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EESSONA

Kaéesolevas raamatus on esitatud lithidalt pohilised faktid diferentseeru-
vate kompleksmuutuja funktsioonide kohta ning vaadeldud nende méningaid
rakendusi. Raamat on moeldud eeskitt opikuna matemaatika, fiitisika ja
elektro-automaatika eriala iiliopilastele, kuid voib huvi pakkuda ka neile, kel
tuleb tegelda kompleksmuutuja teooria ja operaatorarvutuse rakendustega.

Paljudes matemaatikavaldkondades on tarvis valjuda reaalarvude hulgast
ja vaadelda vastavaid kiisimusi kompleksarvude hulgal. Alles siis ilmnevad
mitmedki faktid ja omadused taiel kujul. Nii on see héastituntud algebra po-
hiteoreemiga, mida on vaadeldud ka kéesolevas raamatus. See kehtib ka ana-
luiitiliste (astmeridade summana esitatavate) funktsioonide kohta, sest ka
nende omadused ei avane reaalarvude hulgal taielikult.

Kéesolev esitus toetub regulaarse (vaadeldava punkti mingis iimbruses
tihese ja diferentseeruva) funktsiooni moistele. Sellest méistest lahtudes néi-
datakse, et regulaarne funktsioon on esitatav teatava integraali kujul oma
rajavaartuste kaudu (Cauchy valem), millest omakorda ilmneb, et moisted
yregulaarne funktsioon® ja ,analiiiitiline ithene funktsioon® tihtivad.

Analtttilist jatkamist kasutades méaratletakse ka mitmene analtititiline
funktsioon, kui rakendustes vaadeldakse valdavalt tiheseid funktsioone.

Kéesolev materjal (jaotised 1 kuni 8) katab pohilises osas iilikooli mate-
maatika ja rakendusmatemaatika eriala iiliopilastele ettenahtud programmi.
Teiste erialade tliopilastel, kes samuti opivad kompleksmuutuja funktsiooni-
de teooriat, tuleb esitatud materjalist teha oma programmile vastav valik.
Materjal on piititud esitada selliselt, et kidesolevat raamatut saaksid kasuta-
da opikuna ka pedagoogilise instituudi matemaatika-fiitisika eriala ja tilikooli
fiitisika eriala iiliopilased ja poliitehnilise instituudi elektro-automaatika eri-
ala tudengid. Eeskatt viimaste vajadusi silmas pidades on késitletud iisna
pohjalikult Laplace’i teisendust ja selle rakendusi ning esitatud Fourier’ tei-
senduse koige olulisemad omadused. Jaotises 9 on késitletud analiiiitiliste
funktsioonide valjateoorias rakendamise pohimomente. Konkreetse naitena
on vaadeldud lennuki tiiva profiili uurimise klassikalisi tulemusi, mis de-
monstreerivad iisna ilmekalt kompleksmuutuja funktsioonide teooria mois-
tete kasutamise viljakust véljateooria iilesannete lahendamisel.

Lisas on esitatud kolm tabelit: elementaarfunktsioonide konformsed ku-
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jutused, Laplace’i teisenduse pohiomadused ja Laplace’i teisenduse valemid.
Viimases tabelis on valemeid monevorra rohkem kui raamatus toestatud ja
kasutatud. Seda on tehtud eeskédtt nende huvides, kes tegelevad operaator-
arvutuse rakendustega.

Raamatus on hulgaliselt iilesandeid, mille lahendamine peaks aitama pa-
remini omandada teoreetilist materjali.

Raamatu lopus on kasitletud kiisimuste alase oppekirjanduse soovitus-
nimestik. Raamatutes [5], [11] ja [13] leidub hulgaliselt tdiendavaid néiteid
ja juhiseid operaatorarvutuse rakenduste kohta. Koige téielikum Laplace’i
teisenduse valemitekogu on raamatus [7].



1. KOMPLEKSARVUD

1.1. KOMPLEKSARVUD JA TEHTED NENDEGA

Kompleksarvudeks nimetatakse reaalarvude jérjestatud paare z = (z,y),
millega teataval kindlal viisil defineeritakse aritmeetilised tehted ning vordus.
Olgu antud kaks kompleksarvu z; = (x1,y1) ja 22 = (22,y2). nende vordus,
summa ja korrutis defineeritakse jéargmiselt:

1) 21 = 29, kui 1 = z2 ja y1 = y2;
2) 2142 = (21 4+ 22,91 +¥2);

3) z122 = (z122 —Y1y2, T1y2 + T2+ Y1).

Esitatud definitsioonidest lahtudes saab naidata, et iga z = (z,y) puhul
kehtib vordus

2= (2,9) = (2,0)+ (0,1)(y,0). (L1)

Sellest avaldisest paneme téhele, et eriline osa on kompleksarvul i = (0, 1)
ning koigil neil kompleksarvudel, millele vastavas paaris teine arv on null.
Kui defineerida veel kahe kompleksarvu vahe kui summa poédéroperatsioon
ning jagatis kui korrutise poordoperatsioon, siis osutub, et koigi nende tehe-
te suhtes kditub paar (z,0) nagu reaalarv z. Seetottu voime nad omavahel
samastada, s.t. x = (x,0). Sel viisil saame, et kompleksarvude hulk sisaldab
reaalarvude hulga, kusjuures 0 = (0,0).

Koike seda arvestades voime vorduse (1.1) kirjutada kujul z = (x,y) =
x +1iy. Seda vordust nimetatakse kompleksarvu algebraliseks kujuks.

Reaalarve

r=Rez=Re(z,y) ja y=Imz=Im(z,y)

nimetatakse vastavalt kompleksarvu z reaal- ja imaginaarosaks. Kui
Im z # 0, siis nimetatakse arvu z imaginaararvuks ning kui lisaks selle-
le Rez =0, siis puhtimaginaararvuks.

Et ka tasandi iga punkti P (ehk siis tema kohavektor O?) (joon. 1.1)
on madratud jarjestatud reaalarvupaariga (oma koordinaatidega), siis saame
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6 PEATUKK 1. KOMPLEKSARVUD

N
P
v
0 T : xr
2 d-
Joonis 1.1 Joonis 1.2

korraldada tiksiihese vastavuse kompleksarvude ja tasandi punktide vahel.
Teisiti 6eldes: me voime koik kompleksarvud kujutada koordinaattasandil.
Niisugust tasandit nimetatakse komplekstasandiks. Seejuures nimetatakse
x-telge reaalteljeks ning y-telge imaginaarteljeks.

Samastades kompleksarvu z = (x,y) kohavektoriga OP — (x,y), saame
kompleksarvude liitmist ja lahutamist geomeetriliselt interpreteerida kui neil
vastavate vektorite liitmist ja lahutamist (joon. 1.2).

Ulesanded
1. Toestada, et

a
b

) 21+ 22 =22+ 21 (summa kommutatiivsus);
)

c) z122 = 2221 (korrutise kommutatiivsus);
)
)

(21 +29)+ 23 = 21+ (22 + 23) (summa assotsiatiivsus);

d (2122)23 = z1(2223) (korrutise assotsiatiivsus);

e) z1(z2+23) = 2120+ 2123 (distributiivsus).
2. Niidata, et i = (0,1) (0,1) = (=1,0), s.t. i* = —1.

3. Néidata, et vahe z; — 29 on iiheselt méaratud mistahes kompleksarvude
21 ja z puhul.

4. Leida 2L, Veenduda, et selline jagatis on itheselt méaratud iga z3 # 0
Z2
korral.
1

z
5. Naidata, et 1 21 —.
22 z2
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6. Toestada, et kahe kompleksarvu korrutis on null parajasti siis, kui va-
hemalt iiks teguritest on vordeline nulliga.

7. Toestada, et (1+2)3 =1+2z+ 2%
8. Leiada graafiliselt z1 + 22 ja 21 — 29, kui

a) z1 =241, 20 =1+2i;

o

21 = —3+1, 290 = 1+4i;

o

21 =31, 29 =—2—1;

)
)
)
)

oL

z1 = —242i, 20 = —3i.

1.2. KOMPLEKSARVU MOODUL JA ARGUMENT

Et tasandi punkti (z,y) saab méaérata ka
polaarkoordinaatides, kusjuures
2 Y
r=rcosyp ja y=rsinyp, (1.1)

siis kompleksarvu z maarab ka reaalarvu-
paar (r,), milles esimest arvu nimetatakse |
kompleksarvu z mooduliks ning teist ar-
gumendiks. Neid tahistatakse vastavalt |z|
ja Argz. vahetult geomeetrilisest pildist on Joonis 1.3

selge, et kompleksarvu moodul on tiheselt

méaratud, kuid argument mitte. Kui ¢ on kompleksarvu argumendiks, siis
on ka seda iga arv ¢ +2ke (k=0,£1,£2,...). Kompleksarvu z sellist argu-
mendi vaartust ¢, mis rahuldab vordusi

V&

—T<Pp<T,

nimetatakse argumendi peavaartuseks ning téhistatakse siimboliga arg z.
Puhtgeomeetrilistest kaalutustest on selge, et argument on méaratud iga
kompleksarvu z # 0 puhul. Kompleksarvul x = 0 aga pole argumenti. Arv
z =0 on maaratud sellega, et tema moodul vordub nulliga.

Vordusest (1.1) saame, et

r=|z| =22 +92,
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millest omakorda jareldub seos
e s — arccos 7, kuiy >0,
82 = —arccos T, kui y <0.
Asendades kompleksarvu algebralises kujus suured z ja y valemite (1.1)
pohjal, saame, et
z=r(cosp+ising). (1.2)
Seda avaldist nimetatakse kompleksarvu trigonomeetriliseks kujuks.
Matemaatiline analiitisi kursuses toestatakse nn. Fuleri valem
¥ = cosp +ising,
mille abil saame vordusest (1.2) kompleksarvu z eksponentkuju
z=re?,

Mitmesugustes arvutustes on kasulik rakendada just kompleksarvu ekspo-
nentkuju tema kompaktsuse tottu.

Vaatleme kompleksarvude korrutamist trigonomeetrilisel kujul. Olgu z; =
ri(cospi +isingy) ja zg = ra(cosps +isings). Sel juhul saame, et

2129 = 11(C08 1 +1isinpy)re(cos p2 +isings)
= 1172 [(cos 1 cos pa — sin gy sin ) +1i(sin 1 cosg 4 sin g cos 1 )]
= 117 [cos(1 + @) +isin(p1 + @2)] = rrpelP1e2)
s.t.
2129 = ryroci(P11¥2).

Taieliku induktsiooni meetodi abil voime tldistada saadud valemi mista-
hes lopliku arvu tegurite juhul. Kui seejarel votaksime koik tegurid vordseina,
saaksime nn. Moivre’i valemi 2" = "¢, kus n on naturaalarv.

Analoogiliselt korrutamisega saaksime, et

L= L Leos(p1 — 2) +isin(pr — p2)] = Leile17¢2),
22 T2 T2

Poordume tagasi kompleksarvude summa ja vahe juurde. Puhtgeomeet-

riliste kaalutluste (kolmnurga kiilgede vahekorra) pohjal saame, et

|21 + 22| < |21] +|22],
|21 — 22| > |21] — |22].

Edaspidiseks on aga eriti oluline mérkida, et suurus |21 — 22| on vordne
komplekstasandi punktide z ja zo vahelise kaugusega (vt. joonl.2).
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Ulesanded
1 .
1. Naidata, et — =e™'¥.
el

2. Kirjutada jargmised kompleksarvud trigonomeetrilisel ja eksponentku-

jul:
a) 3i, d) —2, g) V3—i, j) —3+5i,
b) —i, e) 141, h) 1-iv3, k) 2—5i,
¢) 2, f) —1—1i, i) 3+5i, 1) —2—5i.

3. Leida argz, kui

_9 6
= C) 2= \/g—l ; e) 2 =2Zz1)

W EE ) 2=(v3-i)
i 21
b) 2= d) =212, f) 2=

4. Olgu zp mingi kompleksarv ning R positiivne reaalarv. Naidata, et kui
z asub punkti —zg timbritseval ringjoonel, mille raadius on R, siis ta
rahuldab vorrandeid

a) |z+20| =R, b) z = —z+ Re'.

5. Millised punktihulgad on komplekstasandil madratud jargmiste seoste-

ga:
a) |2 =il <3, i PSS
b) |z +2i] > 2, v
¢) |z—3—4i| =5, g) arg(z+i) =~
d) [z +2[+|2—2| =5,
. @ N
e) |z—i| =|z+2| h) 3 <arg(z—1) <~

1.3. KAASKOMPLEKSARVUD

Kompleksarvu z = (z,y) kaaskompleksarvu ehk kaaskompleksiks ni-
metatakse arvu zZ = (z, —y). Sellest definitsioonist jareldub, et kompleksarvu
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Z kaaskompleksiks on z, s.t. (Z) = z. Samuti mérkame, et (vt. joon. 1.4)

argz = —argz
ning

2| = |2|
Seega

zZ = (re”1¥).

Vahetul kontrollimisel voime veenduda,

et 2 Y

ATm=7r+7, 2

. 21 1 l

21— R =21 — %9, — | = —. |

z92 Z9 :

(L1) —&77F | &

0¥ !

Z122 = Z1%2, l

Osutub, et korrutis zZ on alati reaalne. Toe- 1
poolest, 7

ZZ = (‘T?y) (ﬁ,—y) - Jf2+y2 = |Z|27
Joonis 1.4
s.t.

|z| = V2Z.

Seda arvestades saame kergesti anda eeskirja kompleksarvude jagamiseks al-
z
gebralisel kujul: jagatise = algebralise kuju leidmiseks tuleb selle murru lu-
z2
gejat ja nimetajat korrutada nimetaja kaaskompleksiga.
Toepoolest, kui 21 = (x1,y1) ja 22 = (z2,y2), siis

21 _ T3 _ (x1+iy1) (2 —iy2)

29 2909 :1:% +y§
_ (x122 +y1y2) +i(z2y1 — T1Y2)
3+ 5

T2t Y1Y2 | T2Y1 — T1Y2
= 2, .2 L
Ty + Y3 x5+ Y3
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Ulesanded

1. Néidata, et
I, . L
Rez = §(z+z) ja Imz = —i(z—z).

2. Kirjutada komplekskujul vorrandid

(a) 2*+22+y°—y=1,

(b) 2% —y*>=1.
Vastus. (a) 2Z+ <1+;)z+<1—;>z:1,
(b) 22 +z=2.

3. Toestada vordused (1.1).

4. Néidata, et ringjoone |z — zp| = R punktid rahuldavad vorrandit 2z —
202 — 202 + 2020 = R?.

5. Millisel juhul on vorrand
azZi+Az+AZ+b=0,

kus a ja b on reaalarvud ning A — kompleksarv, ringjoone vorrandiks?

Vastus. |A|> —ab>0, a #0.

6. Milline on sirge vorrand komplekskujul?

Vastus. Az+ Az +b=0.

1.4. STEREOGRAAFILINE PROJEKTSIOON

Eelnevas veendusime, et kompleksarvude hulga ja tasandi punktide vahel
saab korraldada iiks-tihest vastavust. Naitame, et ka sfiari punktid ja komp-
leksarvud voib seada iiks-iihesesse vastavusse. Selleks asetame kompleksta-
sandile mingi sfaéri, mis toetub komplekstasandile nullpunktis (vt. joon. 1.5).
Kui niitid paneme sirge lédbi komplekstasandi punkti z ja diameetri otspunkti
P, siis see sirge 16ikab sfadri mingis punktis . Sel viisil saamegi tiks-iihese
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V&

Joonis 1.5

vastavuse komplekstasandi ja antud sfaari punktide vahel. Niisugust vas-
tavust nimetatakse stereograafiliseks projektsiooniks ning vaadeldavat
kerapinda — kompleksarvude sfiairiks.

Kui |z| — o0, siis ¢ ldheneb punktile P. Siinjuures on téiesti iikskoik, mil-
lises suunas z kaugeneb nullpunktist. Sellest lahtudes votame kasutusele uue
Lkompleksarvu“ z = 0o, mida nimetame lopmatuseks ehk l6pmatuspunk-
tiks ning mis vastab sfdari punktile P. Paneme tahele, et kompleksarvude
sfadril on 16pmatuspunkt (punkt P) tihene. Kui vaadelda kompleksarvude
kujutamist tasandil, voib tekkida mulje, et on 16pmata palju lopmatuspunk-
te.* Edaspidi aga osutub lopmatuspunkti ithesuse noue tisnagi oluliseks.

Komplekstasandit, millele on lisatud lopmatuspunkt, nimetatakse kinni-
seks ehk taielikuks tasandiks.

Taielikul tasandil voime defineerida ka seosed

o ja 2 _p (a#0, a+# 00).
0 00

1.5. PIIRKONNAD

Komplekstasandi punkti zg timbruseks (tdpsemalt e-timbruseks) nime-
tatakse nende punktide z hulka, mis rahuldvad vorratust

|z — 20| < e.

*Reaalarvude puhul vaadeldaksegi kaht 16pmatust, +oo ja —oo.
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Punkti timbruseks on seega ring keskpunktiga selles punktis. Lopmatus-
punkti iimbruseks nimetatakse hulka

|z| > e.

Piirkonnaks nimetatakse punktihulka D, mis rahuldab jargmisi tingi-
musi:

a) koos punktiga z kuulub hulka D ka selle punkti mingi timbrus (lahtisuse
omadus);

b) iga kahte punkti z; ja z2 hulgast D on voimalik tthendada pideva joo-
nega, mis taielikult kuulub hulka D (sidususe omadus).

Edaspidi maarame piirkondi mitmesuguste vorratustega, naiteks, |z| <
1, Rez >0, 2 < |z—1] < 3 jne. Seejuures iitleme lihtsalt: ,ring |z| < 1%,
,pooltasand Rez > 0%,  piirkond 2 < |z — 1| < 3 jne.

Kui koos punktiga kuulub vaadeldavasse hulka ka selle punkti mingi iimb-
rus, siis nimetatakse seda punkti selle hulga sisepunktiks. Hulka, mis koos-
neb vaid sisepunktidest, nimetatakse lahtiseks. Piirkond on seega lahtine
hulk.

Hulga rajapunktiks nimetatakse punkte, mille iga iimbrus sisaldab nii
vaadeldavasse hulka kuuluvaid kui ka mittekuuluvaid punkte. Rajapunktide
hulka nimetatakse rajaks. Piirkonda koos oma rajaga nimetatakse kinni-
seks piirkonnaks.

Piirkonna raja sidusate osade arv méarab piirkonna sidususe jargu. Nii
nimetame piirkonda |z — 1| < 1 tithelisidusaks ning piirkonda 1 < |z —i| < 2
(rongas) kahelisidusaks. Joonisel 1.6 on esitatud neljalisidus piirkond.

Kui piirkonna raja koosneb enam kui tihest sidusast osast, siis nimeta-
takse piirkonda mitmelisidusaks.

Piirkonna raja korral méaratakse kindel labimise suund. Raja positiivseks
suunaks loetakse see, mida mddda litkudes vaadeldav piirkond jadb vasakule.
On oluline ka rajapunktide kordsus. Oeldakse, et punkt A on n-kordseks
rajapunktiks, kui raja taielikul labimisel punkt A ldbitakse n korda.

Piirkonda nimetatakse lopmatuks, kui vihemalt tema raja sisaldab [op-
matuspunkti. Vastasel korral koneleme tokestatud piirkonnast.

Ulesanded

1. Kirjelda geomeetriliselt jargmisi piirkondi:
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Joonis 1.6

a) —m <argz <m, |z]<2
3m

<argz<—

b) 1< |z—2i] <2,
|z — 2i 1 1

)
)
c) 2243 >4;
1
) Re(5) <3
e) |z+4] > |z[;
)
)

f) Im (2—1) > 0;
z+1‘

o




2. FUNKTSIOON JA TEMA TULETIS

2.1. FUNKTSIOONI MOISTE

Vaatleme mingit kompleksarvude hulka D. Kui z tahistab suvalist arvu
hulgast D, siis 6eldakse, et z on kompleksarvuliste vaartustega muutuv suu-
rus ehk kompleksmuutuja. [ga kompleksarvu z € D nimetatakse seejuures
selle kompleksmuutuja vadrtuseks.

Kui kompleksmuutuja z igale vidrtusele z € D on vastavusse seatud mingi
kindel kompleksarv w, siis deldakse, et hulgal D on defineeritud kompleks-
muutuja funktsioon w= f(z).

Muutuja z vaartusi nimetatakse originaalideks. Kompleksarvu f(z) ni-
metatakse funktsiooni vaartuseks ehk kujutiseks. Viimased moodusta-
vad hulga, mida nimetatakse funktsiooni vaartuste ehk kujutiste hulgaks.

Kui igale originaalile vastab ainult tiks kujutis, siis nimetatakse funkt-
siooni iiheseks, vastupidisel korral — mitmeseks. Kui iga kujutis on vastav
vaid iihele originaalile, siis nimetatakse funktsiooni iiheleheliseks, vasta-
sel korral — mitmeleheliseks. Seega esitab ithene ja iiheleheline funktsioon
iiks-tihest vastavust.

Lepime kokku kasutatavas siimboolikas ja terminoloogias. Termineid
yfunktsioon“ ja ,kujutus“ kasutame siinontitimidena. Neid tahistame stim-
bolitega f, g, F' jne. Kérvuti nendega kasutame samas tdhenduses siimboleid
w= f(z), w=g(2), w=F(z) jne. Viimastes tuleb suurusi w ja z vaadelda kui
muutujaid, mitte aga kui konkreetseid kompleksarve. Stimboleid f(z) ja g(z)
kasutame punkti z kujutise tdhenduses, voi siis teatava avaldise lithemaks
mérkimiseks, néiteks f(z) = 24— 922+ 5. Me iitleme, et see avaldis ,méérab
funktsiooni® voi siis ,esitab funktsiooni“. Nii naiteks titleme: ,Olgu funkt-
sioon méiratud avaldisega 22 + 1% ja ,Avaldis sz esitab diferentseeruvat
funktsiooni ringis |z| < 1%

Kui meil on tiks-tiksiihene vastavus kahe hulga D ja D; vahel, siis on
meil médratud kaks funktsiooni, w = f(z) ja z = g(w), kus z = ¢g[f(z)] ning
w = [g(w)]. Neid funktsioone nimetatakse teineteise suhtes p66rdfunktsioo-
nideks. Niisiis on igal funktsioonil, mis teostab iiks-ithese kujutuse, poord-
funktsioon.

15
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Kui hulgaks D on naturaalarvude hulk, siis nimetatakse funktsiooni ja-
daks, mida tahistatakse (zy).

Kui hulgaks D on mingi reaalarvude hulk 7', siis saame nn. reaalse ar-
gumendiga kompleksmuutuja funktsiooni

z=f(t)=a(t)+iy(t), teT.

Sellisena funktsioon ei paku oluliselt uut vorreldes analiiiisis vaadeldud
funktsioonidega, sest z = f(t) avaldub siin kahe reaalmuutuja funktsiooni li-
neaarkombinatsioonina, mistottu funktsiooni z = f(t) omadused on taielikult
sarnased funktsioonide x = z(t) ja y = y(t) omadega.

Omaduste poolest hoopis erinevamad funktsioonid saame sel juhul, kui nii
originaalide kui ka kujutiste hulkadeks on teatavad piirkonnad. Viimast nime-
tatakse antud funktsiooni méaramispiirkonnaks ehk originaalide piirkon-
naks. Kujutiste hulka nimetatakse kujutispiirkonnaks ehk funktsiooni
muutumispiirkonnaks.

Kui reaalmuutuja funktsiooni korral kasutame piltlikkuse saavutamiseks
funktsiooni graafikut (seal on see kahedimensioonilise ruumi objekt), siis
kompleksmuutuja funktsiooni korral pole see moeldav. Selle graafik oleks
neljadimensioonilise ruumi objekt. Geomeetrilise pildi saamiseks kasutame
kahte tasandit: tihele (z-tasand) kanname originaalid, teisele (w-tasand) ku-
jutised. Seda silmas pidades titlemegi, et funktsioon kujutab z-tasandi mingi
piirkonna piirkonnaks w-tasandil.

Ndide 1. Vaatleme funktsiooni
w=kz,

kus & on positiivne reaalarv. Olgu z = rel? ja w = pel?. Seosest w = kz saame,
et

p=kr ja ©O=p+2nm.

Nendest vordustest ndeme, et punktide z ja w polaarnurgad on vordsed, kuid
kujutise polaarkaugus on suurem (kui k > 1) voi viiksem (kui k& < 1) originaali
omast (vt. joon. 2.1). Teisiti 6eldes: toimub k-kordne mastaabi muutus.

Ndide 2. Olgu

w=¢e"2, kus « on mingi reaalarv.
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VY

Araar-4
NN

Joonis 2.1

Siit saame seosed:
p=r ning O =p+a+2nm.

Nendest seostest ndeme, et vaadeldava kujutise korral poérdub iga ring |z| <
R nurga « vorra (vt. joon. 2.5).

Erijuhul, kui o = 5 s.t. w =iz, saame tasandi poorde taisnurga vorra,

kui aga a =7, s.t. w = —z, siis saame tasandi poorde sirgnurga vorra.
Ay Av
w
z
eia
O .
O R 7 u
Joonis 2.2

Ndide 3. Vaatleme funktsiooni

w=2z+b.
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Olgu w =u+iv, z =z +1iy ning b = B +ipPs. Selle funktsiooni korral
u=z+p1 ning v=y+ P,

s.t. toimub tasandi likke vektori b vorra (vt. joon. 2.2) Nii néiteks kujutub
ring |z| < r ringiks |w—0b| <.

/ ; e
N 0

Joonis 2.3

QV

Ndide 4. Vaatleme lineaarfunktsiooni
w=az+Db.

Olgu a = ke'® ja b= 1 +1fs. Tahistades
si=kz, zm=e% ja w=z+Db,

saame, et antud funktsiooniga teostatav kujutus on vaadeldav kolme eespool
kasitletud kujutuse jérjestikuse rakendamisena. Kui a # 1, saame funktsiooni

w=az+b
esitada kujul

w—ﬁza(z—ﬁ),

b
kus 8= T2 Saadud seosest jareldub, et a # 1 korral leidub niisugune punkt

[, mille suhtes lineaarfunktsioon teostab tasandi poérde nurga arga vorra
ning |a| kordse mastaabi muutuse. Erijuhul, kui b = 0, toimub see nullpunkti
suhtes.
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Ndide 5. Vaatleme funktsiooni

w:z2.

Olgu jéllegi z = re'¥ ja w = peie Siin saame seosed:
p=1%ja f=2p+2nr.

Nendest selgub, et z-tasandi punktid, mille moodulid on vordsed ning argu-
mendid erinevad arvu 7 voi selle taisarvkordsete vorra, kujutuvad w-tasandile
itheks ja samaks punktiks. Siit jareldub, et piirkond —g <argz < g kujutub
piirkonnaks —7m < argw < 7, s.t. kogu w-tasandiks, valja arvatud reaaltelje
negatiivne osa.

Kui meil on méaaratud mingi funktsioon w = f(z) hulgal D, siis see té-
hendab, et igale piirkonda D kuuluvale kompleksarvule z on vastavusse sea-
tud mingi kompleksarv w. Et aga z =z +1iy ja w = u+iv on maaratud oma
reaal- ja imaginaarosadega, siis vastavus w = f(z) méédrab meile kaks kahe
muutuja funktsiooni

u=u(z,y) jav=uv(z,y).
Seega
w=u+iv=f(2) =u(z,y)+iv(z,y).

Funktsioone u ja v nimetatakse kompleksmuutuja funktsiooni w = f(z)
reaal- ja imaginaarosaks.

Néide 6. Kui w = 22, siis

2 —y2) +i2zy,

w=2%=(r+iy)? = (z
s.t.

u(z,y) =2° =y ja v(x,y) = 2ay.
Ulesanded

1. Leida funktsiooni

méaramispiirkond.
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2. Leida sirgete y = o (a > 0) ja poolsirgete x = 5 (y > 0) kujutised funkt-
siooniga w = 22,

3. Milliseid jooni esitavad vorrandid (¢ € R):

a) z=1t(1+1), d) z:tz—i-%,
b) z =acost+ibsint, t .
; e) z=ae +Be M,
c) z= t+¥’ (v ja 3 reaalarvud).

4. Leida jargmiste funktsioonide reaal- ja imaginaarosad:

1 1
== d) w= —
z—1
b) w=z+2z, e) w= P
1
¢) w=2> f) w=__5

2.2. PIIRVAARTUS

Vaatleme kompleksarvuliste vaartustega jarjestatud suurusi. Nende all
moistame niisuguseid muutuvaid suurusi w, mille korral vihemalt osa w vaar-
tuste wy,ws puhul on méaratud, kumb vadrtustest teisele jargneb. Siinjuures
nouame, et see jarjestus oleks: 1) transitiione, s.t. kui we jirgneb vdirtusele
wi, w3 aga vadrtusele we, siis jargneb ws ka vaartusele wy 2) suunatud, s.t.
iga kahe vaartuse w; ja wo puhul leidub ws, mis jargneb kummalegi vaartu-
sele w1, wy. Viimast arvestades koneleme ka, et suurus w muutub suunatud
protsessis.

Matemaatilise analiiiisi kursuses tutvusime reaalarvuliste vadrtustega
suuruse piirvidartuse moistega. Seame endale tilesandeks taandada kompleks-
arvuliste vaartustega jarjestatud suuruse piirviaartustega seotud moisted ja
nendekohased teoreemid analoogilstele moistetele ja teoreemidele reaalarvu-
liste suuruste korral. Aluse selleks annavad kompleksarvu definitsioon ning
kauguse moiste komplekstasandil. Nende pohjal saame allpool vaadeldava
seose (2.1), mis voimaldabki meil lahendada oma iilesande.

Jérjestatud suuruste néidetena mainiksime jargmisi:

w=z, (n—00), w=2z(t) (t—0) ja w=f(2) (z—a),
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millega tuleb meil sageli kohtuda jargnevates osades. Et need kompleksarvu-
liste vaartustega suurused on toepoolest jarjestatud suurused, jatame toes-
tada lugejale. Margime vaid, et selleks on vaja selgitada, mida tahendab igal
itksikul juhul jargnevus, ning kontrollida transitiivsust ja suunatust.

Me nimetame kompleksset muutuvat suurust w lopmata vaikeseks ehk
haabuvaks vaadeldavas protsessis, kui selles protsessis on reaalarvuliste
vaartustega suurus |w| 16pmata véike, s.t.

lim |w| = 0.

Kompleksarvu A= a+1ib nimetame muutuva suuruse w = u+iv piervdar-
tuseks vaadeldavas suunatud protsessis, kui selles protsessis vahe w— A on
lopmata vdike. Seda, et A on suuruse w piirvidrtuseks, margime jargmiselt:

limw = A.

Teoreem. Muutuva suuruse w = u+iv piirvddrtuseks on konstant A =a+1ib
parajasti siis, kui vaadeldavas protsessis limu = a ning

limv = 0.
Toestus. Teoreemi vaide jareldub vahetult vorratustest

ol <ol lomal+po-, )
kui peame silmas édsjatoodud piirvaédrtuse definitsiooni ning vastvat definit-
siooni reaalarvuliste muutuvate suuruste korral. Vorraltusteahela (2.1) parem
pool esitab teoreemi tingimuste piisavuse ning vasak pool — tarvilikkuse.

Rakendustes on sageli otstarbekas kasutada piirviartuse definitsiooni mo-
nevorra teisel, kuid iilaltooduga samavaarsel kujul.

Konstanti A nimetatakse muutuva suuruse w piirvadrtuseks, kui vastavalt
tgale positiivsele arvule € leidub vaadeldavas protsessis nitsugune koht, millest
alates kehtib vorratus

lw—A| <e.

Vaatleme niiiid jada (z,) piirvddrtust ning rakendame selle puhul &sja-
esitatud tldist piirvadrtuse definitsiooni. Jada puhul iseloomustab protsessi
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jada indeksi kasvamine. Koha méarab siin indeks, s.t. mingi naturaalarv.
Seega:

arv A on jada (zp,) piirvddrtuseks, kui vastavalt igale arvule € >0 leidub
selline naturaalarv N(€), nii et iga n > N puhul

Jada, millel on piirvdértus, nimetatakse koonduvaks. Ulaltoodud teo-
reemi abil saame kompleksliikmetega jadadele iile kanda Cauchy kriteeriumi,
mida tunneme reaalarvuliste jadade puhul.

Cauchy kriteerium. Jada (zy,) on koonduv parajasti siis, kui vastavalt igale
arvule € > 0 leidub naturaalarv N(g), nii et iga n > N(g) ning iga naturaal-
arvu p korral kehtib vorratus

|2n4p — 2n| <e.

Teise konkreetse rakendusena vaatleme funktsiooni w = f(z) piirvaértust
punktis a, s.t. funktsiooni f piirvadrtust protsessis z —a, mida margime siim-
boliga

lim f(2).

z—a

Siinjuures eeldame, et funktsioon f on maédratud punkti a mingis iimbruses
(valja arvuatud voib-olla punktis a endas). Selles protsessis on koht mééra-
tud punkti z kaugusega punktist a. Piirvadrtuse definitsiooni rakendamisel
saame:

kompleksarv A on funktsioon w = f(z) piirvadrtuseks punktis a, kui vas-
tavalt igale arvule € > 0 leidub selline §(¢) > 0, nii et iga vorratusi

0<|z—al <d(e)
rahuldava z puhul kehtib vorratus
f(z) — Al <e.
Ndide 1. Toestada, et lim|z| = 1.
Z—1

Asjaesitatud definitsiooni pohjal tuleb meil niidata, et iga € > 0 puhul
leidub niisugune () > 0, et |z —i| < d(¢) korral kehtib vorratus ||z| — 1| <e.
Et aga (vt. jaotis 1.2)

12— 1) = [|2] = fil| < 2=

siis voib votta d(e) = e.
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z
Ndide 2. Naitame, et ei eksisteeri lim —.

z—0 2

Selle naditamiseks ldheneme punktile 0 kahte erinevat teed pidi ning veen-
dume, et sel korral saame erinevad piirvaartused, mis ttlebki, et vaadeldaval
funktsioonil pole piirvaartust punktis 0.

1) Olgu z =z +1iy. Léheneme nullile piki reaaltelge, s.t. y = 0. Sel juhul

w
I

. . &
Z =z ning seega lim — = 1.
z

2) Kui aga laheneme nullile piki imaginaartelge, s.t. x =0, siis z = iy ning

. . .z
Z = —iy, mistottu lim— = —1.
z
Ulesanded
1. Néidata, et punkt A (JA| # 0 ning arg A # 7) on muutuva suuruse w
piirvaartuseks parajasti siis, kui lim |w| = |A] ja limargw = arg A.
2. Toestada, et
a) lim c=c, d) lim Re z=Re 2,
Z2—20 Z—r20
b) Zlglgo(az +0b) =azy+0b, e) Zli)rrzloé = 20,
i 2 =22 f) i i(2 =1+i.
c) Zlgngo(z +c)=z+c, ) Z_lflﬂ_z[x +i(2z+y)] =1+i
3. Toestatud teoreemi abil naidata, et komplekssete muutuvate suuruste
piirvaartuste korral kehtivad aritmeetiliste tehete puhul samasugused
teoreemid nagu reaalarvuliste suuruste puhul.
4. Naidata, et iga suurus, millel on piirvaartus, on tokestatud.
5. Naidata, et ka kompleksarvuliste jadade puhul kehtib Bolzano-
Weierstrassi teoreem.
2.3. FUNKTSIOONI PIDEVUS

Edasises ainekésituses on eriti tahtis funktsiooni pidevuse maoiste.
Funktsiooni w = f(z) nimetatakse pidevaks punktis zo € D, kui*

*Funktsiooni viartust ja piirvaartust vaatleme loplikena.
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1) eksisteerib f(z0),

2) eksisteerib Zli_}ng()f(z),

9) lim f(2) = f(0).

220

Sellest definitsioonist lahtudes saame, et funktsioon w = f(z) on pidev
punktis zo parajasti siis, kui vastavalt igale arvule € > 0 leidub selline arv
d(e) >0, et |z— 20| < d(e) puhul

1f(2) = flz0)] <e.

Piirvaartuse omadustest jareldub vahetult, et pidevate funktsioonide sum-
ma, vahe, korrutis ja jagatis on pidevad funktsioonid (viimase puhul ei tohi
jagaja vaartus vaadeldavas punktis vorduda nulliga).

Vaatleme mingit originaali vidartust z ning temale lahedased originaali
vaartused kirjutame kujul z 4+ Az. Suurust Az nimetatakse originaali muu-
duks. Et funktsioon w = f(z) oleks pidev punktis z, peab

lim [f(z+Az)— f(2)]=0.
Az—0

Vahet f(z+ Az) — f(z) nimetatakse funktsiooni f muuduks punktis z.
Meie toestasime sellega, et funktsioon f on pidev punktis z parajasti siis, kui
selles punktis lopetamata vaikesele originaali muudule vastab lopmata véike
funktsiooni muut.

Kui funktsioon f on pidev piirkonna D igas punktis, siis nimetatakse seda
funktsiooni pidevaks piirkonnaks D.

Ndide. Naitame, et argz on pidev igas punktis z, mis ei asu reaaltelje nega-
tiivsel osal.

Et 2 =0 ja z = oo puhul pole argz méaratud, siis neid z vaéartusi me ei
vaatle. Olgu zg punkt, mis ei asu reaaltelje negatiivsel osal. Votame mingi
arvu € > 0. Téhistame stimboliga ¢ sellise ringi raadiuse, mille keskpunkt
asub punktis zg. Asugu see ring sektoris argzg — e < ¢ < arg zp + € ning argu
ta sisaldagu reaaltelje negatiivse osa punkte (vt. joon. 2.4). Sel juhul jareldub
vorratusest |z — zg| < § vorratus |argz —argzg|. Et zg ja € olid suvalised, siis
olemegi toestanud oma véite.



2.3. FUNKTSIOONI PIDEVUS 25

Joonis 2.4

Selle toestuse juures on oluline téhele panna, et vastavalt arvule ¢ > 0
konstrueeritud arv ¢ soltus punkti zg valikust. Kui aga sellist soltuvust ei
esine, siis saame nn. tihtlase pidevuse.

Funktsiooni f nimetatakse tihtlaselt pidevaks piirkonnas D, kui vasta-
valt arvule € > 0 leidub selline §(g) > 0, nii et piirkonna D iga kahe punkti
21 ja zg puhul kehtib vorratus

|f(z1) = f(z2)| <&,

kui |21 — z2| < ().

Ulesanded

1. Naidata, et funktsioon w = f(z) =u+iv on pidev punktis zg = xg+iyo
parajasti siis, kui funktsioonid u = u(z,y) ja v = v(z,y) on pidevad
punktis (xo,yo)-

2. Sonastada pidevate funktsioonide kohta kédivad Cantori ja Weierstrassi
teoreemid kompleksmuutuja korral. Téestada need analoogid.

3. Toestada, et pidevate funktsioonide kompositsioon on pidev funkt-
sioon.

1
4. Néidata, et funktsioonid w=z41, w=— jaw = 22 on pidevad punktis
z

z=1.
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2.4. DIFERENTSEERUVAD FUNKTSIOONID

Vaatleme mingis piirkonnas D defineeritud funktsiooni w = f(z). Téahis-
tame:

Aw = f(z+Az) — f(2).

Aw
Kui eksisteerib piirvddartus lim ——, siis nimetatakse funktsiooni [ di-
Az—0 Az

ferentseeruvaks punktis z. Seda piirvidrtust nimetatakse funktsiooni f tu-
letiseks punktis z ning tihistatakse siimboliga f'(2).

Niide 1. Olgu w = 2. Sel juhul

Aw=(z+A2)2 =22 =22+ 2202+ A2® — 22 = 22027

ning siit
A 22Az + A2
lim 2% = im Z2EFEE gy (224 Az) =2z.
Az—0 Az Az—0 Az Az—0
Seega

(22)/ =2z.
Niide 2. Olgu w = |z|* = 2Z. Siin

Aw=(24+Az2)(z+A2)—22=(2+A2)(Z+Az) — 2z =

=224+ 2A2+ZAz+ A2Az — 22 = 2A2 +ZA 2+ Az Az,

millest
Aw i —
E = ZE+Z+A2.

Saadud summa piirvaédrtus aga ei eksisteeri (v.a. juhul, kui z = 0), sest vas-
tavalt jaotise 2.2 néitele 2 ei eksisteeri esimese liidetava piirvaartus. Seega
pole vaadeldav funktsioon diferentseeruv iiheski punktis peale punkti z = 0.
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Selle néite pohjal veendusime, et ka iisna lihtsad kompleksmuutuja funkt-
sioonid ei pruugi olla diferentseeruvad. Kui vaadelda sama funktsiooni y =
2> = 22 reaalmuutuja korral, siis on see diferentseeruv igas punktis. Sellest
jareldub, et kompleksmuutuja korral on diferentseeruvuse noue hoopiski ran-
gem kui reaalmuutuja puhul, kuigi formaalselt on diferentseeruvus definee-
ritud molemal juhul iihtemoodi. Selle tosiasja sisulise tdhendusega tutvume
monevorra hiljem, kui vaatleme korgemat jarku tuletisi.

Olgu funktsioon w = f(z) diferentseeruv punktis z. Vastavalt piirvidrtuse
ja diferentseeruvuse definitsioonile on suurus

A
=5 F)

diferentseeruva funktsiooni puhul lopmata véike protsessis Az — 0. Viimasest
vordusest saame, et

Aw = f'(2)Az+nAz. (2.1)

Selle vorduse paremal poolel on esimene liidetav teistega vorreldes madala-
mat jarku 16pmata viike! (kui f’(z) # 0). Nagu reaalmuutuja funktsioonide
puhul, nii nimetatakse ka siin suurust f'(2)Az funktsiooni muudu peaosaks.
See suurus soltub lineaarselt originaali muudust Az ning teda nimetatakse
funktsiooni diferentsiaaliks ja tahistatakse

dw = f'(2)Az.

Kui votta w = z, siis w’ = 1 ning dw = dz = Az. Seega voime kirjutada

dw = f'(z)dz,
millest
dw
/ _

Seosest (2.1) jéreldub, et diferentseeruva funktsiooni korral vastab 16p-
mata véaikesele originaali muudule 16pmata viike funktsiooni muut. Seega on
iga diferentseeruv funktsioon ka pidev.

TL()pmata vaikesi suurusi vorreldakse kompleksmuutuja puhul tépselt samuti kui reaal-
muutuja korral.
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Et formaalselt on funktsiooni diferentseeruvus defineeritud samuti kui
reaalmuutuja funktsiooni korral, siis on diferentseerimise reeglid kompleks-
muutuja funktsioonide puhul samasugused kui need, mida tunneme mate-
maatilise analiitisi kursusest. Vaatleme siinkohal vaid liitfunktsiooni diferent-
seerimise reeglit.

Olgu antud funktsioonid w = f(¢) ja ¢ = g(z), kus z ja ¢ kuuluvad vas-
tavalt piirkondadesse D ja Dj (D1 C D), s.t. esimese funktsiooni mééramis-
piirkond sisaldab teise funktsiooni kujutispiirkonna. Eeldame, et funktsioon
f on diferentseeruv punktis z, mistottu seose (2.1) pohjal

AC =g (2)Az+alz, (2.2)
kus lim « = 0. Olgu funktsioon f diferentseeruv punktis ( = g(z). Sel juhul

Az—0

Aw = f(O)AC+BAC, (2.3)
kus Alggoﬁ =0. Et aga AI,IZIEOAC =0, siis ka Alérgoﬁ = 0. Seoste (2.2) ja (2.3)
pohjal saame, et

Aw = f (Old' (2)Az+aAz]+ Bld (2) Az + alAz] =

)
F1(Q)g () Az+[af'(¢) + 89 (2) +apflAz =
F(Q)d (2)Az+yAz,

kus v = af'(¢) + B¢ (2) + aB. Et AliInO7 = (), siis saamegi siit matemaatilise
Z—
analitsi kursusest tuntud valemi

Aw dw dC
AmAL T @ =g () =37 4o

Lopetuseks defineerime kaks olulist moistet. Funktsiooni, mis on piirkon-
na D igas punktis tiihene ja diferentseeruv, nimetatakse requlaarseks piir-
konnas D. Funktsiooni f nimetatakse regqulaarseks punktis z, kui sellel
punktil leidub imbrus, kus f on requlaarne.

Kui vaatleme diferentseeruvuse ja regulaarsuse noudeid piirkonna puhul,
siis itheste funktsioonide korral need tihtivad. Punktis regulaarsuse néue on
aga rangem kui punktis diferentseeruvuse noue. Nii on naites 2 vaadeldud
funktsioon diferentseeruv punktis z = 0, kuid see ei ole seal regulaarne.

Ulesanded
1. Leida tuletised funktsioonidest
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a) w=(2z+1)4 ¢) w=232%—4z+1,
z—1 2z
b) w= d) w=—.
) w z ) w 21
Vastus. a) w' =8(2z+i)3, ¢) w' =6z—4,
i 2i
, r_
b) w =2 d) w (z—1)2

2. Néidata, et funktsioonid w = Rez, w =Imz, w = Z pole diferentseeru-
vad.

1
3. Leida funktisooni w = (2+1)z? diferentsiaal punktides z =2 —1, z = 3
ja z = —i.

Vastus. 10Az, (241)Az ja 2(1—2i)Az.

2.5. CAUCHY-RIEMANNI VORRANDID

Eelmises jaotises nagime, et ka suhteliselt lihtsad pidevad kompleksmuu-
tuja funktsioonid voivad mitte osutuda diferentseeruvaiks. Seepérast tuleks
leida tingimused, mille jargi saaks otsustada funktsiooni diferentseeruvuse
iile. Lahendamegi selle probleemi.

Olgu meil funktsioon

w = f(2) =u(z,y) +iv(z,y).
Eeldame, et see funktsioon on diferentseeruv punktis z, s.t. eksisteerib piir-
vaartus
lim —.
Az—0 Az
Siinjuures on oluline tahele panna, et piirvaartuse definitsiooni kohaselt
ei soltu see piirvaartus sellest, millisel viisil Az laheneb nullile. Teisiti 6eldes,

kui teame, et piirvaartus Ahmo A eksisteerib, siis piisab tema leidmiseks, kui
Z— z

vaatleme vaid teatavat kindlat suuruse Az nullile ldhenemise viisi (néiteks
piki sirget).
Léahenegu Az = Ax +iAy nullile selliselt, et Ay =0, s.t. punkt z+ Az
ligineb punktile z paralleelselt reaalteljega. Sel juhul Az = Az ning
(u+Au) +i(v+Av) — (u+iv) . Au+iAv

Aw
! — 1' _— 1‘ — 1
Fz)= lim == lim Ax Am =
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g (220 2000
A0 \Az Az) Or  Ox

Kui aga Az ldheneb nullile nii, et Az =0, siis saame

£(2) = lim Au+iAv lim (Av Au> v 8u
Ay—)()

Ay—0  iAy Ay Ay

oy 3y

Eelduse kohaselt oli funktsioon diferentseeruv. Seetottu peavad kahel eri-
neval ldhenemisel saadud tulemused olema vordsed, s.t.

ou . Ov 81} 8u

- 1l

or ' Or Jy (‘9y
Seega funktsiooni diferentseeruvuse korral:

Ou Ov Ou  Ov

or oy oy Oz
Saadud vorrandeid nimetatakse Cauchy—Riemanni vorranditeks.
Naitame, et Cauchy-Riemanni vorrandite tédidetus on ka funktsiooni dife-

rentseeruvuse piisavaks tingimuseks — eeldusel, et kahe muutuja funktsioonid
u ja v on diferentseeruvad. Viimane asjaolu tdhendab seda, et

Au gquJr guAy+n1|Az|
ov ov (2.1)
Av a—Am—l—a Ay +m2| Az,

kus |Az| = \/Ax?+ Ay? ning 11,72 ldhenevad nullile, kui Az — 0. Seoste
(2.1) ja Cauuchy-Riemanni vorrandite abil saame, et

Aw  Au+ilv
Az Ax—i—lAy
( YAz + “Ay)—H( Am+g”Ay) (n1+772)|Az|_
B Az +iAy N
(ax—Flax)Al'—f—l( gg)Ay_i_( N )|Az|
Az +iAy MTRIA

Ju . Ov |Az]|

= %+1a*+(771+772) As
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Saadud tulemuste pohjal

Aw 8u+_3v ‘ 1] — 0
JEE— _ 1— —
Az dr Oz e ’
kui Az — 0. Seega, funktsioon w = f(z) on diferentseeruv ning
ou . Ov
!/ _ - 0
Fz) = or or
Ndide. Naitame, et funktsioon w = f(z) on diferentseeruv igas nullist erinevas
punktis.
Et
1 1 x —y
w=—

= e —I—l ,
z  x4iy  2?+y? 2?4y

siis tuleb meil veenduda, et funktsioonid

x —y
u= PR jav= o

rahuldavad Cauchy—Riemanni vorrandeid. Arvutades saame, et
ou y? — 22 ou —2zy
WP By @
v 2xy ov y? — 22

TR L TR
kui 22 +y? = |2|? # 0. Siit ndemegi, et Cauchy Riemanni vérrandid on téi-

detud, s.t. funktsioon w = — on diferentseeruv.
z

Ulesanded
1. Arvestades, et x =rcosp ja y =rsinp, niidata, et polaarkoordinaatides
avaalduvad Cauchy-Riemanni vorrandid kujul
Ou 10u 10u  Ov
or 1oy’ rdp  Or
2. Eelmise iilesande tulemust kasutades toestada, et funktsioon w = z" (n
taisarv) on diferentseeruv.

