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EESSONA

Kiesolevas raamatus on esitatud lithidalt pohilised faktid dife-
rentseeruvate kompleksmuutuja funktsioonide kohta ning vaadel-
dud nende moningaid rakendusi. Raamat on moeldud eeskitt opi-
kuna matemaatika, fiilisika ja elektro-automaatika eriala iiliopilas-
tele, kuid voib huvi pakkuda ka neile, kel tuleb tegelda kompleks-
muutuja teooria ja operaatorarvutuse rakendustega.

Paljudes matemaatikavaldkondades on tarvis véljuda reaal-
arvude hulgast ja vaadelda vastavaid kiisimusi kompleksarvude
hulgal. Alles siis ilmnevad mitmedki faktid ja omadused téiel kujul.
Nii on see histituntud algebra pdhiteoreemiga, mida on vaadeldud
ka kiesolevas raamatus. See kehtib ka analiiiitiliste (astmeridade
summana esitavate) funktsioonide kohta, sest ka nende omadused
ei avane reaalarvude hulgal taielikuit.

Kiesoley esitus toetub regulaarse (vaadeldava punkti mingis
fimbruses iihese ja diferentseeruva) funktsiooni moistele. Sellest
moistest lihtudes niidatakse, et regulaarne funktsioon on esitatav
teatava integraali kujul oma rajaviartuste kaudu (Cauchy valem),
millest omakorda ilmneb, et mdisted «regulaarne funktsioon» ja
«analiiiitiline ithene funktsioon» iihtivad.

Analiiiitilist jatkamist kasutades maaratletakse ka mitmene ana-
liiiitiline funktsioon, kuid rakendustes vaadeldakse valdavalt iiheseid
funktsioone.

Kiesolev materjal (jaotised 1 kuni 8) katab pohilises osas iili-
kooli matemaatika ja rakendusmatemaatika eriala {ilidpilastele ette-
nahtud programmi. Teiste erialade . iilidpilastel, kes samuti opivad
kompleksmuutuja funktsioonide teooriat, tuleb esitatud materjalist
teha oma programmile vastav valik. Materjal on piiiitud esitada sel-
Jiselt, et kiesolevat raamatut saaksid kasutada opikuna ka pedagoo-
gilise instituudi matemaatika-fiiiisika eriala ja iilikooli fiilisika eri-
ala iilidpilased ja poliitehnilise instituudi elektro-automaatika eriala
tudengid. Eeskétt viimaste vajadusi silmas pidades on kasitletud
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{isna pohjalikult Laplace’i teisendust ja selle rakendusi ning esita-
tud Fourier’ teisenduse kdige olulisemad omadused. Jaotises 9 on
Kkasitletud analiiitiliste funktsioonide viljateoorias rakendamise
pohimomente. Konkreetse niitena on vaadeldud lennuki tiiva pro-
fiili uurimise klassikalisi tulemusi, mis demonstreerivad {isna ilme-
kalt kompleksmuutuja funktsioonide teooria moistete kasutamise
viljakust viéljateooria iilesannete lahendamisel.

Lisas on esitatud kolm tabelit: elementaarfunktsioonide konform-
sed kujutused, Laplace’i teisenduse pohiomadused ja Laplace’i tei-
senduse valemid. Viimases tabelis on valemeid monevorra rohkem
kui raamatus toestatud ja kasutatud. Seda on tehtud eeskitt nende
huvides, kes tegelevad operaatorarvutuse rakendustega.

Raamatus on hulgaliselt iilesandeid, mille lahendamine peaks
aitama paremini omandada teoreetilist materjali.

Raamatu 16pus on kisitletud kiisimuste alase oppekirjanduse
sosvitusnimestik. Raamatutes [5], [11] ja [13] leidub hulgaliselt
taiendavaid naiteid ja juhiseid operaatorarvutuse rakenduste kohta.
Koige tdielikum Laplace’i teisenduse valemitekogu on raamatus [7].



1. .KOMPLEKSARVUD
1... KOMPLEKSARVUD JA TEHTED NENDEGA

Kompleksarvudeks nimetatakse reaalarvude jarjestatud paare

= (%, 9),

millega teataval kindlal viisil defineeritakse aritmeetilised tehted
ning vordus. Olgu antud kaks kompleksarvu z1= (%1, y1) ja 22=
= (x3, y»). Nende vordus, summa ja korrutis defineeritakse jarg-

miselt:

1) 21=25, kui x1=x2 ja y1=ys;
2) z1+zo== (x1+x2, Yi+Y2);

3) z12a= (X1%2 — Y1Ya, X1yz-+X2i).

Esitatud definitsioonidest 1dhtudes saab naidata, et iga z=(x, y)
puhul kehtib vordus

2 (x, y)=(x, 0)+(0, 1) (4, 0). | (1)

Sellest avaldisest paneme tdhele, et eriline osa on kompleksar-
vul i= (0, 1) ning koigil neil kompleksarvudel, millele vastavas
paaris teine arv on null. Kui defineerida veel kahe kompleksarvu
vahe kui summa pddrdoperatsioon ning jagatis kui korrutise poord-
operatsioon, siis osutub, et koigi nmende tehete suhtes kditub paar
(x,0) nagu reaalarv x. Seetdttit voime nad omavahel samastada,
s.t. x=1(x, 0). Sel viisil saame, et kompleksarvude hulk sisaldab

reaalarvude hulga, kusjuures 0=1(0, 0).
Koike seda arvestades voime vorduse (1) kirjutada kujul

»==(x, y)=x-+iy.

Seda vordust nimetatakse kompleksarvu algebraliseks kujuks. -
Reaalarve

x—=Rez=Re(x,y) ja y=Imz=Im(x,y)

nimetatakse vastavalt kompleksarvu z reaal- ja imaginaarosaks. Kui
Imz=~=0, siis nimetatakse arvu 2 imaginaararvuks ning kui lisaks -
sellele Rez=0, siis puhtimaginaararvuks.



Joon. 1

Et ka tasandi iga punkt P (ehk siis tema kohavektor OP) (joon.
1) on madratud jdrjestatud reaalarvupaariga (oma koordinaati-
dega), siis saame korraldada {iksiihese vastavuse kompleksarvude
ja tasandi punktide vahel. Teisiti deldes: me voime koik kompleks-
arvud kujutada koordinaattasandil. Niisugust tasandit nimetatakse
komplekstasandiks. Seejuures nimetatakse x-telge reaalteljeks ning
y-telge imaginaarteljeks.

Samastades kompleksarvu z= (X, y) kohavektoriga OP=(x, Y),
saame kompleksarvude liitmist ja lahutamist geomeetriliselt inter-
preteerida kui neile vastavate vektorite liitmist ja lahutamist
(joon. 2).

Ulesanded

1. Toestada, et a) z+2==22+2; (summa Eommutatiivsus);
b) (21422) +2s=21+ (22+23) (summa assotsiatiiosus);
¢) z122=221 (korrutise kommutatiivsusy,

d) (2122) 2s=21(2223) (korrutise assotsiatiivsus);
e) 2z1(zat23) =z122+2123 (distributiivsus).
2. Niidata, et i*= 0, 1) (0, 1)=(—1, 0), s. t. i2=—1.

3. Niidata, et vahe 23— 2, on iiheselt maaratud mistahes kompleks-
arvude z; ja 2o puhul.

/

°t  Veenduda, et selline jagatis on iiheselt médratud

4. Leida

22
iga 2250 korral.

5. Niidata, et —m=zy——.
) 23
6. Toestada, et kahe kompleksarvu korrutis on null parajasti siis,
kui vahemalt iiks tegureist on vordme nulliga.



7. Toestada, et (1,+‘z)2=1+2z+22.
8. Leida graafiliselt 21422 ja 21— 22, kui
a) 21=2-1i, zo==142i;
b) z;=—3-1, zo=1-}4i;
¢) 21=3i, 2o=—2—1;
d) zy=—2-2i, 2g=—31.

1.2. KOMPLEKSARVU MOODUL JA ARGUMENT

Et tasandi punkti (x, y) saab mairata ka polaarkoordinaatides;
kusjuures
v

x=rcos¢ ja y==rsing, (1)

Joon. 3 )P 4 —

siis kompleksarvu z mdarab ka reaalarvupaar (r, ¢), milles esi-
mest arvu nimetatakse kompleksarvu 2 mooduliks ning teist argu-
mendiks. Neid tihistatakse vastavalt |z| ja Argz. Vahetult geomeet-
rilisest pildist on selge, et kompleksarvu moodul on fiheselt maa-
ratud, kuid argument mitte. Kui ¢ on kompleksarvu argumendiks;
siis on ka seda iga arv @+2kn (k=0, 41, +2, ...). Kompleksarvu
z sellist argumendi vaartust ¢, mis rahuldab vorratusi

—a<lQx,

nimetatakse argumendi peaviartuseks ning téhistatakse siimboliga
argz. Puhtgeomeetrilistest kaalutlustest on selge, et argument on
masratud iga kompleksarvu 240 puhul. Kompleksarvul 2=0 aga
pole argumenti. Arv z=0 on madratud sellega, et tema moodul
vordub nulliga.

Vordustest (1) saame, et -

r= 2| =V

millest omakorda jéreldub seos

X .
J arccos — , kui y=0,
arg 2= l r

X :
—arceos —, kui y<<0.



LS

Asendades kompleksarvu algebralises kujus suurused x ja Yy
valemite (1) pohjal, saame, et

=r(cos @-}+i sin @). ' (2)
Seda avaldist nimetatakse kompleksarvu trigonomeetriliseks kujuks.

Matemaatilise analiiiisi kursuses toestatakse nn. Euleri valem
e =cos @-}isin g,
mille abil saame vordusest (2) kompleksarvu z eksponentkuju
z2=rel®,

Mitmesugustes arvutustes on kasulik rakendada just kompleksarvu
eksponentkuju tema kompaktsuse tottu.

Vaatleme kompleksarvude korrutamist trigonomeetrilisel kujul.
Olgu zi=ri(cos @1+isings) ja ze=ra(cos pz+isingz). Sel juhul
saame, et
2122 =r1(cos @1-i sin @1) r2(cos @z--i sin g2) =rirs[ {coS @1 COS P2 —

— sin @, sin gz) i (sin g1 cos gz+-sin ¢z cos ¢1)]=
==r1r2[c0s (pi1F@2) +i sin (@itpe) | = rirpei@ o),
s. t.

Zy29—=Tr1I" gel(‘pt'l"(pi).

Tiieliku induktsiooni meetodi abil vdiksime {ildistada saadud
valemi mistahes 15pliku arvu tegurite juhule. Kui seejirel votaksime
kdik tegurid vordseina, saaksime nn. Moivre’i valemi

2n=— rnein(p,

kus n on naturaalarv.

Analoogiliselt korrutamisega saaksime, et

2 r s s r
= [cos (@1 — @2) i sin (@1 — 02) ] BELE SEPN T PR
22 re 7s

Posrdume tagasi kompleksarvude summa ja vahe juurde. Puht-
geomeetriliste kaalutluste (kolmnurga kiilgede vahekorra) pohjal
saame, et

|22 ] < 21| ] 22,
|21 — 2| = |21l —l2l}.

Edaspidiseks on aga eriti oluline maérkida; et suurus |21 — 22|
on vordne komplekstasandi punktide 24 ja 2» vahelise kaugusega
(vt. joon. 2). ‘
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Ulesanded

1. Néiidatén,"et —£—=e—1¢.,
el?
9. Kirjutada jargmised kompleksarvud trigonomeetrilisel ja ekspo-
nentkujul:
a) 3i, e) 1-i, i) 3-5i,
b) —i, fy —1—1y j) —3--51,
C) 2’ g) V3"— 1 k) 2_51a
d) —2, h) 1—i}3 1y —2—5i.
3. Leida argz, kui
—2
a) z= —, d) z2=22,,
14173
- i e) z==z27,
b) 2= g
c) z= (Y3 —1)%, f) z-——-——z—i-
. Zz

4. Olgu 2o mingi kompleksarv ning R positiivne reaalary. Niidata;

et kui z asub punkti —=2o

ambritseval ringjoonel, mille raadius

on R, siis ta rahuldab vorrandeid

a) |2+2z0}=R,
b) z=—=zp}Re'®.

5. Millised punktihulgad on komplekstasandil miaaratud jargmiste

seostega:

a) |z—i}<<3,

b) |z+2i =2,

c) |z—3—4i|=5,

d) |z+2|+]z—2]=5,

1.3. KAASKOMPLEKSARVUD

e) |z—i|=|z+2],
f) | —3

<
z—2
. 11
g) arg(z+Hi)=—-7"

=

. 3
h) —g—<arg(z— i) <+—-4ﬁ-.

Kompleksarvu z=(x, ¥) kaaskompleksarvuks ehk kaaskomplek-
siks nimetame arva z= (¥, —y). Sellest definitsioonist jareldub, et

kompleksarvu z kaaskompleksiks on 2z, s.t. (z)=2 Samuti maér-

kame, et (vi. joon. 4)



arg z=-—arg z

i
ning |
|
— »
|z] =1z]. —
1
Seega :
I
Z= (rel®) =re-to, Joon. 4
Vahetul kontrollimisel voime veenduda, et
21+23=Z%1+7s,
- 21 Z1
21—22—_--21——22, ("_")=__—"' (1)
<2 Z2

o P —

212y =172,
Osutub, et korrutis 2z on alati reaalne. Toepoolest,
2= (%, y) (x, —y) =x+yP=|z|?,
s. t. '
|z =Vzz.
Seda arvestades saame kergesti anda eeskirja kompleksarvude jaga-
miseks algebralisel kujul:
jagatise '—Zi— algebralise kuju leidmiseks tuleb selle murru luge-

2
jat ja nimetajat korrutada nimetaja kaaskompleksiga.

TGepoolest, kui z1=(x1, y1) ja z2= (xz, y2), siis

2 ar (g (e—igs)
-2 2273 X2 +42
___(naxatyay) 1 (xoys — x1y2) _
o xZ Hy?

L x1x2+ry1yz, | XelY1— XY
= T ‘
22 +y? *, +4

!

'

Ulesanded
1. Naidata, et

Re z=—§! (2+%Z) ja Im z=—-—§— (z—2).
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2. Kirjutada komplekskujul vorrandid

a) 242x-y? —y=1,
b) x2—y2=1.

Vastus: a) z';z—l—u(l—f——:ij)z—i—(l——-——)le,
b) 224-22=2.

3. Toestada vordused (1).

4. Naidata, et ringjoone |z— 2z,|=R punktid rahuldavad v&rran-
dit 2z — Zpz — 2p74-207 0= R2.

5. Millisel juhul on vorrand
azz--Az4+Az-4+b=0,

kus a ja b on reaalarvud ning A — kompleksarv, ringjoone vor-
randiks?

Vastus: |A|2—ab>0, a==0.
6. Milline on sirge vorrand komplekskujul?

Vastus: Az+Az74+b=0.

1.4. STEREOGRAAFILINE PROJEKTSIOON

Eelnevas veendusime, et kompleksarvude hulga ja tasandi punk-
tide vahel saab korraldada iiks-ithest vastavust. Naitame, et ka
sfadri punktid ja kompleksarvud voib seada iiks-ithesesse vasta-
vusse. Selleks asetame komplekstasandile mingi sfadri, mis toetub
komplekstasandile nullpunktis (vi. joon. 5). Kui niiiid paneme sirge
ldbi komplekstasandi punkti z ja diameetri otspunkti P, siis see
sirge 1Gikab sfddri mingis punktis ¢ Sel viisil saamegi iiks-iihese
vastavuse komplekstasandi ja antud sfidiri punktide vahel. Niisu-
gust vastavust nimetatakse stereograafiliseks projektsiooniks ning
vaadeldavat kerapinda — kompleksarvude sfiiiriks.

Kui |z]|—o0, siis § ldheneb punktile P. Siinjuures on tiiesti
ilkskoik, millises suunas z kaugeneb nullpunktist. Sellest lihtudes

/ y /
X
0 —— -
z Joon, 5
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votame kasutusele uue «kompleksarvu» z=oo, mida nimetame lop--
matuseks ehk 16pmatuspunkiiks _ning mis vastab sfaari punktile P:
Paneme tihele, et kompleksarvude sidéril on iopmatuspunkt (punkt
P) iihene. Kui vaadelda kompleksarvude kujutamist tasandil, voib
tekkida mulje, et on 16pmata palju 16pmatuspunkte.” Edaspidi aga
osutub I15pmatuspunkti iihesuse noue iisnagi oluliseks.

Komplekstasandit, millele on lisatud I5pmatuspunkt, nimetatakse
kinniseks ehk tiielikuks tasandiks.

Tiielikul tasandil voime defineerida ka seosed

a . a
o= ) -(—;=0 (a==0, a= ).

1.5. PHHRKONNAD

Komplekstasandi punkti z, iimbruseks (tdpsemalt e-limbruseks)
nimetatakse nende punktide z hulka, mis rahuldavad vorratust

IZ-—Z()I < E.

Punkti iimbruseks on seega ring keskpunktiga selles punktis. Lop-
 matuspunkti iimbruseks nimetatakse hulka '

|2] >e.

Piirkonnaks nimetatakse punktihulka -D, mis rahuldab jargmisi
tingimusi:

a) koos punktiga z kuulub hulka D ka selle punkti mingi timbrus
(lahiisuse omadus); )

b) iga kahte punkti 2; ja 2 hulgast D on voimalik {ihendada
pideva joonega, mis téielikult kuulub hulka D (sidususe omadus).

Edaspidi midrame piirkondi mitmesuguste vorratustega, néiteks,
|z]<<1, Rez>0, 2<|z—1]<<3 jne. Seejuures fitleme lihtsalt:
«ring|z| << 1», «pooltasand Re 2>>0», «piirkond 2<<]z—1]<<3» jnme.

Kui koos punktiga kuulub vaadeldavasse hulka ka selle punkti
mingi {imbrus, siis nimetatakse seda punkti selle hulga sisepunk-
tiks. Hulka, mis koosneb vaid sisepunktidest, nimetatakse lahtiseks.
Piirkond on seega lahtine hulk.

Hulga rajapunktiks nimetatakse punkte, mille iga timbrus sisal-
dab nii vaadeldavasse hulka kuuluvaid kui ka mittekuuluvaid
punkte. Rajapunktide hulka nimetatakse rajaks. Piirkonda koos
oma rajaga nimetatakse kinniseks piirkonnaks.

Piirkonna raja sidusate osade arv mairab piirkonna sidususe
jargu. Nii nimetame piirkonda |z— 1] <1 iihelisidusaks ning piir-
konda 1<<|z—i|<<2 (rongas) kahelisidusaks. Joonisel 6 on esita-
tud neljalisidus piirkond.

Kui piirkonna raja koosneb enam kui iihest sidusast osast, siis
nimetatakse piirkonda mitmelisidusaks.

* Reaalarvude puhul vaadeldaksegi kaht lopmatust, 400 ja ~—oo.
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Joon, 6

misel punkt A ldbitakse n korda.
Piirkonda nimetatakse lopmatuks, kui vdhemalt tema raja sisal-

dab 16pmatuspunkti. Vastasel korral koneleme tokestatud piir-
konnast.

Ulesanded

1. Kirjeldada geomeetriliselt jargmisi piirkondi:
a) —m<<argz<<m, |2|<<2; .
b) 1<<|z—2i| <2, —z—<argz<-§§—;
c) |22+3|1>4

1 ) 1

d) Re( . <'§‘,
e) |z+4|> |zl
f) Im(z—1)2>0;

z+1
z—2

g) ‘ >2.

9. FUNKTSIOON JA TEMA TULETIS
2.1. FUNKTSIOONI MOISTE

Vaatleme mingit kompleksarvude hulka D. Kui z tdhistab suva-
list arvu hulgast D, siis deldakse, et 2z on kompleksarvuliste vaar-
tustega muutuv suurus ehk kompleksmuutuja. Iga kompleksarvu
> e D nimetatakse seejuures selle kompleksmuutuja vidrtuseks.

Kui kompleksmuutuja 2 igale vddrtusele ze D on vastavusse
seatud mingi kindel kompleksarv ©, siis oeldakse, et hulgal D on
defineeritud kompleksmuutuja funktsioon

w=f(2).
13



Muutuja z véirtusi nimetatakse originaalideks. Kompleksarvu
f(z2) nimetatakse funktsiooni vdirtuseks ehk kujutiseks. Viimased
moodustavad hulga, mida nimetatakse funkisiooni véirtuste ehk
kujutiste hulgaks.

Kui igale originaalile vastab ainult {iks kujutis, siis nimetatakse
funktsiooni iiheseks, vastupidisel korral — mitmeseks. Kui iga kuju-
tis on vastav vaid iihele originaalile, siis nimetatakse funktisiooni
iiheleheliseks, vastasel korral — mitmeleheliseks. Seega esitab Gthene
ja itheleheline funktsioon iiks-{ihest vastavust,

Lepime kokku kasutatavas siimboolikas ja terminoloogias.
Termineid «funktsioon» ja <«kujutus» kasutame siinoniiiimidena.
Neid tihistame siimbolitega [, g, F jne. Korvuti nendega kasutame
samas tihenduses siimboleid w={f(z), w=g(2), w=F(z) jne. Vii-
mastes tuleb suurusi @w ja z vaadelda kui muutujaid, mitte aga kui
konkreetseid kompleksarve. Siimboleid f(z) ja g(z) kasutame
punkti z kujutise tdhenduses, voi siis teatava avaldise liihemaks
markimiseks, niiteks f(z)=2*—2z-+5. Me iitleme, et see avaldis
«miidrab funktsiooni» voi siis «esitab funkisiooni». Nii néiteks
iitleme: «Olgu funktsioon méiratud avaldisega 2*4-1.» ja «Avaldis
37 2k esitab diferentseeruvat funktsiooni ringis |z|<<1.»

Kui meil on iiks-iilhene vastavus kahe hulga D ja Dy vahel, siis
on meil miiratud kaks funktsiooni, w={(z) ja z=g(w), kus z=
=g[f(z)] ning w=[[g(w)]. Neid funkisioone nimetatakse teine-
teise suhtes podrdfunkisioonideks. Niisiis on igal funktsioonil, mis
teostah iiks-ithese kujutuse, podrdiunkisioon.

Kui hulgaks D on naturaalarvude hulk, siis nimetatakse funkt-
siooni jadaks, mida tdhistatakse (z.).

Kui hulgaks D on mingi reaalarvude hulk T, siis saame nn.
reaalse argumendiga kompleksmuutuja funktsiooni

z=f(t)=x({t)+iy), t=T.

Selline funktsioon ei paku oluliselt uut vorreldes analiiiisis vaa-
deldud funktsioonidega, sest z=f(¢) avaldub siin kahe reaalmuu-
tuja funktsiooni lineaarkombinatsioonina, mistottu funktsiooni z=
—f(¢) omadused on tiielikult sarnased funktsioonide x=x(¢) ja
y=1y(¢) omadega. .

Omaduste poolest hoopis erinevamad funktsioonid saame sel
juhul, kui nii originaalide kui ka kujutiste hulkadeks on teatavad
piirkonnad. Edaspidi vaatlemegi funktsioone, mille originaalide hul-
gaks on piirkond. Viimast nimetatakse antud funktsiooni maaramis-
piirkonnaks ehk originaalide piirkonnaks. Kujutiste hulka nimeta-
takse kujutispiirkonnaks ehk funktsiooni muutumispiirkonnaks.

Kui reaalmuutuja funktsiooni korral kasutame piltlikkuse saa-
vutamiseks funktsiooni graafikut (seal on see kahedimensioonilise
ruumi objekt), siis kompleksmuutuja funktsiooni korral pole see
mdeldav. Selle graafik oleks neljadimensioonilise ruumi objekt. Geo-
meetrilise pildi saamiseks kasutame kahte tasandit: fihele (z-ta-
sand) kanname originaalid, teisele (w-tasand) kujutised. Seda sil-
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mas pidades iitlemegi, et funktsioon kujutab z-tasandi mingl pilr-
konna piirkonnaks w-tasandil.

Niide 1. Vaatleme funktsiooni
w=Rkz,

kus k on positiivne reaalarv. Olgu z==rel? ja w=0e®. Seosest w=
—kz saame, et

o=kr ja O =q-+2nm.

Nendest vordustest ndeme, et punktide z ja @ polaarnurgad on
vordsed, kuid kujutise polaarkaugus on suurei (kui £>1) voi vaik-
sem (kui k<c1) originaali omast (vt. joon. 7). Teisiti peldes: toi-
mub k-kordne mastaabi muutus.

Nar s ar.d
!j T N . 4J

Joon, 7

Niide 2 Olgu'
w=-ei%z, kus a on mingi reaalarv.
Siit saame seosed:
p==f ning 0 =¢-+a-+2nmn.

Nendest seostest ndeme, et vaadeldava kujutuse korral pddrdub
iga ring |z| <R nurga a vorra (vt. joon. 8).

Erijuhul, kui =5 s.t. w=iz, saame tasandi poorde tais-

nurga vorra, kui aga a=m, s.t. w=-—2, siis saame tasandi poorde
sirgnurga Vvorra. '
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AY

Joon, 8

Naide 3. Vaatleme funktsiooni
w=—2z-4b.
Olgu zb=u—l—iv, 2=x-iy ning b=p,-}ips. Selle funktsiooni korral
u=x+B1 ning v=y-+pe,

s.t. toimub tasandi liikke vektori b vorra (vi. joon. 9). Nii niiteks
kujutub ring |z]<<r ringiks |w—b|<r.

Ay

Joon. 9

Ndide 4. Vaatleme lineaarfunkisiooni
w=az--b.
Olgu a=kel* ja b=p;+ifs. Tﬁhistades'
2y=Fhz, zp==el®z; ja w=2z-}b,

saame, et antud funktsiooniga teostatav kujutus on vaadeldav kolme
eespool kisitletud kujutuse jirjestikuse rakendamisena. Kui a=*1,
saame funktsiooni.
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w==az-+b
esitada kujul

'EP)-—Bza(Z—*ﬂ)z

kus [3=-1—-g_—~a-. Saadud seosest jdreldub, et as=1 korral leidubr

niisugune punkt f, mille suhtes lineaarfunktsioon teostab tasandi
poorde nurga arg a vorra ning |a| kordse mastaabi muutuse. Eri-
juhul, kui b=0, toimub see nullpunkti subtes. '

Nidide 5. Vaatleme funktsiooni
w=2z2
Olgu jillegi z=rel® ja w=ge'®. Siin saame seosed:
o=r? ja O=2-2nm.

Nendest selgub, et z-tasandi punktid, mille moodulid on vordsed
ning argumendid erinevad arvu s voi selle tdisarvkordsete vorra,
kujutuvad w-tasandile {iheks ja samaks punktiks. Siit jéreldub, et

—52‘-.<argz<—g- kujutub piirkonnaks —n<Carg w<lm,

s.t. kogu w-tasandiks, vilja arvatud reaaltelje negatiivne osa.

Kui meil on miiratud mingi funktsioon w=f(2) hulgal D, siis
see tahendab, et igale piirkonda D kuuluvale kompleksarvule 2 on
vastavusse seatud mingi kompleksarv w. Et aga z=x-+iy ja w=
—u-iv on miiratud oma reaal- ja imaginaarosadega, siis vastavus
w=7f(z) midrab meile kaks kahe muutuja funktsiooni

piirkond —

u=u(x, y) ja v=0v(x, ¥).
Seega
w=u-+iv=f(z) =u(x, y) +iv(x, y).

Funktsioone # ja v nimetatakse kompleksmuutuja funktsiooni w=
=f(z) reaal- ja imaginaarosaks.

Niide 6. Kui w=22, siis

W= zt= (x+iy)2= (x* — y?) +i2y,
s. t. -
u(x, yy=x>—y? ja ulx, y)=2xy.

2 E. Jiriméae 17



Ulesanded

1. Leida funktsiooni

w=f(2) =i

madramispiirkond.

2. Leida sirgete y=a (a>0) ja poolsirgete x=p (y>0) kujutised
funktsiooniga w=22

3. Milliseid jooni esitavad vorrandid (f = R):

a) z=t(14+1i), e) z=ael!4-pet,
b) z=acos t+ib sint, (e ja p reaalarvud).
c) z=t+—,
i
d) z=ti4—7,
4. Leida jargmiste funktsioonide reaal- ja imaginaarosad:
i 1
a) '(.U—-z—', d) _-2_2'1
_ z2—1
b) w=242z, e) w= o
c) w=23 ) w= !
’ z—i

2.2. PIIRVAARTUS

Vaatleme kompleksarvuliste vidartustega jéarjestatud suurusi.
Nende all mbistame niisuguseid muutuvaid suurusi w, mille korral
vihemalt osa w vairtuste w;, w, puhul on médratud, kumb véartus-
test teisele jdrgneb. Siinjuures nouame, et see jarjestus oleks:
1) transitiivne, s.t. kui ws jirgneb viddrtusele wi, w; aga védirtusele
w,, siis jargneb w; ka viirtusele wy; 2) suunatud, s.t. iga kahe vaar-
tuse w; ja w, puhul leidub ws; mis jédrgneb kummalegi vadrtusele
w,, ws. Viimast arvestades koneleme ka, et suurus @ muutub suuna-
tud protsessis.

Matemaatilise analiiiisi kursuses tutvusime reaalarvuliste viar-
tustega suuruse piirvddrtuse mdistega. Seame endale {ilesandeks
taandada kompleksarvuliste vdadrtustega jirjestatud suuruse piir-
vidrtustega seotud moisted ja nendekohased teoreemid analoogi-
listele moistetele ja teoreemidele reaalarvuliste suuruste korral.
Aluse selleks annavad kompleksarvu definitsioon ning kauguse
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mdiste komplekstasandil. Nende pohjal saame allpool vaadeldava
seose (1), mis vbéimaldabki meil lahendada oma iilesande.
Jirjestatud suuruste nididetena mainiksime jdrgmisi:

w=z, (n>o0), w=z(f) (t>0) ja w=f(2) (z>a),

millega tuleb meil sageli kohtuda jirgnevates osades. Et need komp-
leksarvuliste viidrtustega suurused on toepoolest jirjestatud suu-
rused, jitame tdestada lugejale. Miargime vaid, et selleks on vaja
selgitada, mida tdhendab igal iiksikul juhul jdrgnevus, ning kontrol-
lida transitiivsust ja suunatust.

Me nimetame kompleksset muutuvat suurust w lopmata viike-
seks ehk hiibuvaks vaadeldavas protsessis, kui selles protsessis on
reaalarvuliste vddrtustega suurus |w| lopmata viike, s.t.

limjw|=0.

Kompleksarvu A=a-+ib nimetame muutuva suuruse W=—u-|iv
piirviidrtuseks vaadeldavas suunatud protsessis, kui selles protses-
sis vahe w — A on l6pmata vdike. Seda, et A on suuruse w piirvaar-
tuseks, mirgime jargmiselt:

lim w==A.

Teoreem. Muutuva suuruse w==u~+iv piirvddrtuseks on konstant
A=a--ib parajasti siis, kui vaadeldavas protsessis limu=a ning

lim v=0b.
Toestus. Teoreemi viide jareldub vahetult vorratustest

le=al b <o —a)<|u—al+]o—b], (1)
o — b \
kui peame silmas &sjatoodud piirvdédrtuse definitsiooni ning vasta-
vat definitsiooni reaalarvuliste muutuvate suuruste korral, Vorra-
tusteahela (1) parem pool esitab teoreemi tingimuste piisavuse ning
vasak pool — tarvilikkuse.

Rakendustes on sageli otstarbekas kasutada piirvddrtuse defi-
nitsiooni moénevorra teisel, kuid iilaltooduga samavairsel kujul.

Konstanti A nimetatakse muutuva suuruse w piirvddrtuseks, kui
vastavalt igale positiivsele arvule e leidub vaadeldavas protsessis
niisugune koht, millest alates kehtib vorratus

|w —A| <e.

Vaatleme niiiid jada (z,) piirvddrtust ning rakendame selle
puhul idsjaesitatud iildist piirvdartuse definitsiooni. Jada puhul ise-
loomustab protsessi jada indeksi kasvamine. Koha madédrab siin
indeks, s.t. mingi naturaalarv. Seega:

arv A on jada (z,) piirvddrtuseks, kui vastavalt igale arvile
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e>>0 leidub selline naturaalarv N(e), nii et iga n>N (g) puhul

Jada, millel on piirvddrtus, nimetatakse koonduvaks. Ulaltoodud
teoreemi abil saame kompleksliikmetega jadadele iile kanda Cauchy
kriteeriumi, mida tunneme reaalarvuliste jadade puhul.

Cauchy kriteerium. Jada (2,) on koonduv parajasti siis, kui vas-
tavalt igale arvule =0 leidub naturaalarv N (e), nii et ign n>N(g)
ning iga naturaalarvu p korral kehtib vorratus

]zn+p — Zn l <_e.

Teise konkreetse rakendusena vaatleme funktsiooni w==f(2) piir-
vairtust punktis a, s.t. funktsiooni f piirvddrtust protsessis z—a,
mida mirgime siimboliga

limf(2).

>

Siinjuures eeldame, et funktsioon [ on mairatud punkti a mingis
iimbruses (vilja arvatud voib-otla punktis a endas). Selles protses-
sis on koht mairatud punkti z kaugusega punktist a. Piirvdartuse
definitsiooni rakendamisel saame:

kompleksarv A on funktisooni w=/{(2) piirvddrtuseks punktis a,
kui vastavalt igale arvule e>>0 leidub selline 8(e) >0, nii el iga
vorratusi

0<<|z—a|<<b(e)
rahuldava z puhul kehtib vorratus

[ (z) — Al <e.
Nidide 1. Toestada, et lim|z]=1.

z—i
Asjaesitatud definitsiooni pohjal tuleb meil ndidata, et iga e>0
puhul leidub niisugune §(s) >0, et |z—1i] <<8(e) korral kehtib vor-
ratus |1z] — 1] <Ce.
Et aga (vt. jaotis 1.2)

Hal — 1| =|lzl —lil| < [z —i],

siis voib votta 6(g) =e.

Niide 2. Niitame, et ei eksisteeri lim—.

z—0

Selle niitamiseks ldheneme punktile 0 kahte erinevat teed pidi ning
veendume, et sel korral saame erinevad piirvadrtused, mis dtlebki,
et vaadeldaval funktsioonil pole piirvdidrtust punktis 0.

1) Olgu z==x-}iy. Liheneme nullile piki reaaltelge, s.t. y=0.

Sel juhul z=%==x ning seega lim —Z~=1.
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2) Kui aga ldheneme nullile piki imaginaartelge, s. t.>x=0, siis

L . . = . Z
z=iy ning z=—1y, mistottu lim —Z—-=——1.

Ulesanded

1. Naiidata, et punkt A (JA]+=0 ning arg A%x) on muutuva sul-
ruse w piirvairtuseks parajasti siis, kui lim |w]=|A4] ]ja
lim arg w=arg A.

9. Toestada, et

a) limc=c, d) lim Re z=Re 2o,
b) lim (az—i-rb)_——azo—}—b, e) limz==2,,
" ¢) lim (22+4-c) =2} ¢, I) limi [x+i(2x—|—y)]=1_+i.
=2y z—1—

3. Toestatud teoreemi abil nédidata, et komplekssete muutuvate suu-
ruste piirvddrtuste worral kehtivad aritmeetiliste tehete puhul
samasugused teoreemid nagu reaalarvuliste suuruste puhul.

4. Naidata, et iga suurus, millel on piirvdartus, on tokestatud.

5. Niidata, et ka kompleksarvuliste jadade puhul kehtib Bolza-
no — Weierstrassi teoreem.

2,3. FUNKTSIOONI PIDEVUS

Edasises ainekisituses on eriti tihtis funktsiooni pidevuse
moiste.

Funktsiooni w=/{(z) nimetatakse pidevaks punktis zo € D, kui¥*
1) eksisteerib [(zo),

9) eksisteerib limf(2),

Z—2Zo

3) lim f(2) ={(=0).

—>2e b

Sellest definitsioonist ldhtudes saame, et funktsioon w=f(z) on
pidev punktis 2y parajasti siis, kui vastavalt igale arvule >0 lei-
dub selline arv 8(e) >0, et [z— 20| <8(e) puhul ‘

11(2) —1(20) | <e.

Piirvairtuse omadustest jareldub vahetult, et pidevate funkisioo-
nide summa, vahe, korrutis ja jagatis on pidevad funktsioonid (Vii-
:{l_las;a puhul ei tohi jagaja vaartus vaadeldavas punktis vorduda nul-
iga).

Vaatleme mingit originaali véirtust z ning temale lihedased ori-

* Funktsiooni vairtust ja piirvddrtust vaatleme Ioplikena.

21



ﬁmigad kirjutame kujul z-4+Az. Suurust Az nimetatakse
ali muuduks. Et funktsioon w==f(z) oleks pidev punktis z,

peab
2iﬂ})f(2+lA2) ={(2)

ehk teisiti
im [f(z4A2) —f(2)] =0.

1
Az—0

Vahet f(z24Az2) —{f(2) nimetatakse funktsiooni f muuduks punktis
2. Meie toestasime sellega, et funktsioon f on pidev punktis z para-
jasti siis, kui selles punktis l16pmata viikesele originaali muudule
vastab lopmata viike funktsiooni muut.

Kui funktsioon f on pidev piirkonna D igas punktis, siis nime-
tatakse seda funktsiooni pidevaks piirkonnaks D.

N dide Naditame, et arg z on pidev igas punktis z, mis ei asu
reaaltelje negatiivsel osal.

Et 2=0 ja 2z=o0 puhul pole arg z miiratud, siis neid z viair-
tusi me ei vaatle. Olgu 2, punkt, mis ei asu reaaltelje negatiivsel
osal. Votame mingi arvu ¢>0. Tidhistame siimboliga § sellise ringi
raadiuse, mille keskpunkt asub punktis z,. Asugu see ring sektoris
arg zp —e<@<<arg 2+e ning drgu ta sisaldagu reaaltelje nega-
tiivse osa punkte (vt. joon. 10). Sel juhul jareldub vérratusest
|2 — 20} <8 vorratus |arg z—arg ze] <<e. Et 2, ja ¢ olid suvalised,
siis olemegi toestanud oma viite.

Joon. 10

Selle toestuse juures on oluline tihele panna, et vastavalt arvule
8?0 konstrueeritud arv § soltus punkti z, valikust. Kui aga sellist
sOltuvust ei esine, siis saame nn. iihtlase pidevuse.,

Funktsiooni f nimetatakse iihtlaselt pidevaks piirkonnas D, kui
vastavalt arvule ¢>0 leidub selline §(e) >0, nii et piirkonna D
iga kahe punkti z; ja z, puhul kehtib vorratus

[F(21) —F(22) | <,
kui {z1— 23| <<8(¢).
29



Ulesanded

1. Niidata, et funktsioon w==f(z)=u+iv on pidev punktis Z==""
— xo---iyo parajasti siis, kui funktsioonid u=u(x, y) ja v=v(x, y):
on pidevad punktis (xo, Yo).

9. Sonastada pidevate funktsioonide kohta kaivad Cantori 4
Weierstrassi teoreemid kompleksmuutuja korral. Toestada need
analoogid. !

3. Toestada, et pidevate funktsioonide kompositsioon on pide%
funktsioon. '
4. Néiidata, et funktsioonid w=z4i, w=-—;— ja w=22 on pidevad
" punktis z=i.

2.4. DIFERENTSEERUVAD FUNKTSIOONID

Vaatleme mingis piirkonnas D defineeritud funktsiooni w=f(zi')‘
Tdhistame:

Aw=]f(z-4+Az) —f(2).

: : . . Aw o S
Kui eksisteerib piirvdirtus lim —, siis nimetatakse funktsioons
Az—~0 A

{ diferentseeruvaks punktiks z. Seda piirvddriust nimetatakse funkt-
siooni | tuletiseks punkiis z ning tdhistatakse siimboliga f (z).

Nidide 1. Olgu w==22 Sel juhul
Aw= (24-A2)? — 22=224-22A2+A2? — 22=22Az+4A2?

ning siit

. Aw . 2zAz+-AZ?

lim —= lim Az = lim (2z+Az) =2z2.
Az—>0 < Az—0 Az Az—0

Seega

(22)" =2z

Niide 2. Olgu w=|z|?=2z. Siin
Aw= (z-+Az) (z4-Az) — zz= (2+4A2) (Z4+A2) — 27=
=27 —|—z§—l—'z‘Az—|—fAzA_z — zi=zAz-]-7Az+AZAz,

millest
AZGJ__ K; =1 e
Az Az TEZ Az

Saadud summa piirvddrtus aga ei eksisteeri (v.a. juhul, kui z=0}},
sest vastavalt jaotise 2.2 niitele 2 ei eksisteeri esimese ludg{;a-va
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piirvaidrtus. Seega pole vaadeldav funktsioon diferentseeruv iiheski
punktis peale punkti z=0.

Selle néite pohjal veendusime, et ka iisna lihtsad kompleksmuu-
tuja funktsioonid ei pruugi olla diferentseeruvad. Kui vaadelda
sama funktsiooni y=|x|2=x2 reaalmuutuja korral, siis on see dife-
rentseeruv igas punktis. Sellest jireldub, et kompleksmuutuja kor-
ral on diferentseeruvuse ndue hoopiski rangem kui reaalmuutuja
puhul, kuigi formaalselt on diferentseeruvus defineeritud molemal
juhul iihtmoodi. Selle tdsiasja sisulise tihendusega tutvume mone-
vorra hiljem, kui vaatleme kérgemat jirku tuletisi.

Olgu funktsioon w=f(z) diferentseeruv punktis 2z Vastavalt
piirvdartuse ja diferentseeruvuse definitsioonile on suurus

diferentseeruva funktsiooni puhul I6pmata viike protsessis Az—0.
Viimasest vordusest saame, et

Aw=}"(2) Az4+nAz. (1)

Selle vorduse paremal poolel on esimene liidetav teisega vorreldes
madalamat jirku Iopmata viike * (kui f/(z)=5%0). Nagu reaalmuu-
tuja funktsioonide puhul, nii nimetatakse ka siin suurust ' (z)Az
funktsiooni muudu peaosaks. See suurus sdltub lineaarselt ori-
ginaali muudust Az ning teda nimetatakse funktsiooni diferent-
siaaliks ja tdhistatakse ’

dw=f(z)Az.

Kui votta w=zg, siis w’=1 ning dw=dz=Az. Seega voime Kir-
jutada

dw=f}'(2)dz,
millest

Fe)="2

Seosest (1) jéreldub, et diferentseeruva funktsiooni korral vas-
tab lopmata viikesele originaali muudule 16pmata viike funktsiooni
muut. Seega on iga diferentseeruv funktsioon ka pidev.

Et formaalselt on funktsiooni diferentseeruvus defineeritud
samuti kui reaalmuutuja funktsiooni korral, siis on diferentseeri-
mise reeglid kompleksmuutuja funktsioonide puhul samasugused
kui need, mida tunneme matemaatilise analiiiisi kursusest. Vaatleme
siinkohal vaid liitfunktsiooni diferentseerimise reeglit.

* Lopmata viikesi suurusi vorreldakse kompleksmuutuja puhul tapselt samuti
kui reaalmuutuja korral.
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Olgu antud funktsioonid w=f(f) ja t=g(2), kus z ja { ko
vad vastavalt piirkondadesse D ja Dy (Dy < D), s.t. esimese fi

siooni midramispiirkond sisaldab teise funktsiooni kujutispiirkonna. .

Eeldame, et funktsioon f on diferentseeruv punktis z, mistéttu seose
(1) pohjal ‘

AL=g’(2)Az+aAz, (2)

kus lim a=0. Olgu funktsioon [ diferentseeruv punktis {=g(2).

Sel juhul

Aw=}"(T) AT+PAL, (3)

kus lim B=0. Et aga lim A{=0, siis ka lim §=0. ‘
A0 Az—>0 Az>0

Seoste (2) ja (3) pohjal saame, et

Aw=["({) [g’(2) Az+0aAz] +B[g’ (2} Az+aAz] = -
—1'(2) g’ (2) Az+[aF (£) +Be’ (2) +aBlAe=

=J"(2) g'(2) Az+vAz, |
kus y=af " (2)+pg’ (2) +-ap. Et iim y=0, siis saamegi siit matemaa-

z—>{
tilise analiiiisi kursusest tuntud valemi

imA2_ 49 _ o) o2y =22 G
lim === ()8’ (2) = =

A0 N2

Lopetuseks defineerime kaks olulist moistet. Funktsiooni, mis
on piirkonna D igas punktis iithene ja diferentseeruv, nimeta-
takse regulaarseks piirkonnaks D. Funktsiooni | nimetatakse rega-
laarseks punktis z, kui sellel punktil leidub imbrus, kus | on regu-
laarne. ‘

Kui vaatleme diferentseeruvuse ja regulaarsuse noudeid piir-
konna puhul, siis iiheste funktsioonide korral need iihtivad. Punktis
regulaarsuse noue on aga rangem kui punktis diferentseeruvuse
noue. Nii on niites. 2 vaadeldud funktsioon diferentseeruv punktis
z=0, kuid ei ole seal regulaarne.

Ulesanded

1. Leida tuletised funktsioonidest

a) w=(2z+1i)4, c) w=3z22— 4z},
z—Ii 2x

b _ —

) w z J d) z___l
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i
Vastus: a) w'=8(2z+i)3, b) '=?2“,
21
(z—i)2 "~

2. Niidata, et funktsioonid w=Re z, w=1Im z, w=7% pole diferent-
seeruvad.

¢} w'=6z—4, d) w'=—

3. Leida funktsiooni w= (2+i)22 diferentsiaal punktides

2==2—i, z:—;— ja z=—Ii

Vastus: 10Az, (24i)Az ja 2(1 —2i)Az.

2.5. CAUCHY —RIEMANNI VORRANDID

Eelmises jaotises ndgime, et ka suhteliselt lihtsad pidevad komp-
leksmuutuja funktsioonid voivad mitte osutuda diferentseeruvaiks.
Seepirast tuleks leida tingimused, mille jirgi saaks otsustada funkt-
siooni diferentseeruvuse tile. Lahendamegi selle probleemi.

Olgu meil funktsioon

w=[(z)=u(x, y)+iv(x, y).

Eeldame, et see funktsioon on diferentseeruv punkiis 2z s.t. eksis-
teerib piirvdartus

Siinjuures on oluline tidhele panna, et piirvdirtuse definitsiooni
kohaselt ei séltu see piirvddrtus sellest, millisel viisil Az liheneb

nullile. Teisiti 6eldes, kui teame, et piirvdartus lim-éiw— eksistee-
Az—>0

rib, siis piisab tema leidmiseks, kui vaatleme vaid teatavat kindlat
suuruse Az nullile 1ahenemise viisi (néditeks piki mingit sirget).

Lahenegu Az=Ax4-iAy nullile selliselt, et Ay=0, s.t. punkt
2+Az ligineb punktile z paralleelselt reaalteljega. Sel juhul Az=Ax
ning

F(2) = lim A% jjp AN +i(vHAv) — (utiv)
Az—0 < Ax—0 Ax
. Au—iAv . (Au . Av ) du . Ov
o -————-—:1 | —_—— —_—
A el W VPR Ry e e e

Kui aga Az ldheneb nullile nii, et Ax=0, siis saame
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P () = tim 2R iy (82 2 )= v e,
Ay—0  1AY ay-0' Ay Ay dy dy -

Eelduse kohaselt oli funktsioon diferentseeruv. Seetottu peavad
kahel erineval lihenemisel saadud tulemused olema vordsed, s.t.

ou ov ov . ou

ox 1 ox oy oy

~

Seega funktsiooni diferentseeruvuse korral:

du ov ou dv

ox oy = dy  Ox

Saadud vérrandeid nimetatakse Cauchy — Riemanni vorrandi-

teks. ,
Niitame, et Cauchy — Riemanni vorrandite taidetus on ka
funktsiooni diferentseeruvuse piisavaks tingimuseks — eeldusel, et
kahe muutuja funktsioonid « ja v on diferentseeruvad. Viimane asja-

olu tihendab seda, et

ou ou
—_ 1i ,
Au=——Ax+ 3 Ay—+mn1| Az] "
T gu ov
- |
Av= P Ax-+} 3y Ay+nz] Az,

kus |Az| =VAx2+4Ay? ning 14, nz ldhenevad nullile, kui Az—0. Seoste
(1) ja Cauchy — Riemanni vorrandite abil saame, et

Aw  Autidv
Az Ax+iAy

ou ou ) ( dv du ) X

—  Ayd— _ —_— A
B ( T e g ) i (G Aty ) (kg [A2]
—' Ax—+iAy

du . Ov ) ( du du )

| _

B (ale o ) TN Gt ) A niing 1221
_ Ax-iAy F U T
__ou . Ov i | Az]

Saadud tulemuste pohjal
Aw ou ., Ov

_z-l—z‘”(dx_rl dx)

= | n14inz| =0, kui Az—0.
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Seega, funktsioon w=/{(2) on diferentseeruy ning

ou du
4 —_— [ 3
f (2) ax T1 ax .

N édide. Niitame, et funktsioon w=-1— on diferentseeruv igas
nullist erinevas punktis. g

Et
1 1 X . —Y

2 xtly oty g

-

1)

siis tuleb meil veenduda, et funktsioonid

U= i ja v=—uZ
B Y

rahuldavad Cauchy — Riemanni vorrandeid. Arvutades saame, et

ou  yr—x? o Ou  —2xy
ox (2422 ' oy (By?)
ov 2xy v y* — x2

ox — ()7 Say (et
kui x2-}-y2=|z]25=0.
Siit ndemegi, et Cauchy — Riemanni varrandid on taidetud, s.t.

funktsioon w=-—2— on diferentseeruv.

