemad eeldused: jaotuste jada on regulaarne ja I — K on injektiivne
ruumis Cla, b].

Ulesanne 23. Uurida kuupsplainidega kollokatsioonimeetodi koonduvust ruumis
C'[a, b]. Soovitus: kasutada splaini miiiramiseks esimesi momente m; = u/,(7;) ja
vaartusi S; = u,(z;), siis ei ole vaja eeldada jaotuste jada regulaarsust.



§13. Ruutsplainidega histopoleerimine

Histopoleerimisiilesanne seisneb jargnevas. Antud on 16igu [a, b] jaotus a = zg <

<r <...<m, =Db,arvud zy,..., z,, soovitakse leida funktsiooni f: [a,b] — R
nii, et
/f(x)dx:hizi, i=1,...,n, (1)
Ti—1

kus, nagu varemgi, h; = x; —x;_1, ¢ = 1,...,n. Vordused voib veel kirjutada
1 |
— / flx)de =2z, i=1,...,n,
h;
Ti—1

milles vasakud pooled on funktsiooni f keskmised véiértused osaldigus [z;_1,x;] ja
need on niisiis histopoleerimisiilesandes ette antud. Graafiliselt voib olukorda ette
kujutada nii, et on antud histogramm,

— <3
| |
| |
29 —i — 24
|
|
] —

To T1 T T3 Xy

vordused (1)) tdhendavad, et funktsiooni f graafikualune pindala osaldikudel iihtiks
histogrammi vastava tulba pindalaga. Vordluseks meenutame, et interpoleerimis-
tilesandes on antud funktsiooni védédrtused vorgu solmedes ehk punktid (z;, f;),
1 = 0,...,n, ja interpolandi graafik peab neid punkte libima. Méargime prakti-
kat silmas pidades, et viiga suur osa statistilisest informatsioonist on antud his-
togrammidena, mille aluseks on mingi reaalne soltuvus ning seda voidakse soovida
vahemalt ligikaudselt leida.

106
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1. Histopoleerimisiilesannete ja interpoleerimisiilesannete va-
hekord

Olgu antud histopoleerimisandmestik a = zo < 11 < ... <z, =bja z1,..., 2.
Histopolant H: [a,b] — R on selline, et

1
E/H(x)dx:zi, i1=1,...,n.

Valime suvaliselt fy € R ja moodustame f; = f;_1 + h;z;, ¢ = 1,...,n. Leiame
interpolandi I: [a,b] — R nii, et I(x;) = f;, ¢ = 0,...,n. Kui interpolant I on
diferentseeruv, siis H = I’ on algselt antud histopoleerimisiilesande lahend:

1 1l 1 o=
- / Hiz)do = o / Fapde = 1@ =

1 1 .
= —(I(l’l)—j(l’lfl)) = —(fl—flfl) = Zi, 1= 1,...,n.
Teistpidi, olgu antud interpolatsiooniandmestik, s.o.a = xg < 21 < ... < x, = b,
fo,- -, fn Moodustame arvad z; = Ji hfl L i =1,...,n. Leiame histopolandi

1 7
H:[a,b]%Rnii,etE/H(x)dx:zi,izl ., n. Olgu I(z fg—l—/H

Ti—1
Siis I on interpoleerimisiilesande lahend:

I(xg) = fo, i>1korral I(x;) = fo+ /H(w)dm =

Zo

Zfo+/H(x)dx+...+/H(x)da::
o Ti—1

:fo—i-hlzl—i-—l—hzzzz

:f0+h1f1_f0 —l—hf le

hy h; - fz

Nende kahe arutelu kokkuvottes voib oelda, et histopoleerimis- ja interpolee-
rimisiilesanded on vahemalt {ildises plaanis vastastikku teineteisele taandatavad.
Sellele vaatamata on enamasti otstarbekam lahendada otse seda iilesannet, mil-
le jaoks on algandmestik antud, sest iihe {ilesande andmestikult teisele iileminek
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nouab tiiendavaid arvutusi, samuti on vaja leida teise iilesande lahend kui uus
funktsioon. Kui néiteks on vaja leida histopoleeriv ruutsplain, siis vastavas inter-
poleerimisiilesandes leitakse interpolant S € Sil ning S’ € Si’l on sobiv histo-
polant, kui rajatingimused on kooskolas. Selline lihenemisviis on voimalik meie
kursuses vaadeldud poliinomiaalsete splainide korral, kus splainid on osaloikudel
poliinoomid. Kui aga kisitleda nn. ratsionaalsplaine, kus splainid on osaloikudel
ratsionaalfunktsioonid (neid me ei vaatle selles kursuses), siis néiteks tuletised ja
integraalid neist ei kditu sugugi sobivalt: kui arvutada néiteks tuletist voi integ-
raali ratsionaalfunktsioonist, mille lugejas ja nimetajas on ruutpoliinoom, ei ole
tulemus sugugi sobiva lihtsusega ratsionaalfunktsioon. Tuletis on kiill ratsionaal-
funktsioon, kus lugejas on kuuppoliinoom ja nimetajas neljanda astme poliinoom,
kuid integraal kui algfunktsioon ei tarvitse olla ratsionaalfunktsioon.