3. Veenduda, et jargmiste avaldistega méaaratud funktsioonid pole dife-
rentseeruvad:
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a) z—7Z, c) e“(cosy —isiny),

b) 2z + zy?i, d) 2?siny —iycosz.

4. Millistes punktides on jéargmistel funktsioonidel tuletis:

a) w= b) w =2 +iy?, ¢) w=zImz?

Leida tuletised neis punktides, kus nad eksisteerivad.

o) 0
5. Kui w=u+iv =2 —i(y—1)3, siis 2 —i—ia—v = 32 Miks on 322 selle
T T

funktsiooni tuletiseks ainult punktis z =i?

2.6. HARMOONILISED FUNKTSIOONID

Eeldades, et funktsioonidel u ja v eksisteerivad pidevad teist jarku osatu-
letised, saame Cauchy—Riemanni vorrandeid diferentseerides, et

9%u 0% d%u 0%

o2 Oyox’ oy 0xz0y

Sellest jareldub, et funktsioon u rahuldab nn. Laplace’@ vorrandit

Pu  *u
—+—=5=0.

ox?  Oy?

Funktsiooni, mis rahuldab mingis piirkonnas Laplace’i vorrandit, nimetatak-
se selles piirkonnas harmooniliseks funktsiooniks. Me toestasime, et tea-
tud eeldustel (teist jarku osatuletiste olemasolu korral)* on diferentseeruva
kompleksmuutuja funktsiooni reaalosa harmooniline funktsioon. Analoogili-
selt saab naidata sedasama ka imaginaarosa kohta.

Funktsioone u ja v, mis rahuldavad peale Laplace’i vorrandi veel Cauchy—
Riemanni vorrandeid, nimetatakse kaasharmoonilisteks. Osutub, et igale
harmoonilisele funktsioonile saab leida kaasharmoonilise. Selle fakti toestusel
me kéesolevas raamatus ei peatu, vaid piirdume néidetega.

*Hiljem nieme, et tehtud eeldus on alati tdidetud.
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Néide 1. Leida kaasharmooniline funktsioonile u = z? — y?. Et v oleks kaar-
harmooniline, peab ta tditma tingimusi (Cauchy—Riemanni vorrandeid)

v u_, o ou_
or 0y_y’ oy  Or

Esimesest seosest saame, et

UZ/(_“) dotply) = [ 2yd+p(y) = 205+ (y).

2x.

oy
Teise seose pohjal
0
0: =22 +¢/(y) = 2z,

s.t. ¢'(y) = 0. Seega (y) = const ning siit
v=2zy+C.

Ndide 2. Leida diferentseeruv kompleksmuutuja funktsioon
w= f(z) =u+iv, kui v =-e"siny.

Leiame
@—exsin ia @—excos
or vl oy Y.

Vastavalt Cauchy-Riemanni vorrandeile saame, et

u= /e‘”cosydx—l—(p(y) =e"cosy+o(y),

millest

ou T / T
— = —e’sIiny + = —e”sIny.
o y+¢(y) Y

Siit tuleneb, et ¢'(y) =0, s.t. ¢(y) = const. Seega
f(z) =u+iv=e"cosy+C +ie"siny = e*(cosy +isiny) + C.

Ulesanded

1. Funktsiooni w = 2" = (x +iy)" reaal- ja imaginaarosi nimetatakse n-
astme harmoonilisteks poliinoomideks. Leida koik harmoonilised
poliinoomid kuni 4. astmeni.

2. Leida diferentseeruv funktsioon w = f(z) = u+iv, kui
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2_ .2 x
a) u=x"—y° + 2z, d - _9
) y Ju= e
x Y
b) u=——, - J
) z2 4 y? e) v (r+1)2+y2’
¢) v=2xy+3r, f) v:arctang,x>0.
x
Vastus. a) w=22+2z+ Ci, e) w= 1 L C
1 z+1 7
b) w=—-+Ci,
z
1
C) w222+3lz+07 f) wziln(:z2+y2)+
1
d) w=—-+2iz+Ci, tiarctan 2 4+ C.
z T

3. Toestada, et piirkonnas D diferentseeruv ja reaalarvuliste vadrtustega
funktsioon on selles piirkonnas konstantne.

4. Olgu f'(z) = 0 piirkonnas D. Néidata, et f(z) = const.

2.7. TULETISE GEOMEETRILINE TAHENDUS

Uurime diferentseeruva funktsiooniga teostatava kujutuse geomeetrilisi
omadusi. Selle uurimise aluseks votame jaotises 2.1 vaadeldud naited 1 ja 2,
mille pohjal voime véita, et funktsioon

w =az

teostab kujutuse, mille kujutisvektor w on originaaliga z vorreldes pooratud
nurga o = arga vorra ning tema pikkus on muutunud |a| kordselt.
Sellest jareldub, et kujutuse

w—wp = a(z—29)

korral kujutub punktist zg punkti z suunduv vektor punktist wg punkti w
suunduvaks vektoriks; kujutisvektor on originaaliga vorreldes pooérdunud nur-
ga a = arg a vorra ning tema pikkus on muutunud |a| kordselt.

Olgu funktsioon w = f(z) diferentseeruv. Vaatleme punkte, milles f/(z2) #
0. Sel juhul

Aw = f'(2)Az+ B,
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kus 3 on esimese liidetavaga vorreldes korgemat jarku lopmata vaike suurus.
Kiillalt vaikese Az puhul kehtib seega ligikaudne vordus

Aw = f'(2)Az (2.1)

Seosest (2.1) ndeme, et vektor Aw on vorreldes vektoriga Az poérdunud
nurga arg f’(z) vorra ning tema pikkus on muutunud Az pikkusega vorreldes
suuruse | f(z)| kordselt. Et see kehtib igasuguse kiillalt viikese Az ja temale
vastava Aw korral, siis saame sellest jareldada jargmise fakti:

kujutamisel diferentseeruva funktsiooniga f toimub neis punktides, kus
f'(2) # 0, tasandi péére nurga § = arg f'(z) vorra ning mastaabi muutus
|f'(2)| kordselt (vt. joonis 2.5).

Ay A,U

w + Aw

125

Joonis 2.5

Et koigi vektorite Az kujutised on péoratud oma originaalide suhtes tihe
ja sama nurga ¢ vorra, siis on punkti z labiva kahe joone C' ja Cs vaheline
nurk vordne (nii suuruse kui ka suuna poolest) vastavate kujutisjoonte S ja
Sy vahelise nurgaga (vt. joonis 2.6). Selles véiljendub nn. nurkade siilivuse
omadus.

Teiselt poolt, nagu ndgime, muutub vektori Az pikkus igas suunas tihte
viisi, s.t. 1opmata viikese raadiusega ringjoon K (keskpunktiga punktis z) ku-
jutub jooneks L, mille punktide kaugused mingist ringjoonest (keskpunktiga
punktis w) on suurusega p vorreldes korgemat jarku lopmata véikesed. Selles
valjendub nn. lopmata viikeste ringjoonte invariantsuse omadus.
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Co

Gy

Joonis 2.6

Kujutust, millel on kaks eespool mainitud omadust, nimetatakse kon-
formseks kujutuseks. Niisiis, iga diferentseeruv kompleksmuutuja funkt-
sioon teostab konformse kujutamise (s.t. sdilitab nurgad nii suuruse
kui ka suuna poolest ning muudab mastaapi igas suunas iihte viisi) koigis
punktides, kus tuletis on nullist erinev.

Meie nagime eelnevas, et kui originaaliks on Iopmata viike ring pind-
alaga 72, siis on kujutiseks piirkond, mis on ligilihedaselt ring pindala-
ga |f'(z)]*7r?, s.t. pindala muutub |f’(z)|* kordselt. Seda tulemust teame
matemaatilise analiiiisi kursusest, milles naidati, et muutujate vahetuse
u=u(z,y); v=o(z,y), s.t. kujutuse w = f(z) = u(x,y) +iv(x,y) puhul muu-
tub pindala jakobiaani

0 0
Dlwy) | g 2

kordselt. Ent Cauchy-Riemanni vorrandeid arvestades saame, et jakobiaan
vordub avaldisega

(3 + (3) ~brf

See on funktsiooni mooduli teine geomeetriline tahendus.

Kui f'(z) # 0, on teisendus u = u(z,y), v = v(x,y) regulaarne, mistottu
eksisteerib poordteisendus™ x = z(u,v) ja y = y(u,v). Seda tulemust komp-
leksmuutuja funktsiooni seisukohalt tolgendades saame, et nende punktide

*Kangro, G. Matemaatiline analiits II, Tln., 1968, 1k. 281.
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imbruses, kus f’(z) =0, eksisteerib funktsioonil w = f(z) ithine poérdfunkt-
sioon

z = g(w) = z(u,v) +iy(u,v).

Ulesanded

1. Leida tasandi poore ja mastaabi muutus kujutamisel funktsiooniga w =
22 punktides:

a) z=1, c)z:—l e) z=13—1,
47
1
b) z=3, d) z=1+i, f) z=—2+i.
. 1 T
Vastus. a) 0 ja 2, 0 o —Z jad4,
) 0] c) 7 ja 5 e) G 12
T . .
b) 0ja 1, d) 7 ja2v2, f) -5 Jad

2. Sama funktsiooni w = z3 puhul.

Vastus. a) 0 ja 3, : i I 12
3) J c) 0 ja 6 e) 3 Ja s

. T .
b) Oja 7, d) 5 ja 6, f) — ja 12.

3. Milline z-tasandi osa surutakse kokku ja milline venitatakse vilja jarg-
miste funktsioonidega kujutamisel:

a) w=z2 o) w=2242z,
1
b) W= d) f(z) =e*(cosy+isiny).

1 1
a) ]z|<§, c) \z—|—1\<§,
b) |z| > 1, d) x =Rez <0.

Vilja venitatakse:
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1

1> =

Q) 21> 5
d) Rez > 0.



3. ELEMENTAARFUNKTSIOONID

3.1. ASTMEFUNKTSIOON

Eelpool selgitasime, mida moistame astmena z", kus n on positiivne
taisarv. Jargnevas tutvume astmefunktsiooni w = z" mone lihtsama oma-
dusega. Selle funktsiooni diferentseeruvust saab koige lihtsamini kontrolli-
da Moivre’i valemi v6i Cauchy—Riemanni vorrandite (polaarkoordinaatides)
abil, voi siis vahetult tuletise definitsioonist lahtudes, kasutades téieliku in-
duktsiooni meetodit.

Asudes uurima astmefunktsiooni omadusi, vaatleme lihtsuse mottes koi-
gepealt ruutfunktsiooni.

a) Funktsioon w = 2%. Eelnevas négime (vt. niide 5 jaotises 2.1), et funkt-
sioon pole tiheleheline, s.t. igale kujutisele ei vasta ainult tiks originaal. Sel-
lise vastavuse ldhemaks selgitamiseks votame nullpunktist ldhtuva kiire ning
poorame teda vastupidiselt kellaosuti liikumise suunale (vt. joon. 3.1). Kiirele

2
Yy, (2) .

(4)
Joonis 3.1

z-tasandil vastab kiir w-tasandil (vt. ndide 5 jaotises 2.1), kusjuures polaar-
nurk w-tasandil kasvab poole kiiremini vastavast polaarnurgast z-tasandil.
Pooratava kiire kujutis katab kogu w-tasandi juba siis, kui z-tasandi kiir
katab vaid tilemise pooltasandi. Kui niiiid labime oma z-tasandi kiirega ka
alumise pooltasandi, katab kujutiskiir w-tasandi teistkordselt.

Et saada tiks-ithest vastavust kujutiste ja originaalide vahel, selleks
votame kujutistasandeid kaks. Seejuures olgu z-tasandi tlemisele poolele

39
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vastavad kujutised w-tasandi esimesel eksemplaril ning alumisele poolele
vastavad kujutised teisel. Uhendame need tasandid nii, et kujutiskiir saaks
liikuda pidevalt, kui pooratav kiir teeb originaalide tasandil taispoorde.
Selleks loikame molemad tasandid 1abi piki reaaltelje positiivset osa, tihen-
dame esimese tasandi 16ike tilemise serva teise tasandi 16ike alumise servaga
ning vastupidi (vt. joon. 3.2). Niisugust kahelehelist pinda nimetatakse
ruutfunktsiooni viartuste Riemanni pinnaks. Selle pinna konstruktsiooni
kohaselt voime 6elda, et funktsioon w = z? kujutab kogu z-tasandi pidevalt
ja tiks-iiheselt oma vadrtuste Riemanni pinnaks. Saadud pind on kahelehe-
line, sest ta koosneb kahest komplekstasandi eksemplarist (lehest). Nendel
kahel lehel on iihisteks punktideks 0 ja oo.

Joonis 3.2

Kui ldbime nullpunkti iimbritseva ringjoone |z| = r thel korral, siis la-
bibsellele vastav punkt Riemanni pinnal nullpunkti timbritseva ringjoone
lw| = 7% kahel korral. Sama mérkame ka siis, kui vaatleme nullpunkti ase-
mel l6pmatuspunkti. See annab pohjuse nimetada neid punkte vaadeldava
Riemanni pinna teist jirku hargnemispunktideks. Need on punktid, kus
on seotud vaadeldava pinna tiksikud lehed.

b) Funktsioon w = z". Kui tahistame z = re'¥ ja w = ge'©

, slis saame
o=1r" ja O©=np+2kr, k=0,£1,....

Néeme, et nullpunktist lahtuva kiire kujutiseks selle funktsiooni puhul on jal-
legi nullpunktist lahtuv kiir, kuid selline kiir, mille polaarnurk on originaali
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LW DN —

Joonis 3.3

omast n korda suurem. Toimides nii nagu ruutfunktsiooni puhul, saame iiks-
ithese vastavuse z-tasandi ja w-tasandi n eksemplari vahel. Kui tthendame
need n eksemplari, nagu naidatud joonisel 3.3, saame pideva vastavuse. Saa-
dud pinda nimetatakse funktsiooni w = z" vdartuste Riemanni pinnaks. See
on n-leheline pind, mille hargnemispunktideks on jéllegi w =0 ja w = oo. Et
ringjoone |z| = r tihekordsele ldbimisele vastab n-kordne ringjoone |w| = r"
labimine, siis nimetatakse punkte w =0 ja w = oo n-jarku hargnemis-
punktideks.

Ulesanded

1. Leida ruudu 0 < Rez < 1, 0 < Im z < 1 kujutis, selle pindala ning raja-
joone pikkus kujutamisel funktsiooniga w = 22.

Vastus.

s=5 1=2m(14v3) +2(1+V2).

2. Leida jooned, kus funktsioon w = 22 teostab vordse mastaabi muutuse,
ning jooned, kus ta teostab iihe ja samasuguse tasandi poorde.

Vastus.
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a) |z| = const, b) argz = const.

3. On antud funktsioon w = 2

a) leida joonte z =y, |z| = R, arg z = a kujutised ja selgitada, millised
neist joontest kujutuvad tiks-iiheselt;
b) leida joonte u=C ja v=C (w = u+iv) originaalid.
Vastus. a) u=0 (v>0), |w| = R?, argz = 2a. Ainult viimane kujutub
iiks-iiheselt.
C
b) 22 —y? = C (kui C' =0, siis sirgete paar); zy = 5 (kui C' =0, siis

sirgete paar).

4. Leida funktsioon, mis kujutab piirkonna |arg(z + 3)| < % tilemiseks

pooltasandiks.

Vastus. w=1(z+3)3.

5. Konstrueerida funktsiooni w = (z —1)? véartuste Riemanni pind.

3.2. JUURFUNKTSIOON

Nimetame n-astme juureks kompleksarvust z kompleksarvu w = {/z,
mille puhul

w" = z. (3.1)
Kui tihistame z = re'¥ ja w = 0el©, saame vordusest (3.1), et
o"=r ja nO=argz+2kr=p+2kr, k=0,%1,...,

millest

2% 2%
o= ja ©=MEEEANT _PHENT 641 (3.2)
n n

Vordusest (3.2) selgub, et saame n oluliselt erinevat © véértust, mis vastavad
k vaartustele 0,1,...,n— 1. Tahistame need vastavalt ©g, ©1,...,0,_1. Kui
aga k =n, siis saame

@n:£+27r:®0+27r.
n
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Selline polaarnurk koos polaarkaugusega /7 méairab w-tasandil sama punkti,
mille médrab ©g. Seega on juurel = erinevaid viartusi n.

Juurfunksioon w = {/z on seega mitmene funktsioon.

Nii rakenduslikust kui ka teoreetilisest seisukohast on aga oluline, et
funktsioon oleks ithene. Uheks viisiks, kuidas saame muuta mitmese funkt-
siooni liheseks, on see, et vaatleme originaali muutumise piirkonnana mit-
te komplekstasandit, vaid teatud mitmelehelist Riemanni pinda. Eelmises
jaotises saime niisuguse pinna, mille puhul astmefunktsioon w = 2" seab
iiks-ithesesse vastavusse z-tasandi ja vaadeldava Riemanni pinna punktid.
Et juurfunktsioon w = {/z on astmefunktsiooni poordfunktsiooniks, siis seab
ta toepoolest astmefunktsiooni z = w™ vdartuste Riemanni pinna igale punk-
tile vastavusse parajasti komplekstasandi ihe punkti ning see vastavus on
iiks-tihene. Seda pinda nimetatakse juurfunktsiooni Riemanni pinnaks.
Niisiis on astmefunktsiooni vaartuste Riemanni pind selle funktsiooni poord-
funktsiooni — juurfunktsiooni Riemanni pinnaks.

Mitmesuguste rakenduste seisukohalt on aga oluline, et saaksime niisugu-
se ithese funktsiooni, kus ka originaalid muutuvad tavalisel komplekstasandil.
Teisiti 6eldes otsime niisuguseid piirkondi z-tasandil, kus saame seda mitmest
funktsiooni vaadelda iihesena.

Valemite (3.2) pohjal

w=z= 1 |z[eiArngz,

millest selgub, et juurfunktsiooni mitmesus tuleneb kompleksarvu z argu-
mendi Argz mitmesusest. Viimase eri vaédrtustele vastavad juurfunktsiooni
erinevad véaartused. Et saavutada iihesust, loikame z-tasandi labi piki reaal-
telje negatiivset osa, nagu tegime Argz puhul. Sel juhul ei ole voimalik liiku-
mine imber nullpunkti ning Arg z voib muutuda tihes jargmistest vahemikest
(—m,m), (m,3m) jne. Nii saame n erinevat tihest funktsiooni

.argz4+2km
n 17,’]’

w= {/|zle (k=0,1,...,n—1),

mida nimetatakse juurfunktsiooni iihesteks harudeks. Esimest neist
(k= 0) nimetatakse juurfunktsiooni peaharuks (analoogiliselt argumendi
peaharuga).

Punkte, millel leidub niisugune imbrus, milles iimber vaadeldava punkti
litkudes jouame mitmese funktsiooni tihe haru juurest teise jurude, nimeta-
takse selle funktsiooni hargnemispunktideks. Funktsioonil w = {/z on
need 0 ja oo.
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Ulesanded
1. Leida mitmese funktsiooni w = v/z — 1 see haru, mille puhul w(2) = —1.
2. Arvutada funktsiooni w = v/z —i koikide harude vddrtused punktides
21 :64+i, 29 = —1—|—i, 23 = 1.

3.3. EKSPONENTFUNKTSIOON

Arvestades matemaatilise analtuiisi kursusest teadaolevat Fuler: vale-
mit

e = cosy+isiny

ja reaalarvude korral kehtivaid eksponentfunktsiooni omadusi, on loomulik
defineerida

e® = e%el, (3.1)

sest z = x +1y.
Vordusest(3.1) saame, et

le*| = e” ning Arge®* =y+2km, k=0,£1,....

Sellest tuleneb, et e*! = e*2, kui Imz; —Imzy = 2k7w,Rez; = Rezo, s.t.
funktsiooni w = e* periood on 2i.
Funktsiooni

w=e

nimetatakse eksponentfunktsiooniks. Eelnevast jareldub, et see funkt-
sioon pole tiheleheline. Niisiis on ka eksponentfunktsiooni puhul vaja konst-
rueerida tema vaartuste Riemanni pind. Enne selle juurde asumist aga néi-
tame, et eksponentfunktsioon on diferentseeruv. Selleks leiame vordustest

w=u-+iv=e*=e"(cosy+isinz),
et

u=-e"cosy ja v=-e"siny.
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2
[ 1
! 0
! —1
- 0! -2
/ i
v
u
Joonis 3.4

Vahetu kontroll niitab, et Cauchy—Riemanni vorrandid on rahuldatud iga x
ja y korral, s.t. eksponentfunktsioon on kéikjal diferentseeruv.

Konstrueerime nititid eksponentfunktsiooni vaartuste Riemanni pinna. Sel-
leks paneme téahele, et z-telg kujutub wu-telje positiivseks osaks. Toepoo-
lest, z-telje punktide puhul y =0, s.t. argw = 0, ning —oc0 < & < 00, s.t.
0 <|w|=e" < 0. Iga a-teljega paralleelse sirge kujutiseks on w-tasandi null-
punktist lahtuv kiir, mille polaarnurk vordub selle sirge kaugusega z-teljest.
Kui nihutame z-tasandil x-teljega paralleelset sirget tilespoole, péordub selle
kujutiseks olev kiir vastupidi kellaosuti liitkumisele. Kujutiskiir katab kogu w-
tasandi; kui sirge z-tasandil katab riba laiusega 2. Kui sirge katab jargmise
riba laiusega 2w, siis katab kujutiskiir uuesti kogu w-tasandi jne. jne. Kui me
aga liiguksime sirgega z-tasandil allapoole, liiguks kujutiskiir ainult kellaosu-
ti liikumise suunas, kuid muus osas analoogiliselt eelnevaga. Sellest arutelust
jareldub, et eksponentfunktsiooni viaartuste Riemanni pind peab olema 16p-
matuleheline. Need lehed peavad olema tihendatud nii, et 2-teljega paralleelse
sirge pidevale liikumisele vastaks kujutiskiire pidev liilkumine moéoda vasta-
vat Riemanni pinda. Selle saavutamiseks votame lopmata palju w-tasandi
eksemplare, loikame need 1abi piki reaaltelje positiivset osa. Iga eksemplari
l16ike alumise serva tihendame jéargmise eksemplari 1oike iilemise servaga ning
tilemise serva eelmise eksemplari alumise servaga (vt. joon. 3.4).

Kui kujutleda seda Riemanni pinda R asetsevana mingi w-tasandi kohal,
siis asub w-tasandi iga punkti kohal 16pmata palju pinna R punkte. Erandeiks
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on vai w =0 ja w = 0o, mille kohal on vaid tiks pinna R punkt.

Kui labida z-tasandil sirge = a, siis pinnal R vastab sellele liikumine
timber punkti w = 0 (I6pmata palju kordi), kusjuures liigutakse pinna R
ithelt lehelt teisele. Seda liikumist voime aga vaadelda ka liikumisena timber
punkti w = 0o. Seetdttu nimetatakse punkte w =0 ja w = oo vaadeldava
pinna R lopmata jarku hargnemispunktideks.

Vaadeldes funktsiooniga w = e* teostatavat kujutist konformsuse seisuko-
halt, ndeme, et see funktsioon teostab igas punktis konformse kujutuse, sest
(e*)' = e® # 0 iga z puhul. Selle kujutuse puhul, nagu nigime, kujutub riba
0 < Imz < 7 iilemiseks pooltasandiks ning riba 0 < Im z < 27 kogu tasandiks
valjaloikega piki reaaltelje positiivset osa.

Ulesanded
1. Naidata, et e*1e*2 = e*1122,
2. Milleks kujutuvad funktsiooniga w = e*

a) jooned x =C, y=C,
b
c

d

(S

)
) sirged y = kx +b;

)ribaa<y<pf (0<a<p<2n);

) sirgete y = x ja y = x + 27 vahel asuv riba;

) poolriba z <0, 0 <y < a < 27;

f) poolriba x >0, 0 <y < a < 27;

g) ristkilik a<z < f,y<y<d (0—vy<2m)?

Vastus. a) p = const, § = const;

b) Splraalp—e 7 , kui k& # 0; kiir € = b, kui k£ =0;

¢) nurk a <0 < (kui « =0 ja 8 =27, siis kogu tasand, 16ikega piki
reaaltelje positiivset osa);

d) kogu tasand, 16ikega mooda spiraali p = ea;

e) sektor p <1, 0 <0 <« (kui o = 2, siis thikring, 16ikega piki
punkte 0 ja 1 ithendavat raadiust);

f) piirkond p>1,0 <6 < o (kui a = 2, siis iihikringi véline piirkond,
16ikega piki reaaltelje positiivset osa punktist 1 kuni +o0);
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g) piirkond e* < p < e y<h<s (kui § — v = 2, siis rongas imber
nullpunkti 16ikega piki kiirt 6 = ).

3. Kujutada tilemisele pooltasandile sirgete y = = ja y = x + h vaheline
piirkond.

m(l—i)z
Vastus. w=e &

4. Milleks kujutab funktsioon w = e riba 0 < Im z < 7, 16ikega piki punkte
0 ja gi ithendavat sirgloiku?

Vastus. Ulemine pooltasand, millest on vélja jaetud iihikringjoone esi-
mese veerandi osa.

3.4. LOGARITMFUNKTSIOON

Kompleksarvu z logaritmiks Lnz nimetatakse kompleksarvu w, mille
puhul z =¢e", Olgu z =re'¥ ning w = u+iv. Sel juhul

iv
)

rel¥ = ele
s.t. € =r ning v = ¢+ 2km. Sellest saame, et

w=Inz=u+iv=1Inr+i(p+2kn), (3.1)
ehk teisiti

Lnz =In|z|+i(argz+2km), k=0,£1,.... (3.2)

Seega ndeme, et kompleksarvude hulgal on logaritmil 16pmata palju véér-
tusi. Teiselt poolt: seosest (3.2) ilmneb, et kompleksarvude puhul eksisteerib
logaritm igasugusest arvust z, vilja arvatud vaid 0 ja oco.

Funktsiooni w = Ln z nimetatakse logaritmfunktsiooniks. Viimane on
eksponentfunktsiooni poordfunktsioon, kusjuures kehtivad seosed

el =~ ning Lne® = z+ 2kni.
Et logaritmfunktsioon on eksponentfunktsiooni poordfunktsioon, siis kujutab
ta vilmase vddrtuste Riemanni pinna (vt. joon. 3.4) tkstiheselt kompleks-
tasandile. Seda Riemanni pinda nimetatakse samuti logaritmfunktsiooni
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Riemanni pinnaks. Punktid z =0 ja 2z = co on tema hargnemispunktideks.
Neid nimetatakse logaritmilisteks hargnemispunktideks.

Osutub, et logaritmfunktsioonil on oma Riemanni pinna igas punktis (vél-
ja arvatud z =0 ja z = 00) tuletis. Seda voib kergesti kontrollida Cauchy—
Riemanni vorrandite (polaarkoordinaatides) abil, kui arvestada seost (3.1).

Et logaritmfunktsioon (vaadelduna komplekstasandil) on lopmata mit-
mene, siis huvitab meid tema regulaarsete (s.t. tiheste ja diferentseeruvate)
harude eraldamine. Nende harude analiiiitilised avaldised saame seosest (3.2),
kui asetame sellesse kordaja k erinevaid vaédrtusi. Haru, mille saame k =0
korral, nimetatakse logaritmi peaharuks ning tdhistatakse

Inz =In|z| +iargz. (3.3)

Logaritmfunktsiooni analtiitilisest avaldisest (3.2) selgub, et tema ha-
rusid voib eraldada nendes piirkondades, kus on eraldatavad Argz iiksikud
vaartused. See on aga voimalik z-tasandil, millest on vélja loigatud reaaltel-
je negatiivne osa. Kui vaatleme logaritmi harude eraldamist tema Riemanni
pinnal, siis tuleb ldigata Riemanni pinna lehed l&bi piki reaaltelje negatiivset
osa. Seega on lehed iiksteisest eraldatud, sest ei saa liikuda tihelt lehelt teise-
le ilma 16iget tliletamata. Peaharule vastab sel juhul Riemanni pinna see osa,
mis asub lehe 0 iilemisel poolel ning lehe (—1) alumisel poolel (vt. joon. 3.4).
Need kaks osa moodustavad tasandi, millest on vélja l6igatud vaid reaaltel-
je negatiivne osa. Seega voime 6elda, et funktsioon (3.3) kujutab z-tasandi,
millest on valja 16igatud reaaltelje negatiivne osa, ribaks —m < Imw < 7, seal-
hulgas tilemise pooltasandi ribaks 0 < Imw < 7. Selline kujutus on konformne

1
iga z puhul, sest (Inz)' =~ #0.
z

Ulesanded

1. Arvutada logaritm ja tema peavédartus jargmistest avaldistest:

a) (1+1)5, ¢) (—1+1) (~1+iv3),
1—i

4 d) 7
b) (1-iv3), (3+iv3)
3 T

- T 2w .
Vastus. Peavadrtused: a) 31112—15, b) 41n2+1?, c) 51112—15,

1 7
d) =In2—In12—i—.
2 12
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2. Milleks kujutab funktsioon w =Inz
a) jooned |z| = R;
b) jooned argz = y;
¢) nurga 0 < argz < o < 7;
d) sektori |z] <1, 0 <argz < a <
e) ronga 1 < |z| < ra, loikega piki 16iku [—ry, —ra]?

Vastus. a) u=c; b) v=c; ¢) riba 0 <v < «; d) poolriba u < v,0 < v < «;
e) ristkiilik Inr; <wu <Inrg, —m <v <.

3. Konstrueerida funktsiooni w = Lnz(z — 1) Riemanni pind.

3.5. ULDINE ASTMEFUNKTSIOON

Uldiseks astmefunktsiooniks nimetatakse funktsiooni

a alnz

w=z"=e : (3.1)
kus a = a+if. Kui arvestame logaritmi avaldist, saame seosest (3.1), et

S0 e(a—l—iﬁ) Lnz _ ealnr—ﬂ((p+2k7r)ei[a((p—i—Zkﬂ')]—i—ﬂlnr (32)
kus r =|z|, p =argz ja k=0,%1,....

Seosest (3.2) selgub, et § # 0 puhul on w = 2% 16pmata mitmene funkt-
sioon. Kui aga [ =0, siis

W= 2% — ¥ — ealnreia(ap—i&kﬂ)‘ (33)
Vordusest (3.3) selgub, et
|w| =79 ning (Argw)g = a(@+2km) +2pm, k,p=0,£1,....

Saadud tulemusest ndeme, et ainult taisarvulise a korral on funktsioon w = z%
ithene, sest ainult sel juhul saame koigi taisarvude k ja p puhul tihe ja sama
kompleksarvu argumendiga ap = ap.

Ratsionaalarvulise @ = — puhul saame n oluliselt erinevat argumendi
vaartust: "

Oy = ap, 91:a¢+m27r, . Qn_lzacp%—@(n—l)%r.
n n
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Kui a on irratsionaalarv, saame iga k puhul oluliselt erineva argumendi
vaartuse, sest siis kehtib iga téisarvu n puhul jargmine seos:

a(p+2kim) —a(p+ 2kam) # 2nm.

Uldise astmefunktsiooni definitsiooni pohjal saame, et selle funktsiooni
itheseid harusid voib eraldada samas piirkonnas kui logaritmfunktsiooni pu-
hulgi. Niisiis, w = 2% on regulaarne komplekstasandil, millest on vélja loigatud
reaaltelje negatiivne osa.

Kui iildise astmefunktsiooni avaldises votame logaritmi peaharu, siis saa-
me ithese funktsiooni, mida nimetatakse iildise astmefunktsiooni peaha-
ruks:

w= 2% =etn?, (3.4)
Sellest saame liitfunktsiooni diferentseerimise reegli kohaselt

a
a _ 7ealnzi = az

dw_d,_d
dz_dzz dz 2

a—1

Siit ndeme, et vaadeldav funktsioon teostab konformse kujutuse oma regu-
laarsuse piirkonnas igas punktis (punktid z =0 ja z = oo kuuluvad véljaloi-
kele). Millist laadi on see konformne kujutus? Selle maaramiseks kasutame
seost (3.4), mille kohaselt (olgu konkreetsuse mottes a > 0)

w = e*2, kus 29 = az ning 21 = Inz.

Vaatleme, milline piirkond kujutub w-tasandi iilemiseks pooleks. Eks-
ponentfunktsiooni omaduste tottu on selleks zo-tasandi riba 0 < Imz? < .

Vs
Viimase originaaliks z1-tasandil on riba 0 < Imz; < —. Selle riba originaaliks
a

s
z-tasandil on aga nurk 0 < argz < —. Seega saimegi piirkonna, mis kujutub
a

funktsiooniga w = z* (a > 0) tilemiseks pooltasandiks.

Ulesanded

1. Kujutada tlemiseks pooltasandiks jargmised piirkonnad:
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a) 0<argz<%; b) —g<argz<0; c) \argz!<£
Vastus. a) w= 2% b) w=—23 ¢) w=1iz%
3.6. LINEAARFUNKTSIOON
Juba jaotise 2.1 nididetes 1-4 uurisime lineaarse funktsiooniga
w=az+b (3.1)

teostatava kujutuse iseloomu. Teeme siinkohal veel moned markmed selles
suunas. On loomulik eeldada, et a # 0, s.t. w’' = a # 0. Sellest jireldub, et
lineaarfunktsioon teostab koikjal konformse kujutamise.

Margime veel, et lineaarfunktsioon kujutab iga ringjoone jéalle ringjoo-
neks. Toepoolest, kui meil on ringjoon

|z — 20| =1,

siis seose (3.1) pohjal saame, et kujutispunktid rahuldavad vorrandit

w—>b
—R20| =T,
ehk siit
|w —wo| = |alr,

kus wg = azg+0b. Sellest arutelust jéreldub, et ringjoone keskpunkt kujutub
kujutisringjoone keskpunktiks ning raadius muutub teguri |a| kordselt.

Néaitame veel, et iga sirge kujutub sirgeks, kusjuures ldhtesirge suhtes
simmeetrilised punktid kujutuvad kujutissirge suhtes stimmeetrilisteks punk-
tideks. Olgu meil mingi sirge suhtes kaks stimmeetrilist punkti z; ja zo. Sel
juhul on see sirge maaratud vorrandiga

|z — 21| = |z — 22| (3.2)

Asendades selles vorrandis z seose (3.1) pohjal, saame vorduse
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millest
[w —wi| = |w—ws|, (3.3)

kus wy = az; +b ja wy = azep +b. Vorrandist (3.3) jareldub, et sirge (3.2)
kujutub sirgeks, kusjuures punktide z; ja 2z kujutispunktid w; ja we on
simmeetrilised sirge (3.3) suhtes.

Monevorra hiljem naitame, et ka ringjoone suhtes siimmmeetrilised punk-
tid kujutuvad kujutistingjoone suhtes siimmeetrilisteks punktideks. See ja-
reldub murdlineaarse funktsiooni vastavast omadusest.

1
3.7. FUNKTSIOON w=—
VA
Vaatleme funktsiooni w = —, mis on maératud iga nullpunktist erineva z

z
puhul. Ent laiendatud komplekstasandit vaadeldes voime 6elda, et funktsioon
1

w = — on maaratud igas punktis (sel juhul E =00). Bt w' = —— # 0, siis teos-
tab Vzaadeldav funktsioon igas punktis konformse kujutuse. Vgatleme, millist
laadi on see kujutus. On selge, et siin iga sirge ei kujutu sirgeks. Toepoolest,
iga sirge labib l6pmatuspunkti. Lopmatuspunktiks aga kujutub nullpunkt.
Seega voib sirgeks kiujutuda ainult niisugune joon, mis ldbib nullpunkti.
Osutub aga, et vaadeldav funktsioon kujutab iga ringjoone ja sirge jélle
ringjooneks voi sirgeks, kusjuures sirge voib kujutuda ringjooneks ning vas-
tupidi. Selle toestuseks lahtume sirgete ja ringjoonte tihisest vorrandist (vt.

jaotise 1.3 tilesandeid 5 ja 6)

azz+Az+Az+b=0, (3.1)
kus A on kompleksarv, a ja b — reaalarvud, ning on tdidetud vorratus

|A|? —ab > 0. (3.2)
Antud funktiooni korral z = ;, mistottu vorrandist (3.1) saame et

bww + Aw+ Aw+a = 0.

Ka see on ringjoone voi sirge vorrand, sest tingimus (3.2) on tédidetud.
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Arvestades, et ringjoonte voi sirgete iihisest hulgast labivad 16pmatus-
1
punkti ainult viimased, saame, et sirgeteks kujutuvad funktsiooniga w = —

koik need ja ainult need sirged ning ringjooned, mis ldbivad nullpunkti.
Kui uurida funktsiooniga w = — teostatavat kujutust ldhemalt, siis méarka-
z

me, et thikringi jatab see kujutus paigale. Paigale jadvad ka punktid z =1 ja
z = —1. Viimaseid nimetatakse selle funktsiooni piisipunktideks. Uhikringi
iga sisepunkt kujutub valispunktiks ning vastupidi, kusjuures

argw = —argz

Ulesanded

1
1. Milleks kujutab funktsioon w = —
z

a rlngJoonedx +y = ax;
b

)

) ringjooned z? 4y = bx;
c) sirged y = x+b;
)
)
)

d
e) punkti zg # 0 ldbivad sirged;

sirged y = mux;

f) parabooli y = 2%?

1 1
Vastus. a) u = —, b) sirged v = —3 ¢) ringjooned b(u® +v?) +u+v =0,
a

d) sirged v = —mu, €) punkte wy = — ja w = 0 libivad ringjooned, f) u? =
)
3
—v

v+1

3.8. MURDLINEAARNE FUNKTSIOON

Vaatleme murdlineaarset funktsiooni

ar+b

- - 3.1
cz+d’ (3.1)

millel on kompleksmuutuja funktsioonide teoorias kiillaltki oluline koht. See
seletub iihelt poolt tema huvitavate geomeetriliste omadustega, teiselt poolt



54 PEATUKK 3. ELEMENTAARFUNKTSIOONID

aga praktiliste rakenduste rohkusega. Osutub nimelt, et selle funktsiooniga
saab esitada paljusid viga olulisi konformseid kujutisi. Eelnevas juba mér-
kisime, et iiheks oluliseks piirkonnaks, millele kujutatakse teisi piirkondi, on
ithikring. Edasises ndeme, et koik iihikringi konformsed kujutused iseendale
on esitatavad murdlinearse funktsiooniga.
Kui funktsiooni (3.1) avaldises teostada jagamine, siis saame, et
a bc—ad

w=—

e c(cz+d) (32)

Tulemusest ilmneb, et on motet vaadelda vaid niisuguseid murdlineaarseid
funktsioone, mille puhul bec — ad # 0. Samuti saame vordusest (3.2), et funkt-
siooni (3.1) voib vaadelda kompositsioonina funktsioonidest

z1=cz+d,
1
29 = —,
21
a bc—ad
w= -+ 29.
c c

Arvestades kahe eelmise paragrahvi tulemusi, voime 6elda, et murdlineaarne
funktsioon teostab igas punktis konformse kujutuse, mille suhtes ringjoonte ja
sirgete tihine hulk on invariantne, s.t. iga sirge ja ringjoon kujutub jdlle kas

ringjooneks voi sirgeks. Et ainult punkt z; =0, s.t. z = ——, kujutub 16pma-
c
tuspunktiks, siis sirgeteks kujutuvad vaid niisugused sirged ja ringjooned, mis
labivad punkti z = ——. Viimast nimetatakse murdlineaarse funktsiooni
(3.1) pooluseks.
a
Margime ka, et iga sirge kujutis peab labima punkti w = —, sest see on
c
Iopmatuspunkti kujutiseks, nagu kergesti jareldub seosest (3.2).
Et ka murdlineaarse funktsiooni poérdfunktsioon on murdlineaarne, siis
voib iga sirge ja ringjoon olla vaid sirge voi ringjoone kujutiseks.
Murdlineaarse funktsiooni avaldist vaadeldes markame, et selles on kolm
soltumatut kordajat (neljandaga voime murru lugeja ja nimetaja jagada).
Nende kolme kordaja, s.t. murdlineaarse funktsiooni méaramiseks on vaja

ette anda kolme punkti kujutised, Niisiis maaravad murdlineaarse funktsiooni
seosed:

az1+b azo+b az3+b
w = ——- wo = wa =
1 cz1+d’ 2 czo+d 3 czg+d

(3.3)
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Seostest (3.1) ja (3.3) jéreldub, et

w—w; w3—wy, Z—2 23—21

(3.4)

w—wg'wg—wg Z—Z2'23—Z2.

Selle vorduse vasakul ja paremal pool seisvaid avaldisi nimetatakse nelja
punkti liitsuhteks. Seos (3.4) iitleb, et nelja punkti liitsuheon murdlineaar-
se kujutuse invariant. Et seda kontrollida, tuleb vorduste (3.1) ja (3.3) pohjal
asendada vorduse (3.4) vasakul poolel w, w1, ws,ws. Peale lihtsustamist saak-
simegi vorduse (3.4) parema poole.

Seose (3.4) pohjal on hea leida sellist murdlineaarset funktsiooni, mis fik-
seeritud kolm punkti kujutab etteantud kolmeks punktiks. Kui moni vaadel-
davatest punktidest on oo, siis asendame seda punkti sisaldava liikme arvuga
1.

Ndide 1. Leida murdlineaarne funktsioon, mis punktid 2,1 ja oo kujutab
vastavalt punktidesse co,i ja 0.
Asendades antud arvud vordusesse (3.4), saame

11 z2-2 1
w—1 0—1 z—1"1

millest

ehk

z—2 Joonis 3.5

Néitame, et murdlineaarne funktsioon kujutab ringjoone (véi sirge) suhtes
stimmeteilised punktid kujutisringjoone suhtes simmemdtrilisteks punktideks.

Meenutame, et punkte zj ja ze nimetatakse ringjoone |z — 29| = R suh-
tes stimmetriliseks, kui nad asuvad mingil keskpunktist lahtuval kiirel ning
|21 — 20]| 72 — 20| = R? (vt. 1). Ulalmainitud murdlineaarse funktiooni omadus
jareldub kergesti jargmisest teoreemist.

Teoreem. Punktid on ringjoone suhtes stimmeetrilised parajasti siis, kui nad
asuvad selle ringjoonega ortogonaalsete ringjoonte kimbu tippudes.
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Toestus. Tarvilikkus. Olgu punktid z; ja z9 siimmeetrilised ringjoone C' suh-
tes (vt. joon. 17), s.t.

|21 — 20| |22 — 20| = R = |A— |2 (3.5)

Elementaargeomeetriast tuntud teoreemi (ringjoone puutuja ja loikaja 16iku-
de kohta) pohjal saaame, et 16ik Az on ringjoone S; puutujaks, s.t. ringjoo-
ned C' ja S1 on omavahel risti.

Piisavus. Olgu ringjooned Sp ja S9 risti ringjoonega C. Ringjoonte S ja
Sy 1dikepunktidega z; ja zo méaaratud sirge (kimbu telg) on risti ringjoonega
C ning labib seega ringjoone C' keskpunkti z. Ulalmainitud elementaargeo-
meetria teoreemi kohaselt saame niitid rahuldatud, et on rahuldatud seos
(3.5). Seega on punktid z; ja zo simmeetrilised ringjoone C' suhtes.

Ulesanded
1. Toesta vordus (3.4).

2. Naidata, et iga murdlineaarsee funktsiooniga teostatav kujutus on igas
punktis konformne.

3. Toestada, et ringjoone suhtes simmeetriliste punktide definitsioon on
iildistuseks siimmeetriale sirge suhtes, kui sirget vaadelda lopmatult
suure raadiusega ringjoonena.

4. Leida murdlineaarne funktsioon, mis kujutab punktid 1, 00,1

a) vastavalt punktideks i,1,1+1i;
b) vastavalt punktideks oo, 1, 1;

c¢) vastavalt punktideks 0,00, 1.

(141i)z+143i
(1+i)z+3+1"

1z+2+1 1—1
b = =—(z+1
) w o] , C) w i (z+1)

Vastus. a) w =

5. Leida iilemise pooltasandi kujutus iseendaks, kui

a) w(0)=1, w(l) =2 jaw(2) = oo,
b) w(0) =1, w(i) = 2i.
Vastus. a) w = L, b) w= —222+1.

2—z z—2
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6. Milleks kujutab funktsioon w = il nurga 0 < argz < %?

Vastus. Alumine pooltasand, millest on véilja 16igatud ring
1 i V2

PR — < R

‘w 273l

7. Milleks kujutab funktsioon w = il
z+1

tthikringi tilemise poole?
Vastus. Komplekstasandi esimene veerand.

8. Leida funktsioonid, mis kujutavad jargmised piirkonnad tilemiseks
pooltasandiks:

a) |z| <1, |z—1| < 1;

b) |2 >2, | = v2| < V2
c) Imz>1, |z] <2

)

d ]z|<2,0<argz<%;

3
e) |z|>2,0<Argz<§7T;
f) kogu tasand, millest on vélja l6igatud punkte 1+1i ja 24 2i ithendav
loik;

g |zl <2, [z =1[> 1
h) |z|>2, |z —1] > 1.
2:4+v3-1\" by !
= | ihw=|—rp—7|;
22 —+/3—i z—V2(141)

24+3-1 s 24416 2 &2+ /4 2
Jw=—|——7——|;d)w= ) w=|—-——7=];

4

Vastus. a) w = — (

22 —+/3—1 24—16 37— 4
2—1—i\? . L
f — SEEEE— N — 27r1Z72 . h — 2/371-1272 .
) v <2+2i—z> Hg) w=eE hjw=e

3.9. ZUKOVSKI FUNKTSIOON

Nonda nimetatakse funktsiooni

-t(e+!)
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Seda funktsiooni kasutas N. J. Zukovski (1847-1921) oma aerodiinaami-
kaalastes uurimustes. Oma to6dega pani ta aluse lennuki tiiva ehituse teo-
reetilistele uurimisele. Pogusalt tutvume sellega jaotises 9.

Kui diferentseerida Zukovski funktsiooni, siis selgub, et see teostab koiki-
des punktides konformse kujutamise (vélja arvatud punktid z = +1). Funkt-
siooniga (3.1) méératud kujutus pole aga tiks-ithene, sest seos

1 1
21+ —=2z0+—
Z1 z2

1
on rahuldatud kahel juhul: z; = 22 ning 21 = —. Seega kujutuvad punktid z ja
<2

1
— itheks ja samaks punktiks, s.t. meil on tegemist kahelehelise funktsiooniga.
z

Et maéérata piirkonda D, kus Zukovski funktsioon teostab iiks-ithese kuju-
tuse, peame valime piirkonna, mille mistahes kaks punkti ei rahulda seost
2129 = 1. Sellisteks piirkondadeks on |z| <1 ja |z| > 1.