Ulesanded

1. Arvestades, et x=rcos¢ ja y=rsin ¢, ndidata, et polaarkoordi-
naatides avalduvad Cauchy — Riemanni vérrandid kujul

du 1 Jdvu 1 oJu ov

J— — e

Or . r dp’ r dg or -

9. Eelmise iilesande tulemust kasutades toestada, et funktsioon
w=2z" (n tdisarv) on diferentseeruv.

3. Veenduda, et jargmiste avaldistega miiratud funktsioonid pole

diferentseeruvad:
a) 22—z, c) e*(cos y —1isiny),
b) 2x-}-xy3i, d)} x?siny—iy cos x.
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4. Millistes punktides on jdrgmistel funkisioonidel tuletis:

1
a) w= z11’ b) w=x24iy? ¢) w=zImz?

Leida tuletised neis punktides, kus nad eksisteerivad.

du ou
. = - = 3_- — 3 L) Ld = 2 .
5. Kui w=u+tiv=x?—i(y—1)3, siis EP +i Ep 3x%, Miks on

3x2 selle funktsiooni tuletiseks ainult punktis 2=i?

2.6. HARMOONILISED FUNKTSIOONID

Eeldades, et funktsioonidel u ja v eksisteerivad pidevad teist
jarku osatuletised, saame Cauchy— Riemanni vorrandeid diferent-
seerides, et

Pu 0% o’u 0%

ox2 ~ O0ydx ° dyr  0xdy

Sellest jareldub, et funktsioon « rahuldab nn. Laplace’i vorrandit
0%u n o0%u 0.

dx? dy?

Funktsiooni, mis rahuldab mingis piirkonnas Laplace’i vorrandit,
nimetatakse selles piirkonnas harmooniliseks funktsiooniks. Me
toestasime, et teatud eeldustel (teist jarku osatuletiste olemasolu
korral)* on diferentseeruva kompleksmuutuja funktsiooni reaalosa
harmooniline funktsioon. Analoogiliselt saab ndidata sedasama ka
imaginaarosa kohta. -

Funktsioone « ja v, mis rahuldavad peale Laplace’i vorrandi veel
Cauchy — Riemanni vorrandeid, nimetatakse kaasharmoonilisteks.
Osutub, et igale harmoonilisele funktsioonile saab leida kaashar-
moonilise. Selle fakti toestusel me kdesolevas raamatus ei peatu,
vaid piirdume néaidetega.

Niaide 1. Leida kaasharmooniline funktsioonile u=—=x®>—y2
Et v oleks kaasharmooniline, peab ta tditma tingimusi (Cauchy-—
Riemanni vorrandeid)

av___ ou —o dv  du 9y
ox oy Y ey T ox
Esimesest seosest saame, et
f ou
v=J\ =3, dx+@(y) = [ 2ydx-+¢(y) =2xy+¢ ().

* Hiljem n&deme, et tehiud eeldus on alati taidetud.
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Teise seose pohjal

ov ,

—@=2x—l—w (y) =2x,

s.t. @'(y) =0. Seega @(y) =const ning siit
v=2xy-+C.

Nédide 2. Leida diferentseeruv kompleksmuutuja funktsioon
w=f(2) =u+iv, kui v=-e*siny.

Leiame
v =—e* sin ia ov —eX
o Yy ] E” =e* COoS Y.

Vastavalt Cauchy — Riemanni vdrrandeile saame, et

u=[ e cos ydx+¢(y) =e* cos y+(y),
millest
du
dy
Siit tuleneb, et ¢"(y) =0, s.t. ¢(y) =const. Seega
[ (2) =u+-iv=e=* cos y+C+ie* sin y==e*(cos y-+i sin y)C.

=—e* sin y-+¢' (y) =—e* sin y.

Ulesanded

1. Funktsiooni w=2"= (x-}iy)™ reaal- ja imaginaarosi nimeta-
takse n-astme harmoonilisteks poliinoomideks. Leida koik har-
moonilised poliinoomid kuni 4. astmeni.

2. Leida diferentseeruv funktsioon w=f(z) =u-iv, kui

X
a) 1t=x2—y2+2x, d) 11=W—2y,
X Y

by u=——, e) v==— .
) X2ty ) (x4+1)24-y?
c) v=2xy+3x, f) U—_—arctan-i—, x>0.
Vastus:

1 . .
a) w=2z*+2z4-Ci, d) w=—z-——|—212:—]—61,
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1 . 1
b) w-——;—l—Cl, e) w= z+1+c’

c) w=2243iz+4C, f) w:—; In (x24y2) +
. y .
+i arctan 7+=C.

3. Toestada, et piirkonnas D diferentseeruv ja reaalarvuliste vaar-
tustega funktsioon on selles piirkonnas konstantne.

4. Olgu f’(2) =0 piirkonnas D. Néiidata, et f(z)=const.

2.7. TULETISE GEOMEETRILINE TAHENDUS

Uurime diferentseeruva funktsiooniga teostatava kujutuse geo-
meetrilisi omadusi. Selle uurimise aluseks votame jaotises 2.1 vaa-
deldud néiited 1 ja 2, mille pohjal voime véita, et funktsioon

wW=az

teostab kujutuse, mille kujutisvektor w on originaaliga z vorrel-
des pooratud nurga a=arg a vorra ning tema pikkus on muutunud
|a] kordselt. .

Sellest jareldub, et kujutuse

W — wy=a(z — 2o)

korral kujutub punktist z, punkti z suunduv vektor punktist w,
punkti @ suunduvaks vektoriks; kujutisvektor on originaaliga vor-
reldes poordunud nurga a=arg a vorra ning-tema pikkus on muu-
tunud |a| kordselt.

Olgu funktsioon w==f(z) diferentseeruv. Vaatleme punkte, mil-
les f/(2)==0. Sel juhul

Aw=F(2) A2+,

kus B on esimese liidetavaga vorreldes korgemat jarku 16pmata
viike suurus. Kiillalt viikese Az puhul kehtib seega ligikaudne
vordus

Aw=f"(2)Az. | (1}

Seosest (1) nideme, et vektor Aw on vorreldes vektoriga Az poor-
dunud nurga argf'(z) vorra ning tema pikkus on muutunud Az
pikkusega vorreldes suuruse |f (2)| kordselt. Et see kehtib igasu-

use kiillalt vaikese Az ja temale vastava Aw korral, siis saame
sellest jiareldada jdrgmise fakti:

kujutamisel diferentseeruva funkisiooniga f toimub neis punk-
tides, kus ['(2)==0, tasandi péére nurga 6=arg {'(z) vbrra ning
mastaabi muutus |f'(2)| kordselt (vt. joon. 11).
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Joon. 12

Et koigi vektorite Az kujutised on podratud oma originaalide
suhtes {the ja sama nurga & vorra, siis on punkti z ldbiva kahe
joone C; ja C, vaheline nurk vordne (nii suuruse kui ka suuna poo-
lest) vastavate kujutisjoonte Si ja S vahelise nurgaga (vt. joon.
12). Selles viljendub nn. nurkade sdilivase omadus.

Teiselt poolt, nagu nigime, muutub vektori Az pikkus igas suu-
nas iihte viisi, s.t. lopmata viikese raadiusega ringjoon K (kesk-
punktiga punktis 2) kujutub jooneks L, mille punktide kaugused
mingisl ringjoonest (keskpunktiga punktis w) on suurusega g VOr-
reldes korgemat jarku ldpmata viikesed. Selles valjendub nn. 1op-
mata viikeste ringjoonte invariantsuse omadus.

Kujutust, millel on kaks eespool mainitud omadust, nimetatakse
konformseks kujutuseks. Niisiis, iga diferentseeruv kompleksmuu-
tuja iunktsioon teostab konformse kujutamise (s.t. siilitab
nurgad nii suuruse kui ka suuna poolest ning muudab mastaapi
igas suunas iihte viisi) koigis punktides, kus tuletis on nullist eri-
nev.

Meie ndgime eelnevas, et kui originaaliks on lopmata véike
ring pindalaga nr2, siis on kujutiseks piirkond, mis on ligildheda-
selt ring pindalaga |[’(2)|%ur? s.t. pindala muutub |’ (2) |2 kord-
selt. Seda tulemust teame matemaatilise analiiiisi kursusest, milles
niidati, et muutujate vahetuse u=u(x, y), v=uv(x, y), s.t. kujutuse
w=f(2)=u(x, y)+iv(x, y) puhul muutub pindala jakobiaani
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ou du

- @y

D{u,v) | ox 0dy
D(x,y) |
ox Jdy

kordselt. Ent Cauchy — Riemanni vérrandeid arvestades saame, et
jakobiaan vordub avaldisega

(2 (22 F — s

See on funktsiooni tuletise mooduli teine geomeetriline tahendus.

Kui f'(2) 50, on teisendus u=u(x, y), v=v(x, y) regulaarne,
mistottu eksisteerib poordteisendus * x=x(u4, v) ja y=y(u, v). Seda
tulemust kompleksmuutuja funktsiooni seisukohalt tdlgendades
saame, et nende punktide {imbruses, kus f'(z2)=0, eksisteerib
funktsioonil w=f(z) iihene pdordiunktsioon

2=g(w)=x(u, v)+iy(u, v).
Ulesanded

1. Leida tasandi pOdre ja mastaabi muutus kujutamisel funktsioo-
niga w==2z% punktides:

a) z=1, ) == e) z=13—1i,
1
b) 2= d) z=1-+i, f) z2=-—2i.
Vastus:
.1 N
a) 0 ja 2, ¢) m ja -, ) —— ja 4
no, — T o,
b) 0 ja 1, d) - ja 272, f) —5 ja 4
2. Sama funktsiooni w=2% puhul.
Vastus:
. 3 1
0 ja 3 g — - PRLIN |
a) 0 ja 3, c) 0 ja —&, e) 3 ja 12,
b) 0 ja —- d) = ja 6 f) ja 12
la ==, 5 1ab —n ja 12.

* Kangro, G. Matemaatiline analiiiis II, TIn, 1968, lk. 281.
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3. Milline 2z-tasandi osa surutakse kokku jé milline venitatakse
vilja jdrgmiste funktsioonidega kujutamisel:

a) w==z2 c) w=2z212z
b) w=%, d) f(z)=e*(cos y+isiny).

Vastus: Kokku surutakse

1 1
a) |ZI<:75-, c) |24'1|<:“§',
b) |z]>1, d) x=Re 2<0.
Vilja venitatakse:
i 1
a) |2|>—'2'§ c) |z-|—1]>—§-,
b) 0<|z2}<1, d) Rez>0.

3. ELEMENTAARFUNKTSIOONID
3.1. ASTMEFUNKTSIOON

Eelpool selgitasime, mida moistame astmena z», kus n on posi-
tiivne tdisarv. Jdrgnevas tutvume astmefunktsiconi w=—2z" mone
lihtsama omadusega. Selle funktsiooni diferentseeruvust saab koige
lihtsamini kontrollida Moivre’i valemi v6i Cauchy—Riemanni vor-
randite (polaarkoordinaatides) abil, voi siis vahetult tuletise defi-
nitsioonist ldhtudes, kasutades tiieliku induktsiooni meetodit.

Asudes uurima astmefunktsiooni omadusi, vaatleme lihtsuse mot-
tes koigepealt ruutfunktsiooni.

a) Funktsioon w==z22% Eelnevas nigime (vt. ndide 5 jaotises 2.1),
et funktsioon pole iiheleheline, s.t. igale kujutisele ei vasta ainult
itks originaal. Sellise vastavuse 1ihemaks selgitamiseks vétame null-
punktist ldhtuva kiire ning p66rame teda vastupidiselt kellaosuti

‘ 7\ (2)
(3 (1)

3 Joon. 13
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liikumise suunale (vt. joon. 13). Kiirele z-tasandil vastab kiir w-ta-
sandil (vt. ndide 5 jaotises 2.1), kusjuilfes polaarntfk @_-tasamﬁf
kasvab poole kiiremini vastavast polaarnurgast z-tasandil. Poéra-
tava kiire kujutis katab kogu w-tasandi juba siis, kui z-tasandi
kiir katab vaid {ilemise pooltasandi. Kui niiiid ldbime oma z-tasandi
kiirega ka alumise pooltasandi, katab kujutiskiir w-tasandi teist-
kordselt.

Et saada iiks-ithest vastavust kujutiste ja originaalide vahel,
selleks votame kujutistasandeid kaks. Seejuures olgu z-tasandi iile-
misele poolele vastavad kujutised w-tasandi esimesel eksemplaril
ning alumisele poolele vastavad kujutised teisel. Uhendame need
tasandid nii, et kujutiskiir saaks liikuda pidevalt, kui pddratav kiir
teeb originaalide tasandil tdispoorde. Selleks ldikame mdlemad
tasandid ldbi piki reaalfelje positiivset osa, iihendame esimese
tasandi loike iilemise serva teise tasandi l6ike alumise servaga ning
vastupidi (vt. joon. 14). Niisugust kahelehelist pinda nimetatakse
ruutiunktsiooni vdirtuste Riemanni pinnaks. Selle pinna konstrukt-
siooni kohaselt vdime delda, et funktsioon w==z22 kujutab kogu z-ta-
sandi pidevalt ja iiks-iiheselt oma vadrtuste Riemanni pinnaks. Saa-
dud pind on kaheleheline, sest ta koosneb kahest komplekstasandi
eksemplarist (lehest). Nendel kahel lehel on iihisteks punkiideks
0 ja oo.

Joon, 14

Kui ldbime nullpunkti {imbritseva ringjoone |z|=r iihel korral,
siis 1dbib sellele vastav punkt Riemanni pinnal nullpunkti {imbrit-
seva ringjoone |w]=r2 kahel korral. Sama mairkame ka siis, kui
vaatleme nullpunkti asemel I6pmatuspunkii. See annab pdohjuse
nimetada neid punkte vaadeldava Riemanni pinna teist jirku harg-
nemispunktideks. Need on punktid, kus on seotud vaadeldava pinna
fiksikud lehed.

b) Funktsioon w=2z". Kui tdhistame z=rel® ja w=pe!® siis
saame

o=r" ja O=ne+2kn, k=0, +1, ... .

Nieme, et nullpunktist 1dhtuva kiire kujutiseks selle funktsiooni
puhul on jallegi nullpunktist ldhtuv kiir, kuid selline kiir, mille
polaarnurk on originaali omast n korda suurem. Toimides nii nagu
ruuntiunktsiooni puhul, saame {iks-ithese vastavuse z-tasandi ja w-ta-
sandi n eksemplari vahel. Kui ithendame need n eksemplari, nagu
naidatud joonisel 15, saame pideva vastavuse. Saadud pinda nime-
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@
n-3
n-2
n-=1»
n
—= ,
A
//" i
/
V4 [ o | Joon. 15

tatakse funktsiooni w=z" vairtuste Riemanni pinnaks. See on
n-leheline pind, mille hargnemispunktideks on jillegi w=0 ja
w=o0. Et ringjoone |2|=r iithekordsele libimisele vastab n-kordne
ringjoone |w|=r" ldbimine, siis nimetatakse punkte w=0 ja
w=o00 n-jirku hargnemispunktideks. ’

Ulesanded

1.

36

Leida ruudu 0<<Re z<C1, 0<<Im z<<1 kujutis, selle pindala ning
rajajoone pikkus kujutamisel funktsiooniga w=22

Vastus:
S=-—§-—, I=21n(14+¥2)+2(1+72).

Leida jooned, kus funkisioon w=—=22 teostab vordse mastaabi
muutuse, ning jooned, kus ta teostab iihe ja samasuguse tasandi
poorde.

Vastus: a) |z|=const, b)" arg z=const.

On antud funktsioon w=22:

a) leida joonte x=y, |2z|=R, arg z==qa kujutised ja selgitada,
millised neist joontest kujutuvad iiks-iiheselt;

b) leida joonte u=C ja v=C (w=u-}iv) originaalid.

Vastus: a) u=0 (v=0), |w|=R? argz=2a. Ajnult vii-
mane kujutub iiks-iiheselt.

b) x*—y*=C (kui C=0, siis sirgete paar)} xy=-g— (kui C=0,
siis sirgete paar).



4, Leida funktsioon, mis kujutab piirkonna |arg(z+3)]<% iile-
miseks pooltasandiks. |
Vastus: w=i(z+3)3.

5. Konstrueerida funktsiooni w==(z —i)? véartuste Riemanni pind.

3.2. JUURFUNKTSIOON

"' Nimetame n-astme juureks kompleksarvust z kompleksarvu w=
——--n]/;, mille puhul

wr=2z. (1)
Kui tdhistame z=rel? ja w=ge{9, saame vordusest (1), et

o"=r ja n@=argz+42kn=0o-+42kn, k=0, k1, ...

millest
N
o=Tr ja @=—2EZTEER _ OHT o 41, (@)
n n
Vordustest (2) selgub, et saame n oluliselt erinevat @ vaartust, mis
vastavad £ vaidrtustele 0, 1, ..., n— 1. Tahistame need vastavalt
O, Oy, ..., O, Kui aga k=n, siis saame

@n=%—+2n=@o—|—2n.

Selline polaarnurk koos polaarkaugusega ]/7 madrab w-tasandil

n ..
sama punkti, mille mdidrab 6,. Seega on juurel Yz erinevaid vaar-
tusi n.

e

Juurfunktsioon w= Jz on seega mitmene funktsioon. -

Nii rakenduslikust kui ka teoreetilisest seisukohast on aga olu-
line, et funktsioon oleks iihene. Uheks viisiks, kuidas saame muuta
mitmese funktsiooni iiheseks, on see, et vaatleme originaali muu-
tumise piirkonnana mitte komplekstasandit, vaid teatud mitmelehe-
list Riemanni pinda. Eelmises jaotises saime niisuguse pinna, mille
puhul astmefunktsioon w=2" seab iiks-iihesesse vastavusse z-ta-
sandi ja vaadeldava Riemanni pinna punktid. Et juurfunktsioon w==

n o

= Yz on astmefunktsiooni poordfunktsiooniks, siis seab ta tcepoo-
lest astmefunktsiooni z=wn viirtuste Riemanni pinna igale punk-
tile vastavusse parajasti komplekstasandi ithe punkti ning see vasta-
vus on iiks-ithene. Seda pinda nimetatakse juurjunktsiooni Riemanni
pinnaks. Niisiis on astmefunktsiooni vairtuste Riemanni pind selle
funktsiooni poordfunktsiooni — juurfunktsiooni Riemanni pinnaks.

37



- Mitmesuguste rakenduste seisukohalt on aga oluline, et saak-
sime niisuguse ithese funktsiooni, kus ka originaalid muutuvad tava-
lisel komplekstasandil. Teisiti deldes otsime niisuguseid piirkondi

2-tasandil, kus saame seda mitmest funktsiooni vaadelda iihesena.
Valemite (2) pohjal

Arg z
n__ .1

w=Tz="Tzle = ,

millest selgub, et juurfunktsiooni mitmesus tuleneb kompleksarvu 2
argumendi Arg z mitmesusest. Viimase eri viirtustele vastavad
juurfunktsiooni erinevad vairtused. Et saavutada iihesust, 16ikame
z-tasandi 14bi piki reaaltelje negatiivset osa, nagu tegime Arg 2
puhul. Sel juhul ei ole véimalik liikumine {imber nullpunkti ning
Arg z voib muutuda iithes jérgmistest vahemikest (--a, #), (w, 3n)
jiie. Nii saame n erinevat iihest funktsiooni

arg z+2hn
n___ 1

w=Y|z|e n (=0, 1, ..., n—1),

mida nimetatakse juurfunktsiooni iihesteks harudeks. Esimest neist
(=0) nimetatakse juurfunktsiooni peaharuks (analoogiliselt argu-
mendi peaharuga).

Punkte, millel leidub niisugune dmbrus, milles iimber vaadel-
dava punkti liikudes jouame mitmese funktsiooni iihe haru juurest
teise juurde, nimetatakse selle funktsiooni hargnemispunktideRs.

[ J—
Funktsioonil w= }z on need 0 ja oo.

Ulesanded

&
1. Leida mitmese funktsiooni w=V}z—1 see haru, mille puhul
w(2) =—1.

6
2. Arvutada funktsiooni w=V}z—1i koikide harude védirtused punk-
tides

21=6441i, zo=-—1Fi, zz=1.

3.3. EKSPONENTFUNKTSIOON

Arvestades matemaatilise analiifisi kursusest teadaolevat Euleri
valemit

elv=rcos y-}isin y.

ja reaalarvude korral kehtivaid eksponentfunkisiooni omadusi, on
loomulik defineerida
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e?—=¢%elV, (1)
sest z=x-1y.

Vordusest (1) saame, et
|ez]=e* ning Arger*=y-|-2kn, k=0, £1, ... .

Sellest tuleneb, et er—-ez, kui Im z;— Im 2;=2kn, Re z;==Re zg,
s.t. funktsiooni w==e? periood on 2mi.
Funktsiooni

w==e?

nimetatakse eksponentfunktsiooniks. Eelnevast jareldub, et see
funktsioon pole iiheleheline. Niisiis on ka eksponentiunktsiooni
puhul vaja konstrueerida tema véaartuste Riemanni pind. Enne selle
juurde asumist aga niitame, et eksponentfunktsioon on diferent-
seeruv. Selleks leiame vordustest

w=u-+t+iv=e*=e*(cos y--i sin y),
et
u=e*cosy ja v=e*siny.

Vahetu kontroll n#itab, et Cauchy—Riemanni vorrandid on rahul-
datud iga x ja y korral, s.t. eksponentfunktsioon on koikjal dife-
rentseeruv,

Konstrueerime niiiid eksponentfunkisiooni viartuste Riemanni
pinna. Selleks paneme tdhele, et x-telg kujutub u-telje positiivseks
osaks. Toepoolest, x-telje punktide puhul y=0, s.t. arg w=0, ning
—oo<<x< oo, s.t. 0<<|w|=e*<<oo. Iga x-teljega paralleelse sirge
kujutiseks on w-tasandi nullpunktist 1Zhtuv kiir, mille polaarnurk
vordub selle sirge kaugusega x-teljest. Kui nihutame 2-tasandil x-tel-
jega paralleelset sirget {ilespoole, poordub selle kujutiseks olev kiir
vastupidi kellaosuti liikumisele. Kujutiskiir katab kogu w-tasandi;
kui sirge z-tasandil katab riba lajiusega 2r. Kui sirge katab jérg-
mise riba laiusega 2m, siis katab kujutiskiir uuesti kogu w-tasandi
jne. jne. Kui me aga liiguksime sirgega z-tasandil allapoole, lii-
guks kujutiskiir ainult kellaosuti liikumise suunas, kuid muus osas
analoogiliselt eelnevaga. Sellest arutelust jareldub, et eksponent-
funktsiooni viartuste Riemanni pind peab olema lopmatuleheline.
Need lehed peavad olema iihendatud nii, et x-teljega paralleelse
sirge pidevale liikumisele vastaks kujutiskiire pidev liikumine
moodda vastavat Riemanni pinda. Selle saavutamiseks votame 16p-
mata palju w-tasandi eksemplare, 16ikame need ldbi piki reaaltelje’
positiivset osa. Iga eksemplari 15ike alumise serva iihendame jarg-
mise eksemplari 1dike iilemise servaga ning iilemise serva eelmise
eksemplari alumise servaga (vt. joon. 16).

Kui kujutleda seda Riemanni pinda R asetsevana mingi w-ta-
sandi kohal, siis asub w-tasandi iga punkti kohal 16pmata palju
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pinna R punkte. Erandeiks on vaid w=0 ja w=o00, mille kohal on
vaid iiks pinna R punkt.

Kui ldbida z-tasandil sirge x=a, siis pinnal R vastab sellele
likumine iimber punkti w=0 (I6pmata palju kordi), kusjuures
liigutakse pinna R {ihelt lehelt teisele. Seda liikumist voime aga
vaadelda ka liikumisena iimber punkti w=oc0. Seetdttu nimeta-
takse punkte w=0 ja w=o0 vaadeldava pinna R lopmata jirku
hargnemispunktideks.

Vaadeldes funktsiooniga w=—e? teostatavat kujutust konform-
suse seisukohalt, ndeme, et see funktsioon teostab igas punktis kon-
formse kujutuse, sest (e?)’==ers£0 iga 2z puhul. Selle kujutuse
puhul, nagu ndgime, kujutub riba 0<<Im z<Cn iilemiseks pooltasan-
diks ning riba 0<<Im z<<2rn kogu tasandiks viljalikega piki reaal-
telje positiivset osa.

Ulesanded

1. Naidata, et enen—eztz,
2. Milleks kujutuvad funktsiooniga w=e*

a) jooned x=C, y=_C;

b) sirged y=*kx-+b;

¢) riba a<<y<lf (0<<a<<P<<2nm);

d) sirgete y=x ja y=x-42n vahel asuv riba;
e) poolriba x<<0, 0<<y<<a<<2n;

f) poolriba x>0, 0<<y<<a<<2n;

g) ristkillik a<<x<<B, y<<y<<§ (6 —y<<2m)?

Vastus: a) g=const, 8=const;
o—b

b) spiraal g==e * , kui £5%0; kiir 8=>5, kui £=0;

c) nurk a<<O@<<P (kui a=0 ja p=2x, siis kogu tasand, 16ikega
piki reaaltelje positiivset osa);

d) kogu tasand, 16ikega médda spiraali o=¢e9;

e) sektor o<1, 0<<®<<a (kui a=2x, siis iihikring, 16ikega piki
punkte 0 ja 1 ithendavat raadiust);
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i) piirkond ¢>1, 0<®<a (kui a=2n, siis iihikringi" viliz
piirkond, loikega piki reaaltelje positiivset osa punktist.
kuni —o00}; ,

g) piirkond e*<Cg<<Ceb, y<<®<§ (kui 6-—y=2m, siis rongas
{iimber nullpunkti 16ikega piki kiirt @=y). '

3. Kujutada iilemisele pooltasandile sirgete y=x ja y=x--h vahe-
line piirkond.
a(1—i)z
Vastus: w=e 7

4, Milleks kujutab funktsioon w=—=e? riba 0<Imz<Cm, loikega piki

punkte 0 ja g—i ithendavat sirgloiku?

Vastus: Ulemine pooltasand, millest on vélja jdetud iihik-
ringjoone esimese veerandi osa.

34. LOGARITMFUNKTSIOON

Kompleksarvu z logaritmiks Lnz nimetatakse kompleksarvu w,
mille puhul z=e®. Olgu z=re'® ning w=u-iv. Sel juhul

reiq} —1 oL ei‘v,

s.t. e=r ning v=ugp-+2kn. Sellest saame, et

w=Lnz=u4iv=Inr+}i(p+2kn), (1)
ehk teisiti |
Ln z=In|z| +i(arg 2+2kn), k=0, £1, ... . (2)

Seega nieme, et kompleksarvude hulgal on logaritmil 1opmata palju
viaartusi. Teiselt poolt: seosest ¢2) ilmneb, et kompleksarvude puhul
eksisteerib logaritm igasugusest arvust z, vilja arvatud vaid 0 ja co.

Funktsiooni w=Lnz nimetatakse logaritmfunktsiooniks. Vii-
mane on eksponentfunktsiooni p6ordiunktsioon, kusjuures kehtivad
seosed

elnz—=z ning Ln et=242kni.

Et logaritmfunktsioon on eksponentfunktsiooni pdordiunktsioon, siis
kujutab ta viimase védidrtuste Riemanni pinna (vt. joon. 16) fiks-
{iheselt komplekstasandile. Seda Riemanni pinda nimetatakse samuti
logaritmfunktsiooni Riemanni pinnaks. Punktid z=0 ja z==oc0 on
tema hargnemispunktideks. Neid nimetatakse logaritmilisteks harg-
nemispunktideks.

Osutub, et logaritmfunktsioonil on oma Riemanni pinna igas
punktis (vilja arvatud z=0 ja z==o00) tuletis. Seda vdib kergesti
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kontrollida Cauchy — Riemanni vorrandite (polaarkoordinaatides)
abil, kui arvestada seost (1).

Et logaritmfunktsioon (vaadelduna komplekstasandil) on lop-
mata mitmene, siis huvitab meid tema regulaarsete (s.t. itheste ja
diferentseeruvate) harude eraldamine. Nende harude analiiiitilised
avaldised saame seosest (2), kui asetame sellesse kordaja % erine-
vaid vaadrtusi. Haru, mille saame &£=0 korral, nimetatakse loga-
ritmi peaharuks ning tdhistatakse

Inz=In|z|4iargz. (3)

Logaritmfunktsiooni analiifitilisest avaldisest (2) selgub, et tema
harusid voib eraldada nendes piirkondades, kus on eraldatavad
Arg z iiksikud véairtused. See on aga voimalik z-tasandil, millest
on vilja ldigatud reaaltelje negatiivne osa. Kui vaatleme logaritmi
harude eraldamist tema Riemanni pinnal, siis tuleb loigata Rie-
manni pinna lehed 1dbi piki reaaltelje negatiivset osa. Seega on
lehed iiksteisest eraldatud, sest ei saa liikuda iihelt lehelt teisele
ilma loiget iiletamata. Peaharule vastab sel juhul Riemanni pinna
see osa, mis asub lehe 0 iilemisel poolel ning lehe (—1) alumisel
poolel (vt. joon. 16). Need kaks osa moodustavad tasandi, millest
on vilja l6igatud vaid reaaltelje negatiivne osa. Seega voime oOelda,
et funktsioon (3) kujutab z-tasandi, millest on valja loigatud reaal-
telje negatiivne osa, ribaks —m<<Imw<Cn, sealhulgas iilemise
pooltasandi ribaks 0<<Im w<<m. Selline kujutus on konformne iga z

puhul, sest (In z)’=%q&0.

Ulesanded

1. Arvutada logaritm ja tema peaviirtus jdrgmistest avaldistest:

a) (14i)e, ¢) (—14i) (—14iV3),
_ 1—i
b)) (1—1i7¥3)4 d) —.
| (3+i¥3)*
, T . 2%

Vastus: Peaviddrtused: a) 31n2——1?;r b) 41n2+1—§—.,

3 . T 1 . I
c) -—2—1112—1—1—5-, d) 5 In2—1In12 TR

2. Milleks kujutab funktsioon w=Inz
a) jooned |z|=R;
b) jooned arg z==wp;
¢) nurga O<Carg z<la<m,
d) sektori |z|<<1, O0<<arg z<<a=<Cm;
e) ronga ri<<|z| <<r., 16ikega piki 16iku [—ry; —r2]?
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Vastus: a) u==c; b) v==¢, ¢) riba 0<CV<<& d) poolriba w8 -
0< v<<a; e) ristkiilik In ri<<u<Inrg, —n<v<7m.

3. Konstrueerida funktsiooni w=1Ln z(z—1) Riemanni pind.

3.5. ULDINE ASTMEFUNKTSIOON

Uldiseks astmefunktsiooniks animetatakse funktsiooni
wzzazeaLné, (1)

kus a=oa--ip. Kui arvestame logaritmi avaldist, saame seosest (1),
et

20 —— p(@-HB) Ln 2— e In r—-B(o-+2hm)pila(@+2km)l+p In 7 (2)
kus r=|z|, p=argz ja k=0, +1, ...

Seosest (2) selgub, et p*~0 puhul on w=2¢% lopmata mitmene
funktsioon. Kui aga p=0, siis
() = 20— 20— g0 I TEI(@-+2RT), (3)
Vordusest (3) selgub, et
|w|=r* ning (Arg w)p=a (@-+2kn) +2pn, k p=0, =1, ....

Saadud tulemusest nideme, et ainult tdisarvulise a korral on funkt-
sioon w=2¢ iihene, sest ainuit sel juhul saame koigi tdisarvude &
ja p puhul iihe ja sama kompleksarvu argumendiga agp==ag.

Ratsionaalarvulise a=r puhul saame n oluliselt erinevat argu-
mendi vadrtust:

e @1=a(p+-n—:- o, ..., 9,1_1=acp—|—-%1- (n— 1)2s.x

Kui a on irratsionaalarv, saame iga k puhul oluliselt erineva
argumendi védrtuse, sest siis kehtib iga tédisarvu n puhul jargmine
seos:

a((p+2k1ﬂ3) -— a((p—l-zkzﬂ) =2n7.

Uldise astmefunktsiooni definitsiooni pohjal saame, et selle
funktsiooni itheseid harusid voib eraldada samas piirkonnas kui
logaritmiunktsiooni puhulgi. Niisiis, w==2% on regulaarne komp-
lekstasandil, millest on valja loigatud reaaltelje negatiivne osa.

Kui iildise astmefunktsiooni avaldises votame logaritmi peaharu;
siis saame ithese funktsiooni, mida nimetatakse iildise astmefunki-

siooni peaharuks:

Ww=—gt=—ea Nz : (4)
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Sellest saame Hitfunktsiooni diferentseerimise reegli kohaselt
dw d

—. 20— . @a In z ._.a_.-: aze—1

dz dz dz

Siit ndeme, et vaadeldav funktsioon teostab konformse /kujutuse
oma regulaarsuse piirkonna igas punktis (punktid z=0/ja z=o00
kuuluvad véljaldikele). Millist laadi on see konformpé kujutus?
Seile médaramiseks kasutame seost (4), mille kohaselt /(olgu konk-
reetsuse mottes a>0) /

w==e*, kus zz=az; ning z;=lInz.

Vaatleme, milline piirkond kujutub w-tasandi iilemiseks pooleks.
Eksponentfunktsiooni omaduste tdottu on selleks z2p-taasndi riba

0<<Imz2<x. Viimase originaaliks z;-tasandil on riba 0<<Im zi<-2—.

Selle riba originaaliks 2-tasandil on aga nurk 0<Carg z<—g-. Seega

saimegi piirkonna, mis kujutub funktsiooniga w=z¢ (a>0) iilemi-
seks pooltasandiks.

Ulesanded

1. Kujutada iilemiseks pooltasandiks jdrgmised piirkonnad:

a) 0<argz<%; b) ——-%<argz<0; c) |argz[<—z—.
Vastus: a) w==z3, b) w=—2% c) w=iz-

3.6. LINEAARFUNKTSIOON
Juba jaotise 2.1 niidetes 1—4 uurisime lineaarse funktsiooniga
w=az-}+b (1)

teostatava kujutuse iseloomu. Teeme siinkohal veel moned méarkmed
selles suunas. On loomulik eeldada, et as%=0, s.t. w'=a=~0. Sellest
jéreldub, et lineaarfunktsioon teostab koikjal konformse kujutamise.

Mirgime veel, et lineaarfunkisioon kujutab iga ringjoone jille
ringjooneks. Toepoolest, kui meil on ringjoon

|z— 2| =7,
siis seose (1) pohjal saame, et kujutispunktid rahuldavad vorrandit

w—Db
a

44

— Ry | =1,



ehk siit
|© =~ wo| = alr,

kus wy=azo+b. Sellest arutelust jireldub, et ringjoone keskpunkt -
kujutub \kujutisringjoone keskpunktiks ning raadius muutub teguri
|a] kordselt.

Niitame veel, et iga sirge kujutub sirgeks, kusjuures ldhtesirge
suhtes siimmeetrilised punktid kujutuvad kujutissirge suhtes siim-
meetrilisteks: punktideks. Olgu meil mingi sirge suhtes kaks siim-

meetrilist punkti 2y ja 2 Sel juhul on see sirge méératud vor-
randiga

lz— 2] =|z—z]|. | )
Asendades selles vérrandis z seose (1) pohjal, saame vorduse
w—b | w—b '
— 2| = —=22],
a a
millest

| — wi] =& —w], (3)
kus wy=az,-+b ja wy=—azs-+b. Vorrandist (3) jireldub, et sirge (2)
kujutub sirgeks, kusjuures punktide z; ja 2z kujutispunktid w; ja
ws on siimmeetrilised sirge (3) suhtes.

Mbnevorra hiljem niitame, et ka ringjoone suhtes siimmeetrili-
sed punktid kujutuvad kujutisringjoone suhtes siimmeetrilisteks

punktideks. See jdreldub murdlineaarse funktsiooni vastavast oma-
dusest.

1
3.7. FUNKTSIOON W=T

Vaatleme funktsiooni w=-—i—, mis on méidratud iga nullpunktist
erineva z puhul. Ent laiendatud komplekstasandit vaadeldes voime

oelda, et funktsioon w=~%— on méidratud igas punktis (sel juhul

%zoo). Ft w'_:_?;eo, siis teostab vaadeldav funktsioon iigas

punktis konformse kujutuse. Vaatleme, millist laadi on see kujutus.
On selge, et siin iga sirge ei kujutu sirgeks. Toepoolest, iga sirge
1abib lopmatuspunkti. Lopmatuspunktiks' aga kujutub nullpunkt.

Seega voib sirgeks kujutuda ainult niisugune joon, mis l4dbib null-
punkti.

Osutub aga, et vaadeldav funkisioon kujutab iga ringjoone ja
sirge jille ringjooneks voi sirgeks, kusjuures sirge voib kujutuda
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ringjooneks ning vastupidi. Selle testuseks 1ahtume sirgete ja rir;g’;
joonte iihisest vorrandist (vt. jaotise 1.3 iilesanded 5 ja 6) /

azz4-Az+4+Az+4+-b=0, (1)

kus A on kompleksarv, a ja b — reaalarvud, ning on tﬁid?{{ld vor-
ratus j

7
/

|42 — ab>0. / (2)

/

/
Antud funktsiooni korral z=?§)—, mistottu vorrandist (1) saame, et

/

.
/

bww+ A +Aw+a=0.

Ka see on ringjoone vodi sirge vérrand, sest tingimus (2) on tai-
detud. |

Arvestades, et ringjoonte ja sirgete iihisest hulgast ldbivad 1op-
matuspunkti ainult viimased, saame, et sirgeteks kujutuvad funkt-

siooniga w:é koik need ja ainult need sirged ning ringjooned,
mis ldbivad nullpunkti.
Kui uurida funktsiooniga w=-;1- teostatavat kujutust ldhemalt,

siis markame, et iihikringi jatab see kujutus paigale. Paigale jdi-
vad ka punktid z=1 ja z=-—1., Viimaseid nimetatakse selle funkt-
siooni piisipunktideks. Uhikringi iga sisepunkt kujutub valispunktiks
ning vastupidi, kusjuures

arg w=——arg 2.

Ulesanded

1. Milleks kujutab funktsioon w=—;-

a) ringjooned x2+}yl=aux;

b) ringjooned x2+y?=bx;

c) sirged y=x-1b;

d) sirged y=mx;

e) punkti 250 ladbivad sirged;
I} parabooli y==x2?

Vastus: a) u:—;—, b) sirged v=—-é~,
b(2+v)+utv=0, d) sirged v=—mu, e) punkte wo=-£—- ja
0
_._03

v+1

c) ringjooned

w==0 ldbivad ringjooned, f) w?=
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33 MURDLINEAARNE FUNKTSIOON
Vaatieme murdlineaarset funktsiooni

B\
. ax+-b \
W=rrd (0

mitlel on Xompleksmuutuja funktsioonide teoorias kiillaltki oluline
koht. See scietub iihelt poolt tema huvitavate geomeetriliste oma-
dustega, teiselt pooll aga praktiliste rakenduste rohkusega. Osutub
nimelt, et selle funktsiooniga saab esitada paljusid vdga olulisi
konformseid kujutusi. Eelnevas juba maérkisime, et iiheks oluliseks
piirkonnaks, mitlele kujutatakse teisi piirkondi, on thikring. Eda-
sises nieme, et koik iihikringi konformsed kujutused iseendale on
esitatavad murdlineaarse funkisiooniga.

Kui funktsiooni (1) avaldises teostada jagamine, siis saame, et

a bc—ad
w=7+' c(cz+d) (2)

Tulemusest ilmneb, et on motet vaadelda vaid niisuguseid murd-
lineaarseid funktsioone, mille puhul bc — ad=~=0. Samuti saame vOr-
dusest (2), et funktsiooni (1) voib vaadelda kompositsioonina
funktsioonidest

21— CZ—|—d,
I
Bo——,
<1

a , bc—ad
W= + — 2o,
c c -

Arvestades kahe eelmise paragrahvi tulemusi, voime oelda, et murd-
[ineaarne funktsioon teostab igas punktis konformse kujutuse, mille
suhtes ringjoonte ja sirgete fihine hulk on invarianine, s.t. iga-sirge
ja ringjoon kujutub jdlle kas ringjooneks voi sirgeks. Et ainult

punkt z:=0, s.t. '2-——-———6—; kujutub 1opmatuspunktiks, siis sirge-
teks kujutuvad vaid niisugused sirged ja ringjooned, mis labivad

punkti Z=—. Viimast nimetatakse murdlineaarse funktsiooni
(1) pooluseks.

Mirgime ka, et iga sirge kujutis peab ldbima punkti w=—%~,

sest see on 16pmatuspunkti kujutiseks, nagu kergesti jéreldub seo-
sest (2).

Et ka murdlineaarse funktsiooni poordfunktsicon on murd-
lineaarne, siis voib iga sirge ja ringjoon olla vaid sirge vdi ring-
joone kujutiseks.
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Murdlineaarse funktsiooni avaldist vaadeldes markame,
selles on kolm sbltumatut kordajat = (neljandaga voime mustfu
lugeja ja nimetaja jagada). Nende kolme kordaja, s.t. murd/ine-
aarse funktsiooni maaramiseks on vaja ette anda kolme punktiAuju-
tised. Niisiis méaravad murdlineaarse funktsiooni seosed:

_az+b o a2+ b _azstb (3)
= czl—l-d ’ 2 C22+d ’ 7 023+d ’
Seostest (1) ja (3) jareldub, et
w-———wi_ Z_QJ3—ZU1__ Z“Z@ . 23— 2 (4)
W— Wy Ws— Wy 2—2  Zzg—25 /

Selle vorduse vasakul ja paremal pool seisvaid ay/aldisi nimetatakse
nelja punkti liitsuhteks. Seos (4) iitleb, et neljd punkti liitsuhe on
murdlineaarse kujutuse invariant. Et seda kontrollida, tuleb var-
duste (1) ja (3) pohjal asendada vérduse (4) vasakul poolel
W, w1, Wy ja ws. Peale lihtsustamist saaksimegi vérduse (4) parema
poole, :
Seose (4) pohjal on hea leida sellist murdlineaarset funktsiooni,
mis fikseeritud kolm punkti kujutab etteantud kolmeks punktiks.
Kui moni vaadeldavatest punktidest on oo, siis asendame seda
punkti sisaldava liikme arvuga 1.

Nédide 1. Leida murdlineaarne funktsioon, mis punktid 2, 1
ja oo kujutab vastavalt punktideks oo, i ja 0.

Asendades antud arvud vordusse (4), saame

1 1 z2—2 1 -~

w—1 0—i - =21 71"

millest
—i z2—2

w—i z—1

ehk

W= i | 17
= 2_2‘- Joon,

Néitame, et murdlineaarne funktsioon kujutab ringjoone (06i
sirge) suhtes siimmeetrilised punktid kujutisringjoone suhtes sim-
meetrilisteks punkiideks.

Meenutame, et punkte 2, ja z, nimetatakse ringjoone |z — z,| =R
suhtes siimmeetrilisteks, kui nad asuvad mingil keskpunktist lih-
tuval kiirel ning |21 — 2] |22 — 20| =R? (vt. joon. 17). Ulalmaini-
- tud murdlineaarse funktsiooni omadus jareldub kergesti jdrgmisest
teoreemist. '
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Teoreem. Punktid on ringjoone suhtes siimmeetrilised parag
Sits, kui nad asuvad selle ringjoonega ortogonaalsete ringjoor
kimbi_tippudes. | ’ - =

Ta\évilikkus. Olgu punktid z; ja 2, siimmeetrilised ring-
joone _\suhtes (vt. joon. 17), s.t.

21— 20| [ 2 — 20| = R*= | A — 22 (5)

Elementaargeomeetriast tuntud teoreemi (ringjoone puutuja ja 15i-
kaja 16ikude kohta) pohjal saame, et 16ik Az on ringjoone S; puu-
tujaks, s.t. ringjooned C ja S; on omavahel risti. .

Piisavus. Olgu ringjooned S; ja S, risti ringjoonega C.
Ringjoonte S; ja 'S, loikepunktidega 2y ja 2z, miiratud sirge (kimbu
telg) on risti ringjoonega C ning ldbib seega ringjoone C kesk-
punkti z,. Ulalmérgitud elementaargeomeetria teoreemi kohaselt
saame niiiid, et on rahuldatud seos (5). Seega on punktid 2z; ja 2
summeetrilised ringjoone C suhtes.

Ulesanded

I. Toestada vordus (4).

2. Ndidata, et iga murdlineaarse funktsiooniga teostatav kujutus om
igas punktis konformne.

3. Toestada, et ringjoone suhtes siimmeetriliste punktide definit-
sioon on iildistuseks siimmeetriale sirge suhtes, kui sirget vaa-
delda lopmatult suure raadiusega ringjoonena.

4. Leida murdlineaarne funktsioon, mis kujutab punktid 1, oo, i
a) vastavalt punktideks i, 1, 1--i;
b) vastavalt punktideks oo, i, I;
¢) vastavalt punktideks 0, oo, 1.

. _ (I4-i)z414-3i _iz424i
Vastus: a) w= (0121311 b) w—--———---—-—z_l_I .
c) wzl;] (z-41).

5. Leida iilemise pooltasandi kujutus iseendaks, kui
a) w(0)=1, w(1)=2 ja w(2)=o0;
b) w(0)=1, w(i)=2i.

. 2 . 2241
Vastus: a) w=—g—, b) w= 22_2.
6. Milleks kujutab funktsioon w=zi1 nurga 0<<arg z<-g—'x’
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Vastus: alumine pooltasand, millest on vilja ldigatud r/ing

1 i Y2
=gt |< 2 /
. Milleks kujutab funktsioon w=-—i Z—{——ll iihikringi/ {ilemise
poole? //'[
Vastus: komplekstasandi esimene veerand. /

. Leida funktsioonid, mis kujutavad jargmised purfxonnad {ilemi-
seks pooltasandiks:

) =] <1, |z —i] <1;
b) |2]>2, |z—V2|<V2;
¢) Imz>1, |z2|<2;

d) |z| <2, O<arg z<—g- :

3
e) |z >2, 0<<Arg ASERE

f} kogu tasand, millest on vilja [digatud punkte 14-i ja 24-2i
fihendav loik;

g) |2|<?, |z—1|>1;
h) |z|>2, |z—3|>1.

Vastus: a) w=—( 2z+3/§—i)3/2;~ b) wz[ z—Y2(1—i) ]4'

?

22—)3—i z—V2(14i)
)
o o= (T oo (5

2ni 2fami

g) w=e >2; h) w=e =2,




3.9. ZUKOVSKI FUNKTSIOON

Nanda nimetatakse funktsiooni

o=y (a+1) S

Seda funktsiooni kasutas N. J. Zukouski (1847—1921) oma aero-~
diinaamikaalastes uurimustes. Oma té6dega pani ta aluse lennuki
titva ehituse teoreetilisele uurimisele. Pogusalt tutvume sellega jao-
tises 9. |

Kui diferentseerida Zukovski funktsiooni, siis selgub, et see teos-
tab koikides punktides konformse kujutamise (védlja arvatud punk-
tid z=+1). Funktsiooniga (1) méiédratud kujutus pole aga iiks-
lihene, sest seos

on rahuldatud kahel juhul: zy=2, ning z1=71-. Seega kujutuvad
.

punktid z ja —;— itheks ja samaks punktiks, s.t. meil on tegemist

kahelehelise funktsiooniga. Et maérata piirkonda D, kus Zukovski
funktsioon teostab iiks-iihese kujutuse, peame valima piirkonna,
mille mistahes kaks punkti ei rahulda seost 2;2;=1. Sellisteks piir-
kondadeks on |z|<<1 ja |z|>1.

Selgitame, milleks kujutab Zukovski funktsioon iihikringi |z]<<I.
Samaks piirkonnaks kujutub siis ka piirkond |z|>1, sest mende
kahe piirkonna punktide vahel maiédrab seos zjz=1 iiks-ithese vas-
tavuse. Ringi |z]<C1 kujutispiirkonna médramiseks vaatleme raa-
diuste argz=¢ (0<<r<<C1) ning ringjoonte |z|=r (r<<l) kuju-
tisi. Olgu z==re!® ning w=u-}-iv, siis seosest (1) saame, et

|

1 1) __1( l).
u__2( +r cos g, v=—g\r——)sing. (2)

Nende seoste pohjal voime &elda, et ringjoone |z|=r kujuti-
seks on ellips pooltelgedega

“ (4 d) g ael (L)
=7 r—]—,r ja b,._2 —r]).

r

Selle ellipsi fookused asuvad punktides z=-1. Kui r—-0, siis a,—~oc
ning by—oco. Kui r—1, siis a,—~1 ning b—0. Seega on ithikring-
joone |z|=1 kujutiseks kahekordne 16ik [—1, 1] (nii iihikring-
joone {ilemine kui ka alumine pool kujutuvad 16iguks [—1, I]).

Kui ldbime ringjoone |z|=r positiivses suunas, siis ldbitakse

vastav ellips negatiivses suunas. Toepoolest, et r——i-<0, siis
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(pE[ 0, —g—] puhul v<<0. Sellest jareldub, et iihikringi lilemine

pool kujutub alumiseks pooltasandiks ning alumine pool iilemiseks.
Seega voime Oelda, et piirkond |zi<l kujutub kogu tasandils, mil-
lest on vilja l6igatud 16ik [—1, 1].