Peatume veel lithidalt perioodilistel iilesannetel. Funktsiooni f: R — R nime-
tatakse p-perioodiliseks (voime eeldada, et p > 0), kui f(z +p) = f(z) igaz € R
korral. Olgu antud funktsioon f: [a,b] — R ning f(a) = f(b), olgu p = b — a. Siis
voib funktsiooni f laiendada p-perioodiliseks funktsiooniks, defineerides x € R
korral f(z) = f(x + kp), kus k € Z on selline, et x + kp € [a,b]. Kui rddgime
16igul [a, b] médratud perioodilisest interpolandist voi histopolandist, siis peame
silmas just seda laiendamist, mis on voimalik, kui funktsiooni vidrtused punktides
a ja b on vordsed. Kui interpolant on perioodiline (ja diferentseeruv), siis on seda
ka vastav histopolant, sest f(z + p) = f(z), x € R, annab, et f'(z +p) = f'(x),
x € R. Kui histopolant on perioodiline, siis vastav interpolant ei pea olema pe-
rioodiline sest, eespool toodud tahistustes on interpolandi perioodilisuses noue, et

fn, mis tdhendab, et fo + h1z1 + ... 4+ hpz, = fo ehk hyzy + ...+ h,2, =0

(voi / H(x = 0), ja see tingimus ei tarvitse olla perioodilise histopolandi
a

korral tdidetud. Margime, et suvalise algandmestiku korral (16igu [a, b] jaotus ja
arvud z;) on olemas mingisugune perioodiline histopolant (ndeme, et selleks voib
votta ruutsplaini), interpolandi algandmestikul aga peab olema tédidetud tingimus

fO = fn

2. Ruutsplainidega histopoleerimisiilesanne

Olgu antud 16igu [a,b] jaotus A:a = xy < 1 < ... < x, = b. Ruutsplain
S € S%' on igal osaldigul [z;_y, z;] iilimalt teise astme poliinoom, mille esita-
miseks on vaja kolme parameetrit. Nagu ikka splainide késitlemisel, on oluline pa-
rameetrite valik ja splaini esitus nende kaudu. Méargime vordluseks, et universaalne
esitusvoimalus on B-splainide kui baasi kaudu, kuid spetsiifiliste iilesannete juu-
res voib enamasti leida vihem tehnilisi probleeme tekitavaid viise. Praegu peame
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silmas ruutsplainidega histopoleerimisiilesannet, kus on antud zi,...,z, ja nou-
takse, et S € Szl rahuldaks histopoleerimistingimusi . mille arv on n. Kuna
dim Sil = n + 2, siis on vaja kahte lisatingimust, milleks voivad olla

(1) S(a) = o, S(b) = 5,

(I) S(a) = o/, S'(b) = &',

(IT1) S"(xy —0) = S"(z1 +0), S"(xp—1 — 0) = S" (2,1 +0),

(IV) S(a) = S(b), §'(a) = S'(b).

viimaseid neist nimetatakse perioodilisteks. Tahistame S; = S(z;), 1 = 0,...,n,
;= — / x)dx,i=1,...,n. Proovime esitada ruutsplaini S osaldigul [x;_1, ;]|

xz 1
parameetrite S;_1,.5; ja o; kaudu. Otstarbekas on otsida ruutpoliinoomi esitust

S(z) = ai(x — w;1)* + bi(w; — 2)* + ¢, v € [w5_1, 2], kus kordajad a;,b; ja c;
médratakse kolme tingimusega

Ty

S(ZEi_l) = Si—h S(ZL’I) = Si, hiz / S(ZE)CZIE = 0;. (2)

Ti—1

Tulemuseks saadakse

SZ 1+ 25 30‘2
hi°
+ 30, — (Sz;l + SZ), x € [%Z;l, 1‘1]

QSi_ 52_3 i
2 1+ U(IZ’—ZE)2+

S(x) = 7 3)

(l’ — xi—l)

Ulesanne 24. Niidata, et esituse (3) korral on rahuldatud tingimused (). Tule-
tada esitus (3), médrates tingimuste (2) abil kordajad a;, b;, ¢;.