Selgitame, milleks kujutab Zukovski funktsioon iihikringi |z| < 1. Samaks
piirkonnaks kujutub siis ka piirkond |z| > 1, sest nende kahe piirkonna punk-
tide vahel méaarab seos 2129 = 1 liks-iihese vastavuse. Ringi |z| < 1 kujutispiir-
konna méaramiseks vaatleme raadiuste argz = ¢ (0 < r < 1) ning ringjoonte
|z| =1 (r < 1) kujutisi. Olgu z = re'¥ ning w = u+iv, siis seosest (3.1) saame,
et

1 1 1 1
u=g(ra Jeome, v=g(r])sing (3:2)

Nende seoste pohjal voime Gelda, et ringjoone |z| = r kujutiseks on ellips
pooltelgedega

Dbl
Selle ellipsi fookused asuvad punktides z = +1. Kui » — 0, siis a, — 0o ning
by — oo. Kui 7 — 1, siis a, — 1 ning b, — 0. Seega on iihikringjoone |z| =7
kujutiseks kahekordne 16ik [—1,1] (nii tthikringjoone iilemine kui ka alumine
pool kujutuvad 16iguks [—1,1]).

Kui ldbime ringjoone |z| = r positiivses suunas, siis labitakse vastav ellips

7
negatiivses suunas. Toepoolest, et r— — < 0, siis p € [0,2} puhul v < 0.
r

Sellest jareldub, et iihikringi tilemine pool kujutub alumiseks pooltasandiks
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ning alumine pool tlemiseks. Seega voime delda, et piirkond |z| < 1 kujutub
kogu tasandiks, millest on vélja loigatud loik [—1,1].

Kui vaatleme raadiuse argz = ¢ kujutist, siis saame seoste (3.2) pohjal
(elimineerides suuruse r), et selle madrab vorrand

u? v?

- —1.
cos?p  sin?p

Saadud vorrand esitab hiiperbooli, kusjuures ka selle hiiperbooli fookused
asuvad punktides z = +1. Osutub aga, et raadius ei kujutu mitte kogu hii-

i
perbooliks, vaid ainult selle teatavaks osaks. Toepoolest, kui 0 < ¢ < 5 siis

saame seoste (3.2) pohjal, et u > 0 ning v < 0. Seega on esimeses veerandis
asuva raadiuse kujutiseks neljandas veerandis asuv hiiperbooli haru. Kui aga
votame sama raadiuse pikenduse kolmandas veerandis, s.t. ¢ asemel nurga
@ —m, siis on selle kujutiseks teises veerandis asuv hiiperbooli haru. Kui ¢
asemel votta —¢ ning ™ — ¢, siis saame sama hiiperbooli harud vastavalt I
ning IIT veerandis.

Me négime, et punktid z; ja zo kujutuvad iiheks ja samaks punktiks,
kui z129 =1, s. t. argz; = —argzs. Seega asub iiheks ja samaks punktiks
kujutuvatest punktidest iiks iilemises, teine alumises pooltasandis.

Eelnevas nagime, et iihikringi alumine pool kujutus iilemiseks poolta-
sandiks ning iilemine pool alumiseks. Seda arvestades voime niiiid vaita, et
iilemise pooltasandi osa valjaspool tihikringi kujutub kogu iilemiseks poolta-
sandiks ning alumise pooltasandi vastav osa kogu alumiseks pooltasandiks.

Kui tahame konstrueerida niisugust Riemanni pinda, milleks Zukovski
funktsioon kujutaks kogu z-tasandi tiks-tiheselt, siis tuleb votta kaks w-
tasandi eksemplari, 16igata need labi piki 16iku [—1,1] ning tthendada 16igete
servad nii, et iithe tasandi alumiselt poolelt liiguksime teise tasandi iilemisele
poolele ja vastupidi. See on vajalik seetottu, et iihikringjoon kujutuks 16i-
guks [—1,1], kusjuures ldhenemisele tihikringjoone iilemisele osale seestpoolt
vastaks kujutispunkti lahenemine 16igule [—1,1] altpoolt, valjastpoolt 1dhe-
nemisele aga iilaltpoolt lihenemine. Uhikringjoone alumisele poolele lihene-
misel on olukord vastupidine. Niisiis tuleb esimese tasandi loike alumine serv
tthendada teise tasandi l6ike tilemise servaga ning vastupidi (vt. joon. 3.6).
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Joonis 3.6
3.10. TRIGONOMEETRILISED JA HUPERBOOL-
SED FUNKTSIOONID

Euleri valemist

e =cosx +isinx

saame (kui x asemel votame —zx), et

e "' =cosx—isinx

Nende kahe seose pohjal

. elCU _ e—lfL' . ell‘ + e—lm
sinx = - ning cosr=-————
2i 2
Laiendame funktsioonide «siinus» ja «koosinus» maédramispiirkonda nii,
et see haaraks kompleksarvude hulga. Selleks asendame dsjasaadud vorduses
reaalmuutuja x kompleksmuutujaga z. Niisiis, defineerime funktsiooni «sii-
nus» ja «koosinus» kompleksse argumendi korral vordustega:
elz _ p—iz . elz | e—iz
5 ning w=cosz=———
i

2
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Joonis 3.7

Olles selliselt defineerinud funktsioonid w = sin z ja w = cosz, voime va-
hetult kontrollida, et neil funktsioonidel on jérgmised omadused:

1) reaalse argumendi korral ithtivad need funktsioonid keskkoolikursusest
tuntud siinuse ja koosinusega;
2) nad on kogu komplekstasandil regulaarsed, kusjuures

(sinz)' =cosz ning (cosz) = —sinz;

3) nende perioodiks on reaalarv 27;

4) kehtivad tuttavad trigonomeetrilised seosed:

2

sin? z 4 cos z=1, sin2z=2sinzcosz jne.;

5) w =sinz on paaritu, w = cosz aga paarisfunktsioon.

Ei saa aga Oelda, et koik trigonomeetriliste funktsioonide omadused, mis
on neil reaalarvude hulgas, sailiksid kompleksse argumendi korral. Nii teame,
et iga reaalarvu x korral

|sinz] <1 ja |cosz|< 1.
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See omadus ei kehti kompleksse argumendi puhul. Nii néiteks,

-1 -1
ete e+te
+ ~ 1,54 ning sini= +

cosi= ~ —1,17i.

i

Joonisel 3.7 on kujutatud pind s = |sinz|. Seda pinda nimetatatkse sii-
nuse reljeefiks.

Funktsioonidega w = cosz ja w = sinz maaratud kujutuste uurimiseks
taandame need funktsioonid juba tuntud funktsioonide kompositsioonideks.
Vastavalt funktsiooni w = cosz definitsioonile saame, et teda voib vaadelda
jargmiste funktsioonide kompositsioonina:

1 1
21 =1z, z29=¢"1 ja w:2(zg+22). (3.1)

Funktsiooni w = sin z puhul saame vastavalt:

. 21 . . 1 ( 1 )
Z1 =12, Zzp=¢€", 2z3=-—1z9 Ja W= —|z23+—|.
2 23

Selgitame niitid, millise piirkonna kujutab funktsioon w = cosz kogu w-
tasandiks. Kasutame selleks seoseid (3.1) tagant ettepoole. Viimasest seosest
(Zukovski funktsioon) jareldub, et zo-tasandi iihikring kujutub w-tasandiks,
millest on vélja loigatud vaid 16ik [—1,1]. Edasi tuleb selgitada, millise piir-
konna kujutab funktsioon z9 = ! tihikringiks. Eelnevast teame, et niisugust
piirkonda pole. Kiill aga kujutab vaadeldav funktsioon poolriba Rez; < 0,
—m < Imz; < 7 thikringiks, 16ikega piki raadiust [—1,0]. Seega ei saa me ka
w-tasandil zo-tasandi 16igu [—1,0] kujutist, s. t. u-telje osa (—oo,—1]. Jadb
veel selgitada, millise piirkonna kujutab funktsioon z; =iz tlalmargitud pool-
ribaks. Et funktsiooni z1 =iz teostab vaid tasandi poorde timber nullpunk-

s
ti nurga 5 vorra, siis on otsitavaks piirkonnaks poolriba —m < Rez < m,
Imz > 0. Niisiis: funktsioon w = cosz kujutab poolriba —7 < Rez < m,
Im z > 0 kogu w-tasandiks, 16ikega piki reaaltelje osa (—o0,1].

Ulejaanud kaks trigonomeetrilist funktsiooni w = tan z ja w = cot z defi-
neerime vordustega:

sin z e —e ez
tanz = = —1— ==l ,

CcoSz e¥ +e ¥ e’z +1

cosz eF4eir Qe
cotz = — =1— =

— =1 T .
sinz el#—e iz g2z 1
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4 = |
&=
4 ()
2
N /
g
Joonis 3.8

Nende funktsioonidega teostatavaid kujutusi voime vaadelda kui lineaarsete,
murdlineaarsete ja eksponentfunktsioonidega teostatavate kujutuste kompo-
sitsioone.

Joonisel 3.8 on kujutatud tangensi reljeef, s. t. pind s = |tanz|.

Analoogiliselt trigonomeetriliste funktsioonidega defineeritakse vastavad
hiiperboolsed funktsioonid, nimelt

ef—e F e*+e %
w=shz= , w=chz= i ,
2 2
shz cthz
w=thz=—, w=cthz= )
chz shz

Vorreldes neid funktsioone trigonomeetriliste funktsioonidega, ndeme, et

shz =isiniz, chz=cosiz, thz= —itaniz, cthz=icotiz.
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3.11. ARKUS- JA AREAFUNKTSIOONID

Trigonomeetriliste funktsioonide poordfunktsioone nimetatakse arkus-
funktsioonideks. Neid tdhistatakse vastavalt:

w = Arcsinz, w = Arccosz, w = Arctanz, w = Arccotz.

Osutub, et arkusfunktsioone saab avaldada logaritmfunktsioonide kaudu.
Teeme seda néiteks funktsiooni w = Arccos z puhul. Et vastavalt definitsioo-
nile z = cosw, siis

eiw +e—iw ein 41
z = = -
2 2elw

Meid huvitab avaldada w muutuja z kaudu. Selleks paneme téahele, et
el _ 926 41 =0,
millest saame
eV =24 \/ﬁ
ning seega
w = Arccosz = —iLln(z £1/22 —1). (3.1)

Et aga

1
N 3.2
24+vVz22—1 (3:2)

siis voime valemis (3.1) miinusmérgid juure ja logaritmi eest dra jatta. (Mii-
nusmargist juure ees voib loobuda sellepérast, et ruutjuur on kahene funkt-
sioon. Seos (3.2) lubab miinusmérgi ara jitta ka logaritmi eest.) Seega

w = Arccosz =iln(z+1/2%2 —1)

Eelmises jaotises ndgime, et funktsioon w = cos z kujutab poolriba —7 <
Rez <7, Imz < 0 kogu w-tasandiks, millest on valja loigatud vaid poolsirge
—o0 < Rew < 1, Imw = 0. Sellest jareldub, et vaadeldavas w-tasandi piir-
konnas saab eraldada funktsiooni w = arccos(z) regulaarse haru. Funktsiooni
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w = arccos(z) sellist regulaarset haru, mis kujutub kogu z-tasandi (véljaloi-
kega piki poolsirget —oo < Rez < 1, Imz = 0) poolribaks —7 < Rew < ,
Imw < 0, nimetatakse arkuskoosinuse peaharuks ning tahistatakse w =
arccos(z).

Ka teiste trigonomeetriliste funktsioonide péordfunktsioonid voib avalda-
da logaritmfunktsioonide kaudu. Kehtivad valemid:

Arcsinz = g — Arccosz = g —iln(z+4/22—1),

1 i —
Arctanz = T — Arccotz = —Ln (1 Z) )
2 2i i+z

Hiiperboolsete funktsioonide poordfunktsioone nimetatatkse areafunkt-
sioonideks ning tahistatakse vastavalt w = Arshz, w = Archz, w = Arthz,
w = Arcth z.

Kehtivad jargmised valemid:

Arshz =In(z+1/22+1), Archz =In(z+1/22—1),

1.1 1 1
Arthz:fln(ﬁ),Arcthz:fln(Z—'— ),
2 1-=z 2 z—1

millest ndeme, et koik areafunktsioonid on mitmesed funktsioonid.
Koikide nende mitmeste funktsioonide puhul voime eraldada nende tiksi-
kud harud, nagu seda teigime funktsiooni w = Arccosz puhul.
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4. KOMPLEKSMUUTUJA FUNKTSIOO-
NIDE INTEGREERIMINE

4.1. INTEGRAALI MOISTE JA OMADUSED

Defineerime joonintegraali moiste kompleksmuutuja funktsioonide korral.
Joontega vaatleme Jordani jooni, s.t. jooni, mis on méaratud vorrandiga

z=2z(t) =x(t) +iy(t)

kus z(t) ja y(t) on pidevad mingil 16igul [«, §]. Eeldame, et parameetri mis-
tahes kahe vaartuse t; ja to puhul z(f) # z(t2), s.t. vaadeldavatel joontel ei
ole kordseid punkte. Erandiks voivad olla vaid « ja 8. Kui z(a) = z(/5), siis
nimetatakse vaadeldavat joont kinniseks.

Kui eksisteerib pidev tuletis 2’(¢) 16igul [, 3], siis nimetatakse vastavat
joont siledaks. Joont, mis pole sile, kuid on jaotatav 16plikuks arvuks si-
ledateks osadeks, nimetatakse tiikati siledaks. Edapsidi vaatlemegi tiikati
siledaid jooni.

Olgu funktsioon
w=F({t)=U(t)+iV (t)

pidev 16igul [o, §]. Niisuguse funktsiooni puhul defineerime integraali

B B B
/ F(t)dt = / U(t)dt + / V(t)dt.

Selliselt defineeritud integraali koraal kehtivad jargmised omadused

67
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B
Re / F(t)dt = / Re F(t) dt, (4.1)
8
/ F(t)dt =k / F(t)dt, (4.2)
ﬂ B B
JIF0)+ Bo)dt = [ @+ [ B, (4.3)
Ol/B B (0% «
/ Ft)dt| < / \F(t)| dt. (4.4)

Omadustes (4.1)—(4.3) on suhteliselt lihtne veenduda, kui arvestada mate-
maatilise analtitisi kursusest tuntud méaaratud integraali omadusi. Jargnevas
toestame vaid seose (4.4). Selleks tédhistame

/F(t) dt = roe'?0

(definitsiooni pohjal on integraal mingi kompleksarv). Siit

8 8
/ F(t)dt| = ro = roelP0e 1¥0 = ¢ 7i%0 / F(t)dt = / e PO (t) dt.
(e}

«

Et saadud vorduste ahela vasakpoolseks liiliks on reaalarv, siis on seda ka
parempoolne, mistottu

/ Flt / %0 (1) dt = Re 7 ¢TI0 R (1) dit = /ﬂ Re[e %R (1)] dt.

(%

Teiselt poolt
Re[e 0 F(t)] < [Rele 0 F(t)| < e 0 F(1)| = | F(1)].

Viimase kahe seose pohjal saamegi (arvestades méaratud integraali mono-
toonsuse omadust) vorratuse (4.4).
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Olgu w = f(z) mingi funktsioon, mis on pidev tiikati siledal ning lopliku
pikkusega joonel C'. Integraali ithe joone C' (vorrandiga z = z(t), t € [«, ]
defineerime vordusega

8
/ f(2)dz = / F2 ()7 (1) dt. (4.5)
C a

Et 2/(t) = 2/ (t) + iy (¢), siis

8
/ flz)dz= / Fla@t) +iy ()] (t) + 1y (¢)] dt.
C o

Kui téhistame f(z) = u+1iv, siis seose (4.5) pohjal saame, et

B B p
/f(z / u+iv)(x —i—iy’)dtz/(uﬂ—uy') dt+i/(vx’+uy') dt,
c a a

«

ehk teisiti

/f(z)dz:/ud:v—vdy+i/udy+vdx, (4.6)
C C C

Seostest (4.2) ja (4.3) jéreldub, et

/kf(z) dz = k/f(z)dz,

C c
[ +gNdz= [ fz)dz+ [ g()dz
C c c

Definitsiooni (4.5) pohjal voime veenduda, et kui C' = C + Cy, siis

/f(z)dz:/f(z)dz+/f(z)dz
C Cq Co

Samast definitsioonist jareldub samuti, et

a B
[ 1@z = [ @) wde =~ [ 1012 @ dt = [ ).
_C /8 o

c
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Saadud seos kujutab endast joonintegraali histi tuntud omadust, mis vaidab,
et integreerimissuuna muutmine vastupidiseks toob kaasa integraali vaartuse
margi muutmise.

Seoste (4.4) ja (4.5) pohjal saame, et

B B
[#e)dz| = | [ @l 0 df < 171001 @)1de = [15)] 1z,
C o a C

sest |dz| = |2/(t)| dt, kui integreerimine toimub parameetri kasvamise suunas
dt > 0). Téhistades joone C' pikkuse siimboliga s, saame viimasest vorratu-
sest, et

/f(z) dz

B g
<M [1Ode =M [\l OF + Iy (0P dt = Ms,
C o «

kus | f(z)] < M iga z € C puhul. Valemit

/f(z) dz
C

nimetatakse integraali mooduli hindamise valemiks.

< Ms,

Ndide. Leiame / 22 dz, kui C on ithikringjoone iilemine pool ning lahtepunk-

C .
tiks on z = 1. Joone C' vorrandiks on z = e, kus ¢ € [0, 7]. Seega

n L B . e3it 0 )
/Zde = /emieltdt = /e31tdt: i— =—=
3t 0 3
C 0 0
Ulesanded
1. Arvutada

[ )z,
c

kui f(z) =y —x —32% ning C on
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a) sirgloik punktist 0 punktini 141,
b) murdjoon punktist 0 punkti 141 14bi punkti i.
Vastus. a) 1—1; b) 1/2(1—1).

2. Arvutada

2
/Z+ dz,

z

kui jooneks C' on

a) poolringjoon z = 2€!, t € [0,7],
b) poolringjoon z = 2¢', t € [0, —7],
¢) ringjoon z = 2, t € [—m, 7).

Vastus. a) —4+2mi; b) —4 — 27i; ¢) 4i.
3. Naidata, et

/(3z+1)dz:o,
C

kus jooneks C' on ruudu 0 < Rez <1, 0 <Imz < 1 rajajoon.

4. Naidata, et

dz T

[ 7<%

2241 3
C

kui C' on ringjoone |z| = 2 koordinaattasandi esimeses veerandis asuv
osa.

5. Néidata, et

kui C' on ringjoon |z — 2| =1
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4.2. CAUCHY TEOREEM

Osutub, et kui funktsioon w = f(z) = u+1iv ja tema tuletis on pidevad
kinnisel joonel C' ning sellega piiratud piirkonnas, siis

/udx—vdy =0,

¢ (4.1)
/vd:v—l—udy =0.

C

Toepoolest, matemaatilise analiiiisi kursusest tuntud teoreemi kohaselt
(joonintegraal iile kinnise joone C')

/de—iery:O,
C

kui funktsioonide P ja ) osatuletised on pidevad joonega C' piiratud kinnises
piirkonnas ning

or _ o0d

oy Oz’
Et eelduse kohaselt f(z) eksisteerib ja on pidev vaadeldavas kinnises piir-
konnas, siis integraalide (4.1) puhul on viimane tingimus téidetud Cauchy -

Riemanni vorrandite pohjal.
Eelmise paragrahvi vorduse (4.6) pohjal siis ka

/f(Z)dz =0. (4.2)
C

Sellega oleme toestanud nn. Cauchy teoreemi:

Teoreem 1. Kui f(z) ning tema tuletis on pidevad tokestatud theli sidusas
piirkonnas D, siis vordus (4.2) on dige iga piirkonda D kuuluva kinnise joone

C korral.

Sellisele tulemusele joudis Cauchy juba 1825. a. Osutub aga, et iga dife-
rentseeruva kompleksmuutuja funktsiooni tuletis on pidev. Seega peaks vas-
tav viide kehtima ka ilma tuletise pidevuse eelduseta. Et see on tdesti nii,
seda naitas 1900. a. E. Coursat (1858-1936).
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Ay
a C -
1 b 0 1 =
Joonis 4.1

Sellel teoreemil on kompleksmuutuja funktsioonide seas keskne koht. Te-
ma abil saab niiteks esitada regulaarseid funktsioone integraalide kaudu.
Teoreemi suure tahtsuse tottu on piititud teda veelgi iildistada. Rakendusli-
kust seisukohast lahtudes on kiillaltki oluline jargnevas vaadeldav teoreem,
mille esitamiseks on aga vaja tutvuda moistega pidevus kuni rajani.

Olgu a ja b kaks punkti piirkonnast D voi tema rajalt C'. Nende punktide
vaheliseks kauguseks mooda piirkonda D nimetatakse suurust

op(a,b) =inf A(y),

kus A(+y) on joone 7y pikkus ning alumine raja on voetud koigi nende joonte
suhtes, mis ithendavad punkte a ja b ning kuuluvad piirkonda D.

Funktsiooni f nimetatakse kuni rajani pidevaks piirkonnas D, kui iga
punkti a korral piirkonnast D voi tema rajalt C' kehtib vordus

lim f() = f(a).

oD (Z7a)—>0

Midrkus. Kui a on piirkonna D sisepunkt voi niisugune rajapunkt, mis pole
rajajoonele kordseks punktiks, siis

QD(lgg%_)Of(Z) = %%%f@)-
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Ndide. Vaatleme funktsiooni w = /2 = r%e%, kus z=re¥, 0 <r <1 ja
—m < ¢ < 7. Selline funktsioon on regulaarne (seega ka pidev) vaadeldavas
piirkonnas D, milleks on thikring 16ikega piki raadiust [—1,0] (vt. joon 4.1).
Kui rajapunktides ¢ madrata funktsiooni f vaartused seosega

f(QO = lim f(z),

op(2,()—0

siis saame vaadeldavas piirkonnas kuni rajani pideva funktsiooni. Selline
taiendav defineerimine aga ei muuda funktsiooni pidevaks loike [—1,0]. Toe-
poolest, kui votame mingi punkti ( =z +1i0 (—1 < z < 0), siis voime seda
punkti vaadelda asuvana nii loike tilemisel kui ka alumisel serval. Vaadeldes
seda punkti loike tilemise serva punktina, saame, et

f(O= lim fz)= lim f(z)=|e[7e? =ilz|2.

op(2,0)—0 L

Kui aga vaadelda sama punkti asuvana loike alumisel serval, siis

FQ= lim f(z)= lim f(z)=l|a|7e % = —ilo]?

= lim z)= lim f(z)=|z|2e” 2 = —i|x|2.

Seega saame erinevad vaartused soltuvalt sellest, kummal serval asuvana
vaatleme punkti ¢. Siit aga jareldub, et vaadeldavat funktsiooni ei saa muuta
pidevaks kinnises piirkonnas D. Kiill aga saime kuni rajani pideva funkt-
siooni, sest 10ike iilemise ja alumise serva punktid ei ole lahedased mooda
piirkonda voetud kauguse mottes. Nii on gp(a,b) =1, kui a = —0,5 ja on
vaadeldud 16ike alumise serva punktina.

Sellest néitest selgub, et moiste ,pidevus kuni rajani“ on eriti oluline
nende piirkondade korral, millel on liibuvaid rajajoone osi.
Sonastame niitid teoreemi, mis on iildistuseks Cauchy teoreemile.

Teoreem 2. Kui funktsioon f on requlaarne thelisidusas tokestatud piirkon-
nas D ja on selles piirkonnas pidev kuni rajani C, siis

/f(z)dz:().
C

Selle teoreemi toestus el mahu kdesoleva lithikursuse raamidesse. Edasises
nimetame ka seda teoreemi Cauchy teoreemiks.
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Ulesanded

1. Néidata, et

| fzdz=o,
|z|=1
kui
a) f(z)=(22+22+2)"1, c) f(z)=tanz,
b) f(z)=ze %, d) f(z) =1In(z+2i).

2. Olgu f diferentseeruv iihelisidusas piirkonnas D. Olgu Cy ja Cy kaks
tikati siledat joont, mis ithendavad punkti a punktiga b. Naidata, et

s.t. integraali vaartus ei soltu integreerimisteekonna kujust, vaid ainult
selle otspunktidest.

4.3. NEWTONI-LEIBNIZI VALEM

Funktsiooni F' nimetatakse funktsiooni f algfunktsiooniks mingis piir-
konnas D, kui selle piirkonna igas punktis z kehtib vordus

Osutub, et funktsiooni w = f(z) algfunktsioon pole iiheselt maaratud. Toe-
poolest, kui algfunktsiooniks on w = F(z), siis on selleks ka iga funktsioon
kujul w = F(2) + const. Teiselt poolt, kui F' ja G on mingi funktsiooni f
algfunktsioonideks, siis

G'(2) = F'(2) = [G(2) - F(2)] =0,
millest

G(z) — F(z) = const.
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Joonis 4.2

Saadud vordus iitleb, et funktsiooni w = f(z) koik algfunktsioonid avalduvad
kujul

w=F(2)+C,

kus F' on mingi algfunktsioon ning C' konstant.

Jérgnevas vaatleme funktsiooni f, mis on regulaarne tihelisidusas tokes-
tatud piirkonnas D. Kui valime selles piirkonnas mingid kaks punkti zq ja z,
siis integraal iile punkte 2y ja z ithendava joone ei soltu integreerimisteekon-
na kujust (jareldus Cauchy teoreemist) vaid ainult selle otspunktidest zg ja
z. Seetottu on motet kirjutada

jﬂOM-

Kui loeme punkti zg fikseerituks, méadrab see integraal tilemise raja z suhtes
ithese funktsiooni,

w=p(z) = [ FQ)dc.

Jérgnevas naitame, et ¢ on funktsiooni f iiks algfunktsioonides, s. t.

¢'(2) = f(2). (4.1)

Funktsiooni tuletise definitsiooni pohjal on vordus (4.1) samavaérne seo-
sega

el h) — ()
h—0 h

—f(z)|=0. (4.2)
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Siin eeldame, et z+h € D (vt. joon. 4.2). Vorduse (4.2) néditamiseks méargime,
et

z+h
PN LT fcac

ning

z+h
1

f2)=5 [ fe)c.
z
Neid seoseid arvestades voime kirjutada, et

plz+h) = o(:)
(O

JEGRIEIE (43)

_1z+h
h
z

Regulaarsuse tottu on funktsioon pidev piirkonnas D, s. t. ka punktis z,
mistottu vastavalt arvule € > 0 voime leida niisuguse d(¢), et iga ¢ € D ja
|¢ — 2| < d(¢) puhul

Q)= fl2) <e (4.4)

Seoste (4.3) ja (4.4) pohjal saame, kasutades integraali mooduli hindamise
valemit, et

PEENZEE) ) < el =<

kui |h| < d(g). Saadud vorratus on samavairne seosega (4.2), millega olemegi
toestanud vorduse (4.1).
Olgu F mingi algfunktsioon funktsioonile f. Sel juhul

/ F(Q)d¢ = F(2) +C. (4.5)

Vottes viimases vorduses z = zg, saame, et

C= —F(,Zo).
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Asendades selle vordusse (4.5), saame Newtoni—Leibnizi valemi

[ F(Qd¢ = F(2) = F(z0).

Seega naeme, et kui funktsioon on iihelisidusas tokestatud piirkonnas re-
gulaarne, saab teda integreerida Newtoni—Leibnizi valemi abil. Sellega oleme
pohjendanud, et kompleksmuutuja funktsioone voib integreerida samuti kui
reaalmuutuja funktsioone.

Ndide. Arvutame
1+i ‘ 1 it
/e2lzdz _ 56212

1

INE

Ulesanded

1. Arvutada integraalid

1—i i 421

2 i z
a) /z dz, b) /eﬂzdz, c) / COS§dZ.
0

0

1

1 1
Vastus. a) 5(1—1)3, b) —(1+1i), c)e—i—g.

™

4.4. INTEGRAAL MITMELISIDUSAS
PIIRKONNAS

Vaatleme funktsiooni f, mis on regulaarne mingis tokestatud mitmelisi-
dusas piirkonnas D. Olgu selleks piirkonnaks joonisel 23 kujutatud kolmeli-
sidus piirkond, mille raja moodustavad kinnised jooned C, C5 ja C'3. Nende
joonte positiivseks suunaks loeme kellaosuti liikumisele vastupidise suuna.
Kui tédhistame raja tdhega C| siis

C=C1+(—Cq)+(—C3), (4.1)

sest raja positiivseks suunaks loetakse suunda, mida mooda liikudes piirkond
jaab vasakule.
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Joonis 4.3

Meie eesmargiks on laiendada Cauchy teoreemi sellistele piirkondadele.
Selleks eeldame, et funktsioon f on pidev kuni rajani C. Toestame, et neil
eeldustel

/f(z)dz:O.
c

Toepoolest, iithendades raja iiksikud osad omavahel joontega [1 ja l2, saame
ithelisidusa piirkonna, mille rajajooneks on joon

F=C+h+l+(-lh)+(=l).
Saadud piirkonna puhul kehtib Cauchy teoreem ning seega

/f(z)dz:O.
r

Jooniselt 4.3 on naha, et joone I' taielikul labimisel labitakse jooned [y ja lo
kahel korral, kuid erinevates suundades, mistottu

[1ydz= [ fz)d==0
r C

Seosest (4.1) saame, et

Saadud tulemuse pohjal voime sonastada jargmise teoreemi.

Teoreem. Kui funktsioon w = f(z) on requlaarne mitmelisidusas tokestatud
piirkonnas ja pidev kuni selle rajani, siis integraal tle rajajoone vdlimise
osa on vordne summaga integraalidest tle sisemiste vdljaloigete rajajoonte,
kus integreerimissuunaks on suund, mida mooda litkudes piirkond (vdljaloige)
jaab vasakule.
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Ulesanded
1. Naidata, et

dz dz dz
| o= | et | ey

|z|=4 |z+2|=1 |z—i]=1

2. Arvestades jaotise 4.1 tilesannet 5, arvutada eelmises iilesandes esinev
integraal.

Vastus. 0. (Ulesande lahendamiseks avaldame integraalialuse murru
osamurdude summana.)

3. Toestada, et kui f on diferentseeruv igas punktis, vilja arvatud punkt
z = a, siis mistahes punkti a hélmava kinnise joone C' korral

/f(z)dz = / f(2)dz.
C

|z—al=r

4. Eelmise iilesande pohjal leida

dz

kus C' on mingi kinnine joon.

Vastus. a) 0, kui joon C' ei holma punkti a, voi kui n # —1, b) 27i,
kui joon C' holmab punkti a ning n = —1.

4.5. CAUCHY VALEM

Rakendades teoreemi 2 jaotisest 4.2, nditame, et tokestatud piirkonnas D
regulaarse ja kuni C' pideva funktsiooni w = f(z) vadrtused piirkonnas D on
madratud selle funktsiooni vaartustega rajal C. Sellest toestame, et

£ = o / e, (4.0

kui rajajoon C' labitakse positiivses suunas.
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D

—>

C
Joonis 4.4

Valemi (4.1) toestamiseks imbritseme punkti z ringjoonega S (vt. joon.
4.4), mis téielikult kuulub piirkonda D. Ringjoone S raadiuse valime nii
viikese, et ( € S puhul

1f(2) = F(O] <e, (4.2)

kus € > 0 on suvaliselt valitud arv. Funktsiooni f pidevuse tottu on see voi-
malik.

Kui loeme joone S positiivseks suunaks kellaosuti liitkumisele vastassuuna,
siis saame eelmise jaotise teoreemi pohjal, et

Q) . 1 Q)
C[g_zdg_sfg_zdg. (4.3)

Vastavalt tilesandele 5 jaotisest 4.1 voime kirjutada, et

S (1.4

Seoste (4.3) ja (4. 4) p6hjal

f
27?1 C—z 27‘(‘15/ (—z e

Rakendades Saadud vorduse puhul integraali mooduli hindamise valemit, saa-
me seose (4.2) tottu, et
1 _
7_/ f(z)—f(Q) i
2mi % (—=z

Arvu e suvalisust arvestades viimane vorratus toestabki valemi (4.1), mi-
da nimetatakse Cauchy valemiks. Regulaarsete funktsioonide teoorias on
see valem vaga tahtis.

1 e
< —-2nr =c¢.
2rr

27?1 C—z ‘
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Ulesanded
1. Olgu

202 —(—2

e (e #9)

9(z) = /
I¢|=3

Leida ¢(2). Milline on funktsiooni w = g(z) vaartus, kui |z| > 37
Vastus. g(2) = 8ni; g(z) =0, kui |z| > 3.

2. Leida jargmised integraalid:

2) /z—ewzi/Q 4z, ) C/mdz’

C
ya
b) /2z+1dz’
C

kus C' on ruudu |z] < 2, |y| < 2 rajajoon.
Vastus. a) 2m; b) —mi/2; ¢) 7i/4.

4.6. CAUCHY TUUPI INTEGRAALID

Cauchy valemi

ﬂwZQ;!gEQK (a.1)

pohjal saime esitada tokestatud piirkonnas D regulaarset funktsiooni, teades
tema vaartusi selle piirkonna rajajoonel C'. Osutub aga, et valemis (4.1) esi-
nev integraal eksisteerib iga z ¢ C' puhul, kui f on pidev joonel C'. Siinjuures
ei tarvitse joon C' olla kinnine. Vaatlemegi jargnevas funktsiooni

_ L £
w_F(z>_2mc[§_zdg, (4.2)

kus f on pidev joonel C'. Selliselt defineeritud funktsioon on méaratud ko-
gu z-tasandil, vélja arvatud joone C' punktides. Integraali (4.2) nimetatakse
Cauchy tiiiipi integraaliks. Selle integraali kohta kehtib jérgmine teo-
reem.
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Teoreem 1. Funktsioon (4.2) on mistahes arv kordi diferentseeruv, kusjuures

ﬂm@y—”{/gjﬂndg (4.3)

o % _ Z)n—l—l
C

Toestus. Néaitame, et

oy Lo f(Q)
F(@-%ﬁ!kg_zydg (4.4)

Vastavalt tuletise definitsioonile

P = im F(z+h})L—F(z).

Arvutades saame, et

F(z+h)—F(2) 1 1 1
h 2mh!{g—z—h_g—z

:il/ f(Q)d¢

2mi ) ((—2=h)((—2)

Olgu punkti z ja joone C' vaheline kaugus 2d. Eeldame, et |h| < d. Sel juhul
(vt. joon. 4.5)

[C=z[>d, [(—z=h[>d,

] F(Q)dc =

mistottu
1 - 1 1 - 1
lz—¢| ~d" |(—z—h] d

Viimaste vorratuste pohjal saame, et

Feh)=FG) 1 1 Q) | 1] wro
h ‘m!(c—z>2d<|‘2w([(c—z—h)(c—z)? )
Ms

kus M = Igpa(}( |f(¢)] ning s on joone C pikkus. Et h — 0 puhul viimase vor-
€

ratuse parem pool laheneb nullile, siis olemegi toestanud valemi (4.4).
Valem (4.3) toestatakse téieliku induktsiooni meetodil. Jatame selle lu-
gejale.
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Joonis 4.5

Ka siis, kui w = f(z) on regulaarne mingis tokestatud piirkonnas D ning
pidev kuni rajani, on teoreemi 1 eeldused taidetud. Sellega oleme tdestanud
jargmise teoreemi.

Teoreem 2. Kui funktsioon f on requlaarne tokestatud piirkonnas D ning
pidev kuni rajajooneni C', siis eksisteerivad funktsioonil f vaadeldavas piir-
konnas mistahes jarku tuletised, kusjuures

ny _ 1 f(¢)
£ )_zm/(g—z)nﬂ dc. (4.5)
C

Teisiti Oeldes: teoreem 2 viidab, et iga regulaarne kompleksmuutuja
funktsioon on mistahes arv kordi diferentseeruv. Reaalmuutuja funktsioo-
nidel sellist omadust ei ole. Nende puhul ei jareldu tuletise olemasolust isegi
selle pidevus, ammugi siis veel teist jarku tuletise olemasolu.

Valemist (4.5) saame, et kui f on regulaarne ringis |( — z| < R ja pidev
kuni rajajooneni, siis

() ()= f(Qd¢ | _ niM2rR _ nlM
|f (ZM T (<_2>7’L—|—1 B 27TR"+1 R ,
[(—2|=R
kus M = Km8|u>_<R|f(§)|. Vottes n = 1, saame, et
M
@I 46
NCIEE- o)

Olgu f regulaarne ja tokestatud kogu komplekstasandil, s.t. | f(2)| < M
iga z puhul. Siis jareldub vorratusest (4.6) (kui R — o0), et

()| =0.
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Seega f(z) = const. Me oleme sellega toestanud jargmise, tisna huvitava teo-
reemi, mis on jallegi iseloomulik vaid kompleksmuutuja funktsioonidele.

Liouville’i teoreem. Kui funktsioon w = f(z) on requlaarne ja tokestatud
kogu komplekstasandil, siis on ta konstantne.

Mdirkus. Liouville’i teoreemist jareldub, et kogu komplekstasandit ei saa kon-
formselt kujutada iithekski tokestatud piirkonnaks (néiteks ithikringiks).

Liouville’i teoreemist jareldub ka nn. algebra pohiteoreem:

lgal komplekssete kordajatega mittekonstantsel poliinoomil on vihemalt
tiks nullkoht kompleksarvude vallas.

Toestus. Olgu meil mingi poliinoom P(z). Oletame, et politnoomil P(z) pole
tihtki nullkohta, s.t. iga z puhul |P(2)| > a > 0. Kui vaatleme funktsiooni

w=G(2) = P(lz)’ siis
1 1
P(2) e
Et viimane vorratus kehtib iga z puhul, siis Liouville’i teoreemi pohjal
G(z) = const, millest ka P(z) = const. Saadu on aga vastuolus eeldusega,

mille kohaselt P(z) on konstandist erinev poliinoom.

G(2)| =

Jérgnevas esitame veel ithe rakenduse teoreemile 2, niidates, et Cauchy
teoreemil on poordteoreem.

Morera teoreem. Kui funktsioon f on pidev thelisidusas tokestatud piir-
konnas D ning

/ f(2)dz=0 (4.7)
C

iga pitrkonda D kuuluva kinnise joone C' puhul, siis f on selles piirkonnas
requlaarne.

Toestus. Tingimusest (4.7) jareldub, et funktsioon
w=F@) = [1Qd
20

on ithene. Et F'(2) = f(z) (selle vorduse tdestasime jaotises 4.3), siis teoreemi
2 pohjal eksisteerib ka F”(z) = f'(2). Seega f on iihene ja diferentseeruv
piirkonna D igas punktis, s.t. ta on selles piirkonnas regulaarne.
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Ulesanded
1. Leida
t zZ
/ (za—nZQ)?’ 4z,
C

kui C on kinnine joon, mis hélmab punkti 2.
mi sinl

Vastus. ————.

2 cos?1

2. Leida

kus C' on kinnine joon.

Vastus. 0 (soltumata joonest C).

3. Leida
/ e*dz
2 2(1—2)%
kus C' on kinnine joon.
Vastus. a) 2mi, kui joon C holmab punkti 0, kuid ei hélma punkti 1;
b) —emi, kui joon C holmab punkti 1, kuid ei holma punkti 0;
¢) (2—e)mi, kui joon C holmab nii punkti 0 kui ka punkti 1;
d) 0, kui joon C ei holma ei punkti 0 ega punkti 1.

4. Olgu funktsioon w = f(z) regulaarne joonega C' piiratud kinnises piir-
konnas. Naidata, et iga zg ¢ C korral

f'(z)dz :/ f(z)dz
(

z—20 z—20)2%
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4.7. PARAMEETRIST SOLTUVAD INTEGRAALID

Vaatleme funktsiooni, mis on esitatud parameetrist soltuva integraalina:

w=F(z) = /f(g,z)dg, zeD. (4.1)
I

Teoreem 1. Olgu tdidetud jargmised tingimused:
1) T on lopliku pikkusega tikati sile joon;

2) funktsioon f on pidev kahe muutuja funktsioon, kui € T ja z € D, kus
D on komplekstasandi mingi piirkond;

3) iga fikseeritud ¢ €T korral on f regulaarne (muutuja z jdrgi) piirkonnas

D.

Sel juhul on seosega (4.1) mddratud funktsioon F' requlaarne piirkonnas
D.

Toestus. Kasutame Morera teoreemi. Tingimuste 1 ja 2 pohjal on funktsioon
F pidev piirkonnas D. Jaab néidata, et

C[F(z)dz:o

iga piirkonda D kuuluva kinnise joone C' korral. Toepoolest,

/F(z)dz:/</f(g,z)dg> d,z:/(c/f(g,z)dz) ¢ =0,
C C \I T

sest Cauchy teoreemi pohjal

/f(C,Z)dZ:O iga ¢ € I' puhul.
C

Integreerimisjéarjekorda voib muuta, arvestades kahekordse integraali oma-
dusi (reaalmuutujate korral). Sellega on teoreem toestatud.

Teoreem 2. Olgu tdidetud teoreemi 1 tingimused. Sel juhul

F'(z) = /%i’z)dg iga z € D korral. (4.2)
I
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Toestus. Valime suvalise punkti z € D ning ringjoone ~y, mis kuulub piirkon-
da D ning holmab punkti z. Sel juhul saame (kasutades valemit regulaarse
funktsiooni tuletise kohta), et

L1 P 1 1 -
B L1 f(¢t) _ [0f(¢2)
_F/(Mv/(t_zydt) dg‘_r/ S dC.

Teoreem on toestatud.

Kui seni oleme vaadelnud 16pliku pikkusega tiikati siledaid jooni, siis ntitid
asume vaatlema niisuguseid jooni, mis on kill 16pmatud, kuid mille iga 16p-
liku pikkusega osa on tiikati sile. Eeldame, et tegu on joonega, millel on
alguspunkt a (ithepoolselt 16pmatu joon). Vaatleme selle joone osa Cy, mis
jaab punktide a ja b vahele ning mille pikkus on s. Vaatleme joonel C' pidevat
funktsiooni g. Sel juhul eksisteerivad integraalid

Ja(¢)ac
Cs

Kui eksisteerib piirvaartus

li [ 9(C)dc.

S§—00
Cs

siis seda nimetatakse funktsiooni g paratuks integraaliks iile joone C
ning téhistatakse

Jim [g(¢)ac= [g(¢)dc.
c

Cs

Sel juhul 6eldakse, et vaadeldav péaratu integraal koondub.

Kui on tegu kahepoolselt 16pmatu joonega (niiteks sirgega), siis valime
sellel joonel mingi punkti a ning vaatleme kaht ithepoolselt 16pmatut joont.
Ule nende voetud piratute integraalide summa annab meile piratu integraali
iile vaadeldava joone.
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Jargnevalt vaatleme parameetrist soltuvaid paratuid integraale

F(z) = / f(2.0d¢, zeD. (4.3)

C

Oeldakse, et vaadeldav pdratu integraal koondub thtlaselt hulgal D, kui iga
e > 0 korral leidub selline M >0, et

F(2)= [ f(z00dc| <
Cs

iga s > M ja iga z € D puhul.
Weierstrassi tunnus: Kui iga ¢ € C ja z € D korral |f((,2)] < ¢(C)
ning koondub integraal

[1#(Ql1dcl,
c

siis paratu integraal (4.3) koondub ihtlaselt hulgal D.

Markus. Analoogiliselt defineeritakse paratu integraal ning selle juurde kuu-
luvad moisted ka juhul, kui joone C' pikkus sg on kiill 16plik, kuid joonel C
vaadeldav funktsioon ei ole tokestatud joone l6pp-punkti itmbruses. Sel juhul

S— S0

[o(©dc= tim [ g()dc.
C Cs
Matemaatilise analiiiisi kursusest teame mitmeid parameetrist soltuva-
te paratute integraalide omadusi®. Et need omadused kehtivad ka komp-
leksmuutuja korral, saab toestada analoogiliselt voi siis arvestades asjaolu,
et integraal kompleksmuutuja funktsioonist on esitatav kahe reaalmuutuja

funktsiooni integraalide kaudu. Vaatleme paari omadust, mida vajame hil-
jem Laplace’i teisenduse juures (jaotis 10).

Teoreem 3. Olgu I tikati sile lopmatu joon ming olgu lisaks teoreemsi 1
tingimustele 2) ja 3) tdidetud tingimus:

4) integraal (4.1) koondub tihtlaselt igas kinnises piirkonnas D' C D.

*Kangro, G. Matemaatiline analiits II, Tln., 1968, 1k. 240-246.
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Sel juhul on funktsioon F' regqulaarne piirkonnas D.

Teoreem 4. Kui lisaks teoreemi 1 tingimustele integraal (4.2) koondub iht-
laselt piirkonnas D' C D, siis kehtib valem (4.2).

Need teoreemid toestatakse analoogiliselt teoreemidega 1 ja 2, kusjuures
integreerimisjarjekorra muutmine on niitid lubatud vastavate paratute integ-
raalide tihtlase koonduvuse tottu.

Ulesanded

1. Naidata, et seosega

[0.9]
I'(z) = /tzfle*tdt
0

madratud Euleri I'-funktsioon on regulaarne pooltasandis Rez > 0.



5. ANALUUTILISED FUNKTSIOONID

5.1. KOMPLEKSLIIKMETEGA READ

Vaatleme ridu

Zuk:uo—l—ul—i—...—l-uk—l—...; (5.1)
k

mille lilkmeteks on kompleksarvud wuy = aj + ibg. Rida (5.1) nimetatakse
koonduvaks, kui koondub tema osasummade jada, s.t. eksisteerib piirvéar-
tus

n
lim = lim =G5.
n=300 kz—:() Uk = 1 Sn =125

Et aga

n

n n n
Sn=Y up=> (ap+iby) = > ar+iy by =A,+iBy,
k=0 k=0 k=0 k=0

siis
lim S, = lim A, +i lim B,.
n—0o0 n—o0 n—0o0

Sellest ndeme, et rida (5.1) koondub parajasti siis, kui koonduvad read Zak
k

ja Zbk. Need on reaalsete liikmetega read, mille koonduvuseks on tarvilik,
k

et limag = limbg, = 0. Seega voib ka rida (5.1) koonduda vaid siis, kui
lim ug = lim (ay +ibg) = 0.
k—o0

k—o00

Kui rea osasummade jada ei koondu, siis nimetatakse rida hajuvaks.
Koos reaga (5.1) vaadeldakse ka rida

Z|uk]:]u0|+|u1|+...+|ukl+... (52)
k

91
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Kui rida (5.2) on koonduv, siis nimetatakse rida (5.1) absoluutselt koondu-
vaks. Rea absoluutset koonduvust saab kindlaks teha matemaatilise analiiiisi
kursusest tuntud positiivsete liitkmetega ridade koonduvustunnuste abil, sest
rida (5.2) on positiivsete litkmetega.

Osutub, et rida (5.1) koondub absoluutselt parajasti siis, kui read Zak

ja Zbk on absoluutselt koonduvad. Tépselt samuti kui reaalsete liikmete-

ga ridade korral saab Cauchy kriteeriumi abil nédidata, et rea absoluutsest
koonduvusest jareldub tema tavaline koonduvus.

Ulesanded
1. Uurida ridade Zun koonduvust, kui
1+4+in

n
b) u, = cossinn,

a) U, =

) cosn—+isinn
c) Up = ——F—.
n2

Vastus.  a) koondub absoluutselt,
b) hajub,

c¢) koondub absoluutselt.

5.2. FUNKTSIONAALREAD

Nii kompleksmuutuja funktsioonide omaduste uurimise kui ka nende ra-
kenduste vaatlemise seisukohalt huvitavad meid eeskatt funktsionaalread

Zk:uk(z):uo(z)+u1(z)+...+uk(z)+.... (5.1)

Kui fikseerime muutuja z vddrtuse, siis saame reast (5.1) arvrea.
Olgu ug(z) (k=0,1,...) miaratud piirkonnas D. Me nimetame rida (5.1)

koonduvaks punktis zyp € D, kui koondub arvrida » u(z0). Rida (5.1)

nimetatakse koonduvaks piirkonnaks D, kui ta koondub piirkonna D igas
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punktis. Analoogiliselt defineeritakse rea (5.1) absoluutne koonduvus mingis
punktis zg € D ning piirkonnas D.

Téhistame rea (5.1) osasumma siimboliga Sy, (z). Funktsionaalrea koon-
dumine piirkonnas D tdhendab, et iga z € D puhul eksisteerib nh_)rgo Sn(2).
Téahistame

w= f(z)= lim S,(2).

n—00

Seega voime 6elda, et piirkonnas D koonduva rea summa méérab selles piir-
konnas tihese funktsiooni. Méarkides seda fakti, itleme, et rida (5.1) koondub
funktsiooniks f.