Kui vaatleme raadiuse arg z=¢ kujutist, siis saame
pohjal (elimineerides suuruse r), et selle madrab vorrand

oste (2)

12 02 /
2 0 cin2 =1.
cosg  sin?g

Saadud vorrand esitab hiiperbooli, ktrsjuures,'i(a selle hiiper-
booli fookused asuvad punktides z==1. Osutub aga, et raadius

ei kujutu mitte kogu hiiperbooliks, vaid ainult selle teatavaks
osaks. Toepoolest, kui 0<'q><-g—, siis saame seoste (2) pohjal,

et u>0 ning v<C0. Seega on esimeses veerandis asuva raadiuse
kujutiseks neljandas veerandis asuv hiiperbooli haru. Kui aga
votame sama raadiuse pikenduse kolmandas veerandis, s.t. @ ase-
mel nurga ¢—m, siis on selle kujutiseks teises veerandis asuv
hiiperbooli haru. Kui ¢ asemel votta —q ning n«— ¢, siis saame
sama hiiperbooli harud vastavalt 1 ning III veerandis.

Me nigime, et punktid 21 ja 2 kujutuvad iiheks ja samaks
punktiks, kui z1ze=1, s.t. argzi=—arg 2 Seega asub iiheks ja
samaks punktiks kujutuvatest punktidest iiks iilemises, teine alumi-
ses pooltasandis. _

Eelnevas nigime, et ihikringi alumine pool kujutus iilemiseks
pooltasandiks ning iilemine pool alumiseks. Seda arvestades voime
niitid viita, et {ilemise pooltasandi osa viljaspool {ihikringi kujutub
kogu iilemiseks pooltasandiks ning alumise pooltasandi vastav osa
kogu alumiseks pooltasandiks.

Kui tahame konstrueerida niisugust Riemanni pinda, milleks

=== "
S == iF4
! ‘ \
Ai/ \
\ \
yd 1 'B\{
: \ Joon. 18
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7ukovski funktsioon kujutaks kogu z-tasandi iiks-iiheselt, siis tuleb
votta kaks w-tasandi eksemplari, 1digata need 1abi piki 1oiku [-1, 11
ning jihendada 15igete servad nii, et iihe tasandi alumiselt poolelt
liiguksime teise tasandi {lemisele poolele ja vastupidi. See on vaja-
lik seetottu, et ihikringjoon kujutuks loiguks [—1, 1], kusjuures
lihenemisele iihikringjoone iilemisele osale seestpoolt vastaks kuju-
tispunkti lihenemine loigule [—I, 1] altpoolt, véljastpoolt lédhene-
misele aga {ilaltpoolt ldhenemine. Uhikringjoone alumisele poolele
lihenemisel on olukord vastupidine. Niisiis tuleb esimese tasandi
i5ike alumine serv iihendada teise tasandi loike iilemise servaga
ning vastupidi (vt. joon. 18).

3.10. TRIGONOMEETRILISD JA HUPERBOOLSED FUNKTSIOONID
Euleri valemist

ei*—=c0os x-isinx

saame (kui x asemel vdtame —x), et

e{x—=cos x —1 sin x.

Nende kahe seose pdhjal

. elx _— e—Ix . eix‘_l_ e—-lx
sin x= - ning cos x=—
91 8 9

Laiendame funkisioonide «siinus» ja «koosinus» madramispiir-
konda nii, et see haaraks kompleksarvude hulga. Selleks asendame
asjasaadud vorduses reaalmuutuja x kompleksmuutujaga z. Niisiis,
defineerime funktsiooni «siinus» ja. «koosinus» kompleksse argu-
mendi korral vordustega:

. elz — e—iz eiz _l_e--lz
w=sinz= _ ning w=Cco0sz=

2i & 2

Olles selliselt defineerinud funktsioonid w=sinz ja w==co0s 2z,
voime vahetult kontrollida, et neil funktsiconidel on jdrgmised oma-
dused:

1) reaalse argumendi korral iihtivad need funktsioonid keskkooli-
kursusest tuntud siinuse ja koosinusega;
2) nad on kogu komplekstasandil regulaarsed, kusjuures

(sinz)’==cos z ning (cos z)’=—sin z;

3) nende perioodiks on reaalarv 2m;
4) kehtivad tuttavad trigonomeetrilised seosed:

sin? z--cos? z=1, sin2z=2sinzcosz jne;
5) w=sin 2 on paaritu, w=cos 2 aga paarisfunktsioon.

Ei saa aga Oelda, et kdik trigonomeetriliste funktsioonide oma-
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AN
|

dused, mis on neil reaalarvude hulgas, siiliksid kompleksse argu-
mendi korral. Nii teame, et iga reaalarvu x korral

Joon. 19

|sinx|<<1 ja |cosx|=<C1.
See omadus ei kehti kompleksse argumendi puhul. Nii naiteks,

etet . e—et
———2—-~1,54 ning sini=——pr——r

Joonisel 19 on kujutatud pind s=]sinz|. Seda pinda nimeta-
takse siinuse reljeefiks.

Funktsioonidega w=cosz ja w=sinz mdidratud kujutuste
uurimiseks taandame need funktsioonid juba tuntud funktsioonide
kompositsioonideks. Vastavalt funktsiconi w==cos z definitsioonile
saame, et teda vdib vaadelda jargmiste funktsioonide kompositsioo-
nina:

cos i= ~—1,17i.

. . 1 1
2i=i2, zy=en ].a w=— (z2+: - ) (1)

Funktsiooni w=sin z puhul saame vastavalt:

. . . 1 1
Zy=i2, zZp=e¥, 2Z3—=—I123 ]a w=—2— 23-——).

Selgitame niiiid, millise piirkonna kujutab funkisioon w=cos z
kogu w-tasandiks. Kasutame selieks seoseid (1) tagant ettepoole.
Viimasest seosest (Zukovski funkisioon) jdreldub, et 2;-tasandi
ithikring kujutub w-tasandiks, millest on vilja 16igatud vaid 16ik
[—1, 1]. Edasi tuleb selgitada, millise piirkonna kujutab funktsioon
zp—e» iithikringiks. Eelnevast teame, et niisugust piirkonda pole.

* Joonised 19 ja 20 on voetud raamatust Sluke E., Ampe P. Tabnuust ¥ QyHK-
Huu, M., 1959,
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Kiill aga kujutab vaadeldav funktsioon poolriba Rez1<<0, —n<T
< Imz;<x ihikringiks, 6ikega piki raadiust [—1, 0]. Seega ei
saa me ka w-tasandil zx-tasandi loigu [—1, 0] kujutist, s.t. u-telje
osa (—oo, —1]. Jadb veel selgitada, millise piirkonna kujutab funkt-
sioon z==iz ilalmirgitud poolribaks. Et funktsioon zy=—1iz teostab

: s , . | S . :
vaid tasandi poorde fimber nullpunkii nurga 5 vorra, siis on otsi-

tavaks piirkonnaks poolrida —m<CRe z<(s, Im 2>0. Niisiis: funkt-
sioon w=-cos z kujutab poolriba —n< Re z<x, Im 2>0 kogu w-ta-
sandiks, 16ikega piki reaaltelje osa (—oo, 1].

Ulejadnud kaks trigonomeetrilist funktsiooni w=tanz ja w=
—cot z defineerime vordustega:

sin z . elz ez N |
tan z2—=———4=——1 - —_ ] ——- ,
CoS 2 elz}-e—iz efiz]
CoSs 2 eiz-|-e—iz . ezt ]
cot z=— ES =] —
sin 2 elz — e—-lz e2lz R 1

Nende funktsioonidega teostatavaid kujutusi voime vaadelda kui
lineaarsete, murdlineaarsete ja eksponentiunktsioonidega teostata-
vate kujutuste kompositsioone.
Joonisel 20 on kujutatud tangensi reljeef, s.t. pind s=|tanz|.
Analoogiliselt trigonomeetriliste funkisioonidega defineeritakse
vastavad hiiperboolsed funktsioonid, nimelt

ez—e'—z ez._l__e*-z
w=shz 5 , w=chz 5 ,
sh z ch z
w:th 2= , —-— h f—
ch z w=cthz h
4 .

W
fg
cth

i

Joon. 20
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Vorreldes neid funkisioone trigonomeetriliste funkisioonidega,
naeme, et

sh 2=—isiniz, chz==cosiz, thz=-—itaniz, cthz=icotiz.

3.11. ARKUS- JA AREAFUNKTSIOONID

Trigonomeetriliste funktsioonide poordiunktsioone nimetatakse
arkusfunktsioonideks. Neid tdhistatakse vastavalt:

w=Arcsinz, w=Arccosz, w==Arctanz, w=—Arccotz.

Osutub, et arkusfunktsioone saab avaldada logaritmiunktsioonide
kaudu. Teeme seda néiiteks funktsiooni w=Arccos z puhul. Et vasta-
valt definitsioonile z=cos w, siis

2 e

2=

Meid huvitab avaldada w muutuja z kaudu. Selleks paneme téhele, et
e2w —— Jzelw 4 1 =0,

millest saame

elw—=24722— 1

ning seega
w=Arccos z=—1i Ln(z1}22—1). (1)
Et aga
1-
=z 'Vza - 1’ (2)
24-Y=2—1

siis vdime valemis (1) miinusmérgid juure ja logaritmi eest dra
jatta. (Miinusmirgist juure ees voib loobuda sellepirast, et ruut-
juur on kahene funktsioon. Seos (2) lubab miinusmargi_ dra jatta
ka logaritmi eest.) Seega

w==Arccos z=i Ln(z+}yz2—1).

Eelmises jaotises nigime, et funktsioon w=rosz kujutab pool-
riba —n<<Rez<<m, Imz<<0 kogu w-tasandiks, millest on vilja
16igatud vaid poolsirge —oo<<Re w<<1, Im w==0. Sellest jéreldub,
et vaadeldavas w-tasandi piirkonnas saab eraldada funktsiooni w=
= Arccos z regulaarse haru, Funktsiooni w=Arccos z sellist regu-
laarset haru, mis kujutab kogu z-tasandi (viljaldikega piki poolsir-
get —oo<<Re z<C1, Imz=40) poolribaks —n<<Re w<m, Im w<O,
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nimelatakse arkuskoosinuse peaharuks ning tahistataksé

W==2arccos 2.
Ka teiste trigonomeetriliste funktsioonide poordfunktsioonid vdib -
avaldada logaritmfunktsiooni kaudu. Kehtivad valemid:

Arcsin z.———% — Arccos z=-:r2£- —iln(z4+y22—1),

T 1 i—2z
Arctan z=-— — Arccot z=——Ln —

2 21 itz

Hiiperboolsete funktsioonide p6ordfunktsioone nimetatakse area-
sunktsioonideks ning tahistatakse vastavalt w=Arsh z, w=Archz,
w=—Arth z ja w=Arcthz ,

Kehtivad jiargmised valemid:

Arsh z=Ln(z+V22+1), Archz=Ln (z+]/22 —1),
142 1 z-+1

. Arcth z=—Ln——,

1
Arthz=—1>Ln 5 —

2 ] —2z

millest nieme, et koik areafunktsioonid on mitmesed funktsioonid.

Koikide nende mitmeste funktsioonide puhul voime eraldada
nende iiksikud harud, nagu seda tegime funktsiooni w=Arccos z
puhul.

4. KOMPLEKSMUUTUJA FUNKTSIOONIDE INTEGREERIMINE

4.1. INTEGRAALI MOISTE JA OMADUSED

Defineerime joonintegraali mbdiste kompleksmuutuja funktsioo-
nide korral. Joontena vaatleme Jordani jooni, s.t. jooni, mis ol
masratud vorrandiga

z=2(t)=x(t)+iy({),

kus x(¢) ja y(f) on pidevad mingil 16igul [a, p]. Eeldame, et para-
meetri mistahes kahe véirtuse #; ja fp puhul z(t) =2z(t), s.t. vaa-
deldavatel joontel ei ole kordseid punkie. Erandiks voivad olla
vaid « ja'p. Kui z(a)=2(p), siis nimetatakse vaadeldavat joont
kinniseks.

Kui eksisteerib pidev tuletis 2/ (¢) 16igul [a, B], siis nimetatakse
vastavat joont siledaks. Joont, mis pole sile, kuid on jaotatav 16p-
likuks arvuks siledateks osadeks, nimetatakse tiikati siledaks. Edas-
pidi vaatlemegi tilkati siledaid jooni. .

Olgu funktsioon

w=F () =U () +iV(t)
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pidev 1oigul [a, B}. Niisuguse funktsiooni puhul defineerime integ-
raali ~

fF(t)dt: ,fBU(t)dt-HfB V(¢)dt.

Selliselt defineeritud integraali korral kehtivad jdrgmised omadu-
sed

RejF(t)dt:jReF(t)dt, (1)
ij(t)dtzkfF(t)dt, (2)
afﬁ[Fi(t)—}-Fz(t)]dt:jFi(t)dt—}-sz(t)dt, ) (3)
| [ Fail< J IR0t (4)

Omadustes (1)—(3) on suhteliselt lihtne veenduda, kui arves-
tada matemaatilise analiiiisi kursusest tuntud maéairatud integraali
omadusi. Jiargnevas toestame vaid seose (4). Selleks tdhistame

B

J F(t)dt=ryel¥

o

(definitsiooni pohjal on integraal mingi kompleksarv). Siit

B8 B B
| [ F(t)dt] =ro=roelme—i0o=—e-10o [ F({)dt= [ e-F ({)dLt..
[+ 4 o v

Et saadud vorduste ahela vasakpoolseks liiliks on reaalarv, siis on
seda ka parempoolne, mistottu

| j?F(t)dt|= fﬁe~i‘1’°F(t)dt=Re_[Be—*‘P"F(t)dt = fﬁRe[e—i%F(t)]dt.

Teiselt poolt
Re[e-wF (f) ] << |Re[eF () ]| << |e®F () | ={F ({) |.

Viimase kahe seose pohjal saamegi (arvestades maaratud integ-
raali monotoonsuse omadust) vorratuse (4).

Olgu w={(2) mingi funktsioon, mis on pidev tiikati siledal ning
16pliku pikkusega joonel C. Integraali iile joone C (vorrandiga
z=2(t), te[a, B]) defineerime vordusega

T1@dz=f 2012 (0t (5)
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Et 2/ (1) =x" (1) iy’ (¢), siis
B
[ (@)dz= J Tl iy (O] () Hy' (O]
Kui tihistame f(2) =u--iv, siis seose (5) pohjal saame, et

T H(@)de=J (utie) () di=

= \_F (ux’——f,"y")a‘.'t—i--ijpE (vx'+uy’)dt,
ehk teisiti
[(2)dz= f udx — vdy-4-i [ udy4-vdx. (6)
C C C
Seostest (2) ja (3) jéreldub, et
[ ki(2)de=k [ [(2)dz,
C C
JU® +g(z)]dz=cff(z)dz+([g(z)d2-
Definitsiooni (5) pohjal voime veenduda, et kui C=Ci-+}Cy, siis
J f(z)dz= | f (Z)dZ-I—'éf f(z)d.

Samast definitsioonist jéreldub samuti, et

[Ieyde= [l0)2 () di=— Frz1Z (dt=— [ ()

Saadud seos kujutab endast joonintegraali hésti tuntud omadust,
mis vaidab, et integreerimissuuna muutmine vastupidiseks toob
kaasa integraali vddrtuse margi muutumise.

Seoste (4) ja (5) pohjal saame, et

| [ Fz)de] =] iz (a1 < [ 1120112 0 dt=
— [1i@) 4],

sest |dz|=|2(¢)|dt, kui integreerimine toimub parameetri kasva-
mise suunas (df=0). Tdhistades joone C pikkuse sfimboliga s,
saame viimasest vorrafusest, et

| Hadel < [ 120 dt=M [ YZ QT T/ DTt =M,

59



kus |f(2) | <M iga z<= C puhul. Valemit
| [ f(2)dz| <Ms
C

nimetatakse integraali mooduli hindamise valemiks.
Ndide. Leiame f22dz, kui C on iihikringjoone iilemine poo?
C

ning ldhtepunktiks on z=1. Joone C vérrandiks on z=el!, kus
t<= [0, n]. Seega '

e3it I 2

3i le™ 37

[ 2dz= [ etieltdi==] [ eMtdf—1
C 0 ¢

Ulesanded

1. Arvutada
Ji(2)dz,
C

kui f(z)=y—x— 3x% ning C on
a) sirgloik punktist 0 punktini 14,
b) murdjoon punktist 0 punkti 1-4-i 1dabi punkti i.

Vastus: a) 1—i; b) {a(1 —i).
2. Arvutada

[22,,

pet <

kui jooneks C on

a) poolringjoon z=2e!, { =[0, n],
b) poolringjoon z=2¢", { = [0, —n],
c) ringjoon z2=2e¢", { & [—n, n].

Vastus: a) —442ni; b) —4 —2xi; ¢) 4ni.

3. Niidata, et
[ (3241)dz=0,

C

kus jooneks C on ruudu 0s{Re z<C1, 0<CIm 2<C1 rajajoon.

4. Niidata, et

I dz |<_s'c__
241 1 = 37
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kui C on ringjoone |z|=2 koordinaattasandi esimeses vegradls
asuv osa. .

5. Nadidata, et
d d
f : =2ﬂ§i, f Z __O (n=2a 33 .- ’)a

S 2% b (z— 29)"

kui C on ringjoon |2 —z|=r.

4.2. CAUCHY TEOREEM

Osutub, et kui funkisioon w=f(z)=u-+tiv ja tema tuletis on
pidevad kinnisel joonel C ning sellega piiratud piirkonnas, siis

[ udx — vdy=0,
C

(1
[ vdx+udy=0. i
c

Toepoolest, matemaatilise analiiiisi kursusest tuntud teoreemi koha-
selt (joonintegraal iile kinnise joone C)

J Pdx+Qdy=0,
C

kui funktsioonide P ja Q osatuletised on pidevad joonega C piira-
tud kinnises piirkonnas ning

oP 0Q

oy 0x |
Et eelduse kohaselt f’(z) eksisteerib ja on pidev vaadeldavas kin-
nises piirkonnas, siis integraalide (1) puhul on viimane tingimus
tiidetud Cauchy — Riemanni vorrandite pohjal.

Eelmise paragrahvi vorduse (6) pohjal on siis ka

Cf f(2)dz=0. (2)

Sellega oleme tdestanud nn. Cauchy teoreemi:

Teoreem 1. Kui f(z) ning tema tuletis on pidevad tékestatud iiheli
sidusas piirkonnas D, siis vordus (2) on bige iga piirkonda D kuu-
luva kinnise joone C korral.

Sellisele tulemusele joudis Cauchy juba 1825. a. Osutub aga, et
iga diferentseeruva- kompleksmuutuja funktsiooni tuletis on pidev.
Seega peaks vastav védide kehtima ka ilma tuletise pidevuse eeldu-
seta. Et sce on toesti nii, seda naitas 1900. a. E. Coursat (1858—
1936) .

Sellel teoreemil on kompleksmuutuja funkisioonide seas keskne
koht. Tema abil saab niiteks esitada regulaarseid funktsioone
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integraalide kaudu. Teoreemi suure tdhtsuse tottu on piiiitud teda
veelgi {ildistada. Rakenduslikust seisukohast lidhtudes on kiillaltki
oluline jargnevas vaadeldav teoreem, mille esitamiseks on aga vaja
tutvuda moistega pidevus kuni rajani.

Olgu a ja b kaks punkti piirkonnast D v5i tema rajalt C. Nende
punktide vaheliseks kauguseks modda piirkonda D nimetatakse suu-
rust

@p(a, b) =inf A(y),

kus A(y) on joone y pikkus ning alumine raja on véetud kdigi nende
joonte suhtes, mis iihendavad punkte a ja & ning kuuluvad piir-
konda D. ‘

Funktsiooni [ nimetatakse kuni rajani pidevaks piirkonnas D,
kui iga punkti a korral piirkonnast D véi tema rajalt C kehtib vordus

lim  f(z)=f(a).

Op(z, a)y—>i)

Midrkus: Kui a on piirkonna D sisepunkt voi niisugune raja-
punkt, mis pole rajajoonele kordseks punktiks, siis
lim f(z)=1limf(2).

Pp(z, a)y=>0 z—a
zeD

Nidide. Vaatleme funktsiooni w=Vz=ri/2el%/2, kus z=rel®
0<<r<1 ja —an<<ep<<m. Selline funktsioon on regulaarne (seega
ka pidev) vaadeldavas piirkonnas D, milleks on iihikring loikega
piki raadiust [—1, 0] (vt. joon. 21). Kui rajapunktides ¢ maiirata
funktsiooni f vdartused seosega

F@)= lim f(z),

Pp(z, L0

Joon. 21

siis saame vaadeldavas piirkonnas kuni rajani pideva funkisiooni.
Selline tdiendav defineerimine aga ei muuda funktsiooni pidevaks
loike [—1, O]. Toepoolest, kui votame mingi punkti {=x--i0
(—1<<x<<0), siis voime seda punkti vaadelda asuvana nii 15ike {ile-
misel kui ka alumisel serval. Vaadeldes seda punkti 16ike {ilemise
serva punktfina, saame, et

f©)= lim f(z)= lim f(2)=|x|2ev2=i|x| 2.
Pp(z, TH0 X
Im z>>0
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Kui aga vaadelda sama punkti asuvana 16ike alumisel

f(o)= lim f(z)= lim f(z) =|x|V2en2=—i|x |2
Opts L0 Im 250

Seega saame erinevad vaértused soltuvalt sellest, kummal serval
asuvana vaatleme punkti . Siit aga jéreldub, et vaadeldavat funkt-
siooni ei saa muuta pidevaks kinnises piirkonnas D. Kiill aga saime
kuni rajani pideva funktsiooni, sest 10ike iilemise ja alumise serva
punktid ei ole ldhedased mbdda piirkonda voetud kauguse mottes.

Nii on ¢p(a, b)=1, kui a=—0,5 ja on vaadeldud loike iilemise
serva punktina ning b=—0,5 ja on vaadeldud 16ike alumise serva
punktina.

Sellest naitest selgub, et mdiste «pidevus kuni rajanis on eriti
oluline nende piirkondade korral, millel on liibuvaid rajajoone osi.
Sonastame niiiid teoreemi, mis on iildistuseks Cauchy teoreemile.

Teoreem 2. Kui funktsioon | on regulaarne iihelisidusas tokes-
{atud piirkonnas D ja on selles piirkonnas pidev kuni rajani C, siis

J f(2)dz=0.

Selle teoreemi toestus ei mahu kiesoleva lithikursuse raamidesse.
Edasises nimetame ka seda teoreemi Cauchy teoreemiks.

Ulesanded
1. Niidata, et

l 1£1 f(2)dz=0,
kui a) f(2)=(2242242)1, D) [(z)=ze
¢) f(2)=tanz, d) f(z)=In(z-+2i).

2. Olgu | diferentseeruv iihelisidusas piirkonnas D. Olgu C; ja Co
kaks tiikati siledat joont, mis iihendavad punkti @ punktiga b.

Naiaidata, et
C{f(z)d:c':éfzf(z)dz,

s.t. integraali vairtus ei soltu integreerimisteekonna kujust, vaid
ainult selle otspunktidest.

4.3. NEWTONI—LEIBNIZI VALEM

Funktsiooni F nimetatakse funkisiooni j algfunktsiooniks mingis

piirkonnas D, kui selle piirkonna igas punktis 2z kehtib vordus
F'(2) ={(2).
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Osutub, et funktsiooni w="F[(z) algiunktsioon pole iitheselt maara-
tud. Toepoolest, kui algiunktsiooniks on w=—F(z), siis on selleks ka
iga funktsioon kujul w=F (2)-}const. Teiselt poolt, kui F ja G on
mingi funktsiooni | algfunktsioonideks, siis

G'(2) — F'(2)=1G(2) — F(2)]'=0,
millest
G (2) — F(z) =const.

Saadud vordus iitleb, et funktsiooni w=f(2) koik algfunktsioonid
avalduvad kujul

w=F (2)+C,

kus F on mingi algfunktsioon ning C konstant.
Jirgnevas vaatleme funktsiooni f, mis on regulaarne fihelisidu-
sas {okestatud piirkonnas D. Kui valime selles piirkonnas mingid

kaks punkti 2 ja 2, siis integraal iile punkte 2o ja 2 {ihendava joone

ei soltu integreerimisteckonna kujust (jareldus Cauchy teoreemist)
vaid ainult selle otspunktidest 2z, ja z. Seetottu on motet kirjutada

Jiods

Kui loeme punkti z, fikseerituks, madrab see integraal iilemise raja
2 suhtes iihese funktsiooni,

w=0(2) = [ 1)L

Jirgnevas niitame, et @ on funktsiooni f iiks algfunktsioonidest, s. t.

@ (2) =f(2). (1)

Funktsiooni tuletise definitsioomni pohjal on vordus (1) sama-
védrne seosega ’

i | QEEM—PE) o1 o

h—0 h

(2)

Siin eeldame, et z4+h e D (vi. joon. 22). vorduse (2) naitamiseks
mairgime, et

Joon. 22



O(z+h)—@(z) 1
n ~h

z4-h .
J 1(©)dg
ning

z+h

[ == T 1)z

Neid seoseid arvestades voime kirjutada, et

D (z+h)— D (2)
h

1 z-+h
—Hay==J [FO—I()]d (3)

Regulaarsuse tottu on funkisioon pidev piirkonnas D, s.t. ka
punktis 2z, mistottu vastavalt arvule g>0 voime leida niisuguse
. §(e), et iga =D ja |T—2z]|<<b(e) puhul

[F () —TF(2)<e. (4)

Seoste (3) ja (4) pohjal saame, kasutades integraali mooduli hin-
damise valemit, et

O (z4-h)— D (2)
n

1
—(2) | <e-1hl=e,

kui |h]|<<8(e). Saadud vorratus on samaviirne seosega (2), mil-
lega olemegi tdestanud vorduse (1).
Olgu F mingi algfunkisioon funktsioonile f. Sel juhul

SHOdE=F (2)+C. (5)

Voties viimases vorduses z=2p, saame, et
C=—F (29) .

Asendades selle vordusse (5), saame Newtoni— Leibnizi valemi

fo(;)dc=F(z)—F(zo).

Seega nieme, et kui funktsioon on fihelisidusas fokestatud piir-
konnas regulaarne, saab teda integreerida Newtoni — Leibnizi
valemi abil. Sellega oleme pohjendanud, et kompleksmuutuja funkt-
sioone voib integreerida samuti kui reaalmuutuja funktsioone.

1
N dide. Arvutame

14+ 1 i-+1 1
J 2i —vh 2]

L

[ezt(i+i) — ein/z] =.2.11_ [e—-z(i-i)—{—i] .
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Ulesanded |

1. Arvutada integraalid
n2i
1-i i/2 Z
a) [ 2%z, by [ ewdz, c) f cos — dz.
0 t 2

i

Vastus: a) %(1—-1)3, b) -311—(1+i), ¢) e+-(13—.

4.4. INTEGRAAL MITMELISIDUSAS PIIRKONNAS

Vaatleme funktsiooni f, mis on regulaarne mingis tokestatud
mitmelisidusas piirkonnas D. Olgu selleks piirkonnaks joonisel 23
kujutatud kolmelisidus piirkond, mille raja moodustavad kinnised
jooned Ci, C» ja Cs Nende joonte positiivseks suunaks loeme kella-
osuti liikumisele vastupidise suuna. Kui tdhistame raja tdhega C,
siis

C=Cy+ (—C32)+ (—Cs), (1)

Joon. 23

sest raja positiivseks suunaks loetakse suunda, mida moodda lii-
kudes piirkond j&db vasakule.

Meie eesmirgiks on laiendada Cauchy teoreemi sellistele piir-
kondadele. Selleks eeldame, et funktsioon f on pidev kuni rajani C.
Toestame, et neil eeldustel ‘

[ f(z)dz=0.
c

Téepoolest, iihendades raja iiksikud osad omavahel joontega [, ja
l,, saame iihelisidusa piirkonna, mille rajajooneks on joon

I'=C+-li+l4 (—h) +(—1).
Saadud piirkonna puhul kehtib Cauchy teoreem ning seega

if f(2)dz==0.

Jooniselt 23 on niha, et joone I' tdielikul ldbimisel ldbitakse joo-
ned /, ja I, kahel korral, kuid erinevates suundades, mistotiu
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| [(2)de= ] [(2)dz=0.

Seosest (1) saame, et

C[ f(z)dz= C{ f(z)dz+c{ f(2)dz.

Saadud tulemuse pohjal voime sonastada jargmise teoreemi.

Teoreem. Kui funktsioon w=[(z) on regulaarne mitmelisidusas
tokestatud piirkonnas ja pidev kuni selle rajani, siis integraal ile
rajajoone vilimise osa on vdrdne summaga integraalidest ille sisg
miste viljaldigete rajajoonte, kus integreerimissuunaks on suund,
mida méoda liikudes piirkond (vdljaldige) jadb vasakule. -

Ulesanded
1. Ndiidata, et

f dz . f dz | f dz »
L TEDE) g G i DR
9. Arvestades jaotise 4.1 iilesannet 5, arvutada eelmises iilesandes

esinev integraal.

b

Vastus: 0. (Ulesande lahendamiseks avaldame integraalialuse
murru osamurdude summana.) P

3. Toestada, et kui f on diferentseeruv igas punktis, vilja arvafﬁd
punkt z=a, siis mistahes punkti a hélmava kinnise joone %

korral

J1@dz= | [@)dz.

z—a|=r

4, Eelmise iilesande pohjal leida .

J‘ dz
(z—a)™ ’

C

kus C on mingi kinnine joon.

Vastus: a) 0, kui joon C ei holma punkti a, v6i kui net—t

b) 2ni, kui joon C holmab punkti a ning n=—1.

5* @



4.5. CAUCHY VALEM

Rakendades teoreemi 2 jaotisest 4.2, niditame, et tokestatud piir-
konnas D regulaarse ja kuni rajani C pideva funktsiooni w=[(2)
vairtused piirkonnas D on médratud selle funktsiooni véaértustega
rajal C. Selleks toestame, et

_ 1 [ i@
f(z)_QniC £—2

dt, (1)

kui rajajoon C léabitakse positiivses suunas.

Joon. 24

Valemi (1) tdestamiseks {imbritseme punkti z ringjoonega S (vt
joon. 24), mis tdielikult kuulub piirkonda D. Ringjoone S raadiuse
valime nii viikese, et = S puhul

17 (2)—F(5) | <e, | (2)

kus >0 on suvaliselt valitud arv. Funkisiooni f pidevuse tottu on
see voimalik.

Kui loeme joone S positiivseks suunaks kellaosuti liikumisele
vastassuuna, siis saame eelmise jaotise teoreemi pohjal, et

[ (€)

c 5%

\

[ _T(E)
— | L1222 4z 3
Vastavalt iilesandele 5 jaotisest 4.1 vdime kirjutada, et

o) = [ L 4)

2ni 5

Seoste (3) ja (4) pohjal

1 fg) . 1 f(2)—1(E)
1(z) — 2mi é[ t—=z de= 2ni ;Sf t—=z dz.

Rakendades saadud vorduse puhul integraali mooduli hindamise
valemit, saame seose (2) tottu, et
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@) Cfgff)z x| =| Ry f(zg:i(;) il <

g
1 ¢
L —— — 2nr=-=¢.
2n r

Arvu e suvalisust arvestades viimane vdrratus tdestabki valemi
(1), mida nimetatakse Cauchy valemiks. Regulaarsete funktsioonide
teoorias on see valem véga tdhtis.

Ulesanded
1. Olgu
oot —29
e@)= [ 2 g (j2|3).
wZs 5%

Leida g(2). Milline on funktsiooni w=g () véartus, kui |z| >3?

Vastus: g(2)==8xui; g(2)=0, kui |z]>3.
2. Leida jargmised integraalid:

* g2 2
" - d
a) Cf prmpry S b} Cf 9241 2

COS 2
c) E[————~——-z(22+8) dz,

kus C on ruudu |x|=<<2, |y|<<2 rajajoon.
Vastus: a) 2n; b) —=mi/2; c¢) =i/

4.6. CAUCHY TUUPI INTEGRAALID

‘Cauchy valemi

_ L[ I®
fle) =g J 7 (1

C

pohjal saime esitada tokestatud piirkonnas D regulaarset funkt-
siooni, teades tema viirtusi selle piirkonna rajajoonel C. Osutub
aga, et valemis (1) esinev integraal eksisteerib iga z¢ C puhul,
kui f on pidev joonel C. Siinjuures ei tarvitse joon C olla kinnine.

Vaatlemegi jdrgnevas funktsiooni

w=F@e)=—— [-LE o @

25 pt
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kus f on pidev joonel C. Selliselt defineeritud funktsioon on maara-
tud kogu z-tasandil, vélja arvatud joone C punktides. Integraali (2)
nimetatakse Cauchy tiiiipi integraaliks. Selle integraali kohta kelttib
jdrgmine teoreem.

Teoreem 1. Funktsioon (2) on mistahes arv kordi diferentseeruv,
kusjuures .

Fim (2) — n! f f(C) dr. ‘(3)

oni ¥ (—z)"H

Toestus. Naitame, et

F'(2)= 1 f(f(g) dz. | (4)

2ni v (L—2)%
Vastavalt tuletise definitsioonile

F(z4-h)— F(z)
. .

F’(2) = lim
h->0
Arvutades saame, et

Feth)—FE) | gﬁ;_h — Clz |Fyae—

h ~ 2nik
_ L F(E)dt
S 2oy G—z—h)(E—2)

Olgu punkti z ja joone C vaheline kaugus 2d. Eeldame, et |h| <<d.
Sel juhul (vt. joon. 25)

|t —z]>d, |[t—z—h|>d,
mistottu

P L 1
le—¢] ~d’ Jt—z—h| "~ d°

Viimaste vorratuste pohjal saame, et

F(z-}+h)— F(2) 1 f(%) . Joon. 25
| h  2mi ! (L —z)? d§| —
1| hf (L) dg Ms
- 2n laf (Q—z.—h) (—2)2 = I3 Ihl’

kus M= max |f(Z)| ning s on joone C pikkus. Et h—0 puhul vii-
tecC
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mase vorratuse parem pool ldheneb nullile, siis olemegi tdestanud
valemi (4). ' |
Valem (3) toestatakse tdieliku induktsiooni meetodil. Jitame
selle lugejale.
Ka siis, kui w==f(2) on regulaarne mingis tdkestatud piirkon-
nas D ning pidev kuni rajani, on teoreemi 1 eeldused tadidetud.
Sellega oleme toestanud jdrgmise teoreemi.

Teoreem 2. Kui funktsioon [ on regulaarne tokestatud piirkon-
nas D ning pidev kuni rajajooneni C, siis eksisteerivad funktsioo-
nil | vaadeldavas piirkonnas mistahes jarku tuletised, kusjuures

—_— ( e 4y (5)

2ni v (L—2)nH

Teisiti Oeldes: teoreem 2 viidab, et iga regulaarne kompleks-
muutuja funktsioon on mistahes arv kordi diferentseeruv. Reaal-
muutuja funktsioonidel sellist omadust ei ole. Nende puhul ei
jareldu tuletise olemasolust isegi selle pidevus, ammugi siis veel
teist jarku tuletise olemasolu.

Valemist (5) saame, et kui f on regulaarne ringis [{—z|<<R ja

- -

pidev kuni rajajooneni, siis "

|ffn)(z)|:__§_!_ I f f(2)dg - nM2zR  n'M

(L—z)™t | 2uRntt ~, Rn '

t—2l=R

kuS'Mr—'mfix [F(¢)]. Vottes n=1, saame, et
{—z|==R

M
P (@) | <% (6)
Olgu | regulaarne ja tokestatud kogu komplekstasandil, s.ft.
[7(2) | <M iga 2z puhul. Siis jéreldub vérratusest (6) (kui R— o0),
et

|I”(2) | =0.

| ‘Seega f(z)=const. Me oleme sellega toestanud jargmise, iisna
huvitava teoreemi, mis on jéllegi iseloomulik vaid kompleksmuutuja
funktsioonidele.

Liouville’i teoreem. Kui funkitsioon w=f(z) on regulaarne ja
iokestatud kogu komplekstasandil, siis on ta konstanine.

Miarkus. Liouville’i teoreemist jireldub, et kogu kompleks-
tasandit ei saa konformselt kujutada ithekski tokestatud piirkonnaks
(naiteks iihikringiks). -

Liouville’i teoreemist jareldub ka nn. algebra pohiteoreem:

Igal komplekssete kordajatega mittekonstantsel poliinoomil on
vdhemalt iiks nullkoht kompleksarvude vallas.

THestus. Olgu meil mingi poliinoom P(2). Oletame, et polii-
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noomil P(z) pole iihtki nullkohta, s.t. iga 2z puhul |P(2)|>a=>0.

Kui vaatleme funktsiooni w=G(z)= siis

P(z) ’

i 1
6@ | =p<

Et viimane vorratus kehtib iga z puhul, siis Liouville'i teoreemi
pohjal G(z)=const, millest ka P(z)==const. Saadu on aga vastu-
olus eeldusega, mille kohaselt P(z) on konstandist erinev polii-
noom.

Jiargnevas esitame veel iihe rakenduse teoreemile 2, néidates, et
Cauchy teoreemil on podrdteoreem.

Morera teoreem. Kui funktsioon f on pidev ihelisidusas tékes-
tatud piirkonnas D ning

J1(2)dz=0 (7)
iga piirkonda D kuuluva kinnise joone C puhul, siis f on selles piir-
konnas regulaarne.

Tdestus. Tingimusest (7) jdreldub, et funkisioon

w=F(2)= [ 1)L

on iihene. Et F’(2)=f(2z) (selle vorduse toestasime jaotises 4.3);
siis teoreemi 2 pohjal eksisteerib ka F”(2)=f'(z). Seega [ on
ilhene ja diferentseeruv piirkonna D igas punkiis, s.t. ta on selles
piirkonnas regulaarne.

Ulesanded
1. Leida
tani
f 2 dz
) (2—2)°
kui C on kinnine joon, mis hdlmab punkti 2.
ni sinl
Vastus: - sl
2. Leida
h
f c 42 dz.
. 2

kus C on kinnine joon.

Vastus: 0 (soltumata joonest C).
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3. Leida

f exdz
v z(1l—2)3°

C

-

kus C on kinnine joon.

Vastus: a) 2xui, kui joon C hdlmab punkti 0, kuid ei holma
punkti 1;

b) —eni, kui joon C holmab punkti 1, kuid ei hdolma punkti O
¢) (2—e)mi, kui joon C hdlmab nii punkti 0 kui ka punkti 13
d) 0, kui joon C ei holma ei punkti 0 ega punkti 1. '

4. Olgu funktsioon w=/f(z) regulaarne joonega C piiratud kinni-
ses piirkonnas. Niidata, et iga 2y ¢ C korral

[1@dz_ [_i)d

& — 2p c (2“—20)2"

47. PARAMEETRIST SOLTUVAD INTEGRAALID

Vaatleme funktsiooni, mis on esitatud parameetrist soltuva
integraalina:

w=F(z)=rff(§, 2)dt, zeD. (1)
Teoreem 1. Olgu tdidetud jérgmised tingimused:
1) T on Iopliku pikkusega tiikati sile joon;

2) funktsioon [ on pidev kahe muutuja funktsioon, kui LT
ja ze= D, kus D on komplekstasandi mingi piirkond;

3) iga fikseeritud t =T korral on | regulaarne (muutuja z jargi)
piirkonnas D. :

Sel juhul on seosega (1) mddratud funktsioon F regulaarne piir-
konnas D.

Toestus. Kasutame Morera teoreemi. Tingimuste 1 ja 2 pdh-
jal on funktsioon F pidev piirkonnas D. Jad4b naidata, et

J F(2)dz=0
(8
iga piirkonda D kuuluva kinnise joonme C korral. Tdepoolest,

J Flz)dz= g (J (& 2)dE)dz= [ (JT(5 2)dz)di=0,

sest Cauchy teoreemi pohjal
J 1 2)dz=0 iga { T puhul.
¢
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Integreerimisjdrjekorda vo6ib muuta, arvestades kahekordse integ-

;‘atalil omadusi (reaalmuutujate korral). Sellega on teoreem toes-
atud,

Teoreem 2. Olgu tdidetud teoreemi 1 tingimused. Sel juhul

Fr(z)= !f_df%_ d; iga 2z D korral. (2)

Toestus. Valime suvalise punkti 2= D ning ringjoone y, mis
kuulub piirkonda D ning holmab punkti z. Sel juhul saame (kasu-
tades valemit regulaarse funkisiooni tuletise kohta), et

1 F(?) di— 1 1
2:n:i;f (t—2)2 —Qni? (t—=z

[ (] ) [ 22

r r

F/(2) = E (f F(& tydE) di=

Teoreem on toestatud. .

Kui seni oleme vaadelnud I16pliku pikkusega titkati siledaid
- jooni, siis niiid asume vaatlema niisuguseid jooni, mis on kiill 16p-
matud, kuid mille iga lopliku pikkusega osa on tiikati sile. Eeldame,
et tegu on joonega, millel on alguspunkt a (ithepoolselt I6pmatu
joon). Vaatleme selle joone osa Cs, mis jddb punktide a ja b vahele
ning mille pikkus on s. Vaatleme joonel C pidevat funktsiooni g.
Sel juhul eksisteerivad integraalid

Je@d.
Kui eksisteerib piirvaartus

lim f g(g)dg,

g0

siis seda nimetatakse funktsiooni g pédratuks integraaliks iile joone C
ning tahistatakse '

}_igl Cf g(ﬁ)d§=cjg(z)dc.

Sel juhul 6eldakse, et vaadeldav pératu integraal koondub.

Kui on tegu kahepoolselt 1opmatu joonega (nditeks sirgega),
siis valime sellel joonel mingi punkti a ning vaatleme kaht dhe-
poolselt 16pmatut joont. Ule nende voetud péaratute integraalide
summa annab meile pdratu integraali iile vaadeldava joone.

Jargnevalt vaatleme parameetrist s6ltuvaid pédratuid integraale
F(2)=éff(2, £)dt, zeD. o (3)
QOeldakse, et vaadeldav pdratu integraal koondulr iihtlaselt hulgal D,
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kui iga >0 korral leidub selline M>0, et =
|F2) — [z 0)dt|<e

iga s>M ja iga 2= D puhul.
Weierstrassi tunnus: Kui iga {=C ja ze D korral |[(§,2)|<<
<@(f) ning koondub integraal R - '

S lo@)]1dzl,

siis pc‘irafu integraal (3) koondub ihilaselt hulgal D.

Miarkus. Analoogiliselt defineeritakse pératu integraal ning
selle juurde kuuluvad moisted ka juhul, kui joone C pikkus s on
kiill 16plik, kuid joonel C vaadeldav funktsioon ei ole tokestatud
joone lopp-punkti iimbruses. Sel juhul

Cfg(z)d€= lim [ g(C)dt.

s+8 C,

 Matemaatilise analiiiisi kursusest teame mitmeid parameetrist
soltuvate paratute integraalide omadusi*. Et need omadused keh-
tivad ka kompleksmuutuja korral, saab toestada analoogiliselt voi
siis arvestades asjaolu, et integraal kompleksmuutuja funktsioonist
on esitatav kahe reaalmuutuja funkisiooni integraalide kaudu. Vaat-
leme paari omadust, mida vajame hiljem Laplace’i teisenduse juu-
res (jaotis 10).

Teoreem 3. Olgu T tiikati sile Iopmatu joon ning olgu lisaks teo-
reemi 1 tingimusiele 2) ja 3) tdidetud tingimus:

4) integraal (1) koondub iihtlaselt igas kinnises piirkonnas
D' < D.
Sel juhul on funktsioon F regulaarne piirkonnas D.

Teoreem 4. Kui lisaks teoreemi 1 tingimustele integraal (2) koon-
dub iihtlaselt piirkonnas D’ < D, siis kehtib valem (2).

Need teoreemid tdestatakse analoogiliselt teoreemidega 1 ja 2,
kusjuures integreerimisjdrjekorra muutmine on nilild lubatud vas-
tavate piratute integraalide iihtlase koonduvuse tottu,

Ulesanded

1. Naiidata, et seosega
I(2)= [ t—te—tdt
0

masratud Euleri D-funktsioon on regulaarne pooltasandis Re 2>>0.

* Kangro, G. Matemaatiline analiiiis II, Tln, 1968, lk. 240—246.
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5. ANALUUTILISED FUNKTSIOONID
5.1. KOMPLEKSLIIKMETEGA READ
Vaatleme ridu

‘% Up=to4 11+ ... +un-t+...; (1)

mille liikmeteks on kompleksarvud up=ar-+ibs. Rida (1) nimeta-
takse koonduvaks, kui koondub tema osasummade jada, s.t. eksis-
feerib piirvaartus

lim 3 up= lim Sp=>5.

n—o00 h=10 n—00

Et aga
Sn-“—-‘ Z Uup=— Z (ak-{—ibh) = 2 ah—l—i E bk=An+iBn,
h==0 h=0 k=0 h=0

siis
n—00 n—»oo Nn—»00

Sellest nieme, et rida (1) koondub parajasti si{s, kui koonduvad
read 3 ax ja X br. Need on reaalsete liikmetega read, mille koon-
R R

duvuseks on tarvilik, et lim ax=1im bx=0. Seega voib ka rida (1)
koonduda vaid siis, kui

lim lUp=— lim (ah—l—ibk) ={).

h—o0 k—>oo

Kui rea osasummade jada ei koondu, siis nimetatakse rida haju-

vaks.
Koos reaga (1) vaadeldakse ka rida

%luhlzluﬂ—{—luil-—l—...—I—*Iuhl—l—... . (2)
Kui rida (2) on koonduv, siis nimetatakse rida (1) absoluutselt
koonduvaks. Rea absoluutset koonduvust saab kindlaks teha mate-
maatilise analiiisi kursusest tuntud positiivsete liikmetega ridade
koonduvustunnuste abil, sest rida (2) on positiivsete liikmetega.

Osutub, et rida (1) koondub absoluutselt parajasti siis, kui read

ax ja -3 by on absoluutselt koonduvad. Tapselt samuti kui reaal-
sete liikmetega ridade korral saab Cauchy kriteeriumi abil ndidata,
et rea absoluutsest koonduvusest jireldub tema tavaline koonduvus.

-
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Ulesanded

1. Uurida ridade X un, koonduvust, kui

1+4in
on '

a) Un==

b) un=cos n--isinn,

cos n4-isinn
n2

c) Un=

Vastusr a) koondub absoluutselt,
b) hajub,
¢) koondub absoluutselt.

5.2. FUNKTSIONAALREAD

Nii kompleksmuutuja funktsioonide omaduste uurimise kui ka
nende rakenduste vaatlemise seisukohalt huvitavad meid eeskatt
funktsionaalread

%’uh(z):.uo(z)—l—ui(z)-l-...—{—uk(z)—i—‘... . (1)

Kui fikseerime muutuja 2 vaartuse, siis saame reast (1) arvrea.
Olgu ur(z) (=0, 1, ...) madratud piirkonnas D. Me nimetame
rida (1) koonduvaks punktiks 2o & D, kui koondub arvrida Sur(2o).
Rida (1) nimetatakse koonduvaks piirkonnaks D, kui ta koondub
piirkonna D igas punktis. Analoogiliselt defineeritakse rea (1) abso-
{uutne koonduvus mingis punktis zo = D ning piirkonnas D.
Tahistame rea (1) osasumma siimboliga Sn(2). Funktsionaalrea
koondumine piirkonnas D tahendab, et iga ze D puhul eksisteerib

lim S, (2). Téhistame

n—00

w={(2)= lim Sp (2).

n—o

Seega vdime Oelda, et piirkonnas D koonduva rea summa méaérab
selles piirkonnas iihese funktsiooni. Markides seda fakti, iitleme, et
rida (1) koondub funktsiooniks f. oo

Kui arvestame rea koonduvuse ning jada piirvairtuse maisteid,
voiksime piirkonnas D funktsiooniks f koonduva rea > ug{z) defi-
nitsiooni esitada jargmiselt.

Oeldakse, et rida 3 un(2) koondub funktsiooniks [ piirkon-
nas D, kui iga ze D ja iga >0 puhul leidub selline naturaalary
N (e, 2), nii et
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Y

”(2)-——— Sa(2) l <& I5 //

iga n>N (e, 2) puhul. _ , _
Analoogiliselt sellele defineeritakse ka rea iihtlane koonduvus.
Oeldakse, et rida 3> ux(z) koondub iihtlaselt funkisfooniks [
piirkonnas D, kui £>0 puhul leidub selline naturdalfrv N(g),
nii et | ’

() Su(2) | <e

iga ze D ja n>N(e) puhul. | '

Vorreldes iihtlase koonduvuse ja tavalise koonduvuse definit-
sioone, markame, et tavalise koonduvuse puhul ei nouta arvu N
soltumatust punktist z. Uhtlase koonduvuse puhul noutakse aga, et
iga & korral voib naturaalarvu N valida séltumatuna punktist 2z,
s. t. kogu piirkonna jaoks iihtsena.

Nagu matemaatilise analiifisi kursuses, nii ka siin saab tGestada
jargmise teoreemi. '

Teoreem 1. Kui piirkonnas D ihtlaselt koonduva rea liikmed on
pidevad punktis z, siis on ka rea summa selles punktis pidev.

| Rea iihtlase koonduvuse médramiseks kasutatakse sageli jarg-

mist Weierstrassi tunnust.

Teoreem 2. Kui funkisionaalrea 3 up(2) liikmed rahuldavad vor-
B
ratust |
lun(2) |<an (=0, 1, ...) 2)

iga ze D puhul ning rida 3 a, on koonduv, siis koondub see
funktsinaalrida ihtlaselt piirkonnas D.