Esitus tagab tingimuste taidetuse tottu, et S € Cla,b]. Suvaliselt vali-
tud S;, © =0,...,n, jao;, 7 = 1,...,n, korral ei tarvitse S’ olla pidev vorgu A
sisesolmedes x1, ..., T, 1.

Ulesanne 25. Niidata, et tingimused S'(z; — 0) = S'(x; +0), i =1,...,n — 1,
annavad vordused

XiSi—1 +2S; + 1 Siv1 = 3(Nioy + o), i=1,...,n—1, (4)

hi . Ry

kus p; = ——, A = ——.
a hi 4 hitq hi + hia
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Vorduseid nimetatakse ruutsplaini sisevorranditeks esituse (3)) puhul.

Olgu vaja leida S € Sil, mis rahuldab histopolatsioonitingimusi ja raja-
tingimusi . Siis esituse kasutamisel votame o; = z;, ¢ = 1,...,n, ja splaini
vaartused solmedes S; miaratakse siisteemist

SO = Q,
NiSic1 + 25 + piSiv1 = 3Nz + pizipr), i=1,...,n—1,
S, = pB.

Ulesanne 26. Esitada arve S; midravad siisteemid rajatingimuste ja
korral.

Ulesande lahendamise jirel nideme, et koigil juhtudel on arve S; médrav siis-
teem kolmediagonaalne ning peadiagonaal domineerib ridade kaupa (rajatingimus-
te korral tuleb kiill vorrandeid veel teisendada).

Peatume veel perioodiliste tingimuste kasutamisel. Vordus S(a) = S(b)
annab, et Sy = S,,, millega jadb n tundmatut Sy,...,S,. Lisaks n—1 sisevorrandile
paneme kirja vorduse S’(a) = S’(b). See on esitatav

)\nSn—l + 2Sn + ,unsl = 3(”7121 + /\nzn)7 (5)

o\ _ M
hy,+hy’ " h,+h

Ulesanne 27. Tuletada vérrand vordusest S'(a) = S’(b), ldhtudes esitusest
(3)-

Vastav siisteem tuleb

kus p, =

281+ 1 Ss + MS, = 3(Mz1 + i 2),
NiSic1 + 25 + piSiv1 = 3(Nizi + pizip1), i=2,...,n—1,
NnSI + )\nSnfl + 2Sn = S(anl + )\nzn)

See ei ole enam kolmediagonaalne, kuid peadiagonaal domineerib ridade kaupa.
Perioodiliste rajatingimuste kasutamisel saadav histopoleeriv ruutsplain
S e SZI tuleb perioodiline. Nagu eespool selgitasime, tihendab see vorduse S(a) =
= S(b) tottu, et S on laiendatav méédratuks tervel reaalsirgel, kuid S'(a) = S’(b)
tagab ka selle, et splaini S laiend on koikjal pidevalt diferentseeruv. Kui moodusta-
me vastava interpolatsiooniiilesande, siis vordus fo = f,, ei tarvitse olla tdidetud.

Sellele vaatamata voime leida S € Szl, mis rahuldab interpolatsioonitingimusi
S(x;) = fi, i = 0,...,n, ja rajatingimusi gl(a) = ?l(b), gﬂ(a) = gﬁ(b). Splain

S ei pea tulema perioodiline, kuid histopoleeriv S = S tuleb perioodiline, sest

S(a) = S(b), S'(a) = S'(b).
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Olgu antud 16igu [a,b] jaotus A, nagu oleme siiani vaadelnud, ja funktsioon
f:la,b] — R. Votame

1
zi:h—/f(a:)dz, i=1,...,n,
Ti 1

(seda eeldusel, et integraalid eksisteerivad). Voime leida histopoleeriva ruutsplaini

S € Si’l, mille korral / S(z)dr = h;z;, i = 1,...,n, ning on rahuldatud kaks
Ti—1

rajatingimust. Loomulik on uurida ||S — f|ls, 19" = flleo [IS” — f"|lcc hinnan-

guid, kui f on mingitest funktsioonide klassidest. See on eraldi tehtav, kuid teine

voimalus on moodustada g(x) = go + /f(s)ds, z € [a,b] (go € R on suvaline),
votta interpolatsiooniandmestik g; = giol +h;zi, t=1,...,n, ning leida vastavatel
rajatingimustel interpoleeriv kuupsplain § € S3'. Siis |5 — flloe = IS — ¢'llos
15" = llse = 118" = ¢"llocs 118" = e = IS" = §”[le, mille jaoks olid meil
eespool hinnangud teada soltuvalt g kuulumisest mingisse funktsioonide klassi.
Seejuures kui niiteks f € C*[a, b], siis g € C**'[a, b], samuti f € W>*(a,b) korral
g € W*(a, b).
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