Kui arvestame rea koonduvuse ning jada piirvadrtuse moisteid, voiksime

piirkonnas D funktsiooniks f koonduva rea Zuk(z) definitsiooni esitada
jargmiselt.
Oeldakse, et rida Zuk(z) koondub funktsiooniks f piirkonnas D, kui iga

z € D ja iga € >0 puhul leidub seline naturaalarv N (e,z), nii et

[f(2) = Sn(2)] <e

igan> N (g, z) puhul.
Analoogiliselt sellele defineeritakse ka rea iihtlane koonduvus.
Oeldakse, et rida Zuk(z) koondub tihtlaselt funktsiooniks f piirkonnas D,

kui € > 0 puhul leidub selline naturaalarv N(e), nii et

|f(z) = Sn(z)] <e

iga z € D jan > N () puhul.

Vorreldes iihtlase koonduvuse ja tavalise koonduvuse definitsioone, mér-
kame, et tavalise koonduvuse puhul ei nouta arvu N soltumatust punktis z.
Uhtlase koonduvuse puhul néutakse aga, et iga e korral voib naturaalarv N
valida soltumatuna punktist z, s.t. kogu piirkonna jaoks iihtlasena.

Nagu matemaatilise analtitisi kursuses, nii ka siin saab toestada jargmise
teoreemi.

Teoreem 1. Kui piirkonnas D tihtlaselt koonduva rea litkmed on pidevad
punktis 2y, siis on ka rea summa selles punktis pidev.

Rea iihtlase koonduvuse médramiseks kasutatakse sageli jargmist
Weierstrassi tunnust.
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Teoreem 2. Kui funktsionaalrea Y uy(z) litkmed rahuldavad vorratust

k

lug(z)| <ar (k=0,1,...) (5.2)

iga z € D puhul ning rida Zak on koonduv, siis koondub see funktsionaalrida

tihtlaselt piirkonnas D.

Téestus. Vorratuse (5.2) ning positiivsete liikmetega ridade vordlusteoreemi
pohjal saame, et vaadeldav funktsionaalrida koondub absoluutselt igas punk-
tis z € D . Seega maarab tema summa seal funktsiooni f. Kui tahistame rea
osasumma stumboliga Sy, (z), siis

1f(2) = Sn(2)| = | fat1(2) + frsa(z) +..| <
< frt1(2)[+ [ fs2(2)[+ - Sanpr+anga+..

Et aga rida Zak on koonduv, siis saame siit, et vastavalt arvule € > 0 leidub
niisugune N (g), millest suuremate n vaartuste puhul
|f(2) = Sn(2)| < aps1+anta+... <eiga z korral.

Seega koondub rida » uy(z) ihtlaselt.

Jérgnevas vaatleme tihtlaselt koonduvate ridade liikmeti diferentseerimist
ja integreerimist. Vastavate kiisimuste selgitamiseks esitame kaks jargnevat
teoreemi.

Teoreem 3. Kui rida Zuk(z) koondub thtlaselt piirkonnas D, siis iga piir-

konda D kuuluva joone C puhul

/ (Z Uk(Z)) dz = Z/Uk(Z) dz. (5.3)
c \k ko

Toestus. Margime rea summa stiimboliga f(z). Vorduse (5.3) toestamiseks
peame naitama, et

lim kz:/uk(z)dz:/f(z)dz (5.4)
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Selleks valime vastavalt suvalisele arvule € >0 naturaalarvu N, et iga n > N
jaiga z € D puhul

|f(2) = Sn(2)|= ‘f(z)— zn:uk(z) <t
k=0

kus s on joone C' pikkus. Sel juhul

HICEE

C

5
—S=¢c.
S

f(z)dz— zn: up(z)dz| =
Vol k=0

Saadud vorratus néitab seose (5.4) kehtivust, millega teoreem ongi toestatud.

Teoreem 4. Olgu funktsioonid uy (k=0,1,...) requlaarsed tokestatud piir-
konnas D ning pidevad kuni rajajooneni C'. Kui rida Zuk(z) koondub 1ihtal-

selt rajajoonel C', siis

1) see rida koondub ka piirkonnas D ning rea summa f(z) mddrab seal
requlaarse funktsiooni;

2) tuletistest moodustatud read Zuk ) (1=1,2,...) koonduvad piirkon-

k
nas D, kusjuures

Y (2) =)
k

Toestus. 1) Olgu z suvaline punkt piirkonnast D ning £ suvaline punkt ra-
jajoonelt C. Siis |£ — z| > 0. Seega, iga fikseeritud z korral koondub rida

Z ————uy (&) thtlaselt rajajoonel C'. Seda rida voib liikmeti integreeri-
2mi(§—z)

da, mistottu Cauchy valemi pohjal

ng / — dfzguw), (5.5)

millest jareldubki, et meie funktsionaalrida koondub iga z puhul. Olgu tema

summa f(z). Rajajoonel C on funktsioon w = f(&) =Y uy(§) pidev, mistottu
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seose (5.5) asemel voime kirjutada

Sup(€) 1 [ f(©)
= 2wz 210 A dg_mc[g—zdf’

Saadud tulemustest ndeme, et funktsioon f avaldub Cauchy tiiiipi integ-
raalina piirkonnas D ning on seetottu regulaarne.

2) Téiesti analoogiliselt eelnevaga toestame ridada ) ug) (z) koonduvuse,
k

1
vottes vaid £ — z asemel suuruse l—'(f — )
Teisest kiiljest, '

U uw(§) L U f€) _
Zuk C[(gk_zk)l“df—.c[(g_z)l“clg_f(l)(z).

2 211

Sellega ongi teoreem toestatud.

Asjasonastatud teoreemi tuntakse Weierstrassi teoreemina ning see
périneb aastast 1859.

5.3. ASTMEREAD

Koikidest funktsionaalridadest on erilise tdhtsusega astmeread
> en(z—a)", (5.1)
n

kus a ja ¢, (n=0,1,...) on konstandid. Juhul z = a vorduvad rea (5.1)
koik liikmed (peale esimese) nulliga ning astmerea summa on sel juhul co.
Jarelikult koondub iga astmerida (5.1) punktis a. Kas aga leidub ka teisi
z vaartusi, mille puhul rida (5.1) koondub, sellele annab vastuse jargmine
teoreem.

Cauchy—Hadamard’i teoreem. Astmerida (5.1) koondub ringis |z —a| <
1

R ja hajub piirkonnas |z —a| > R, kusjuures R = — ning p = lim {/|c,|.*

p

*Siimbol lim téhistab {ilemist piirvidrtust.
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Toestus. Vaatleme rea (5.1) koonduvust mingis fikseeritud punktis z.

1
1) Olgu |z —al] < R=—, s.t. p|z—a| < 1. Et aga
b

Jim {f|en(z—a)"| = plz—al, (5.2)
siis
Vlen(z—a)?| < qg<1, kui n>ng

ning ng on kiillalt suur. Saadud vorratuse ning positiivsete ridade vordlus-
teoreemi pohjal voime 6elda, et rida (5.1) koondub punktis z absoluutselt,

sest koondub geomeetriline rida » ¢" (0 < ¢ <1).

1
2) Kui aga |z —a| > R = —, siis seose (5.2) pohjal saame, et vorratus
b

Vlen(z—a)?| > 1

kehtib lopmata paljude n vaartuste korral. Viimase pohjal pole punktis z rea
(5.1) dldlitkme piirvédrtus null, mistottu rida ei saa koonduda selles punktis.
Seega vaadeldavas piirkonnas rida (5.1) hajub.

Markus. Cauchy-Hadamard’i teoreem on 6ige ka juhul, kui p =0 ja p = oc.
Neil kordadel vastavalt R = oo ja R=0.

Toestus. 1) Kui p =0, siis

.. n . . o
A, Vlen| = i, §/len =0.

Vottes mingi z vaédrtuse (z # a), ndeme, et kiillalt suurte n viéartuste korral

VI 9lz —al

Viimasest vorratusest aga jareldub, et

mis garanteerib rea (5.1) koonduvuse punktis z.
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2) Olgu p = co. Néitame, et sel juhul ei koondu rida (5.1) tiheski punktis
peale punkti z = a. Oletame vdite vastaselt, et rida (5.1) koondub punktis
20 # a. Sel juhul peaks Jim cn(z0—a)” =0, millest omakorda jarelduks, et
len(z0 — a)"| < M ehk teisiti

n V M
Vlen| < ———.
|20 — a
Et aga nh_)rlgo V' M =1, siis viimase vorratuse pohjal p # co. Selline jireldus on
aga vastuolus eeldusega. Saadud vastuolu iitlebki, et rida (5.1) ei saa koon-
duda punktis zp. Et zp oli suvaline (punktist a erinev) punkt, siis toepoolest
R=0.

Suurust R nimetatakse astmerea koonduvusraadiuseks ning ringi
|z —a] < R koonduvusringiks.

Millise iseloomuga on astmerea koonduvus oma koonduvusringis, seda
aitab selgitada jargmine teoreem.

Abeli I teoreem. Kui astmerida (5.1) koondub punktis zy, siis koondub
ta absoluutselt igas punktis z, mille puhul |z —a| < |zp — a|. Seejuures igas
kinnises ringis |z —a| < qlzo—a| (0 < q < 1) koondub vaadeldav rida tihtlaselt.

Téestus. Olgu rida Y ¢y, (20 —a)" koonduv. Sel juhul leidub M > 0, nii et

‘cn (zo—a)”‘ < M. Ringi |z —a| < q|20 — a| punktides

Cn(Zo—(l>n<Z_a>n

Z0—a

< Mq".

‘cn (z—a)n‘ =

Et rida ZM ¢" on vorratuste 0 < g < 1 tottu koonduv, siis Weierstrassi tun-

n
nuse pohjal on rida (5.1) tihtlaselt koonduv ringis |z — a| < ¢g|zp — a|. Samast
saame ka, et rida on absoluutselt koonduv selle ringi igas punktis.
Et iga z puhul, mis rahuldab tingimust |z — a| < |29 — al, voib leida reaal-
arvu ¢, nii et |z —al < q|z0—al ja 0 < ¢ < 1, siis on see teoreem sellega
toestatud.

Koonduvusringis méérab astmerida (rea summa) tithese funktsiooni, mis
osutub seal regulaarseks. Toepoolest, vottes mingi z vaartuse ringist |z — a| <
R saame ikka leida niisuguse reaalarvu, et vaadeldav z on ringi |z —a| < gR
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sisepunkt. Eelmise jaotise viimase teoreemi pohjal saamegi, et astmerea sum-
ma on vaadeldavas punktis regulaarne. Nimetatud teoreemi rakendamiseks
tuleb kaaesoleval juhul vaid votta piirkonnaks D valitud kinnine ring ning
panna tahele, et rea (5.1) liikmed on regulaarsed kogu komplekstasandil.
Astmerea (5.1) summana méaédratud funktsiooni tuletise saame eelmise
paragrahvi teoreemi 4 pohjal leida rea (5.1) liikmeti diferentseerimisel, s.t.

f(z)=> nep(z— a)" !

Osutub, et sel viisil saadud rea koonduvusraadius on vordne rea (5.1) omaga,

sest
lim {/|nc,| = lim {/|c,.
n—s00 [12¢n] n=300 | n|
Ulesanded

1. Leida astmeridade koonduvusraadiused:

o0 n oo

DD ©) (241",

n=1 n=0
e.¢] n o0
b) > o f) > (cosin)z",
n=0 n n=0
0 oo
c) > n"", g) Y (n+a")".
n=1 n=0
o0
d) ZZ?WL’
n=0
Vastus. a) R=1, e) R=1/3,
b) R = oo, f) R=1]e,
1
c) R=0, g) R=1, kui |a\<1;R:ﬂ,
a
d) R=1, kui |a| > 1.

2. Leida jargmiste ridade koonduvuspiirkonnad:
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e 02 (5) 2 ()

n=0 n=1 <

£
Y

o~ n X (z+1)" X n?+5
b) > e 6)272 : 2 -
= (z—1+1) =30 (n+1) = (241)
= 1 <4+31)”
c) -],
o2n+1\z—2i
Vastus.  a) |z—1] <2, d) 2<|z| <3,
b) |z =141 >1,
c) |z—2i| > 5, e) 1<|z4+1|<3.
(o.¢)
3. Naidata, et geomeetrilise rea Z 2" koonduvuspiirkonnaks on tihikring
n=0

ning tema summaks
—z

5.4. TAYLORI RIDA

Astmerida
Z cn(z—a)"

nimetatakse funktsiooni w = f(z) Taylori reaks punktis a, kui

(n=0,1,...).

Teoreem 1. Iga astmerida on oma summa Taylori rida.

Toestus. Olgu
() =Y enlz—a)". (5.1)

Vottes z = a, saame, et ¢g = f(a). Kui rida (5.1) liikmeti diferentseerida
ning votta seejirel z = a, saame, et ¢; = f’(a). Teistkordsel diferentseerimisel

saaksime co = 3 f"(a) jne. sellega olemegi tdestanud teoreemi 1.
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&

Joonis 5.1

Teoreemist 1 jareldub, et funktsiooni voib vaid iihesel viisil arendada ast-
mereaks punktis a. Me iitleme, et funktsioon f on punktis a arendatav ast-
mereaks, kui leidub selline R > 0, nii et vordus (5.1) kehtib ringis |z —a| < R.
Funktsiooni f nimetatakse analiiiitiliseks punktis z = a, kui ta on selles
punktis arendatav astmereaks. Eelmise jaotise viimase teoreemi pohjal saa-
me, et iga vaadeldavas punktis analiiiitiline funktsioon on seal ka regulaarne.
Jérgnevas naitame vastupidist.

Teoreem 2. Punktis a requlaarne funktsioon f on selles punktis analiitiline,
kusjuures funktsiooni f Taylori rida (punktis a) koondub suurimas ringis
|z —a| < R, milles f on regulaarne.

Toestus. 1) Néitame, et f on analtiitiline piirkonna D suvalises punktis a,
kus D on funktsiooni f regulaarsuse piirkond. Téhistame tédhega d punkti
a kauguse piirkonna D rajajoonest (vt. joon. 5.1). Votame timber punkti a
ringjoone C', mille raadius r < d. Olgu z suvaline punkt valitud ringist. Sel
juhul |z —a| = gr, kus 0 < ¢ < 1. Cauchy valemi pohjal voime kirjutada, et

1) = [ H

Funktsiooni f reaksarendamiseks kasutame seost

1 1 1 1

(-2 (—a—(z—a) :1—% —a

:ciaicizyzié:ﬁi’

k=0 k=0
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sest eelduse kohaselt

z—a| qr
=—= 1.
(—a r <
Asjasaadud reaksarenduse pohjal voime kirjutada, et
IO (S k
— = — 22— (z—a)". 5.2
2mi( — 2z kz_:o27ri (¢ —a)ktl (z-a) (52)

See rida osutub tihtlaselt koonduvaks ringjoonel C. Téepoolest, kui ¢ € C,
siis

L f©)

W Mrtg _ M
271 (C — )t (~a)

S op okl T 27T7‘q ’

kus M = max | f(C)]- Seega on rida (5.2) Weierstrassi tunnuse pohjal tihtlaselt
€

koonduv ringjoonel C' ning me voime teda liikmeti integreerida. Seda tehes
saame, et

f<Z>=21m/f<(C_)d§§[1-/ f(Q)d¢ ]«Z_a)k:i%(z_a)k,

k+1

kus

1 / f(Qd¢  f®(a)
27 ) (C—a)ktt kI

Sellega olemegi toestanud, et funktsioon w = f(z) on punkti a imbruses
(ringis |z —a| < r) arendatav Taylori reaks, s.t. on analiititiline punktis a.

2) Toestuse kaigus nigime, et r < d, kusjuures r vois olla kui tahes 14-
hedane suurusele d. On selge, et r ei saa olla suurem kui d, sest vastasel
korral saaksime, et funktsioon f on regulaarne ringis, mis ulatub véljaspoo-
le piirkonda D. Seda aga ei saa olla, sest D oli funktsiooni f regulaarsuse
piirkond.

Sellega on meie teoreem toestatud.

Mdrkus 1. Asjatoestatu pohjal saame méirata funktsiooni w = f(z) Taylori
rea koonduvusraadiuse ilma seda rida ennast leidmata. Nimelt: funktsioo-
ni f Taylori rea (punktis z = a) koonduvusraadius on vordne punkti z = a
kaugusega ldhimast isedrasest punktist, s.t. punktist, kus f pole requlaarne.
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Markus 2. Funktsiooni f Taylori rea koonduvusringi rajajoonel |z —a| = R
leidub punkte, kus f pole regulaarne. Toepoolest, kui f oleks regulaarne igas
selle ringjoone punktis ¢, siis leiduks ring |z — (| < r¢, kus f on regulaarne.

Téahistades r = IgliélTC, saaksime, et f on regulaarne ringis |z —a| < R+r.
€

Siis aga peaks funktsiooni f Taylori rida koonduma ringis raadiusega R+ r.
Saadud vastuolu toestabki véite.

Ulesanded

1. Arendada jargmised funktsioonid Taylori reaks ja méaarata nende ridade
koonduvuspiirkonnad:

a) w=e* punktis a =1,

1
b) w= — punktides a = —1 ja a = 2.
z

oo
1
Vastus. a) e“=e>_ m(z—l)”, |z —1] < o0,

n=0

1 [e.e]
b) =Y (n+1)(z+1)", |z+1] <1

z n=0

1 1X Z2—2\"

22\:42(—1)”(n+1)< ) |z —2| <2.
n=0

z

a) w = coshz; cos(—1
e) w= [ ——d(;
b) w = sin? z; ) 0/ ¢ ‘
z
¢) W= 50— z
25 —2245 f) w:/sinCQdQ.
d) w=Arctanz (Arctan(0=0); 0

Leida saadud ridade koonduvusraadiused.
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0 Liu_m)k_(l“i)kzk, R— 5.

k
k=1 D
00 Z2n+1
d —1)" 2 R=1,
) HZ:O< ) 2n+1
00 (_1>n 22n+1
e , R=o0,
) n; (2n)! 2n+1
00 —1)" 4n+3
( ) & = OQ.

) nz::()@n—l— Dldn+3’

3. Leida jérgmiste avaldistega maaratud funktsioonide Taylori rea (fikseeri-
tud punktis a) koonduvusraadiused:

1 z—2
5 =0 d) ==
a) 2z+3’ “ ’ ) ez 41’
b) Vz+i, a=1, )
) Veosz, a=0, ) @ty T

a=0,

Vastus. a) R=3/2,b) R=+/2,¢) R=7/2,d) R=m,¢) R=1.

5.5. ANALUUTILISTE FUNKTSIOONIDE AIN-
SUSE TEOREEM

Me teame, et murdlineaarne funktsioon on iitheselt méaratud, kui on tea-
da selle funktsiooni vadrtused kolmes punktis. Seda seetottu, et iga murd-
lineaarne funktsioon maaratakse kolme iiksteisest soltumatu parameetriga
(kordajaga). Lineaarsel funktsioonil on neid kaks, mistottu ta on méaaratud
oma vaidrtustega kahes punktis. Et analiiiitilist funktsiooni esitab astmerida,
millel on I6pmata palju kordajaid, siis ndhtavasti saab analiititilist funktsioo-
ni titheselt méarata vaid sel juhul, kui on teada selle funktsiooni vaartused
lopmata paljudes punktides. Osutub aga, et sellest veel ei piisa.

Ndide 1. Kogu tasandil analiititilised funktsioonid w =sinz ja w = g(z) =0
on vordsed l6pmatul punktihulgal {0,£7m,£27,...}, kuid need funktsioonid
pole vordsed koikjal.

Kehtib aga jargmine analiiiitiliste funktsioonide ainsuse teoreem.
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Teoreem. Kui piirkonnas D on analiititilised funktsioonid f ja g vordsed sel-
le piirkonna lopmatul punktihulgal E, millel on vihemalt tiks kuhjumispunkt
piirkonnas D, siis need funktsioonid tihtivad kogu piirkonnas D.

Toestus. 1) Olgu piirkonnaks D ring |z —a| < R ning olgu hulga E kuhju-
mispunktiks punkt a. Olgu veel

Valime niisuguste punktide zp € E jada, mille korral f(z;) = g(zx) ning
lim 2, =a.
k—o0

Arvestades funktsioonide f ja g vordsust hulgal E, voime kirjutada, et

o o0

Y en(zr—a)" = bp(zp—a)"

n=0 n=0
Kui ldheme viimases vorduses piirile summa mérgi all (seda voime teha, sest
piirkonna D mis tahes sisemises kinnises ringis koondub astmerida iihtlaselt),
siis saame, et cg = by. Seega kehtib vordus

ez —a)" =Y bu(zp—a)™.
n=1 n=1

Jagades viimase vorduse vahega zi — a ning seejarel korrates eelnevat mot-
tekaiku, saame, et c¢; = by. Niiviisi jark-jargult edasi minnes saaksime mis
tahes indeksi m korral nédidata, et ¢, = by,. Seega on vaadeldavate astmeri-
dade kordajad vordsed, mistottu on vordsed ka funktsioonid f ja g.

2) Olgu nitud D suvaline piirkond ning F C D lopmatu hulk, kus f(z) =
g(2). Punkt a € D olgu hulga E kuhjumispunkt.

Fikseerime hulgas D suvalise punkti z ning néitame, et ka selles punktis
f(2) = g(z). Selleks ithendame punktid a ja z piirkonda D kuuluva joonega
C'. (vt. joon. 5.2). Votame timber punkti a mingi ringi, mis kuulub taielikult
piirkonda D. See sisaldab 16pmata palju hulga F punkte, sest punkt a on
hulga F kuhjumispunkt. Seega toestuse esimese osa pohjal tihtivad funkt-
sioonid f ja g selles ringis. Jarelikult kuulub see ring tervikuna hulke E. Oli
ju viimane nende punktide hulk, kus f(z) ja g(z) thtivad.
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Joonis 5.2

Valime niitid joonel C' punkti a;, mis kuulub eelnevas vaadeldud ringi (vt.
joon. 5.2). Ka aj on hulga FE kuhjumispunkt ning me voime oma méttekéiku
korrata, vottes punkti a asemel punkti a;. Jargnevalt valime punkti as jne.,
kuni saavutame olukorra, kus selliselt valitud ring sisaldab punkti z. Niiviisi
nideme 16puks, et vaadeldavad funktsioonid w = f(z) ja w = g(z) on vord-
sed selles fikseeritud punktis z. Punkti z suvalisuse tottu olemegi tdestanud
funktsioonide w = f(z) ja w = g(z) vordsuse kogu piirkonnas D.

Jareldus. Matemaatilise analitisi kursuses saadi jargmised reaksarendused:

2 o0 N

T

z _ ll Ny

e —1+x+2!+...—nz;0n!, 00 < T < 00,
3 5 00 2n+1

. T -

sinz =z 3!—1—5! ...—nzz:o( 1) Gnr ) 00 < T < 00,
2 4 o0 2

. _1yn _
cosw =1— 5+ 7 ...—nzzo( 1) n)l 00 < I < 00.

Need reaksarendused on oiged ka vastavate kompleksmuutuja funktsioonide
puhul, kui x asendada muutujaga z.

Seda voime viita seetottu, et astmeridadega

N 00 " Z2n+1 00 " 2’2"
=, R [ —— —1
T;)n! nzzo( ) (2n+1)! T;)( ) (2n)!

maaratud funktsioonid langevad kokku vastavalt funktsioonidega w = e*, w =
sin z ja w = cos z lopmatul punktihulgal (reaalteljel), millel on kuhjumispunkt
(mistahes reaalarv).
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Analoogiliselt saame, et koik matemaatilise analtitisi kursusest tuntud
reaksarendused on oiged ka vastavate kompleksmuutuja funktsioonide voi
nende iiheste harude korral.

Eelnevas vaatlesime funktsioone (w = e®, w =sinz ja w = cosz), mille
Taylori read koonduvad kogu komplekstasandil. Niisuguseid funktsioone ni-
metatakse taisfunktsioonideks. On selge, et taisfunktsioonid on regulaar-
sed kogu komplekstasandil ning seega kehtib nende kohta Liouville’i teoreem.
Sellest jareldub, et kompleksmuutuja funktsioonid w = sin z ja w = cos z pole
tokestatud, nagu nad on seda reaalmuutuja korral.

5.6. ANALUUTILISE FUNKTSIOONI NULLKO-
HAD

Punkti zp nimetatakse funktsiooni f nullkohaks, kui f(zp) = 0. Kui aga

f(z0) = f'(z0) = ... = f" D(z) =0

ning f"(z9) # 0, siis nimetatakse punkti zp n-jairku nullkohaks. Sellest
definitsioonist jareldub, et punkt zg on analiiiitilise funktsiooni f n-jarku
nullkoht parajasti siis, kui

f(z)=(z—20)"[bo+bi(z—20)+...], (5.1)

kus bg # 0. Valemist (5.1) saame kergesti nn. L’Hospitali reegli

L fE) ) 52)

=mag(z)  g™(a)’

kui punkt a on n-jarku nullkoht funktsioonile g ning vihemalt n-jéarku null-
koht funktsioonile f. Toepoolest, nendel eeldustel

F2) = (e — )0+ br (s 20+ ]
9(z)=(z—a)"[do+di(z—24)+...], do#0.

Kui arvestame, et punkti a teatavas iimbruses koonduvad nurksulgudes
seisvad read iihtlaselt, mistottu voime minna piirile igas liidetavas eraldi,
jéreldubki nendest vordustest valem (5.2).

Eelmises jaotises toestatud ainsuse teoreemi pohjal saame moningast in-
formatsiooni analiititilise funktsiooni f nullkohtade hulga kohta, kui vordleme
seda funktsiooni teise analiiiitilise funktsiooniga w = ¢(z) = 0.
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Teoreem. Mittekonstantsel analiditilisel funktsioonil w = f(z) on igas kin-
nises ja tokestatud piirkonnas tlimalt loplik arv nullkohts.

Téestus. Toepoolest, kui funktsioonil w = f(z) oleks vaadeldavas kinnises
ja tokestatud piirkonnas lopmatu arv nullkohti, siis oleks viimastel Bolzano—
Weierstrassi teoreemi pohjal kuhjumispunkt vaadeldavas piirkonnas. Ainsuse
teoreemi pohjal peaks siis f(z) = 0.

Jareldus. Mittekonstantse analiititilise funktsiooni f nullkohtade hulk on 4ili-
malt loenduv.

Toestus. Olgu D funktsiooni f analiiiitilisuse piirkond. Vaatleme kinniseid
hulki £, € D (n =1,2,...), mille rajade kaugused piirkonna D rajast on
vastavalt 1/n. Igas hulgas F, on vaid 1oplik arv funktsiooni f nullkohti.
Seega saab neid kogu piirkonnas olla iilimalt loenduv hulk'.

Asjatdestatud omadustest jireldub, et analiiiitilise funktsiooni nullkohad
on isoleeritud, s.t. iga nullkoha puhul leidub iimbrus, mis ei sisalda teisi null-

kohti.
Ulesanded

1. Punkti b nimetatakse funktsiooni f A-punktiks, kui f(b) = A. Néidata,
et igas tokestatud kinnises piirkonnas on analiititilisel funktsioonil vaid
l16plik arv A-punkte.

2. Toestada, et analiiiitilise funktsiooni A-punktide hulk on tlimalt loen-
duv.

3. Leida jargmiste avaldistega maaratud funktsioonide nullkohad ja nende

jark:
a) 2244, d sin3 2
) :
2
b) zsinz, e) sinz,
¢) sin’z, f) (24 e*)3.

Vastus.  a) esimest jarku nullkohad 2i ja —2i,

TKui piirkonna D raja sisaldab ka lopmatuspunkti, loeme punkti z kauguse lopmatus-
punktist vordseks punkti % kaugusega nullpunktist.
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b) teist jarku nullkoht 0, esimest jéarku nullkohad k7m (k= +1,£2,...),
¢) kolmandat jarku nullkohad kr (k=0,£1,£2,...),

d) kolmandat jarku nullkoht 0, esimest jarku nullkohad Vkr ja
1
5\3//<;7r(—1j:1\/§) (k=+1,%42,...),

1 1
e) kolmandat jérku nullkohad §ln2+i(§ +k)r (k=0,£1,£2,...).

5.7. TEHTED ANALUUTILISTE FUNKTSIOONI-
DEGA

[ga analiiiitilist funktsiooni esitab vaadeldava punkti z = a timbruses seal
koonduv astmerida

> en(z—a)™

Edaspidi vaatleme lihtsuse mottes juhtu, kus a = 0. Sel juhul saame null-
punkti iimbruses analiiiitilised funktsioonid. Olgu meil kaks sellist funktsioo-
ni:

w=f(z)= zn:cnzn, (5.1)
w=g(z)= zn:bnz”, (5.2)

Ridade (5.1) ja (5.2) koonduvusraadiused olgu vastavalt r ja R, kusjuures
r< R.

Rea koonduvuse definitsioonist jargneb vahetult, et funktsioonide f ja g
summale vastav astmerida

Z(cn +bp,)2" = Zdnzn

n

koondub ringis |z| < r. Analoogilise tulemuse saame ka vahe f — g puhul.
Korrutist f(z)g(z) esitab astmerida (ridade korrutis)

n
> hp2", kus by = cibn_k. (5.3)
n k=0
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Et read (5.1) ja (5.2) on absoluutselt koonduvad ringis |z| < r, siis on seda
ka rida (5.3).

Osutub, et kui g(0) # 0, on jagatis w = f(z)/g(z) nullpunktis analiititiline.
Toepoolest,

f(z)  coterzte+...

g(2)  bo+biztbez?4 ... =0t g1z+ g7+,
s.t.
cot+crzteat . =(go+giz+...)(bo+brz+...).
Ridade korrutise definitsiooni arvestades saame kordajate gg,g1,... madra-

miseks jargmised seosed

bogo = co,
bog1 +b1go = c1,
.................. (5.4)

Nendest seostest saame jark-jargult leida koik otsitavad kordajad gz, kui

bo = go #0.
Vottes f(z) =1, st. co=1jac, =0 (k=1,2,3,...), saame seoste (5.4)

pohjal leida funktsiooni w = —(z) reaksarenduse.
Vaatleme 16puks rida ) f,(2), mille liitkmeteks on ringis |z| < r analiiii-

tilised funktsioonid

fu(z) = Z cnkzk.
k

Koondugu rida > f,(z) kinnises ringis |z| < ¢ < r iihtlaselt. Sel juhul esitab
tema summa f(z) funktsiooni ringis |z| < o. Seega

f(Z) = i)fn(z) = io: io: anzk = kio: akzk.
n= =0

n=0k=0

Naitame, et

oo
ag = Y Cnk,
n=0
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s.t., et reas
(o Sl ¢)
>3 cnns
n=0k=0

voib vahetada summeerimisjarjekorda. Selles vaites sisaldub nn. Weierstrassi
teoreem topeltridade kohta. Selle digsuses veendumiseks paneme koigepealt

tdahele, et rida Z axz" on funktsiooni f Taylori rida. Seega
k=0

A0
k!
Et aga jaotise 5.2 teoreemi (4) pohjal

M) =P &
A :zo :zocnk’a

siis sellega ongi meie véide toestatud.

ap = (k:O,l,...).

Ulesanded
eZ z
1. Leida €* +cosz, ¢* —cos z, 1, ja reaksarendused punktis a =0
—z° chz
ja maarata saadud ridade koonduvuspiirkonnad.
Vastus.
i 22n+1 i Z4n
e“4cosz=» ——+2 . |z| < o0,
“=h (2n+1)! = (4n)!
o] 2n+1 o] Z4n—|—2
z
e*—cosz = |z| < o0,

74_2 —_—
nZ::O(Zn—l—l)! nz::()(éln—i-Z)!
> 1

eZ oo n
1_227;) ZH < ’Z‘<17

e” :1+Z+§g2n+1
chz = n+l

s T
kus gop 41 = o+ Z (n—k)+1s |Z|<§,

2. Leida topeltridade teoreemi pohjal jargmiste avaldiste reaksarendused
(esimesed liikmed kuni astmeni z?) punktis a = 0:
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a) ezsinz C) (1+Z)z:ezln1+z
1 d eliz’
b) sinl_z, e) In(1+¢€*),
4
9 z
Vastus. a) 1+z +§+...,

1 5
b) sin1+zcosl+(cosl—2sin1> z2—|—<6cosl—sin1) 2+

.y

S [Z (Zj)]

n:1 k:l
11 1
d) In24+ —z+ 22— A4 .
) 24 get gzt — gt
1 5
e) 1+22 -840

2 6

5.8. ANALUUTILINE JATKAMINE

Me defineerisime analiiiitilise funktsiooni kui astmerea summana esitatava
funktsiooni. Et aga astmerida koondub tldjuhul vaid teatavas 16pliku raadiu-
sega ringis, siis saame astmerea abil defineerida analtititilist funktsiooni vaid
lokaalses mottes. Naiteks astmerida » 2" koondub vaid ringis |z| < 1 ning
jarelikult defineerib ta analiititilise funktsiooni vaid seal. Teiselt poolt: selle
astmerea summa (1 — z) ™! maérab regulaarse (siis ka analitiitilise) funktsioo-
ni kogu komplekstasandil, vilja arvatud punkt z = 1. Seega tekib probleem,
kuidas defineerida analiititiline funktsioon globaalses mottes, lahtudes definit-
sioonist lokaalses mottes astmerea abil. Astmerea summat (nagu vaadeldud
néites) me sel eesmérgil kasutada ei saa, sest tildjuhul pole meil astmerea
summa jaoks teist avaldist (esitist) peale astmerea enda. Piistitatud problee-
mile annab lahenduse analiiiitilise jatkamise moiste.

Olgu funktsioonid w = f1(2) ja w = fo(2) analiitilised vastavalt piirkon-
dades Dy ja Do ning D1N Dy =0. Olgu f1(z) = f2(2) iga z € D1N Dy puhul.
Sel juhul deldakse, et fo on funktsiooni fi1 wvahetuks analittiliseks jdatkuks
piirkonnast Dy piirkonda D2 Ainsuse teoreemi pohjal on selline analiititiline
jatk tiheselt maaratud.

Ndide. Vaatleme analiutilisi funktsioone

w=fi(z) =3 2" || <1(=Du),
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ja

1

w=fal2) =

;(Z_i)n, z—i| < V2 (= Dy).

1-1

Et iga z € Dy puhul fi(z) = ja iga z € Do puhul

1—=z2

1 1 1

1—11—% 1—2

fa(2)
ning D1 N Dy =, siis on fy funktsiooni fi analiiiitiliseks jatkuks ja vastupidi.

Ulesanded

1. Arvestades vastavaid seoseid reaalse argumendi korral, naidata, et
kompleksse z korral kehtivad jargmised seosed:

a) shz+chz=e?, ¢) sin2z = 2sinzcosz,

b) ch?z—sh?z =1, d) sin (;—z) = CoS 2.

2. Niidata, et funktsioon w = f(z) = (1+2%)71, 2 # 1, on funktsiooni

o0

w=g(z) = (=1)"z*"

n=0

analiititiliseks jatkuks.

3. Leida funktsiooni w = In z analiititiline jétk tilemisest pooltasandist alu-
misse iile reaaltelje negatiivse osa. Veenduda, et saadud jatk erineb
alumises pooltasandis funktsioonist w = In z.

Vastus. w = 1Inz 4+ 27i.

4. Arvestades, et iga x > 0 puhul kehtib seos I'(z + 1) = zI'(x), toestada
sama seose kehtivus kogu parempoolses pooltasandis Rez > 0.
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P

%

Joonis 5.3

5.9. ANALUUTILINE JATKAMINE ASTMERIDA-

DE ABIL
Olgu meil analtittiline funktsioon
w=f(z)=>Y _cn2", |z| < (5.1)
n

Valime ringis |z| < r mingi punkti a ning arendame funktsiooni f selles punk-
tis astmereaks. Sel juhul saame

w=fi1(z) = an(z —a)", (5.2)

kus

b= 100 _ 5 <k> cxat .

n=~k n

Margime rea (5.1) kooduvusraadiuse siimboliga 1. On selge, et 71 > r —
la|. Kui r; =r—|a| (vt. joon...), pole funktsioon w = f(z) regulaarne punktis
P ning uus funktsioon w = f1(z) ei ole miaratud tiheski punktis véljaspool
esialgset ringi |z| <.

Kui aga 1 > r —|al|, siis w = f1(2) defineerib funktsiooni f analiiiitili-
se jatku valjaspoole ringi |z| < r. On aga selge, et sellisel viisil me ei saa
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funktsiooni analtiitiliselt jatkata korraga eriti kaugele, sest r1 > r+ |a| < 2r.
Viimane seos tuleneb sellest, et iga astmerea koonduvusringi rajajoonel asub
vihemalt tiks punkt, kus vastav funktsioon pole regulaarne.

Olles nittid saanud analiiiitilise jatku w = f1(z), voime seda protsessi edasi
teostada, vottes ringis |z —a| < r1 uue punkti b. Sellist protsessi voiksime
jatkata senikaua, kui see on voimalik.

Oletame, et me oleme oma funktsiooni (5.2) jatkanud kdikjale, nii pal-
ju kui iildse voimalik. Sel viisil oleme laiendanud funktsiooni f definitsiooni
ringist |z| < r mingisse piirkonda D ja saanud uue funktsiooni F', mis on
méaratud piirkonnas D. Viimanekoosneb jatkamisel saadud ringidest. Teisi-
ti deldes: piirkond D on teatavate ringide (lahtiste hulkade) tihend (seega ka
lahtine). Kui niitid osutub, et itheski punktis zg € D ei ole voimalik funkstioo-
ni F' arendada ritta, mis koonduks ka véljaspool piirkonda D, siis 6eldakse,
et D on funktsiooni f loomulik olemasolu piirkond.

Naide 1. Funktsiooni
> |
w=f(z)= 2"

n=0

loomulikuks olemasolu piirkonnaks on iihikring |z| < 1. Selle naitamiseks
veendume, et ithikringjoone |z| =1 tiheski punktis pole funktsioon f regu-
laarne, mistottu teda pole voimalik jétkata iile iihikringjoone. Toodud véite
toestuseks piisab néitamisest, et |f(z)| — oo, kui z ldheneb thikringjoonele

piki mistahes raadiust, millele vastav polaarnurk ¢ = ]—927r (p ja g on taisar-
q

vud). Kui z kuulub nimetatud raadiusele, siis

2 = re2™7/a,
Sel juhul

f(Z) _ Z Tn!e%rinlp/q‘

n

Et aga n > ¢ puhul Pt on taisarv, siis
q

! 1 27in! =
f(Z) _ Z ,rn.627rm.P/q + Z 7m.)
n=0 n=q
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Joonis 5.4
millest
>0 | q_l |
f()] = =1 2"
n=q n=0

Saadud vorratusest ndemegi, et | f(z)| — oo, kui r — 1. Et punktid z = ¢?™""/s

katavad tihikringjoone tihedalt, siis selgubki, et jatkamine véljapoole iihikrin-
gi pole voimalik, sest vastasel korral peaks leiduma tihikringjoonel terve kaar,
kus f on regulaarne. Me nédgime, et nende punktide hulk, kus funktsiooni f
piirvaartus on l6pmatus, on tihe ringjoonel |z| = 1. Sellest aga jareldub, et f
pole regulaarne itheski tihikringjoone punktis.

Vaadeldud néites niagime, et funktsiooni f defineeriv astmerida ei koon-
dunud theski iihikringjoone punktis ning vastav funktsioon ei olnud jatka-
tav véaljapoole tihikringi. Osutub aga, et astmerida voib kill hajuda igas
ithikringjoone punktis, kuid ometi on talle vastav funktsioon jatkatav vélja-
poole tihikringi.

Niide 2. Olgu w = f(z) =) _2". Kui z = el?, siis 2" = 1. Seega ei koondu
n

rida » 2" itheski punktis z = e'?. sest rea ildliikme piirvidrtus pole null.
n

Ometi aga on see funktsioon jatkatav kogu komplekstasandile, véilja arvatud
punkt z = 1.

Sageli teostatakse analiiiitilist jatkamist piki mingit joont C' laienda-
des sel viisil analiititilise funktsiooni definitsiooni punktist a punktini b (vt.
joon. 5.4). Niisuguse protsessiga kohtume juba siis, kui toestame analiititiliste
funktsioonide ainsuse teoreemi.

Ulesanded
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n

1. Funktsioon w = f(z) = ZZ— olgu arendatud astmereaks punktis z =
n

n
1
——. Millisesse piirkonda saame sel juhul funktsiooni f analiiiitilise jat-

ku?
3

1
Vastus. —| < —.
astus 2—1—2’ 5

2. Toestada, et funktsioonid
w=f(z)=14az+a?2>+...
ja

1 (1—a)* (1—a)?z?
RS T s L s

on teineteise suhtes analiiiitilisteks jatkudeks.

3. Toestada, et funktsiooni
w=f(z)=3 2"
n
loomulikuks olemasolu piirkonnaks on tihikring.

5.10. GLOBAALSELT DEFINEERITUD
ANALUUTILINE FUNKTSIOON

Vaatleme mingit piirkondade ahelat Dy, Da, ..., D, (vt. joon 5.5), kus selle
ahela igal kahel jarjestikusel piirkonnad Dy ja Dy tihisosa Dy N Dy ei ole
tithi hulk. Igas piirkonnas Dy, olgu antud analiiitiline funktsioon w = fi(2),
kusjuures fi(z) = fre1(2), kui z € DN Dgyq. Sel juhul oeldakse, et f,
on funktsiooni f; analiiiitiliseks jatkuks piki piirkonade ahelat. De-
fineerides piirkonnas D = UDj, analiiiitilise funktsiooni w = F'(z) vordustega
F(z) = fr(2), kui z € Dy, saame, et funktsioon F' on analiititiliseks jatkuks
igale funktsioonile f1, fa,..., fn. Igatliht neist analiiiitilistest funktsioonidest
fi, f2,..., fn nimetatakse analiiiitilise funktsiooni F' elemendiks.

Funktsioon F', mille me niisugusel analiiiitilisel jatkamisel saame, osutub
tildjuhul mitmeseks, sest selle ahela eri piirkondadel (mitte tiksnes jarjesti-
kustel) voib olla ithiseid punkte, kus vastavad funktsioonid ei tarvitse tihtida.
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Joonis 5.5

Lepime kokku, et kleebime selle ahela eri piirkonnad kokku nendes osades,
kus vastavad funktsioonid on koik vordsed ning jatame kokku kleepimata
seal, kus vdhemalt kaks on omavahel erinevad (f;j(z) # fm(2)). Sel viisil saa-
me mingi mitmelehelise Riemanni pinna.

Ndéide. Lahtume funktsiooni w = v/z astmereast punktis z = 1 kui analiiii-
tilise funktsiooni elemendist ning jitkame teda piki ringjoont |z| = 1. Iga
uue elemendi puhul on vastava rea koonduvusraadius vordne ithega (kaugus
punktist 0 kui punktist, kus w = /2 pole regulaarne). On selge, et mingi
1opliku arvu sammude jérel jouame funktsioonielemendini, millele vastaval
koonduvusringil on iithiseid punkte lahteks olnud funktsioonielemendi omaga
(vt. joon. 5.6). Nendes tihistes punktides pole aga vaadeldavate elementide
vaartused vordsed (ruutjuure eri harude véértused).

Funktsiooni F', mille saame. kui jatkame analiititilist funktsiooni w = f,,
z € Dy piki koikvoimalikke ahelaid, nimetatakse taielikuks analiiiitiliseks
funktsiooniks ning viimase médramispiirkonda (mingit Riemanni pinda)
selle taieliku analiititilise funktsiooni loomulikuks olemasolu piirkon-
naks. Vaadeldes madramispiirkonnana selle mitmese Riemanni pinna iiksi-
kuid lehti, saame eraldada vaadeldava mitmese analiiiitilise funktsiooni tihe-
sed harud.

Punkte, mis kuuluvad analiiiitilise funktsiooni loomulikku olemasolu piir-
konda voi selle rajale, nimetatakse selle funktsiooni isedrasteks punkti-
deks, kui selles punktis on rikutud kasvoi tihte selle funktsiooni haru regu-
laarsus.

-1
Ndide. Funktsioonile w = (\‘72 + 1) on punkt z =1 isedraseks punktiks,
sest selles punktis pole maaratud iiks vaadeldava funktsiooni neljast harust
(nimelt see, mille puhul v1 = —1).
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Joonis 5.6

5.11. SUMMEETRIAPRINTSIIP

Eelnevates jaotistes vaatlesime analiiiitilist jatkamist astmeridade abil.
Selle praktiline teostus on aga sageli tisna tiilikas. Seetottu pakub huvi ka
teine analiiiitilise jatkamise moodus, mis rajaneb nn. siimmeetriaprintsiibile.
Enne aga toestame teoreemi, mida tuntakse pidevusprintsiibina.

Teoreem 1. Olgu funktsioonid fi ja fa analititilised vastavalt piirkondades
D1 ja Dy millel on dihine rajajoone osa C'. Kui need funktsioonid on pidevad
kuni rajani C ning f1(z) = fa(2) iga z € C puhul, siis on need funktsioonid
teineteisele analiititilisteks jatkudesks

Toestus. Defineerime funktsiooni

f1(2>, kuiz€D1
w=f(2) =4 fa(2), kuize D
fi(z) = fa(z), kuizeC.

Teoreemi 1 toestuseks kasutame Morera teoreemi. Selleks peame naitama, et
integraal funktsioonist f iile mistahes kinnise joone, mis kuulub piirkonda

D=DiuDyuC

(vt. joon. 5.7), vordub nulliga. Kui see kinnine joon kuulub téielikult iihte
ossa (kas piirkonda D v6i Do), siis on vastav integraal toepoolest null, sest
funktsioonid f; ja fo on analiiiitilised ja kehtib Cauchy teoreem.

Vaatleme juhtu, kus mingi kinnine joon kuulub osaliselt piirkonda Dy,
osaliselt piirkonda Ds. Joone vastavad osad margime stimbolitega C7 ja Cs.
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Joonis 5.7

Sel juhul

/ f(z)dz:/f(z)dz+ff(z)dz+ff(z)dz+/f(z)dz:
ct A B 2

Ccl+C?
B A
= /f1(2)d2+/f1(z)dz + /f2(2)d2+/f2(z)dz =0,
@ A B Cs

sest Cauchy teoreemi pohjal vorduvad molemad loogelistes sulgudes seisvad
avaldised nullidega.

Asjatdestatud teoreemi pohjal tdestame niiiid jargmise teoreemi, mida
nimetatakse Riemanni—Schwarzi stimmeetriaprintsiibiks.

Teoreem 2. Olgu w = f(z) requlaarne piirkonnas D, mille rajajoon sisaldab
reaaltelje loigu L. Olgu f pidev kuni loiguni L. Kui funktsioonil f on loigu
L punktides reaalarvulised vdadrtused, siis on voimalik funktsiooni f jdtkata
analiititiliselt piirkonda Dy, mis on stimmeetriline piirkonnaga D reaaltelje
suhtes. See analiititiline jatk on esitatav kujul

w="F(z) = f(2).

(Kui piirkondadel D ja D;p on iihiseid punkte, siis ei tarvitse funktsioonidel
f ja F vaartused nendes punktides iihtida.)

Toestus. Vastavalt pidevusprintsiibile peame naitama, et F' on regulaarne
piirkonnas Dy, pidev kuni 16iguni L ning et F(2) = f(2) iga z € L puhul.
Regulaarsuse naitamiseks piisab selle funktsiooni diferentseeruvuse naita-
misest. Tuletis aga eksisteerib igas punktis a € D1, sest eksisteerib piirvaartus
i PO=F@ _ o TE-T@ _ (f(Z) - f(a)> .
z—a z—a Z—a zZ—a z—a

zZ—a
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Joonis 5.8

Et a € D (vt. joon. 5.8), siis viimane suurus eksisteerib ning seega eksis-
teerib ka F'(a).
Pidevus kuni loiguni L jareldub seosest

[F(z1) = F(2)| = [f(z1) = f(2)].

Kui z € L, siis Z = z ning f(z) = f(z). Seega iga z € L puhul

F(z2)=f(z) = [(2) = ().
Teoreem on sellega toestatud.

Midrkus 3. Arvestades murdlineaarse funktsiooni omadusi voiksime toestada,
et teoreem 2 on iildistatav juhule, kus 16igu L asemel on suvaline ringjoone
kaar S ning funktsiooni vaartused kaarel S kuuluvad mingile teisele ringjoone
kaarele.