Toestus. Vorratuse (2) ning positiivsete liikmetega ridade
vordlusteoreemi pohjal saame, et vaadeldav funktsionaalrida koon-
dub absoluutselt igas punktis ze D. Seega miirab tema summa
seal funktsiooni f. Kui t&histame rea osasumma siimboliga S, (2),
siis

[F(2) —Sn(2) | = |frrt (@) Ffrie(2)+ .. .| <

= lfn+1 (2) '+|fn+2(z) l‘l" R N VL /2T N

Et aga rida 3 ar on koonduv, siis saame siit, et vastavalt arvule
e>>0 leidub niisugune N(e), millest suuremate n viirtuste puhul

[ (2)— Sn(2) | <antut-tniat ... <e iga z korral.

Seega koondub rida 3 uy(z) iihtlaselt.

Jargnevas vaatleme iihtlaselt koonduvate ridade liikmeti dife-
rentseerimist ja integreerimist. Vastavate kiisimuste selgitamiseks
esitame kaks jidrgnevat teoreemi.
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1

. Teoreem 3. Kui rida 3 up(2) koondub ithtlaselt piirkﬂmnﬁiﬁs‘ D,
siis iga piirkonda D kuuluva joone C puhul
\

Cf (; uh('z))dz=-‘§cf up (2)dz. - (3)

TGestus. Margime rea summa siimboliga f(z). Vorduse (3)
toestamiseks peame nditama, et

lim Zn,’ [ ur(2) dz_:é[f(z)dé. (4)

n—oo =0 C

Selleks valime vastavalt suvalisele arvule e>0 naturaalarvu N,
et iga n>N ja iga ze D puhul

[ (2)—Sa(2) | =

o) — 3 wm(a) | <=,
k=1 S
kus s on joone C pikkus. Sel juhul

ff(Z)dz—ﬁ'ukv(z)dz _ ‘ f[f(z)——é ur(2) ] dz| -..<__-—:—--s=g.

h=0 =0

Saadud vorratus niitab seose (4) kehtivust, millega teoreem ongi
toestatud.

Teoreem 4. Olgu funktsioonid u, (k=0, 1, ...) regulaarsed
tékestatud piirkonnas D ning pidevad kuni rajajooneni C. Kui rida
> uy(2) koondub dhtlaselt rajajoonel C, siis

1) see rida koondub ka piirkonnas D ning rea summa f(2) madd-
rab seal regulaarse funktsiooni;

9) tuletistest moodustatud read 3 u(2) (I=1, 2, ...) koondu-
R
vad piirkonnas D, kusjuures

3 ul(z) =[O (2).
R

Toestus. 1) Olgu z suvaline punkt piirkonnast D ning § suva-
~ line punkt rajajoonelt C. Siis |g —2z| =>0. Seega, iga fikseeritud 2

korral koondub rida Z : up(t) ihtlaselt rajajoonel C.
R

2ni (L —2)
Seda rida voib liikmeti integreerida, mistottu Cauchy valemi pohjal
1 ur (&) .
; oni ;,[ g = 2w, (8)

millest jareldubki, et meie funktsionaalrida koondub iga z puhul.
Olgu tema summa [(2). Rajajoonel C on funktsioon w={({)=
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/
/

= > up (L) pidev, mistottu seose (5) asemel voime kirjutzyfa
k

I
f

f 2 ur (%) dt —

;_Z o f//

()= S )=

1
S IS

i
231:C

c ;
/

/

Saadud tulemustest nieme, et funktsioon f avaldub Cauchy tiiiipi
integraalina piirkonnas D ning on seetdttu regulaarne.
2) Taiesti analoogiliselt eelnevaga toestame ridade 2 uh(z)
3

1
koonduvuse, vottes vaid { —z asemel suuruse T (E— z)H,

Teisest kiiljest,

I -
?”‘(f?(z)= 2 Cf t—zw T om J T m

dt=f0(z).

C

Sellega ongi teoreem toestatud. .
Asjasonastatud teoreemi tuntakse Weierstrassi teoreemina ning

see périneb aastast 1859.

)

5.3. ASTMEREAD

Koikidest funktsionaalridadest on erilise tdhtsusega astmeread

Ecn(z__a)ns (1)
n {
kus @ ja ¢n (n=0, 1, ...) on konstandid. Juhul z=a vérduvad
rea (1) koik liikmed (peale esimese) nulliga ning astmerea summa
on sel juhul ¢ Jérelikult koondub iga astmerida (1) punktis a.
Kas aga leidub ka teisi z véartusi, mille puhul rida (1) koondub,
sellele annab vastuse jargmine teoreem.

Cauchy — Hadamard’i teoreem. Astmerida (1) koondub ringis
|2—a|<<R ja hajub piirkonnas |z—a|>R, kusjuures

1 _n
R——_? ning p=lim ¥|cn}.*

n—roo

Toestus. Vaatleme rea (1) koonduvust mingis fikseeritud
punktis z.

1
I} Olgu |z-——a]<R=—p—, s.t. plz—a]<<l. Et aga

* Siimbol lim tahistab iilemist piirvidrtust.
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lim T"ll/gicn(z—a)ﬂl=plz—a|, (2)

n—>oo i
S1iS
n

]/|cn(z-—d)”| <g<<l1, kui n>nyg

ning ne on kiillalt suur. Saadud vorratuse ning positiivsete ridade
vordlusteoreemi pohjal voime delda, et rida (1) koondub punktis z
absoluutselt, sest koondub geomeetriline rida 3 ¢ (0<<g<<Cl).

2) Kui aga |z—a|>R=i, siis seose (2) pohjal saame, et
vorratus P

Tenz—a)"]>1

kehtib lopmata paljude n vidirtuste korral. Viimase pdohjal pole
punktis z rea (1) iildliikme piirvdartus null, mistéttu rida ei saa
koonduda selles punktis. Seega vaadeldavas piirkonnas rida (1)
hajub. :

Midrkus. Cauchy —Hadamard’i teoreem on o6ige ka juhul,
kui p=0 ja p=o0’ Neil kordadel vastavalt R—=o00 ja- R=0.
Toestus: 1) Kui p=0, siis

— T
lim V]|eca|=lim Y]cn]=0.

n—-00 T~»00

Vottes mingi z véddrtuse (zs4a), ndeme, et kiillalt suurte n viir-
tuste korral

n

1
Vien| <

2|z—al

Viimasest vorratusest aga jareldub, et

I
len(z—a)2| < o
mis garanteeribki rea (1) koonduvuse punktis z.

2) Olgu p==oo. Néitame, et sel juhul ei koondu rida (1) {iiheski
punktis peale punkti z=a. Oletame viite vastaselt, et rida (1) koon-
dub punktis zos=a. Sel juhul peaks lim Cn (20 — a)*=0, millest oma-

korda jdrelduks, et ]cn(zo—-a)”|<% ehk teisiti

(2

Vien]l <

[ J—
VAl
l2o—al

6 E. Jiirimie 8I'
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Et aga lim ]/-/\71—:1, siis viimase vorratuse pohjal p=&oo. éelline
n—oc

jreldus on aga vastuolus eeldusega. Saadud vastuolu ditlebki, et
rida (1) ei saa koonduda punktis 2. Et 2 oli suvaline/(punktist
a erinev) punkt, siis toepoolest R=0.

Suurust R nimetatakse astmerea koonduvusraadiuse $/ ning ringi
jz—a| <R koonduvusringiks.

Millise iseloomuga on astmerea koonduvus oma koonduvusrin-
gis, seda aitab selgitada jargmine teoreem.

Abeli I teoreem. Kui astmerida (1) koondub punktis 2o, Siis
koondub ta absoluutselt igas punktis z, mille puhul |z—a|<<
<|zo—a|. Seejuures igas kinnises ringis |z—a|<<qlz—al
(0<<g<<1) koondub vaadeldav rida idhtlaselt.

Toestus. Olgu rida 3 cn{20— @)® koonduv. Sel juhul leidub
M>0, nii et Jcn(z0—a)"|<<M. Ringi |z—a|<<g|20—a| punk-

tides
z2—a \*
cn(20—a ”(—-—-———)
n( 0 ) Zo—Q

len(z—a)™| = < Mgr.

Et rida 3 Mg» on vorratuste 0<<g<<C1 tottu koonduv, siis Weier-
- .

strassi tunnuse pohjal on rida (1) iihtlaselt koonduv ringis
|z— a] <g]z0— a|. Samast saame ka, et rida on absoluutselt koon-
duv selle ringi igas punktis. | |

Et iga z puhul, mis rahuldab tingimust |z —a| << |20—al, voib
leida reaalarvu g, nii et |2—a|<<qlz0—a| ja 0<<g<Cl, siis on teo-
reem sellega toestatud.

Koonduvusringis méirab astmerida (rea summa) iihese funkt-
siooni, mis osutub seal regulaarseks. TGepoolest, vottes mingi 2
vidrtuse ringist |z—a|<R saame ikka leida niisuguse reaal-
arvu, et vaadeldav z on ringi |z—a|<CqR sisepunkt. Eelmise jao-
tise viimase teoreemi pdhjal saamegi, et astmerea summa on vaa-
deldavas punktis regulaarne. Nimetatud teoreemi rakendamiseks
‘tuleb kiesoleval juhul vaid vatta piirkonnaks D valitud kinnine ring
ning panna tdhele, et rea (1) liikkmed on regulaarsed kogu komp-
lekstasandil.

Astmerea (1) summana mdédratud funktsiooni tuletise saame
‘eelmise paragrahvi teoreemi 4 pohjal leida rea (1) liikmeti diferent-
seerimisel, s.t.

F(@)= I nealz—a)™

Osutub, et sel viisil saadud rea koonduvisraadius on vordne rea (1)
omaga, sest :

n n
lim V]nca|= lim ¥|cal.

n—>o0 T—>r00
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Ulesaﬂded

1. Leid& astmeridade koonduvusraadiused:

Tay ) ) I
=1 n - - n=0
2n ey ]
b)) X . e) X (2+in)nzn,
n==>0 n=0
c) Z’nﬂzn f) ﬁ'cosinzn,
n=i n==0
g) né; (n+an)zm.
Vastus: a) R=1, b) R=oo, c) R 0, d) R=1, ) R=1/3,
i) R=1/e, g) R=1, kui |a|<]1; _W kui [a]>1.

2. Leida jargmiste ridade koonduvuspiirkonnad:

oG

TS Y38/ E)

- s
i ngi' (2—f+i)” ’ €) Z 351,21—21) Z (:_:_l)n
? ;E'g?nz—l ( :i32ii )n

Vastus: a) |z—i|<}¥2, b) Jz—1+i]>1, ¢) |z2—2i|>5,
d) 2<<]z|<<3, e) 1<<]2z+i]|<<3.

- |
3. Niidata, et geomeetrilise rea 3’2" koonduvuspiirkonnaks on.
n=0

ihikring ning tema summaks

._.z'
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5.4. TAYLORI RIDA /

Astmerida )
= ta(z—a)" ;
n /'
nimetatakse funktsiooni w=f(2) Taylori reaks punktis/a, kui
_ @
-c'n,—_"_n_!'—' (I’L—O, 1, ...).

Teoreem 1. Iga astmerida on oma summa Taylori rida.

Toestus. Olgu
f@)= Zenlz—a)™ (1)

Vottes z==a, saame, et ¢p=f(a). Kui rida (1) liikmeti diferent-
seerida ning votta seejirel z=a, saame, et c;=f"(a). Teistkordsel

diferentseerimisel saaksime c2=-;— f”{(a) jne. Sellega olemegi toes-

tanud teoreemi 1.

Teoreemist 1 jéireldub, et funktsiooni vo6ib vaid iihesel viisil
arendada astmereaks punktis a. Me iitleme, et funktsioon f on punk-
tis o arendatav astmereaks, kui leidub selline R>0, nii et vordus
(1) kehtib ringis |z —a|<CR. Funktsiooni [ nimetatakse analiiiiti-
liseks punkiis z=a, kui ta on selles punktis arendatav astmereaks.
Eelmise jaotise viimase teoreemi pohjal saame, et iga vaadeldavas
punktis analiiiitiline funkisioon on seal ka regulaarne. Jargnevas
niditame vastupidist.

Teoreem 2. Punktis a regulaarne funktsioon | on selles punktis
analiiiitiline, kusjuures funktsiooni | Taylori rida (punktis a) koon-
dub suurimas ringis |z— a|<<R, milles | on regulaarne.

Toestus. 1) Naitame, et f on analiiiitiline piirkonna D suva-
lises punktis a, kus D on funktsiooni f regulaarsuse piirkond. Téhis-
tame tidhega d punkti ¢ kauguse piirkonna D rajajoonest (vi. joon.
26). Votame iimber punkti a ringjoone C, mille raadius r<<d. Olgu
z suvaline punkt valitud ringist. Sel juhul |z—a|=¢r, kus
0<<g<<1. Cauchy valemi pdhjal voime kirjutada, et

1 .
P p—— gf)z dt.

2nti b

Joon. 26
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Funktsiooni | reaksarendamiseks kasutame seost

1 1 . ! .

t—z (—a—(—a) | Z—a t—a
L—a

1 3 z—a "__m (z—a)t

2—da

t—a == =<l
Asjasaadud reaksarenduse pohjal véime kirjutada, et
SN (S I W S {13 ,
— —a)k. 2
o [ —2 ,;'_ ol Tyt © a) (2)

See rida osutub iihtlaselt koonduvaks ringjoonel C. Toéepoolest, kui
e C, siis
1 F(2) )
o gy Z Y
kus M= max |f(¢)|. Seega on rida (2) Weierstrassi tunnuse pohjal

feC :
iihtlaselt koonduv ringjoonel C ning me vdime teda liikmeti integ-

reerida. Seda tehes saame, et

[ f@dz V[ 1 F(©)dt
: f C___zc h;::[ 2ni cf (g.fa)hﬁ ]><

1
C

_M e M

— k - qhi
On rE+t 2nr

He) =

><(z-—a)k=’§,;ch(z—a)h,

kus
1 . f(©dt  [®(a)
oni ¢ (E—a)k+t Rl

c

Cp=

Sellega olemegi tdestanud, et funktsioon w==(z) on punkti a
iimbruses (ringis {2 —a|<Cr) arendatav Taylori reaks, s. t. on ana-

liiiitiline punktis a.

2) Toestuse kdigus ndgime, et r<Cd, kusjuures r vdis olla kui
tahes lihedane suurusele d. On selge, et r ei saa olla suurem kui d,
sest vastasel korral saaksime, et funktsioon f on regulaarne ringis,

85



mis ulatub véljaspoole piirkonda D. Seda aga ei saa olla, sést D
oli funktsiooni f regulaarsuse piirkond. ‘
Sellega on meie-teoreem toestatud.

Miarkus 1. Asjatdestatu pohjal saame maédédrata funktsiooni
w=f(z) Taylori rea koonduvusraadiuse ilma seda rida ennast leid-
mata. Nimelt: funkisiooni | Taylori rea (punktis z=—a) koonduvus-
raadius on vordne punkii z—a kaugusega ldhimast isedrasest
punktist, s.t. punktist, kus [ pole regulaarne.

Mirkus 2. Funktsiooni f Taylori rea koonduvusringi rajajoo-
- nel }z—a|=R leidub punkte, kus [ pole regulaarne. Toepoolest,
kui | oleks regulaarne igas selle ringjoone punktis Z, siis leiduks

ring |z—¢|<<ry, kus f on regulaarne. Tihistades r= minr;, saak-
teC

sime, et f on regulaarne ringis |z—a|<<R-r. Siis aga peaks
funktsiooni f Taylori rida koonduma ringis raadiusega R--r. Saa-
dud vastuolu toestabki viite.

Ulesanded

1. Arendada jargmised funkisioonid Taylori reaks ja méarata nende
ridade koonduvuspiirkonnad:

a) w=-e? punktis a=1,

I . :
b) w=— punktides a=—1 ja a=2.

Vastus: a) et=e ) ?1'—(2'—1)", [z2— 1] <<oo,

n==0

1 o
b) e = 3 (n+1) (1), |2+1]<];

zlz = i 2 (—1)”(n+1)( z;2 )n |z—2|<2.

=0

2. Arendada Taylori reaks punktis a=0:

a) w=chz; d) w=Arctan z (Arctan 0=0);
b) w=sin?z; e) w=f c08 2‘2_1 dg;
0
c) w= z ; f) w=fsin r2dg.
22—92z45 "’ 0

Leida saadud ridade koonduvusraadiused.
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Vastused:

2) Z (2n)' » R=eo,

n==(

Din—152n
by Y 1y 2 S R=
n=1 .

(1 — 2i)h— (14-2i)%
5h

2k, R=1Y5,

c) —
- )

d) Z ()2, R=1,

> (___l)n Z2n+1 .
¢) Z @i oyl kT

n=1

(—1)n  zin+3

= (2n+1)! 4n+43°

3. Leida jargmiste avaldistega midratud funktsioonide Taylori rea
(fikseeritud punktis a) koonduvusraadiused:

f) R=

1 z2—2
— — d , .:0,
) 5,3 =0 ) g1 °
: a=i
b) Vz+i, a=1, ) sin(2z+22) *

¢) Ycos z, a=0,

Vastus: a) R= 3/2 b) R=V2, <¢) R=n/2, d) R=m;
e) R=1.

5.5. ANALUUTILISTE FUNKTSIOONIDE AINSUSE TEOREEM

Me teame, et murdlineaarne funktsioon on iiheselt maaratud,
kui on teada selle funkisiooni vdidrtused kolmes punktis. Seda see-
tottu, et iga murdlineaarne funktsioon méiiratakse kolme iiksteisest
soltumatu parameetriga (kordajaga). Lineaarsel funktsioonil on
neid kaks, mistottu ta on médiratud oma viirtustega kahes punk-
tis. Et analiiiitilist funktsiooni esitab astmerida, millel on lopmata
palju kordajaid, siis ndhtavasti saab analiiiitilist funktsiooni iihe-
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selt maérata vaid sel juhul, kui on teada selle funktsiooni viirtused
Iopmata paljudes punktides. Osutub aga, et sellest veel ei piisa.
- Nédide. Kogu tasandil analiiiitilised funktsioonid w=sinz ja
w=g(2)=0 on vordsed lopmatul punktihulgal {0, 4n, +2m, ...},
kuid need funktsioonid pole vordsed koikjal.
Kehtib aga jidrgmine analiiiitiliste funktsioonide ainsuse teoreem.

Teoreem. Kui piirkonnas D on analiiitilised funkisioonid | ja g
vlrdsed selle piirkonna 16pmatul punktihulgal E, millel on vdhe-
malt iks kuhjumispunkt piirkonnas D, siis need funktsioonid iihti-
vad kogu piirkonnas D.

. Toestus. 1) Olgu piirkonnaks D ring |z—a|<<R ning olgu
hulga E kuhjumispunktiks punkt a. Olgu veel

F2)= 3 ca(z—a)n,

n=0

g(2) =n§; bn(z—a)n.

Valime niisuguste punktide zy = E jada, mille korral f(zx) =g (2x)
ning limz;=a. -
h—»o00
Arvestades funktsioonide f ja g vordsust hulgal E, voime Kkirju-
tada, et

0 [= o}

S cn(zn—a)r=1 X bp(zr—a)™.
n=0 n=0
Kui ldheme viimases vorduses piirile summa margi all (seda voime
teha, sest piirkonna D mis tahes sisemises kinnises ringis koondub
astmerida iihtlaselt), siis saame, et cp="5b¢. Seega kehtib vordus

E,‘ Cn(2r — a)nz'ng bn(2r—a)m.

n=i1

Jagades viimase vorduse vahega 2z, —a ning seejidrel korrates eel-
nevat mottekdiku, saame, et cy=2>04. Niiviisi jark-jargult edasi min-
nes saaksime mis tahes indeksi m korral ndidata, et c,=>0m. Seega
on vaadeldavate astmeridade kordajad vordsed, mistottu on vord-
sed ka funktsioonid f ja g.

2) Olgu niiiid D suvaline piirkond ning E < D lopmatu hulk, kus
f(z) =g (2). Punkt a = D olgu hulga E kuhjumispunkt.

Fikseerime hulgas D suvalise punkti z ning naitame, et ka
selles punktis f(z)=g(z). Selleks ithendame punktid a ja z piir-
konda D kuuluva joonega C (vt. joon. 27). Votame iimber punkii a
mingi ringi, mis kuulub téielikult piirkonda D. See sisaldab 15p-
mata palju hulga E punkte, sest punkt a on hulga E kuhjumis-
punkt. Seega toestuse esimese osa pohjal {ihtivad funktsioonid [ ja
g selles ringis. Jarelikult kuulub see ring tervikuna hulka E. Oli
ju viimane nende punktide hulk, kus f(z) ja g(z) iihtivad.
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Joon. 27

Valime niiiid joonel C punkti a;, mis kuulub eelnevas vaadeldud
ringi (vt. joon. 27). Ka a; on hulga E kuhjumispunkt ning me
voime oma mottekdiku korrata, vottes punkti a asemel punkti ay.
Jiargnevalt valime punkti as jne., kuni saavutame olukorra, kus sel-
liselt valitud ring sisaldab punkti z. Niiviisi ndeme Iopuks, et vaa-
deldavad funktsioonid w={(2) ja w=g(z) on vordsed selles fik-
seeritud punktis z. Punkti z suvalisuse tottu olemegi toestanud
funktsioonide w=f(z) ja w=g(z) vordsuse kogu piirkonnas D.

Jireldus. Matemaatilise analiiiisi kursuses saadi jargmised
reaksarendused:

X X"
eX=]14x+—4+... = , —00< X< 00,
2l = "n!
. 'JCB x5 - x2n+1
sinx=x ——+4——...= —1)n — ;
Tt ;( D gngmr s TS
cosx=1——-§l-+?—...= — (—1)7 el —00 < X< 00.

Need reaksarendused on oiged ka vastavate kompleksmuutuja
funktsioopnide puhul, kui x asendada muutujaga z. Seda voime véita
seefottu, et astmeridadega :

Zz

o0 oo
n
!

- mn:

= zZn-l—l 22.71
’ ;‘0(—1) (2n+1)! Z(_l) (2n)!

n=0

madratud funktsioonid langevad kokku vastavalt funktsioonidega
w—¢e?, w=sinz ja w=cosz lopmatul punktihulgal (reaalteljel),
millel on kuhjumispunkt (mistahes reaalarv).

Analoogiliselt saame, et koik matemaatilise analiiiisi kursusest
tuntud reaksarendused on oiged ka vastavate kompleksmuutuja
funktsioonide voi nende {iheste harude korral,

Eelnevas vaatlesime funktsioone (w=e? w=sinz ja w=cos 2),
mille Taylori read koonduvad kogu komplekstasandil. Niisuguseid
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funktsioone nimetatakse tiisfunktsioonideks. On selge, et tdisfunkt-
sioonid on regulaarsed kogu komplekstasandil ning seega kehtib
nende kohta Liouville’i teoreem. Sellest jdreldub, et kompleksmuu-
tuja funktsioonid w=sinz ja w=cos z pole tdkestatud, nagu nad
on seda reaalmuutuja korral.

5.6. ANALUUTILISE FUNKTSIOONI NULLKOHAD

Punkti z, nimetatakse funktsiooni f nullkohaks, kui [(z)=0.
Kui aga

f(z0) =F'(20) = ... =f"=1(20) =0

ning f®(z) %0, siis nimetatakse punkti 2, funktsiooni n-jirku null-
kohaks. Sellest definitsioonist jareldub, et punkt z, on analitiitilise
funktsiooni f n-jirku nullkoht parajasti siis, kui

[(z) = (z—20)*[bot-bi(2 — 20} + .. ], (2)
kus bo7=0. Valemist (1) saame kergesti nn. L’Hospitali reegli

@) i)
) g’

kui punkt a on n-jarku nullkoht funktsioonile g ning vihemalt
n-jarku nullkoht funktsioonile f. Toepoolest, nendel eeldustel

f(2)=(2—a)*[botbi(z—a)+...],
g(R)=(z—a)*[dotdi(z—a)+...], do5%0.

Kui arvestame, et punkti a teatavas iimbruses koonduvad nurksul-
gudes seisvad read iihtlaselt, mistottu voime minna piirile igas
liidetavas eraldi, jdreldubki nendest vordustest valem (2).

Eelmises jaotises toestatud ainsuse teoreemi pohjal saame
moningast informatsiooni analiiiitilise funkisiooni f nullkohtade
hulga kohta, kui vordleme seda funktsiooni teise analiiiitilise funkt-
siooniga w=g(z) =0.

(2)

Teoreem. Mittekonstantsel analiiitilisel funktsioonil w={(z) on
igas kinnises ja tokestatud piirkonnas ilimalt 1oplik arv nullkohii.

Toestus. Toepoolest, kui funkisioonil w=f(z) oleks vaadel-
davas kinnises ja tokestatud piirkonnas 1opmatu arv nullkohti, siis
oleks viimastel Bolzano — Weierstrassi teoreemi p&hjal kuhjumis-
})unkt vaadeldavas piirkonnas. Ainsuse teoreemi pohjal peaks siis

(z) =0. :

Jareldus. Mittekonstantse analiiiitilise funktsiooni f null-
kohtade hulk on iilimalt loenduv.

Toestus. Olgu D funkisiooni f analiiiitilisuse piirkond. Vaat-
leme kinniseid hulki F, =D (n=1, 2, ...), mille rajade kaugused
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piirkonna D rajast on vastavalt 1/n. Igas hulgas F, on vaid 16plik
arv funktsiooni f nullkohti. Seega saab neid kogu piirkonnas olla
filimalt loenduv hulk®.

Asjatoestatud omadustest jareldub, et analiiiitilise funktsiooni
nullkohad on isoleeritud, s.t. iga nullkoha puhul leidub iimbrus,
mis ei sisalda teisi nullkohti. '

.'Ulesanded

1. Punkti b nimetatakse funktsiooni [ A-punktiks, kui f(b)=A.
Niidata. et igas tokestatud kinnises piirkonnas on analiiiitilisel
funktsiooni]l vaid loplik arv A-punkte. ,

2. Toestada, et analiiiitilise funktsiooni A-punktide hulk on iilimalt
loenduv.

3. Leida jargmiste avaldistega midiratud funktsioonide nullkohad
ja nende jark:

103
a) 24, 4) sin3 2 ’
z
b) zsinz, e) sin 23,
- ¢) sin?z, f) (24-e2)3.

Vastus: a) esimest jarku nullkohad 2i ja —2i,

b) teist jarku nullkoht 0, esimest jarku nullkohad kn (&=
=41, &2, ...),

¢) kolmandat jarku nullkohad kx (=0, =1, £2, ...),

- d) teist jarku nullkoht 0, kolmandat jarku nullkohad &n (k=
=1, £2,...)

]

' 3
e) kolmandat jarku nullkoht 0, esimest jarku nullkohad Vkm ja

3 —
%}"kn (—1£1Y3) (e==1, 42, ...),

f) kolmandat jiarku nullkohad %ln 2-+4i (—;«l—k)n (B==0, %1,
+2, ...).

5.7. TEHTED ANALUOTILISTE FUNKTSIOONIDEGA

Iga analiiiitilist funktsiooni esitab vaadeldava punkti 2z=aqa {imb-
ruses seal koonduv astmerida

Scp(z—a)™.

* Kui piirkonna D raja sisaldab ka 16pmatuspunkti, loeme punkti z kauguse
opmatuspunktist vordseks punkti 1/ kaugusega nullpunktist.

91



Edaspidi vaatleme lihtsuse mottes juhtu, kus a=0. Sel juhul
saame nullpunkti {imbruses analiiiitilised funktsioonid. Olgu meil
kaks sellist funktsiooni:

w=f(z)= >: Cn2m, (1)
w=g(2) =2 baz™. | (2)

Ridade (1) ja (2) koonduvusraadiused olgu vastavalt r ja R, kus-
juures r<CR.

Rea koonduvuse definitsioonist jargneb vahetult, et funktsioonide
f ja g summale vastav astmerida

> (cntbr)zr= X d,z"

koondub ringis |z]<Cr. Analoogilise tulemuse saame ka vahe f—g
puhul,
Korrutist f(z)g(z) esitab astmerida (ridade korrutis)

n |
S hpzn, kus hp= 3 cxbn_p. (3)
n h=0 N

Et read (1) ja (2) on absoluutselt koonduvad ringis |z|<Cr, siis
on seda ka rida (3).
Osutub, et kui g(0)s40, on jagatis w=f(z)/g(z) nullpunktis
analiiiitiline. Toepoolest,
f(z) _ cotazto+. ..
g(2) bo-+bi1z+4 02224 . ..

s, t.

Co—!—CiZ—l—szz—l— A (g0+g12—|— .- ) (bo+b12+ .- ) .

Ridade korrutise definitsiooni arvestades saame kordajate go, g1, ...
méadramiseks jirgmised seosed

=go+g12+g2+ . . .,

bog o— Co,

bog1+bigo=cy,
] : (4)

bogn+b1gn—1+ ... +bngo=cn,

)

Nendest seostest saame jark-jdrgult leida kéik otsitavad korda-
jad gr, kui by=g(0) =40
Vottes f(z)=1, s.t. co0=1 ja crn=0 (=1, 2, 3, ...), saame
seoste (4) pohjal leida funktsiooni w=1/g(z) reaksarenduse.
Vaatleme 16puks rida > fn(2), mille liikmeteks on ringis
n
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| 2] <<r analiifitilised funktsioonid
fn(2)= %,‘ Cnik2k.

Koondugu rida 3 f.(z) kinnises ringis |z|<Ce<<Cr iihtlaselt. Sel
juhul esitab tema summa f(2) funktsiooni ringis |z| <Ce. Seega

f(2)= %fn(z) == g}) hé’) Can2ht= 23 apzh.

h==(

Naitame, et

voib vahetada summeerimisjirjekorda. Selles vdites sisaldub nn.

Weierstrassi teoreem topeltridade kohta, Selle digsuses veendumi-

seks paneme koigepealt tdhele, et rida 3 axz* on funktsiooni f Tay-
)

lori rida. Seega

__®©

a=——— (k=0, 1, ...).

Et aga jaotise 5.2 teoreemi 4 pohjal

meo) Vv R0 o
T=§T=Z Cnt

n=>0

siis sellega ongi meie viide toestatud.

Ulesanded
, ez ez
1. Leida e*4-cosz, e*z—cosz, - ja reaksarendused
I —=z chz
punktis a==0 ja miirata saadud ridade koonduvuspiirkonnad.
Vastus:
22‘]1-]-1 = Z!gz
e?-}-cos 2= 2
Teos 2 ﬂzz; G T ; a1 1Bl

o0

. 227’1—[—1 z!t’ﬂ—i-z
Z__ == 2

n==r0
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2(2 ) 2", lzlil,

h==0

z

=142+ 3 gonss22nt,

=1

chz

n

onp1= (2n +1)' 2 (k)1 gan—h)+, |2|<—

k=1

2. Leida topeliridade teoreemi pdhjal ]argmlste avaldiste reaksaren-
dused (esimesed liikmed kuni astmeni z%) punktis a=0:

Z

a) eZSlﬂZ, C) e:;

: 1
b) sin— - d) In(14-e7),

—Z

&
Vastus: a) 1—}—22—[—-;——]—.. ,

b) sin 1-+z cos l—l—(cos 1 w—-é—sin 1)22+

-[-(icosl—sinl)z"’-{—..-,

6
AR 1)1
°) I“Z[Zﬁ(k——l =
n=1 k=1
d 1112—[—-1—2—[—-—1—22—— ! 2t
) 2 8 192 Y

1 5
2 e — 23] . A
e) 142 2z-|—62:—|—...

5.8. ANALUOUTILINE )A'TKAMINE

Me deflineerisime analiiiitilise funkisiooni kui astmerea sum-
mana esitatava funkisiooni. Et aga astmerida koondub dldjuhul
vaid teatavas lopliku raadiusega ringis, siis saame astmerea abil
defineerida analiiiitilist funktsiooni vaid lokaalses méottes. Nditeks
astmerida /2" koondub vaid ringis |z[<C1 ning jirelikult defi-
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neerib ta analiiiitilise funktsiooni vaid seal. Teiselt poolt: selle ast-
merea summa (1 —z)~! madrab regulaarse (siis ka analiiiitilise)
funktsiooni kogu komplekstasandil, valja arvatud punkt z=1. Seega
tekib probleem, kuidas defineerida analiiiitiline funktsioon globaal-
ses moties, ldhtudes definitsioonist lokaalses méttes astmerea abil.
Astmerea summat (nagu vaadeldud néites) me sel eesmirgil kasu-
tada ei saa, sest iildjuhul pole meil astmerea summa jaoks feist
avaldist (esitist) peale astmerea enda. Piistitatud probleemile annab
lahenduse analiiiitilise jatkamise moiste.

Olgu funktsioonid w=Ff(2) ja w=[.(2) analiiitilised vastavalt
piirkondades Dy ja D, ning Di\D.=@. Olgu [i(2)=f2(2) iga
ze D\ Dy puhul. Sel juhul deldakse, et [, on funktsiooni fy vahe-
tuks analiiiitiliseks jdathuks piirkonnast Dy piirkonda D, Ainsuse
teoreemi pohjal on selline analiiiitiline jatk itheselt maaratud.

N dide: Vaatleme analiiiitilisi funktsicone
w=fi(2) = 32", |z| <1 (=Dy),
ja

o=he) ==y 1 (F=5) le—il<12 (=Da).

Et iga ze Dy puhul f1(2)= ja iga ze Dy puhul

| —2z
I 1 1
f2(2) = 1 —i 2—i 1=z
. 1__ .
1 —1

ning Dy D,# @, siis on f; funktsiooni f; analiiiitiliseks jatkuks ja
vastupidi.
Ulesanded

1. Arvestades vastavaid seoseid reaalse argumendi korral, ndidata,
et kompleksse z korral kehtivad jérgmised seosed:

a) sh z4chz=ez, b) ch?z—sh?z=1,

. i
c) sin2z=2sin z cos z, d) sm(—é——z)zcos z.

2. Ndidata, et funktsioon w==f(z) = (1+4-22)—1, 251, on funktsiooni
w=g(z)=_3 (—1)mzn

n=—0

analiiiitiliseks jatkuks.
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3. Leida funktsiooni w=1n 2z analiiiitiline jitk {ilemisest pooltasan-
dist alumisse iile reaaltelje negatiivse osa. Veenduda, et saadud
jatk erineb alumises pooltasandis funktsioonist w=In z.

Vastus: w=lnz42ni.

4. Arvestades, et iga x>0 puhul kehtib seos I'(x-+1)=xI'(x).
idestada sama seose kehtivus kogu parempooises pooltasandis
Re z>0.

5.9. ANALUUTILINE JATKAMINE ASTMERIDADE ABIL

Olgu meil analiiiitiline funktsioon
-w:f’(z)= D cpzn, 2zl <. (1)

Valime ringis |z|<<r mingi punkti ¢ ning arendame funktsiooni f
selles punktis astmereaks. Sel juhul saame

w=/i(2)= 2/ ba(z—a)", (2)

kus

(n) 00
bnzi.n(’_al)._z Z (ﬁ )Ckah_n.

n=h

Joon, 28

rd

Mirgime rea (2) koonduvusraadiuse siimboliga ri. On selge, et
ri=r—|a|. Kui ry=r—|a| (vt. joon. 28), pole funktsioon wzf(_z.:')
regulaarne punktis P ning uus funktsioon w=fi(z) ei ole maa-
ratud iiheski punktis viljaspool esialgset ringi |z|<<r.

Kui aga ri>r—Jal, siis w=/[i(z) defineerib funktsiooni f ana-
liiiitilise jatku viljaspoole ringi |2z|<Cr. On aga selge, et sellisel
viisil me ei saa funktsiooni analiiiitiliselt jitkata korraga eriti kau-
gele, sest ry<Cr-}-|a|<<2r. Viimane seos tuleneb sellest, et iga
astmerea koonduvusringi rajajoonel asub vdhemalt {iks punkt, kus
vastav funktsioon pole regulaarne.

Olles niiiid saanud analiiiitilise jatku w=/{i(z), vdime seda prot-
sessi edasi teostada, vottes ringis |z —a|<<ry uue punkti 5. Sellist
protsessi voiksime jidtkata senikaua, kui see on voimalik.

Oletame, et me oleme oma funktsiooni (1) jdtkanud koikjale,
nii palju kui iildse voimalik. Sel viisil oleme laiendanud funkt-
siooni f definitsiooni ringist |z|<Cr mingisse piirkonda D ja saa-
nud uue funktsiooni F, mis on méidratud piirkonnas D. Viimane
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koosneb jdtkamisel saadud ringidest. Teisiti 6eldes: piirkond D
on teatavate ringide (lahtiste hulkade) {ihend (seega ka lahtine).
Kui niiiid osutub, et iiheski punktis zye= D ei ole voimalik funkt-
siooni F arendada ritta, mis koonduks ka viljaspool piirkonda D,
siis Oeldakse, et D on funktsiooni | loomulik olemasolu piirkond.

Naide 1. Funktsiooni
w=f(z)= 3 2"
n=y0

loomulikuks olemtasolu piirkonnaks on- iihikring |z|<<1. Selle nii-
tamiseks veendume, et {ihikringjoone |z|=1 iiheski punktis pole
funktsioon f regulaarne, mistottu teda pole voimalik jitkata iile
iihikringjoone. Toodud viite tdestuseks piisab niitamisest, et
|/ (2) [0, kui z ldheneb iihikringjoonele piki mistahes raadiust,

millele vastav polaarnurk qf=~§— 2n (p ja q on tdisarvud). Kui 2
kuulub nimetatud raadiusele, siis
2==re2aip/q

Sel juhul

f(2) = 3 rnle2nintpig,
n

Et aga n=gq puhul -g—n! on téisarv, siis

g—1
f(z) — Z r'n!e2nin!plq+ % r’fﬂ,

n==0 n=—g
millest
o0 qg—1i
[f(x)|= 3 rm—| 32 .
n=q n==0

Saadud vorratusest ndemegi, et |f(z)]|-—>oo, kui r—1. Et punktid
2==¢2p/g katavad iihikringjoone tihedalt, siis selgubki, et jitka- -
mine valjapoole {ihikringi pole voimalik, sest vastasel korral peaks
leiduma ftihikringjoonel terve kaar, kus f on regulaarne. Me négime,
et nende punktide hulk, kus funktsiooni f piirvddrtus on l6pmatus,
on tihe ringjoonel |z]=1. Sellest aga jdreldub, et [ pole regu-
laarne {iheski iihikringjoone punktis. *
Vaadeldud naites nidgime, et funkisiooni f defineeriv astmerida
ei koondunud {iheski iihikringjoone punktis ning vastav funktsioon
ei olnud jadtkatav viljapoole iihikringi. Osutub aga, et astmerida
voib kiill hajuda igas {ihikringjoone punktis, kuid ometi on {alle
vastav funktsioon jatkatav véljapoole iihikringi. -
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Joon. 29

Niide 2. Olgu w=f(2)= 32" Kui z=el?, siis jzn|=1.
Seega ei koondu rida 3 2 iiheski punktis z=-¢l? sest rea iildliikme

piirvdirtus pole null. Ometi aga on see funktsioon jatkatav kogu
komplekstasandile, védlja arvatud punkt z=1.

Sageli teostatakse analiiiitilist jitkamist piki mingit joont C,
laiendades sel viisil analiiiitilise funktsiooni definitsiooni punktist a
punktini & (vt. joon. 29). Niisuguse protsessiga kohtusime juba siis,
kui toestasime analiiiitiliste funktsioonide ainsuse teoreemi.

Ulesanded

1. Funktsioon w=f(z)=2—zn—- olgu arendatud astmereaks punk-

tis z-.-——-—u—;—. Millisesse piirkonda saame sel juhul funktsiooni f

analiiiitilise jatku?
. 1 l 3
Vastus: lz—|—2 <2.

9. Toestada, et funktsioonid
w=[(2) =1+az+4a%2%} ...,
ja
. R (I—a)z | (1—a)%?
w=gl)=T ;T 0—22 ' (1—27

on teineteise suhtes analiiiitilisteks jétkudeks.

3. Toestada, et funktsiooni
w=f(z)= >
loomulikuks olemasolu piirkonnaks on iihikring.
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5.10. GLOBAALSELT DEFINEERITUD ANALUUTILINE FUNKTSIOON

Vaatleme mingit piirkondade ahelat Dy, D,, ..., Dy (vt. joon.
30), kus selle ahela igal kahel jdrjestikusel piirkonnal Dy ja Dayy
{ihisosa Dy [} Dryt ei ole tithi hulk, Igas piirkonnas D, olgu antud
analiiiitiline funktsioon w=fz(2), kusjuures [r(2)=[rt1(2), kui
z e Dy (| Dpgt. Sel juhul oeldakse, et f, on funkisiooni fi analiiiiti-
liseks jdtkuks piki piirkondade ahelat. Defineerides piirkonnas
D= |JD, analiiiitilise funkisiooni w=F(z) vordustega F(2)=
=—fn(2), kui ze Dy, saame, et funktsioon F on analiiiitiliseks jat-
kuks igale funktsioonile fi, f2, ..., fn. Igaiiht neist analiiiitilistest
funktsioonidest [y, f, ..., fn nimetatakse analiiittilise funktsiooni F
elemendiks.

Joon. 30

Funktsioon F, mille me niisugusel analiiiitilisel jatkamisel saame,
osutub {ildjuhul mitmeseks, sest selle ahela eri piirkondadel (mitte
{iksnes jirjestikustel) véib olla {ihiseid punkie, kus vastavad funkt-
sioonid ei tarvitse iihtida. Lepime kokku, et kleebime selle ahela
eri piirkonnad kokku nendes osades, kus vastavad funktsioonid on
k6ik vordsed ning jiatame kokku kleepimata seal, kus vdhemalt kaks
on omavahel erinevad (f;(2)=%=fm(2)). Sel viisil saame mingi mit-
melehelise Riemanni pinna.

Niide, Lahtume funktsiooni w==}z astmereast punktis z==1
kui analiifitilise funktsiooni elemendist ning jatkame teda piki ring-
joont |z|=1. Iga uue elemendi puhul on vastava rea koonduvus-

raadius vordne iihega (kaugus punktist 0 kui punktist, kus w=7}2
pole regulaarne). On selge, et mingi 16pliku arvu sammude jirel
jouame funktsioonielemendini, millele vastaval koonduvusringil on
ithiseid punkte lihteks olnud funktsioonielemendi omaga (vt. joon.
31). Nendes iihistes punktides pole aga vaadeldavate elementide
vidrtused vordsed (ruutjuure eri harude véaidrtused).

Funktsiooni F, mille saame, kui jdtkame analiiiitilist funktsiooni
w={(2), z = D, piki kdoikvdimalikke ahelaid, nimetatakse tdielikuks
analitiitiliseks funktsiooniks ning viimase médramispiirkonda (min-
git Riemanni pinda) selle téieliku analiiiitilise funktsiooni loomuli-
kuks olemasolu piirkonnaks. Vaadeldes méiramispiirkonnana selle
mitmese Riemanni pinna iiksikuid lehti, saame eraldada vaadel-
dava mitmese analiiiitilise funktsiooni iithesed harud.

Punlkte, mis kuuluvad analiiiitilise funkisiooni loomulikku ole-
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Joon, 31

masolu piirkonda véi selle rajale, nimetatakse selle funktsiooni ise-
drasteks punktideks, kui selles punktis on rikutud kasvoi iihe selle
funktsiooni haru regulaarsus

o
Niide. Funktsioonile w= (Jz41)~' on punkt z=1 iseédraseks
punktiks, sest selles punktis pole maératud iiks vaadeldava funkt-

b
siooni neljast harust (nimelt see, mille puhul Y1=—1).

5.11. SUMMEETRIAPRINTSIIP

Eelnevates jaotistes vaatlesime analiiiitilist jatkamist astmeridade
abil. Selle praktiline teostus on aga sageli Gsna tiilikas. Seetottu
pakub huvi ka teine analiiiitilise jatkamise moodus, mis rajaneb nn.
siimmeetriaprintsiibile. Enne aga tOestame teoreemi, mida tuntakse
pidevusprintsiibina.

Teoreem 1. Olgu funktsioonid [, ja fo analiitilised vastavalt
piirkondades Dy ja Dy, millel on ihine rajajoone osa C. Kui need
funkisioonid on pidevad kuni rajani C ning f1(2) =f2(2).iga 2= C
puhul, siis on need funktsioonid teineteisele analiiiitilisteks jatku-
deks.

Toestus. Defineerime funktsiooni

l fi(Z), kui ZED:{,
w=f(2)=" f2(2), kui z& Ds,
f1(2) =[2(2), kui ze= C.

Teoreemi 1 toestuseks kasutame Morera teoreemi. Selleks peame nai-
tama, et integraal funktsioonist f iile mistahes kinnise joone, mis
kuulub piirkonda
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Joon, 32 -

D=D,UD;UC

(vt. joon. 32), vordub nulliga. Kui see kinnine joon kuulub taielikult
{ihte ossa (kas piirkonda D, véi D), siis on vastav integraal toe-
poolest null, sest funkisioonid f; ja f. on analiiiitilised ja kehtib
Cauchy teoreem.

Vaatleme juhtu, kus mingi kinnine joon kuulub osaliselt piir-
konda Dy, osaliselt piirkonda D,. Joone vastavad osad margime siim-
bolitega C; ja C.. Sel juhul

J f(Z)d2=C[ f(Z)d-2+Afo(z)dz+Bf f(2)dz+ Cf f(z)dz=

e
— £/ 1 d2-+ [ hi(2)d2)+1 Bf (22t [ Ta(2)d2} =0,

sest Cauchy teoreemi pohjal vorduvad molemad loogelistes sulgu-
des seisvad avaldised nulliga.

Asjatoestatud teoreemi pohjal toestame niiiid jargmise teoreemi,
mida nimetatakse Riemanni — Schwarzi siimmeetriaprintsiibiks.

Teoreem 2. Olgu w={[(2) regulaarne piirkonnas D, mille raja-
joon sisaldab reaaltelje l6igu L. Olgu [ pidev kuni lbiguni L. Kui
funktsioonil | on loigu L punktides reaalarvulised vddrtused, siis on
voimalik funktsiooni | jdtkata analiiiitiliselt piirkonda Dy, mis on
siimmeetriline piirkonnaga D reaaltelje suhtes. See analiiiitiline
jdtk on esitatav kujul

w=F(2) =f(z).

(Kui piirkondadel D ja D, on iihiseid punkte, siis ei tarvitse funkt-
sioonide | ja F vddrtused nendes punktides iihtida.)

Toestus. Vastavalt pidevusprintsiibile peame nditama, et F
on regulaarne piirkonnas Dj, pidev kuni 16iguni L ning et F(2)=
=f(2) iga z= L puhul.

Regulaarsuse néditamiseks piisab selle .funktsiooni diferentsee-
ruvuse niitamisest. Tuletis aga eksisteerib igas punktis a & Dy, sest
eksisteerib piirvaartus -

FR—F@) _ p IO—T@ _ yy, (10-1@) 55

20 2—4a je) —a zZ—a

z—a
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Joon. 33

Et a= D (vt. joon. 33), siis viimane suurus eksisteerib ning seega
eksisteerib ka F’(a)

Pidevus kuni ldiguni L jidreldub seosest

IF(§1)~F(2) |=1f(z)— (@) ].

Kui ze L, siis Z==z ning f(2) =f(2). Seega iga z= L puhul

F(2)=[(z) =[(2) ={(2).
Teoreem on sellega toestatud.

Midrkus 1. Arvestades murdlineaarse funktsiooni omadusi,
voiksime toestada, et teoreem 2 on iildistatav juhule, kus 16igu L
asemel on suvaline ringjoone kaar S ning funktsiooni véirtused
kaarel S kuuluvad mingile teisele ringjoone kaarele.

Mirkus 2. Funktsiooni F definitsioonist jiareldub, et funkt-

sioonid f ja F kujutavad vastavalt piirkonnad D ja D, piirkondadeks,
mis on siimmeetrilised reaaltelje suhtes.

6. ANALUUTILISE FUNKTSIOONI ISEARASED PUNKTID
6.1. ISOLEERITUD ISEARASED PUNKTID

Analiiiitilise funktsiooni f isedraseks ehk singulaarseks punktiks
nimetatakse iga punkti z,, kus | pole iihel voi teisel pdhjusel regu-
laarne. Kui leidub iseidrase punkti 2z, niisugune iimbrus, kus pole
teisi isedraseid punkte peale punkti z, siis nimetatakse vaadeldavat
punkti isoleeritud isedraseks punktiks. Kui selles {imbruses 0<<
< |z— 2| <<R on vaadeldav funktsioon | iihene, siis Geldakse, et
punkt z, on iihese iseloomuga isedrane punkt. Nusuguse punkti néi-

teks on nullpunkt funktsioonile w=f1(z)=—;—. Seevastu aga

funktsiooni w=7V2z puhul on nullpunkt hoopiski teist laadi iseéra-
seks punktiks, ta on hargnemispunkt. Viimasel ]uhul oeldakse, et
isedrasel punktil on mitmene iseloom. Selliseid isedrasusi me kies-
olevas raamatus ei vaatle.

Vaatleme jirgnevalt niisuguseid isedraseid punkte, mllle puhul
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leidub piirkond 0<<|z—2p] <<R, kus w=f(z) on regulaarne. Nif»
suguste isoleeritud singulaarsete punktide juures eristame kolme
tiilipi isedrasusi, olenevalt sellest, kuidas vaadeldava punkti iimb-
ruses kéitub funktsioon f. ‘

Runkti 2z, nimetatakse funktsiooni f k&rvaldatavaks isedraseks
punktiks, kui eksisteerib loplik piirvaartus

lim f(2) =A.