Mdrkus 4. Funktsiooni F definitsioonist jareldub, et funktsioonid f ja F
kujutavad vastavalt piirkonnad D ja D; piirkondadeks, mis on simmeetrilised
reaaltelje suhtes.
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6. ANALUUTILISE FUNKTSIOONI
ISEARASED PUNKTID

6.1. ISOLEERITUD ISEARASED PUNKTID

Analtttilise funktsiooni f isedraseks ehk singulaarseks punktiks ni-
metatakse iga punkti zg, kus f pole iihel voi teisel pohjusel regulaarne. Kui
leidub isedrase punkti zg niisugune timbrus, kus pole teisi isedraseid punkte
peale punkti 2, siis nimetatakse vaadeldavat punkti isoleeritud isedraseks
punktiks. Kui selles iimbruses 0 < |z — z9| < R on vaadaldav funktsioon f
ithene, siis 6eldakse, et punkt zg on these iseloomuga isedrane punkt. Niisu-

guse punkti néiteks on nullpunkt funktsioonile w = fi(z) = —. Seevastu aga
z

funktsiooni w = v/z puhul on nullpunkt hoopiski teist laadi isedraseks punk-
tiks, ta on hargnemispunkt. Viimasel juhul 6eldakse, et isedrasel punkti on
mitmene iseloom. Selliseid isedrasusi me kiesolevas raamatus ei vaatle.

Vaatleme jargnevalt niisuguseid isedraseid punkte, mille puhul leidub piir-
kond 0 < |z — 29| < R, kus w = f(z) on regulaarne. Niisuguste isoleeritud sin-
gulaarsete punktide juures eristame kolme tiiiipi isearasusi, olenevalt sellest,
kuidas vaadeldava punkti iimbruses kaitub funktsioon f.

Punkti zg nimetatakse funktsiooni f korvaldatavaks isedraseks punk-
tiks, kui eksisteerib 16plik piirvadrtus

lim = A.

Z—20

Punkti zg nimetatakse funktsiooni f pooluseks, kui

Jim )= o0

Punkti zp nimetatakse funktsiooni f oluliselt isedraseks punktiks, kui
funktsioonil f pole selles punktiks ei loplikku ega lopmatut piirvadrtust.

_ sin(2)

Ndide 1. Vaatleme funktsiooni w = f(2) . Selle funktsiooni ainsaks

isedraseks punktiks on nullpunkt. Et aga lirr(l) f(z) =1, siis on vaadeldav punkt
zZ—r

sellele funktsioonile korvaldatav isedrane punkt.

123
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. . . az+b .
Ndide 2. Murdlineaarse funktsiooni w = n isedraseks punktiks — poolu-
cz
d
seks on zp = ——.
c

Ndide 3. Nullpunkt on isedraseks punktiks ka funktsioonile w = e'*. Kui z

laheneb nullile nii, et ta on positiivne, siis — — +00 ning e'* = +o0. Kui aga
z

1
z laheneb nullile reaaltelje negatiivselt poolelt, siis — — —oo0 ning e'? 0.
z

Vaadeldav punkt on seega oluliselt isedrane punkt.

Niisuguste isoleeritud punktide taielikumaks uurimiseks on meil vaja ana-
liiitilist aparatuuri, mis voimaldaks esitada regulaarset funktsioon piirkon-
nas 0 < |z — zg| < R. Sellise aparatuuri annab jargmises jaotises vaadedav
Laurent’i rida.

Ulesanded

1. Toestada, et kui z = a on funktsioonide w = f(z) ja w = g(z) isoleeritud
iseparane punkt, siis on ta seda ka funktsioonidele w = f(2)+ g(z) ja

w = f(2)g(2).

2. Olgu funktsioonil w = f(z) korvaldatav katkevus punktis a. Naidata, et
sel juhul on punkt a funktsioonile w = f(2) + g(2) sama liiki isoleeritud
iseparaseks punktiks, nagu ta on funktsioonile w = g(z).

6.2. LAURENT’I RIDA

Olgu funktsioon w = f(z) regulaarne rongas r < |z —a| < R (erijuhul r =0
ja R =00). Votame selles rongas kaks ringjoont C ja Co (vt. joon. 6.1). Olgu
need ringjooned valitud nii, et vaadeldav punkt asub nende vahel. Meie jaoks
on oluline, et joontel C ja Cy on funktsioon pidev ning me voime rakendada
joontega C' ja (9 piiratud piirkonna jaoks Cauchy valemit. Viimase pohjal

f(z):;mcf fC(C_)ciC 10/ fC(C_)ciC’ (6.1)

- 2mi
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Joonis 6.1

Kui ¢ € (1, siis < 1, ning me saame, et

S T S S S
<—Z_C—CL—(Z—CL)_z—aﬁzf_g_l'_kz_:o(z_@kz—i—l'

Saadud rida osutub iihtlaselt koonduvaks joonel C] ning ta on seda ka péarast

1
korrutamist teguriga o f(¢), mistottu
i

2m/ (—z O{le/f(é)(éa)kdélm. (6.2)
C1 ol

- < 1 ning

z
Kui aga ¢ € Cy, siis

k

> (z—a)
C z::C ak+1

Analoogiliset eelnevaga saame siis, et

e R s o
Cs
Tahistades

i — a)k+1
27 /. (—a)
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k 1
— d k=1,2,... 6.5
kzm/f af Tl (k=1.2,...) (6.5)
saame seoste (6.2) ja (6.3) pohjal, et
k=0 k=0 k:1
oo
= Z Ck(z_a)ka
k=—00

kui g =ap (k=0,1,...) ning ¢y =b_p (k=-1,-2,...). Et Cauchy teo-
reemi pohjal (mitmelisidusate piirkondade puhul) voime valemites (6.4) ja
(6.5) ringjooned C] ja Cy asendada nende vahel asuva ringjoonega C| mille
keskpunkt on punktis a, siis suuruste ¢; definitsiooni kohaselt

1 fQd
_/( (k=0,4£1,£2,...). (6.6)

27i — q)k+1
mcC a)

Seega kehtib vaadeldava ronga r < |z —a| < R igas punktis z seos

oo

flz)= > alz—a), (6.7)

k=—00
kus kordajad ¢ avalduvad valemiga (6.6). Rida (6.7) nimetatakse Laurent’d
reaks, kusjuures mittenegatiivsete astendajatega liikmete summat

[e.9]

fiz) =3 ep(z—a)*

k=0

nimetatakse Laurent’i rea korraparaseks osaks. Negatiivsete astendajatega
liilmete summat

fa(z) = _Zoock z—a Z

k=—1 k=1

Z—(Z

nimetage Laurent’i rea peaosaks. Erijuhul, kui peaosa vordub nulliga, saame
Laurent’i reast Taylori rea.

Et korraparane osa on astmerida, siis tema koonduvuspiirkonnaks on ring
|z —a| < R, mis ulatub punktist a kuni funktsiooni w = fi(z) (siis ka funkt-
siooni w = f(2) , sest w = f1(2) + f2(2)) ldhima isedrase punktini. Mis puutub
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peaosasse, siis see on astmerida suuruse ¢ = (z — a)_l suhtes ning koondub
mingis ringis || < 1/r, s.t. piirkonnas |z —a| > r. Raadiust r v6ib vihendada
senikaua, kuni piirkond |z —a| > r ei sisalda iihtegi fo isedrast punkti. Vii-
mane on ka funktsiooni f isedrane punkt. Seega on funktsiooni f Laurent’i
rea (6.7) koonduvuspiirkonnaks maksimaalne rongas r < |z —a| < R, kus f
on regulaarne.

Naitame niitid, et Laurent’i reaksarendus on tihene. Teisiti 0eldes, kui rida

o0

3 ck(z—a)® (6.8)

k=—o00

koondub mingis rongas r < |z —a| < R, siis on ta seal oma summa Laurent’i
rida.
Toepoolest, avaldises

io: cr(z—a)k = ick(z—a)kvLi %
k=—00 k=0 o (z—a)

koonduvad viimased read vastavalt piirkondades |z —a| < R ja |z —a| > .
Seega on real (6.8) mote vaid juhul, kui » < R. Sel juhul méérab rida (6.8)

oma summana teatava funktsiooni f. Abeli 1. teooremi kohaselt koondub rida
(0. 9]

> ep(z— a) tihtlaselt igas kinnises ringis |z —a| < Ry < R. Sama teoreemi
k=0

oo
pohjal koondub teine rida Y c_g(z — a)~* iihtlaselt igas kinnises piirkonnas
k=1
(|z—al)™' <1/r1 < 1/r, s.t. piirkonnas |z —a| > 71 > 7. Seega koondub rida
(6.8) tihtlaselt igas kinnises ,rongas“ r < <|z—a| < Ry < R.
Votame niiiid mingi ringjoone |z —al =0 (r1 < 0 < Rp). Et rida (6.8)
koondub iihtlaselt sellel ringjoonel, siis voib avaldist

L& — L i Ck(g_a)k—n—l

. 1 -
2mi (¢ —a)"tt 27, £

(f(z) téhistab rea (6.8) summat) liikmeti integreerida iile ringjoone |¢ —
a| = o (lihilduse mottes méargime viimase siimboliga C'). Vaadeldava avaldise
parema poole liikmete integreerimisel saame ¢, s.t.

1 / f(¢)d¢

T T N+l n+1: n-.
7T10 ((—a)
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Toepoolest, et

Jc—aymac=

C

{0, kui m # —1,

2m, kuim=-—1,

siis viimase rea liikmeti integreerimisel saame nullist erineva tulemuse —27i
vaid sel juhul kui k —n—1= -1, s.t. k=n.

Saadud tulemustest selgub, et rea (6.8) kordajad on selle rea summa suh-
tes Laurent’i rea kordajad, See aga iitlebki, et funktsiooni voib Laurent’i
reaks arendada vaid iihesel viisil.

Sellel tosiasjal on suur praktiline tédhtsus. Niitid me ei tarvitse kasutada
valemeid (6.6), kui tahame funktsiooni arendada Laurent’i reaks (valemis
(6.6) esineva integraali arvutamine on enamasti viga tiilikas), sest sageli
onnestub leida rida (6.8) hoopis lihtsamate vahenditega. Kui saame rea, mis
teatavas ,rongas“ koondub vaadeldavaks funktsiooniks, siis voime viita, et
saadu ongi selle funktsiooni Laurent’i rida. Illustreerime iilaloeldut néitega.

Ndide. Vaatleme funktsiooni

3

MEAR A PP

arendamist Laurent’i reaks z astmete jargi (sel juhul a = 0). Et funktsioonil
f on kaks isedrast punkti z;1 =1 ja 29 = —2, siis on voimalik valida kolm
erinevat piirkonda (,rongast“): |z| <1, 1 <|z| <2 ja |z| > 2. Need on kolm
,rongast”, milleks jagatakse tasand ringjoontega, mis ldbivad funktsiooni f
isedraseid punkte ning mille keskpunkt asub nullpunktis.

Laurent’i rea saamiseks esitame f(z) kui ratsionaalse murru osamurdude
summana:

3 1 1

IO = ey ~ 221 42

[ga vaadeldava ,,ronga‘ puhul teisendame need osamurrud selliselt, et meil
oleks tegemist geomeetrilise rea summaga. Niisuguse meetodiga saame iga
ratsionaalset funktsiooni arendada Laurent’i reaks tikskoik millises ,,rongas®.

1. Vaatleme piirkonda |z| < 1. Sel juhul

2—1:_1—22_22k (6.9)
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ning

k k+1
1 :_11:_1§<_Z) :i<_1) 2% (6.10)
z+2 21+2z/2 2\ 2 o\ 2

Seega saime, et vaadeldavas piirkonnas

Saadud rida osutub astmereaks. See on ka loomulik, sest piirkonnas
|z| <1 on meie funktsioon regulaarne ning seega analtiitiline.

. Olgu nitiid 1 < |z] < 2. Ka sel juhul on reaksarendus (6.10) odige, sest
g < 1. Ei kehti aga (6.9), sest antud juhul |z| > 1. Siin saame, et

1 1 1 100(1

2—1:;1—1:7Z

= z

z k=0 <

) =Y =2 (6.11)
k=0~ k=1~

Seega, piirkonnas 1 < |z| < 2 kehtib valem

Saadud rida on tiitpiline Laurent’i rida.

1
. Olgu lopuks |z| > 2. Siis ’ < 1, mistottu kehtib seos (6.11). Ei kehti
z

aga (6.10), sest

’;‘ > 1. Antud juhul

111 1%( 2>’f_i(—2)k—1
242 z1+2 B '

Seega saame, et |z| > 2 puhul

© 14+ (_2)k—1
2k '

f(z) =

k=1

Saime, et sel korral koosneb Laurent’i rida vaid oma peaosast.
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Kui valemi (6.6) puhul tdhistame ringjoone C' raadiuse tdhega o, siis
saame, et

f(Q)d¢ M2 M
|C |_‘27T1/( S

C—a)k+11 = opph+l ™ oF’

kus M = nclaxl f(¢Q)]. Asjasaadud vorratusest
€s

M
ek < — (k=0,£1,£2,...)
0
nimetatkse Laurenti’i rea kordajate Cauchy vorratuseks.

Ulesanded

1. Arendada jargmiste avaldistega méaaratud funktsioonid Laurent’i reaks
antud piirkondades:

1
-, O <1]j > 1
a) 20=2) < |7| ja|z| > 1,

222245
(z—2)(22+1)’
) 22l 0<z] < o0,

d) V2 0<|z] < oo,

b) 0<|z—2|<1ljal<]z] <2,

1
e) sinzsin—, 0<|z| < o0.
z

(0. 9] 0. 9]
Vastus. a) Y 272 ja — > z—(nt3),
:0 =

1 o0 2 3 n+1_ 2_' n+1
b) H‘i‘inzo(—l)n( ) 5n+§ ) (z—2)", kusjuures r = /5, ja
0o [ © .

1

1
c) 2+z+z +27n+2)'z”’
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ISy O
d) "+ Y ez, ep= —_—
n=0 n=1 k:gkﬂ01+_kﬂ

> 1

o o0
2n —2n
e) Y e, ey = :

6.3. KORVALDATAV ISEARANE PUNKT

Olgu funktsioonil f punktis zy korvaldatav isearane punkt, s.t ZILH; f(z)=
0

A. Sellest jareldub, et funktsioon f on tokestatud (| f(z)| < M) teatavas piir-
konnas 0 < |z — 29| < r, mis ei sisalda teisi isedraseid punkte. Arendame funkt-
siooni f Laurent’i reaks selles piirkonnas (punkti zy imbruses):

oo

f(z)= Z ck(z—zo)k.

k=—00
Cauchy vorratuse pohjal saame, et

M _
‘Ck‘gizMQ k7

Qk
kus M on funktsioon f toke vaadeldavas piirkonnas. Et p voib olla kui tahes
véike, siis k < 0 korral saame, et ¢ = 0. Seega puudub vaadeldavas Laurent’i
reas peaosa.
Osutub, et see tulemus kehtib ka tmberp6ordult. Olgu 0 < |z — 2| < r
puhul

f(z)=cot+ci(z—z0)+... (1)
Minnes selles vorduses piirile (z — zp), saame, et

i (@) =co
s.t puntkis zg on korvaldatav isedrane punkt.
Me oleme seega toestanud jargmie teoreemi.

Teoreem. Funktsiooni f isoleeritud isedrane punkt zy on korvaldatav pa-
rajasti siis, kui vaadeldava punkti iimbruses funktsiooni f Laurent’i rida ei
stsalda peaosa.
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Markus 5. Kui f(z9) = cg, oleks funktsioon punktis zg regulaarne. Et aga
selles punktis on eelduse kohaselt korvaldatav katkevus, siis kas f(zp) pole
méadratud voi f(zp) # cop. Me voime selle isedrasuse ,korvaldada®, kui defi-
neerime f(zg) = ¢p. Siit jareldubki nimetus ,korvaldatav isedrane punkt*.

Markus 6. Oma teoreemi toestamisel ndgime, et kui isedrase punkti zg pu-
hul on funktsioon f mingis piirkonnas 0 < |z — 29| < r tokestatud, siis on
zo funktsioon korvaldatav isedrane punkt. Vastupidine jareldub korvaldata-
va isedrase punkti definitsioonist. Seega: isedrane punkt zy on funktsiooni
f korvaldatavaks isedrasuseks parajasti siis, kui f(z) on tokestatud mingis
piirkonnas 0 < |z — zg| < r.

1
Ndide. Olgu w = f(z) = —(e®* —1). Siin z = 0 on isedrane punkt. Et
z

0o Lk 2 .3
z _ _ J— - N
6_1_Zk! I=ztoptgrt
k=0
Siis
2 3
z z
f(Z):l—i-a—f‘g—F

Seega on antud funktsioonil korvaldatav isedrasus punktis z = 0.

6.4. POOLUSED JA NULLKOHAD

Kui punkt 2o on funktsiooni f poolus, siis vastavalt pooluse definitsioonile
lim f(z) = oo. Siit aga jareldub, et iga M > 0 puhul leidub piirkond 0 <

Z—20
|z — 20| < r, milles (|f(2)]) > M. Selles piirkonnas on siis funktsioon w =

g(z) = 1/f(z) regulaarne, kusjuures Zli_}ng()g(z) = 0. Defineerides g¢(zp) = 0,
saame, et w = g(z) on regulaarne ringis |z — zo| <r

Vastupidi, kui zp on regulaarse funktsiooni w = g(z) nullkoht, siis leidub
analiiiitiliste funktsioonide ainsuse teoreemi kohaselt piirkond 0 < |z — zp| <
r, milles pole teisi w = g(z) nullkohti. Selles piirkonnas on siis funktsioon
w = f(z) =1/g(2) regulaarne, kusjuures punktis zy on tal poolus.

Sellega on meil toestatud jargmine teoreem.

Teoreem 1. Funktsioonil w = f(z), mis on requlaarne piirkonnas 0 < |z —
20| <7, on punktis zo poolus parajasti, siis kui funktsioonil
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on selles punktis nullkoht.

Miirkus. Asjasonastatud teoreemi puhul loeme funktsioon g véirtuseks punk-
tis 2o tema piirvaartust selles punktis. Eeldame ka, et g pole samaselt null.
Kui zg on funktsiooni g k-jarku nullkoht, siis

B

9(2) = cr(z = 20)" + cpy1 (2 — 20)

=(z— zo)k[ck +epri(z—z20)+... ] =(2— zo)kgo(z),

kus p(29) = ¢ #0.
Funktsiooni w = g(z) = 1/ f(z) nullkoha jérku nimetatakse funktsiooni f
pooluse jarguks.

Teoreem 2. Isoleeritud isedrane punkti zg on funktsiooni f pooluseks pa-
rajasti siis, kui selle punkti imbruses vaadeldava funktsiooni Laurent’i rea
peasosa sisaldab vaid lopliku arvu litkmeid, s.t punkti zg tdimbruses kehtib va-
lem

fr) = —t 4+

_ _ n
(Z—20) +ceotcei(z—20)+...+ep(z—20)"+....

zZ— 20

Seejuures on suurim astendaja, mis esineb peasoas litkmete nimetajas, vordne
pooluse jarguga.

Toestus. 1. Olgu zg funktsiooni f k-jarku poolus. Sel juhul on funktsioonil
w=g(z) =1/f(2) k-jarku nullkoht punktis zp, s.t

w=g(2) = o = (2= 20)"0(2), kusp(20) # 0.

Viimase tingimuse tottu on funktsioon w =1/ f(z) analiiitiline punktis
zp, mistottu

Je)= (z—20)F p(z) (Z_ZO)k[b0+b1(Z—Zo)+...] =
b b by
— (Z_(;O)ML (z—,z;)kl +--~Zk_;0+bk+bk+1(z—zo)+.m

Saadud rida on funktsiooni w = f(z) Laurent’i rida punkti zp imbru-
ses. Tema peaosa sisaldab 16pliku arvu liikmeid. Tarvilikkus on seega
toestatud.
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2. Kehtigu mingis piirkonnas 0 < |z — zg| < r vordus

Gk 1
f(z)_i(z—zo)k+m+z—zo

+cotcer(z—z0)+....

Siit saame, et

1 B _ %2
f(z)= (z—2)F [c—k+epri(z—20)+...] = G—2)F
kus ¢(zg) # 0. Viimasest aga jareldub, et
z) = L z— )" !

kus w =1/p(2) on analtiiitiline punktis zp. Seega on 2y funktsiooni g k-
jarku nullkoht. Vastavalt teoreemile 7777 ning definitsioonile on punkt
2o funktsiooni f k-jarku poolus. Teoreem on sellega toestatud.

Ulesanded

1. Leida jargmiste avaldistega maéaratud funktsioonide poolused ja maéa-
rata nende jark:

1 1
ot d — -
2) 22 — 237 ) sinz —sina’
} ) 1
sin z e) ——
by omE 1+
) T e
f) 1 1
sindz e#—1 2z’
¢)
z(1—e=%)

Vastus. a) 0 — 2.jarku ja 1 — 1. jarku poolus; b) 4i — 2. jarku poolused; ¢) 0
1. jarku ja 2kmi (k= £1,42,...) - L. jirku poolused; d) kui a # (2m+ 1)%
(m=0,£1,...),slis 2 =2kn+ajaz=(2k+1)r—a (k=0,£1,...) on 1. jarku
poolused; kui a = (2m+ 1)%7 siis m = 2p korral on punktid z = 2k —i-g 2.
jarku poolused, m = 2p+ 1 korral on puntkid z = (2k7w + 1)7 + g 2. jarku
poolused; e) z = (2k + 1)%1 (k=0,£1,%£2,...) 1. jarku poolused; f) z = 2kni
(k=+1,%£2,...) 1. jarku poolused.
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6.5. OLULISELT ISEARANE PUNKT

Eelmises kahes jaotises saadud tulemusi arvestades voime 6elda, et kehtib
jargmine teoreem.

Teoreem. Isoleeritud isedrane punkt zg on funktsiooni f oluliselt isedrane
punt parajasti siis, kui funktsiooni f Laurent’i rea peasoa selle punkti imb-
ruses sisaldab lopmatu palju litkmeid.

Jargnevas toestame iihe teoreemi oluliselt isedraste punktide kohta, mis
aitab lahemalt iseloomustada funktsiooni kaitumist oluliselt isedrase punkti
iimbruses.

Sohhotski teoreem. Kui zg on funktsiooni [ oluliselt isedraseks punktiks,

siis leidub mis tahes kompleksarvu A (ka A = 00) puhul punktiks zy koonudv

jada (zp), mille puhul Jim f(zn) = A.

Toestus. 1) Olgu A =o00. Et f ei saa olla tokestatud itheski piirkonnas
0<|z—20< - (vastasel korral oleks zy korvaldatav isedrane punkt),

siis valime sellest piirkonnast punkti z,, mille puhul |f(z,)| < n. Siit
saamegi, et lim_ f(zn) = oc.

1
2) Olgu A # oo. Kui igas piirkonnas 0 < |z — 29| < — leidub punkte, kus
n
f(z) = A, siis ongi Sohhotski teoreemi viide ige. Kui aga leidub piir-
1
kond 0 < |z — 29| < N’ milles f(z) # A, siis on funktsioon
1
w=9(2) = 7~
flz)—A
regulaarne selles piirkonnas. Punkt zp on oluliselt isedrane punkt ka
funktsioonile w = ¢g(z), mistottu eelneva pohjal leidub punktiks zy koon-
duv jada (zy), mille puhul

nh_)rglog(zn) = 00.

Siit aga

. . 1
Jim flzn) = Jim [A“‘ g(Zn)] =A.

Teoreem on sellega toestatud.
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Ulesanded

1. Olgu funktsioonil w = f(z) punktis a n-jarku poolus. Néidata, et funk-
tioonil w = f(z) + g(z) on selles punktis m-jarku poolus (m > n) voi
oluliselt isedrane punkt soltuvalt sellest, kas see punkt on funktioonile
w = g(z) m-jarku poolus voi oluliselt isedrane punkt.

2. Selgitada toisasja, et kui z = a on funktsioonide f ja g oluliselt isedra-
ne punkt, siis summale f 4 ¢ voib ta olla korvaldatav isearane punkt,
poolus kui ka oluliselt isedrane punkt.

3. Olgu funktsioonil f m-jarku poolus ning funktioonil g kas n-jarku poo-
lus voi oluliselt isedrane punkt punktis a. Toestada, et sel juhul on
funktsioonil fg selles punktis kas (m+n)-jarku poolus voi oluliselt isa-
arane punkt.

4. Néaidata, et kui punkt z = a on funktioonide f ja g oluliselt isedra-
ne punkt, voib funktsioonil fg selles punktis olla iga liiki isoleeritud
isedrane punkt.

5. Olgu funktioon f analtiitiline piirkonnas 0 < |z —a| < r ning punkt
a funktsiooni f nullkohtade kuhjumispunkt. Néidata, et punkt a on
funktsiooni f oluliselt isedrane punkt juhul, kui see funktsioon pole
selles piirkonnas konstantne.

6.6. FUNKTSIOONI KAITUMINE LOPMATUS-
PUNKTIS

Kui funktsioon f on regulaarne mingis piirkonnas R < |z| < oo siis titleme,
et lopmatuspunkt on selle funktsiooni isoleeritud isedrane punkt. Defineeri-
me isedrasuse tiitibi lopmatuspunktis samuti kui l6plikus punktis. Soovides
leida kriteeriume (analoogilisi jaotistes 6.3—6.5 tooduile) isedrasuse tiiiibi

1
méaaramiseks teeme muutuja vahetuse z = — ning saame

f(2) = f @ — F(Q).

Et w= f(z) on regulaarne piirkonnas R < |z| < 00, siis w = F'({) on regulaarne
piirkonnas 0 < |¢| < — ning tal on seal sama liiki isedrasus, mis funktsioonil

w = f(z) lopmatuspunktis.
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Kui funktsioonil w = f(z) on 16pmatuspunktis isoleeritud isedrane punkt,
siis korvaldatava isedarasuse korral

f(z):F(C):co—kclg—i—...:co—i-%—i-...,

poolus puhul aga

= ckzk%—ck,lzk”_l +...F+cz+ Z Z;nn
n=0

ning oluliselt isearase punkti puhul

P = PO = X G Db = S e+ X S
k=1 n=1 n=0

Nendest reaksarendustest selgub, et lopmatuspunkti iimbruses moodus-
tavad rea peaosa positiivsete astendajatega liikmed ja korrapérase osa mit-
tepositiivsete astendajatega liikmed.

Kui funktsioonil f on 16pmatuspunktis korvaldatav isedrasus, siis definee-
rime f(o0) = Jim f(2) ja nimetame funktsiooni f regulaarseks l6pmatus-

punktis.

Teoreem. Kui funktsioon f on requlaarne tdaielikul komplekstasandil, siis ta
on konstantne.

Toestus. Regulaarsusest lopmatuspunktis jéreldub, et leiduvad konstant
M; > 0 ning piirkond |z| > R, kus

[f(2) < My

Et aga eelduse kohaselt on f regulaarne ka kinnises piirkonnas |z| < R, siis
on ta seal pidev ning seega tokestatud, s.t.

[f(2)] < M.

Vottes M = max(My, Ms), saame, et |f(z)| < M iga z puhul.
Seega saime, et funktsioon f on tokestatud kogu tasandil, mistottu Liou-
ville’i teoreemi pohjal on ta konstantne.

Toestatud teoreemist jareldub, et huvi pakuvad vaid need analiiiitilised
funkstioonid, millel on vahemalt iiks (kas siis 16plik v6i lopmatu) isedrane
punkt. Neid vaatlemegi lahemalt jargmises jaotises.
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Ulesanded

1. Kas saab jargmiste avaldistega méaaratud funktsioone arendada Lau-
rent’i reaks 16pmatuspunkti timbruses:

1 1

- In——
a) cos —, c) n——,
b) cotz, d) \/z(z—1)?

Vastus. a) jah, b) ei, c¢) ei, d) ja (molemate harude puhul)

2. Arendada funktsioon w =In i

a
2 Laurent’i reaks lopmatuspunkti imb-
ruses. =

00 pn _ gn
Vastus. Z

n=1

, kus |z| > max(|al, |b]).

6.7. LIHTSAMAD ANALUUTILISTE FUNKSTIOO-
NIDE KLASSID

Me teame, et kui w = f(z) on taisfunktsioon, siis rida
f(z) =) cnz" (6.1)
n

koondub kogu komplekstasandil, s.t. piirkonnas |z| < co. Seetottu voime rida
(6.1) vaadelda ka kui funktsiooni w = f(z) arendust Laurent’i reaks punktis
z = 00. Seda asjaolu silmas pidades saame Oelda jargmist:

1) kui tédisfunktsioon on regulaarne ka lopmatuspunktis, siis on ta kons-
tantne;

2) kui lopmatuspunkt on taisfunktsiooni pooluseks, siis on see funktsioon
poliinoom (t&isratsionaalne funktsioon);

3) kui lopmatuspunkt on oluliselt isedrane punkt funktsioonile w = f(z),
siis sisaldab rida (6.1) 1opmata palju liikmeid.

Viimasel juhul nimetatakse funktsiooni f taistranstsendentseks
funktsiooniks. Sellise funktsiooni nédideteks on w =€, w =sinz, w = cosz
jt.
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Funktsiooni f, millel kdik 1oplikus kauguses asuvad isedrased punktid on
poolused, nimetatakse meromorfseks. Osutub, et komplekstasandi igas lop-
likus ja kinnises osas voib meromorfsel funktsioonil olla vaid loplik arv poo-
luseid. Toepoolest, kui seal oleks 1opmata hulk pooluseid, siis oleks neil vahe-
malt tiks kuhjumishulk a. Viimane on selle funktsiooni isedrane punkt, sest
selles punktis ei saa funktsioonil olla 16plikku piirvdartust. Seega ei saa funkt-
sioon olla regulaarne oma pooluste kuhjumispunktis. Teiselt poolt: punkt a
ei ole poolus, sest poolus on isoleeritud isedrane punkt, mida aga pole punkt
a. Seega saame, et kui funktsioonil f oleks mingis loplikus ja kinnises piirkon-
nas I6pmatu hulk pooluseid, siis oleks tal 1oplikus kauguses veel iiks isedrane
punkt, mis pole poolus. Ent see on vastuolus meromorfse funktsiooni definit-
siooniga. Seega on meie véide toestatud.

Kogu komplekstasandil aga voib meromorfsel funktsioonil olla 16pmatu
hulk pooluseid (néiteks funktsioonidel w = tanz ja w = cot z).

Teoreem. Kui funktsiooni f koik isedrased punktid taielikul komplekstasandil
on poolused, on see funktsioon ratsionaalne.

Toestus. Margime koigepealt, et tehtud eeldustel on funktsioonil f vaid 16plik
arv pooluseid. Toéepoolest, kui neid oleks lopmata palju, siis oleks vihemalt
lopmatuspunkt nende kuhjumispunktiks, mistottu sellel funktsioonil oleks
taielikul tasandil ka teisi isearaseid punkte peale pooluste.

Olgu punktid ay,...,a, funktsiooni f poolused (loplikus kauguses asuvad
poolused). Nende pooluste timbruses olgu Laurent’i ridade peaosad vastavalt

B am al

g1(z) = (z—al)m+ +z—a1
B Cp cl

gn(2) C—ap T

Lopmatuspunkti iimbruses olgu funktsiooni f Laurent’i rea peaosa
g(z) =A1z+... + A1

(kui funktsioon f on regulaarne lopmatuspunktis, siis Ay =... = A, =0).
Vaatleme funktsiooni

w=h(z)= f(=)—g(=) - kz gul2).
=1
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See funktsioon on regulaarne igas 16plikus punktis z # a,, sest ta avaldub
lopliku arvu regulaarsete funktsioonide summana. Igas punktis z = az on tal
korvaldatav isedrane punkt, sest koikide nende puntkide timbruses puudub
funktsiooni h Laurent’i reaksarendistel peaosa. Toepoolest, punkti z = a;
timbruses on funktioonide w = f(z) ja w = gi(z) Laurent’i ridade peaosad
vordsed ning koik iilejadanud funktsioonid h avaldises peale nende funktsioo-
nide on regulaarsed punktis z = a;. Sama kehtib ka lopmatuspunkti korral.

Kui defineerida sobivalt funktsiooni h vaartused punktides z = aj (k =
1,2,...,n) ja z = oo, siis saame funktsiooni, mis on regulaarne téielikul ta-
sandil, s.t. h(z) = Ap. Seega

f(2)=Ag+9(2)+ > gr(z) = Ag+ A1z + Ax2® +
=1

Qa al
4 AL T
e Al o e T
+(z—an)1’+ +z—an

Saadud vordusest jareldubki meie teoreemi véaide, sest kui teostaksime
viimases avaldises vajalikud aritmeetilised tehted, ilmneks, et funktsioon f
avaldub kahe poliinoomi jagatisena, s.t. on ratsionaalne.

Mdrkus. Viimati saadud vordus néditab muuseas, et igat ratsionaalset funkt-
siooni on voimalik esitada selle taisosa ja osamurdude summana. Reaalsete
ratsionaalsete funktsioonide puhul vaadeldi seda esitist seoses ratsionaalsete
funktsioonide integreerimisega.
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7.1. RESIIDID

Kui funktsioon f on regulaarne puntki a mingis timbruses, siis kehtib
Cauchy teoreemi pohjal vordus

/f(z)dz:O
C

igas sellesse iimbrusesse kuuluva kinnise joone C' puhul. Kui aga punkt a
on isoleeritud isearane punkt, erineb selle integraali vaartus tldiselt nullist.
Osutub, et selle integraali vaédrtus ei soltu joone kujust. Oluline on vaid,
et joon C' ei holmaks funktsiooni f teisi isearaseid punkte peale punkti a.
Toepoolest, arendades funktsiooni f Laurent’i reaks piirkonnas 0 < |z —a| <
r, saame avaldise

o0 o0
C—n

fz)=> cp(z—a)"+ ) ——.
2 2 may
Et saadud rida koondub iihtlaselt joonel C', kui viimane kuulub iilalmérgitud
piirkonda, siis voime seda rida litkmeti integreerida iile joone C', mistottu

/f(z) dz = 2mic_q,
C

sest

/(z—a)mdz:

2mi,  kuim=—1.
C

{0, kui m # —1,

Saadud tulemustest selgub, et eriline tdhtsus on isoleeritud isedrase punkti
imbruses voetud Laurent’i rea kordajal c¢_1, mistottu on talle antud eriline
nimetus — resiid. Selle moiste t6i kompleksmuutuja funktsioonide teooriasse
Cauchy, kes naitas ka resiidi moistele mitmesuguseid rakendusi.

Hilisemal perioodil on resiidi méistet defineeritud mitmeti. Oma sisult on
need definitsioonid aga tihetahenduslikud. Et saavutada tihtsust nii loplike
punktide kui ka 16pmatuspunkti puhul, defineerime resiidi moiste jargmiselt.

141
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Funktsiooni [ resiidiks punktis a nimetatakse suurust
1
. d
res[f()ia] = 5~ C/ f(2)dz,

kus C' on punkti a niisugune imbruse rajajoon, mis isedrastest punktidest
stsaldab vaid punkti a.

Midrkus. Arvestades, et timbruse rajajoone positiivseks suunaks on see, mi-
da mooda liikudes iimbrus jadb vasakule, saame esitatud definitsioonist, et
lopliku a korral

reslf(2)ial =5 [ f2)d

|z—al|=r
ning lI6pmatuspunkti puhul

1
res|f(z);00] = 5 / f(z)dz.
|z|=R
On vahetult selge, et toodud definitsioon on sisuliselt samavaérne sellega,
et nimetada resiidiks kordajat c_;. Teiselt poolt on oluline mérkida erine-
vust, mis ilmneb lopliku ja lopmatuspunkti vahel. Kui z = a on loplik ning
funktsiooni f Laurent’i rea kordaja c_; = 0. Seega on resiid vordne nulliga
funktsiooni 16plikus kauguses asuva korvaldatava isedrase punkti suhtes. Kui
aga korvaldatavaks isedraseks punktiks on l6pmatuspunkt (sel juhul 6eldak-
se, et funktsioon on regulaarne l1opmatuspunktis), ei tarvitse resiid olla null.

Néiteks funktsiooni w = — puhul
z

1 1 1 1
res |:7ooj| = —— / 7dZ:—727T1:—1
z 2mi z 2mi
|z|=R

Oluline on rohutada, et 16pmatuspunkti puhul ei vordu resiid l1opmatus-
punkti iimbruses voetud Laurent’i rea

o0 [e.9]

fle)=> "+ 3, —-

n=0 n=

kordajaga c_1, vaid selle vastandvaartusega —c_1. Et sel juhul kuulub kor-
daja c_1 rea korrapérasesse ossa, ei tarvitse viimane vorduda nullliga, kui
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funktsioon on lopmatuspunktis regulaarne. Erandjuhtudel voib see siiski nii
olla, naiteks

1
res [2; oo} =0.
z
Arvestades resiidi moistet, voime Cauchy teoreemi tldistada resiidide

teooria pohiteoreemiks.

Teoreem. Kui funktioon f on requlaarne tokestatud piirkonnas D, wvilja
arvatud loplik arv punkte ay,aq,...,ay, ning pidev kuni selle piirkonna ra-
jajooneni C, siis

/f(z)dz = 2ri Zn: res[f(z);ag].
& k=1

Toestus. Eraldame koik isedrased punktid a; ringjoontega C}., mis omavahel
ei 16iku ega asu iiksteise sees. Ulejaddnud piirkonnas on f regulaarne ning
me voime kasutada Cauchy teoreemi mitmelisidusate piirkondade jaoks. Selle
pohjal
o

/f(z)dz => /f(z)dz

C k=1 ¢,
Arvestades resiidi definitsiooni, saame siit vahetult teoreemi véite.

Jareldus. Kui funktsioon f on regulaarne tdielikul komplekstasandil, vilja
arvatud loplik arv punkte, siis on tema resiidide summa koikide isedraste
punktide suhtes (kaasa arvatud lopmatuspunkt) vordne nulliga.

Toestus. Votame ringjoone |z| = R selliselt, et koik 1oplikus kauguses asuvad
isedrased punktid aj (k= 1,2,...,n) on selle ringjoonega holmatud. Asja-
toestatud teoreemi pohjal

n
2mi Y _res[f(2);ax) = / f(z)dz.
k=1 |2[=R
Teiselt poolt, definitsiooni pohjal
2mires|[f(z);00] = — / f(z)d=.
|z|=R

Nendest kahest vordusest jareldubki vaide.
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Ulesanded
1. Olgu h regulaarne punktis a ning h(a) # 0. Néidata, et punkt a on
funktsioonile
h(z
w=f()= 2
z—a

pooluseks ning res[f(z);a] = h(a)

2. Arvutada jargmised integraalid:

a) /sinldz, c) /z”ez/zdz (n on taisarv),
oi=r jel=r
1 -2
b) /Sin27dz, d) /5Zdz.
z (z—1)z
|2|=r |z[=2
2n+2

Vastus. a) 2mi, b) 0, ¢) mi(n>-1)ja0 (n<—1),d) 107i.

(n+1)!

7.2. RESIIDIDE ARVUTAMINE

a) Funktsiooni f esimest jarku pooluse z = a puhul kehtib valem

f(2) = =L +o(2),

zZ—aQ

kus ¢ on analiiiitiline punkt a timbruses. Sellest vordusest leiame, et

c_1 = (z—a)f(2) - (z—a)p(2),

millest saame (minnes piirile z — a) jirgmise valemi resiidi leidmiseks:

res|f(z);a] =c_1 = lim(z—a)f(z2), (7.1)

z—0

sest ;i_%(z—a)go(z) =0.
2

Ndide 1. Olgu f(z) = 1 Leiame res[f(z);2]. Saame, et

22—

2 2 2
z z z
res [z g ] im(z—2) im

=1.
2_ 2—2 224 252242
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Kui funktsioon avaldub kujul

f(z) = ;ZE; kus g(a) £0.

ning z = a on funktsiooni h esimest jarku nullkoht (seega on punkt a funkt-
siooni f esimest jarku poolus), siis

ol 1 9(2) _ . 9(2)
res|f(z);a] = ;gr}l(z—a)w = lim Z(fg :
Et aga
lim Mz) = lim Mz) = Ma) = h(a),

z—a zZ—a zZ—raQ zZ—a
siis saame siit valemi

9(2) | _ 9(a)
res [h(z)’a] = Wa)
Ndide 2. Olgu w = f(z) = cot z. Punktid z = kr (k=0,£1,42,...) on selle

funktsiooni esimest jérku poolusteks. Leiame nendes resiidid valemi (7.2)
pohjal:

(7.2)

COSs 2

res|cot z; km] = =1

(sinz)’|,_..

b) Olgu punkt z = a funktsiooni f korgemat jarku pooluseks. Ka sel ju-
hul saame suhteliselt lihtsa valemi resiidi leidmiseks. See valem osutub tildis-
tuseks valemile (7.1). Me teame, et funktsiooni f k-jarku pooluse a imbruses
kehtib seos
C_1 C_9 C_L
il o R prerd

kus ¢ on analiiiitiline vaadeldavas timbruses. Sellest seosest saame, et
(z—a)*f(2) = (z—a)*o(2) +c1(z—a) 4. +c_y.

Kui viimast seost diferentseerida k — 1 korda, siis saame vorduse

dk—l . dk—l .
Atz —a) f(2)] = g l(e = a)"p(2)] + (k= 1)le—y. (7.3)
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Et z = a on avaldisega (z —a)*¢(z) méératud funktsiooni suhtes vihemalt
k-jarku nullkoht, siis

dkfl k
;L%W[(Z —a)"p(2)] =0.

Viimast tulemust arvestades saame seose (7.3) pohjal jairgmise valemi:

k—1
sl (<)) = o1 = gy i o G~ () (1.0

Kui votta k = 1, siis saame valemist (7.4) valemi (7.1).

Niide 3. Leida funktsiooni w = f(2) = (22 +1)" resiid punktis z = i.
Vastavalt valemile (7.4) saame, et

. 1 dt N
res[f(z);i] = EEWW [(z—l) M]

IR dn—ll 1 ]
z=i(n—1)1dz""1 | (z+1)"
. noin(n+1)...(2n—2)
= lim (-1 (n—D)l(z+1)2n—1
(n+1)...(2n—2)
(n—1)!(2i)2n—1
Inn+1)...2n—2) 1

i (n—1)! 22n—1

- n—1 oi—2n
2n —2 '

¢) Vaatleme niitid juhtu, kus punkt a on funktsiooni f oluliselt isedrane
punkt. Sel juhul ei ole resiidi leidmiseks nii lihtsaid valemeid kui pooluste
korral. Oluliselt isearase punkti korral kasutatakse selleks enamikel juhtudel
Laurent’i rida vaadeldava punkti a imbruses. Viimase puhul on vaja maarata
vaid kordaja c_1. Sageli on seda kordajat suhteliselt lihtne leida.
z+1/z

— (-Z)n—l n

Ndide 4. Leida funktsiooni w =-e resiidid isedraste punktide suhtes. Et
vaadeldava funktsiooni isearaseks punktiks on punkt z = 0, siis tuleb leida
selle funktsiooni reaksarendus punkti z = 0 iimbruses. On aga teada, et

o0 n o 1

eZ:Z% ning el/Z:Z

n=0 """ n=0

nlzn’
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mistottu

Korrutades need kaks rida, saame 2! sisaldavad liikmed vaid juhul, kui
korrutame esimese rea esimese liikme teise rea teise liikmega, teise kolman-
daga, kolmanda nejandaga jne. Seega

> 1
C_1= — Q-
' %n!(n—i— 1)!

Sellega olemegi leidnud resiidi nullpunkti suhtes.
Teiseks isedraseks punktiks on z = co. Et rohkem isearaseid punkte pole,
siis saame eelmises jaotises toodud jarelduse pohjal, et

> 1
res[f(z);00] = —res[f(2);0] = —;m-

Analoogilisel viisil saab nii moénigi kord kasutada nimetatud jareldust
resiidide leidmiseks.
d) Ménel juhul resiidi leidmine lihtsustub, kui peame silmas seoseid

ves(f () + g(2);a] = res[f (); ] +reslg(2);a] ja
ves{kf ();a] = kres[f (2);a),

mis jarelduvad vahetult resiidi definitsioonist.

1+ez
z+1 z+1

Ndide 5. Leida funktsiooni w = cos resiidid tema isedraste punk-

tide suhtes.

Sel juhul on isedraseks punktiks z = —1, mis esimese liidetava suhtes on
oluliselt isedrane punkt ning teise suhtes esimest jarku poolus. Viimase korral
saame, et

e” e”
res | ——;—1| = ——+
z+1 (z+1)
Mis puutub esimesse liidetavasse, siis, arvestades cosz Maclaureni rida,
saame reaksarenduse
1 1

S P
R 1) T

z=—1
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Selles reas puudub liige, milles esineks avaldis (z+1)"'. Seega

1
1= —;—1| =0
c—1 res[coszle }
ning siit
1
res[f(z);—1] = -

e

Teine isedrane punkt on z = co. Resiidide teooria pohiteoreemi jarelduse
pohjal saame, et

res{f(2);00] = -~

e

Ulesanded

1. Olgu funktsioonid g ja h regulaarsed punktis a, kusjuures punkt a on
funktsiooni A teist jarku nullkoht. Néidata, et sel juhul

Iﬁlm@ﬂ4:2gm> 2 g(a)"(a)

ORERCIOI

2. Leida jargmiste avaldistega méaratud funktsioonide resiidid koéikide
loplike isoleeritud isearaste punktide suhtes:

) z+1 1— 22 »2n
N 22—22” C) 24 ’ e) (1+Z)n,
b the, d) Siiz’ f arctzanz'
Vastus. a) res[f;0] = —=, res[f;2] = 2, b) res {f?i(g“”ﬂ =1,
c) res[f;O]:—é,d) res[f;kn] = (=1)F, e) res[f; —1] = (—1)" ! n;?;l),
f) res[f;0] = 0.

1 —1
3. Leida funktsiooni w = f(z) = (sin ) resiidid koikide isoleeritud ise-
2

araste punktide suhtes.
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Vastus. res [f(z); k17r} = <_1)k+1/€21772 (k==41,42,...) jares[f(2);00] =
1
&

4. Piirkonnas |z| > R kehtigu vordus

f(z):co—l—c—;—i—....

Leida res|(f(2))?;00].
Vastus. —2cqcy.

5. Néidata, et

n

res|[f(2)g(z);a] = Z

k=1

C_k

(k—1)!

g% V(a),

kui g on analiiiitiline punktis ¢ ning punkti a timbruses kehtib seos

6. Arvutada jargmised integraalid:

32%+2 dz
a) /—2d2’ 4 /shzz’
il (z—1)(2%249) 2le2
b) /dz e) /tankzdz (k=1,2,...).
23(z+4)’
|z|=2 |2|=F
c) /tanzdz,
|z|=2
E

2k? —1
c) —4mi, d) —mi, e) —4 [ 5 171.

™

Vastus. a) 67, b) 35"
7.3. RESIIDIDE KASUTAMINE INTEGRAALIDE
ARVUTAMISEL
Vaatleme resiidide teooria rakendamise voimalusi maédratud (ka paratu-

te) integraalide arvutamisel. Siinjuures peatume vaid kolmel tildisemal ning
suhteliselt lihtsasti késitletaval juhul.
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Vaatleme integraali
[ Pl)
/ dx,
J o)

kus P(x) ja Q(x) on polilnoomid. Et selline integraal eksisteeriks, peab po-
linoomi Q(x) aste olema vihemalt kahe vorra kérgem lugeja omast ning
poliinoomil Q(z) ei tohi olla reaalteljel nullkohti. Eeldame, et need tingimu-
sed on taidetud.

S|y

Joonis 7.1

Votame vaatluse alla funktsiooni
P(2)
Q(2)

On selge, et tehtud eeldustel Zlggo 2F(z) =0, kusjuures viimane vordus

kehtib z suhtes iihtlaselt, s.t. ei soltu muutuja z l6pmatusele ldhenemise
viisist. Et funktsioonil F' on vaid 16plik arv isedraseid punkte — pooluseid
(nimetaja nullkohti) —, siis voime valida nii suure raadiusega ringjoone |z| =
R, mis holmab koiki tilemises pooltasandis asuvaid isedraseid punkte (vt.
joon. 7.1). Seega resiidide teooria pohiteoreemi kohaselt

R
/F(:U)dx+/F(z)dz:27ri > res[F(z); 2.
R Cr Imz;, >0

Et tlemises pooltasandis pole véljaspool vaadeldavat poolringi ithtegi ise-
arast punkti, siis R kasvades viimase vorduse parem pool ei muutu. Seda
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arvestades laheme piirile R — oo. Osutub, et

lim / F(2)dz = 0. (7.1)
R—o0
Cr

Toepoolest, funktsioonile F' seatud kitsenduste tottu |2 F(z)| <e, kui |z] =R
ning R on kiillalt suur, mistéttu

1 1
/F(z)dz = /zF(z);dz <€E7TR77T€'
R

R

Saadud tulemust arvestades voime Oelda, et

/ F(a:)da::27r] S res[F(2); z). (7.2)
—o0 mz >0

o0

1
Ndide 1. Leiame integraali / dx.
/ 1+ a2

Vastavalt valemile (7.2) saame, et
17
=Ti— = —.

T dx 1 7 dx 1 [1 } 1

——— == | —= =221res | 5——;i| =7 —

J 1422”2 ) 1422 2T | 2 T g,
—00

Osutub, et vordus (7.1) on dige ka teistel eeldustel funktsiooni F' kohta.
Uhe niisuguse tingimuse annab jargmine teoreem, mida tuntakse Jordani
lemmana.

Jordani lemma. Kui piirkonnas |z| > Ro, Imz > —a kehtib vordus
B}im f(z) =0 argz suhtes thtlaselt, siis valem (7.1) on odige, kui
—00

zZ—00

F(z) = f(2),  kus A>0.

Téestus. Olgu z = z +iy = re'?, Mp = max |f(2)| ja o = arcsin ? Belduse
zeCpRr R

pohjal Mg — 0, kui B — oo. Sel korral ka o — 0, kusjuures aR — a (vt.
joon. 7.2). Kui a > 0, siis kaartel AB ja DE saame, et || = ™ L e,
Jarelikult kehtib seos

/ei/\zf(z)dz

v

< Mpe®aR — 0, kui R — oo,
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Yo
D 0 B .
i N '
F @ A
Joonis 7.2

kus v on kas kaar AB voi DFE.
2
Arvestades seost sing > —¢, kui 0 < ¢ < g, saame, et kaarel BC' D
T

eikz _ e—)\Rsintp < e—@go,
mistottu
w/2
. 2\R m
/ e f(2)dz| < MrR / e 7 Pdp= MRﬁ(l —e ) 50,
BCD 0

kui R — oo. Sellega on lemma toestatud juhul, kus a > 0.
Juhul a < 0 toestus vaid lihtsustab, sest siis pole vaja vaadelda integraale
iile kaarte AB ja DE. Lemma on sellega téaielikult toestatud.

Midrkus. Jaotises 10, seoses Laplace’i teisenduse pooramisega, tuleb meil vaa-
delda Jordani lemmat monevorra teisel kujul. Seal p =iz, s.t. joonisel 7.2
esitatu on pooratud 90° vorra vastupidi kellaosuti liikumise suunale.

Kéesolevas rakendame Jordani lemmat (vottes a = 0) selleks, et arvutada
integraale

o

/f(a:) cosArdr ja /f(x) sin \z dz,

—0o0

kus A > 0 ja funktsioon f rahuldab Jordani lemma tingimusi. Selgitame seda
voimalust jargmise naitega:
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Ndide 2. Arvutame integraali

j / rsinx dx
] (2 4+1)(x2+4)

Et integraali all on paarisfunktsioon, siis
/ rsinxdx
"2 (22 4+1) (2?2 +4)
Pidades silmas Euleri valemit e = cosx +isinz, saame, et

Im / :Eelx dx

2 +4)

Viimase integraali arvutame valemi (7.2) abil, mille pohjal

70 xel dx —9rid res zel? Gl
J @iy 7 (24 1) (22 +4)
ZelZ ZelZ
o\ o
”esl<z2+1><z2+4>’ H “{<z+i><zz+4> -

1z o je™! N 2ie~2
g 7T1 g
2=2i 2i(—1+4) (—4+1)4i

T EI G

:m<1—1>.
3e e
1

=5 (-2)
6e e

c¢) Vaatleme integraale

Seega

2w

/R(cosx, sinz)dx,

kus integraalialune funktsioon on ratsionaalne cosz ja sinx suhtes. Teeme
muutuja vahetuse z = e, s.t.
2241 ) 22 -1 dz

CoST = , sinxr=——, dr=—.
2z 2iz iz
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Tehes vajalikud asendused, saame, et

2

2 2
22+1 z2—1\dz
/R(cosx,smm) x R( 5 o >iz G(z)dz
0 |z]=1 |z|=1
Vastavalt resiidide teooria pohiteoreemile
27
/R(cosm,sinx)dx:27ri > res[G(z); 2k
0 |2k ] <1

Siinjuures on muidugi oluline, et iski funktsiooni G iseédrastest punktidest ei
asuks thikringjoonel. Siis ei oleks ka R(cosz,sinz) pidev 16igus [0, 27].

Ndide 3. Leiame integraali

2
ot
: 5+4sinx
Vastavalt iilaltoodud valemitele saame, et

221

S+4sinx =5+4

1
= — (222 4+5iz—2
2iz iz(2+lz )

ning

dz 1 dz
S QTS W S
. 222 +5iz—2 2|\ 1(2—1—21)(2—1—1/2)
z|= z|l=

Uhikripgis asub vaid iiks viimase integraali aluse funktsiooni poolustest —

z= 2 —, mille suhtes resiid on —. Seega
2 3i
12 2
I1=27i-—=—m.
Mo 3"
Ulesanded

1. Néidata, et

[e.e]

a)/ 22dx o
J (22 +9)(2° +4)° 200’
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(22+1)2 4

) 70 xdr .7
(22 +1)(22+22+2) 5’
oo

(0.
COS ax o
f) /x2+1dx:2e “ (a>0),
0
(0.)
)/ cosr T
g / (.2132—|—1)2 %’
rsinar dx 7
h) /1'4—|—4: QG_GSinCL (CL>0),
—0
T sinzdr T .
I e
—
T rsinaz dr
T
i) /WZQQ_ab|Sgna (a,b — reaalarvud).
z

2. Arvutada integraalid:

) T cosxdx

2
a F cos? 3z de
5+4cosx’ )
—T

5—4cos2x’
0

b) /7T dx Q) 7 dx
J 1+sin?z’ " (a+cosx)?

Vastus. a) —g, b) /2, ¢) 27‘(‘, d) 2ra(a® —1)"3/?

(a>1).

155
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7.4. LOGARITMILINE RESIID

Funktisiooni w = f(z) logaritmiliseks resiidiks nimetatakse tema lo-
garitmilise tuletise w = f'(2)/f(2) resiidi vaadeldavas punktis. Logaritmilise
tuletise avaldisest on selge, et tema isedraseks punktiks on ka funktsiooni f
nullkoht. Vaatlemegi koigepealt juhtu, kus punkt b on funktsiooni f m-jarku
nullkoht. Sel juhul kehtib punkti b timbruses seos

f(2) = (z=0)"p(2), (7.1)
kus ¢ on analtiiitiline punktis b ning ¢(b) # 0. Siis aga

f/<z)_ n (N = (s — b)) =

) = [Ln f(2)]' = [Ln(z = )" ¢(2)]

. ;o m 90/(2)

=[mLn(z—b)+Lny(z)] = P + o)

Et ¢(b) # 0, siis on funktsioon w = ¢'(2)/p(z) analiiiitiline punktis b ning
seega

f'z) _ m
B —ﬂ—i—c()—i—cl(z—b)—i—....

Viimasest seosest jareldub, et

-

Me saime, et funktsiooni logaritmiline resiid nullkoha suhtes vordub selle null-
koha jdrguga.

Vaatleme juhtu, kus punkt a on funktsiooni w = f(z) k-jarku poolus. Sel
juhul saame seose (7.1) asemel vorduse

_ Y
f(Z) - (z—a)k’

kus ¢ on analiiiitiline punktis a ning t(a) # 0. Analoogiliselt eelnevaga
leiame, et

J}((ZZ)) :LL+CO+C1(Z—G)+~-7
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mistottu

S

Seega: funktsiooni logaritmiline resiid pooluse suhtes vordub selle pooluse jdr-
gu vastandarvuga.

Olgu funktsioon f pidev ja nullist erinev kinnisel joonel C'. Kui funkt-
sioonil f on joonega C piiratud piirkonnas 16plik arv nullkohti, by, b, ..., b,
ning ainsate isearaste punktidena loplik arv pooluseid a1, ag, ..., ap, siis

B O TG S e
2mc/f<z>d = lﬂz)’b’“hz lf<z>’ ’“]

Kui iga nullkohta ja poolust lugeda niimitu korda, kui suur on tema jark,
siis eelnevas sooritatud arvutuste pohjal voime viimase vorduse kirjutada
kujul

/
1,/f<z)dz:N—P, (7.2)
2miJ) f(2)
C
kus N on selle funktsiooni nullkohtade ja P pooluste arv joonega C' hdlmatud
piirkonnas.

Saadud seosest jiareldub nn. argumendi printsiip:

Kui tokestatud piirkonnas D rajajooneni C pideval funktsioonik f on piir-
konnas D isedraste punktidena vaid loplik arv pooluseid ning rajajoonel C see
funktsioon ei vordu nulliga, siis on funktsiooni vddrtuse argumendi muutus
rajajoone C' tdielikul libimisel 21 korda suurem selles piirkonnas D asuvate
funktsiooni f nullkohtade ja pooluste arvu vahest.

Toestus. Bt

f'(2)
f(2)

dz = d[Ln f(2)] = d[In[f(2)|] +id[Arg f (2)],

/ ];<(>) dz = In|f (22)| ~In|f (22)| +1[Arg f (z2) — Arg f (1))

21
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Kui 21 = 22, saame integraali iile kinnise joone C. Et |f(z1)| = |f(#2)], siis
(vt. joon. 7.3)

;m! J;(z)dz = ii Arg f(z2) — Arg f(z1)] = ;mACArgf(z).

(2) 2mi [
Saadud vorduse vasak pool vordub eelmise teoreemi kohaselt joonega C' hol-
matud nullkohtade ja pooluste arvu vahega. Sellega ongi argumendi printsiip
toestatud.

Joonis 7.3

Ulesanded

1. Olgu funktsioon ¢ analiiiitiline joonega C' piiratud piirkonnas ning ol-
gu funktsioonil f selles piirkonnas loplik arv nullkohti ay, ..., a, (vas-
tavalt jarkudega myq,...,m;,) ning isedraste punktidena vaid poolused
bi,...,by (vastavalt jarkudega ry,...,r,). Néidata, et sel juhul

1 Zf/(z>zznma_qr
27ri!g()f(z)d k; k9(ax) kz_:lkg(bk).

2. Toestada, et kui f on regulaarne joonel C' ja sellega piiratud piirkonnas,
siis vorrandi f(z) = a lahendite arv selles piirkonnas vordub integraaliga

1S
QWiC[f(z)—a
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7.5. ROUCHE TEOREEM

Argumendi printsiibi jéreldusena toestame teoreemi, mis véimaldab ot-
sustada funktsiooni nullkohtade arvu iile.

Rouche teoreem. Kui funktsioonid f ja g on requlaarsed thelisidusas ja
tokestatud piirkonnas D ning pidevad selle rajajooneni C, kusjuures iga z €
C puhul |f(2)| > |g(z)]|, siis on funktsioonidel f ja f+ g thepalju nullkohti
pitrkonnas D.

Toestus. Bt

arg[f(z) +g(2)] = arg f(z) +-arg [1 + JQCZH :

siis tuleb argumendi printsiibi kohaselt (pooluseid pole) meil Rouche teoreemi
toestamiseks veenduda, et

9| _
1+f(z)] = 0. (7.1)

See on aga toesti nii, sest kompleksarv

Acarg

9(2)
f(2)

kuulub teoreemi eelduse (|f(z)| > |g(z)|) kohaselt ringi |w — 1| < 1. Viimane
aga ei sisalda nullpunkti ning seega saavutab w argument joone C' taielikul
labimisel oma esialgse véértuse. Niisiis kehtib vordus (7.1) ning seeldbi ka
Rouche teoreem.

=1+

Ndide. Leiame vorrandi
=024 432342:2-1=0 (7.2)
lahendite arvu thikringis |z| < 1.
Votame f(z) = 27 — 92* ning g(z) = 3234222 — 1. Sel juhul ringjoone
|z| = 1 punktides

£(2)] = 12° = 92%| > ||2%] - |95%|| = 8
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ning
l9(2)| = 1323 +22% —1| < 323+ 2% +1=6

Sellest nédeme, et Rouche teoreemi tingimused on tdidetud ning seega on
vorrandil (7.2) thikringis sama palju lahendeid, kui neid on seal vorrandil

flz)=22=92t =24 -9)=0

Viimasel on neid 4 (z = 0 on neljakordne lahend), sest v/9 > 1.

Rouche teoreemi jareldusena toestame veel korda algebra pohiteoree-
mi:
tgal n-astme polinoomil on parajasti n nullkohta.

Toestus. Olgu
P,(2) = an" +an_12"" 1. +arz+ag, an#0.

Votame f(z) = an2" ja g(z) = an-12""" + ay_22""2+ ...+ a1z + ap. Siis
Py(z) = f(2) +9(z) ning

mM:O.

Viimase seose pohjal leidub niisugune R > 0, mille puhul piirkonnas |z| < R
kehtib vorratus

\m\“

Me saame, et ringi |z| < R suhtes on tdidetud Rouche teoreemi tingimused,
mistottu funktsioonide P, ja f on ithepalju nullkohti ringis |z| < R. Viimasel
on neid n (0 on n-jarku nullkoht). Teoreem on téestatud.

Ulesanded

1. Leida jargmiste vorrandite lahendite arv sulgudes naidatud piirkonda-

des:

a) 29 —2:5422-8:-2=0 (]z]<1),
b) 22° —23 4322 —24+8=0 (|z2|]<1),
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o) 2 =5z41=0 (2] <1, 1<]z]<2),
d) 2P =82+410=0 (|z]<1,1<]|2|<3).
Vastus. a) 1,b) 0, ¢) 1ja 3,d) 0 ja4.
2. Mitu lahendit on vorrandil e* = az" (n on naturaalarv) ringis |z| < R,
kui |a| > e®R™?

Vastus. n.

7.6. ANALUUTILISE FUNKTSIOONI POORAMI-
NE
Analtttilisele funktsioonile po6rdfunktsiooni leidmisel osutub 6igeks téap-

selt samasugune viide, nagu seda tunneme diferentseeruvate reaalmuutuja
funktsioonide puhul. Nimelt, kehtib jargmine

Teoreem. Uhese analiiiitilise funktsiooni f jaoks on tingimus f'(20) # 0 tar-
vilik ja piisav selleks, et punktil zg leiduks iimbrus, kus funktsioon f on the-
leheline.

Téestus. Kehtigu ringis |z — zg| < R seos
w=f(z) =wy+a1(z—2)+ax(z—2)*+....

Et f'(20) # 0, siis leidub niisugune ring |z — 20| < o, milles f(z) # wo kui

z # zg. Téhistame stiimboliga v ringjoone |( — zg| = o, mille kujutiseks olgu

joon I' (joon. 7.4). Kui votame ¢ = rnillg|w — wp|, siis iga wy korral ringist
we

|w —wp| < & kehtib seos
|f(C) —wo| > |wg—w1], kus ¢ €n.

Selle vorratuse ja Rouche teoreemi pohjal on vorranditel
f(z) —wo =0,
f(z)—w1 = f(2) —wo+ (wp—wy) =0

tihepalju lahendeid ringis |z — 29| < 0. Et esimesel vorrandil on seal iiks la-
hend, siis on seda ka teisel vorrandil. Seega: tdepoolest, igale kujutisele ringist
|w —wp| < § vastab parajasti tiks originaal, s.t. funktsioon w = f(z) on seal
itheleheline. Teoreem on toestatud.
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A

< 4

Joonis 7.4

Jareldus 1. Analiditilisel funktsioonil f on punkti zg teatavas imbruses tihe-
ne poosrdfunktsioon parajasti siis, kui f'(z) # 0. See péérdfunktsioon on ana-
liutiline.

Toestus. Teoreemi toestuse kédigus ndgime, et podrdfunktsioon z = ¢(w) on
tithene ringis |w —wy| < §. Et diferentseeruva funktsiooni p6ordfunktsioon on
diferentseeruv, siis ¢ on regulaarne ning seega ka analiiiitiline ringis |w —
wo‘ <.

Midrkus. Esitatud teoreemi toestusest ilmneb, et mittekonstatne funktsioon
w = f(z) kujutab punkti zp timbruse |z — 29| < p piirkonnaks, mis sisaldab
punkti wg = f(20) mingi imbruse. Seda ka siis, kui f’(29) = 0.

Jareldus 2. Mittekonstantne analiditiline funktsioon kujutab lahtise hulga
lahtiseks hulgaks.

Toestus. Lahtise hulga igal punktil zg on iimbrus, mis kuulub sellese hulka.
Niisugune timbruse kujutis sisaldab punkti zg kujutise wg mingi timbruse,
s.t. et wp on kujutishulga sisepunkt. Kujutishulk on lahtine.

Jareldus 3. Mittekonstantne analiiitiline funktsioon kujutab piirkonna piir-
konnaks.

Toestus. Et piirkond on lahtine ja sidus hulk, siis eelmist jareldust arvestades
on vaja veenduda kujutishulga sidususes. Viimane aga jareldub faktist, et
joon kujutub jooneks.

7.7. MOODULI MAKSIMUMI PRINTSIIP

Mooduli maksimumi printsiibina tuntakse jargmist teoreemi.
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Teoreem. Kui mittekonstantne funktsioon on analititiline piirkonnas D ja
pidev selle rajajooneni C, siis funktsiooni moodul ei saavuta oma maksimaal-
set vddrtust piirkonnas D, vaid rajajoonel C'.

Toestus. Oletame viite vastaselt, et funktsiooni moodulil on maksimaalne
vaartus punktis z, € D. Et aga punktil wg = f(zp) on timbrus, mis koosneb
vaid kujutistest f(z), siis saame selle iimbrusest (joon. 7.5) valida kujutise
wi = f(z1), mille puhul |wq| > |wol, s.t. |f(21)] > | f(20)]. Saime vastuolu, mis
toestabki teoreemi.

Ay A

OZO

Sy

0 T ﬂ

Joonis 7.5

Mooduli miinimumi printsiip. Kui mittekonstantne funktsioon on ana-
liditiline ja nullist erinev piirkonnas D ning pidev selle rajajooneni C', siis
selle funktsiooni moodul ei saavuta oma minimaalset vddrtust piirkonnas D,
vaid rajajoonel C'.

Toestus on analoogiline eelnevaga.

7.8. HARMOONILISTE FUNKTSIOONIDE
OMADUSI

Harmooniliste ja regulaarsete funktsioonide vahel on tihe seos. Néitame,
et ka nende funktsioonide omadused on sarnased. Tapsemalt 6eldes: kanna-
me eelmises jaotises toestatud tulemused iile harmoonilistele funktsioonidele.
Alustame teoreemist, mida tuntakse ekstreemumi printsiibina. Kirjutiste
lihtsustamiseks téhistame u(z,y) = u(z).
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Teoreem 1. Kinnises piirkonnas D ei saavuta mittekonstantne harmooniline
funktsioon u oma ekstremaalset vadrtust selle piirkonna sisepunktis.

Toestus. Oletame véite vastaselt, et funktsioon u saavutab oma maksimumi
puntkis zg € D. Kui piirkond D on mitmelisidus, siis ithendame rajajoone k-
sikud sidusad osad omavahel nii, et piirkond D muutub thelisidusaks piirkon-
naks G ning zp jaab ka viimase sisepunktiks. Piirkonnas G leiame funktsioo-
nile u kaasharmoonilise v ning moodustame regulaarse funktsiooni g = u+iv.
Ka funktsioon w = e9() on regulaarne piirkonnas G ning |e? (z)| =e"?) Et aga
"2 ja u(z) saavutavad maksimumi koos, siis peaks regulaarse funktsiooni
w = e9*) moodul saavutama oma maksimumi piirkonna G sisepunktis. See on
aga mooduli maksimumi printsiibi jargi voimatu. Saadud vastuolu toestabki,
et funktsioonil v ei saa olla maksimumi piirkonna D sisepunktis.

Selle toestamiseks, et funktsioon u ei saavuta ka oma miinimumi piir-
konna D sisepunktis, votame uj(z) = —u(z) ning kasutame dsjatoestatud
tulemust maksimumi kohta.

Teoreem 2. Kui funktsioon on kogu tasandil harmooniline ja thepoolselt
tokestatud (nditeks 4lalt), siis on ta konstantne.

Toestus. Olgu u(z) < M. Moodustame regulaarsed funktsioonid w = g(z) =
w(z) +iv(z) ning w = e9®). Siis [e93)| = ¢"*) < eM ning seega (Liouville'i
teoreemi pohjal) ¢9(*) = const. Siit omakorda jireldub, et g(z) = const. Et
kompleksmuutuja funktsioon on konstantne parajasti siis, kui selle reaal- ja
imaginaarosad on konstantsed, siis saamegi jareldusena teoreemi vaite.

Ulesanded

1. Toestada, et suvalisel harmoonilisel funktsioonil on mistahes jarku osa-
tuletisi ja et need on samuti harmoonilised funktsioonid.

2. Naidata, et kui kahel harmoonilisel funktsioonil on vordsed viaartused
piirkonna D rajajoonel, siis ithtivad need funktsioonid kogu piirkonnas
D.
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8.1. KONFORMSE KUJUTAMISE
POHIULESANNE

Kui jaotises 2.7 vaatlesime tuletise geomeetrilist tdhendust, siis selgitasi-
me, et regulaarne funktsioon w = f(z),z € D, teostab konformse kujutamise,
kui f'(2) # 0iga z € D puhul. Uks-iihest kujutust nimetatakse konformseks,
kui séilivad nurgad nii suuruse kui ka suuna poolest ning kehtib 16pmata véi-
keste ringjoonte invariantsus. Néitame niitid, et iga konformne kujutus on
esitatav analiititilise (ehk regulaarse) funktsiooniga. Selleks toestame jérg-
mise teoreemi.

Teoreem 1. Kui funktsioon w = f(z) kujutab konformselt piirkonna D piir-
konnaks G, siis f on requlaarne ning f'(z) # 0 iga 2 € D puhul.

w1
Az
20 < Awy
AZl
Joonis 8.1

Toestus. Et iga ithene kujutus on vaadeldav funktsioonina, siis voime ka kon-
formse kujutuse puhul koneleda funktsioonist w = f(z),z € D. Jaab niidata,
et iga z € D puhul f'(z) # 0. Toepoolest, vaadeldes punkti zg kujutist wq
ning kahe punktist zg ldhtuva lopmata véikese vektori kujutist (joon. 8.1),
saame konformse kujutuse definitsiooni pohjal, et

| Aws| _ | Awn|
|A22| |A21‘

—k#£0

ning

arg Awg —arg Aw; = arg Azg —arg Azy.

165
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Viimane neist seostest esitub kujul
arg Awy —arg Azg = arg Aw; —arg Az

ehk

Awg Aw1
ar = ar = (.
& AZQ & Azl

Seega saame piirile minnes, et

. Awy . Aws
lim = lim
Az1—0 Az1 Az—0 Azy

. i
= ke'?,

millest Az ja Azy suvalisuse tottu jareldamegi, et eksisteerib f'(z) ning
|f'(20)| = k # 0. Teoreem on tdestatud.

Jareldus 1. Kahe konformse kujutuse kompositsioon on konformne kujutus.
Jareldus 2. Konformse kujutuse péordkujutus on konformne kujutus.

Konformse kujutamise pohiiilesandeks nimetatakse jargmist iiles-
annet:

antud piirkondade paari D ja G jaoks leida piirkonnas D requlaarne
funktsioon w = f(z), mille koraal f'(z) # 0 iga z € D jaoks ning mis kujutab
piirkonna D piirkonnaks G.

Ulesanded

2
1. Tdestada, et funktsioon w = % kujutab ringi |z — 1| < 2 konformselt
tihikringiks |w]| < 1.
2. Toestada, et funktsioon w = z? kujutab piirkonna —7 < argz < —g
konformselt pooltasandiks Imw > 0 ja piirkonna |z| <2, 0 < argz < g

piirkonnaks |w| < 4, Imw > 0.

3. Toestada, et funktsioon w = e kujutab piirkonna 0 < Rez < 7, Imz > 0
konformselt poolringiks |w| < 1, Imw > 0.
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8.2. KONFORMSE KUJUTAMISE OMADUSI

Jargnevas toestame kaks teoreemi, millest esimest tuntakse iiksiihese
vastavuse printsiibina ja teist rajade vastavuse printsiibina.

Teoreem 1. Kui piirkonnas D regulaarne funktsioon w = f(z) kujutab piir-
konna D tiks-tiheselt piirkonnaks G, siis on see kujutus konformne.

Toestus. Jaotises 7.6 toestasime, et kujutus w = f(z) on tiks-tihene parajasti
siis, kui f'(2) # 0 iihegi 2z puhul. Viimane tingimus aga tihendab, et kujutus
on konformne. Teoreem on toestatud.

Oeldakse, et kujutamisel siilib joone C' suund, kui punkti pidevale liiku-
misele joone C' positiivses suunas vastab tema kujutispunkti liikumine kuju-
tisjoone I' positiivses suunas.

Teoreem 2. Olgu tokestatud piirkonnas D, mis on piiratud rajajoonega C,
antud requlaarne funktsioon w = f(z). Kui see funktsioon on pidev ka rajajoo-
nel C ning kujutab joone C' tiks-iheselt piirkonna G rajajooneks I' ja sdilitab
joone suuna, siis funktsioon w = f(z) kujutab piirkonna D konformselt piir-

konnaks G.

Téestus. Meil piisab néidata, et funktsioon w = f(z) kujutab piirkonna D
tiks-tiheselt piirkonnaks G. Selleks aga veendume, et (joon. 8.2)

r

Joonis 8.2

1) iga w € G jaoks eksisteerib parajasti iiks selline z; € D, mille puhul

f(z1) = wr;
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2) thegi wy ¢ GUT jaoks ei eksisteeri originaali piirkonnas D.

Moodustame funktsioonid.

w=F1(z) = f(z) —w,
w=Fy(2) = f(z) —ws

ning rakendame argumendi printsiipi. Kt moodustatud funktsioonid on regu-
laarsed, siis raja C' taielikul libimisel muutuvad nende argumendid arvu 27 ja
nullkohtade arvu korrutise vorra. Jooniselt 8.2 on niha, et Agarg F1(z) =27
ja Acarg Fo(z) = 0. Seega on funktsioonil F) piirkonnas D; iiks nullkoht,
funktsioonil F5 aga mitte tihtegi. Viited 1) ja 2) ning seega ka kogu teoreem
on toestatud.

Mdrkus. Kui joone C positiivsele suunale vastaks joone negatiivne suund, siis
saaksime, et Acarg F1(z) = —27 ja Acarg Fo(z) = 0. Arvestades argumendi
printsiipi, on niisugune olukord voimalik sel juhul, kui funktsioonil f (seega
ka funktsioonid F} ja F5) on piirkonnas D iiks esimest jarku poolus ning
nullkohti funktsioonil F» iiks, funktsioonil F} aga ei iihtegi. Selline situat-
sioon vastab olukorrale, kus f kujutab piirkonna D joone I' suhtes véliseks
piirkonnaks ning tiks punktidest kujutub lI6pmatuspunktiks.

Ulesanded

z
1. Toestada, et funktsioon w = —i kujutab thikringi iilemise poole

konformselt komplekstasandi esimeseks veerandiks.

2. Toestada, et funktsioon w = coshz kujutab piirkonna Rez > 0, 0 <
Im z < 7 konformselt iilemiseks pooltasandiks.

3. Toestada, et funktsioon w = tanz kujutab piirkonna 0 < Rez < ,
Im z > 0 konformselt tilemiseks pooltasandiks 16ikega piki 16iku [0, ].

8.3. KONFORMSE KUJUTAMISE POHIULESAN-
DE LAHENDUVUS

Millistel tingimustel on konformse kujutamise pohiiilesanne lahenduv,
sellele annab vastuse
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Riemanni teoreem. Iga theli sidusat piirkonda, mille raja sisaldab vihe-
malt kaks punkti, on voimalik konformselt kujutada tihikringiks.

Kéesolevas me seda teoreemi ei toesta. Naitame vaid teoreemi eelduste
tdhtsust. Osutub, et mitmelisidusat piirkonda D ei saa kujutada konformselt
ithelisidusaks piirkonnaks D;. Toepoolest, kui D on mitmelisidus, voib temas
valida kinnise joone C, mis holmab ka piirkonda D mittekuuluvaid punkte.
Kui D; on iihelisidus, on joone C kujutis selles piirkonnas kinnine joon Cf,
mis holmab ainult piirkonna D; punkte. Deformeerime joont € piirkonnas
D1 nii, et ta 1opuks kodub tiheks punktiks. Kui kujutis oleks konformne, siis
on nii tema kui ka tema poordkujutis pidevad ning seetottu peaks ka joon C'
koduma tiheks punktiks, kuid sealjuures nii, et ta ei valjuks piirkonnast D.
See on voimatu.

Mis puutub tingimusse, et raja peab sisaldama vihemalt kaks punkti, siis
seda ei saa ara jatta kasvoi Liouville’i teoreemi tottu. Viimase pohjal ei saa
kogu tasandit (rajaks ainult l6pmatuspunkt) tihikringiks kujutada.

Mdrkus. Riemanni teoreemis raagitakse tihikringist, kuid selle asemel voiks
olla mis tahes tihelisidus piirkond, mille rajal on samuti vahemalt kaks punkti.
Niisuguse piirkonna saab édsjasonastatud teoreemi abil kujutada konformselt
ithikringiks. Poordkujutus oleks samuti konformne ning kujutaks iihikringi
vaadeldavaks piirkonnaks. Et kahe konformse kujutamise jarjest rakendamine
on jallegi konformne kujutus, siis saamegi siit Riemanni teoreemi néiliselt
iildisema sonastuse.

On selge, et kui leidub iiks konformne kujutus, mis kujutab piirkonna
D tihikringiks, siis leidub niisuguseid kujutusi l6pmata palju. Toepoolest,
iga kujutus, mis koosneb vaadeldavast konformsest kujutusest ning poordest
(iimber nullpunkti), on samuti konformne. Millistel tingimustel on konformse
kujutamise pohiiilesandel iithene lahend, sellele annab vastuse jargmine

Teoreem. Leidub iks ja ainult ks funktsioon w = f(z), mis kujutab ettean-
tud tihelistdusa piirkonna D, mille rajal on vihemalt kaks punkti, tihikringiks
|lw| < 1 ning tdidab tingimusi

f(20) = wo, argf'(z0) = a, (8.1)
kus zo € D ja |wo| < 1.
Toestus. Oletame, et niisuguseid funktsioone on kaks,

wy = f(2) ja wa=p(2).
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Téhistame piirkonna D raja C' punktid tdhega (. Tingimusest (8.1) ja rajade
vastavusest saame, et (wo = 0 korral)

f(20) =0, argf'(z) =0, [f(Q)=1,
©(20) =0, argy'(z0) =ao, |p(¢)]=1.

Vaatleme funktsiooni

wy = [ (wi)] = glw).

See funktsioon kujutab tihikringi tihikringiks, kusjuures

9(0) = @[fH(0)] = ¢(20) =0
ja

1 Tgeiao 79
= =—=>0.

f'(z0)  rpeleo oy

910 = ¢'(0) =11 0) = ()

Vaatleme ntitid abifunktsiooni h, mis on defineeritud jargmiselt:

g(wl) 0 1
pln) = g+ U< <
g'(0), w;=0.

Funktsioon h on pidev ja nullist erinev kinnises ringis |w;| < 1, kusjuures
|h(w1)| =1, kui |w;| = 1. Mooduli maksimumi ja miinimumi printsiipide poh-
jal

|h(wi)| =1, |wi| < 1.

Siit saame, et h(w;) = const. Tingimusest h(0) = ¢’(0) > 0 jireldame, et
h(w1) = 1. Funktsiooni h definitsiooni pohjal saame, et

wy = g(wy) = wy.
Seega funktsioonid f ja ¢ langevad kokku ning teoreem on sellega toestatud.
Markus. Tingimusi (8.1), mis madravad konformset kujutamist teostava

funktsiooni iiheselt, nimetatakse normeerivateks tingimusteks. Kui vaa-
delda neid normeerivaid tingimusi (8.1), siis markame, et need sisaldavad
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kolm reaalset parameetrit (wg reaal- ja imaginaarosa ning «). Osutub, et
tingimuste (8.1) asemel voib vaadelda ka teisi tingimusi, mis samuti sisal-
davad kolme reaalset parameetrit ning normeerivad konformse kujutamise.
Naiteks, anname ette iihe sisepunkti ja iithe rajapunkti kujutise:

f(z0) =wo, f(z1) =w1

(20 € D ja |wg| < 1, z1 € C ning |wi| = 1). Konformne kujutus on tiheselt
madratud ka siis, kui fikseerida kolme rajapunkti kujutised:

f(Zk) = Wk (/{5 = 1,2,3).

Ulesanded

1. Leida tlemise pooltasandi kujutus w = f(z) iseendaks, kui

8.4. NAITEID KONFORMSE KUJUTAMISE KOH-
TA

Kéesolevas jaotises vaatleme moningaid lihtsaid, kuid edasise ainekasit-
luse seisukohalt tdhtsaid néaiteid.

Naide 1. Leida funktsioon, mis kujutab ithikringi konformselt ithikringiks,
kusjuures punkt zp (|(20)| < 1) kujutub nullpunktiks.

Et siin ringjoon peab kujutama ringjooneks (rajade vastavus), siis otsi-
me vastavat funktsiooni murdlineaarsete funktsioonide hulgast. Selle murd-
lineaarse funktsiooni méédramiseks on meil tingimus f(zp) = 0. Et aga null-
punktiga on iihikringjoone suhtes stimmeetriline lopmatuspunkt, siis peab
punktiga zo stimmeetriline punkt z; (vt. joon. 8.3) kujutuma l6pmatuspunk-
tiks, s.t. f(z1) = oo. Milline punkt on siimmeetriline punktiga z? Vlastavalt
B

stimmeetriliste punktide definitsioonile |z||z1| = 1, millest |z;| = ning

L 1
arg zg = argzi, mistottu z; = —.
20
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Y
21
<0
0 1 z
Joonis 8.3

Saadud kahe punkti zg ja 1/Zg kujutise jérgi piiiame méadrata otsitavat
murdlineaarset funktsiooni
_az+b
R
Vastavalt konformse kujutamise ithesuse teoreemile voime 6elda, et otsitaval
funktsioonil jaab iiks reaalne parameeter madramatuks, sest me ei fikseeri-
nud poorde suurust punktis zg. Niisiis peame saama maéaarata murdlineaarse
funktsiooni, milles on vaid iiks reaalne parameeter.
Seosest

w = f(z0)

(8.1)

azo+0b
pr— :0
czo+d

saame, et azg+b=0, s.t. b= —azy. Teiselt poolt,

w:f<1>_a+bz0:oo

Z0 N c+dzg
s.t. c+dzg =0, millest ¢ = —dZy. Asendamisel seosesse (8.1) saame, et
az—azy _ a z2—2p

v —dzoz+d _gl—foz.
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Et aga tihikringjoone punkt z = 1 peab kujutuma iihikringjoone punktiks,
siis

alll—z

d

a

()] = y

=1,

1—%2

a i . . . .
s.t i e'“, kus o on mingi reaalarv. Seega saame, et otsitavaks funktsiooniks
on

i Z_ZO
= = . 8.2
w=e 1—Zpz ( )

Leides saadud funktsiooni tuletise punktis z

J e =Y R
(20) (l—zoz)2z 1—|z0/?

nieme, et parameetri o midrab tasandi poore punktis zq, sest arg f’(z) = a.
Kui avaldada seosest (8.2) muutuja z, saame selle kujutuse poordkuju-

tuse, s. t. funktsiooni, mis kujutab tithikringi ithikringiks, kusjuures nullpunkt

kujutub etteantud punktiks zo (|z0| < 1).

Niide 2. Kujutada iillemine pooltasand Im z > 0 tihikringiks |w| < 1 selliselt,

et punkt zp (Imzp > 0) kujutub nullpunktiks.

Otsime seda funktsiooni jallegi murdlineaarsete funktsioonide hulgast,
sest rajaks olev sirge peab kujutuma ringjooneks. Et sel juhul rajade suh-
tes stimmeetrilised punktid peavad kujutuma siimmeetrilisteks punktideks,
siis

w(zp), w(Zg)=oc.

Kui tahistame

az+b
w=—-"
cz+d

siis eelnevate tingimuste pohjal saame, et
azo+b=0,czop+d=0,
millest

az—2z
w=—

cz—72y
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Et punkt z = 0 on originaalide piirkonna rajapunkt, siis peab tema ku-
jutispunkt asuma tihikringjoonel. Seega saame, nagu eelmisegi naite puhul,

a .
et — =¢'“, kus a on reaalne parameeter. Kokkuvottes voime kirjutada, et

c
otsitav funktsioon avaldub kujul

iaZ—ZO

w=e —.
z—Z0
Selle funktsiooni poordfunktsioon kujutab iihikringi tilemiseks pooltasan-
diks, kusjuures w(0) = zp (Im z9 > 0).
Ndide 3. Leida funktsioon, mis kujutab tilemise pooltasandi konformselt iile-
miseks pooltasandiks.
Otsime murdlineaarset funktsiooni

az+b
w = )
cz+d

Pohimotteliselt saab kordajate leidmiseks moodustada stisteemi 4 reaalarvu-
lisest originaalist z koos nende reaalarvuliste kujutistega w. Sellise lineaarse
siisteemi lahendid a,b,c,d on ka reaalarvud.

Vastupidi, kui kordajad a, b, c,d on reaalsed, siis kujutub reaaltelg reaaltel-
jeks. Et reaaltelje suund jédks samaks (siis kujutub iilemine pooltasand iile-
miseks pooltasandiks), peab funktsiooni tuletise argument vorduma nulliga
iga reaalarvulise z puhul, s. t. tuletis peab neis punktides olema positiivne.

Leides vastava tuletise, saame tingimusena, et

ad—bc 50
(cx+d)?2 "~ 7

millest

ad —bc > 0. (8.3)

Seega: tilemise pooltasandi kujutab iseendaks niisugune murdlineaarne funkt-
sioon, mille kordajad on reaalsed ning tdidavad tingimust (8.3).

Ulesanded

1. Kujutada tihikring tihikringiks nii, et

p(3) =0 in s (5) =0
a) w|z | = a argw (= | =0;
5 J g 9 ;
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<)o 5w ()5

c) w0)=0 ja argw’(O):—g;
d) w(a)=0 ja argw'(a)=oa.

222—1; :2iz+1;c)w:—izd)w_a _ ot
—2

1—aw 1—az
2. Kujutada iilemine pooltasand iihikringiks selliselt, et

Vastus. a) w= )w

2—1iz

a) w(i)=0 ja argw’(i):—g;
b) w(2i)=0 ja w'(2i)>0.
z—1 z—2

Vastus. =—; = .
astus. a) w POt ) w T

3. Kujutada ring |z| < R ihikringiks.
z—2
R? — Z()Z.

4. Leida jargmised konformsed kujutised:

Vastus. w = Re'®

a) ring |z| < R pooltasandiks Imw > 0;
b) pooltasand Rez > 0 ihikringiks |w| < 1;
¢) pooltasand Re z > 0 pooltasandiks Rew > 0.

ia—az
aRe wZ—a

Vastus. a) . , Ima > 0; b) w=ce , Rea > 0
Re'* —z z2+a
az+1ib s -
c)w= 1 a,b,c,d —reaalarvud, mis tdidavad tingimust ad+ bc > 0.
icz

8.5. DIRICHLET’ ULESANNE

Mitmed véljateooria ja hiiddromehaanika probleemid taanduvad jéargmisele
matemaatilisele tilesandele:

Leida piirkonnas D harmooniline funktsioon u = h(x,y), mis selle piir-
konna rajajoonel C' omandab etteantud pidevalt muutuvad vddrtused.

Seda tilesannet nimetatakse Dirichlet’ iilesandeks. Harmoonilise funkt-
siooni u = h(z,y) vaartusena rajapunktis ¢ = (§,n) = £ +in moistame piir-
vaartust lgh(x, y), kus z € D ja z = (z,y) = x +iy. Lahendame selle iilesande

z
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konformset kujutamist kasutades. Uhtlasi ndeme, et Dirichlet’ iilesanne on
lahenduv nendesamade piirkondade korral, mida saab konformselt kujutada
ithikringiks. Esitame Dirichlet’” iilesande lahendamise tildskeemi ning leiame
lahendid Poisson’i integraalidena ringi ja tilemise pooltasandi tarvis.

a) Vaatleme koigepealt tildjuhtu. Lithiduse mottes kirjutame h(z,y) ase-
mel h(z) ning rajavaartuste h(&,n) asemel h(().

Kujutleme niiiid, et on teada funktsioon ¢., mis kujutab piirkonna D
konformselt tihikringiks |w| < 1, kusjuures suvaliselt fikseeritud punkt z € D
kujutub punktiks w = 0. Ringis |w| < 1 vaatleme regulaarset funktsiooni F
mille reaalosaks on™ U = hogogl, s.t. h=Uoy,. Kui votame w = el siis
dw =ic'? db ning Cauchy valemi pohjal

| Fwdo 1 7F /.

ehk
U(0) +iV(0) /U () do+ /V (o)

kus V on funktsioonis F' imaginaarosa. Viimase vorduse pohjal

27

mmzl/U@%wzl,/(m”m

27
0 |w|:1

Seose w = ¢, (() tottu saame tile minna muutujale ¢. Kui veel arvestame, et
h(z) =Ulp.(2)] = U(0), saame valemi

1 ¢,

%C %(Oh(C)dC. (8.1)

h(z) =

b) Olgu piirkonnas D iilemine pooltasand. Tema rajaks on reaaltelg, mille
punktid mérgime tahega ¢t. Otsitava harmoonilise funktsiooni rajavaartuseks

olgu h(t).

*Siimbol o tdhistab funktsioonide kompositsiooni (liitfunktsiooni).
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Funktsiooniks, mis kujutab tilemise pooltasandi konformselt iihikringiks
ja punkti z nullpunktiks, on murdlineaarne funktsioon (vt. naide 2 eelmises
jaotises)

g—=z

w=ao) = T,

kus o on suvaline punkt tilemiselt pooltasandilt. Seega

_t—z

‘PZ(t) I

©L(t) z2—7Z z2—Z

p:(t)  (t—2)(t—2) [t—2

Olgu z = x +1iy. Siis

it 2y 2y
po(t)  lt—a—iy]?  (t—z)?+y?

Valemi (8.1) pohjal saame (seost h(x,y) = h(z) arvestades), et
oo
Yy h(t)dt
gy = [ O >
@ =Y [ e (82
—00

Valem (8.2) annab otsitava harmoonilise funktsiooni vdirtused integraalina,
mida nimetatakse Poisson’t integraaliks tilemise pooltasandi tarvis.

c¢) Valemi (8.1) pohjal leiame veel ringis |o| < R harmoonilise funktsiooni,
mille rajavidrtused on h(¢) = u(t), kus ¢ = Re'’, t € [0,27].

Funktsiooniks ¢, mis kujutab ringi || < R konformselt iihikringiks sel-
liselt, et punkt z kujutub nullpunktiks, on eelmise jaotise iilesande 3 pohjal
(vottes o = 0) murdlineaarne funktsioon

o—z
R2—-z0"

W = Pz

Arvutades, saame, et

' o R2_|2|2
¢2(C) —Rm
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PO R

p2(¢Q)  (R2—=2Z()(C—2)
Kui votta ¢ = Rel® ja z = rel?, siis

v, ({)
©(¢)

B (R? —r?)iel dt B

 R2elt — Rre—ivelit — Rrele 42t

B (R% —r?)idt B (R —r?)idt

© R2472— Rrellt=9) — Rrelle—t) — R2472—2rRcos(t— )

dg

Téhistades h(x,y) = h(z) = h(re'?) = u(r, ), saame valemi (8.1) pohjal, et
(r,0) = 1 7 R% —r?
e = o / R?+12—2Rrcos(t — )

u(t)dt. (8.3)

Otsitava harmoonilise funktsiooni vaédrtused saime integraalina, mida ni-
metatakse Poisson’i integraaliks ringi tarvis.

8.6. SCHWARZI VALEMID

Me teame, et regulaarset funktsiooni saab Cauchy valemi pohjal esita-
da tema rajavdartuste kaudu. Teiselt poolt teame, et regulaarne funktsioon
on maaratud oma reaalosaga. Eelmise jaotise pohjal saame niiiid jareldada,
et regulaarset funktsiooni on voimalik esitada tema reaalosa rajavdartuste
kaudu. Vaatleme seda iilemise pooltasandi ja ringi puhul, ldhtudes eelmise
jaotise valemitest (8.2) ja (8.3).

Olgu f iilemises pooltasandis regulaarne funktsioon, mille reaalosaks on
h(z,y) raja vaartustega h(t), —oo <t < co. Et

Y 1
R
(t—a)2+y2  it—z)

siis eelmise jaotise valemi (8.2) pohjal saame vorduse

17 1 o1 T @)
h(a:,y)—w_/ Rei(t—z)h<t>dt_Re7ri_/ t—zdt’




8.6. SCHWARZI VALEMID 179

millest

1 7 dt) .
f(z)—% / t_zdt+10, (8.1)
—00
kus C' on reaalarvuline konstant, sest reaalosa maérab regulaarse funktsiooni
puhtimaginaarse liidetava tédpsuseni (vt. jaotis 2.6).
Eelmise jaotise valemist (8.3) saame analoogilise tulemuse ringi |2| < R
tarvis, arvestades, et

R? — 2 _ReC+z
R2—2Rrcos(t—p)+r2 (-2

kus ¢ = Rel’ ja z = re?. Viimase vorduse pohjal leiame, et ringis |z| < R
regulaarne funktsioon f on madratud valemiga

2
F(z) = ;ﬂ/u(t)gjjdtqti/l, (8.2)

0

kus u(t) on funktsiooni f reaalosa rajaviartus kohal ( = Re'® ning A reaal-
arvuline konstant.
Valemeid (8.1) ja (8.2) nimetatakse Schwarzi valemiteks.
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9. REGULAARSETE FUNKTSIOONIDE
RAKENDAMINE VALJATEOORIAS

9.1. TASAPARALLEELNE VEKTORVALI

Regulaarsetel funktsioonidel on suur téhtsus aero- ja hiidrodiinaamika,
soojusjuhtivuse, elektro-ja raadiotehnika, elastsusteooria jm. kiisimuste ké-
sitlemisel. Koikide nende puhul on tegemist teatavate vektorvaljadega, mida
kiillaltki heas ldhenduses saab vaadelda tasaparalleelsetena ehk tasandilis-
tena. Tasaparalleelse vektorvilja korral leidub niisugune tasand, millega
selle vektorvélja vektorid on paralleelsed ning iga selle tasandiga ristuva sirge
punktidele vastavad vordsed vektorid. Selle tasandi votame xOy tasandiks
ehk lihtsalt z-tasandiks. Sel juhul voime esialgse vektorvélja asemel vaadelda
vektorvilja z-tasandil. Punktile z = (z,y) vastaku vektor

— —
A= Ap(z,y) 1 +Ay(z,y) j

mida vaatleme kompleksarvuna A = A, +iA,.

9.2. KOMPLEKSNE POTENTSIAAL

Olgu meil vektorvéli X ja selles kinnine joon C'. Vaatleme joone C' punk-

tidele vastavaid vektoreid A ning téhistame nende projektsioone (koos mér-
giga) puutujale siimboliga As. Seejuures loeme vektori projektsiooni A po-
sitiivseks, kui selle vektori suunas litkudes jaab joonega piiratud piirkond
vasakule (joon. 9.1).