Z—>Za

Punkti 2, nimetatakse funktsiooni.f pooluseks, kui

lim f(2) = oo.
Z—>Zo

Punkti z, nimetatakse funktsiooni f oluliselt isedraseks punktiks,
kui funktsioonil f pole selles punktis ei loplikku ega lopmatut piir-
vaartust. :
>n2 Selle

funktsiooni ainsaks isedraseks punktiks on nullpunkt. Et aga
lim f(2) =1, siis on vaadeldav punkt sellele funktsioonile kérvalda-

z=>(

tav isedrane punki.

Naide 1. Vaatieme funktsiooni w=f(2)=

b
Ndide 2. Murdlineaarse funkisiooni w= az+ isedraseks
J cz+d
punktiks — pooluseks on Z=—"""

Ndide 3. Nullpunkt on isedraseks punktiks ka funktsioonile
w==e"=, Kui z ldheneb nullile nii, et ta on positiivne, siis —i-—»—l—oo
ning e'"—-oo. Kui aga z ldheneb nullile reaaltelje negatiivselt poo-
lelt, siis é—-+—oo ning e%— 0. Vaadeldav punkt on seega olu-

liselt isedrane punkt. . _
Niisuguste isoleeritud punktide tdielikumaks uurimiseks on meil

vaja analiiiitilist aparatuuri, mis vbdimaldaks esitada regulaarset
funktsiooni piirkonnas 0<<]z— 2| <<R. Sellise aparatuuri annab
jargmises jaotises vaadeldav Laurent’i rida.

Ulesanded

1. Toestada, et ‘kui z=a on funktsioonide w=f(z) ja w=g(2)
isoleeritud isedrane punkt, siis on ta seda ka funktsioonidele
w=f(2)+g(2) ja w=f(2)g(2).

2. Olgu funktsioonil w=f(z) koérvaldatav katkevus punktis a.
Naidata, et sel juhul on punkt a funkisioonile w=f(z)-}g(2)
sama liiki isoleeritud isedraseks punktiks, nagu ta on funkt-
sioonile w=g(2).
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6.2. LAURENT'I RIDA

Olgu funktsioon w=/(2) regulaarne rongas r< [z—a|<<R (eri-
juhul r—O ja R=o0). Votame selles rongas kaks ringjoont C,
ja Cy (vt. joon. 34). Olgu need ringjooned valitud nii, et vaadeldav
punkt asub nende vahel. Meie Jaoks on oluline, et ]oontel Cy ja Cz
on funktsioon pidev ning me voime rakendada ]oontega C, ja Cs pii-
ratud piirkonna jaoks Cauchy valemit. Viimase pohjal

f(C a1 f(g)dg
f 2mi f ’ (1)

2m —2Z —Z
2 cI. E

f(z)=

Joon. 34
Kui { < C;, siis i:a <1, ning me saame, et
1 1 1 1 L ' (C—a)
t—2z (—a—(z—a) z—a [—a A (z—a)rH T

— 1

z—a
Saadud rida osutub {ihtlaselt koonduvaks joonel C; ning ta on seda

ka pérast korrutamist teguriga 2311;i f(Z), mistottu

o0

B 2’1ﬂ f fg(g—)fig:Z[ 2ni ff(Q) (?;—-—a)hdg] )h+1 . (2)

C h=0

1

Kui aga { = C,, siis | i , ‘<l ning

1 :m (z—a)r
{—z e ({—a)rtt

Analoogiliselt eelnevaga saame siis, et

I f(C d f(t)dt
2mi f C Z'[ 2mi c (£ — a) b+ ](z (3)

C,
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Tohistades

L[ HE)dL |
=g f G—apm 7O “

1 » . ‘
= [ 10 (=0 k=1, 2, -..), (5)

i

saame seoste (2) ja (3) pohjal, et

Ho)= Sar(z—a)ht Yy S1a, (2 —a)h
h=0

_ k-1
k=0 (Z a) * k=0

o0 b o

h=—co0

kui cx=ar (k=0, 1, ...) ning c=b (k=—1, —2, ...). Et
Cauchy teoreemi pohjal (mitmelisidusate piirkondade puhul) voime
valemites (4) ja (5) ringjooned C, ja C. asendada nende vahel
asuva ringjoonega C, mille keskpunkt on punktis a, siis suuruste
¢, definitsiooni kohaselt

1 f(£)dg
== = +Z, ...}, ¥
o (';[ (L—a)rtt (k. 0, &1, £2,...) ©)

Seega kehtib vaadeldava rénga r<C|z—a|<CR igas punktis 2
seos

@)= X cnlz—a)* - ™

——

kus kordajad ¢ avalduvad valemiga (8). Rida (7) nimetatakse
Laurent’i reaks, kusjuures mittenegatiivsete astendajatega liikmete
summat '

f2)= 3 cnlz—a)*

nimetatakse Laurent’i rea korrapiraseks osaks. Negatiivsete asten-
dajatega liikmete summat

f2(2) = ET Ch(z—'a)hzz (252)11

h=—1 k=1

nimetatakse Laurent’i rea peaosaks. Erijuhul, kui peaosa vordub
nulliga, saame Laurent’i reast Taylori rea.
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Et korrapirane osa on astmerida, siis tema koonduvuspiirkon-
naks on ring |z—a|<CR, mis ulatub punktist ¢ kuni funktsioconi
w==[,(z) (siis ka funktsiooni w=f(z), sest w=f,(2)+/=(2)) ldhima
isedrase punktini. Mis puutub peaosasse, siis see on astmerida suu-
ruse f==(z—a)~! suhtes ning koondub mingis ringis |¢{|<<1/r, s.t.
piirkopinas |z —a|>r. Raadiust r voib vdhendada senikaua, kuni
piirkond |z—a|>r ei sisalda iihtegi f, isedrast punkti. Viimane
on ka funktsiooni f isedrane punkt. Seega on funktsiooni f Laurent’i
rea (7) koonduvuspiirkonnaks maksimaalne rongas r<<|z — a| <<R,
kus f on regulaarne.

Néditame niiid, et Laurent’i reaksarendus on iihene. Teisiti oel-
des, kui rida

3 olz—a) | ()
koondub mingis rongas r<{|z —a]<CR, siis on ta seal oma summa
Laurent’i rida.

Toepoolest, avaldises

Z cr(z —a)k== Z,’ck (z—a) "—I—Z

h=—o0 h= )

koonduvad viimased read vastavall piirkondades |z—a|<<R ja
|z—a|>r. Seega on real (7’) modte vaid juhul, kui r<CR. Sel juhul
maarab rida (7") oma summana teatava funktsiooni f. Abeli 1. teo-

reemi kohaselt koondub rida Zch (z—a)* iihtlaselt igas kinnises
rlngls |z —a| <<Ri<<R. Sama teoreeml pohjal koondub teine rida
Z'c._k(z—a)-"*L iihtlaselt igas kinnises piirkonnas |(z—a)~!|<C

<1/r,<1/r s.t. piirkonnas |z—a|=r>r. Seega koondub rida
(7’) iihtlaselt igas kinnises «rongas» r<lri<C|z— a| <<Ri<<R.

Votame niilid mingi ringjoone |z—a|_—Q (ri<<o<<CR,). Et rida
(7) koondub iihtlaselt sellel ringjoonel, siis voib avaldist

1 foy 1 .
2ni  (§—a)ntt T oni > cu(f—a)k

h=—0o0

(f(2) tdhistab rea (7’) summat) liikmeti integreerida iile ringjoone
|§—a|-—g (lihiduse mottes mirgime viimase siimboliga C). Vaa-
deldava avaldise parema poole liikmete integreerimisel saame
Cn, S. 1.

1 f (f(C)—dé

2mi 7 —a)nHt ‘

ot C,n.
c

Toepoolest, et
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0, kui m=£~=—1,
2ni, kui m=—1,

[ —aymdz—{

c

siis viimase rea liikmeti integreerimisel saame nullist erineva tule-

muse —2ni vaid sel juhul, kui 2—n—1=—1, s. t. k=n.
Saadud tulemustest selgub, et rea (7’) kordajad on selle rea

summa suhtes Laurent’i rea kordajad, See aga {itlebki, et funkt-
siooni voib Laurent’i reaks arendada vaid iihesel viisil.

Sellel tosiasjal on suur praktiline tdhtsus. Niiiid me ei tarvitse
kasutada valemeid (6), kui tahame funktsiooni arendada Laurent’i
reaks (valemis (6) esineva integraali arvutamine on enamasti vaga
tillikas), sest sageli onnestub leida rida (7’) hoopis lihtsamate
vahenditega. Kui saame rea, mis teatavas «rongas» koondub vaa-
deldavaks funktsiooniks, siis voime viita, et saadu ongi selle funkt-
siooni Laurent’i rida. Illustreerime iilaldeldut nditega.

-

N aide. Vaatleme funkisiooni

3
w:f Z) =
L Fy Y Py
arendamist Laurent’i reaks z astmete jargi (sel juhul a=0). Et
funktsioonil f on kaks isedrast punkti zy==1 ja 2=—2, siis on

voimalik valida kolm erinevat piirkonda («rongast»): |z|<l,
1<<|z]<<2 ja |2|>>2. Need on kolm «rongast», milleks jagatakse
tasand ringjoontega, mis ldbivad funktsiooni f isedraseid punkte
ning mille keskpunkt asub nullpunktis.

Laurent’i rea saamiseks esitame f(z) kui ratsionaalse murru
osamurdude summana:

3 i 1
F(z)= (z—1)(z+2) z—1 =zt+2°

Iga vaadeldava «ronga» puhul teisendame need osamurrud selli-
selt, et meil oleks tegemist geomeetrilise rea summaga. Niisuguse

meetodiga saame iga ratsionaalset funktsiooni arendada Laurent'i
reaks iikskoik millises «rongas».

1) Vaatleme piirkonda |z|<<1. Sel juhul

1 | oo
—_———— ' >k
z—1 l1—2 hé.‘z (8)
ning
i o1 1°°( z)h_m( Ly,
242 2 1422 2;' 2 _;' 2 z(‘g)



Seega saime, et vaadeldavas piirkonnas
= R4+1

o= B4
k—

Saadud rida osutub astmereaks See on ka loomulik, sest piirkon-
nas |2| <<l on meie funktsioon regulaarne ning seega analiiitiline.

2) Olgu niiiid 1<|z]<2. Ka sel juhul on reaksarendus (9)
oige, sest ; I <<1. Ei kehti aga (8), sest antud juhul [z]>1.
Siin saame, et |

SUEEN BT M0 55 R | s

R==1

Seega, piirkonnas 1<C]z|<<2 kehtib valem

20

f(z)= Z(—-—é—)kH 2k f}z—h.
. k=1

h=7
Saadud rida on tiiiipiline Laurent’i rida.

3) Olgu lopuks |z[>2. Siis "—;—-|<1, mistottu kehtib seos

(10). Ei kehti aga (9), sest |-—;-| ~1. Antud juhul

] _ _____L_i( 2y Z oy

o z2+2 Z 1 -|-— Py
z

Seega saame, et |2] >2 puhul

N 1 (—2) k-
)= 31D
h==1

Saime, et sel korral koosneb Laurent’i rida vaid oma peaosast.
Kui valemi (6) puhul tdhistame ringjoone C raadiuse tdhega g,
siis saame, et

(ca| = | f(£)dg - Me2n . M
" 2ni C (z —a)r+t | 2mgh+t ot ’

kus M= max |f(g)|. Asjasaadud vorratusest
te=C
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Icklg% (=0, +1, =2, ...)

nimetatakse Laurent’i rea kordajéte Cauchy vorratuseks.

Ulesanded

1. Arendada jargmiste avaldistega méératud funktsioonid Laurent’i
reaks antud piirkondades: :

1
22(1 —2)

a) , 0<<]zj<l ja |z|>1,

22 —22-+5
(z—2) (22+1)

b) 0<|z—2|<r ja 1<]2| <2,

c) z2elz, 0<|z2|<<Too,
d) ertiz, 0<C|z|<<oo,

~

: .1 |
€e) smzsm‘—-z——, 0< 2| < oo.

!

o0 o
Vastus: a) Xzr2 ja — 3z,
n==0

n=0

b) — i 3 oy BN EZDT gy

z—2 ontt
n=0

kusjuures r=75, ja 22 (:21) —Z 2i+1 ,

n=1 n=0

1 3 1
© 7+Z+22+Z (n+2)izn

n==1

[+ ]

oo oo 1
d nl™ n? ", n— ’
) X onztt & € ;k!(n+k)!
. . e ¥ 1
e) 3 cn22nt 3 cn2, " (2k1)1(2n4-2k+1)!
n==0 n=1 —
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6.3. KORVALDATAV ISEARANE PUNKT

: Olgu funktsioonil f punktis 2, korvaldatav iseirane punkt, s.t.
limf(z) =A. Sellest jareldub, et funktsicon [ on tokestatud

-2,
(|/{(2) | <<M) teatavas piirkonnas 0<<|z—2zs|<<r, mis ei sisalda
feisi isediraseid punkte. Arendame funktsiooni f Laurent’i reaks sel-
les piirkonnas (punkti z, iimbruses):

()= 3 cn(z— 2"

Re=—0o

Cauchy vérratuse p6hjal saame, et
| M
ey QT'QT=MQ_k,

kus M on funktsiooni f toke vaadeldavas piirkonnas. Et ¢ v&ib
olla kui tahes viike, siis £<C0 korral saame, et c;=0. Seega puu-
dub vaadeldavas Laurent’i reas peaosa.

Osutub, et see tulemus kehtib ka {imberpdérdult. Olgu
0<<]2— 2| <<r puhul

f(2)=00+01(2—20)+... . (1)
Minnes selles vérduses piirile (z—2z,), saame, et

lim f(2) =,

Z—>20

s.t. punktis 2o on korvaldatav iseirane punkt.
Me oleme seega tbestanud jirgmise teoreemi.

Teoreem. Funkisiooni [ isoleeritud iseirane punkt z, on kdrval-
datav parajasti siis, kui vaadeldava punkti iimbruses funkisiooni
[ Laurent’i rida ei sisalda peaosa.

Miérkus 1. Kui f(20)=co, oleks funktsioon punktis z regu-
laarne. Et aga selles punktis on eelduse kohaselt korvaldatav kat-
kevus, siis kas f(z) pole madratud vdi f(zo) %co. Me voime selle ise-
drasuse «korvaldada», kui defineerime f(zp)=co. Siit jireldubki
nimetus «korvaldatav isedrane punkts.

Markus 2. Oma teoreemi tdestamisel nigime, et kui iseirase
punkti 2, puhul on funktsioon f mingis piirkonnas 0<|z— 20| <r
tokestatud, siis on 2, funktsiooni korvaldatav isedrane punkt, Vas-
tupidine jdreldub korvaldatava isedrase punkti definitsioonist.
Seega: isedrane punkt z, on funktsiooni | korvaldatavaks isedrasu-
seks parajasti siis, kui f(2) on {(okestatud mingis piirkonnas
0<|z— 2| <r. -

. 1
Niédide. Olgu w=f(z)=—? (e2—1). Siin z=0 on isedrane
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punkt. Et

2k 22 23
e——l——-—Z‘ o — =z o1 +—§!—-|-... ,

h=0
siis
22
3!

He) =1+ tgrt--

Seega on antud funktsioonil korvaldatav isedrasus punktis z=0.

64. POOLUSED JA NULLKOHAD

Kui punkt z, on funktsiooni f poolus, siis vastavalt pooluse defi-
nitsioonile lim f(z)=o0. Siit aga jareldub, et iga M>0 puhul

I=+70

leidub piirkond 0<C|z—=zo|<Cr, milles |f(2) | >M. Selles piirkon-
nas on siis funktsioon w=g(2)=1/f(2) regulaarne, kusjuures
lim g (2) =0. Defineerides g (20) =0, saame, et w=g(2) on regu-
laarne ringis |z—zo| <<r.

Vastupidi, kui z, on regulaarse funktsiooni w==g(z) nullkoht,
siis leidub analiiiitiliste funktsioonide ainsuse teoreemi kohaselt piir-
kond 0<<|z— zo|<Cr. milles pole teisi w=g(2) nullkohti. Selles
piirkonnas on siis funktsioon w=f(z)=1/g(z) regulaarne, kus-
juures punktis 2, on tal poolus.

Sellega on meil toestatud jargmine teoreent

—_—

Teoreem 1. Funkisioonil w=/f(2), mis on regulaarne piirkonnas
0<|z— 20| <<r, on punktis z poolus parajasti siis, kui funktsioonil

©=2) =75

on selles punktis nullkoht.

Mirkus. Asjasonastatud teoreemi puhul loeme funktsiooni g
viaartuseks punktis z, tema piirvdértust selles punktis. Eeldame ka,
et g pole samaselt null. :

Kui z, on funktsiooni g k-jarku nullkoht, siis
g(2) =cn (2 — 20) b 4-Cry1(z — 20)*H 4. =
— (z—z)*[enterpi(2—20) + ... ]= (2 —2) 9 (2), d
kus ¢(20) =cr==0.

Funktsiooni w=g (2)=1/[(z) nullkoha jarku nimetatakse funkt-
siooni [ pooluse jarguks.
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Teoreem 2. Isoleeritud isedrane punkt zy on funktsiooni f pool
luseks parajasti siis, kui selle punkti dmbruses vaadeldava funki-
siooni Laurent’i rea peaosa sisaldab vaid lopliku arvu liikmeid, s. L.
punkii zo dmbruses kehtib valem

C-1

f(Z): _}_r_i_—'_"_'—"l_

(Z—Zo)h c—2n

FCote1(z—20)4- ... Fen(z—20)7F ... .
Seejuures on suurim astendaja, mis esineb peaosa litkmete nimeta-
jas, vordne pooluse jirguga.

Toestus. 1) Olgu zy funktsiooni [ k-jdrku poolus. Sel juhul on
funktsioonil w=g(z)=1/f(z) k-jarku nullkoht punktis z, s.t.

1
[(2)
Viimase tingimuse tottu on funktsioon w==1/f(z) analiiiitiline punk-
tis zp, mistottu

I | 1
[(z) = Gz 9@ G—z [bo+bi(2—2‘0)+-~-]='

= (2—20)*q(2), kus @(a) 0.

by by o br

T (Z—z0)* + (z—Zo)"ﬁ‘“1+”'T Tz =z

Saadud rida on funktsiooni w=/f(z) Laurent’i rida punkti 2z, iimb-
ruses. Tema peaosa sisaldab 16pliku arvu liikmeid. Tarvilikkus on
seega toestatud.

2) Kehtigu mingi.s piirkonnas 0<C|z— 2] <<r vérdus

Cy Cy

f(z)= (Z—Zo)h‘_ll_-”Tl_ — +ootci(z—z) ... .
Siit saame, et

1 __-9(2)
[(z)= (z— z)* [C—h+c~k+‘1(z*—20)+---]—“ (z—zp)k
kus @(20) #0. Viimasest aga jireldub, et

1 1

) == (2 — 2 ) B

COTT T

kus w=1/p(2) on analiiiitiline punktis z,. Seega on 2o funktsiooni g
k-jarku nullkoht. Vastavalt teoreemile 1 ning definitsioonile on
punkt z, funktsiooni f k-jarku poolus.

Teoreem on sellega tdestatud.
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Ulesanded

1. Leida jidrgmiste avaldistega mairatud funktsioonide poolused j’é
mdédrata nende jark:

1 1

2) 22— g8 d) sinz—sina '’

sinz 1
b -
) ) Tre

sin 4z 1

f —_—

) z2(l —e)’ ) R 2

Vastus: a) 0 — 2. jarku ja I — 1. jirku poolus; b) 4i—2. jarku
poolused; ¢) 0—1. jarku ja 2kmi (k=z1, =2, ...)—1. jarku poo-

lused; d) kui as& (2m+1)—g_ (m=0, =1, ...), siis z=2kn4a
ja 2= (2k+1)n—a (k=0, =+1, ...) on 1. jarku poolused; kui
a= (2m-1) —2”- siis m=2p korral on punktid z=2kn+-2£ 9. jirku

poolused, m=2p-41 korral on punktid z= (2k—|—1)n+~% 2. jarku

poolused; e) z=(2k+1)—g—-i (k==0, =1, =2, ...) 1. jirku poo-
lused; f) z=2kmi (k==1, £2, ...). 1. jarkit poolused. |

6.5. OLULISELT ISEARANE PUNKT

Eelmises kahes jaotises saadud tulemusi arvestades voime delda,
et kehtib jdrgmine teoreem.

Teoreem. [soleeritud isedrane punkt 2, on funktsiooni | oluliselt
isedrane punkt parajasti siis, kui funktsiooni f Laurenl’i rea peaosa
selle punkti iimbruses sisaldab l6pmata palju litkmeid.

Jargnevas toestame iihe teoreemi oluliselt isedraste punktide
kohta, mis aitab ldhemalt iseloomustada funktsiooni kiitumist olu-
liselt isedrase punkti fimbruses.

Sohhotski teoreem. Kui z, on funktsiooni [ oluliselt isedraseks
punktiks, siis leidub mis tahes kompleksarvu A (ka A=o0) puhul
punktiks 2y koonduv jada (zn), mille puhul lim f(z,) =A.

n—»cc

Toestus. 1) Olgu A=oo. Et | ei saa olla tdkestatud iiheski

. 1
piirkonnas 0<,Z‘“2’0|<7{‘ (vastasel korral oleks z, korvaldatav
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isedrane punkt), siis valime seliest piirkonnast punkti z,, mille
puhul [f(za)]|>n. Siit saamegi, et limf(z3)=o0.

2) Olgu AsEoo. Kui igas piirkonnas 0<|z—z0|<%‘ leidub
punkte, kus f(2)=A, siis ongi Sohhotski teoreemi viide oige. Kui

aga leidub piirkond 0<|z—zol<—;—]~, milles f(z)+=A, siis on
funkisioon

v=e0) =75

regulaarne selles piirkonnas. Punkt 2z on oluliselt isedrane punkt
ka funktsioonile w=g(2), mistottu eelneva pohjal leidub punktiks
2o koonduv jada (z), mille puhul

lim g (zn) =o0.

n—>oc

:Siit aga

lim f (2n) = lim |4+ —|=a.

>0 n—>00 g ( Zn)

Teoreem on sellega toestatud.

"Ulesanded

1. Olgu funktsioonil w==f(2) punktis a n-jérku poolus. Néidata,
et funktsioonil w=jf(2)+g(z) on selles punktis m-jarku poolus
(m>>n) voi oluliselt isedrane punkt soltuvalt sellest, kas see
punkt on funkisioonile w==g(2) m-jirku poolus voi oluliselt ise-
drane punkt.

2. Selgitada tosiasja, et kui z==a on funkisioonidele { ja g oluliselt
isedrane punkt, siis summale f4-g vdib ta olla nii korvaldatav
isedrane punkt, poolus kui ka oluliselt isedrane pumnkt.

3, Olgu funktsioonil f m-jdrku poolus ning funktsioonil g kas
n-jérku poolus vai oluliselt isedrane punkt punktis a. Toestada,
et sel juhul on funktsioonil fg selles punktis kas (m--n})-jarku
poolus voi oluliselt isedrane punki, '

-4. Nédidata, et kui punkt z=a on funktsioonidele f ja g oluliselt ise-
drane punkt, voib funkisioonil fg selles punktis olla iga liiki
isoleeritud isedrane punki.

5. Olgu funktsioon f analiiiitiline piirkonnas 0<C|z—a|<Cr ning
punkt a funktsiooni f nullkohtade kuhjumispunkt. Niidata, et
punkt @ on funktsiooni f oluliselt isedrane punkt juhul, kui see
funktsioon pole selles piirkonnas konstantne.
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6.6. FUNKTSIOONI KAITUMINE LOPMATUSPUNKTIS

Kui funktsioon [ on regulaarne mingis piirkonnas R<|z| <o,
siis utleme, et lopmatuspunkt on selle funktsiooni isoleeritud
isedrane punkt. Defineerime isedrasuse tiiiibi lopmatuspunktis.
samuti kui 16plikus punktis. Soovides leida kriteeriume (analoo-
gilisi jaotistes 6.3—6.5 tooduile) isedrasuse tiiiibi méaramiseks,

teeme muutuja vahetuse z=—-é— ning saame

1
i@ =1{4)=Fw.
Et w=f(z) on regulaarne piirkonnas R<|z| <o, siis w=F(f)
on regulaarne piirkonnas 0<|.;|<~1—l€ ning tal on seal sama liiki
isedrasus, mis funkisioonil w=f(z) I6pmatuspunktis.

Kui funktsioonil w=f(2) on I6pmatuspunktis isoleeritud ise-
arane punkt, siis kdrvaldatava isedrasuse korral

F(2) =F(2) =coteitt. .. =Co+‘§1‘—|—... ,

pooluse puhul aga

b_ b_ ; b_ 00
f(2)=F(t)= Ckk + C:_J;i.—'r-...+ Ci 1 S hatr=—
n=0
== cp2ht-cp12P14- . . izt Z :;"

n==(

ning oluliselt isedrase punkti puhul

oo b_ - - - 00 »
f(2)=F(5)= Z—C{‘—-Jr Sbalr= 3 cuzrt )| =
=1 n==0 n==1 n=0

Nendest reaksarendustest selgub, et 16pmatuspunkti iimbruses.
moodustavad rea peaosa positiivsete astendajatega litkmed ja kor--
rapdrase osa mittepositiivsete astendajatega liikmed.

Kui funktsioonil f on ISpmatuspunktis kérvaldatav isedrasus,
siis defineerime f(oco)= limf(2) ja nimetame funktsiooni [ regu-.

Z—=>00

laarseks lopmatuspunktiks.

Teoreem. Kui funktsioon | on regulaarne tiielikul komplekstasan- -
dil, siis ta on konstanine.

Toestus. Regulaarsusest 16pmatuspunktis jareldub, et leidu-
vad konstant My>0 ning piirkond |z| >R, kus

|7 (z) | <M.
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Et aga eelduse kohaselt -on | regulaarne ka kinnises piirkonnas
|2] <R, siis on ta seal pidev ning seega tokestatud, s.t.

17 (2) | <M.

Voltes M= max (M, M), saame, et |f(2)|=<<M iga 2z puhul.

Seega saime, et funkisioon f on tokestatud kogu tasandil, mis-
tottu Liouville’i teoreemi pohjal on ta konstantne.

Toestatud teoreemist jareldub, et huvi pakuvad vaid need ana-
liifitilised funktsioonid, millel on vdhemalt {iks (kas siis loplik
voi lopmatu) isedrane punkt. Neid vaatlemegi ldhemalt jargmises
jaotises.

Ulesanded

1. Kas saab jirgmiste avaldistega méiidratud funktsioone arendada
Laurent’i reaks lopmatuspunkti {imbruses:

1 1
a) cos —, C)_ln 17
b) cot z, d) Yz(z—1)? |
Vastus: a) ja, b) ei, ¢) ei d) ja (mdlemate harude puhul).
2. Arendada funktsioon w==ln Z:z Laurent’i reaks lopmatus-

- punkti imbruses.

n__naon
Vastus: Z_b_n_;c_z__, kus |z|>max(|a], |b]).

n=1

6.7. LIHTSAMAD ANALOUDTILISTE FUNKTSIOONIDE KLASSID

Me teame, et kui w=F(2) on tdisfunktsioon, siis rida

flz)y= ;’ Cn2" (1)

koondub kogu komplekstasandil, s.t. piirkonnas [z]<Coo. Seetdttu
voime rida (1) vaadelda ka kui funktsiooni w==f(z) arendust
Laurent’i reaks punktis z==o00. Seda asjaolu silmas pidades saame
Oelda jargmist:

1) kui tdisfunktsioon on regulaarne ka lopmatuspunktis, siis on
fa konstantne;

2) kui lopmatuspunkt on tdisfunktsiooni pooluseks, siis on see
funktsiooni poliincom (tdisratsionaalne funktsioon);

3) kui lopmatuspunkt on oluliselt isedrane punkt funkisioonile
w==f(2), siis sisaldab rida (1) 15pmata palju liikmeid.
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Viimasel juhul nimetatakse funktsiooni [ tidistransisendentseks
Tunktsiooniks. Sellise funkisiooni néideteks on w=e? w==sin 2z,
w==cos 2 jt. -

Funktsiooni f, millel koik loplikus kauguses asuvad iseidrased
punktid on poolused, nimetatakse meromorfseks. Osutub, et komp-
lekstasandi igas loplikus ja kinnises osas véib meromorfsel funkt-
sioonil olla vaid l6plik arv pooluseid. Toepoolest, kui seal oleks 10p-
mata hulk pooluseid, siis oleks neil vdhemalt iiks kuhjumispunkt a.
Viimane on selle funktsiooni isedrane punkt, sest selles punktis ei
saa funktsioonil olla loplikku piirvdartust. Seega ei saa funktsioon
olla regulaarne oma pooluste kuhjumispunktis. Teiselt poolt: punkt
a ei ole poolus, sest poolus on isoleeritud isedrane punkt, mida aga
pole punkt a. Seega saame, et kui funktsioonil f oleks mingis 16pli-
kus ja kinnises piirkonnas lopmatu hulk pooluseid, siis oleks tal
loplikus kauguses veel {iks isedrane punkt, mis pole poolus. Ent see
on vastuolus meromorfse funktsiooni def1n1t51oon1ga Seega on meie
vdide toestatud.

Kogu komplekstasandil aga voib meromorfsel funktsioonil olla
16pmatu hulk pooluseid (nditeks funktsioonidel w==tanz ja w=
=cot 2).

Teoreem. Kui funktsiooni | kéik isedrased punktid tdielikul komp-
lekstasandil on poolused, on see funktsioon raisionaalne,

Toestus. Mirgime koigepealt, et tehtud eeldustel on funkt-
sioonil f vaid Ioplik arv pooluseid. TGepoolest, kui neid oleks 15p-
mata palju, siis oleks vihemalt 16pmatuspunkt nende kuhjumispunk-
tiks, mistottu sellel funktsioonil oleks téielikul tasandil ka teisi
iseiraseid punkte peale pooluste.

Olgu punktid a4, ..., a, funktsiooni f poolused (lopllkus kau-
guses asuvad poolused). Nende pooluste iimbruses olgu Laurent’i
ridade peaosad vastavalt

am

_gi(z)= T a)m+ —I—Z_Oll
Cp Cs
=yt tr=a

| Lopmatuspunkti {imbruses olgu funktsiooni f Laurent'i rea peaesa

g(R)=Az+ ... +A,20
(kl;lai funl;tsmon [ on regulaarne l16pmatuspunktis, siis A;=.
— q_O

Vaatleme funktsiooni

w=h(z)=f(z)—g(z)—-h§”1gh(z).
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See funktsioon on regulaarne igas Ioplikus punktis z5%=a,, sest ta
avaldub 16pliku arvu regulaarsete funktsioonide summana. Igas
punktis z=uqax on tal korvaldatav isedrane punkt, sest koikide nende
punktide timbruses puudub funkisiooni A Laurent’i reaksarendistel
peaosa. Toepoolest, punkti z=a; ilimbruses on funktsiconide w==
=f(2) ja w==gr(2) Laurent’i ridade peaosad vordsed ning koik
ilejadnud funkisioonid kA avaldises peale nende funktsioonide on
regulaarsed punktis z=a;. Sama kehtib ka 16pmatuspunkti korral.

Kui defineerida sobivalt funktsiooni & vaddrtused punktides z=az
(=1, 2, ..., n) ja z=o0, siis saame funktsiooni, mis on regu-
laarne téielikul tasandil, s.t. h(2) =Ao Seega

10 =Ao+g(z)+h§; g1 (2) = Ag+-Aiz+ Ag2t+

4 .. F Az Gm | T

T (z__ai)m_l_--'_l_z__alT

l Cp | 1 €1
T z—a)? " z—an

Saadud vordusest jareldubki meie teoreemi viide, sest kui teos-
taksime viimases avaldises vajalikud aritmeetilised tehted, ilmneks,
et funktsioon f avaldub kahe poliinoomi jagatisena, s.t. on rat-
sionaalne.

Midrkus. Viimati saadud vordus niitab muuseas, et igat rat-
sionaalset funktsiooni on voimalik esitada selle tdisosa ja osamur-
dude summana. Reaalsete ratsionaalsete funktsioonide puhul vaa-
deldi seda esitist seoses ratsionaalsete funktsioonide integreeri-
misega.

i

7. RESIIDIDE TEOORIA
7.1. RESIIDID

Kui funktsioon f on regulaarne punkti @ mingis {imbruses, siis
kehtib Cauchy teoreemi pohjal vordus

ST (2)dz=0
¢

iga sellesse {imbrusse kuuluva kinnise joone C puhul. Kui aga
punkt a on isoleeritud isedrane punkt, erineb selle integraali viir-
tus {ildiselt nullist. Osutub, et selle integraali vidértus ei soltu
joone kujust. Oluline on vaid, et joon C ei holmaks funktsiooni f
teisi isedraseid punkte peale punkti a. TGepoolest, arendades funki-
siooni [ Laurent’i reaks piirkonnas 0<C|z—a]<Cr, saame avaldise
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Ha)= ch(z—a)wrz e
Et saadud rida koondub {ihtlaselt joonel C, kui viimane kuulub
dlalmirgitud piirkonda, siis voime seda rida liikmeti integreerida
{ile joone C, mistottu

[ [ (2)dz=2nic_,
L

sest

[ (z—a)mdz= { 0, kui m==—l,
L

2ni, kui m=—1I1.

Saadud tulemustest selgub, et eriline tihtsus on isoleeritud ise-
drase punkti {imbruses voetud Laurent’i rea kordajal c_,, mistottu
on talle antud eriline nimetus — resiid. Selle moiste t6i kompleks-
muutuja funkisioonide teooriasse Cauchy, kes néditas ka resiidi
moistele mitmesuguseid rakendusi.

Hilisemal perioodil on resiidi mdistet defineeritud mitmeti. Oma
sisult on need definitsioonid aga iihetihenduslikud. Et saavutada
iihtsust nii I6plike punktide kui ka 16pmatuspunkti puhul, definee-
rime resiidi moiste jargmiselt.

Funktsiooni | resiidiks punktis a nimetatakse suurust
1
res [f(2); a] —“%T({f(z)d&

kus C on punkti a niisuguse imbruse rajajoon, mis isedrastest
punktidest sisaldab vaid punkti a.

Markus. Arvestades, et iimbruse rajajoone positiivseks suu-
naks on see, mida médda likudes fimbrus jaab vasakule saame
esitatud definitsioonist, et 1opliku a korral

1

res [f(2);al=5— J [(2)d2
|z—a!==r
ning 16pmatuspunkti puhul
res [f(2); o] =——— [ [(2)dz
|z|=R

On vahetult selge, et toodud definitsioon on sisuliselt sama-
véadrne sellega, et nimetada resiidiks kordajat ¢—y. Teiselt poolt on
oluline maérkida erinevust, mis ilmneb [&pliku ja I6pmatuspunkti
vahel. Kui z=a on lopllk ning funkisiooni f korvaldatav isedrane
punkt, siis punkti z=a iimbruses voetud Laurent’i rea kordaja
c_1==0. Seega on resiid vordne nulliga funktsiooni 16plikus kau-
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guses asuva korvaldatava isedrase punkti suhtes. Kui aga korval-
datavaks isedraseks punktiks on lopmatuspunkt (sel juhul deldakse,
et funkisioon on regulaarne lopmatuspunktis), ei tarvitse resiid olla

null. Néiteks funktsiooni w=— puhul
res[-l—; oo]=—— 1. f 1 dz=— 1, 2ni=—I1.
z 2ni 2 Z 2ni

Oluline on réhutada, et 1opmatuspunkti puhul ei vordu resiid
I6pmatuspunkti iimbruses voetud Laurent’i rea

oo C—n
F@)= 3 caznd 3 -
n=>0 n=it € . ;
kordajaga c¢_;, vaid selle vastandvddrtusega —c_i;. Et sel juhul
kuulub kordaja ¢4 rea korrapirasesse ossa, ei tarvitse viimane vor-
duda nulliga, kui funktsioon on lopmatuspunktis regulaarne. Erand-

juhtudel voib see siiski nii olla, néiiteks

1
res[ ) : oo]=0.

Arvestades resiidi moistet, voime Cauchy teoreemi iildistada
resiidide teooria péhiteoreemiks.

Teoreem. Kui funktsioon f on regulaarne tGkestatud piirkonnas D,
vdlja arvatud [6plik arv punkte a1, aa, ..., Qn, ning pidev kuni selle
piirkonna rajajooneni C, siis

c:['f(z) dz=2nik§i res [f(2); az].

"Tdestus. Eraldame koik isedrased punktid ax ringjoontega Ch,
mis omavahel ei 16iku ega asu fiiksteise sees. Ulejddnud piirkonnas
on f regulaarne ning me v6ime kasutada Cauchy teoreemi mitmeli-
sidusate piirkondade jaoks. Selle pohjal

Jl@de= 3 [}(2)dz.

Arvestades resiidi definitsiooni, saame siit vahetult teoreemi viite,

Jadreldus. Kui funktsioon | on regulaarne tédielikul kompleks-
tasandil, vdlja arvatud [oplik arv punkte, siis on tema resiidide
summa RoiRide isedraste punktide suhtes (kaasa arvatud [Gpmatus-
punkt) vordne nulliga. :

Toestus. Votame ringjoone |z|=R selliselt, et koik loplikus
kauguses asuvad isedrased punktid ap (k=1, 2, ..., n) on selle
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ringjoonega holmatud. Asjatoestatud teoreemi pohjal

2:rni}§,’l res [[(2); ar}= lzlin (2)dz.

Teiselt poolt, definitsiooni pohjal

2nires [f(2); oo] __—l [_‘[ f(z)dz.

Nendest kahest vordusest jareldubki véide.

Ulesanded

1. Olgu h regulaarne punktis a ning h(a)qEO Niidata, et punkt a
on funktsioonile

h(2)

—a

w=f(2) =

pooluseks ning res [f(z); a]=h(a).

2. Arvutada jargmised integraalid:

: . 1
a) fsm—z—dz, c) [ zne¥xdz (n on téisarv),
iz|=r tzj==r
| 1 | 5z —2
b sin? — dz, d
) |z|1 < ) |2 =2 (e—1)z
. n+42 . . o
Vastus: a) 2rni, b) 0, c) D) i (n=—1) ja 0 (n<<—1),

d) 10mi.

7.2. RESIIDIDE ARVUTAMINE

a) Funktsiooni f esimest jarku pooluse z=a puhul kehtib valem

f(2) =——"—+u(2),

kus ¢ on analitiitiline punkti a iimbruses. Sellest vGrdusest leiame, et
c=(z—a)f(2)—(z—a)o(2), |
millest saame (minnes piirile z—a) jédrgmise valemi resiidi leid-
miseks:

res [}(2): a] =ca= lim (2—a)f (2), | W

z—0

sest lim (z—a)g(z)=0.

=
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22

Naide 1. Olgu f(2)= Leiame res [f(2); 2].

22—4°
Saame, et
22 ] . 2 22
— =l —_— = N =].
res[zz__4,2 21_1;1;1 (2—2) - lzl_gl P 1

Kui funktsioon avaldub kujul

_ 8(2)
f(2)= 1 (2)

ning z=a on funktsiooni A esimest jérku nullkoht (seega on punkt
a funktsiooni f esimest jarku poolus), siis

, kus g(a) 70,

ol — 13 g . g2
res [[(2); a] = 121*133 (z—a) he) £1_1}1: nz)
z—a
Et aga
A _—
lim @) lim i(z)—h(a) =h'(a),
z—Q s—4a z—0 s —da
siis saame siit valemi
g(2) ] g(a)
P _ 2
res| 4505 a | £ (2)
Niadide 2. Olgu w==f(z)=cotz. Punktid z=kn (=0, =1,
+2, ...) on selle funktsiooni esimest jarku poolusteks. Leiame nen-
des resiidid valemi (2) pohjal:
res [cot z; kn]= ks =1.

(sinz)’ |s=h=n

b) Olgu punkt z==a funktsiooni f korgemat jirku pooluseks.
Ka sel juhul saame suhteliselt lihtsa valemi resiidi leidmiseks.
See valem osutub iildistuseks valemile (1). Me teame, et funkt-
siooni f k-jdrku pooluse a iimbruses kehtib seos

C_1 g Cop

Hz) =¢(2) +——+ c—az Tt o

—da

kus ¢ on analiiiitiline vaadeldavas iimbruses. Sellest seosest saame,
et

(z—a)}(2) = (z—a)*@(2) +ca(z —a) 14 ... Fc.

Kui viimast seost diferentseerida #— 1 korda, siis saame vdrduse
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dk—1 h—1

o L(z—a) H(z)]= ;zk—i [(z—a)k@(2)]+ (B —1)le_s. (3)

FEt z=—a on avaldisega (2—a)*q(z) maidratud funktsiooni suhtes
vdhemalt k-jarku nullkoht, siis

(Jh—1

‘lzi_l;l; dzh—1 [(Z - a)h(p (Z)] =0.

Viimast tulemust arvestades saame seose (3) pohjal jargmise
valemi:

dk—
res [](@): 6] ===y m gy [G— @M @], (@

Kui votta k=1, siis saame valemist (4) valemi (1).

Niide 3. Leida funktsiooni w=/(2)=(22+1)~" resiid punk-
tis z=1i. Vastavalt valemile (4) saame, et

. ] 1 dn—1 o 1 B
res [f(2);i]= 121;11 =11 a7 [(2—1) W]—
. 1 dn—1 1
- lzl—rfll (n—1)! dznt [ (i) ] —
— i L, n(ntl)...(2n—2)
._lzl_l;rll (—1)n—t PRI
— (i7) n1 n(n+1)...(2n—2)
B m—DiEy=—
1 n(n+1)...(2n—2) 1 . fn—1 .
i (n—1)! 92n—1 1(2r1,—2)2i an,

¢) Vaatleme niiiid juhtu, kus punkt a on funktsiooni f oluliselt
isesirane punkt. Sel juhul ei ole resiidi leidmiseks nii lihtsaid vale-
meid kui pooluste korral. Oluliselt isedrase punkti korral kasuta-
takse selleks enamikul juhtudel Laurent’i rida vaadeldava punkti a
iimbruses. Viimase puhul on vaja médarata vaid kordaja c_s. Sageli
on seda kordajat suhfeliselt lihtne leida. '

Niide 4. Leida funktsiooni w=ez+Vz resiidid isedraste punktide
_suhtes. Et vaadeldava funktsiooni isedraseks punktiks on punkt
z=0, siis tuleb leida selle funktsiooni reaksarendus punkti ==
fimbruses. On aga teada, et

oC o0
PAL ) 1
er= ning elYz=
1! | nlzn’
n=>0 n=0
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mistottu
22
21

I (T

Korrutades need kaks rida, saame z—1 sisaldavad liikmed vaid
juhul, kui korrutame esimese rea esimese liikme teise rea teise liik-
mega, teise kolmandaga, kolmanda neljandaga jne. Seega

>
= ) A (nF1)1

n==(} \

ertl/z —pzpl/z,— ( ]_I_z_..]_

Sellega olemegi leidnud resiidi nullpunkti suhtes.
Teiseks isedraseks punktiks on z=oco. Et rohkem iseidraseid
punkte pole, siis saame eelmises jaotises toodud jdrelduse pohjal, et

res[f(z);oo]=—-res[f(z);0]:__2 ni(nl_[_l)! .

n==_0

Analoogilisel viisil saab nii monigi kord kasutada nimetatud
jareldust resiidide leidmiseks. '

d) Monel juhul resiidi leidmine lihtsustub, kui peame silmas
seoseid

res [}(2)+g(2); al =res [f(2); al +res [g(2); a] ja
res [kf(2); a]=kres [f(2); a],

mis jdrelduvad vahetult resiidi definitsioonist.

z

1
, z+1 ' 241
isedraste punktide suhtes. Sel juhul on isedraseks punktiks z=-—1,
mis esimese liidetava suhtes on oluliselt isedrane punkt ning teise
suhtes esimest jarku poolus. Viimase korral saame, et

resiidid tema

Ndide 5. Leida funktsiooni w=cos

Ires [ e . 1 ]—'—_ei_....l —e-'-"i—_l_
241" T (z1) =TT T e

Mis puutub esimesse liidetavasse, siis, arvestades cos z Maclau-
reni rida, saame reaksarenduse

€os : =1— 1 + ...

21 21(z1)2

Selles reas puudub liige, milles esineks avaldis (2--1)-!. Seega

r 1 ] . .
C_y==TeS CO0S i —1 |=0 ning siit
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res [F(2): —1}=—-.

Teine iseirane punkt on z=oo. Resiidide teooria p6hiteoreemi
jarelduse pohjal saame, et
1

res [f(2); oo]=—-?.

Ulesanded

1. Olgu funktsioonid g ja A regulaarsed punktis a, kusjuures punkt
a on funktsiooni  teist jarku nullkoht. Niidata, et sel juhul

gz) 1, & 2 glah”(a)
reS[T('z‘)“" a|=2 W@ 3 (@]

9. Leida jdrgmiste avaldistega méédratud funktsioonide resiidid
koikide 15plike isoleeritud isedraste pumnktide suhtes:

z4-1 1 —e?2 22n
2) 2?—2z °) 2 °) (142)™ "’
b) thz, ) fy arctanz
sin 2 z
1 3
Vastus: a) res [f;0]=_—2-, res [f;2]=_2._,

el i
| ) e) res [f;—1]=(—1)n+l( on )’
c) res [[; 0] =——, f) res [f; 0]=0.

—1
3. Leida funktsiooni w=f(z)= (sin-—i—) resiidid koikide isolee-

ritud isedraste punktide suhtes.

. ._,1_]__ pet 2 _

Vastus: res[f(z), pam = (—1) o (k==1, £2, ...)
1 (k==1, +£2,...)

ja res [f(2); oo]=—F. |

4. Piirkonnas |z| >R kehtigu vordus

Cy
b

f(2)=cot—4... -
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Leida res [(f(2))? oo].
Vastus: —2c0cs.
5. Niidata, et

n

c_
res [1(2)2(2); al = Ly g (@),

kui g on analiiiitiline punktis a ning punkti a iimbruses kehtib
Seos

[(2) =h2’° cr(z2—a)k.

=N

6. Arvutada jdrgmised integraalid:

) f 32249 i d') f dz

w8 1) (224+9) oy SH22 7
dz
b , e tan kzdz (k=1, 2, ...).
) lzli 2%(2+-4) ) rz|f=h 2 )
¢} [ tanzdz,
|z]==2
Vastus: a) 6mi, b) —’%— ¢) —4ai, d) —ni,
e) ——4[ 2k —1 ] i ’ ‘
23‘[ Jel.

7.3. RESIIDIDE KASUTAMINE INTEGRAALIDE ARVUTAMISEL

Vaatleme resiidide teooria rakendamise véimalusi méédratud (ka
piratute) integraalide arvutamisel. Siinjuures peatume vaid kolmel
ildisemal ning suhteliselt Iihtsasti kisitletaval juhul.

a) Vaatleme integraali

FP(x)
M{ 00

kus P(x) ja Q(x) on poliinoomid. Et selline intergaal eksisteeriks,
peab poliinoomi Q(x) aste olema vdhemalt kahe vorra korgem lugeja
omast ning poliinoomil Q(x) ei tohi olla reaalteljel nullkohti. Eel-
dame, et need tingimused on tdidetud.

Votame vaatluse alla funktsiooni

P(z)
Q(z)

w=F(z)=
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Joon. 35

' . ol
On sclge, et tehtud eeldustel lim 2F (2) =0, kusjuures viimane vor-

=00

dus kehtib z suhtes iihtlaselt, s.t. ei s6ltu muutuja 2z ldpmatusele
lihenemise viisist. Et funktsioonil F on vaid loplik arv isedraseid
punkte — pooluseid (nimetaja nullkohti) —, siis vdime valida nii
suure raadiusega ringjoone |z|=R, mis holmab koiki iilemises
pooltasandis asuvaid isedraseid punkte (vt. joon. 35). Seega resii-
dide teooria pohiteoreemi kohaself

“_FF(x)dx—}- Cf F(z)d2=2ni > res [F(2); 2].

m z,>0

Et iilemises pooltasandis pole. viljaspool vaadeldavat poolringi
iihtegi isedrast punkti, siis R kasvades viimase vorduse parem pool
ei muutu. Seda arvestades ldheme piirile R — oo. Osutub, et

lim [ F(z)dz=0. (1)

R—o0 C,

Téepoolest, funktsioonile F seatud kitsenduste tottu [zF(2)|<Te,
kui |z[==R ning R on kiillalt suur, mistottu

1
< g —— R =rte.

I [ F(2)dz =I sz(z) —l-dz
CR CH z R
Saadud tulemust arvestades voime oelda, et
f) F(x)dx=2ni 3} res [F(2); zr]. (2)
—00 Im zx>0 '
Nidide 1. Leiame integraali f 1 dx. Vastavalt valemile
; 1 -}-x?
(2) saame, et
[odx 1 [ dx .[1_]__
1+% 2 f1+x2 g eS|y 1
] gl
=M =T
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b) Osutub, et vordus (1) on Gige ka teistel eeldustel funktsiooni
F kohta. Uhe niisuguse tingimuse annab jirgmine teoreem, mida
tuntakse Jordani lemmana.

Jordani lemma. Kui piirkonnas |z|>R., Imz>—a kehtib vor-
dus lim f(z)=0 arg z suhtes iihtlaselt, siis valem (1) on oige, kui

R—o00 z—>o0
F(z)=¢e*(2), kus A=>0.