Vektorvalja X tsirkulatsiooniks iile kinnise joone C' nimetatakse suu-
rust

.= /As(x,y)ds

_>
Arvestades, et ds = 7dx + ?dy ning
%
(X “ds) = Asgds = Ay (x,y)de+ Ay(x,y) dy,

181
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Joonis 9.1

saame valemi

rc:/(X%) :/AxderAydy. (9.1)

C

Tsirkulatsiooni pindtihedust, s.t. piirvaartust tsirkulatsiooni I'c ja joone-
ga (' piiratud kujundi pindala S suhtest, kui joon téombub kokku punktiks
z, nimetatakse vektorvilja rootoriks ehk keeriseks punktis z:

rotZ:gan é /(Z%)

C

Matemaatilise analiiiisi kursusest teame, et

Kui iihelisidusas piirkonnas D iga kinnise joone C' korral I'c = 0, siis peab
integraalialune avaldis valemis (9.1) vorduma mingi funktsiooni u = p(z,y)
taisdiferentsiaaliga, s.t.

A= gradu = grad ¢(x,y).

Niisugust vektorvélja nimetatakse potentsiaalseks. Sel juhul vektori X
koordinaatideks on

ou A ou

Ay = —; =—.
ox Y oy
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On aga teada, et avaldis A,dx + Aydy on mingi funktsiooni taisdiferent-
siaaliks parajasti siis, kui*
an(xay) _ aAy(xa?/)
Jy ox

(9.2)

iga 2z = (z,y) puhul piirkonnas D (siinjuures on eeldatud avaldiste A, ja A,
ning vastavate osatuletiste pidevust). Tingimuse (9.2) voib kirjutada kujul

0A, 0A
(A= T
TO o By 0

Kui tingimus (9.2) ei ole taidetud iiksikutes punktides, mis kuuluvad joo-
nega C' piiratud piirkonda, siis tildjuhul I'c # 0. Kui selliseid punkte on vaid
tiks (punkt zp), siis seda punkti nimetatakse keerispunktiks ning suurust
I'c keerise intensiivsuseks punktis zj.

Vektorvilja X vooks ldbi joone (' nimetatakse suurust

NC:/Ands:/(X-cﬁz):/Amdy—Aydx,
C C C

kus d71 = Tds = 7dy — 7dm ning 7 on joone C' normaali suunaline tihik-
vektor. Siinjuures on vektor dn valitud selliselt, et (dn - %) = 0 ning dn on
kinnise joone C' puhul vélisnormaal.

Voo pindtihedust, s.t. piirvadrtust voo N¢ ja joonega C' piiratud kujundi
pindala S suhtest, kui joon C' tombub kokku punktis z, nimetatakse valja
divergentsiks ehk hajuvuseks punktis z:

) o1 —
divA = élglzsc (Zdn)

Matemaatilise analiilisi kursusest on teada, et

04, 04,
leZ— 3;5 —'—Ty

Kui N¢ = 0 iga kinnise joone C korral vaadeldavas tihelisidusas piirkonnas
D, siis peab leiduma selline kahe muutuja funktsioon v =¥ (z,y), et

dv =di(z,y) = Apdy — Aydz,

*Kangro, M. Matemaatiline analiiiis II, Tln., 1968, lk. 183-185.
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s.t.

v v

—=-A, ja —=A,.

ox y J9 dy v

. . : : . 0 .
Kui eeldada avaldiste A;(x,y) ja Ay(z,y) ning nende osatuletiste a—Ay ja
Y

0
— A, pidevust, siis tingimus
ox

Jy ox
ehk

dinzO

on tarvilik ja piisav selleks, et kehtiks vordus No = 0 iga kinnise joone C'
puhul piirkonnast D. Niisugust vektorvalja X nimetatakse solenoidaalseks.

Kui tingimus (9.3) pole tdidetud ménes iiksikus punktis joonega C' piira-
tud piirkonnast, siis tildjuhul N¢ # 0. Kui selliseks punktiks on vaid punkt
20, siis seda punkti nimetatakse véilja allikaks ja suurust No allika inten-
siivsuseks.

Kui vektorvéli Z on nii potentsiaalne kui ka solenoidaalne, siis leiduvad
kahe muutuja funktsioonid u = ¢(z,y) ja v =1(z,y), nii et

du=dyp(z,y) = Agdx + Aydy,
dv = dy(z,y) = Agdy — Aydz.

Avaldist (voi sellega méératud funktsiooni)

f(2) = o(z,y) +iv(z,y)

nimetatakse selle vektorvilja kompleksseks potentsiaaliks.
Arvestades Cauchy—Riemanni vorrandeid ja seoseid

dp_ 00 Do, 0w

dr oy dy Y ox

on kompleksse potentsiaaliga méératud funktsioon w = f(z) regulaarne.
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Veendume, et kompleksne potentsiaal f(z) annab meile iisna palju infor-
matsiooni vektorvéilja Z kohta. Et
_ Op(z.y) | 0Y(z.y)

, L
FE) == Ty — A4

siis
A=A+ iA, = f'(z)
ning
Al=1()l, arg A =—arg f'(2).
Funktsioonide ¢ ja 1 nivoojooned

QD(I',Q):Cl jCL ¢($ay):C2

moodustavad ortogonaalse vorgu, sest need kujutuvad funktsiooniga w = f(z)

ristkoordinaatide vorguks. Nivoojooned ¢(x,y) = ¢1 on risti vektoritega A,
sest

Z =gradu = @7+ %7
ox dy

Seega on vektorid A nivoojoonte ¥ (x,y) = c2 puutujaiks, mis tahendab, et
jooned v (z,y) = co on selle vektorvilja vektorjoonteks.
Arvutamisel saame, et

/f’(z)dz =I.+iN,.

Edaspidi eeldame, et vektorvalja potentsiaalsust ja solenoidaalsust maéra-
vad tingimused (9.2) ja (9.3) on taidetud peaaegu koigis vaadeldava piirkon-
na punktides. Erandiks voivad olla vaid tiksikud punktid, mida nimetame
vektorvilja isearasteks punktideks.

9.3. NAITEID KOMPLEKSSETEST POTENT-
SIAALIDEST

Ndide 1. Vaatleme vektorvilja, millel on iiks allikas koordinaatide alguses
ning keerised puuduvad.
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y A
Y
0 T
Joonis 9.2

Et vali on simmeetriline, siis

A= g(r)7  ehk A= g(r)z,
kus 7 on punkti z kohavektor ning r tema moodul. Téhistame allika in-
tensiivsuse siimboliga N. Et punkt z = 0 on ainsaks allikaks, siis voog labi

suvalise ringjoone |z| =r on N, s.t.

N= /(Z-cﬁ): /Ands.

|2|=r |2|=r

Vektor A on risti ringjoonega |z| =r (joon. 9.2), mistottu A, = ]Z| = A ning

27
N = / Ads :g(r)r/rdgozg(r)r227r.
|2|=r 0
Seega
N
g(r)=

2mr2
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ning

Z N N Nz N
= —_— = z = —_= .
2772 2m|z|27 2wz 27z

Kompleksse potentsiaali saame seosest Z = f'(z), s.t.

N1
o7z

N
flz)= %an—kC.

Ndide 2. Vaatleme vektorvalja, mille ainsaks isearaseks punktiks on z =0,
mis olgu keerispunktiks intensiivsusega I'.

Ya

Joonis 9.3

Ka siin ldhtume vélja stimmeetrilisusest, mille alusel A= h(r)iz
(joon. 9.3). Vektor A peab olema risti vektoriga 77, s.t. Argz = g—i—arg? =

m ~ . .
5 +argz. Vottes suvalise ringjoone |z| = r, saame, et

N = /(XoTé): / h(r)rds = h(r)r / ds = h(r)r?2m.

|z|=r |z|=r |z|=r
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' Tiz _Ti

= iz = = .
272 2mzz 27z

Seose Z = f'(z) pohjal saame kompleksse potentsiaali

f(z)==—Lnz+C.

Ndide 3. Vaatleme vektorvélja, mille kompleksseks potentsiaaliks on f(z) =
(a+1ib)Lnz, kus a ja b on reaalarvud.

Et z =0 on funktsiooni f ainsaks isedraseks punktiks, siis on see punkt
ka ainsaks isedraseks punktiks vektorvéljale. Vaatleme joonena C' ringjoont
|z = . Sel juhul

. / o . %_ . .
FC+1NC:C[f(z)dZ—(a—I—1b)/ . = 2ri(a+1ib),

millest
I'c=-27b ja N¢g=~2ra.

Seega on punkt z = 0 nii allikaks kui ka keerispunktiks.
Téhistades z = re'?, eraldame kompleksse potentsiaali reaal- ja imagi-
naarosa:

(a+1ib)Lnz = (a+1b)(Inr +i(e+2km)) =
=alnr—b(p+2km) +i(blnr +a(p + 2kn)).

Imaginaarosa v = blnr + a(p + 2k7) pohjal leiame vektorjooned v = const.
Me saame, et nendeks on logaritmilised spiraalid:

r=Ce(@/b)¢
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Joonis 9.4

Ndide 4. Vaatleme stisteemi, kus punktis z; = h on allikas intensiivsusega N
ja punktis zo = 0 allikas intensiivsusega —N (dravool). Kompleksseks potent-
siaaliks on sel juhul summa

N N
fun(z)=—1Ln(z+h)— —1Lnz.
2T 27
Edasi vaatleme piirjuhtu, kus h — 0 ja N — oo, kusjuures Nh — p. Sel juhul

. Nhln(z+h)—Ln(z) p1
f(z) = lim — ” ——

27z

Saadud siisteemi nimetatakse dipooliks momendiga p. Vektorjoonteks on
(joon. 9.4) siin nullpunkti labivad ringjooned, mille keskpunktid asuvad ima-
ginaarteljel.
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Z

N

i |

Joonis 9.5

9.4. VOOLAMINE POOLTASANDIS

Jargnevates jaotistes vaatleme kompleksse potentsiaali rakendamist voo-
lamistilesannete lahendamisel. Seejuures selgub konformse kujutamise oluline
tdhendus. Saame ettekujutuse ka sellest, milline eriline osa on juba eespool
vaadeldud lihtsatel piirkondadel — ringil ja pooltasandil.

Vaatleme enesega mitteloikuvat (iildiselt siledat) joont, mille molemad
otsad ulatuvad lopmatusse. Selline joon C jagab tasandi kaheks osaks D;
ja Ds. Vaatleme vedeliku (v6i gaasi) voolamist pooltasandis Dj, eeldades,
et see vedelik pole kokkusurutav ning puuduvad allikad. Vektorvalja moo-
dustavad vedelikuosakeste kiirusvektorid. Joone C' punktides peavad need
olema suunatud piki joone C' puutujat. Seega on joon C' iiheks vektorjoo-
neks, s. t. on maaratud vorrandiga ¥ (z,y) = vg. Et kompleksne potentsiaal
on médratud konstantse liidetava tdpsuseni (vektorvili méarab kompleksse

potentsiaali tuletise seosega f/(z) = X), siis voime votta vg = 0. Selliselt va-
litud kompleksse potentsiaali puhul funktsioon w = f(z) kujutab vaadeldava
pooltasandi iilemiseks voi alumiseks pooltasandiks. Konformse kujutamise
ainsuse teoreemi pohjal on niisuguseid funktsioone 16pmata palju, mistottu
tihesuse tagamiseks voib seada lisatingimusi. Hiiddrodiinaamika (voi aerodii-
naamika) iilesannetes seatakse tavaliselt jargmised tingimused:

|£(00)| = v ja f(o0) =00. (9.1)

Vaatleme konkreetse naitena joonisel 9.5 esitatud piirkonda D ning selles
vedeliku voolamist vasakult paremale. Leiame funktsiooni, mis kujutab antud
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piirkonda D iilemiseks pooltasandiks. Selleks votame

B z—R
24+ R’

21

Valitud funktsioon kujutab reaaltelje reaalteljeks ning ringjoone |z| = R
reaalteljega ristuvaks sirgeks. Et punkt z = R+ Ri kujutub punktiks z; =

5(1 +2i) ning punkt z = R punktiks z; = 0, siis piirkonna D kujutiseks on

z1-tasandi I veerand. Ulemise pooltasandi saame, kui rakendame ruutfunkt-
siooni, vottes

2

z—R
Zo =120 = <2+R> . (9.2)

Et saadud funktsioon on vaid tiks voimalikest funktsioonidest, mis kujutab
piirkonna D iilemiseks pooltasandiks, siis see funktsioon ei tarvitse téita li-
satingimusi (9.1). Toepoolest, saadud funktsioon ei kujuta 1opmatuspunkti
lopmatuseks.

Soovitud omadustega funktsiooni leidmiseks rakendame suvalist funkt-
siooni, mis kujutab iilemise pooltasandi konformselt iilemiseks pooltasan-
diks. Nagu teame (vt. jaotis 8.4 néide 3), on selleks reaalsete kordajatega
murdlineaarne funktsioon

W azo+b
cz+d
Asendades viimases avaldises suuruse zg valemi (9.2) pohjal, saame funkt-
siooni
(a+b)224+2(b—a)Rz + (a+b)R?
(c+d)z2+2(d—c)Rz+ (c+d)R%’

w=f(z)=

kus a, b, ¢ ja d on reaalsed konstandid. Selgitame, millisel juhul see funktsioon
rahuldab tingimusi (9.1). Paneme tihele, et tingimuse f'(00) = vy # 0 tttu
peab selle ratsionaalfunktsiooni nimetaja aste olema madalam kui lugeja oma
(jagatise tuletise valemist!), s. t. c+d = 0. Teiselt poolt, tingimuse f(co0) = 0o
pohjal jareldame, et a+ b # 0. Seega

2 _ 2 2
w=f(z) = (a+b)z +22((lzi_cl))};z+(a+b)}% :a2+6+a57
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kus

j=p)

a+b

C=ou—or Bt PT

S|

=%
ﬁ .

Saadud avaldisest leiame, et

Et punktis z = Ri vordub tasandi poére nulliga (puutuja suund — reaaltelje
positiivne suund — siilib!), siis arg f'(Ri) = 0, s. t. f'(Ri) = 2a > 0. Tingimu-
sest |f'(00)] = |a] = voo saame, et o = vy. Arvestades veel, et kompleksne
pooltasand on méaratav konstantse liidetava tapsuseni, votame 8 = 0, mis-
tottu otsitavaks kompleksseks potentsiaaliks voime votta avaldise

2
f(2) =v00 (Z—i—]:i)

Leitud kompleksse potentsiaali pohjal

R2
(-2

Punktides z =+R on Z = (. Neid punkte nimetatakse selle vektorvélja krii-
tilisteks punktideks. Leides funktsiooni f imaginaarosa

R?%y
V(2,Y) = Voo (y— M) ’

A =|f'(2)| =

saame, et vaadeldava vektorvilja vektorjooned (voolujooned) esituvad vor-
randiga

(224192 — Ry = C(a? +4?).

Kui C' =0, esitub vektorjoon kahe vorrandiga y = 0 (reaaltelg) ja 22 +y* = R?
(antud ringjoon). Selleks vektorjooneks on niisiis piirkonna D rajajoon.



9.5. VOOLAMINE UMBER KINNISE JOONE 193

o
§

Joonis 9.6

9.5. VOOLAMINE UMBER KINNISE JOONE

Vaatleme tasaparalleelset voolamist timber ringsilindri, mis on risti voo-
lamistasandiga. Tasandil vastaks sellele voolamine iimber ringjoone. Valime
koordinaatide siisteemi selliselt, et koordinaatide alguspunkt asub ringjoone
keskpunktis ning voolamine toimub z-telje positiivses suunas (joon. 9.6). Sel
viisil saavutame sisuliselt sama olukorra, mida vaatlesime eelmises jaotises.
Niisuguse voolamise kompleksseks potentsiaaliks on

Voo (z—i—}f). (1)

Vaatleme monevorra tldisemat olukorda. Olgu tegemist ka keerisega iimber
silindri. Jaotise 9.3 néite 2 pohjal on niisuguse voolamise kompleksseks po-
tentsiaaliks

r r
ilnZ =—1Lnzg, (9.1)

-2 27

kus I' téhistab keerise intensiivsust. Liites avaldised (1) ja (9.1), saamegi
vaadeldava tildisema voolamise kompleksse potensiaali

f(2) = v (z—i-}f) —|—2F,an.

1

Sellise voolamise puhul vordub kiirus 16pmatuspunktis arvuga v, ning kee-
rise intensiivsus punkti z = 0 suhtes on I'.
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Arvutades

R? T
f'(2) = voo (1 — Z2) +

2miz’

saame leida antud voolamise kriitilised punktid, s. t. punktid, kus kiirus
vordub nulliga. Selleks tuleb lahendada vorrand f/(z2) = 0. Et see vorrand
taandub ruutvorrandiks

siis kriitilisteks punktideks on

r 2
- i+ |R2-
127 o J 167202

S

(((
|

.
|

Joonis 9.7

Siin tuleb ilmsiks kolm erinevat olukorda.
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y“

Joonis 9.8

1. Kui [I'/(4mvs)| < R, siis |z1] = |22| = R ning need punktid asuvad y-
telje suhtes siimmeetriliselt (joon. 9.7). Punkt z2 on voolu hargnemis-
punkt ning punkt z; on voolu koondumispunkt. Arvutades saaksime,
et koondumispunkti argumendi saab méarata seosest

r
AT Ruse

singp =

(9.2)

2. Kui |I'/(4mveo)| = R, siis on tegemist vaid tihe, imaginaarteljel asuva
kriitilise punktiga (joon. 9.8).

3. Kui |I'/(4mvs)| > R, siis saame kaks imaginaarteljel asuvat kriitilist
punkti z; ja zo, mille puhul |21 |- |z2| = R?, s. t. iiks neist asub vaadelda-
vas ringis ning teine véaljaspool seda. Viimast labiv kinnine voolujoon
jagab koik voolujooned kahte ossa: kinnised ja mittekinnised jooned
(joon. 9.9). Seega ndeme, et kolme suuruse v, [' ja R erinev vahekord
madarab meile oluliselt erineva iseloomuga voolamise.
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y“

21

.

Joonis 9.9

Kui vaadelda voolamist timber suvalise kinnise joone C' (joon. 9.10), siis
tuleb appi votta konformne kujutamine; kujutada joonest C' véljaspoole jaav
piirkond D piirkonnaks |¢| > R. Kujutuse ¢ = ¢(z) valime nii, et ¢(c0) = oo
ja argy’(00) = 0, s. t. ¢/(00) > 0. Arvestades, et raadiuse R voime valida
vabalt, teeme seda nii, et ¢’(00) = 1. Niisuguse valiku korral potentsiaal

2
PP =i o)+ 23] 4 5 Ll 93)

kirjeldab voolamist timber joone C, mille puhul kiirus lopmatuses on v ja
tsirkulatsioon joonel C' on I'. Toepoolest,

2 ol smoe = F/(00)¢(00) = 01 =
ning

[ ileedz= [ fQac=r.
C

¢I=R
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Joonis 9.10

9.6. ZUKOVSKI PROFIIL

Kiesolevas jaotises vaatleme lennuki tiiva ristldiget (Zukovski profiili)
iimbritseva piirkonna kujutamist ringjoont timbritsevaks piirkonnaks.
Lahtume sellest, et kujutame tasandi, millest on véilja loigatud ringjoone

kaar ' (joon. 9.11), tasandiks, millest on vélja l6igatud ring keskpunktiga
punktis K =ih (joon. 9.12). Kasutame tihelt poolt funktsiooni z; = S a, mis
z+a

kujutab vaadeldava kaare nullpunktist ldhtuvaks kiireks. See kiir moodustab
reaaltelje negatiivse osaga nurga «, sest vaadeldava funktsiooni tuletis on
positiivne punktis z = a, s. t. tuletise argument on 0, mistottu pooret selles
punktis ei ole.
Teiselt poolt, kasutades sama funktsiooni w-tasandi kujutamiseks, saame,
et funktsioon
w—a

w1 =
w+a
kujutab vaadeldava ringjoone wi-tasandi sirgeks, mis ldbib nullpunkti ja mille
tousunurk on
T o T«

f=m=5-5737 %

Kui kasutame jargnevalt kujutust wg = w%, saame kogu ws-tasandi 1oikega
piki kiirt, mis moodustab reaaltelje positiivse suunaga nurga 23 =7 —«a. Me
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Y
ih 4
r v
Sa
—a 9] a
Q
Joonis 9.11 Joonis 9.12

saime wa-tasandil sama piirkonna kui zi-tasandil. Seega voime votta z; =
wy = w? ehk

z—a_(w—a>2‘ (9.1)

Z+a N w—+a

Avaldades leitud seosest muutuja z, saame funktsiooni

1 +a2
z=—w+—
2 w )’

mis a = 1 korral on tuntud Zukovski funktsioonina.
Kui avaldame seosest (9.1) muutuja w, siis saame eelnevale p6ordfunkt-
siooni

w=z+1\/22—a? (9.2)

Uurime seda kujutust monevorra lahemalt. Vaatleme w-tasandil veel ring-
joont C’, mille keskpunktiks on K’ ning mis puutub ringjoont C punktis
w = a (joon. 9.13). Selle ringjoone originaaliks on mingi kinnine joon I'', mis
{imbritseb kaart I ning puutub seda punktis z = a (joon. 9.14). Joonel I on
seega tagasipoordepunkt punktis z = a. Funktsioon (9.2) kujutab joonega I"
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piiratud kujundi (Zukovski profiili) vélise piirkonna ringjoone C’ suhtes vi-
liseks piirkonnaks. Siit saame voimaluse lennuki tiibade profiili arvutamiseks.
Viimane soltub kolmest parameetrist a, h, ja d. Esimene neist iseloomustab
tiiva laiust, teine — tiiva koverust ning kolmas (ringjoonte keskpunktide va-
heline kaugus) — tiiva paksust.

Joonis 9.13 Joonis 9.14

9.7. VOOLAMINE UMBER ZUKOVSKI PROFIILI

Eelmises jaotises leidsime funktsiooni (9.2), mis kujutab konformselt Zu-
kovski profiili vélise piirkonna mingist ringjoonest véljaspoole jadvaks tasan-
di osaks. Et rakendada jaotise 9.5 valemit (9.3), tuleb see ringjoon kujutada
niisuguseks ringjooneks, mille keskpunkt asub nullpunktis. Seda saame teha
nihke teel, vottes

wy=p1(z) =w—Ky=z2—K' +1/22—ad?,

kus K’ on ringjoone €’ keskpunkt (joon. 9.13). Selle funktsiooni korral
©1(00) = 0o ning ) (c0) = 2. Jaotise 9.5 valemi (9.3) rakendamiseks on aga
vaja, et tuletis lopmatuspunktis vorduks tihega. Seepérast votame ¢; asemel
funktsiooni

w:go(z):;(z—K/%—\/z?—aQ).
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Valemi (9.3) rakendamiseks jaab veel leida keerise intensiivsus I'. Selleks ka-
sutame nn. TSaplogini tingimust; voolamisel timber kontuuri, millel on
teravik (nurk puutujate vahel on véiksem kui 7), nihkub voolu koondumis-
punkt teraviku tippu. Leiame teraviku tipu a kujutise, arvestades, et

K/ =ih+ dei(wfarctanh/a) =ih— deifarctanh/a.

Teraviku kujutiseks on seega punkt

1 . 1 '
B=¢y(a)=-(a—K')= §(a_jh+de—1arctanh/a — 5(\/m+d)e—larctanh/a'
Et koondumispunkti argument ja keerise intensiivsus I' on seotud jaotise 9.5

valemiga (9.2), siis saamegi méaarata suuruse I':

I' = 471 Ruso sin(—arctan h/a) = —4mvsg Rsinarctan h/a.
Et
n(arctanh/a) = ——
sin(arctanh/a) = ———
Vi
ja

1
R:§w¥+m+@
Siis

d

9.8. TSAPLOGINI VALEM

Kui kiirus on vaiksem helikiirusest, voib ohku vaadelda kokkusurumatu
vedelikuna. Lennuki tiiva kuju uurides kujutleme, et tiib on paigal ning ohk
kui kokkusurumatu vedelik voolab timber tiiva.

Rohk tiivale avaldub Bernoulli valemiga

9 92

—A-°
p 50
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kus A on konstant, o — 6hu tihedus ja v — kiirus vaadeldavas punktis. Et rohk
on risti vaadeldava jooneelemendiga dz (vektor), siis viimasele mojuv rohk
(vektor) avaldub kujul

(A——gv2>idz

Téhistades joonele C' m&juva kogurchu (vektori) tdhega P, saame integ-
reerides, et

pP= / (A— 51)2> idz = —g/zﬁdz,
C C

sest Cauchy teoreemi pohjal

/mmzo
C

Et ¥ = f(z) ning v = || = |f'(2)|, kui f(2) on vaadeldavat voolamist kir-
jeldav kompleksne potentsiaal, siis

P:—M/W@WM. (9.1)

Joonis 9.15

Arvestame asjaolu, et joone C' punktides on kiirusvektor suunatud piki
puutujat (joon. 9.15). Seega

Arg f'(z) = Argdz = a,
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millest
Arg f'(2) = —a
ning
Arg([f/(2)]2dz) = —2a+a = —a.
Et
Arg(|f'(2)Pdz) =0+a=a ja [[f'(z)]Pdz| =]|f'(2)]*dz],
siis
[/(2)]2d= = [f'(2)) dz.

Selle seose pohjal saame valemist 9.1, et

P- ’; F(2)] d.

Seda valemit tuntakse TSaplogini valemina.

9.9. ZUKOVSKI TEOREEM

Kui eeldada, et lennuki tiiba timbritsevas piirkonnas on vaadeldav vek-
torvali potentsiaalne ja solenoidaalne, siis on ka sellele vastav kompleksne
potentsial f(z) regulaarne viljaspool joont C. Sama omadus on siis ka tule-
tisel f/(2), mille véime seetottu arendada 1opmatuspunkti iimbruses Laurent’i
ritta:

C-1 C_9

kus T4, on kiirusvektori vy, kaaskompleks.
Olgu L kinnine joon, mis holmab joone C'. Rakendades Cauchy teoreemi
kahelisidusa piirkonna korral, saame seose

Jir@PRdz = [17/ )P d

C L
Et

2Vo0C_1 02_1 + 2Up0C—_9
+ 2
z z
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siis TSaplogini valemi pohjal

P=2 [If(2)Pdz =5 - 2mizvsce_s = —2mpvsce_r.
L

Kordaja c_1 arvutame seosest

/f/(z)dZ:/f’(z)dz:F+iN.
L C

Seejuures peame silmas asjaolu, et joone C' punktides on kiirusvektor puutuja
suunaline ning seetottu N = (0. Seega

/f/(z) dz=c_12mi=T,
C

millest

r
C_1 = ——.
1= oni

Vastavalt sellele saame, et
P = pivs T,

ning
P =—ipv I

Viimast seost tuntakse Zukovski teoreemina téstejoust.

Et p > 0, siis vektor P on pooratud vektori veo suhtes nurga 7/2 vorra, kui
I' <0 (voolamine timber profiili kellaosuti litkumise suunas), ning nurga —m/2
vorra, kui I' > 0 (voolamine timber profiili vastupidine kellaosuti liitkumise
suunale).
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10. LAPLACE’lI TEISENDUS

10.1. LAPLACEI TEISENDUSE MOISTE

Laplace’i teisenduseks nimetatakse vordusega
[e.e]
F(p) = / e PLE(E) dt (10.1)
0
méaratud integraal-operaatorit, milles muutujat p vaadeldakse kompleks-
muutujana. Funktsioon f omagu reaalseid voi kompleksseid vadrtusi ning
tema maaramispiirkonda kuulugu vihemalt koik positiivsed reaalarvud t. Et
integraal (10.1) oleks méaaratud, tuleb funktsioonile f seada teatavad kit-
sendused. Arvestades ka integraali rakendusi, tehakse need kitsendused jarg-
mised:

1) f(t)=0, t <0

2) poolsirge t > 0 igas loplikus loigus ei ole funktsioonil ega tema teataval
arvul tuletistel rohkem kui loplik arv katkevuspunkte (need véivad olla

I liiki);

3) eksisteerivad konstandid M >0 ja a > 0 selliselt, et iga t > 0 puhul
()] < Me™.

Arvude a alumist raja nimetatakse funktsiooni f kasvu néitajaks.
Tingimusi 1)-3) rahuldavat funktsiooni nimetatakse originaaliks. Seosega
(10.1) maaratud funktsiooni F' nimetatakse funktsiooni f kujutiseks. Vas-
tavust originaali ja kujutise vahel mérgitakse stimbolitega:

ft)=F(p), F(p)=~f(t)
F=£(f), F(p)=2L[f@)]

Kirjanduses voib esineda ka teistsuguseid siimboleid, kuid siinesitatud on
vast koige enam kasutatavad.

Néitame, et iga tingimusi 1)-3) rahuldava funktsiooni jaoks eksisteerib
kujutis. Selleks toestame jéargmise teoreemi.

205
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Teoreem 1. Integraal (10.1) koondub absoluutselt pooltasandis Rep > a, kus
a on funktsiooni f kasvu nditaja. Igas pooltasandis Rep = ag > a koondub see
integraal thtlaselt.

Toestus. Toepoolest, kui p = s+io, siis:

o0 [o¢] o M

/ [F(te ] dt < / Mete™stdt < M / oot gy — 21 (10.2)
S—a

0 0 0

mis iitlebki, et integraal koondub.
Kui niiiid Rep = s > ag > a, saaksime eelmisest vorratuste ahelast, et

o0 o o0
/‘f(t)e_pt’ dt < M/e_(s_a)tdt < M/e_(ao_a)tdt =
0 0 0

M

ag—a

Weierstrassi tunnuse pohjal jareldame, et integraal (10.1) on tihtlaselt koon-
duv piirkonnas Rep > ag > a. Teoreem on toestatud.

Vaadeldes veel kord originaali maaravaid tingimusi 1)-3), ndeme, et tin-
gimusel 1) pole seost kujutise eksisteerimisega. Selle tingimuse seos reaalsete
iilesannetega véljendub asjaolus, et harilikult vaadeldakse algtingimustega
tilesandeid (diferentsiaalvorrandeid). Seetottu pole oluline, kuidas kéitub ot-
sitav suurus (funktsioon) enne algpunkti (milleks voib alati votta t =0). Teisi-
ti 6eldes, meid ei huvita uuritava ndhtuse (funktsiooni) ,,minevik®, vaid ainult
tema muutumine ¢ > 0 korral — ,tulevikus®, milleks peame teadma uurita-
va nahtuse moningaid karakteristikuid algpunktis (¢ = 0). Mis aga puutub
tingimustesse 2) ja 3), siis neid rahuldab enamik klassikalisi fiitisikanédhtusi
kirjeldavaid funktsioone. Niiiidisajal aga kasutatakse automaatsiisteemides
signaale (funktsioone), mis kestavad viga lithikest aega, kasvades peaaegu
momentaanselt viga suurte vaédrtusteni. Sel korral jadvad tingimused 2) ja
3) tditmata ning tekib vajadus tildistada originaali moistet.

Uldistatud originaaliks nimetatakse funktsiooni f, mille korral leidub
niisugune reaalarv «, et koondub integraal

[eerla
0

Veendume, et kujutis F' on regulaarne funktsioon.
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Teoreem 2. Kui integraal (10.1) koondub pooltasandis Re p > a, siis funkt-
sioon F' on requlaarne samas pooltasandis, kusjuures selle funktsiooni tuleti-
sed avalduvad kujul:

F(p) = (=1)" [ e f(t) .
0

Toestus. Vastavalt omadusele 2 jaotisest 4.7 peame vaid naitama, et vorduses
esinev paratu integraal on iihtlaselt koonduv igas kinnises pooltasandis Rep >
ap > a.

Votame n = 1. Siis saame, et

M
(ap —a)?’

o0
f)te P dt < M / te~ (@0~ gy —
0

s.t. vaadeldav integraal on iihtlaselt koonduv pooltasandis Rep > ag > a.
Taieliku induktsiooni meetodit kasutades saaksime toestada, et teoreemi
vaide on oOige iga n korral.

Teoreem 3. Kui F' on mingi funktsiooni kujutiseks, siis

lim F(p)=0.

Rep—oo

Téestus. Vahetu jareldus seosest (10.2).
Ndide 1. Funktsiooni H, mis on méaaratud seosega

1, t>0,

H(t):{o t<0

nimetatakse ithikfunktsiooniks ehk Heaviside’i funktsiooniks. Arvuta-
misel saame, et

[e.e]

1
S(H) = £(1) = /e—pt dt = — e Pt
) P

o0

1
=—, Rep>0.
0 p
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Niide 2. Olgu f(t) =e*!, kus w = u+iv. Sel juhul

£(e¥)y= ——, kui Rep > Rew.
p—w

Mirkus. Mingist reaalteljel (vihemalt ¢ > 0 puhul) mdératud funktsioonist
f kui originaalist koneldes moistame teda funktsioonina f- H, s.t.

f(t), t=0,
0, t < 0.

F()- H(t) = {

Teguri H(t) jatame lithiduse mottes kirjutamata. Ent kui selle drajatmine
voib pohjustada valesti moistmist, kirjutame H (t) asemel lihtsalt 1 (vt. ndide
2 jargmises jaotises).

10.2. LAPLACE’I TEISENDUSE OMADUSI

I. Lineaarsus. Operaator £ on lineaarne, s.t.

LA+ ng) = AL(f) + nL(g),
kus A\ ja p on konstandid.

Toestus.

oo
= (Af+pug) =/ t)+ pg(t))e P dt =
0

=) 0/ ft)e Pldt4 p O/ g(t)e Prdt = AL(f) +ul(yg).
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Ndide 1. Leiame £(sinwt). Eelmise jaotise néite 2 pohjal

1

ge¥)y=—— kui Rep>—Imuw,
p—iw
ning
—iwt 1 :
Le)=—— kui Rep>Imuw,
p+1w

Operaatori £ lineaarsust kasutades saame, et

L(sinwt) = £ [;(em - e—iwt)] —

1

1 ~ A 1 1 1
Y iwty Iy —lwty| — _ —

m[(e )= e 2i\p—iw ptiw

1 2iw w
= — = Rep > |1 .

Analoogiliselt saaksime, et
p .
kui Rep> |[Imw].

L(coswt) = ———,
(costot) = 2

II. Sarnasusteoreem. Kui A >0 ning
Lf)]=F(p), Rep>a,
S118
L (p
2] = 1 F (A) . Rep> .

Toestus. Vaite saame vahetult, kui teeme Laplace’i teisendust méaédravas in-

tegraalis muutuja vahetuse At = 7.

ITI. Originaali tuletised. Kui f' ja f(”) on originaalid, siis

LIf ()] = pLIf(1)] - £(0),
SLF] = "Ll O] = 2" F(0) =" 2 f(0) = = FV(0).
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Toestus. Ositi integreerimisel saame, et
o0 (o0
W)= [ Fwe =[0I +p [ ity
0 0

Kuna Rep = s > a, siis |f(t)e 7| < Me= =9t mistattu tli}m f(t)e P =0.
[0.9]

Sellega olemegi toestanud esimese valemi. Teine valem on toestatav taieliku

induktsiooni meetodiga.

Mdrkus. Kui f(0) = 0, siis £[f'(t)] = pL[f(t)], s.t. originaali diferentseeri-

misele vastab kujutise korrutamine argumendiga p.

IV. Kujutise tuletised. Kujutise diferentseerimisele wvastab originaali
korrutamine tequriga —t, s.t.
dn
dpﬁﬂ[f(t)] = (=D)Ll f(1)].

Toestus. Vaide on toestatud eelmise jaotise teoreemiga 2.

Naide 2. Leiame £(t").
Heaviside’i funktsiooni kujutist kasutades saame, et

2 =g 1) = —— L gy = (1 L <1>:pnll

(—1)” dp™ dp™ \ p
Ndaide 3.
1 dn
S(tnem) ——< 1)n - (e‘”t) =

- <_1)n<§g” <piw> - (p—Z!)”“'

Ndide 4. Leiame £(t), kus « € R. Vastavalt definitsioonile

oo oo 7'05 1 oo
L) = [ePt¥dt= [ e T—=dr = e Tr%dr,
pa+1 pa+1
0 0

kus pt =7 ja pdt = dr. Seega

1
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kui Rep >0 ja o > —1. Kui a <0, siis t* on originaal, kui aga —1 < a <0,
siis t ei ole originaal, sest t“ — 0o, kui t — 0. Viimasel juhul ¢t* on iildistatud
originaal.

V. Originaali integreerimine. Originaali integreerimisele vastab jagami-
ne argumendiga p, S.t.

8(/fﬁﬁh):£%fﬂ
0

¢
Téestus. Veendume, et g (t) = / f(7)dr on originaal. Kontrollimist vajab
0

vaid tingimus 3), sest iilejaanud kahe taidetus on ilmne. Tingimust 3) kont-
rollides saame:

/tf(T)dT
0

t
M
< M/eaTdT = — (eat — 1) < —e
0

s.t. tingimus 3) on tiidetud. Et g(0) = 0, siis £[f (t)] = £[¢' (t)] = pLlg (t)],
millest saamegi vaite.

VI. Kujutise integreerimine. Kui F(p) = £[f(t)] ning integraal

[0.9]
/F(q)dq koondub, siis
P

t

7F@ym=2{“”]

Toestus. Eeldame, et integreerimistee asub pooltasandis Rep > ag > a. Sel
juhul

(o]
<M [e®0agy
0

/ f(t)e at
0

millest jareldub, et funktsiooni F' defineeriv integraal koondub p suhtes iiht-
laselt ning me voime jargmises integraalis muuta integreerimise jarjekorda.
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-]
P \0 P
o0
:/(t —ptdt [‘f(t‘|
n t
0
Naide 5
o
int d

Ndide 6. Omaduse V pohjal saame, et

i
£(Sit) = £ (/ sdeT) _ arccotp‘
0

T p
VII. Hilinemisteoreem. Iga positiivse arvu 7 korral L[f(t—71)] =
e PTE[f (1)),
Toestus. Et f(t—7) =0 (joon. 10.1), kui ¢ < 7, siis

o0

Slf(t—7)] = / Flt—r)ePtdt = / £ (w) e P+ gy =

T

plut /f Yo Pudu = e PTL[f (t— 7).

Ndide 7. Leiame treppfunktsiooni (joon. 10.2) y = f (t)=H (t)+2H (t —7) —
3H (t —37) kujutise.
Et £[H (t)] = —, siis lineaarsuse omaduse ja hilinemisteoreemi pohjal saa-
p

LIf ()] =L[H ()] +2L[H(t—7)]—3L[H(t—37)] =

1 1 11
= +2 7P = —3eIP= = = (142677 —3e77).

p p p p
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Ya
Y,
3" ] [}
I |
0 o 7 37 g
Joonis 10.1 Joonis 10.2

VIII. Nihketeoreem. Iga kompleksarvu A korral
eleMft)] =Fp-»),
kus F (p) = £[f ()]

Toestus. Vahetu definitsiooni rakendamine.

W
(p+)\)2+w2

w
Niide 8. Et £(sinwt) = ———, siis =£ (e_M sinwt).

ptw
Midrkus. Kui A on negatiivne reaalarv, siis originaal kirjeldab stabiliseeruvat
protsessi voi sumbuvat vonkumist, mistottu nihketeoreemi nimetatakse sageli

ka sumbumisteoreemiks.

IX. Perioodilise originaali kujutis. Kui originaal f on perioodiline funkt-
stoon perioodiga T, siis

T
elf (1) = 1_2_Tp/eptf(t)dt. (10.1)
0

Toestus. Bt

[e.9]

T
Llf W)= [ @t = [P tyde+ [ @,
0 0 T

o0
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siis tehes selles integraalis muutuja vahetuse ¢t = 7+ 71 ja arvestades seost
f(t+T)=f(t), saame:

o0

e f (1) di+ / e f () dr =
e P f(t)dt +e TPL[f (1)

o]
|

millest jareldubki véide (10.1).

Markus. Asjatoestatud omadust on kasulik interpreteerida jargmiselt. Olgu

Yy
s.t.
(6),t€[0.7] o E———
f t? € ’ U | s

g(t):{ 0,t € [0,T] -1 —

Sel juhul Joonis 10.3
1
e Oz Lo ()]

Ndide. Olgu f(t) =sgn(sint) (vt. joon. 60). Leiame kujutise. Et f on pe-
rioodiline funktsioon perioodiga 27, siis saame rakendada viimast valemit,
vottes ¢g(t) = H(t) —2H (t — )+ H (t — 2m). Arvutades leiame, et

1—e™™
Llg(t)] = ! (1 — 2e_7rp+e_2”p) = (p>’

millest

2
(1—6_@) 1—e ™ 1 e
sen (il = ) T e p N2

Mdrkus. Praktikas ei ole oluline méiarata seda piirkonda (pooltasandit), kus
kujutis eksisteerib. Oluline on teada, et niisugune pooltasand Rep > ¢ on ole-
mas. Seetottu jatame edaspidi kujutise eksisteerimise piirkonna maéarkimata.
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Ulesanded
1. Toestada valemid 2, 9, 10, 11, 12, 13, 14, 19, 20, ja 27 tabelist 3.

10.3. PARAMEETRIST SOLTUVATE
FUNKTSIOONIDE LAPLACE’]L
TEISENDUSED

Vaatleme mingist parameetrist o soltuvate originaalide Laplace’i teisen-
dusi. Olgu

Lft )] =F(pa), o€, o).
Teoreem 1. Kui eksisteerib piirvidrtus algg f(t, @), siis
0
£ nggof (t,oz)} = Jim £[f,al
Toestus. Vaide jareldub vastava paratu integraali tihtlasest koonduvusest,
mistottu voime minna piirile integraalimargi all.
0
Teoreem 2. Kui eksisteerib osatuletis a—f(t,a), a € [ag,as], ja viimane on
o)
originaal, siis

e L;if(t,a)] = 2 P(p,a).

Toestus. Et
0
[ aydt=F (p.a),
0

siis parameetri « jargi diferentseerides saame:

o0

0

0
8040/6 ft,a)dt a&F(p,Oé).

0
Eelduse kohaselt — f (¢,«) on originaal, mistottu voime viimases avaldises
o

diferentseerida integraali mérgi all. Teoreem on toestatud.
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Ndide 1. Et

. o
L(sinat) = 5—,
pta
siis parameetri o jargi diferentseerides saame seose

p?—a?

L(tcosat) = —.
( ) ey
Ndide 2. Et

I'(a+1)

£t = e ,Q

> -1,

siis parameetri « jargi diferentseerides saame seose
1

£(t*Int) = T

M (a+1)=T(a+1)np|.

Téhistades IV (1) = —C' ja ¥ = 4 ning vottes a = 0, saame, et £(Int) =
1

——In(vyp).
,mp)

Teoreemi 2 rakendatakse ka osatuletistega vorrandite lahendamisel
Laplace’i teisenduse abil.

Teoreem 3. Kui on olemas integraalid

B B
/f(t,a) da  ja /F(p,a) dov,
Be Bo

5118
B B
£ /f(t,a)d& :/F(p,&)da.
0 Bo
Toestus. Et
B A A B
/da/e_ptf(t,a)dt:/dt/
Bo O 0 Bo

siis piirile minnes (A — c0) saamegi véite. Toepoolest, eelduse kohaselt ek-
sisteerib piirvdartus vorduse vasakust poolest, mistottu peab eksisteerima ka
piirvdartus paremast poolest.
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Jareldus. Kui F(p) =£|

s/f :;

f(u) _1
2/ S |-

/ [{@ —7F(q) dq. (10.3)
0

Toestus. Sarnasusteoreemi pohjal

2{1f<t>}:F(ap), a>0.

(07 «

~

()], siis kehtivad seosed

F(q)dgq, (10.1)

F(q)dq. (10.2)

Rakendame eelmist teoreemi, vottes integreerimisloiguks 16igu [0, 1]. Sel juhul
saame vorduse

1 1
1 t
/—f <>da] :/F(O./p)da
a” \«a
0 0
Tehes siin muutujate vahetuse ¢t = au ja ap = ¢, saamegi valemi 10.1.

Valemi (10.2) toestamiseks lahtume kujutise integreerimise omadusest,
mille pohjal

£[20]- Jra

Rakendades sellele seosele originaali integreerimise omadust, saamegi valemi
(10.2).

Kasutades Laplace’i teisenduse lineaarsust, saame valemite (10.1) ja
(10.2) liitmisel, et

£ Zofiu)du] = ;?F(q)d

Selles seoses seisab operaatori £ mérgi all konstant, mille voime lineaarsuse

£

1
omaduse tottu tuua operaatorimérgi ette. Et aga £(1) = H[H (t)] = —, siis
p

saamegi valemi 10.1.

7
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Selles jarelduses toestatud valemeid (10.1) ja (10.2) voib rakendada ku-
jutiste leidmisel, mida demonstreerime jérgneva néitega. Valemit (10.3) saab
rakendada integraalide arvutamisel, millel peatume jaotises 11.5.

Ndide 3. Integraalne koosinus defineeritakse seosega

oo

¢i(t) = —/ Cojudu,t >0/
¢

Seose 10.3 pohjal saame, et

17 qdq 1
. _ 4 _ 2
Llei(t)] = - 0/q2 1= "2 In (p —|—1) :
Ulesanded

1. Toestada valemid 36, 37 ja 40 tabelist 3.

10.4. PIIRTEOREEMID

Teoreem 1. Kui £[f(t)] = F(p) ja f'(t) on originaal, siis lim pF(p) =

Rep—o0
lim f(¢).
t—>1 0+f( )

Toestus. Et f'(t) on originaal, siis

Llf'(t)] = pF(p) — f(0),

kus

f(0) = lim f(#)

t—0+

Jaotise 10.1 Teoreemi 3 pohjal

lim [pF(p)— f(0)] =0.

Rep—o0
millest saamegi teoreemi viite.

Téestatud teoreemi pohjal voib vidrtuse f(0) leida kujutise kaudu.
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Teoreem 2. Kui £[f(t)] F(p), kus f'(t) on originaal, ja eksisteerib tlim f(t),
o0
518
limpF(p) = lim f(t).

Toestus. Lahtume seosest

[0.9]

[y Wyt =pF(p) - £(0),

0

Laheneme selles vorduses piirile (p — 0). Voime seda teha integraalimérgi all,
mistottu saame

| £t = tim [pF ()~ £(0)).
0 P
Et aga
| £ @t = tim £6) — £(0).
0 b

siis viimase kahe vorduse pohjal saamegi teoreemi viite.

Ulesanded
1. Niidata, et f'(0) = a, kui
ap+b
Llft))=———.

10.5. KONVOLUTSIOON. BORELI TEOREEM

Kahe funktsiooni f ja g konvolutsiooniks nimetatakse funktsiooni, mis
on maaratud avaldisega

t
/f(T)g(t —7)dt.
0

Funktsioonide konvolutsioon on (korrutamisetaoline) tehe funktsioonide hul-
gas, seda tdhistatakse stiimboliga * (nditeks, h = f*g voi h(t) = f(t)*g(t)).
Vaatleme konvolutsiooni omadusi.
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II.
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IV.
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VIL
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Kommutatiivsus: fxg=gx* f.

Toestus. Tehes konvolutsiooni f* g defineerivas integraalis muutuja va-
hetuse t — 7 = u, saame

F0)x9(t) = [ F(R)gt=r)dr = [ glu) f(t—u)du=g(t) f(0).
0

0

Assotsiatiivsus: (f*g)xh= f*(gxh).

Distributiivsus: f*(g+h) = f*xg+ fxh.

Need omadused toestatakse sarnaselt kommutatiivsuse omadusega.

|fgl < |f]*lgl.

Toestus. Et

t

[ @9t =r)dr

0

t

< [IF@llg(t =)l dr,

0

siis olemegi saanud vastava omaduse.

Kui funktsioonid f ja g on pidevad juhul t > 0, siis on pidev ka nende
konvolutsioon.

Toestus tuleneb vahetult maédratud integraali pidevusest iilemise raja
jargi.

Titchmarsh’i teoreem: Kui f ja g on pidevadt > 0 puhul ning f*g=
0, siis vahemalt ks funktsioonidest on vordne nulliga iga t > 0 puhul.

Selle teoreemi toestust me ei esita.

Kui funktsioonid f ja g on originaalid, siis on seda ka nende konvolut-
SL00M.
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Toestus. Esimese kahe originaali eesitatud tingimuse taidetus on ilmne.
Vaatleme kolmandat tingimust. Olgu

FOI< M a Jg(t—7)] < Mo,

mille pohjal

t
< M/e“Tea(t_T) dr = Mte™ < Melotelt
0

t
[ 1@)glt=r)ar
0

kus e on kui tahes véike positiivne arv. Seega on originaali tingimus 3)
konvolutsiooni puhul taidetud.