Tdestus. Olgu z=xtiy=rel*, Mp= max |[[(z)]| ja o=

zeCy
=arcsin-%. Felduse pdhjal Mg->0, kui R—oo. Sel korral ka

a— 0, kusjuures aR —a (vt. joon. 36). Kui a>0, siis kaartel AB
ja DE saame, et |ef*?|=e?<Ie Jarelikult kehtib seos

| [ et*sf (2)dz| <<Mge**aR — 0, kui R — oo,

s

kus y on kas kaar AB voi DE.

2 : '
Arvestades seost singp=—g¢, kui OQcp.,{—n—, saame, et kaa-
T 2
rel BCD

2AR

'l ei?tz I — e—?&R sin @ --<.., e— L1 ¢

mistottu

T2 om

] f ei’-”f(e)dz|<MRRf e q}d(p:MR—al-(l—e—"R)—rO :
T 2\ ’

BCD

kui R — oo. Sellega on lemma tdestatud juhul, kus a>0.

Juhul a<C0 tdestus vaid lihtsustub, sest siis pole vaja vaadelda
integraale iile kaarte AB ja DE. Lemma on sellega tdielikult toes-
tatud.

Mirkus. Jaotises 10, seoses Laplace’i teisenduse pdoramisega,
tuleb meil vaadelda Jordani lemmat monevorra teisel kujul. Seal
p=iz, s.t. joonisel 36 esitatu on poératud 90° vorra vastupidi
kellaosuti liikumise suunale.
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Kiesolevas rakendame Jordani lemmat (vottes a=0) selleks, et
arvutada integraale

o]

J(x) coshxdx ja ff(x) sin Ax dx,

—_00

kus A>0 ja funktsioon f rahuldab Jordani lemma tingimusi. Sel-
gitame seda voimalust jargmise nditega, '

Niide 2 Arvutame integraali

o0

xsin xdx
I= .
! (1) (24)

Et integraali all on paarisiunktsjoon; siis

oo

1 j‘ xsinx dx
(R (2 4-4)

Pidades silmas Euleri valemit e*=cos x-}-i sin x, saame, et

'f xel*dx
(x241) (x*4-4)
. Viimase integraali arvutame valemi (2) abil, miile pohjal

o0

lxd ) iz
_mf (xsz)(xﬁ+4) = ni{res| (2+12)e(z2+4> |+

z=i +i

PP, S S
zeiz .

TED 1)

i 1)
~ 3e (l_e |

. je—t | 2ie—2 .
z=21}=2n1{ 21 (—144) ' (—4+1)4i } o

¢) Vaatleme integraale

T 2m
f R{cos x, sin x)dx,
0

kus integraalialune funktsioon on ratsionaalne cos x ja sinx suhfes.
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Teeme muutuja vahetuse z=el*, s.t.

2 . 2 d
Gt , sinx=z—,l—, dx——--ﬂ:—z-.
2z 2iz iz

COs X=

Tehes vajalikud asendused, saame, et

e , o 241 2—1 )dz _
Of R (cos x, smx)dx_lz':_/;R( 5 "o = _|z|i'1 G(z)d=.

Vastavalt resiidide teooria pohiteoreemile

2n

J R(cosx, sinx)dx=2ni 3 res [G(2z); 2x].
0 |z} << -

Siinjuures on muidugi oluline, et iikski funktsiooni G iseédrastest
punktidest ei asuks thikringjoonel. Siis ei oleks ka R(cos x, sinx)
pidev 16igus [0, 2x].

Ndide 3. Leiame integraali

2n

' dx
]=f 5+4sinx

0

Vastavalt iilaltoodud valemitele saame, et

22— 1 1
¥ — 21 Bjz —
5--4 sin x=5-}4 512 = (222+-5iz — 2)

ning

dz 1 dz
[= = :
|2l=fi 2224-5iz—2 2 1z]=fi (z--21) (z+1/2)
Uhikringis asub vaid ifiks viimase integraali aluse funktsiooni poo-

lustest — z=—-—-%— —, mille suhtes resiid on T Seega
.12 2

I==2mi 5 3 — 3

Ulesanded

1. Niidata, et

o0 [+ <}

_ x2dx . m x2dx Tt
! f Few P e

0
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! T4 x241)2 4"
r xdx n F cos ax T
€) f =—-, §) f dx=-—¢°
Y (x2+1) (x2+2x+42) 5 vox241 2 (a>0)
cos X T
g) Of (@02 2’
- xsinax dx Tt .
h) f 4 9 e~ sina (a=>0),
. - sinx dx ) A
1) _{ xi4x+5 e sin 2,
_ wxsin ax dx T
_])'3[ PO R e-letlsgn a (a, b — reaalarvud).
2. Arvutada integraalid:
. cos x dx . dx
2) _‘[ 544cosx ’ b) —:[ 1-4-sinzx ’
25 p ' 2n p
cos? 3x dx | X
d .
) ;)[ b—4cos2x ’ ) ;[ (a-+cos x)?2
7 9 3 2 —3/2
Vastus: a) —3 b) n}y2, «¢) 5 d) 2na(a®—1)
(a>1).

74. LOGARITMILINE RESIID

Funktsiooni w=J(2) logaritmiliseks resiidiks nimetatakse tema
logaritmilise tuletise w==f"(2)/f(2) resiidi vaadeldavas punktis.
Logaritmilise tuletise avaldisest on selge, et tema iseiraseks punk-
tiks on ka funktsiooni f nullkoht. Vaatlemegi koigepealt juhtu,
kus punkt b on funktsiooni | m-jarku nullkoht. Sel juhul kehtib
punkti b limbruses seos

[(2) = (z—=Db)m¢(2), | (1)
g* 131



kus ¢ on analiiiitiline punktis b ning ¢(b) 0. Siis aga

D [Lnf (@) =Lz — D)) =
_ | ,_.m_ 9()
—[an(z—b)+Lngp(z)] =25t 0w

Et @(b)5=0, siis on funktsioon w=¢'(z)/@(2) analiiiitiline punk-
tis b ning seega o B

)
[(zy 2

Viimasest seosest jareldub, et

res[ f]:((zz)) : b]=m.

Me saime, et funkisiooni logaritmiline resiid nullkoha suhtes vordub
selle nullkoha jarguga.

fb+c0+c1(z_b)+....

Vaatleme juhtu, kus punkt a on funktsiconi w=f(z) k-jarku
poolus. Sel juhul saame seose (1) asemel vorduse

f (1) =)

BCET

kus % on analiiiitiline punk;cis a ning 1 (a)==0. Analoogiliselt eel-
nevaga leiame, et

'z R
2) —z_a+C0+Ci(Z——a)+...,
mistottu
'(z) .
res[ ) a]:—k.

Seega: funktsiooni logaritmiline resiid pooluse suhtes vérdub selle
pooluse jdrgu vastandarvuga.

Olgu funktsioon f pidev ja nullist erinev kinnisel joonel C. Kui
funktsioonil f on joonega C piiratud piirkonnas 16plik arv nullkohti,

by, b, ..., by ning ainsate isedraste punktidena 1oplik arv pooluseid
ai, Qs, ..., Qp, Siis
L[ ) Z (@) i F (2)
- dz=— res[ - b ] res[ D a ]
R T N~ Ll N T R W= Hhd A [P R
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Kui iga nullkohta ja poolust lugeda niimitu korda, kui suur .on
tema jark, siis eelnevas sooritatud arvutuste pohjal voime viimase
vorduse kirjutada kujul

1 ['(2)
2ni 5 f(2)

kus N on selle funktsiooni nullkohtade ja P pooluste arv joon-ega
C h(‘)lm_atud piirkonnas.

dz=N —P, ()

Saadud seosest jdreldub nn. argumendi printsiip:

Kui tokestatud piirkonnas D rajajooneni C pideval funktsioonil |
on piirkonnas D isedraste punktidena vaid 16plik arv pooluseid ning
rajajoonel C see [unkisioon ei vdrdu nulliga, siis on funktsiooni
vaartuse argumendi muutus rajajoone C tdielikul labimisel 2n korda
suurem selles piirkonnas D asuvate funkisiooni | nullkohtade ja
pooluste arvu vahest. g

Toestus. Et

I;’((;)) dz=d[Lnf(z)]=d[In|f(z) |]+id[Arg }(2)],

siis
f I’ (2)
2 T(R@)
Kui 2z=2,, saame integraali iile kinnise joone C. Et |f(21) | ==

= |f(2) |, siis (vt. joon. 37)

1 ¢ I
HQEC jf(_(:))_ dz=—2;i— i[Arg f(z,) — Arg f(21) ] =“2% Ac Arg f(2).

de=In|f(z2) | —In|f(21) | +i[Arg [(22) — Arg f(z1) ].

Saadud vorduse vasak pool vordub eelmise teoreemi kohaselt joo;
nega C holmatud nullkohtade ja pooluste arvu vahega. Sellega ongi
argumendi printsiip toestatud.

wz= Hzl
2,2, ’

; f{z)}: f(ZPI
Joon. 37
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Ulesanded

1. Olgu funktsioon g analiiiitiline joonega C piiratud piirkonnas
ning olgu funktsioonil | selles piirkonnas loplik arv nulikohti

a, ..., @ {vastavalt jiarkudega my, ..., my) ning isedraste
punktidena vaid poolused by, ..., by (vastavalt jiarkudega
ry, ..., rg). Ndidata, et sel juhul

2:n:1 fg( 2) ff( 2) dZ—kag(ah)_Zrkg (br).

C h=1 k=1

2. Toestada, et kui f on regulaarne joonel C ja sellega piiratud

piirkonnas, siis vorrandi f{z) =a lahendite arv selles piirkonnas
vordub integraaliga

1 f F(2)dz

2ni 0 [(2)—a

7.5. ROUCHE TEOREEM

Argumendi printsiibi jireldusena tdestame teoreemi, mis voOi-
maldab otsustada funktsiooni nullkohtade arvu iile.

Rouche teoreem. Kui funktsioonid f ja g on regulaarsed iiheli-
sidusas ja tokestatud piirkonnas D ning pidevad selle rajajooneni
C, kusjuures iga ze C puhul |f(z)|>fg(2)| siis on funkisiooni-
del [ ja [+g ithepalju nullkohti piirkonnas D

Toestus. Et
— £(z)
arg [[(2) +¢(2)]=arg () -arg| 145 - |

siis tuleb argumendi printsiibi kohaselt (pooluseid pole) meil
Rouche teoreemi toestamiseks veenduda, et

g(?)
=0. 1
o )
See on aga toesti nii, sest kompleksarv
g(?)
o=1
+io

kuulub  teoreemi eelduse (|f(2)|>[g(2)|) kohaselt ringi
|@ — 1] <<1. Viimane aga ei sisalda nullpunkti ning seega saa-
vutab @ argument joone C téielikul ldbimisel oma esialgse véar-
tuse. Niisiis kehtib vordus (1) ning seeldbi ka Rouche teoreem.
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N aide. Leiame vorrandi
29— 9244-3234-222 — 1=0 . (2)
lahendite arvu iihikringis [z]<<1.

Votame f(z2) =2°—92* ning g(2) =323-}-222— 1. Sel juhul ring-
joone |z|==1 punktides

[F(2) | =]2° —92*| =[] 2°| —[92¢] | =38
ning
|&(2) |=[32°+222 — 1| << |32%| +] 22°] +1=6.

Sellest ndeme, et Rouche teoreemi tingimused on tdidetud ning
seega on vorrandil (2) iithikringis sama palju lahendeid, kui neid
on seal vorrandil

[(2) =2° —9zt=2%*(25— 9) =0.

5.
Viimasel on neid 4 (z=0 on neljakordne lahend), sest Y9>1.

Rouche tfeoreemi jareldusena toestame veel kord algebra pohi-
teoreemi:

igal n-astme poliinoomil on parajasti n nullkohta.
Toestus. Olgu
Py (2) =anz®tan—2n 1+ ... Faz+ay a,7=0.

Votame [(z)=an2® ja g(2)=ap2"4an 92" 2+ ... +a2-}+ao.
Siis Pn(2)=f(2)+g(2) ning

lim g(2)

o [(2)

Viimase seose pohjal leidub niisugune R>>0, mille puhul piirkon-
nas |z|<<R kehtib vdrratus

g(?)
[(z)

Me saame, et ringi [z]| <<R suhtes on tdidetud Rouche teoreemi tin-
gimused, mistottu funktsioonidel P, ja f on iihepalju nullkohti rin-
gis |z|<<R. Viimasel on neid n (0 on na-jirku nullkoht). Teoreem
on toestatud.

0.

<t
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Ulesanded

1. Leida jargmiste vorrandite lahendite arv sulgudes ndidatud piir-
kondades:

a) 20 —2z8422—82—2=0 (]|z[<]),

b) 05 — 4328 — 2480 (|z]<1),

¢) z»—5z+1=0 (|z|<l, 1<|2]<?2),

d) 2o —824+10=0 (Jz|<1, 1<|z]<<3).
Vastus: a) 1,b) 0,c) 1 ja3, d) 0ja 4

9  Mitu lahendit on vérrandil ez=az» (n on naturaalarv) ringis
|z] <R, kui [a|>eBR—™?

Vastus: n.

7.6. ANALUUTILISE FUNKTSIOONI POORAMINE

Analiiiitilisele funktsioonile podrdfunktsiooni leidmisel osutub
digeks tdpselt samasugune véide, nagu seda tunneme diferentsee-
ruvate reaalmuutuja funktsioonide puhul. Nimelt, kehtib jargmine

Teoreem. Uhese analiiiitilise funktsiooni | jaoks on tingimus
' (20) %0 tarvilik ja piisav selleks, et punktil z, leiduks fGimbrus,
kus funktsioon f on iiheleheline.

Toestus. Kehtigu ringis |z2— 2] <<R seos

w=/{(2) =wo+a1(2 — 20) +a2(2 — 20)>+ . . . .

Et J(20) 5=0, siis leidub niisugune ring |2 — 20| <g, milles f(2) #=w,
kui z=~2,. Tihistame siimboliga y ringjoone |{— 20| =9, mille kuju-
tiseks olgu joon I' (joon. 38). Kui votame &= min |@ — wo], siis

mesr

iga w,; korral ringist |w — wo| << kehtib seos

|F(8) — wo] > |wo — wi], kus [ 1.

Joon. 38
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Sclle vorratuse ja Rouche teoreemi pohjal on vorranditel
f(Z) — w0=0,
f(z) — wi=f(2) — wot (wo — w1} =0

iihepalju lahendeid ringis |z2—z|<Ce. Et esimesel vorrandil on
scal iiks lahend, siis on seda ka teisel vorrandil. Seega: toepoolest,
igale kujutisele ringist |@w —wo|<C8 vastab parajasti iiks originaal,
s.t. funktsioon w==/(z) on-seal iiheleheline. Teoreem on toestatud.

Jareldus 1. Analiiitilisel funktsioonil f on punkti z, teatavas
imbruses iihene péordfunktsioon parajasti siis, kui ['(20) 0. See
péordfunktsioon on analiiiitiline.

TOestus. Teoreemi toestuse kiigus nédgime, et poordfunkt-
sioon z=q{w) on iihene ringis |w —wo}<C6. Et diferentseeruva
funktsiooni pddrdfunktsioon on diferentseeruv, siis ¢ on regulaarne
ning seega ka analiiiitiline ringis |w — wo| <C8.

Miarkus. Esitatud teoreemi toestusest ilmneb, et mittekons-
tantne funktsioon w=/(z) kujutab punkti z, iimbruse |z — 2] <e
piirkonnaks, mis sisaldab punkti we=f(20) mingi fimbruse. Seda
ka siis, kui f(20)=0.

Jireldus 2. Mitiekonstantne analiiiitiline funktsioon kujutab
lahtise hulga lahtiseks hulgaks.

Toestus. Lahtise hulga igal punktil z, on iimbrus, mis kuu-
lub sellesse hulka. Niisuguse iimbruse kujutis sisaldab punkti 2o
kujutise w, mingi {mbruse, s.t. et wo on kujutishulga sisepunkt.
Kujutishulk on lahtine. '

Jireldus 3. Mittekonstantne analiiiitiline funktsioon kujutab‘
piirkonna piirkonnaks.

Toestus. Et piirkond on lahtine ja sidus hulk, siis eelmist
jareldust arvestades on vaja veenduda kujutishulga sidususes. Vii-
mane aga jareldub faktist, et joon kujutub jooneks.

7.7. MOODULI MAKSIMUMI PRINTSIIP
Mooduli maksimumi printsiibina tuntakse jargmist teoreemi.

Teoreem. Kui mittekonstantne funkisioon on analiiiitiline piir-
konnas D ja pidev selle rajajooneni C, siis funktsiooni moodul ei
saavuta oma maksimaalset vddrtust piirkonnas D, vaid rajajoo-
nel C. . L

Toestus. Oletame viite vastaselt, et funktsiooni moodulil on
maksimaalne viirtus punktis zpe D. Et aga punktil wo==(20) on
{imbrus, mis koosneb vaid kujutistest f(2), siis saame sellest imb-
rusest (joon. 39) valida kujutise wy=f(z), mille puhul |ws| > wol,
s.t. |f(z1)]>|f(20)]- Saime vastuolu, mis tdestabki teoreemi.
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Joon, 39

Mooduli miinimumi printsiip. Kui mittekonstantne funktsioon on
analiiiitiline ja nullist erinev piirkonnas D ning pidev selle raja-
jooneni C, siis selle funktsiooni moodul ei saavuta oma minimaalset
vddrtust piirkonnas D, vaid rajajoonel C.

Toestus on analoogiline eelnevaga.

7.8. HARMOONILISTE FUNKTSIOONIDE OMADUSI

Harmooniliste ja regulaarsete funktsioonide vahel on tihe seos.
Niitame, et ka nende funkisioonide omadused on sarnased. Tapse-
malt Seldes: kanname eelmises jaotises tdestatud tulemused {ile har-
moonilistele funkisioonidele. Alustame teoreemist, mida tuntakse
ekstreemumi  printsiibina. Kirjutiste lihtsustamiseks tdhistame

u(x, y)=u(z).

Teoreem 1. Kinnises piirkonnas D ei saavuta mittekonstanine
harmooniline funktsioon 1 oma ekstremaalset vddrlust selle piir-

konna sisepunktis.

Toestus. Oletame viite vastaselt, et funktsioon u saavutab
oma maksimumi punktis zoe= D. Kui piirkond D on mitmelisidus,
siis iithendame rajajoone iiksikud sidusad osad omavahel nii, et
piirkond D muutub iihelisidusaks piirkonnaks G ning 2z, jdab ka
viimase sisepunktiks. Piirkonnas G leiame funktsioonile u kaashar-
moonilise v ning moodustame regulaarse funktsiooni g==u-4-iv.
Ka funktsioon w—e&® on regulaarne piirkonnas G ning |ef®]|=
—cu@, Et aga e*® ja u(2) saavutavad maksimumi koos, siis peaks
regulaarse funktsiooni w=e#® moodul saavutama oma maksimumi
piirkonna G sisepunktis. See on aga mooduli maksimumi printsiibi
jirgi voimatu. Saadud vastuolu toestabki, et funktsioonil « ei saa
olla maksimumi piirkonna D sisepunktis.

Selle toestamiseks, et funktsioon # ei saavuta ka oma miini-

138



mumi piirkonna D sisepunktis, votame uy(z)=—u(2) ning kasu-
tame &sjatoestatud tulemust maksimumi kohta.

Teoreem 2. Kui funktsioon on kogu tasandil harmooniline ja iihe-
poolselt tokestatud (nditeks iilalt), siis on ta konstantne.

Toestus. Olgu u(2) <M. Moodustame regulaarsed funkisioo-
nid w=g(z)=u(z)+iv(z) ning w=e&®. Siis |ef®|=er@<eM
ning seega (Liouville’i teoreemi pohjal) e#@=const. Siit omakorda
jareldub, et g(z)=const. Et kompleksmuutuja funktsioon on kons-
tantne parajasti siis, kui selle reaal- ja imaginaarosad on konstant-
sed, siis saamegi jdreldusena teoreemi viite.

Ulesanded

1. Toestada, et suvalisel harmoonilisel funktsioonil on mistahes
. jarku osatuletisi ja et need on samuti harmoonilised funktsioonid.
2. Naiidata, et kui kahel harmoonilisel funktsioonil on vordsed véar-

tused piirkonna D rajajoonel, siis iihtivad need funktsioonid
kogu piirkonnas D.

8. KONFORMNE KUJUTAMINE

8.1. KONFORMSE KUJUTAMISE POHIULESANNE

Kui jaotises 2.7. vaatlesime tuletise geomeetrilist tahendust, siis
selgitasime, et regulaarne funktsioon w=f(z), ze D, teostab kon-
formse kujutamise, kui f/(2)5=0 iga z= D puhul. Uks-iihest kuju-
tust nimetatakse konformseks, kui sdilivad nurgad nii suuruse kui
ka suuna poolest ning kehtib 16pmata viikeste ringjoonte invariant-
sus. Naitame niiiid, et iga konformne kujutus on esitatav analiiiiti-

lise (ehk regulaarse) funktsiooniga. Selleks tdestame jargmise
teoreemi.

Teoreem. Kui funktsioon w==f(2) kujutab konformselt piirkonna

D piirkonnaks G, siis | on regulaarne ning ['(2)=0 iga z€ D
puhul.

Toestus. Et iga ithene kujutus on vaadeldav funktsioonina,
siis vdime ka konformse kujutuse puhul konelda funktsioonist
w=f(z2), ze D. Jiib niidata, et iga 2z D puhul ['(2)=~0. Toe-
poolest, vaadeldes punkti z, kujutist w, ning kahe punktist z 1dh-

tuva lopmata viikese vektori kujutist (joon. 40), saame konformse
kujutuse definitsiooni pdhjal, et

[ Aws| | Aw; |
_ k=0
[Azs] Az] 7
ning

arg Aws — arg Awy==arg Az; — arg Az,.
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Joon. 40

Viimane neist seostest esitub kujul
arg Awy; — arg Azy=—1arg Aw; — arg Az
ehk

Aw ar Aw1
Aze B TAZ

arg =

Seega saame piirile minnes, et

. Awi . AWZ
lim ——= lim
Azi—0 21 AzerD 22

=kel®,

millest Az; ja Azy suvalisuse tottu jireldamegi, et eksisteerib f/(2)
ning |f’(2)|=%k+0. Teoreem on toestatud.

Jadreldus 1. Kahe konformse kujutuse kompositsioon on kon-
formne kRujutus.

Jidreldus 2. Konformse kujutuse poordku]utus on konformne
kujutus.

Konformse kujutamise pohiiilesandeks nimetatakse jargmist iiles-
annet:

antud piirkondade paari D ja G jaoks leida selline piirkonnas D
regulaarne funktsioon w=/{f(z), mille korral {'(2)#0 iga z D
jaoks ning mis kujutab piirkonna D piirkonnaks G.

ifllesanded

1. Toestada, et funktsioon w= kujutab ringi [z —1] <2 kon-

iz

z+4-3
formselt dhikringiks |w]<<1.

2. Toestada, et funkisioon w=22 kujutab piirkonna —n<Carg z<

<—--—g—~ konformselt pooltasandiks Im w>>0 ja piirkonna |z| <2,
O<Carg z<i piirkonnaks jw}<C4, Imw>0.

3. Toestada, et funktsioon w=e!* kujutab piirkonna 0<CRez<I=,
Im 2>0 konformselt poolringiks |w|<<1, Im w>0.
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8.2. KONFORMSE KUJUTAMISE OMADUSI

Jirgnevas toestame kaks teoreemi, millest esimest tuntakse iiks-
iihese vastavuse printsiibina ja teist rajade vastavuse printsiibina.

Teoreem 1. Kui piirkonnas D regulaarne funktsioon w=/Ff(2)
Bujutab piirkonna D iiks-itheselt piirkonnaks G, siis on see kujutus
konformne.

Toestus. Jaotises 7.6 toestasime, et kujutus w=f(2) on iiks-
iithene parajasti siis, kui f/(2)0 iihegi z puhul. Viimane tingimus
aga tdhendab, et kujutus on konformne. Teoreem on toestatud.

Oeldakse, et kujutamisel siilib joone C suund, kui punkii pide-
vale liikumisele joone C positilvses suunas vastab tema kujutis-
punkti liikumine kujutisjoone I' positiivses suunas.

Teoreem 2. Olgu tdkestatud piirkonnas D, mis on piiratud raja-
joonega C, antud regulaarne [unkisioon w=/[(2). Kui see [unkt-
sioon on pidev ka rajajoonel C ning kujutab joone C ilks-itheselt
piirkonna G rajajooneks T ja sdilitab joone suuna, siis funktsioon
w==/{(2) kujutab piirkonna D konformselt piirkonnaks G.

Toestus. Meil piisab niidata, et funktsioon w=f(2) kujutah
piirkonna D iiks-itheselt piirkonnaks G. Selleks aga veendume, et
(joon. 41}

1) iga wie G jaoks eksisteerib f)arajasti iiks selline z3 D,
inille puhul f(z1) =wy;

2) tihegi ws et GUT jaoks ei eksisteeri originaali piirkonnas D.
Moodustame funktsioonid.

w=F;(2)=[(2) — wy,

w=F3(2) =[(2) — w2

ning rakendame argumendi printsiipi. Et moodustatud funktsioonid
on regulaarsed, siis raja C taielikul {abimisel muutuvad nende argu-

r

Joon. 41
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mendid arvu 2n ja nulltkohtade arvu korrutise vorra. Jooniselt 41 on
naha, et Acarg Fi(2)=2n ja Ac¢arg Fo(2)=0. Seega on funkt-
sioonil F, piirkonnas D; iiks nullkoht, funktsioonil F, aga mitte
tihtegi. Viited 1) ja 2) ning seega ka kogu teoreem on toestatud.

Miédrkus. Kui joone C positiivsele suunale vastaks joone nega-
tiivne suund, siis saaksime, et Ac arg Fi1(2) =—2n ja A¢ arg F2(2) =
—0. Arvestades argumendi printsiipi, on niisugune olukord v6ima-
lik sel juhul, kui funktsioonil f (seega ka funktsioonidel F, ja F;) on
piirkonnas D iiks esimest jarku poolus ning nullkohti funktsioo-
nil Fy iiks, funktsioonil F; aga ei iihtegi. Selline situatsioon vastab
olukorrale, kus f kujutab piirkonna D joone I' suhtes véiliseks piir-
konnaks ning iiks punktidest kujutub lopmatuspunktiks.

Ulesanded

z—1 . el ils e
1 kujutab iihikringi {ile-

mise poole konformselt komplekstasandi esimeseks veerandiks.

1.” Toestada, et funktsioon w=—i

2. Toestada, et funktsioon w=chz kujutab piirkonna Rez>0,
0<<Imz<n konformselt iilemiseks pooltasandiks.

3. Toestada, et funktsioon w=tan z kujutab piirkonna 0<<Re z<m,
Im 2>0 konformselt iilemiseks pooltasandiks Ioikega piki 16iku

[0, il.

8.3. KONFORMSE KUJUTAMISE POHIOLESANDE LAHENDUVUS

Millistel tingimustel on konformse kujutamise pohiiilesanne
lahenduv, sellele annab vastuse

Riemanni teoreem. Iga iiheli sidusat piirkonda, mille raja sisal-
dab vihemalt kaks punkti, on véimalik konformselt kujutada iihik-
ringiks.

Kédesolevas me seda teoreemi ei tOesta. Niditame vaid teoreemi
eelduste tidhtsust. Osutub, et mitmelisidusat piirkonda D ei saa
kujutada konformselt iihelisidusaks piirkonnaks D, Toepoolest, kui
D on mitmelisidus, voib temas valida kinnise joone C, mis holmab
ka piirkonda D mittekuuluvaid punkte. Kui Dy on {ihelisidus, on
joone C kujutis selles piirkonnas kinnine joon C;, mis holmab ainult
piirkonna D; punkte. Deformeerime joont C; piirkonnas D, nii, et ta
lopuks kodub iiheks punktiks. Kui kujutus oleks konformne, siis on
nii tema kui ka tema po6drdkujutus pidevad ning seetdttu peaks
ka joon C kdoduma iiheks punktiks, kuid sealjuures nii, et ta ei vil-
juks piirkonnast D. See on voimatu.

Mis puutub tingimusse, et raja peab sisaldama vadhemalt kaks
punkti, siis seda ei saa dra jitta kasvoi Liouville’i teoreemi tottu.
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Viimase pohjal ei saa kogu tasandit (rajaks ainult 1opmatuspunkt)
ithikringiks kujutada.

Mirkus. Riemanni teoreemis radgitakse ithikringist, kuid selle
asemel voiks olla mis tahes iihelisidus piirkond, mille rajal on samuti
viahemalt kaks punkti. Niisuguse piirkonna saab dsjasonastatud
teoreemi abil kujutada konformselt iihikringiks. Poordkujutus oleks
samuti konformne ning kujutaks iihikringi vaadeldavaks piirkon-
naks. Ft kahe konformse kujutamise jirjest rakendamine on jallegi
konformne kujutus, siis saamegi siit Riemanni teoreemi ndiliselt
iildisema sonastuse.

On selge, et kui leidub itks konformne kujutus, mis kujutab
piirkonna D iihikringiks, siis leidub niisuguseid kujutusi 16pmata
palju. Toepoolest, iga kujutus, mis koosneb vaadeldavast konform-
sest kujutusest ning p6ordest (iimber nullpunkti), on samuti kon-
formne. Millistel tingimustel on konformse kujutamise pohiiilesan-
del iihene lahend, sellele annab vastuse jargmine

Teoreem. Leidub iiks ja ainult iks funkisioon w=f(2), mis
kujutab etteantud iihelisidusa piirkonna D, mille rajal on vihemalt
kaks punkti, iihikringiks {w|<<1 ning tdidab tingimusi

f(20) = wo, arg [’ (20) = o, (1)
kus zpe= D ja |we| <.

Toestus. Oletame, et niisuguseid funktsioone on kaks,
wi=[(2) ja wW:=¢(2).

Tahistame piirkonna D raja C punktid tdhega &. Tingimusest (1)
ja rajade vastavusest saame, et (wo=0 korral)

f(z0) =0, argf (z0)=ae |[()}=1,

¢(20) =0, arg¢/ (20)=00, @)=L

Vaatleme funktsiooni

we=g[f~ (w1) ] =g (w1).

See funktsioon kujutab ithikringi {ihikringiks, kusjuures
g(0)=q[f1(0)]=0¢(2) =0

ja

“ult

d 1 ra glto ra

dwi f—i(O)z:(p'(zo) f’(zﬂ) = r olto = r >0

g’ (0) =o' (20)

Vaatleme niiiid abifunktsiooni k, mis on defigeeritud jargmiselt:

I g (wi)
h(w1)= Wy

l 7' (0), w;=0.

, 0<lw1l<1,

143




Funktsioon h on pidev ja nullist erinev kinnises ringis |w,| <1,
kusjuures |h(w;)|=1, kui |@i] =1. Mooduli maksimumj ja miini-
mumi printsiipide pohjal

Siit saame, et h(wi) ==const. Tingimusest h(0)=g"(0) >0 jirel-
dame, et h(w,)=1. Funktsiooni A definitsiooni pdhjal saame, et

w2=g(w1) = .

Seega funktsioonid f ja @ langevad kokku ning teoreem on sellega
toestatud.

Méarkus. Tingimusi (1), mis mdaravad konformset kujuta-
mist teostava funkisiooni tiheselt, nimetatakse normeerivateks tin-
gimusteks. Kui vaadelda neid normeerivaijd tingimusi (1), siis maér-
kame, et need sisaldavad kolm reaalset parameetrit (w, reaal- ja
imaginaarosa ning a). Osutub, et tingimuste (1) asemel voib vaa-
delda ka teisi tingimusi, mis samufi sisaldavad kolme reaalset
parameetrit ning normeerivad konformse kujutamise. Niiteks,
anname ette iihe sisepunkti ja iihe rajapunkti kujutise:

f(z0) =w,, [(21) =w,

(20D ja |wo| <1, 21 C ning |w:]=1). Konformne kujutus on
theselt méiratud ka siis, kui fikseerida kolme rajapunkti kujutised:

fzr) =w, (k=1, 2 3).

Ulesanded

I. Leida tilemise pooltasandi kujutus w=f(z) iseendaks, kui

o 2) f(0)=1, [(1)=2, f(2) =oc0;
b) F(0)=1, f(i)=2i.

) . 221
—ZiP e=—2o5

Vastus: a) w= 2

8.4. NAITEID KONFORMSE KUJUTAMISE KOHTA

Kéesolevas jaotises vaatleme moningaid lihtsaid, kuid edasise
ainekisitluse seisukohalt tihtsaid niiteid.

Nidide 1. Leida funktsioon, mis kujutab iihikringi konformselt
ithikringiks, kusjuures punkt z, (1 (20) | <<1) kujutub nullpunktiks.

Et siin ringjoon peab kujutuma ringjooneks (rajade vastavus),
siis otsime vastavat funktsiooni murdlineaarsete funktsioonide hul-
gast. Selle murdlineaarse funktsiooni madramiseks on meil tingi-
mus f(z) =0. Et aga nullpunktiga on iihikringjoone suhtes siim-
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23
20

i Joon. 42

meetriline 16pmatuspunkt, siis peab punktiga z, siimmeetriline punkt
z2y (vt. joon. 42) kujutuma lopmatuspunktiks, s.t. f(21) =o0. Mil-
line punkt on simmeetriline punktiga 2,? Vastavalt siimmeetriliste

1 ,
punktide definitsioonile |z||z1]=1, millest |21[=—Iz—l——, ning
0

arg Zg==arg 25, mistottu z4==

29

Saadud kahe punkti 2z, ja 1/zp kujutiste jargi piiliame mééirata
otsitavat murdlineaarset funktsiooni
_ az-+b ‘

cz+d

(1)

Vastavalt konformse kujutamise ithesuse teoreemile voime delda, et
otsitaval funktsioonil jdab {iks reaalne parameeter méiramatuks,
sest me ei fikseerinud pddrde suurust punktis 2z, Niisiis peame

saama maarata murdlineaarse funktsiooni, milles on vaid iiks
reaalne parameeter.

Seosest
. __azx+b
saame, et az+b=0, s.t. b=—az,. Teiselt poolt,
L 1 )_ a—+bz, .
w_f( 20! ctdi
s.t. ¢4-dzo=0, millest c==—dZ,. Asendamisel seosesse (1) saame, et
az — az, a z2—2z

W= == A,
——-—dfoz—l—d d 1— 202

10 E. Jirimie ' 145



Et aga iihikringjoone punkt z=1 peab kujutuma iihikringjoone
punktiks, siis

a 1 — 2 a

0= |5} ik
FO 1= |ZlT—=% - =1
s. L. —-Z—:ei“, kus o on mingi reaalarv. Seega saame, et otsitavaks
funktsiooniks on

g — 2y

w==el* . 2

S g (2)

Leides saadud funktsiooni tuletise punktis 2

-~

. 1 — 2020 . 1
M g 2 — i — pl

nieme, et parameetri o mddrab tasandi poéore punktis 2o, sest
arg f'(z0) =q.

Kui avaldada seosest (2) muutuja z, saame selle kujutuse pdord-
kujutuse, s.t. funktsiooni, mis kujutab ihikringi {thikringiks, kus-
juures nullpunkt kujutub etteantud punktiks 2z (120] <<1).

Niide 2. Kujutada iilemine pooltasand Imz>0 {ihikringiks
|w| <1 selliselt, et punkt z, (Imz>0) kujutub nullpunktiks.

Otsime seda funktsiooni jillegi murdlineaarsete funktsioonide
hulgast, sest rajaks olev sirge peab kujutuma ringjooneks. Et sel
juhul rajade suhtes siimmeetrilised punktid peavad kujutuma siim-
meetrilisteks punktideks, siis

w(2¢) =0, w(zo)=o0.
Kui tihistame

o az+-b ’
cz-}-d

siis eelnevate tingimuste pohjal saame, et

azy4+-b=0, czo+d=0,

millest
a zZ2—2p
W == —,
¢ 22—

Et punkt z=0 on originaalide piirkonna rajapunkt, siis peab
‘tema kujutispunkt asuma iihikringjoonel. Seega saame, nagu eel-

c e a :
misegi ndite puhul, et —=el%, kus @ on reaalne parameeter. Kok-
c

kuvottes voime kirjutada, et otsitav funktsioon avaldub kujul

146



z—2z

w=e¢l® .
Z—2p

Selle funktsiooni poédrdiunktsioon kujutab iihikringi iilemiseks
pooltasandiks, kusjuures w(0) =z, (Im 2¢>0).

Nidide 3. Leida funktsioon, mis kujutab fiilemise pooltasandi
konformselt iilemiseks pooltasandiks.

Otsime murdlineaarset funktsiooni

az-+b
cz4+d
Pohimotteliselt saab kordajate leidmiseks moodustada - slisteemi

4 reaalarvulisest originaalist z koos nende reaalarvuliste kujutis-
tega w. Sellise lineaarse siisteemi lahendid a, b, ¢, d on ka reaal-

arvud.
Vastupidi, kui kordajad a, b, c, d on reaalsed, siis kujutub reaal-

telg reaalteljeks. Et reaalfelje suund jadks samaks (siis kujutub
ilemine pooltasand i{ilemiseks pooltasandiks), peab funktsiooni tule-
tise argument vorduma nulliga iga reaalarvulise z puhul, s. t. tule-.
tis peab neis punktides olema positiivne.

Leides vastava tuletise, saame tingimusena, et

ad — bc¢
(cx+d)?
millest
ad — bc>0. (3)

Seega: iilemise pooltasandi kujutab iseendaks niisugune murd-
lineaarne funktsioon, mille kordajad on reaalsed ning tdidavad tin~

gimust (3).

>0.

Ulesanded
1. Kujutada iihikring iihikringiks nii, et
, ! )_ : ,( I )._ .
a) w(z =0 ja arguw 5 =0;
i i

. 1Y m
b) w(—?)—uo ja argw(Q)_2 ;

) w(0)=0 ja argw (0)=—5;

d) w(a)=a ja argw’(a)=aq.
22—1 _2iz4-1
oz D) w=Tp

10% 147 -

Vastus: a) w= c) w==—iz;



w—aqa . Z—a
d) -_...:;.__=el(1 —,
l —aw 1 —az

2. Kujutada iilemine pooltasand iihikringiks selliselt, et

a) w(i)=0 ja argw’(i)=—-g-;

b) w(2i)=0 ja w»’(2i)>0.

‘ z—i . 2—21

Vastus: a) w= i b) w==i powT
3. Kujutada ring |z|<CR iihikringiks.

Vastus: w==Rel* Ri——_;Zz .

4, Leida jargmised konformsed kujutused:
a) ring |z| <R pooltasandiks Im w>0;

b) pooltasand Re z>0 iihikringiks |w]|<<CI;
c) pooltasand Re 2>>0 pooltasandiks Re w>0.

aRe® — g2z
Reix — 2

Vastus: a) , Ima>0;

g R—a _ az-+ib
b) w=e et Rea>0, c) w Teatd

arvud, mis tdidavad tingimust ad-4-bc>0.

a,b,c,d — reaal-

‘8.5. DIRICHLET OLESANNE

Mitmed viljateooria ja hiidromehhaanika probleemid taanduvad
jargmisele matemaatilisele {ilesandele:

Leida piirkonnas D harmooniline funktsioon u=h(x,y), mis
selle piirkonna rajajoonel C omandab etteantud pidevalt muutuvad
vddrtused.

Seda {ilesannet nimetatakse Dirichlet’ iilesandeks. Harmoonilise
funktsiooni u=*h(x, y) véirtusena rajapunktis {== (g, n) =E&--in mois-
tame piirvadrtust limh(x, y), kus ze D ja z=(x, y)=x-}iy.

g
Lahendame selle {ilesande konformset kujutamist kasutades. Uht-
lasi ndeme, et Dirichlet’ {ilesanne on lahenduv nendesamade piir-
kondade korral, mida saab konformselt kujutada iihikringiks. Esi-
‘tame Dirichlet’ {ilesande lahendamise iildskeemi ning leiame lahen-
did Poisson’i integraalidena ringi ja iilemise pooltasandi tarvis.
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a) Vaatleme koéigepealt iildjuhtu. Lithiduse méttes kirjutame
h(x,y) asemel h(z) ning rajavdirtuste h(g, n) asemel h().

Kujutleme niiiid, et on teada funktsioon ¢, mis kujutab piir-
konna D konformselt iihikringiks |w]<<C1, kusjuures suvaliselt fik-
seeritud punkt ze D kujutub punktiks w=0. Ringis |w|<Cl vaat-
leme regulaarset funktsiooni F, mille reaalosaks on *U=heq 1, s.t.

h=U-p,. Kui vdotame w=el®, siis do=1e%d0 ning Cauchy valemi

pohjal
1 F(w)do | L
(0) 2ni mii © 2n Df (%) db
ehk

2n

U(0)+1V(0)=—§i— U(eie)d8+~%c—jz'nV(ei9)dG,
0

0

kus V on funktsiooni F imaginaarosa. Viimase vorduse péhjal

a 1 (U
U(0)=2—IﬂfU(eiB)d9= o / ((0‘”) do.

wj=1

Seose o=@, ({) tottu saame iile minna muutujale . Kui veel arves-
tame, et A(2) =U[g.(2)]=U(0), saame valemi

| / :
=) 2= o (1)
2ni ¢ ()

b) Olgu piirkonnaks D iilemine pooltasand. Tema rajaks on
rcaaltelg, mille punktid méirgime tdhega {. Ot:itava harmoonilise
funktsiooni rajavdirtusteks olgu h(f).
~ Funktsiooniks, mis kujutab iilemise pooltasandi konformselt
tihikringiks ja punkti 2 nullpunktiks, on murdlineaarne funktsioon
(vt. ndide 2 eelmises jaotises)

g—c<

w=q,(0) =

o—2Z

kus o on suvaline punkt {ilemiselt pooltasandilt. Seega

[ —2
¢z(1) = ;%
—Zz
ning
¢, (1) z—3% z—3z

() (—2)(t—z2) |i—2|7

* Siimbol o tadhistab funktsioonide kompositsiooni (liitfunktsiooni).
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Olgu z=x-+iy. Siis

o, gy gy
P2 (1) |t —x—iyl>  (t—x)24y?
Valemi (1) pdhjal saame (seost h(x, y) =h(z) arvestades), et
y [ h(t)dt
h = ¥ 2
=2 | _ @)

Valem (2) annab otsitava harmoonilise funktsiooni viartused integ-
raalina, mida nimetatakse Poisson’i integraaliks iilemise poolta-
sandi tarvis.

c) Valemi (1) pohjal leiame veel ringis |o|<<CR harmoonilise
funktsiooni, mille rajavddrtused on A(Z)=u(f), kus {==Rel,
t[0, 2n].

Funktsiooniks ¢,, mis kujutab ringi |o|<CR konformselt iihik-
ringiks selliselt, et punkt z kujutub nullpunktiks, on eelmise jao-
tise iilesande 3 pohjal (vottes a==0) murdlineaarne funktsioon

cC—2Z2

W=q:(0) =R 75"

Arvutades saame, et

R*— |z]|2
(R*—zL)?

¢, (5) =R

ning

¢ (&) R:—|z|?
e:(0)  (RR—120)(t—2)

Kui votta {=Rel! ja z==rel?, siis

¢’ (L) (R? — r?)iettdt
@z(C) %= R%it _ Rre—i%eAt _ Rrelotr2git
(R? — r?)idt (R — r?)i dt

— R24-r? — Rrelt—9) — Rrel(e—1) - R24-r2—2rR cos(t —q)

Tahistades h(x, y)=h(z) =h(rel®) =u(r, p), saame valemi (1) poh-
jal, et

. B | -._rc Rz_rz
ulr, @) = 2n f R24-r2 — 2Rr cos(t — @) u(t)di. 3)

0

Otsitava harmoonilise funktsiooni vidrtused saime integraalina,
mida nimetatakse Poisson’i integraaliks ringi tarvis.
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8.6. SCHWARZI VALEMID

Me teame, et regulaarset funktsiooni saab Cauchy valemi pohjal
esitada tema rajavddrtuste kaudu. Teiselt poolt teame, et regulaarne
funktsioon on maéédratud oma reaalosaga. Eelmise jaotise pdohjal
saame niiiid jdreldada, et regulaarset funktsiooni on voimalik esi-
tada tema reaalosa rajavdidrtuste kaudu. Vaatleme seda iilemise
pooltasandi ja ringi puhul, ldhtides eelmise jaotise valemitest
(2) ja (3). |

Olgu f iilemises pooltasandis regulaarne funktsioon, mille reaal-
osaks on h(x, y) rajavddrtustega h(f), —oo<<t<<oo. Et

Y L 1
C—xte e ii—2)
siis eelmise jaotise valemi (2) pdohjal saame vorduse
1 1 L[ ()
—— —_— di= dt,
% 9) n_mfRe it —z) MHd=Re— _o[ P—2
millest
L[ od@)
= -dt+iC 1
[ =—r [ L artic, (1)

—QQ

kus C on reaalarvuline konstant, sest reaalosa méédrab regulaarse
funktsiooni puhtimaginaarse liidetava tapsuseni (vt. jaotis 2.6).

Eelmise jaotise valemist (3) saame analoogilise tulemuse ringi
|z} <<R tarvis, arvestades, et

R*—1? _Re =17
R2—2Rrcos(t—o¢)4r2 71—z’

kus {=Re!* ja z=rel®. Viimase vorduse pohjal leiame, et ringis
|z} <<R regulaarne funktsioon f on médratud valemiga

1 25 c,_{_z
= — t
He) = ) =
kus u(¢) on funktsiooni [ reaalosa rajavidirtus kohal {=Rel* ning A
reaalarvuline konstant.
Valemeid (1) ja (2) nimetatakse Schwarzi valemiteks.

dt+iA, (2)
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9. REGULAARSETE FUNKTSIOONIDE RAKENDAMINE
VALJATEOORIAS

9.1. TASAPARALLEELNE VEKTORVALI -

Regulaarsetel funktsioonidel on suur t&htsus aero- ja hiidro-
diilnaamika, soojusjuhtivuse, elektro- ja raadiotehnika, elastsusteoo-
ria jm. kiisimuste késitlemisel. Koikide nende puhul on tegemist
teatavate vektorviljadega, mida kiillaltki heas ldhenduses saab
vaadelda tasaparalleelsetena ehk tasandilistena. Tasaparalleelse vek-
torvilja korral leidub niisugune tasand, millega selle vektorvilja
vektorid on paralleelsed ning iga selle tasandiga ristuva sirge punk-
tidele vastavad vordsed vektorid. Selle tasandi votame xOy tasan-
diks ehk lihtsalt z-tasandiks. Sel juhul voime esialgse vektorvilja
asemel vaadelda vektorvilja z-tasandil. Punktile z= (x, y) vastaku
vektor

A:Ax (x, y)id-Ay(x, ¥)j,

mida vaatleme kompleksarvuna A=A,+iAy.

9.2. KOMPLEKSNE POTENTSIAAL

Olgu meil vektorvili }Tja selles kinnine joon C. Vaatleme joone

C punktidele vastavaid vekitoreid A ning tdhistame nende projekt-
sioone (koos mirgiga) puutujale siimboliga A, Seejuures loeme
vektori projekisiooni A, positiivseks, kui selle vektori suunas liiku-
des jadb joonega piiratud piirkond vasakule (joon. 43).

Vektorvilja A tsirkulatsiooniks iile kinnise joone C nimetatakse
suurust

T'e= fAs(x, y)ds.
c

Arvestades, et ds=idx-+jdy ning

(A-ds) =Ads=A(x, y)dx+A,(x, y)dy,

Joon. 43



saame valemi
To— [ (A-ds)= [ Adx+Aydy.
C C

Tsirkulatsiooni pindtihedust, s.t. piirvdartust tsirkulatsiooni I'c
ja joonega C piiratud kujundi pindala S suhtest, kui joon tombub
kokku punktiks z, nimetatakse vektorvilja rootoriks ehk keeriseks
punktis z:

rot A= lim'—l—f (E-d;).
c

C—z S

Matemaatilise analiiiisi kursusest teame, et

> 04y 0Ax
rot A= T P

Kui iihelisidusas piirkonnas D iga kinnise joone C korral I'e=0,
siis peab integraalialune avaldis valemis (1) vorduma mingi funkt-
siooni u=q(x, y) tdisdiferentsiaaliga, s.t.

A=grad u=grad ¢(x, y).
Niisugust vektorvilja nimetatakse potentsiaalseks. Sel juhul vek-
tori A koordinaatideks on

du du
Ax—-*-é-x—, Ay-—@*—

On aga teada, et avaldis Aydx+A,dy on mingi funktsiooni tais-
diferentsiaaliks parajasti siis, kui* '

0Ax(x,y) _  0Ay(xy)

2
dy ox (2)
iga z==(x, y) puhul piirkonnas D (Siinjuures on eeldatud avaldisie
A ja A, ning vastavate osatuletiste pidevust). Tingimuse (2) voib
kirjutada kujul ’

0x Jy =0.

rot Z:

Kui tingimus (2) ei ole tididetud iiksikutes punktides, mis Luu-
luvad joonega C piiratud piirkonda, siis iildjuhul T¢+<0. Kui selli-
seid punkte on vaid iitks (punkt z), siis seda punkti nimetatakse
keerispunktiks ning suurust I'c keerise intensiivsuseks punktis zp.

* Kangro, M. Matemaatiline analiiiis II, Tin,, 1968, 1k. 183—185.
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Vektorvilja A vooks 14bi joone C nimetatakse suurust

-3 m——

Ne= [ Ands= [ (A-dn)= J Axdy — Aydx,
c C C

—_— = -

kus dn=nds=idy — jdx ning ‘n on joone C normaali suu-

naline iihikvektor. Siinjuures on vektor Zi—r: valitud selliselt, et

(dn-ds)=0 ning dn on kinnise joone C puhul vilisnormaal,

Voo pindtihedust, s.t. piirvairtust voo Nc¢ ja joonega C piira-
tud kujundi pindala S suhtest, kui joon C tdombub kokku punktis 2,
‘nimetatakse vilja divergentsiks ehk hajuvuseks punktis z:

C—oz

- 1 - —
div A= lim— [ (A-dn).
N C

Matemaatilise analfiiisi kursusest on teada, et
0A . 04,

div A== P 30

Kui N¢=0 iga kinnise joone C korral vaadeldavas iihelisidusas
ptirkonnas D, siis peab leiduma selline kahe muutuja funktsioon

v=1y(x, y), et
dv=dy(x, y) =A.dy — A,dx,

s. t.
ov ] ov
""a'—x—z—-—Ay ]ja "@-‘—Ax

Kui eeldada avaldiste A(x, y) ja A, (x, y) ning nende osatuletiste

-(%—Ay ja —(%—Ax pidevust, siis tingimus
Ay(x,y) _ Ax(x,y) (3)
dy _ ox
ehk
div A=0

on tarvilik ja piisav selleks, et kehtiks vordus Ne=0 iga -kinnise

joone C puhul piirkonnast D. Niisugust vektorvidlja A nimetatakse
solenoidaalseks.

Kui tingimus (3) pole taidetud mones iiksikus punktis joonega C
piiratud piirkonnast, siis iildjuhul N¢%0. Kui selliseks punktiks on
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vaid punkt z,, siis seda punkti nimetatakse vilja allikaks ja suurust
N¢ allika intensiivsuseks.

Kui vektorvali X on nii potentsiaalne kui ka solenoidaalne, siis
leiduvad kahe muutuja funktsioonid u=g(x, y) ja v="1y(x, y), nii et

du=dg(x, y) =A dx--A,dy,

dv=d(x, y)=Ady — Aydx.

Avaldist (voi sellega méaidratud funktsiooni)
F@)=e(x, y)+ip(x, y)

nimetatakse selle vektorvilja kompleksseks potentsiaaliks.

Arvestades Cauchy — Riemanni vorrandeid ja seoseid

09 _ 4 0% 9% —A,= .

ox dy ' Oy - ox

on kompleksse potentsiaaliga méidratud funktsioon w=f(z) regu-
laarne.

Veendume, et kompleksne potentsiaal f(z) annab meile {lisna

palju informatsiooni vektorvilja E kohta. Et

do (X, . 0y (x, o
F(2) = cpg; Y tbgly) A, A,

sliis

A=A+, =F (2)

ning

jAl=1F"(2)|, arg A=—arg ['(2).
Funktsioonide ¢ ja 1 nivoojooned

@(x,y)=ci ja P(x,y)==ca

moodustavad ortogonaalse vorgu, sest need kujutuvad funktsiooniga
w=/f(2) ristkoordinaatide vorguks. Nivoojooned ¢(x, y)=c1 on

risti vektoritega ;4+ sest

ou = Jdu

A=grad u= =7 i+ 3y j-

Seega on vektorid X nivoojoonte P (x, y)=c, puutujaiks, mis tahen-
dab, et jooned (x, y)=¢z on selle vektorvilja vektorjoonteks.
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Arvutamisel saame, et
é/'f’(2)dz=l‘c—|—iNC.

Edaspidi eeldame, et vektorvidlja potentsiaalsust ja solenoidaalsust
maaravad tingimused (2) ja (3) on tdidetud peaaegu kéigis vaa-
deldava piirkonna punktides. Erandiks vbivad olla vaid iiksikud
punktid, mida nimetame vektorvilja isedrasteks punktideks.

9.3. NAITEID KOMPLEKSSETEST P—OTENTSIAALIDEST‘

Nidide 1. Vaatleme vektorvilja, millel on iiks allikas koordi-
naatide alguses ning keerised puuduvad.
Et véali on siimmeetriline, siis

A:—_g(r): ehk E:g(r)z,

kus r on punkti z kohavektor ning r tema moodul. Tihistame allika
intensiivsuse siimboliga N. Ef punkt z==0 on ainsaks allikaks, siis
voog ldbi suvalise ringjoone |z|==r on N, s.t.

Ne | (Z-cﬁ)gl J Auds.

|zl=r lz|==r

Vektor A on risti ringjoonega |z|=r (joon. 44}, mistottu A,=

d

=|Z|=A ning

o— Joon. 44
X




= [ Ads—g(r)rf rdo==g(r)r?2m.

z|—-r

Seega
N
g(r)_ 2ﬂ;r2
ning
E—i?— N Yy Nz N
2nr2 ~ 2m|z|? T 2mez 2az

Kompleksse potentsiaali saame seosest A=f"(2),

Flo) = L,

2n 2

millest

N
f(2) =5 Ln‘z—l—C.

s. t.

Niaide 2. Vaatleme vektorvilja, mille ainsaks 1searaseks punk-
tiks on z=0, mis olgu keerispunktiks intensiivsusega I

Ka siin lidhtume vilja} summeetrlhsusest

mille alusel A =

=h( r) iz (]oon 45) Vektor A peab olema risti vektoriga r s. t.

ArgA=——+argr———-+argz ‘Vottes suvalise ringjoone |z] =r.

4

>y

/ OJ i;-' Joon. 45
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saame, et

N= [ (A.ds) =, L MOrds=h(r)r [ ds—h(r)r2n

l2|==r zl=r zj=r

Seega
r

a(r) = 2nr?
ning
g r Tz I'i
A:‘ 12— — R

2nre 1® 2n2z 2nz

Seose %T=]Wz_) pohjal saame kompleksse potentsiaali

f(2) =

Dy Lnz+-C.

Nidide 3. Vaatleme vektorvilja, mille kompleksseks potentsiaa-
liks on f{z)=(a+ib)Ln z, kus a ja b on reaalarvud.
t 2=0 on funktsiooni f ainsaks isedraseks punktiks, siis on
see punkt ka ainsaks isedraseks punktiks vektorviljale, Vaatleme
joonena C ringjoont |z|=r. Sel juhul

To+iNe= [ '(2)dz= (a--ib) f —dzi=2ni(a+ib),
C C

millest
IF'c=—2nb ja N¢=2na.

Seega on punkt z=0 nii allikaks kui ka keerispunktiks,
Téhistades z==rel®, eraldame kompleksse potentsiaali reaal- ja
imaginaarosa:

(a—[—ib)Ln_ z= (a-+ib) (In r4-i (p+2kn) ) =
=alnr—b(g+2kn)+i(bln r+a(p-+2kn)).

Imaginaarosa v="»1n r+a(p+2kn) pohjal leiame vektorjooned
v=const. Me saame, et nendeks on logaritmilised spiraalid:

r=_Ce (a/b)p

Nédide 4. Vaatleme siisteemi, kus punktis zy;=h on allikas
intensiivsusega N ja punktis z,=0 allikas intensiivsusega —N (dra-
vool). Kompleksseks potentsiaaliks on sel juhul summa

N

N
fr(2) ;—EE Ln(z+h) — o Ln z.
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Edasi vaatleme piirjuhtu, kus A—0 ja N— oo, kusjuures Nh—p.
Sel juhul

——  Joon. 46

. ... Nh Ln(z+h)—Ln(z) p 1
[&)= 1;_1’3) 2n h 2 2

Saadud siisteemi nimetatakse dipooliks momendiga p. Vektorjoon-
teks on (joon. 46) siin nullpunkti ldbivad ringjooned, mille kesk-
punktid asuvad imaginaarteljel.

9.4. VOOLAMINE POOLTASANDIS

Jirgnevates jaotistes vaatleme kompleksse potentsiaali raken-
damist  voolamisiilesannete lahendamisel. Seejuures selgub kon-
formse kujutamise oluline tdhendus. Saame ettekujutuse ka sel-
lest, milline criline osa on juba eespool vaadeldud lihtsatel piir-
kondadel — ringil ja pooltasandil.

Vaatleme enesega mitteldikuvat (iildiselt siledat) joont, mille
mélemad otsad ulatuvad l6pmatusse. Selline joon C jagab tasandi
kaheks osaks D; ja D, Vaatleme vedeliku (vdi gaasi) voolamist
pooltasandis D,, celdades, et see vedelik pole kokkusurutav ning
puuduvad allikad. Vektorvidlja moodustavad vedelikuosakeste kii-
rusvektorid. Joone C punktides peavad need olema suunatud piki
joone C puutujat. Seega on joon C iitheks vektorjooneks, s. t. on
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: > Joon. 47

maddratud vorrandiga (x, y)=uv,. Et kompleksne potentsiaal on
maaratud konstantse liidetava tdpsuseni (vekiorvili méirab komp-

leksse potentsiaali tuletise seosega f/'(z)=A), siis vdime vdtta
vo==0. Selliselt valitud kompleksse potentsiaali puhul funktsioon
w=/[(z) kujutab vaadeldava pooltasandi {ilemiseks v&i alumiseks
pooltasandiks. Konformse kujutamise ainsuse teoreemi pohjal on
niisuguseid funktsioone lopmata palju, mistottu iihesuse tagami-
seks voib seada lisatingimusi. Hitdrodiinaamika (vdi aerodiinaa-
mika) iilesannetes seatakse tavaliselt jargmised tingimused:

['(0)|=ve ja {(o0)=00. (1)

Vaatleme konkreetse niitena joonisel 47 esitatud piirkonda D
ning selles vedeliku voolamist - vasakult paremale. Leiame funkt-

siooni, mis kujutab antud piirkonna D iilemiseks. pooltasandiks. Sel-
leks votame

Z2—R
2R’

21:

Valitud funktsioon kujutab reaaltelje reaalteljeks ning ringjoone
|z]| =R reaalteljega ristuvaks sirgeks. Et punkt z=R-+Ri kujutub

punktiks z1=—51— (14-2i) ning punkt z=R punktiks 2y==0, siis

piirkonna D kujutiseks on z;-tasandi I veerand. Ulemise pooltasandi
saame, kui rakendame ruutfunktsiooni, vottes

TR )

122=221 — (

(2)

Et saadud funktsioon on vaid iiks voimalikest funktsioonidest, mis
kujutab piirkonna D iilemiseks pooltasandiks, siis see funktsioon
ei tarvitse tédita lisatingimusi (1). Toepoolest, saadud funkisioon
ei kujuta lopmatuspunkti 1opmatuseks. -

Soovitud omadustega funktsiooni leidmiseks rakendame suvalist
funktsiooni, mis kujutab {ilemise pooltasandi konformselt iilemiseks
pooltasandiks. Nagu teame (vt. jaotis 8.4 niide 3), on selleks reaal-
sete kordajatega murdlineaarne {unktsioon
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__az+b
- CZz+d )

Asendades viimases avaldises suuruse 2z, valemi (2) pohjal, saame
funktsiooni

(a+b)2*+2(b —a) Rz+-(a+-b) R?
(¢c+d)2+2(d —c)Rz+(c+d)R?

kus a, b, ¢ ja d on reaalsed konstandid. Selgitame, millisel juhul
see funktsioon rahuldab tingimusi (1). Paneme téhele, et tingimuse
[/ (00) =050 tottu peab selle ratsionaalfunkisiooni nimetaja aste
olema madalam kui lugeja oma (jagatise tuletise valemist!), s. 1.
c+d=0. Teiselt poolt, tingimuse f(oo0)=o0c poéhjal jéreldame, et
a+b==0. Seega

w=/(2) =

_ . (atb)24-2(b—a)Ret (atb)R> _ aR?
w=[(2) = 5(d )Rz =az4+B+——,
kus

_a+b . __b—a
= 2(d—c)R ja p= d—c¢ '

Saadud avaldisest leiame, et

aR

Y

w=f(z)=a— =

Et punktis z=Ri vordub tasandi poére nulliga (puutuja suund —
reaaltelje positiivne suund — sdilib!), siis arg f'(Ri)=0, s.t.
[/ (Ri) =2a>0. Tingimusest |f'(0)|=]|0a|=v. saame, et a=U0cw.
Arvestades veel, et kompleksne pooltasand on maéératav konstantse
liidetava tdpsuseni, votame p=0, mistottu otsitavaks kompleksseks
potentsiaaliks voime votta avaldise

R? )
ol B
Leitud kompleksse potentsiaali pohjal
— , RZ

1A =17 (2) 1= | s 1— 8 )|

F(2) —vw ( 2+

Punktides z=-R on 2=O. Neid punkte nimetatakse selle vektor-
véilja kriitilisteks punktideks.

Leides funktsiooni f imaginaarosa
Ry )
ety I

1! E. Jiirimie 161
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saame, et vaadeldava vektorvilja vektorjooned (voolujooned) esi-
tuvad vorrandiga

(x2+y2 — R2) y=C (£*+3?).

Kui C=0, esitub vektorjoon kahe vorrandiga y=0 (reaaltelg) ja
x2+}y*=R2? (antud ringjoon). Selleks vektorjooneks on niisiis piir-
konna D rajajoon.

9.5. VOOLAMINE UMBER KINNISE JOONE

Vaatleme tasaparalleelset voolamist iimber ringsilindri, mis on
risti voolamistasandiga. Tasandil vastaks sellele voolamine {imber
ringjoone. Valime koordinaatide siisteemi selliselt, et koordinaa-
tide alguspunkt asub ringjoone keskpunktis ning voolamine toimub
x-telje positiivses suunas (joon. 48). Sel viisil saavutame sisuliselt
sama olukorra, mida vaatlesime eelmises jaotises. Niisuguse voola-
mise kompleksseks potentsiaaliks on

ou (242). ’ ' (1)

Vaatleme monevorra iildisemat olukorda. Olgu tegemist ka keeri-
sega iimber silindri. Jaotise 9.3 niite 2 pohjal on niisuguse voo-
lamise kompleksseks potentsiaaliks

]

4

|
\

s
W

Joon. 48
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r . r
o, | Lnz= i Ln z, (2)

kus T tahistab keerise intensiivsust. Liites avaldised (1) ja (2),
saamegi vaadeldava iildisema voolamise kompleksse potentsiaali

f(z)=vm(z+ 52)' ' ine

T .
2ni

Sellise voolamise puhul vordub kiirus l6pmatuspunktis arvuga ve
ning keerise intensiivsus punkti z=0 suhtes on T.
Arvutades

(@) =0 (1 — - )i

2niz

saame leida antud voolamise kriitilised punktid, s.t. punktid, kus
kiirus vordub nulliga. Selleks tuleb lahendada vGrrand [’ (z)==0.
Et see vorrand taandub ruutvorrandiks

2:+

— R2—
QJ'EiUoo c R 0,

siis kriitilisteks punktideks on

r . V ) I
frow =V R T

21’ 9=

Joon. 49
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== =

Joon. 52

Siin tuleb ilmsiks kolm erinevat olukorda.

1) Kui |[T/(4nve) | <<R, siis |zi]=]2:]=R ning need punkiid
asuvad y-telje suhtes siimmeetriliselt (joon. 49). Punkt z, on voolu
hargnemispunkt ning punkt z; on voolu koondumispunkt. Arvutades
saaksime, et koondumispunkti argumendi saab maéérata seosest

r

sin (p=—':1'ﬂR—v-

(3)

2) Kui [I'/4nve|=R, siis on tegemist vaid iihe, imaginaarteljel
asuva kriitilise punktiga (joon. 50).

3) Kui |I'/(4nv)]| >R, siis saame kaks imaginaarteljel asuvat
kriitilist punkti z; ja 2z, mille puhul |z1]:]|z:]=R?, s.t. itks neist
asub vaadeldavas ringis ning teine viljaspool seda. Viimast ldbiv
kinnine voolujoon jagab k&ik voolujooned kahte ossa: kinnised ja
mittekinnised jooned (joon. 51). Seega ndeme, et kolme suuruse
Uw, I' ja R erinev vahekord maédrab meile oluliselt erineva iseloo-
muga voolamise,

Kui vaadelda voolamist {imber suvalise kinnise joone C (joon.
92), siis tuleb appi votta konformne kujutamine; kujutada joonest C
viljaspoole jadav piirkond D piirkonnaks |Z| >R. Kujutuse {=¢(z)
valime nii, et ¢(o0)=0c0 ja arg ¢’(c0)=0, s.t. ¢’(o0)>0. Arvesta-
des, et raadiuse R v6ime valida vabalt, teeme seda nii, et ¢’ (o0)=1.
Niisuguse valiku korral kompleksne potentsiaal
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R2
¢(2)
kirjeldab voolamist fimber joone C, mille puhul kiirus lopmatuses
on v ja tsirkulatsioon joonel C on TI'. TGéepoolest,

= He(2)]

r

Veri

1o (2) ] =00 | ¢ (2) F— |+ L0 9(2) (4)

Z=m$f’(00)(p'(00)=vm-l=vm
ning

J d fo@dz= | pigac=r

lti=R

9.6. ZUKOVSKI PROFIIL

Kéiesolevas jaotises vaatleme lennuki tiiva ristloiget (Zukovski

profiili) i{imbritseva piirkonna kujutamist ringjoont iimbritsevaks
piirkonnaks.

Lihtume sellest, et kujutame tasandi, millest on vélja 16igatud
ringjoone kaar I' (joon. 53), tasandiks, millest on véilja Ioigatud

yi

-
X
vl
C
I ih
Joon. 53 ¥ [ -
_a! a u
Joon. 54
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ring keskpunktiga punktis K=ih (joon. 54). Kasutame {ihelt poolt

22— a

z2-+a
lahtuvaks kiireks. See kiir moodustab reaaltelje negatiivse osaga
nurga o, sest vaadeldava funktsiooni tuletis on positiivne punktis
z=a, s.t. tuletise argument on 0, mistottu pooret selles punktis
ei ole.
Teiselt poolt, kasutades sama funktsiooni w-tasandi kujutami-
seks, saame, et funkisioon

, mis kujutab vaadeldava kaare nullpunktist

funktsiooni zy==

w—a
w-+a

kujutab vaadeldava ringjoone w;-tasandi sirgeks, mis ldbib null-
punkti ja mille tousunurk on

W=

____ﬂ:__a_n_a
p=t—a =5 3

Kui kasutame jargnevalt kujutﬁst wp=w?, saame kogu wy-tasandi

loikega piki kiirt, mis moodustab reaaltelje positiivse suunaga
nurga 2p=mn—a. Me saime wp-tasandil sama piirkonna kui z;-ta-
sandil. Seega voime votta zy=w,=w? ehk

— — e ). (1)

Avaldades leitud seosest muutuja 2, saame funktsiooni
. 2
Z'E%(W—f‘ - ) ;

w

mis a=1 korral on tuntud Zukovski funktsioonina.
Kui avaldame seosest (1) muutuja w, siis saame eelnevale
poordfunktsiooni

w==z-+4V2%— a2 (2)

Uurime seda kujutust monevorra ldhemalt. Vaatleme w-tasan-
dil veel ringjoont C’, mille keskpunktiks on K’ ning mis puutub
ringjoont C punktis w=a (joon. 55). Selle ringjoone originaaliks
on mingi kinnine joon I, mis iimbritseb kaart I" ning puutub seda
punktis z=a (joon. 56). Joonel TV on seega tagasiptdrdepunkt
punktis z=a. Funktsioon (2) kujutab joonega I piiratud kujundi
(Zukovski profiili) vélise piirkonna ringjoone C’ suhtes viliseks
piirkonnaks. Siit saame voimaluse lennuki tiibade profiili arvuta-
miscks. Viimane soltub kolmest parameetrist a, & ja d. Esimene
neist iseloomustab tiiva laiust, teine — tiiva kdverust ning kolmas
(ringjoonte keskpunktide vaheline kaugus) — tiiva paksust.
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Joon. 55 Joon. 56

9.7. VOOLAMINE UMBER ZU\KOVSKI PROFIILI

Eelmises jaotises leidsime funktsiooni (2), mis kujutab konform-
selt Zukovski profiili vilise piirkonna mingist ringjoonest viljas-
poole jadvaks tasandi osaks. Et rakendada jaotise 9.5. valemit (4),
tuleb see ringjoon kujutada niisuguseks ringjooneks, mille kesk-
punkt asub nullpunktis. Seda saame teha nihke teel, vottes

01=@1(2) =@ — Ko=2 — K'+¥2* — &,

kus K’ on ringjoone C’ keskpunkt (joon. 55). Selle funktsiooni kor-
ral @i(o0)=0c0 ning ¢’ (c0)=2. Jaotise 9.5. valemi (4) rakenda-

miseks on aga vaja, et tuletis 1opmatuspunktis vorduks iihega. See-
parast votame ¢; asemel funktsiooni

0= () = (z— K7 —a).

Valemi (4) rakendamiseks jddb veel leida keerise intensiivsus T
Selleks kasutame nn. T$aplogini tingimust; voolamisel iimber kon-
tuuri, millel on teravik (nurk puutujate vahel on vaiksem kui m),
nihkub voolu koondumispunkt teraviku tippu. Leiame teraviku tipu
a kujutise, arvestades, et

K'=ih + del(@—arctan h/a)— jh — de—i arctan h/a,

Teraviku kujutiseks on seega punkt
B=g/(a) =-—é—- (a —K') =% (@ — iht+-delarctanh/e) —
=.._;__ ('Va2+h2+d) e—1 arctan h/a_
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'Et koondumispunkti argument ja keerise intensiivsus I' on seotud
jaotise 9.5 valemiga (3), siis saamegi mdéarata suuruse I':
I'=4nRv. sin (—arctan h/a) =-—4nvR sin arctanh/a.
Et

h

Vaz+h2

sin(arctan hfa) =

ja

R=5 (J&TF+d),

siis

I‘="—2ﬂ§voo (h«-—{' d ).
Ve

9.8. TSAPLOGINI VALEM

Kui kiirus on viiksem helikiirusest, voib ohku vaadelda kokku-
surumatu vedelikuna. Lennuki tiiva kuju uurides kujutleme, et tiib
on paigal ning ohk kui kokkusurumatu vedelik voolab iimber tiiva.

Rohk tiivale avaldub Bernoulli valemiga

0

p=A —'—5- U?‘,

kus A on konstant, ¢ — 6hu tihedus ja v — kiirus vaadeldavas
punktis. Et rohk on risti vaadeldava jooneelemendiga dz (vektor),
siis viimasele méjuv rohk (vektor) avaldub kujul

_° )
(A 5 v2 )idz.

Tahistades joonele € mdjuva kogurohu (vektori) tahega P,
saame integreerides, et

2

sest Cauchy teoreemi pohjal
J Aidz=0.
C

pP— (A__Q_ 2)' e
E;[ v2)idz 5 Cfvdz,

Et v={"(2) ning v=|v|=|"(2)], kui f(2) on vaadeldavat voo-
lamist kirjeldav kompleksne potentsiaal, siis

P=———ig-f I/ (2) |2dz. - (1),
C
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Arvestame asjaolu, et joone C punktides on kiirusvektor suuna-
tud piki puutujat (joon. 57). Seega

Arg [ (z) =Arg dz=uq,

millest

Arg f(z) =—u

ning

Arg ([ (2)]d2) =—2a+a=—a.
Et

Arg (|]'(2) |"dz) =0+a=a ja |[f'(2)]2dz] =]} (2) |dz],
siis

17/ (2) |2dz=[{"(z)]2d=.

Selle seose pohjal saame valemist (1), et

=2 [ ()]

Seda valemit tuntakse TSaplogini valemina.

—

9.9. ZUKOVSKI TEOREEM

Kui eeldada, et lennuki tiiba iimbritsevas piirkonnas on vaadel-
dav vektorvili potentsiaalne ja solenoidaalne, siis on ka sellele vas-
tav kompleksne potentsiaal f(2) regulaarne viljaspool joont C.
Sama omadus on siis ka tuletisel ['(z), mille voime seetottu aren-
dada lopmatuspunkti iimbruses Laurent’i ritta:
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_ 4 C2
(@) =Tt~

4.

kus 7 on kiirusvektori v, kaaskompleks.

Olgu L kinnine joon, mis holmab joone C. Rakendades Cauchy
teoreemi kahelisidusa piirkonna korral, saame seose

J ' () Pdz= [ [['(2) ]*dz.

C

Et

]
e

_ 2 _
20 0Cmi 4 C_1+200C—2
z 22

[F (2) ]2=72_+

siis TSaplogini valemi pohjal

=~——921 JTIF (2)]2dz=~%1—--2ni 20 0oC—1="—2010D 0 C1.
L

Kordaja c.4 arvutame seosest

[/ (2)dz= [ |'(2)dz=TiN.

Seejuures peame silmas asjaolu, et joone C punktides on kiirusvek-
tor puutuja suunaline ning seetottu N==0. Seega

S (2)dz=c_2ni==T,
C
millest

T
2ni

C—i=

Vastavalt sellele saame, et

P=0ivI
ning
P=—igusI.

Viimast seost tuntakse Zukouvski teoreemina tdstejoust.
Et ¢>0, siis vektor P on podratud vektori v. suhtes nurga

_;L vorra, kui I'<C0 (voolamine fimber profiili kellaosuti liiku-

, : T : .
mise suunas), ning nurga — 5~ vorra, kui I'>>0 (voolamine iimber

profiili vastupidine kellaosuti liikumise suunale).
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10. LAPLACE'l TEISENDUS
10.1. LAPLACE'I TEISENDUSE MOISTE

Laplace’i teisenduse‘ks nimetatakse vordusega
Fip)= Jerf(tyt | (1)

miéaratud integraal-operaatorit, milles muutujat p vaadeldakse komp-
leksmuutujana. Funktsioon f omagu reaalseid v6i kompleksseid véaar-
tusi ning tema méiramispiirkonda kuulugu vidhemalt ko6ik positiiv-
sed reaalarvud 7. Ef integraal (1) oleks miératud, tuleb funktsioo-
nile f seada teatavad kitsendused. Arvestades ka integraali raken-
dusi, tehakse need kitsendused jargmised:

1) [(8)=0, kui t<0;

2) poolsirge t=0 igas loplikus 16igus ei ole funktsioonil ega
tema teataval arvul tuletistel rohkem kui loplik arv katkevus-
punkte (need voivad olla I liiki);

3) eksisteerivad konstandid M>0 ja a==0 selliselt, et iga t=>0
puhul ..

|F () | < Meot. ,

Arvude a alumist raja nimetatakse funktsiooni f kasvu naitajaks.
Tingimusi 1)—3) rahuldavat funktsiooni nimetatakse originaaliks.
Seosega (1) madiratud funktsiooni F nimetatakse funktsiooni f
kujutiseks. Vastavust originaali ja kujutise vahel mérgitakse siim-

bolitega

F()=F(p), F(p)=T/(t)
Vol

F=28(f), F(p)=28[F(£)].

Kirjanduses vGib esineda ka teistsuguseid siimboleid, kuid siin-

esitatud on vast k&ige enam kasutatavad.
Niitame, et iga tingimusi 1)—3) rahuldava funktsiooni jaoks
eksisteerib kujutis. Selleks toestame jidrgmise teoreemi.

Teoreem 1. Infegraal (1) koondub absoluutselt pooltasandis
Re p>a, kus a on funktsioon [ kasvu nditaja. Igas pooltasandis
Re p>=ao>a koondub see integraal iihilaselt.

Toestus. Toepoolest, kui p=s-}-io, siis
S |f(H)ertldt<< [ Meste—stdt<CM [ e~(s—0)td{= T (2)
0

0 0
mis iitlebki, et integraal koondub.
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| : __
Kui niiiid Re p=s=ay>a, saaksime eelmisest vorratuste ahe-
last, et |

M

T @) e v |dt<M f e-oordt <M [ e-orortdi————.
—

0 0 0

Weierstrassi tunnuse p&hjal jireldame, et integraal (1) on fihtla-
selt koonduv piirkonnas Re p==ao>>a. Teoreem on toestatud.

Vaadeldes veel kord originaali mdiédravaid tingimusi 1)-—3),
nieme, et tingimusel 1) pole seost kujutise eksisteerimisega. Selle
tingimuse seos reaalsete iilesannetega viljendub asjaolus, et hari-
Jikult vaadeldakse algtingimustega tilesandeid (diferentsiaalvorran-
deid). Seetdttu pole oluline, kuidas kiitub otsitav suurus (funkt-
sioon) enne algpunkti (milleks vdib alati votta ¢=0). Teisiti oel-
des, meid ei huvita uuritava nidhtuse (funktsiooni) «minevik», vaid
ainult tema muutumine #>0 korral — «tulevikus», milleks peame
teadma uuritava ndhtuse moningaid karakteristikuid algpunktis
(t=0). Mis aga puutub tingimustesse 2) ja 3), siis neid rahuldab
enamik klassikalisi fiiiisikandhtusi kirjeldavaid funktsioone. Niifidis-
ajal aga kasutatakse automaatsiisteemides signaale (funktsioone),
mis kestavad viga lithikest aega, kasvades peaaegu momentaan-
selt viga suurte vddrtusteni. Sel korral jéddvad tingimused 2) ja
3) tditmata ning tekib vajadus iildistada originaali moistet.

Uldistatud originaaliks nimetatakse funktsiooni f, mille korral
leidub niisugune reaalarv a, et koondub integraal

feet|f () Lt

0
Veendume, et kujutis F on regulaarne funktsioon.
Teoreem 2. Kui integraal (1) koondub pooltasandis Re p>a, siis

funktsioon F on regulaarne samas pooltasandis, kusjuures selle
funktsiooni tuletised avalduvad kujul:

Fim (p) = (—1)n [ e-ptinf(t)d.

Toestus. Vastavalt omadusele 2 jaotisest 4.7 peame vaid ndi-
tama, et vorduses esinev paratu integraal on iihtlaselt koonduv igas
kinnises pooltasandis Re p=ao>a.

Votame n=1. Siis saame, et

M
(_a[,—a)2 ’

| [ H(t)te-ptdl] <M [ te—aondt—
0 0

s.t. vaadeldav integraal on iihtlaselt koonduv pooltasandis
Re p=apy>a.

Taieliku induktsiooni meetodit kasutades saaksime tGestada, et
teoreemi viide on oige iga n korral.
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Teoreem 3. Kui F on mingi funktsiooni kujutisqk/s, Siis

lim F(p)=0.

Re psoo

Toestus. Vahetu jireldus seosest (2)

Nédide 1. Funktsiooni H, mis on méiratud seosega
1, t=0
= { b =0
() 0, <0,
nimetatakse iihikfunktsiooniks ehk Heaviside’i funkisiooniks, Arvu-
tamisel saame, et

o0 1 © ]
E(H)=8(1)=fe-Ptdt=-—-;e—Pf , =+ Rep>0.

0

Naide 2. Olgu f(f)=-et, kus @=u-iv. Sel juhul

2(f) =8 (evt) = (_)}oemte*mdt=0fe(“’“?)tdt=

1 o0
= =Pt | — 1 , Re p>Re 0.
©0—p pP—o
Seega
L(evt) = _1_0) , kui Re p>Re w.

Miarkus. Mingist reaalteljel (vdhemalt >0 puhul) miéra-
tud funktsioonist f kui originaalist koneldes mdistame teda funkt-
sioonina f-H, s.t.

f(t), =0,

ORI A

Teguri H(¢) jatame lithiduse mottes kirjutamata. Ent kui selle #ra-
jatmine vo6ib pohjustada valesti moistmist, kirjutame H(f) asemel
lihtsalt 1 (vt. ndide 2 jirgmises jaotises).

10.2. LAPLACE’'l TEISENDUSE OMADUSI

I. Lineaarsus. Operaator { on lineaarne, s. t.

& (A H-ng) =22() +u(g),
kus A ja n on konstandid.
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Toestus,
wo

L= (AM+pg)= [ [M(¢)+ng(t)]ertdi=

0

=1 [T eridt+n [ s edt=22 () +u2(0).

Nidide 1. Leiame £(sin of).
Eelmise jaotise niite 2 pdahjal

1
oty .— 1 _
L (elot) = Py kui Re p> —Im o,
ning

L (e10t) = . kui Re p>Im o,

p+io

Operaatori ¢ lineaarsust kasutades saame, et

Q(Sin w?) = [—2]:?- (eimt —_ e-imt) ]=

) ) ] 1 1 _
=5 [L(ew?) — & (eTof) | = 2i ( p—io  p+ie )—
1

L 2io @
2i p*H+o*  pte?’
Analoogiliselt saaksime, et

p
pito?

Re p>|Im o].

(cos of) = kui Re p>|Imo].

11. SarnaSusteoreem. Kui >0 ning
8[i(t)]=F(p), Rep>a,

SLis
B[f(kt)]-:——;:- F(—Z—), Re p>Aa.

Toestus. Viite saame vahetult, kui teeme Laplace’i teisen-
dust méidravas integraalis muutuja vahetuse Af=r.
111. Originaali tuletised. Kui [’ ja f™ on originaalid, siis
8[F (6)1=pRIIH (1)} —1(0), ,
8[f) (1) ] =pm2IF (1) — Pt (0) — P4 (0) —.... — f»9(0).
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/
Toestus. Ositi integreerimisel saame, et /

eI ()] = S ' () e-rdt=[f (1) ePt]>4p [ f(t)e-pt

Kuna Re p=s>a, siis |f(¢)e—Pt| < Me—e~o1, mjdtottu lim f(¢)e-rt=

=0. Sellega olemegi tdestanud esimese vdlemi. Teine valem on
toestatav taieliku induktsiooni meetodiga.

Mirkus. Kui f(0)=0, siis
S (O ]=p8[F(?)], /

s.t. originaali diferentseerimisele vastab kujutise korrutamine argu-
mendiga p.

IV. Kujutise tuletised. Kujutise diferentseerimisele vastab ori-
ginaali korrutamine teguriga —t, s. t.

dr |
apn L= (=)L (1)].

/

Toestus. Viide on toestatud eelmise jaotise teoreemiga 2.

Niédide 2. Leiame 2(in).
Heaviside’i funktsiooni kujutist kasutades saame, et

ar
7 2=

g (L)
—_(-——1) dpn p __pn+1 )

Qi) =g (r1) =

Nadide 3.

S(tnewt) J— ar

1
(=)™ dpn

L(eet) =

— (—1)n dn ( 1 )__ n!

- dp» \ p—w /7 (p— @)
Nadide 4. Leiame (%), kus e = R.
Vastavalt definitsioonile '

0

&(1*) = [e-rifadt— fe—" v —_! joe“?t“d"r,
& 0

h pe p  poH
kus pt=1 ja pdt=dr. Seega
1
B(19) =—27 T(at1),

kui Rep>0 ja a>—1. Kui a<0, siis 7 on originaal, kui aga
—1<Ta<<O, siis = ei ole originaal, sest {%—» oo, kui #— 0. Viimasel
jubul {* on iildistatud originaal.
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V. Originaali integreerimine. Originaali integreerimisele vastab
jagamine argumendiga p, s.t.
i 2 l(
([ f(x)dr) =LHOT
0 P
. t
TOestus. Veendume, et g(¢f)= ff(v)dt on originaal. Kont-
0

rollimist vajab vaid tingimus 3), sest iilejadnud kahe tiidetus on
ilmne. Tingimust 3) kontrollides saame:

eat’

! ! . M
l ff(T)dTl QM f eard’cz% (e’”— 1) -..{__ a
0 0

s.t. tingimus 3) on tididetud. Et g(0)=0, siis
RO 1=8[g () ]=pr[g()],
millest saamegi viite.
VL. Kujutise integreerimine. Kui F(p)==2[f(¢)] ning integraat

fF(q)dq koondub, siis y
p .

Jr@ag=e[ T].

Toestus. Eeldame, | et integreerimistee asub pooltasandis
Re p=ao>a. Sel juhul

| [T (6)epdt| <M [ e-aorat,
0 0 _
millest jdreldub, et funktsiooni F defineeriv integraal koondub p

suhtes iihtlaselt ning me vdime jargmises integraalis muuta integ-
reerimise jdrjekorda. Seega

[F(@)dg= [ ( [T@t)e-vdtydg= [T(1) [e-rtdgdt—
» p 0 ¢ P
NIRRT
Niadide 5.
in ¢ Fod
8( Sut] )=p 1-{—qq2 = g —arctanp:arccot p.

Nédide 6. Omaduse V pdhjal saame, et

t

g(sin=g(f L -

12 E. Jirimde ) 177
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i

7

/

a
VII. Hilinemisteoreem. Iga positiivse arvu =t l;_c/fral

&[f (¢ —7) | =ePR[[(D)]. /

;

TGestus. Et f(f—v)=0 (joon. 58), kui £, siis
8[F(t — )] = [ F(t—v)eridt= [ [(u)ertrthdu=
T 0 #

— e [ (W) erndum e[ (1)].

i
3t f

!

o1

) |

|
7— |

i ! _
0 T T 1

t
Joon. b8 Joon. b5y

Nédide 7. Leiame {reppfunktsiooni (joon. 59)
y=f(t)=H({)+2H({ —v)—3H({ — 37)
kujutise,

1
Et @[H ({)]=—, siis lineaarsuse omaduse ja hilinemisteoreemi
:;pohjal saame: '
RIF@) =R[H ()] +28[H (t —v)] — 38[H({ —37)]=
1 1 1

1
=901 __ 330 ———=—" (]-}+2e—PT _ Je3PT)
b p pp I+ )

VIHI. Nihketeoreem. Iga kompleksarvu N korral
B[eMf(t) 1=F(p—1),
kus F(p) =8[f()].

Toestus. Vahetu definitsiooni rakendamine.
@

prtw?

Ndide 8 Et &(sinof)= siis

0

(p+Hh) o
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Miérkus. Kui A on negatiivne reaalarv, siis originaal kirjel-
dab stabiliseeruvat protsessi v6i sumbuvat vonkumist, mistdttu
nihketeoreemi nimetatakse sageli ka sumbumisteoreemiks.

IX. Perioodilise originaali kujutis. Kui originaal f on perioodi-
line funkisioon perioodiga T, siis

8 ()] =—— [ e (1)t (1)
Toestus: Et
L[ (0] = [ erf(t)dt= [ ertf(t)dt+ ferf(t)dt

siis tehes selles integraalis muutuja vahetuse {==1+4-T ja arvestades
seost f({+T)=f(t), saame:

QUF(O)] [ e wf (@) di [erornf (x) drs

_ je—ptf(t) di+e-Trg[f(#)],

millest jiareldubki vidide (1).

Mirkus. Asjatoestatud omadust on kasulik interpreteerida
jargmiselt. Olgu

g)y=f@)[H(t)—H(t—-T)], )
s. t.
f(t), t=[0, 7],
g(t) = { 0, t [0, T]. N —
' 0 7 1277 3m ot
Sel juhul 1 —
1 |
U ()] T Ye D] o

Ndide. Olgu f(f)=sgn(sin#) (vt. joon. 60). Leiame kujutise.
Et f on perioddiline funktsioon perioodiga 2m, siis saame rakendada
viimast valemit, vottes

g(ty=H({)—2H(t —n)+H({ —2n). Arvutades leiame, et

— a-mp\2
Qlg(f)] =L (1 — 2e-np peompy = (LT
P p
millest
__e—np)2 Ce—m
E[Sgn(Sin t)]:: (1 ¢ p) — 1 erp - 1 th p .

p(l—e2p) — p(i4e?)  p = 2

Midrkus. Praktikas ei ole oluline méiidrata seda piirkonda
(pooltasandit), kus kujutis eksisteerib. Oluline on teada, et nii-
sugune pooltasand Re p>>c¢ on olemas. Seetdttu jatame edaspidi
kujutise eksisteerimise piirkonna mérkimata.
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Ulesanded |

. /
1. Toestada valemid 2, 9, 10, 11, 12, 13, 14, 1920 ja 27 tabe-
list 3.

10.3. PARAMEETRIST SOLTUVATE FUNKTSIOON;H{E
LAPLACE’l TEISENDUSED

Vaatleme mingist parameetrist o soltuvate originaalide Laplace’i
teisendusi. Olgu

Lft, a)]=F(p,a), acs]ay, a].

Teoreem 1. Kui eksisteerib piirvddrtus limf(¢, a), siis
a—>0o

[ Uim (¢ a)]= lim &[}, a].

o—>Clo Ol—>Clo

Toestus. Viide jireldub vastava pédratu integraali iihtlasest
koonduvusest, mist6ttu voime minna piirile integraalimérgi all,

' d
Teoreem 2. Kui eksisteerib osatuletis —(%—f(t, a), as=[ay, 2],
ja viimane on originaal, siis

U [%f(t, @) ]=0—1F(p, a).

Toestus. Et

[o. o]

[ erif(t, a)dt=F (p, a),

Q

siis parameetri o jirgi diferentseerides saame:

g < 0
—_— —pt —————
—— [ e P (t, a)dt———F (p, a).

0

Eelduse kohaselt -E%—f(t, a) on originaal, mistottu voime viima-

ses avaldises diferentseerida integraali mérgi all. Teoreem on tdes-
tatud.

Niide 1. Et
%
p*-o?

siis parameetri a jidrgi diferentseerides saame seose

L(sin at) =

L(tcos af) = (P To)? .
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Naide 2. Et
Q(0) =_L(2+1)

pa-f-l ?

a>—1,

siis parameetri o jdrgi diferentseerides saame seose

L(t*lnt)= piH [TV(a+1)—T(a1)1n p].

Tahistades I'"(1) =—C ja eC=y ning vottes a=0, saame, et
1

£(In t)=—?ln(yp).

\

Teoreemi 2 rakendatakse ka osatuletistega vorrandite lahenda-
misel Laplace’i teisenduse abil.

Teoreem 3. Kui on olemas integraalid

B 3
JHt,a)da ja [F(p,a)da,
fe fo

Siis
B B

E[Bff(f, a)da] = Bf F(p, a)da.
Toestus. Et

B A A B
Bf da [ e=Pif(t, a)dt = [ dt [ e-Pf(t, a)da,
0 0 0 Bo

siis piirile minnes (A — co) saamegi viite. Toepoolest, eelduse koha-
selt eksisteerib piirvddrtus vorduse vasakust poolest, mistottu peab
cksisteerima ka piirviisirtus paremast poolest,

Jireldus. Kui F(p)=%[f(¢)], siis kehtivad seosed

1
E[f f(;t) du]=—p—fF(q)dq, (1)
EU f(;f) du]=—ll;wa(q)dq, (2)
f(z) du== fw F(q)dg. . (3)

Téestus. Sarnasusteoreemi pohjal

gt f(—i—-)] —F(ap), a>0.

a
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Rakendame eelmist teoreemi, vaties integreerimisldiguks 15igu
[0, 1]. Sel juhul saame vérduse

1

| t .
S[f——f(—)da]z [ F(ap)da.
0o ¢ G 0

Tehes siin muutujate vahetuse t=aqu ja ap=¢q, saamegi valemi (1).

Valemi (2) téestamiseks lahtume kujutise integreerimise oma-
dusest, mille pohjal |

o - )= Fra

Rakendades sellele seosele originaali integreerimise omadust, saa-
megi valemi (2).

Kasutades Laplace’i teisenduse lineaarsust, saame valemite (1)
ja (2) liitmisel, et

8[ i f(u.) du]=—£—}oF(q)dq.

0 i

Selles seoses seisab operaatori @ mirgi all konstant, mille véime
lineaarsuse omaduse tottu tuua operaatorimargi ette. Et aga

8(1)=H[H(t)]=—:7, siis saamegi valemi (1).

Selles jarelduses toestatud valemeid (1) ja (2) véib rakendada
kujutiste leidmisel, mida demonstreerime jirgneva niitega. Vale-
mit (3) saab rakendada integraalide arvutamisel, millel peatume
jaotises 11.5.

Néadide 3. Integraalne koosinus defineeritakse seosega

oo

ci(t)=— [ 2L 4y, 1>0,

—t

Seose (3) pdhjal saame, et

VY
. 1 d 1
¢

Ulesanded
1. Toestada valemid 36, 37 ja 40 tabelist 3.
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104. PIIRTEOREEMID

Teoreem 1. Kui I () 1=F(p) ja F'(t) on originaal, siis
lim pF(p)= lim f(¢).

Re p—oo 10+
Toestus. Et f/(¢) on originaal, siis

E[F () ]=pF (p)—7(0),

kus

f(0)= lim f(?)

t->04

Jaotise 10.1. teoreemi 3 pohjal
lim [pF (p)—f(0)] =O.
Re pooeo

millest saamegi teoreemi viijte.
Toestatud teoreemi péhjal véib viirtuse f(0) leida kujutise
kaudu.

Teoreem 2. Kui RIF()1=F(p), kus [ (t) on originaal, ja eksis-
teerib lim f(¢), siis

=00

lim pF (p) = lim f(1).

I—»o0

Toestus. Lihtume seosest

J e O dt=pF (p)—(0).

Léheme selles vérduses piirile (p—0). Voime seda teha integraali-
mérgi all, mistéttu saame

TP ydi= lim [pF (p)—F(0)].
Et aga
TFwar=1imj(y— (o),

f—=-co

siis viimase kahe vérduse pdhjal saamegi teoreemi viite.

Ulesanded
1. Néidata, et f/(0) =a, kui

ap--b
O = rora
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10.5. KONVOLUTSIOON. BOREL] TEOREEM

Kahe funkisiooni f ja g konveolutsiooniks nimetatakse funkisiooni,
mis on miidratud avaldisega

0ff(’f)g(l‘——17)dT-

Funkisioonide konvolutsioon on (korrutamisetaoline) tehe funk{-
sioonide hulgas, seda tdhistatakse siimboliga >k (nditeks, A=f>g

voi h(t)=[(t)>kg(t)).

Vaatleme konvolutsiooni omadusi.
I. Kommutatiivsus: f>kg=gk/.

Toestus. Tehes konvolutsiooni f>|<g defineerivas mtegraalls
muutuja vahetuse ¢ —t=u, saame

F(2) >I<g(l‘)=6ff(":)gf(l‘-~—17 d’t=0fg () (t — u)du=g (t) k[ (2).

11. Assotsiatiivsus: (f>kg)skh=Fk (g3kh).
111. Distributiivsus: j>k (g-+h) =[>kg+[kh.

Need omadused toestatakse sarnaselt kommutatiivsuse omadu-
sega.

|Pkegl<<|f]*klgl.
Toestus. Et

| [ @e—dsl< [ 11 gt —)d,

siis olemegi saanud vastava omaduse.

V. Kui funktsioonid | ja g on pidevad juhul t==0, siis on pidev
ka nende konvolutsioon.

Téestus tuleneb vahetult masratud integraali pidevusest iilemise
raja jargi.

VI. Titchmarsh’i teoreem: Kui f ja g on pidevad t=0 puhul ning
fkg==0, siis vihemalt iiks funkitsioonidest on vdrdne nulliga iga
t=0 puhul. -

Selle teoreemi toestust me ei esita.

VII. Kui funktsioonid | ja g on originaalid, siis on seda ka
nende konvolutsioon.

Toestus. Esimese kahe originaalile esitatud tingimuse tai-
detus on ilmne. Vaatleme kolmandat tingimust. Olgu

[F(8) | <Mieot ja |g(t—r)|<<Mpeatt—,
mille pohjal
t t
| [F(v)g (¢t —)dt| <M [ esveat—0dy= Miert < Mela+o},
0 0
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kus e on kuf tahes viike positiivne arv. Seega on originaali tingi-
mus 3) konvolutsiooni puhul taidetud.

Boreli teoreem. Kui L[f(£)]=F(p) jo L[g()]1=G(p), siis
L[f (1) %kg(1)]=F(g)G(p).

Toestus. Konvolutsiooni kujutis on méadratud absoluutselt
koonduva kahekordse integraaliga, milles muudame integreerimise
jarjekorra (vt. joon. 61). Saame, et

8 [ (@t —v)de] =] er( [ [(x)g(t—v)dr)di—

= [1®) (fergt—n)dnar,
&

ﬂf

.

0 T

Joon. 61

Tehes viimases integraalis muutuja vahetuse u=t—n=, du==dr,
saame, et

I (1) kg ()] = f’ f(x)e-reds g (w) e Pvdu=F (p) G (p).

Teoreem on toestatud.
Nédide 1. Leiame originaali funktsioonile

1
w=F(p)=(n2+l)2.
1
Et o =& (sin f), siis
F(p)= 1 - : ﬁfsin(tmt)sintd'c:
P P
1 | t t
=—2-0f [cos(2t—t)—cost]d1:'=—z— sin(2v —¢) 0——2—1:cost =
1
——=-§-smt——-tcost
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Teoreem. Kui &[f(¢)>kg({)]=F (p) G(p), siis
BLF () 1kg (1) +[ () g (0) ] =pF (p) G (p)
ja
2lg () kf (1) +g (1) (0)]=pF (p) G (p).
Toestus. Et
pE(p)G(p)=[pG(p)—g(0)]1F (p)+g(0)F(p),

siis Boreli teoreemi, originaali diferentseerimise ja lineaarsuse oma-
dust kasutades saamegi esimese vorduse tdestada. Teise testame
analoogiliselt.

Asjatoestatud kahte vordust nimetatakse Duhameli integraa-
lideks.

Ulesanded
1. Ndidata, et

U [ (gt )du] =G (p)Fla(p)],
kui

(O ]=F(p) ja Rlg(tu)]=erunG(p)
ning ¢ ja G on analiiiitilised funktsioonid (Efrose teoreem).
2. Naidata, et Efrose teoreem on Boreli teoreemi iildistus.

10.6. FOURIER’ TEISENDUS
Matemaatilise analiitisi kursusest teame*, et kui funktsioon |
on absoluutselt integreeruv kogu arvsirgel ning tal on igas punktis

loplikud 1{ihepoolsed tuletised f'({+) ja ['(¢—), siis igas punk-
tis ¢, kus

[ =5 [ () — ()],

kehtib seos

I oo
f(t)y= lim——Ql— Jelstds= [ f(u)eisudu. (1)
o0 R —00 ’
Mirkides
F(s)=—— J f(u)e-isudu, @
V2m —

* Vt. Kangro, G. Matemaatiline analiiiis II, Tln., 1968, k. 258—263.
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saame, et

f(t)-———--lj TF(s)eisfds, | | t3)
V2n —=

kus viimane integraal on mdistetud nn. Cauchy peavdirtusena

[F(s)elstds= lim [ F(s)eistds.

[—co 1

Seost (2) nimetatakse Fourier’ teisenduseks ning seost (3) tema
poordteisenduseks. Fourier’ teisendus on rakenduslikult viaga tahtis
matemaatilises fiiiisikas ja raadiotehnikas. Meil ldheb seda vaja
seoses Laplace’i teisenduse poordieisenduse vaatlemisega jargmi-
ses jaotises, kus muutujat s tuleb vaadelda kompleksmuutujana.

Kasutatakse jidrgmist siimboolikat ja termmolooglat Seost (1)
margitakse lithidalt

S =F ehk F[FH]=r(s).

Funktsiooni f nimetatakse originaaliks ja funktsiooni F kujutiseks.
Kujutist F(s) nimetatakse funkisiooni y=f(¢) spektraalseks tihe-
duseks, kujutise moodulit |F(s)|] — amplituudi tiheduseks ning
kujutise argumenti arg F(s) — algiaasiks.

Ldhtudes Fourier’ integraali definitsioonist saab kontrollida jarg-
misi omadusi.

I. Lineaarsus: §(A+upg) =A%) +nF(2).

II. Originaali nihe: F[f({4t)]=e=F[[({)].

I11. Kujutise nihe. Kui §[f(f)|=F(s), siis
Sli()exto'] = F(sxo0).

IV. Ljapunovi vordus. Kui §(f)=F ja %(g)=0G, siis

[i®eydt= [F(5)Gls)ds— [ G(s)F(s)ds.

V. Parsevali vordus. Kui F(f)y=F, siis
0}0])°(f)|’3dt=0}o|F(s)|2als.

VI. Sarnasusteoreem. Kui F[f({)]=F(s), siis
; 1 s
317 (at)]=—F ().

VIL Orlgmaall diferentseerimine. Kui {(f)=F ja f(h)(t) (k=
=1, 2, ..., n) on absoluutselt integreeruv kogu arvsirgel, siis

&P (2) ]=(18)"%[f(t)], k=1, 2, ...,
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VHI. Kujutiste korrutamine. Kui §(f)=F ja §(g)=G, siis
§(Fkg)=="F(s)G(s), kus

£(t) *g(t)=y_‘_ [ F(0)g(t— u)du

2n —

Viimast avaldist nimetatakse funktsioonide [ ja g konvolutsioo-
niks piirkonnas (—oo, o).

10.7. LAPLACE'l TEISENDUSE POORAMINE ‘

Olgu [/ (¢)]=F(p). Teisendust ¢, mille abil saame leida ori-
ginaali f(¢), teades kujutist F(p), nimetatakse Laplace’i teisenduse
poordteisenduseks. See esitub Riemanni — Mellini valemiga

1 x-+ico 1

[ ertF (p)dp=—3- [[(t-+) +F(t-)], (1)
milles 2[f(£)]=F(p), Re p=x>a, kus a on funktsiooni [ kasvu
naitaja. Selles valemis on integraali mdistetud Cauchy peaviirtu-
sena ning integreerimine toimub piki imaginaarteljega paralleelset
sirget. Rohutame, et funktsiooni f pidevuspunktis annab valem (1)
selle funktsiooni véddrtuse f(f) ning esimest liiki katkevuspunktis
iihepoolsete piirvddrtuste aritmeetilise keskmise.

Valemi (1) toestamiseks mirgime, et funkisioon

y=-e *f({)

on absoluutselt integreeruv kogu arvsirgel (vt. jaotis 10.1.), kusjuu-
res f(¢) =0, kui 1<C0. Seetdttu vaib sellele funksioonile rakendada
eelmise jaotise valemit (1); saame

2ni

e—x‘f(t)=—2;—. Jetstds [ f(u)e—xuetsudy

-0

ehk

f (t)=—2—f—m— J eHaids [ e~aHouf (4)duy.

- —o00

Téhistame x-is=<p. Sel juhul dp=ids, kui p muutub médda sirget
Re p=x=-const, ning me saame, et

1 x+ioo o0
—_— . pt —pu
[(O) =g | er'dp ] eref(u)du
ehk
¢ L T ertF(p)d
= [ ep .
f(z) oo x~{me (p)dp

Vastavalt eelmise jaotise alguses toodud mirkustele tihendab
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f(t) siin suurust —;—- [f(¢+)+f(t—)]. Valem (1) on sellega toes-

tatud.
Jirgnevas vaatleme iihte teoreemi, mis annab piisava tingimuse
originaali olemasoluks.

Teoreem. Olgu funktsiooni F puhul rahuldaiud jargmised tingi-
mused:

1) F on regulaarne piirkonnas Re p>a;

2) kui Re p>a, siis lim f(p)=0;

Im p—oo

oo

3) [ |F(x+io)|do on koonduv.

—00

Sel juhul on funktsioon F kujutiseks ning tema originaal avaldub

kujul | E
x-4Hoco T 7 D e e

f(t)y=_[ e#*F(p)dp, (2) 17
? !

kus x=Re p>a. _Z

0 a[; Xy x5 3
r"rf’? ]
Z
Joon, 62 ﬁ

Toestus. 1) Koigepealt nditame, et funkisiooni [ mairav
integraal ei soltu sellest, milline on x>u. Vaatleme piirkonnas
Re p=x>>a ristkiilikut ABCD (vt. joon. 62). Ef funktsioon F on
regulaarne selles pooltasandis, siis Cauchy teoreemi pohjal

JertF(p)dp=D0, (3)
kus T on selle ristkiiliku rajajoon.
Et

| [ ertF (p)dp|<ew [ 1F(x—iv) |dx

o <t

ICI[ ertF (p)dp| et f | F (x-4it) | dx,

siis teoreemi eelduse K2!) kohaselt saame seosed:

lim = lim [=0.

T->00 AB =00 CD
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Seega saame seose (3) pohjal, et

xaHiT Xy-HT

lim f ePtF(p)dp_llm J ePtF(p)dp=0
T->00 Xz—iT T>00 X1—iT

ehk

x2-Hoo x14-ioco

J ertF(p)dp= [ eP!F(p)dp.

xz—lco x1—ioo

Sellega olemegi toestanud, et funktsiooni f méarav integraal ei soltu
suuruse x valikust.

2) Vaatleme joonisel 63 kujutatud piirkonda G, mille rajaks on
16ik BA ja ringjoone kaar ¢,. Cauchy teoreemi pchjal

S ertF (p)dp+B£ eP!F(p)dp==0 5)
ehk Tt B=x+id
x-++ig
J eriF(pydp= [eP'F(p)dp
Jordani lemma pﬁhjénl 9
lim ferlF(p)dp=0, kui {<<0,
Ipl>oo e
mistottu
Joon. 63
x+ico
IHOES f ePtf (p)dp=0, kui t<<0. (4)
Kui t>0, siis
x+1oo
J— pt
f0]= | 5= x_im P F (p) dp
Tahistades

1 o0
o S | F(x+io) |[do=M,

saame, et |f(#)|=<CMe**. Seega nideme, et seosega (2) méiidratud
funktsioon on originaal.

3) Niifame lopuks, et valemiga (2) méiratud funktsioon on ori-
ginaaliks funktsioonile F, s.t.

— [e-pif(f)dl.
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Toepoolest, teoreemi eelduse 3) pohjal voime funktsioonile F raken-
dada eelmise jaotise valemit (1):

1

F (JC—I—IO') \=—2—J'|;_

[dl [ F(x+in)e-ito-udy,

Tédhistades p=x-+}ioc ja g=x-}iu, saame, et

1 oo x-Hoo
F(p) =-—2";_c"1'— f e—pidf f e‘lfF(q)dq
—oe Xx—1ioo

Valemeid (2) ja (4) arvestades saamegi seose

F(p)= Of e-pt] ({) dL.

10.8. ARENDUSTEOREEMID

Toestame mone teoreemi, mille abil saame originaali esitada
reaksarendusena. Seejuures seame kujutisele konkreetsed nouded.

Teoreem 1 (esimene arendusteoreem). Kui kujutis F on regu-
laarne I6pmatuspunktis ning selle imbruses esitatav Laurent’i reana

o0

Ck
k"
h=1 p

siis originaaliks on tdisfunktsioon |, mis on esitatav astmerea Sum-
mana

o0 L]

)= Y

h==1

F(p)=

Toestus. Votame qz—}l;- ja G(q)=F(-£1]—). Siis

G(g)y= 2 crg*
R==1

méirab ringis |g]<<1/R analiiiitilise funktsiooni G. Cauchy vor-
ratuse pohjal |cx| <<MR* ning seega

- h—1 = R
[F() < Z'Ckl i gMRZ (RIDY _ ppeim,
h=1 (f —1)! — k!

mis {itlebki, et f on tdisfunktsioon. Viimane vorratus annab samuti,
et f(¢) on originaal (3. tingimus). Et funktsiooni | defineeriv astme-

rida on iihtlaselt koonduv, siis peale teguriga e—P? korrutamist voime
!

pn-i-i !

teda liikmeti integreerida. Kasutades seost £(f")= saame,
et funktsiooni | kujutiseks on funktsioon F.
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Mirkus. On vboimalik toestada ka vastupidist: kui originaal f
on taisfunktsioon, mis rahuldab vorratust [F(2) | <<Mesttl) siis kuju-
tis on regulaarne l6pmatuspunktis.

Teoreem 2 (teine arendusteoreem). Olgu funkisiooni F puhul
tdidetud jdrgmised tingimused:
1) F on meromorfne ning pooltasandis Re p>a regulaarne;

2) leiduvad ringjooned Cp:|p|=R,, Ri<<R:..., Ry—>o00, mil-
listel F(p) liheneb nullile iihtlaselt arg p suhtes, kui n—oo;

3) iga v>a puhul on integraal ‘ofo]F(r—}—io) |do koonduv.

Sel juhul on funktsiooni F originaal mddratud seosega
Ht)= Sres [F(p)ert; py], (1)
kus resiidid on wvéetud Edikide iseiraste punkiide suhtes ning
| Prya] = | prl.

Toestus. Valime mingi v>a ning vaatleme ringjoone C,
seda osa l,, mis jaib pooltasandisse Re p<<t (joon. 64). Ringjoone
kaar [, koos 16iguga A,B, moodustab kinnise joone, mille margime
siimboliga I'y. Et eelmise jaotise teoreemi pohjal

F()=lim —— [ estF(p)dp

n—00 1 AnBn

=

ning Jordani lemma pohjal, kui #>0,

lim

ptF d =
a0 271 lfe (p) P 0,

n

siis

n—00

1
)= lim —— ptf .
f()=lim o rnfe F(p)dp
Joon. 64

Selle integraali voime arvutada resiidide teooria pohiteoreemi koha-
selt, mistottu

J(¢) = lim 3] res [ePtF(p); p:].

n—oo Tp
Siit saamegi teoreemi viite.

Jareldus 1. Kui f(p)=P(p)/Q(p) on ratsionaalne lihtmurd,
siis originaal on mddratud seosega

m

Fy= Y tim —2 (R (p) (p— pa)menty, _

iy (e — 1)1 o, dpme—t
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kus punktid p, (k=1, 2, ..., m) on funktsiooni F poolused, n,
nende pooluste jirgud ning summas on véetud resiidid koikide poo-
luste suhtes.

Toestus. Viide jdreldub vahetult seosest (1), arvestades
resiidi véddrtust poolustes. Meenutame siinkohal ka seda, et ratsio-
naalse lihtmurru korral lim F(p)=0 ning pooluseid on l&plik arv.

P00

Jareldus 2. Kui liktmurru P(p)/Q(p) nimetaja nullkohad

P (kR=1, 2, ..., m) on kiik esimest jdrku, siis

" P (o)
vy Q7 (pr)

Toestus. Viimase valemi saame vahetult valemist (1), kasu-
tades resiidi arvutamise valemit esimest jirku pooluse jaoks (valem
(2) jaotisest 7.2).

Rakendustes (eriti elektrotehnikas) esinevad sageli kujutised
kujul

__P(p)

F — M
P =230

kus poliinoomi P(p) aste ei ole poliinoomi Q(p) omast suurem ning
k6ik funktsiooni F poolused on esimest jarku. Sel juhul resiid punk-
tis 0 avaldub kujul P(0)/Q(0), nagu see jireldub jaotise 7.2. vale-

mist (1). Arvestades veel, et Q(px)=0 ning [pQ(p)]’=Q(p)+
+pQ'(p), voime sel juhul valemi (2) esitada kujul

F(t)= ert | (2)

n

___P(9) Plpr) .
f(t)_— Q(0)+k=1 PhQ’(Ph) eP ’ (3)

kus summas on arvestatud kdik poliinoomi Q(p) nullkohad ps.

Miérkus 1. Kui poliinoomid P(p) ja Q(p) on reaalsete kor-

dajatega, siis on poolusteks nii p, kui ka Pr (kaaskompleksarv),
kusjuures

P(px) epvt—_ L (Pr)

—— —— epkt,
Q" (Pr) Q" (pr) N
mis tdhendab, et ka resiidid pooluste p, ja Pr suhbtes on kaaskomp-

leksarvud. Kuna z-+7=2Re 2, siis jarelduse 2 pohjal saame, et Gige
on jargmine véide.
Jiareldus 3. Kui poliinoomide P(p) ja Q(p) kordajad on

reaalsed ning polinoomi Q(p) nullkohad on kdik esimest jarku, siis
ratsionaalse lihtmurru P(p)/Q(p) originaal avaldub Rujul

P
[0= X eniyope Y e ens,

13 E. Jiirimde
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kus arvudeks p, on esimeses summas kGik reaalarvulised poolused
ning teises summas koik positiivsete imaginaarosadega poolused.

Mirkus 2. Iga liige valemis (2) on esitatav kujul
P (px)
Q" (pr)

kus pr=ss+iocs. Sellest on selge, et reaalarvulistele poolustele
(or=0) vastab mitteperioodiline vonkumine, negatiivse imaginaar-
osaga komplekssetele poolustele — sumbuv vonkumine, puhtimagi-
naarsetele poolustele (sp=0) — harmooniline vonkumine. Positiiv-
seid reaalarvulisi pooluseid ja positiivse reaalosaga kompleksarvu-
lisi pooluseid ei saa iildse olla, kui vaadeldav siisteem ei vongu
tokestamatult kasvava amplituudiga. Oeldust jédreldub, et statsio-
naarset vonkumist kirjeldab funktsioon f, mis on maidratud seosega

P(iox) .
t)=2Re ) |~ €19,
10 =2Re X~
kus summa on voetud kdigi nende pooluste suhtes, mille puhul
pr=/10g, or>0.

eskt[cos oxl-}-sin oxrt],

10.9. IMPULSSFUNKTSIOONID

e P=->00

1, p, p% ... ei saa olla kujutised tavalises mottes. Ent monel juhul
tuleb rakendustes vaadelda just niisuguseid seoseid, kus kujutisena
tuleb arvestada ka {ilalmirgitud suurusi. Et Q[H (¢)]=p~!, siis ori-
ginaali diferentseerimise omadust arvestades peaks (iihiku origi-
naaliks olema H’(t). Heaviside'i funkisioon pole aga tavalises mot-
tes diferentseeruv, mistdttu tuleks laiendada funktsiooni moistet sel-
liselt, et ka funktsioonil H oleks tuletis. Selle eesmairgi saavutame,
kui vaatleme Diraci 6-funktsiooni, mida vdib iseloomustada jarg-
miselt

Teame, et kujutise F(p) puhul lim F(p)=0, mis tdhendab, et
Re p

oo, t=0;

8(t) = { 0 120"

ning
[6(t)dt=1.

Viimane tingimus tuleneb otseselt seosest H’(#)=35(¢), sest vii-
mase pohjal

Fo(tydt—= [ H’ (tydt=H (c0)— H(—o0)=1.
Et funktsiooni (signaali) ¢ impulsiks nimetatakse suurust
Jon)di,
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siis §-funktsiooni nimetatakse ithikimpulsiga impulssfunktsiooniks
voi null-jarku impulssfunktsiooniks. ,

Diraci §-funktsioonini voiksime jouda ka jargmistest kaalutlus- -
test lahtudes. Olgu funktsioonid 8n defineeritud seosega (vt.
joon. 65)

J njOétQ—i— , i
l 0, t<<0 VBi t>—. n
Sel juhul
f%(t)dt:l
0 1 7
ning n
Joon. 65
[0, {0,
‘ t
hn(t)= [ 8n(u)du= { nt, 0§t<—;21— -
—o0 l l’ t’->/_l_'
n

On loomulik lugeda digeks seosed
lim &, (£) =06(¢) ja limh,(§)=H(1).

T->»00 n—oc

Olgu ¢ mingi Laplace’i teisenduse originaal. Sel juhul

T oo (1) dt= ()J{ncp(t)ﬁn(t)dt=n:fmcp(i)dt=

—np(t) —=o(r), .

1
kus _0<1;<-;—. Selle pohjal on loomulik lugeda kehtivaks seos

Jo®)3(t)=¢(0) (1)
(kui @ ei ole pidev punktis =0, siis ¢(0) tihendab parempoolset

piirvdértust selles punktis).
Vastavalt seosele (1) saamegi, et

2[6(1)]= [6(t)ertdi=1

ning hilinemisteoreemi péhjal
8[8(t —r1)]=err, |
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mis on samuti kooskolas seosega (1). Nende seoste pohjal nieme,
et on Gige teoreem kujutiste korrutamise kohta. Téepoolest,

1-F(p) -‘:—Lﬁftf(t)ﬁ (t—t)dr—;—-f(t).

Analoogiliselt on voimalik esitada ka korgemat jarku impulss-
funktsioonide &+ moiste selliselt, et

Q8+ () ]=pr ning &®N(f) =Hm+(¢).

Olgu miérgitud, et impulssfunkisioonid kuuluvad distributsioo-
nide (iildistatud funktsioonide) klassi. Viimaste kohta on loodud
matemaatiline teooria, aga k#esolevas raamatus ei ole ruumi seda
vaadelda.

11. LAPLACE’'l TEISENDUSE RAKENDUSI
11.1. HARILIKUD LINEAARSED DIFERENTSIAALVORRANDID

Vaatleme konstantsete kordajatega lineaarset diferentsiaalvor-
randit

anx™ (1) 4-an—x® () + . . . Fawx’ (f) +aex (t) =[ (?).
Liihidalt kirjutatakse see vorrand

L(D)x(t)=[(?), (1)

kus L (D) on operaatorpoliinoom:
L{D)=anD"%-an1D* 14 ... 4-a1D+-ay,

milles D on diferentseerimise operaator, s.t.

d d? dn
D—-——&}—- D= IR Dn= T
Otsime vaadeldava vorrandi lahendit-piirkonnas {=0 algtingimustel
x®(0)=xy (k=0,1, ..., n—1). |
Eeldame, et funktsioonid f mng x¥® (k=0, 1, ...; n) on ori'g-inaa-'

lid, ning tdhistame
&If () 1=F(p),
Rlx () ]=X(p).

Originaali diferentseerimise eeskirja ning algtingimusi arvestades
saame, et

2[xl (t)] =pX(p)_x0’
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LIx" (H)]=p*X (p) — Xop — X1,

Lxm(8) }=p"X(p) — kg Xp—ap™F.

Rakendades v6rrandi1e (1) Laplace’i teisendust (arvestades teisen-
duse lineaarsust), saame kujutise suhtes vorrandi

L(p)X(p)=F(p)+Q(p),

mida nimetatakse operaatorvorrandiks. Selles vorrandis on L(p)
poliinoom, mille kordajateks on operaatorpoliinoomi kordajad, ning -
Q(p) on (n—1)-astme poliinoom, mille kordajad on méaratud alg-
tingimustega (2). Operaatorvorrandist leiame otsitava funktsiooni
- kujutise:

F(p)+Q(p)
L(p)
Selle kujutise jirgi leiame ka originaali. Selleks voib kasutada aren-

dusteoreeme, Laplace’i teisenduse omadusi ja nende teisenduste
tabelit.

Niide 1. Lahendame diferentsiaalvérrandi x”+-x=2cos? alg-
tingimustel x(0)=0, x'(0)=—1.

X(p)=

p A
la ;
p>1 1

R(x”) =p*8(x) — px (0) — %" (0) =p*& (x) +1,

siis Laplace’i teisenduse rakendamisel sellele vorrandile saame, et

Et 2(cos {) =

2p
PRO) L) =—
ehk
2(x) = 2p . 1

(p+1)2 p1

Arvestades seost

2p ( 1 )’
(0 \pl
leiame Laplace’i teisenduse omadusi kasutades, et
{(x)=g(¢ sint) — L(sint),
millest saame vorrandi lahendi

x(t)=tsint —sint=(t —1) sin i
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Sellest lahenduskiigust markame, et operaatormeetodil diferent-
siaalvorrandit lahendades arvestatakse algtingimusi juba lahendus-
kadigu alguses. Sel moel ilmneb algtingimuste mdju juba enne
lahendi leidmist. Kui x,=0 (=0, 1, ..., n—1) (algtingimused
nullid), on operaatormeetodil lahendamine eriti lihtne,

Operaatormeetodi eelised on eriti ilmekad ka siis, kui vorrandi
parem pool on tiikati sile (v&i isegi tiikati pidev). Operaatormeeto-
dit kasutades ei pea leidma iga sileduse (v6i pidevuse) piirkonna
jaoks erilahendi, vaid saame iihe, koikide piirkondade jaoks kehtiva
lahendi.

Nédide 2. Lahendada diferentsiaalvdrrand
x"+dx=f(t)
algtingimustel x(0) =x’(0) =0, kus
0, £<<0,
a, 0<Ci<<),
15 =
Funktsiooni f voime Heaviside’i funktsiooni abil esitada jarg-
miselt:
f(t)=a[H (t)— H(t—b)].

Rakendades vorrandile Laplace’i teisendust (arvestades origi-
naali diferentseerimise ja lineaarsuse omadusi, hilinemisteoreemi
ning Heaviside’i funktsiooni kujutist), saame operaatorvorrandi

P (p)+4X (p)=—- (1—eb2),

f(t)=

millest
a(l —etp)
X(p)== ;
(P) p(p*+4)
Jaotise 10.8 valemi 4 pghjal (py=2i, Pa=—2i)
a _:'_.2_ I a eth.L a e—mt:_—__—_-
p(p*+4) — 47 2i-4i T T 2. (—4i) f
a

=T —_ -—Z— cos 2t==—g- sin?{

ning hilinemisteoreemi pghjal

ae~bp a |
P (0°14) = 5 sin? ({ —b)H (1 —b).

Seega saame, et meie vorrandi lahend x(¢) on

(1) =—g— [sin? tH (£)— sin®(t — b) H (£ — b) ].
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ﬁlesanded

1. Lghendada Laplace’i teisendust kasutades jdrgmised diferent-
siaalvorrandid: '

a) x"+2x'+4x=sint, x(0)=0, x’' (0)=—1;

b) x” —2x'4-x=c¢et, x(0)=0, X' (0)=1;

c) x""+x'=t, x(0)=0, ¥’ (0)=—1, x”7(0)=0;
d) x"+x==tcost, x(0)==x"(0)=0.

Vastused: a) x=% (e7t—te—t—cost);

b) x=(-—!2—t2+t)et;

c) x=—é— {2 — 1+4cos { —sin f;

d) x=% (f2sin {+4¢ cos t —sin f).

2. Lahendada jiargmised diferentsiaalvorrandid:
a) x/4x’Fdx=2e"t[1 —H({—1)], x(0)=1, x'(0)=0;
b) x"+x=f(f}, x(0)=x"(0)=0,

J 2, 0<<t<C1,
4 t>1,
o120

Vastused: a) x=e 242t —2H(t—1) [e-t —te21];
b) x=(2—cos)H({t)+[2—2cos(t—1)]H(t—1).

()=

11.2. DUHAMELI INTEGRAALI KASUTAMINE

Olgu vaja lahendada n-jirku diferentsiaalvorrand
L(D)x(t)=[(?) (1)

algtingimustel x®(0)=0, £=0, 1, ..., n— 1. Sel juhul esitub ope-
raatorvorrandi lahend kujul

X(p) =1

kus F(p) =8[f(5)].
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Seosega
1

YO =16

madratud funktsiooni W nimetatakse vorrandi (1) iilekandefunki-
.siooniks. Viimase kaudu saame operaatorvorrandi lahendi esitada

seosega
X (p)=W (p)F(p). | (2)

Seega on iilekandefunkisioon niisugune funktsioon, millega vor-
randi parema poole kujutist korrutades saame lahendi kujutise.

Olgu meil teada vorrandi (1) lahend x(f), kui f(t)=H(t).
Seose (2) pohjal

Lx(8)] -—-X1<p)=% W (p),

s. t.

W (p) =pXi(p).

Asendus seosesse (2) annab meile, et

X (p)=pXi(p)F(p),

millest Duhameli integraali (vi. jaotis 10.5) péhjal

£() =1(OFO)+ J (@) xa(t — 7). 3)
Nidide. Lahendada vorrand
x'x=e¥

algtingimusel x’(0) =x(0)=0.
Et kéesoleval juhul iilekandefunktsioon avaldub seosega

1

W (p)= P

siis
e 1 1 p
ek p . L
millest x;(¢) =1-—cos¢. Seega saame seose (3) pohjal, et vaadel-

dava vorrandi lahend avaldub kujul

t
X (t) = [ e~(t—7sin xdx.
0

Seda integraali ei saa elementaarfunktsioonide kaudu avaldada.
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Ulesanded

1. Lahendada diferentsiaalvorrandid
1

14et’

b) X1V —2x"4x=24tcost, x(0)=x"(0)=x"(0) =x’”i0) =0,

Vastused:

a) x=In(e*4+1)—t —1n2— I+4et[1 —¢4In(e’+1)— In 2];

b) x=3(—4 sin t42¢ cos t42sh ). -

a) x" —x'= #(0) =’ (0) =0;

11.3. BESSELI FUNKTSIOONIDE KUJUTISED

Operaatormeetodit saab iisna edukalt rakendada ka niisuguste
lineaarsete diferentsiaalvorrandite lahendamisel, mille kordajateks
a on poliinoomid muutuja ¢ suhtes. Kasutades originaali diferent-
seerimise omadust, saab ka sel korral avaldada kd&ik kujutised
g[arx®(t)] otsitava kujutise X(p)=2[x(#)] ja tema tuletise kaudu.
Sel viisil osutub operaatorvorrandiks diferentsiaalvorrand, mille
jirk on vordne lahendatava vérrandi kordajapoliinoomide korgeima
astmega. Peatumata selle juures {ildjuhul, vaatleme, kuidas kirjel-
datud meetodil lahendada vorrand (1). Et selle lahend avaldub
teatava spetsiaalse funkisioonina, mida nimetatakse Besseli funkt-
siooniks, siis peatume kdigepealt Besseli funktsioonide moiste
juures.

Diferentsiaalvorrandi

22" (2) +zy’ (2) + (22 —+?) y(2) =0

(v on konstant, mille puhul Rev>—1) lahendeid, mis ei ole sama-
selt vordsed nulliga, nimetatakse silindrilisteks funktsioonideks.
Uheks niisuguseks lahendiks on funkisioon Jy, mille maérab seos

oo

HCEDY k!I‘Ev_—liL:—l) ( : )mk

h=0

ning mida nimetatakse esimest liiki v-jirku Besseli funktsiooniks.
D’Alembert’i tunnuse abil voib kontrollida, et Besseli funktsiooni
defineeriv astmerida koondub kogu komplekstasandil, millest voib
olla vilja arvatud punkt z==0.

_Vaatleme jargnevas tidisarvulist jarku (v=n, n==0, 1, ...) Bes-
s_e_h funktsioone. Need on tdisfunktsioonid. Et T (n+.41) = (n|+k)!,
siis -

A (=DE (2
J“(‘)=hz=0kz(n+k)! (;)H'

14 E. Jdrimae
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millest

o0

zn (=D* (zV_2"
Jn (2) = — ( ) = 2 CthZk.
2 ; Rli(n+k)! \ 2 2 -
Et |
(—1)* ! 1
— = =
ICzkI ‘ k!(n—l—k)!QZ" = 92k (k1)2 = (2k)! ’

sest 92k (R1)2>= (2k)! (seda vorratust saab tOestada téieliku indukt-
siooni meetodiga), siis

[o e}

Y (;;h)! gl(%)n

h=0

|e].

e@1<|(5)

Jirgnevas vaatleme funktsioone J, reaalse argumendi korral
(votame z==¢). Et J, on tdisfunktsioon, siis originaali teine tingi-
mus on tdidetud. Kolmanda tingimuse tdidetus tuleneb viimati
esitatud vorratusest. Seega on funktsioonid J, originaalid. Leiame
nende kujutised. Koigepealt leiame funktsiooni Jo kujutise. Selleks
lahtume teda defineerivast diferentsiaalvorrandist

17 (1), () +to () =0 (1)

ning arvestame, et Jo(0)=1 ja J; (0)=0. Tahistades LJo(?))=
=X (p), saame originaali diferentseerimise omaduse pohjal, et

B, () =pX(p)—1

LUITD))=p*X(p)—p

Kui veel peame silmas, et kujutise diferentseerimise omaduse pohjal
e[tdo(t)1=—X"(p), |

R[4 ()] =—[p*X (p)— p1'=—2pX (p)— PPX"((p) +1,

siis operaatori @ lineaarsust arvestades saame seosest (1), et
90X — X' I+pX—1—X'=0

ehk

dX
— (p2 —_ pX=—
(p2--1) i pX=0.

Mée saime kujutise X (p) leidmiseks eralduvate muutujatega diferent-
siaalvorrandi:
axX___p

X pl
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millest

In X=——le- In(p2+1)+In C

ehk
X= ¢ .
Vp*+-1
Esimese piirteoreemi (teoreem 1 jaotisest 10.4) pohjal
lim pX= lim ————B—C——-————C=Jo(0)=l.‘
Re p—>co Re p—oo 'Vp?_l_l -
Jarelikult
1
(Jo(t)) == .
Vp>+1

Korgemat jiarku (n>>0) Besseli funktsioonide kujutiste leidmi-
seks kasutatakse nendeé funktsioonide puhul kehtivaid seoseid

In(t) =Jna(t)—2Y _ (t), J-n(t)=(—1)"n ().

Viimaste pohjal (n==1 korral) saame, e

B =I_(t)— 2V (), Joa(t)=—Tu(t),

millest
Ji(8y=—J ().
Seega |
1
(J1(1))=28(—=Y (t))=—p ——+J0(0),
° Vpr*+1
mistottu
! 2 l—"
Ru(t)) =P
yri+1
Tdieliku induktsiooni meetodiga voiksime tdestada, et
211 — n
QUn(t)) = el —p
Yp2+1

Kasutades sarnasusteoreemi, saame kordse argumendiga Besseli
funktsioonide puhul, et '
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2 — n ‘n2 2_
S(Jn(at))=l (V(p/a)*+1—pla)" _ (¥p*4a®—p)" .
¢ Y(playti an Yprta?
Besseli funkisioonide abil defineeritakse imaginaarse argumen-
diga silindrilised funktsioonid I:

1o(t) = ()3 8) = Y (5)

Nende puhul

(I ({)) = (p—sz—rl)”
| Vp2—1
ning
Q(L (at)) = (p—7Vp>P—a)™ '
an -sz__az

Viimased valemid saadakse analoogiliselt funktsioonide J, kohta
kiivate vastavate valemitega, arvestades, et

L= () ja In(t)=l2()—2I_ (f) (n=2).

Ulesanded
1. Toestada, et

2 (Jo(2 v?))=-—:,; ei/p, Q72 (2 V) =

e—i/p.,

pn+1
9. l.ahendada diferentsiaalvorrandid

a) tx” — x'=tJ(2V1);
b) tx’ —(1+H)x'+2(1 —t)x=0.
Vastused:

a) X= Cit2+Cz — sz(Q 'V-t_) ;
b) x=cie2t4-cz(14-3t)e .

11.4. LINEAARSED DIFERENTSIAALVORRANDITE SUSTEEMID

N S
- gf'r‘"”-."

Analoogiliselt harilike diferentsiaalvorranditega saab lahendada
operaatormeetodil ka diferentsiaalvérrandite siisteeme. Vorrandistis-
teemist 1ihtudes leitakse sellele vastav operaatorvorrandite siisteem,
mis osutub lineaarseks vorrandisiisteemiks. Viimase lahedamisel
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saame otsitavate suuruste kujutised, mille pohjal leiamegi vaadel-
dava siisteemi lahendid. Piirdume siinkohal naitega.

N dide. Lahendame siisteemi
{ ;2o ‘

'=2x-+2y
algtingimustel x(0)=y(0)=1.

Olgu 2(x)=X ja L(y)=Y. Siis Laplace’i teisenduse rakenda-
misel selle siisteemi vorranditele saame algebralise siisteemi

{ pX —1=—Y

pY — 1=2X--2V.

Viimase siisteemi lahendamisel leiame, et
p?—2p+2° p:—2p+2

Et originaali leidmiseks saaks kasutada tabelit, esitame need lahen-
did kujul

X p—1 . 2
(p—12+1 (p—1)241
y p—1 | 3

T (p—1)1 T (p— 1)1
Tabelist leiame niiiid meie diferentsiaalvorrandite siisteemi 1ahen-
did:

x=c¢et cos t — 2e? sin {,

y=-¢et cos {-}-3et sin ¢.

Ulesanded
1. Lahendada jirgmised diferentsiaalvorrandisiisteemid:

A) { 2 —y —2x-+2y=1—2¢

¥ 2 20 , £(0)=5(0) =¥ (0) =0;

[ X =—y—=z
b) { y=—x—2, x(0)=—1, y(0)=0, z(0)=1,
| =—x—y

[ 3t =2x+y—=z
¢} g 2y=x+3y+z , x(1)=y(l)=2z(1)=1.
| 6tz' =-—x+7y+52
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Vastused: a) x=2(1 —e*t—fe?), y=2—1f—2et—2fe?,

b) x=—e"t, y=0, z=ef;

1 2 5 1

. .

c) x 3—[—3t,y—4t T
5 2 5
—_ 2 g oa Y
=Py

11.5. INTEGRAALIDE ARVUTAMINE

Operaatorarvutus véimaldab arvutada ka paljusid integraale.
Selleks kasutatakse Boreli teoreemi, seoseid (3) ja (4) jaotisest
10.3, mitmeid erikujulisi operaatorarvutuse valemeid ning neid

kahte teoreemi, mida kéesolevas jaotises toestame. Alustame paari
niitega. : )

Nédide 1. Arvutame integraali

2co Jo(f)—cos t
1=/

A t
Jaotise 10.3 valemi (3) pohjal

dt.

23]

I——=f°£¢,[Jo(t)—cost]dp=f( : _ )dP=
: ot VPl prl-

e
=[ln(p+Vp*+1)— 5 In(P*+1)13=In 2

Nidide 2. Arvutame integraali
t
I= [ sin(t —u)Ji(u)du.
1]

Vaadeldav integraal on suuruste sin¢ ja J;(#) konvolutsioon. Et

1 Vi1 —p
& (sin ) =iyl L) ]= ]/pz—l—i ,
siis Boreli teoreemi pohjal
] 211 —
[ J sin(t — u)Ji (1) du] = 1 ¥pe4l—p
° Pl V]

_ 1

Pl (D) VP
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Et

2[do(t)] = ———

V41
siis kujutise diferentseerimise omaduse pohjal
P
(p*-+1) Yp*+1

L[—tJe(f) }=—

*

mist6ttu

I=sin t — tJ5(¢).

- Toestame jargmise teoreemi.

Teoreem 1. Olgu R[f(t)]=F(p), Re p>0. Siis

[ Htydt= lim F(p),
1}

p—>0

kui selline integraal eksisteerib.

Tdestus. Originaali integreerimise valemi kohaselt

g[ftf(u)du]# F;p)-, Re p>0. -
0

Et see paratu integraal eksisteerib, siis teise piirteoreemi (teoreem 2

jaotisest 10.4) pdhjal
F(p)

— lim F(p).

p—0

{—+o00

3
lim [ f(u)du=limp
0 p—0
Nidide 3. Arvutame integraali

[ Ja(at)dt, a=>0.
Q

Et
2 2 _ n
81U (at) ] =L P
| a Y p*+a?
siis dsjatoestatud teoreemi kohaselt
o 1
J Ja(at) dt---a-.

0
Teoreem 2. Kui

&[f(O)1=F(p) ja L[fL(t)]="Fi(p)
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siis
FFROd—= fROI0L

Viimast seost nimetatakse Parsevali vorduseks.
Toestus. Et

O.FF(t)fi(t)dt= ffi(t) [‘fe"t“f(u)du]dt=
= [Hw) [ ferefu(dildu= [ i) Fi(w)ds,

siis olemegi testanud Parsevali vorduse.
Erijuhul, kui
fu(t)y=H(t —a)—H(t—b), a<<b,

siis
1 .
Fi(p) =— (e-*» —e?P)
p
ning

FE@)fi(tydi= [ F(t)dt

Parsevali vorduse pohjal saame seega seose
b " ~ e—ot e—bt
F(t)ydt= t)dt.
Froa= [ =10
Nidide 4. Arvutame integraali

[a.<]

: e—at - e—bt
= dt.
- foee

Selleks votame viimases seoses f(f)=H (). Me saame, et

b :
[ odt b
I= f"'-—t'—'zll'lt“;:ln—a"—,

sest R[H ()] =--p}—-.

Ndide 5. Arvutame integraali

sin ¢

; dt.

o0
4

-

0
onQ



Et &(sin t)=—’5—2-1-— siis Parsevali vorduse pohjal

+1’
- 1 r dt i1
I= = = 00 o e |
(;ftz-i—l H(t)dt Of D arctan £|° 5
Ulesanded

1. Néidata, et

=)

1 —eot
tet

a) di=In (a+1),

0

; —at gj
b)f c tsmt dt=arctan—zll—,
G

co d
o) T @(y—e=) 5

=In 2a,

d) fth(u)Jg(t— u)du=sint.

11.6. KONVOLUTSIOONI TOUPI INTEGRAALVORRANDID

Operaatorarvutusega saab holpsasti lahendada integraalvorran-
deid

?ufk(t—u)x(u)du——-:f(t) (1)
ja
x(t)+xofk(t_u)x(u)du=f(t), 2)

mida nimetatakse vastavalt esimest ja teist liiki konvolutsiooni tiiiipi
Volterra integraalvorranditeks. Otsitavaks on neis funktsioon x,
arv A on reaalarvuline konstant. Neis vorrandeis esinevat integraali
viib vaadelda kahe funktsiooni konvolutsioonina, millest tuleneb ka
vorrandi nimetus.

Tahistame

e[f(1)1=F(p), [k ]=K(p) ja L[x()]=ZX(p).

Boreli teoreem] arvestades saame vastavateks operaatorvorranditeks

AK(p)X(p)=F(p) —- (3)
ja
X(p)+AK(p)X(p)=TF(p). | (4)
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Lahendades operaatorvorrandi ja letdes saadud tahendile kui kuju-
tisele vastava originaali, saamegi vaadeldava integraalvorrandi
lahendi.

Niide 1. Olgu meil vaja lahendada esimest liiki Volterra
integraalvorrand l

t
fsin(t —u)x(u)du==sin®1{.
0

Kaesoleval juhul A=1 ning k(f) =sint. Et

: 1
L(sinit) = P
ning
. 1 ] 1 (1 p )
2 =8 — _— — _ ,
&(sin? ) [2 (1 —cos 2t) 5\ id
siis vastavalt vorrandile (3) saame operaatorvorrandi
1 | ( 1 p )
X(p)= — ,
Pt T\ T e
millest
X = (Lpa—2)
(p) - 2 p pz+4 .

Kujutiste tabeli pohjal saame, et vaadeldava integraalvorrandi
lahendiks on

x(?) =—;—- (143 cos 2t), {=>0.
Nidide 2. Leiame lahendi integraalvorrandile
4
x(8)42 [ et—vx(u)du==1.
0

See vorrand on teist ‘liiki Volterra integraalvdrrand, kus A==2. Vas-
tavalt vorrandile (4) saame operaatorvorrandi

X(p)—— X (p) =—,

p—1 p
mille lahendiks on

p—1 2p—p—1 2 1
X(p)= = =

p(p+1)  p+l)  p+1 p’

Kujutiste tabeli pohjal leiame integraalvorrandi lahendi
_/

x(t)=2e"t—1, t>0.
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Ulesanded

1. Lahendada jargmised integraalvorrandid:
a) x(i)=1.‘—|—0jt (t —u)x(u)du,
b) x(t)=t—|—20f cos(t — u)x(u)du,
c) 1—cos t=6ftch(t-—u)x(u)d'u,

d) 3= f (t — u)2x (u) du.

Vastused:
a) x==shi{, ¢) x=2sint—1,
b) x=2tet — 2et4+¢4-2, . d) x=3.

11.7. OSATULETISEGA VORRANDID

Operaatormeetod on edukalt rakendatav ka osatuletistega dife-
rentsiaalvorrandite lahendamisel. Seejuures kasutame Laplace’i tei-
senduse omadusi parameetrist s6ltuvate funktsioonide kujutamisest.
Operaatormeetodi rakendamisel taandame osatuletistega vorrandi
lahendamise hariliku diferentsiaalvorrandi lahendamisele. Arenda-
mata iildist teooriat, piirdume vaid naitega,

N dide. Varras pikkusega ! on iihte otsa (x=0) pidi kinnita-
tud. Vabale otsale (x=I[) mojub telje sihiline joud F=A sin @i.
Leida varda punktide pikivonkumised.

Pikivonkumisi kirjeldab diferentsiaalvorrand

®u(x,t)  0%u(x,t) . (1)
or oxz

kus u==u(x,t) vidljendab varda punkti x nihet ajamomendil ¢ ning

a> on varda materjalist s6ltuv konstant. Alg- ja rajatingimused
esituvad kujul:

d 3
u(x, 0) =—5—:’:— =0, u(0,)=0, -

W x=l=-E_ Sin &)t,
kus E on elastsusmoodul. Viimane tingimus tuleneb Hooke’i seadu-
sest, mille pohjal vardale mdjuv jéud F ja nihe u on seotud vale-
miga

ou,

F=E‘W.

Vorrandist (1) saame operaatorvorrandi

d2U _ )
prU=a? PR . , 2)

21t



kus U=U(x, p). Kui vaatleme muutujat p parameeirina, en operaa-
torvorrand teist jarku harilik diferentsiaalvorrand, mille karakte-
ristliku vorrandi

p2=a2h2,

lahenditeks on

WL PO W
a a

Seega avaldub vorrandi (2) iildlahend kujul
U= Cep/a)x Coel—p/a)x,

Meil on aga vaja leida lahend, mis rahuldaks tingimusi:

dU A ®
le=o_0’ dx x=l—:E Pt B
Esimese tingimuse pohjal saame, et Cy=-C,, mistottu

U= C, (e(/ow — e~w/aw) =2C, sh —‘Z— x.

Teise tingimuse pdhjal saame niiiid, et

p P, A o
2C, ~ ch " l_-E o
millest
2C1= b ,
p(pr+o?) chL-1
Aaw
kus b= 7
Sellega oleme leidnud operaatorvdrrandi lahendi
X
b Sh2P Gp)
pp+e?) ¢ B(p)
ch—p

Originaali leidmiseks kasutame teist arendusteoreemi, sest saadud
kujutisel on loenduv hulk puhtimaginaarseid pooluseid, mis on paa-
rikaupa kaaskomplekssed. Ulemises pooltasandis asuvad poolused

p=iw, ph=in—la~(k--——;—)=imh (k=1, 2, ...).

D10



Punkt p=0 ei ole poolus, vaid kujutise korvaldatav isedrane punkt,
mille suhtes resiid on null.

Me saame, et

u(x, l‘)-—-—“QRe{ B’( ) m)t..l..zl B,(l;‘:)) ei&)nt} ’

kusjuures eeldame, et ap#0 (=1, 2, ... ), mis sisuliselt tdhendab
resonantsi puudumist.
Kui teha viimases avaldises vajalikud arvutused, saaksime, et

. :
sin — x sin wf4-
2 co ol s)
®> c0s —
a

u(x,t)y=

. (QF:)
sin——X

2ab " a Sifn @it
+ 280 Y () O
A=1

m%{—— w? Ok
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Tabel 2
Laplace’i teisenduse pohivalemid ja omadused -

ark. F() F(p)=81f ()]
1| F()H() fe—P‘f(t)dt=F(p)
2. | M()+pg(?) AEF (B ]+n8[g(?)]
’ 1 p
3. f(at), a>0 _CL”F(-Q,—) ‘
4. | f(t—1), 1>0 e~"?F(p)
5. | eMf(f) F(p—1)
6. | F (2 pF (p) —[(0)
7. | (), f(0)=0 PF (p)
8. [ fo(r) p"F(p) — p™~(0) — p»—2f'(0) —
— ... — J(r=1)(0)
9. | [, [O)y=[(0)=... p™F(p)
=f"=1(0) =0
10. | (=D)7irf(2) F(») (p)
11, | fH#)du —;—F(p)
4 o0
12, f—(tl [ Flg)dq
s
1. f il Z — f F(g)dg
F F) 3
u o1
14. d — | F(q)d
f P 5 p;[ (9)dq
a 219



Jrk.

nr. f(t) F(p)=2[f(¢)]
15. | ST(wyg(t —u)du L] -&Lg ()] =F (p)G(p)
16. | T gO)+ff(w)g'(t—u)du pE(p)G(p)
17. g{t; u) e—»UPIG(p)

S (u)g(t; u)du G{p)Flq(p)]

0 X 4-joo

1

18, Heg(t —— _

(e pw fF(q)G(p q)dq
| n my Akltl_i n Niyg Ahl
19, Pt -
20. %Cnf", - Cyn!

n=e Zp‘n-i-i

R , M>0, R>0

220
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Laplace'i teisenduse valemid

Tabel 3

Irk. F) F(p) =8L(1)]
1
1. | H{{) —_
p
1
2| H(t—1), =0 — TP
p
1
3. emt
pP— ®
!
4| o n!
p'n+l
I' a1
s | 1 (a+1)
pa+1
nl
6. in ecot
(p—o)ntt
_ ®
7. sin w? o
p
8. cos ot P2t
®
9, | shof P — ot
10. ch of P
p2 — 0)2
. 22
11. | sin?®
' p{p*+4w?)
pE=4-2w
2
12. | costof p(p*+4o?)
2w?
A 2
13. | ch? ot p{p? — 4w?)
h2 ot pr 20"
)
] c p(pt — 407)
M sin of )
15. | e *sine
(p+A) 2 +w?
N p+h
e~ cos @
16. (p+1) i+l

]

18 E, Jiirimie

221



Jrk.

ar A F(p) =8[f(1)]
17. | e~M sh ot @
(p+2)* — w?
18. | e~ chot p+h
(P42} — @?
2w
19. | ?¢sino! b
(P*+0?)?
2___»?
20. | ?coswt et
(pP*-+w?)?
2
21. t sh wt wp
(p* — @?)2
2 2
22. | tchat _ptet
(P* — 0?)2
23. | ¢ sinwt Im(p+iw) =+
| (PP+?) nt
g Re(ptie)nH
™ -
24, 17 cos i o
25. | e *sin (atta) @ cos a+(p+A) sina
(p+2) 2402
26. | e~* cos (wi+a) (p+2) cose—wsina
(p+1) 2+ o2
ebt __ eat —a
27. In 4
d p—b
sin ¢ . |
2. — — arctan = arccot -
1 9 o "
29 Sin® # ‘l_. In P24
t p e
e—al ]
30. —
Vo Vr+a
I e e—a¥o
3I - e &t —
Vot Vp
/
nt Pt o
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Jrk.

f(t)

F(p) =R (?)]

nr.
2 [ Viter
e
33. V cos of V Yooty
at prP+w?
2 —_Yp? —
34, V sh w/ ]/p | L
at p'—’-.__(gz
[ 2 ]/ p+¥p: — w?
35. ]/ ch ot
ﬂt pZ__&)2
, ’ sinu | 1
36. | si (t)=_f du - ——arctan p
u P
0
t
sin u 1
37. | si()= f T du — arccot p
u p
0
. ] I
38. Ci(t)=ci(t)=—f s du —In ———
: u p Vo241
. e~ 1
39. -—El(“—t):f du ~—1n (r4-1)
u P
i
¥t
— 2 . I
40. erf(}ft)z-—-—_—fe-“’du e ———
¥ o p¥p+1
— — 1
41. Eel (Yi)=1—erf (¥¢)
pH1+Vp+1
42 | eteri (]/?5 :
(p—1)¥p
43. | et Eri (47) 1
p+vp
t ]
I ' f sinu 1 V 211 —
| SO=— f LI VP41 —p
V2m 0" ¥ S



45.

46.

47,

48,

49.

51.
52.

53.

Jo(at), >0

Jn(af), (t>0, n=1, 2, “ v

n

123, (2Val), a>0, n—=1, 2, ...

IO(at)) a>0

I‘n(at), 0‘.>0, n'—_'-l, 2, e

6(1)
6(f —1)
dn+i

din+t

H (1) =8(m (f)

1 Vor+1+p

2
P Vpi+1
1
Vp*+a?

(Vp?+a2 — p)n

an ‘Vp2+a2
1 —
pn+1 P a 2
1
¥p* — a?
(p—Vp*—a?)"
a‘n 'sz —_ az
1
e-tp
pﬂ
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