Boreli teoreem. Kui L[f(t)]=F(p) ja L[g(t)]=G(p), siis L{f(t)*xg(t)} =
F(g)-G(p)-

Toestus. Konvolutsiooni kujutis on maaratud absoluutselt koondunva kahe-
kordse integraaliga, milles muudame integreerimise jarjekorra (vt. joon. 10.4).
Saame, et

t

s/f(T)g(t—T) dr = 7e_pt (/tf(T)g(t—T)dT) dt =
0 0

0
70]”(7) (70e_ptg(t —7) dt) dr.
0

T

Tehes viimases integraalis muutuja vahetuse u =t — 7, du = dr, saame, et

L) *g(t)] =

f(r)e T dT/g(u)e_p“ du = F(p)G(p).
0

Teoreem on toestatud.

Ndide 1. Leiame originaali funktsioonile

1

w:F(p>:W
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'y
X
kS
« -
0 "
Joonis 10.4
Ft — L — g(sint), sil
———— = £(sint), siis
(p*+1)
IS PRLIEE S P
= : = [ sin(t —7)sinTdr =
p p2+1 p2+1 /
t

1 1. to1 t

:*/[COS(?T—t)—COSt]dT:*Sln(27'—t) — —7cos(t)] =
2 1 0o 2 0
0
1

= —sint — —tcost
2

Teoreem. Kui £[f(t)*g(t)] = F(p)G(p), siis
Llf®)]*g'(t) + f()g(0)] = pF (p)G (p)
ja
Llg()]+ f'(t) +9(t) f(0)] = pF (p)G (p)
Téestus. Et
pF(p)G(p) = [pG(p) — 9(0)]1F(p) + 9(0) F(p),

siis Boreli teoreemi, originaali diferentseerimise ja lineaarse omadust kasuta-
des saamegi esimese vorduse toestada. Teise toestame analoogiliselt.

Asjatoestatud kahte vordust nimetatakse Duhameli integraalideks.
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Ulesanded

1. Néidata, et

kui
LM =F(p) ja Llgt;u) =e P G(p)
ning ¢ ja G on analiiiitilised funktsioonid (Efrose teoreem).

2. Naidata, et Efrose teoreem on Boreli teoreemi iildistus.

10.6. FOURIER’ TEISENDUS

Matemaatilise analtitisi kursusest teame™, et kui funktsioon f on absoluut-
selt integreeruv kogu arvsirgel ning tal on igas punktis loplikud iithepoolsed
tuletised f'(t+) ja f'(t—) igas punktis ¢, kus

£(1) = 317 — ()],

kehtib seos

l 00
f(t) :ll_i>m 217T/el‘9tds = / flu)e % du. (10.1)
] —00
Maérkides
16 = == [ et du (10.2)
saame, et
f(s)= L i F(s)e!* ds (10.3)
Ve ), | |

*Vt. Kangro, G. Matemaatiline analiiiis I, Tln, 1968, 1k 258-263.



224 PEATUKK 10. LAPLACE’I TEISENDUS

kus viimane integraal on moistetud nn. Cauchy peaviaartusena

o0

/f( Jelstds = lim /F Jelst ds

l—00
—00

Seost (10.2) nimetatakse Fourier’ teisenduseks ning seost (10.3) tema
poordteisenduseks. Fourier’ teisendus on rakenduslikult viga tahtis mate-
maatilises fiiiisikas ja raadiotehnikas. Meil ldheb seda vaja seoses Laplace’i
teisenduse poordteisenduse vaatlemisega jargmises jaotises, kus muutjat s
tuleb vaadelda komplekssuutujana.

Kasutatakse jargmist siimboolikat ja terminoloogiat. Seost (10.1) mérgis-
takse lithidalt

S(f)=F ehk J[f(t)]=F(s).

Funktsiooni f nimetatakse originaaliks ja funktsiooni F' kujutiseks. Ku-
jutist F'(s) nimetatakse funktsiooni y = f(¢) spektraalseks tiheduseks,
kujutise moodulit |F'(s)| — amplituudi tiheduseks ning kujutise argumen-
ti arg f(s) — algfaasiks.

Lahtudes Fourier’ integraali definitsioonist saab kontrollida jargmisi oma-
dusi.

I. Lineaarsus: F(Af+ug) = M(f) + u5(9)
II. Originaali nihe: §[f(t£7)] = e**"F[f(t)].
III. Kujutise nihe. Kui [f(t)] = F(s), siis
Sl (e =F(s+0).

IV. Ljapunovi vordus. Kui §(f) = F ja §(g9) = G, siis

70 f(t)g(t)dt = 7 F(s)G(s)ds = 70 G(s)F(s)ds.

V. Parsevali vordus. Kui §(f) = F), siis

7[f(t)]2dt: 70[F s))?
0 0
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VI. Sarnasusteoreem. Kui §[f(t)] = F'(s), siis

slr@)=-F ()

a a

VIIL. Originaali diferentseerimine. Kui §(f) = F ja f®() (k =
1,2,...,n) on absoluutselt integreeruv kogu arvsirgel, siis

FP )] = 1) 3L @), k=1,2,....n.

VIII. Kujutiste korrutamine. Kui §(f) = F ja §(g) = G, siis F(f xg) =
F(s)G(s), kus

10 a0) = = [ Fu)gli—u)du

Viimast avaldist nimetatakse funktsioonide f ja g konvolutsiooniks
piirkonnas (—o00,0).

10.7. LAPLACE’I TEISENDUSE POORAMINE

Olgu £[f(t)] = F(p). Teisendust £7!, mille abil saame leida originaali
f(t), teades kujutist f(p), nimetatakse Laplace’i teisenduse poordtei-
senduseks. See esitub Riemanni—Mellini valemiga

1 T+ioco 1
— [ P dp =17t + 1), (10.1)
2w J 2

r—100
milles £[f(t)] = F(p), Rep =z > a, kus a on funktsiooni f kasvu naitaja. Sel-
les valemis on integraali moistetud Cauchy peaviirtusena ning integreerimine
toimub piki imaginaarteljega paralleelset sirget. Rohutame, et funktsiooni f
pidevuspunktis annab valemi (10.1) selle funktsiooni vaartuse f(t) ning esi-
mest liiki katkevuspunktis tithepoolsete piirvadrtuste aritmeetilise keskmise.

Valemi (10.1) toestamiseks mérgime, et funktsioon

y=e"f(t)
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on absoluutselt integreeruv kogu arvsirgel (vt. jaotis 777), kusjuures f(¢) =0,
kui ¢ < 0. Seetottu voib sellele funktsioonile rakendada eelmise jaotise valemit
(10.1); saame

1 oo oo
e_mtf(t)ZQ— / tds / flu)e e 5u du.
m
ehk
f(t):21 / et g / e~ @HSU £ () du.
7r

Tahistame x +1is = p. Sel juhul dp = ids, kui p muutub mooda sirget Rep =
x = const, ning me saame, et

x+ioco (%)
=5 [ o [ st
ehk
1 T+ioco
=5 | <Py

Vastavalt eelmise jaotise alguses toodud mérkustele tdhendab f(¢) siin

1
suurust [f(t+)+ f(t—)]. Valem (10.1) on sellega toestatud.

Jérgnevas vaatleme iihte teoreemi, mis annab piisava tingimuse originaali
olemasoluks.

Teoreem. Olgu funktsiooni F puhul rahuldatud jirgmised tingimused:
1) F on regulaarne piirkonnas Rep > a;

2) kui Rep > a, siis . lim f(p) =0;

mp—0o

(o]
3) / |F(z+1i0)|do on koonduv.
—00
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Sel juhul on funktsioon F' kujutiseks ning tema orginaal avaldub kujul
T+ioco
f= | F@)p, (102)
r—ioco
kus © = Rep > a.
Toestus. 1) Koigepealt naitame, et funktsiooni f méérav integraal ei sol-
tu sellest, milline on = > a. Vaatleme piirkonnas Re p = x > a ristkiilikut

ABCD (vt. joonis 10.5). Et funktsioon F' on regulaarne selles pooltasandis,
siis Cauchy teoreemi pohjal

/ept p)dp=0, (10.3) \

A

kus I' on selle ristkiiliku rajajoon. Et

/ P F(p)dp

L P F(p)dp

siis teoreemi eelduse 2) kohaselt saame
seosed:

V%

<e$2t/|F —ir)|dz 0

ja

<ew2t/yF ©+ir)|dz, 7

Joonis 10.5

lim = lim =0
7500 T=00
AB CD

Seega saame seose (10.3) pohjal, et
xo+iT x1+iT
- t - t _
Jim / epF(p)dp—Tll}nolo / " F(p)dp=0
To—iT T —iT
ehk
To+ioco x1+ioco
' P(p)dp= [ F(p)dp

xro—ico xr1—ico
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Sellega olemegi toestanud, et funktsiooni f méarav integraal ei soltu suuruse
x valikust.

2) Vaatleme joonisel 10.6 kujutatud piirkonda G, mille rajaks on 16ik BA
ja ringjoone kaar ¢,. Cauchy teoreemi pohjal

/ept p)dp+ / P F(p)dp =0 o1
r T~ B=z+io
ehk
T+io 0] G
p)dp= [ " F(p)dp. aT
r—io Cr
Jordani lemma pdohjal A
lim [ ePF(p)dp =0, kui t <0,
[p|—o0
" Joonis 10.6
mistottu
z+ioco
£(t) = / P E(p)dp =0, kui ¢ < 0. (10.4)
r—ioco

Kui t > 0, siis

r+ico ot X
t .
= F .
2m / PR /y (z +i0)|do
r—ioco 700

Tahistades

1 (0.¢)
o / \F(z +i0)|do = M,
T

saame, et | f(¢)] < Me®. Seega ndeme, et seosega (10.2) madratud funktsioon
on originaal.

3) Néitame 16puks, et valemiga (10.2) maaratud funktsioon on originaa-
liks funktsioonile F', s.t.

o0

F(p) = [e ™ f(t)dt

0
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Toepoolest, teoreemi eelduse 3) pohjal voime funktsioonile F' rakendada eel-
mise jaotise valemit (10.1):

oo oo

F(a:+ia):21 / dt / F(z+iu)e 0= gy,

™

Tahistades p =z +i0 ja ¢ = x +iu, saame, et
1 0o r+ioco
Flp)= — / o Pt dt / ot F(q) dg.

2mi /
—0o0 Ir—100

Valemeid (10.2) ja (10.4) arvestades saamegi seose

Fp)= [0yt
0

10.8. ARENDUSTEOREEMID

Tdestame mone teoreemi, mille abil saame originaali esitada reaksaren-
dusena. Seejuures seame kujutisele konkreetsed nouded.

Teoreem 1 (esimene arendusteoreem). Kui kujutis F' on requlaarne lopma-
tuspunktis ning selle imbruses on esitatav Laurent’s reana

F(p) - X
k=1P

siis originaaliks on tdisfunktsioon f, mis on esitatav astmerea summana

f(t) = i (k?ﬂl)ﬁkl'

k=1

1 1
Toestus. Votame ¢ = — ja G(q) = F () Siis
p q

Glg) =Y cxd"”
=1
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méaédrab ringis |¢| < 1/R analiiitilise funktsiooni G. Cauchy vorratuse pohjal
lex| < MR ning seega

1< e WS <oy O

k=0

R|t|) MRe|R|t

mis ttlebki, et f on taisfunktsioon. Viimane vorratus annab samuti, et f(t)
on originaal (3). tingimus). Et funktsiooni f defineeriv astmerida on thtlaselt
koonduv, siis peale teguriga e P! korrutamist voime teda lifkmeti integreeri-
da. Kasutades seost £(¢") = n!/p"*!, saame, et funktsiooni f kujutiseks on
funktsioon F'.

Markus. On voimalik toestada ka vastupidist: kui originaal f on taisfunkt-
sioon, mis rahuldab vorratust |f(t)] < M el siis kujutis on regulaarne 16p-
matuspunktis.

Teoreem 2 (teine arendusteoreem). Olgu funktsiooni F' puhul tdidetud jarg-
mised tingimused:

1) F on meromorfne ning pooltasandis Re p > a requlaarne;

2) leiduvad ringjooned Cy: |p| = Ry, R1 < Ra..., Ry, — 0o, millistel F(p)

laheneb nullile tihtlaselt argumendi p suhtes, kui n — oo;

3) iga T > a puhul on integraal / |F (1 +i0)|do koonduv.

—0o0

Sel juhul on funktsiooni F' originaal madratud seosega

= > res[F(p)e™;p] (10.1)
k

kus resiidid on voetud koikide isedraste punktide suhtes ning |pgi1| = |pkl-

Toestus. Valime mingi 7 > a ning vaatleme ringjoone C,, seda osa l,,, mis jaab
pooltasandisse Re p < 7 (joon. 10.7). Ringjoone kaar [,, koos 16iguga A, B,
moodustab kinnise joone, mille mérgime stimboliga I',,. Et eelmise jaotise
teoreemi pohjal



10.8. ARENDUSTEOREEMID 231

: 1 ¢
f(t) = lim o— / e” F(p)dp o4
AnBn
ning Jordani lemma pdéhjal, kui ¢ > 0,
1 t y O Cn S
Jim s [ F@)dp=0, 7 Ea
siis B
_ - t 7
10 = Jiy 5 [
Joonis 10.7

Selle integraali voime arvutada resiidide
teooria pohiteoreemi kohaselt, mistottu

F(t) = Jim > ves [ F(p)ip]
In

Siit saamegi teoreemi vaite.

Jareldus 1. Kui f(p) = P(p)/Q(p) on ratsionaalne lihtmurd, siis originaal
on mddratud seoseqa

m dk— 1 ]
i _ Nk P
=2 o nk_l i A T {(F @) =)™}

kus punktid p, (k=1,2,...,m) on funktsiooni F' poolused, nj nende pooluste
jargud ning summas on voetud resiidid koikide pooluste suhtes.

Téestus. Véide jareldub vehetult seosest (10.1), arvestades resiidi vdartust
poolustes. Meenutame siinkohal ka seda, et ratsionaalse lihtmurru korral
plgrgo F(p) = 0 ning pooluseid on 16plik arv.

Jareldus 2. Kui lihtmurru P(p)/Q(p) nimetaja nullkohad py, (k=1,2,...,m)
on koik esimest jarku, siis

-3 oo

k=1

P(p

/

epkt (10.2)

@
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Téestus. Viimase valemi saame vahetult valemist (10.1), kasutades resiidi
arvutamise valemit esimest jarku pooluse jaoks eelmisest jaotisest (10.2).
Rakendustes (eriti elektrotehnikas) esinevad sageli kujutised kujul

F(p)zg(g?)),

kus politnoomi P(p) aste ei ole polinoomi ((p) omast suurem ning koik
funktsiooni F' poolused on esimest jarku. Sel juhul resiid punktis 0 avaldub
kujul P(0)/Q(0), nagu see jareldub eelmise jaotise valemist (10.1). Arvesta-

des veel, et Q(p) = 0 ning pQ(p)] = Q(p) + Q' (p), voime sel juhul valemi
(10.2) esitada kujul

_PO) 5~ Plr) e
=50t = nam (10.3)

kus summas on arvestatud koéik poliinoomi @Q(p) nullkohad py.

Markus 1. Kui polimoomid P(p) ja Q(p) on reaalsete kordajatega, siis on
poolusteks nii p; kui ka 7, (kaaskompleksarv), kusjuures

PO g _ PO
Q' (Pr) Q' (pk)
mis tahendab, et ka resiidid pooluste px ja pj suhtes on kaaskompleksarvud.

Kuna z+7 =2 Re z, siis jarelduse 2 pohjal saame, et dige on jargmine vaide.

Jareldus 3. Kui poliinoomide P(p) ja Q(p) kordajad on reaalsed ning po-
limoomi Q(p) nullkohad on koik esimest jarku, siis ratsionaalse lihtmurru
P(p)/Q(p) originaal avaldub kujul

kus arvudeks pp on esimeses summas koik reaalarvulised poolused ning teises
summas koik posititvsete imaginaarosadega poolused.

Markus 2. Iga liige valemis (10.2) on esitatav kujul

P
Plpe) ekt [cos oyt +sin oyt

Q' (qr)
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kus pr = s +io. Sellest on selge, et reaalarvulistele poolustele (o, = 0)
vastab mitteperioodiline vonkumine, negatiivse imaginaarosaga kompleksse-
tele poolustele — sumbuv vonkumine, puhtimaginaarsetele poolustele (s, =0)
— harmooniline vonkumine. Positiivseid reaalarvulisi pooluseid ja positiivse
reaalosaga kompleksarvulisi pooluseid ei saa iildse olla, kui vaadeldav siisteem
ei vongu tokestamatult kasvava amplituudiga. Oeldust jéreldub, et statsio-
naarset vonkumist kirjeldab funktsioon f, mis on méaratud seosega

P(lUk) eidkt

Q'(iox)

kus summa on voetud koigi nende pooluste suhtes, mille puhul pg = ioy,
o > 0.

f(t)=2Red

10.9. IMPULSSFUNKTSIOONID

Teame, et kujutise F(p) puhul _lim F(p) = 0, mis tédhendab, et
Rep—o0
1,p,p?, ... ei saa olla kujutised tavalises mottes. Ent monel juhul tuleb ra-

kendustes vaadelda just niisuguseid seoseid, kus kujutisena tuleb arvesta-
da ka iilalmérgitud suurusi. Et £[H ()] = p~, siis originaali diferentseeri-
mise omadust arvestades peaks iithiku originaaliks olema H’(t). Heaviside’i
funktsioon pole aga tavalises mottes diferentseeruv, mistottu tuleks laiendada
funktsiooni maistet selliselt, et ka funktsioonil H oleks tuletis. Selle eesmérgi
saavutame, kui vaatleme Diraci ¢-funktsiooni, mida voib iseloomustada
jargmiselt
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o0

Et funktsiooni (signaali) ¢ impulsiks nimetatakse suurust / @(t)dt, siis

— 00
o-funktsiooni nimetatakse ithikimpulsiga impulssfunktsiooniks voi null-
jarku impulssfunktsiooniks.

Diraci d-funktsioonini voiksime jouda ka jargmistest kaalutlustest lahtu-
des. Olgu funktsioonid d,, defineeritud seosega (vt. joon. 10.8)

A

n, 0<t<?t
5 t — ) ~ AN n’
n(l) {O, t<0voit>1 n
Sel juhul
oo

[«%)
3
—
~
SN—
jol
~
I
—_
=l
3=
@FV

—00
) Joonis 10.8
ning
0, t<0,
! 1
m@p:/&mmm— nt, 0<t<
R 1
> 1, t>-.
n

On loomulik lugeda Gigeks seosed

lim 0,(t) = 6(t) ja  lim ho(t) = H(2).

n—oo n—oo

Olgu ¢ mingi Laplace’i teisenduse originaal. Sel juhul

[ttt = (o) (10.1)
0
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(kui ¢ ei ole pidev punktis ¢ = 0, siis ¢(0) tdhendab parempoolset piirvaartust
selles punktis).
Vastavalt seosele (10.1) saamegi, et

Swaﬂ:i73@k_mdt:1
0

ning hilinemisteoreemi pohjal
Llo(t—r)=e,

mis on samuti kooskdlas seosega (10.1). Nende seoste pohjal nédeme, et on
oige teoreem kujutiste korrutamise kohta. Toepoolest,

t
1) = [ (1)t =1)dr = £(0)
0
Analoogiliselt on voimalik esitada ka korgemat jarku impulssfunktsiooni-
de 61 maiste selliselt, et
L)) =p" ning 6 (1) = HOTD (1),

Olgu maérgitud, et impulssfunktsioonid kuuluvad distributsioonide (tldista-
tud funktsioonide) klassi. Viimaste kohta on loodud matemaatiline teooria,
aga kéesolevas raamatus ei ole ruumi seda vaadelda.
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11. LAPLACE’I TEISENDUSE
RAKENDUSI

11.1. HARILIKUD LINEAARSED
DIFERENTSIAALVORRANDID

Vaatleme konstantsete kordajatega lineaarset diferentsiaalvorrandit
ant™ () + an12" "V + .+ a2 (£) + agz(t) = f(1).
Liihidalt kirjutatakse see vorrand
L(D)x(t) = f(1). (11.1)
kus L(D) on operaatorpoliinoom:
L(D)=a,D"+a,_1D" ' +...+a1D +ay,
milles D on diferentseerimise operaator, s.t.

d 5 d? dn
D=— D"=— ... D'=_—,
dt’ dt2’ dtm

Otsime vaadeldava vorrandi lahendit piirkonnas ¢ > 0 algtingimustel

s® )=z (k=0,1,...,n—1).

n

Eeldame, et funktsioonid f ning z® (k=0,1,...,n) on originaalid, ning
téahistame

L)) =F(p),

Llz@)] = X(p).

Originaali diferentseerimise eeskirja ning algtingimusi arvestades saame, et
L[’ (t)] = pX (p) — xo,
£la"(t)] = p* X (p) — xop — a1,

S ()] = X () — 3 wpip
k=1

237
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Rakendades vorrandile (11.1) Laplace’i teisendust(arvestades teisenduse li-
neaarsust), saame kujutise suhtes vorrandi

L(p)X(p) = F(p) +Q(p),

mida nimetatakse operaatorvorrandiks. Selles vorrandis on L(p) polii-
noom, mille kordajateks on operaatorpoliinoomi kordajad ning @Q(p) on
(n—1)-astme poliinoom, mille kordajad on maaratud algtingimustega (10.2).
Operaatorvorrandist leiame otsitava funktsiooni kujutise:

X(p) = F(p)Lz;?(p)'

Selle kujutise jargi leiame ka originaali. Selleks voib kasutada arendusteoree-
me, Laplace’i teisenduse omadusi ja nende teisenduste tabelit.

Niide 1. Lahendame diferentsiaalvorrandi z” + x = 2cost algtingimustel
z(0) =0, 2/(0) = —1.
Et £(cost)

:p2+1 Ja

£(a") = p*L(x) — pr(0) — 2'(0) = p*L£(x) + 1,

siis Laplace’i teisenduse rakendamisel sellele vorrandile saame, et

2p
2 _
pL(z)+1+L(x) = ]
ehk
2 1
L(z) = L

F+17 P

Arvestades seost

2 1y
n? T \2e)
leiame Laplace’i teisenduse omadusi kasutades, et
£(x) = L(tsint) — L(sint),

millest saame vorrandi lahendi

x(t) =tsint —sint = (t — 1) sint.
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Sellest lahenduskaigust mérkame, et operaatormeetodil diferentsiaalvor-
randit lahendades arvestatakse algtingimusi juba lahenduskaigu alguses. Sel
moel ilmneb algtingimuste moju juba enne lahendi leidmist. Kui xp = 0
(k=0,1,...,n—1) (algtingimused nullid), on operaatormeetodil lahendamine
eriti lihtne.

Operaatormeetodi eelised on eriti ilmekad ka siis, kui vorrandi parem
pool on tiikati sile (voi isegi tiikkati pidev). Operaatormeetodit kasutades ei
pea leidma iga sileduse (voi pidevuse) piirkonna jaoks erilahendi, vaid saame
ithe, koikide piirkondade jaoks kehtiva lahendi.

Ndide 2. Lahendada diferentsiaalvorrand
o +dx = f(t)

algtingimustel x(0) = 2/(0) = 0, kus

Funktsiooni f voime Heaviside’i funktsiooni abil esitada jargmiselt:
f(t)=alH(t) = H({t—-b)].

Rakendades vorrandile Laplace’i teisendust (arvestades originaali di-
ferentseerimise ja lineaarsuse omadusi, hilinemisteoreemi ning Heaviside'i
funktsiooni kujutist), saame operaatorvorrandi

X)X () = (1)

millest
a(l—e7tP)
p(p*+4)
Jaotise 10.8 valemi (10.3) pohjal (p; = 2i, pa = —2i)

z(p) =

a _4a 2it a —2it _
T R IV T Sy ST

a

4

a a
— ZCOSQt = §Sin2t
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ning hilinemisteoreemi pohjal
a2 ()
———— = —sin —b).
p(p? +4) 2

Seega saame, et meie vorrandi lahend x(t) on

z(t) = % [sin®tH () — sin*(t — b) H (t b))

Ulesanded

1. Lahendada Laplace’i teisendust kasutades jargmised diferentsiaalvor-
randid:
a) 2"+ 22" +x =sint, 2(0) =0, 2/(0) = —1;
b) 2" 22" +2=¢e', 2(0)=0, 2/(0) = 1;
c) 2"+ =t, 2(0) =0, 2’(0) = -1, 2"(0) = 0;
d) 2" +x =tcost, x(0) = 2'(0) = 0.

1
Vastus. a) x= §(e_t —te

1
b) x = <2t2 +t) el

1
c) r= 5752 — 14 cost —sint;

~t —cost);

1
d) = Z(tQ sint +tcost —sint).
2. Lahendada jargmised diferentsiaalvorrandid:

a) o +4a’ +4r =271 - H(t—1)], z(0) =1, 2/(0) =0;
b) 2" +z = f(t), z(0) =2'(0) =0,

2, 0<t<l,
f) =44, t>1,
0, t<O.

Vastus. a) x=e¢ 2427t —2H(t—1) [e—t _ te—2t—1];
b) = (2—cost)H(t)+[2—2cos(t—1)|H(t—1).
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11.2. DUHAMELI INTEGRAALI KASUTAMINE
Olgu vaja lahendada n-jarku diferentsiaalvorrand
L(D)a(t) = (1) (11.1)

algtingimustel x(k)(O) =0, k=0,1,...,n—1. Sel juhul esitub operaatorvor-
randi lahend kujul

X(p)= IZ((S,

kus F(p) = £[f(1)].
Seosega

W)= s

madratud funktsiooni W nimetatakse vorrandi (11.1) iilekandefunktsioo-
niks. Viimase kaudu saame operaatorvorrandi lahendi esitada seosega

X(p) =W(p)F(p)- (11.2)

Seega on tlekandefunktsioon niisugune funktsioon, millega vorrandi parema
poole kujutist korrutades saame lahendi kujutise.
Olgu meil teada vorrandi (11.1) lahend z1(t), kui f(t) = H(t). Seose (11.2)
pohjal
1
Ll (t)] = Xa(p) = ];W(p),
s.t.

W(p) = pXi1(p).

Asendus seosesse (11.2) annab meile, et

X(p) =pX1(p)F(p),
millest Duhameli integraali (vt. jaotis 10.5) pohjal

t

x(t) :[El(t)f(O)+/f/(T)I1(t—T)dT. (11.3)

0
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Ndide. Lahendada vorrand

_ 42
l'//+$:e t

algtingimusel 2’(0) = x(0) = 0.
Et kaesoleval juhul iilekandefunktsioon avaldub seosega

siis
1 1 P

Xlziz——i’
p(p?+1) p p?+1

millest x1(t) =1 —cost . Seega saame seose (11.3) pohjal, et vaadeldava vor-
randi lahend avaldub kujul

t
z(t) = /e_(t_T)2 sinTdr.
0

Seda integraali ei saa elementaarfunktsioonide kaudu avaldada.

Ulesanded

1. Lahendada diferentsiaalvorrandid

b) 2tV — 22" + 2 = 24t cost, z(0) = z’(0) = 2" (0) = 2™ (0) = 0.
Vastus. a) x=In(e! +1)—t—In2—1+¢' [1 —t+1In(e! +1) —ln2};
b) = =3(—4sint+ 2tcost+2sht).

11.3. BESSELI FUNKTSIOONIDE KUJUTISED

Operaatormeetodit saab iisna edukalt rakendada ka niisuguste lineaarse-
te diferentsiaalvorrandite lahendamisel, mille kordajateks a; on poliinoomid
muutuja t suhtes. Kasutades originaali diferentseerimise omadust, saab ka sel
korral avaldada koik kujutised £[agz®)(t)] otsitava kujutise X (p) = £[z(t)]
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ja tema tuletise kaudu. Sel viisil osutub operaatorvorrandiks diferentsiaalvor-
rand, mille jark on vordne lahendatava vorrandi kordajapoliinoomide korgei-
ma astmega. Peatumata selle juures iildjuhul, vaatleme, kuidas kirjeldatud
meetodil lahendada vorrand (11.1). Et selle lahend avaldub teatava spet-
siaalse funktsioonina, mida nimetatakse Besseli funktsiooniks, siis peatume
koigepealt Besseli funktsioonide moiste juures.

Diferentsiaalvorrandi

2y (2) 4+ 2/ (2) + (z2 — 112) y(2) =0

(v on konstant, mille puhul Rev > —1) lahendeid, mis ei ole samaselt vordsed
nulliga, nimetatakse silindrilisteks funktsioonideks. Uheks niisuguseks
lahendiks on funktsioon J,, mille maarab seos

B 0 (_1)1: 2\ vt+2k
Tolz) = kz::O BT (v+k+1) (2)

ning mida nimetatakse esimest liiki r-jarku Besseli funktsiooniks.
D’Alembert’i tunnuse abil voib kontrollida, et Besseli funktsiooni defineeriv
astmerida koondub kogu komplekstasandil, millest voib olla vélja arvatud
punkt 2 =0 .

Vaatleme jargnevas taisarvulist jarku (v =n,n =0,1,...) Besseli funkt-
sioone. Need on téisfunktsioonid. Et I'(n+k+1) = (n+k)!, siis

00 k n+2k
kz—:ok' n—i—k (2) ’



millest

o0

zn (=D* (zV_2"
Jn (2) = — ( ) = 2 CthZk.
2 ; Rli(n+k)! \ 2 2 -
Et |
(—1)* ! 1
— = =
ICzkI ‘ k!(n—l—k)!QZ" = 92k (k1)2 = (2k)! ’

sest 92k (R1)2>= (2k)! (seda vorratust saab tOestada téieliku indukt-
siooni meetodiga), siis

[o e}

Y (;;h)! gl(%)n

h=0

|e].

e@1<|(5)

Jirgnevas vaatleme funktsioone J, reaalse argumendi korral
(votame z==¢). Et J, on tdisfunktsioon, siis originaali teine tingi-
mus on tdidetud. Kolmanda tingimuse tdidetus tuleneb viimati
esitatud vorratusest. Seega on funktsioonid J, originaalid. Leiame
nende kujutised. Koigepealt leiame funktsiooni Jo kujutise. Selleks
lahtume teda defineerivast diferentsiaalvorrandist

17 (1), () +to () =0 (1)

ning arvestame, et Jo(0)=1 ja J; (0)=0. Tahistades LJo(?))=
=X (p), saame originaali diferentseerimise omaduse pohjal, et

B, () =pX(p)—1

LUITD))=p*X(p)—p

Kui veel peame silmas, et kujutise diferentseerimise omaduse pohjal
e[tdo(t)1=—X"(p), |

R[4 ()] =—[p*X (p)— p1'=—2pX (p)— PPX"((p) +1,

siis operaatori @ lineaarsust arvestades saame seosest (1), et
90X — X' I+pX—1—X'=0

ehk

dX
— (p2 —_ pX=—
(p2--1) i pX=0.

Mée saime kujutise X (p) leidmiseks eralduvate muutujatega diferent-
siaalvorrandi:
axX___p

X pl
202

dp,



millest

In X=——le- In(p2+1)+In C

ehk
X= ¢ .
Vp*+-1
Esimese piirteoreemi (teoreem 1 jaotisest 10.4) pohjal
lim pX= lim ————B—C——-————C=Jo(0)=l.‘
Re p—>co Re p—oo 'Vp?_l_l -
Jarelikult
1
(Jo(t)) == .
Vp>+1

Korgemat jiarku (n>>0) Besseli funktsioonide kujutiste leidmi-
seks kasutatakse nendeé funktsioonide puhul kehtivaid seoseid

In(t) =Jna(t)—2Y _ (t), J-n(t)=(—1)"n ().

Viimaste pohjal (n==1 korral) saame, e

B =I_(t)— 2V (), Joa(t)=—Tu(t),

millest
Ji(8y=—J ().
Seega |
1
(J1(1))=28(—=Y (t))=—p ——+J0(0),
° Vpr*+1
mistottu
! 2 l—"
Ru(t)) =P
yri+1
Tdieliku induktsiooni meetodiga voiksime tdestada, et
211 — n
QUn(t)) = el —p
Yp2+1

Kasutades sarnasusteoreemi, saame kordse argumendiga Besseli
funktsioonide puhul, et '

14* %3



2 — n ‘n2 2_
S(Jn(at))=l (V(p/a)*+1—pla)" _ (¥p*4a®—p)" .
¢ Y(playti an Yprta?
Besseli funkisioonide abil defineeritakse imaginaarse argumen-
diga silindrilised funktsioonid I:

1o(t) = ()3 8) = Y (5)

Nende puhul

(I ({)) = (p—sz—rl)”
| Vp2—1
ning
Q(L (at)) = (p—7Vp>P—a)™ '
an -sz__az

Viimased valemid saadakse analoogiliselt funktsioonide J, kohta
kiivate vastavate valemitega, arvestades, et

L= () ja In(t)=l2()—2I_ (f) (n=2).

Ulesanded
1. Toestada, et

2 (Jo(2 v?))=-—:,; ei/p, Q72 (2 V) =

e—i/p.,

pn+1
9. l.ahendada diferentsiaalvorrandid

a) tx” — x'=tJ(2V1);
b) tx’ —(1+H)x'+2(1 —t)x=0.
Vastused:

a) X= Cit2+Cz — sz(Q 'V-t_) ;
b) x=cie2t4-cz(14-3t)e .

11.4. LINEAARSED DIFERENTSIAALVORRANDITE SUSTEEMID

N S
- gf'r‘"”-."

Analoogiliselt harilike diferentsiaalvorranditega saab lahendada
operaatormeetodil ka diferentsiaalvérrandite siisteeme. Vorrandistis-
teemist 1ihtudes leitakse sellele vastav operaatorvorrandite siisteem,
mis osutub lineaarseks vorrandisiisteemiks. Viimase lahedamisel

204



saame otsitavate suuruste kujutised, mille pohjal leiamegi vaadel-
dava siisteemi lahendid. Piirdume siinkohal naitega.

N dide. Lahendame siisteemi
{ ;2o ‘

'=2x-+2y
algtingimustel x(0)=y(0)=1.

Olgu 2(x)=X ja L(y)=Y. Siis Laplace’i teisenduse rakenda-
misel selle siisteemi vorranditele saame algebralise siisteemi

{ pX —1=—Y

pY — 1=2X--2V.

Viimase siisteemi lahendamisel leiame, et
p?—2p+2° p:—2p+2

Et originaali leidmiseks saaks kasutada tabelit, esitame need lahen-
did kujul

X p—1 . 2
(p—12+1 (p—1)241
y p—1 | 3

T (p—1)1 T (p— 1)1
Tabelist leiame niiiid meie diferentsiaalvorrandite siisteemi 1ahen-
did:

x=c¢et cos t — 2e? sin {,

y=-¢et cos {-}-3et sin ¢.

Ulesanded
1. Lahendada jirgmised diferentsiaalvorrandisiisteemid:

A) { 2 —y —2x-+2y=1—2¢

¥ 2 20 , £(0)=5(0) =¥ (0) =0;

[ X =—y—=z
b) { y=—x—2, x(0)=—1, y(0)=0, z(0)=1,
| =—x—y

[ 3t =2x+y—=z
¢} g 2y=x+3y+z , x(1)=y(l)=2z(1)=1.
| 6tz' =-—x+7y+52
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Vastused: a) x=2(1 —e*t—fe?), y=2—1f—2et—2fe?,

b) x=—e"t, y=0, z=ef;

1 2 5 1

. .

c) x 3—[—3t,y—4t T
5 2 5
—_ 2 g oa Y
=Py

11.5. INTEGRAALIDE ARVUTAMINE

Operaatorarvutus véimaldab arvutada ka paljusid integraale.
Selleks kasutatakse Boreli teoreemi, seoseid (3) ja (4) jaotisest
10.3, mitmeid erikujulisi operaatorarvutuse valemeid ning neid

kahte teoreemi, mida kéesolevas jaotises toestame. Alustame paari
niitega. : )

Nédide 1. Arvutame integraali

2co Jo(f)—cos t
1=/

A t
Jaotise 10.3 valemi (3) pohjal

dt.

23]

I——=f°£¢,[Jo(t)—cost]dp=f( : _ )dP=
: ot VPl prl-

e
=[ln(p+Vp*+1)— 5 In(P*+1)13=In 2

Nidide 2. Arvutame integraali
t
I= [ sin(t —u)Ji(u)du.
1]

Vaadeldav integraal on suuruste sin¢ ja J;(#) konvolutsioon. Et

1 Vi1 —p
& (sin ) =iyl L) ]= ]/pz—l—i ,
siis Boreli teoreemi pohjal
] 211 —
[ J sin(t — u)Ji (1) du] = 1 ¥pe4l—p
° Pl V]

_ 1

Pl (D) VP
206




Et

2[do(t)] = ———

V41
siis kujutise diferentseerimise omaduse pohjal
P
(p*-+1) Yp*+1

L[—tJe(f) }=—

*

mist6ttu

I=sin t — tJ5(¢).

- Toestame jargmise teoreemi.

Teoreem 1. Olgu R[f(t)]=F(p), Re p>0. Siis

[ Htydt= lim F(p),
1}

p—>0

kui selline integraal eksisteerib.

Tdestus. Originaali integreerimise valemi kohaselt

g[ftf(u)du]# F;p)-, Re p>0. -
0

Et see paratu integraal eksisteerib, siis teise piirteoreemi (teoreem 2

jaotisest 10.4) pdhjal
F(p)

— lim F(p).

p—0

{—+o00

3
lim [ f(u)du=limp
0 p—0
Nidide 3. Arvutame integraali

[ Ja(at)dt, a=>0.
Q

Et
2 2 _ n
81U (at) ] =L P
| a Y p*+a?
siis dsjatoestatud teoreemi kohaselt
o 1
J Ja(at) dt---a-.

0
Teoreem 2. Kui

&[f(O)1=F(p) ja L[fL(t)]="Fi(p)
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siis
FFROd—= fROI0L

Viimast seost nimetatakse Parsevali vorduseks.
Toestus. Et

O.FF(t)fi(t)dt= ffi(t) [‘fe"t“f(u)du]dt=
= [Hw) [ ferefu(dildu= [ i) Fi(w)ds,

siis olemegi testanud Parsevali vorduse.
Erijuhul, kui
fu(t)y=H(t —a)—H(t—b), a<<b,

siis
1 .
Fi(p) =— (e-*» —e?P)
p
ning

FE@)fi(tydi= [ F(t)dt

Parsevali vorduse pohjal saame seega seose
b " ~ e—ot e—bt
F(t)ydt= t)dt.
Froa= [ =10
Nidide 4. Arvutame integraali

[a.<]

: e—at - e—bt
= dt.
- foee

Selleks votame viimases seoses f(f)=H (). Me saame, et

b :
[ odt b
I= f"'-—t'—'zll'lt“;:ln—a"—,

sest R[H ()] =--p}—-.

Ndide 5. Arvutame integraali

sin ¢

; dt.

o0
4

-

0
onQ



Et &(sin t)=—’5—2-1-— siis Parsevali vorduse pohjal

+1’
- 1 r dt i1
I= = = 00 o e |
(;ftz-i—l H(t)dt Of D arctan £|° 5
Ulesanded

1. Néidata, et

=)

1 —eot
tet

a) di=In (a+1),

0

; —at gj
b)f c tsmt dt=arctan—zll—,
G

co d
o) T @(y—e=) 5

=In 2a,

d) fth(u)Jg(t— u)du=sint.

11.6. KONVOLUTSIOONI TOUPI INTEGRAALVORRANDID

Operaatorarvutusega saab holpsasti lahendada integraalvorran-
deid

?ufk(t—u)x(u)du——-:f(t) (1)
ja
x(t)+xofk(t_u)x(u)du=f(t), 2)

mida nimetatakse vastavalt esimest ja teist liiki konvolutsiooni tiiiipi
Volterra integraalvorranditeks. Otsitavaks on neis funktsioon x,
arv A on reaalarvuline konstant. Neis vorrandeis esinevat integraali
viib vaadelda kahe funktsiooni konvolutsioonina, millest tuleneb ka
vorrandi nimetus.

Tahistame

e[f(1)1=F(p), [k ]=K(p) ja L[x()]=ZX(p).

Boreli teoreem] arvestades saame vastavateks operaatorvorranditeks

AK(p)X(p)=F(p) —- (3)
ja
X(p)+AK(p)X(p)=TF(p). | (4)

209
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Lahendades operaatorvorrandi ja leides saadud lahendile kui kujutisele vas-
tava originaali, saamegi vaadeldava integraalvorrandi lahendi.

Ndide 1. Olgu meil vaja lahendada esimest liiki Volterra integraalvorrand
t
/sin(t —w)x(u)du = sin’t
0

Kéesoleval juhul A =1 ning k(t) =sint. Et

) 1
L(sint) = ]
ning
. 1 1/1 P
200 _ i1 I
L(sin t)—ﬁ{z(l cos2t)] 2<p p2—|—4>’

siis vastavalt vorrandile (?77) saame operaatorvorrandi

1 1(1 p
- X(p)=- (22
p?+1 (®) 2<p p2+4)’

millest

1/1 P
X(p)==(-+3 .
(p) 2<pjL p2+4>

Kujutiste tabeli pohjal saame, et vaadeldava integraalvorrandi lahendiks on

1
x(t) = 5(1+30052t), t>0.

Ndide 2. Leiame lahendi integraalvorrandile

See vorrand on teist liiki Volterra integraalvorrand, kus A = 2. Vastavalt
vorrandile (?7) saame operaatorvorrandi
2 1

X(P)JFEX(P) =
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mille lahendiks on
p—1 2p—p—1 2 1
p(p+1)  plp+1) p+1 p

Kujutiste tabeli pohjal leiame integraalvorrandi lahendi

z(t)=2e""=1, t>0.

Ulesanded

1. Lahendada jargmised integraalvorrandid:

Vastus. a) v =sht, b) x = 2te’ —2e' 4+t +2, ¢) v =2sint —t, d x = 3.

11.7. OSATULETISTEGA VORRANDID

Operaatormeetod on edukalt rakendatav ka osatuletistega diferentsiaal-
vorrandite lahendamisel. Seejuures kasutame Laplace’i teisenduse omadusi
parameetrist soltuvate funktsioonide kujutamisest. Operaatormeetodi raken-
damisel taandame osatuletistega vorrandi lahendamise hariliku diferentsiaal-
vorrandi lahendamisele. Arendamata iildist teooriat, piirdume vaid néitega.

Ndide. Varras pikkusega [ on tihte otsa (z = 0) pidi kinnitatud. Vabale otsale
(x =1) mojub telje sihiline joud F' = Asinwt. Leida varda punktide pikivon-
kumised. Pikivonkumisi kirjeldab diferentsiaalvorrand

O%u(w,t) _ 2 O%u(w,t)
ot? dx? 7

(11.1)



11.7. OSATULETISTEGA VORRANDID 247

kus u = u(z, t) viljendab varda punkti x nihet ajamomendil ¢ ning a? on
varda materjalist soltuv konstant. Alg- ja rajatingimused esituvad kujul:

u(:c,()):aﬁ —0, u(0,t)=0, Ou

= = —sinwt,
Ot li=0

% x=l E

kus F on elastsusmoodul. Viimane tingimus tuleneb Hooke’i seadusest, mille
pohjal vardale mojuv joud F' ja nihe u on seotud valemiga

ou
F—E%.

Vorrandist (11.1) saame operaatorvorrandi

a?U
p2U:a2@, (11.2)

kus U = U(x,p). Kui vaatleme muutujat p parameetrina, on operaatorvorrand
teist jarku harilik diferentsiaalvorrand, mille karakteristliku vorrandi

P2 = a?)?,
lahenditeks on
M= Ga r=-L
a a
Seega avaldub vorrandi (11.2) tildlahend kujul
U= Cle(p/a)x + 026(717/@)93_

Meil on aga vaja leida lahend, mis rahuldaks tingimusi:

dU A w

Upoo=0, | =29
=0 =0, dz lz=; Ep?+w?.

Esimese tingimuse pohjal saame, et C'y = —C, mistottu
U= Cl(e(p/“)w —el=p/a)r _ o0y shga:.
a

Teise tingimuse pohjal saame niiiid, et

Bl:A w

b
2C1=ch e
e E p2 4 w?’
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millest

b
201 = )

p(p2+w2)ch§l

Aaw
kus b = —.
us z

Sellega oleme leidnud operaatorvorrandi lahendi

i
b shop g

p(p*+w?) I B(p)
Chap

U:

Originaali leidmiseks kasutame teist arendusteoreemi, sest saadud kujutisel
on loenduv hulk puhtimaginaarseid pooluseid, mis on paarikaupa kaaskomp-
lekssed. Ulemises pooltasandis asuvad poolused

1
P = iw, pk:iﬁla(k‘—z):iwk (k=1,2,...).

Punkt p =0 ei ole poolus, vaid kujutise korvaldatav isedrane punkt, mille
suhtes resiid on null.
Me saame, et

—92Re G(iw) olt — G(pr) ikt
u(z,t) =2R {B’(iw) +kz_:1 B (pr) };

kusjuures eeldame, et wy #w (k=1,2,...), mis sisuliselt tdhendab resonantsi
puudumist.
Kui teha viimases avaldises vajalikud arvutused, saaksime, et

Wk

xr = 1 — ab sin— sinwi.t
U,( ’t) ——sin— xsinwt + — E ( 1)k 5 a . k
w2 71 a ! k=1 k k
COS = W w w

a
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TABEL 1. KONFORMSED KUJUTUSED

ELEMENTAARFUNKTSIOONIDEGA

B/

/UA

A/

D/

D/

Y B
C
o A
D T
w= 2>
yﬂ ,UAB/
D C’
\\

CBja DA z%—y? = const
Ty = const

CD ja BA

2x

Cl

Sy



L
I
SAD

hY

C

./

Q

e
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/
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?JT v
D F i
7
_
C |B T F E D|C"B A u
w=e"
yﬂ ,UA
FE D|mi
C o
. é %1 .
A BI x D’ E’IA’ B’ U
w = ¢e?
yﬂ ,UA
|\E D
T
C/
K C
/ u
A B T D B A B
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y“ /UA
E A
__
D B - _/Vl }// .
—3 ¢ 3 v E' D C' B A u
w=-sinz
yA ,UA
D A D’ /
B ‘ } / |
C g IV C/ B/ A/ ur
w =sinz
yA ,UA
O/
D C B
E A R D’ —A/l J_/ R
—3 50T E°F| A B u
BCD:y=1b u2 02
B'C'D’: + -1
ch?b  sh?b

w=-sinz
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.
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Yy v

1
E' D |C'B

1( +1)
w=—-z+~-
2 z

TABEL 2. LAPLACE’I TEISENDUSE
POHIVALEMID JA OMADUSED

;]ék. f(t) F(p) = Lf(1)]
Lo | fO)H(?) Zoe‘ptf (t)dt = F(p)
2. | Af()+ny(t) AL[f(6)]+pnLlg(t)]
3. | flat), a>0 ;F (Z)
4 | fit=7), 7>0 e PF(p)
5. | Mf(t) F(p—2)
6. | f'(1) pF(p) = f(0)
T | f(1), f0)=0 PF(p)
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Jrk. F) F(p)=LI[f(t)]
8. | f™@) p"F(p)—p" 1 £(0)—p" 2 f'(0)
— =D 0)
9. | fM), fF(0)=Ff(0)=...= | p"F(p)
= f=D0) =0
0. | (=)™ @) F™(p)
t
1
11. O/f(u)du SE®)
12. fit) / F(q)dq
p
t 00
I, L
13. 0/ 2 pp/F(q)dq
[0, L7
14, / 2 pp/F(q)dq
t
15. | [ f(u)g(t—u)du LIf () Llg ()] = F ()G (p)
0
t
16. f(t)g(0)+/f(u)g’(t—U)du pF(p)G(p)
0
17. | g(t;) el




256 LISAD
Jrk. 10 F(p)=L[f®)]
nr.

1 xr+100
18. | f(t)g(t) 57 F(q)G(p—q)dq
T—100
nomE A gl—1 nomgog
9. |23 lkll 220 .
k=1l= 1 B k=1l= 1
< c,n!
20. chtna Z Z—i—l
n=0 n:lp
mn
len| < ——, M >0, R>0

TABEL 3. LAPLACE’I TEISENDUSE VALEMID

Jrk. F ) F(p)=L[f(t)]
nr.
1
1. Hit —
) ,
1 _
2. |H(t—-7),7>0 —e P
p
3. ewt L
p—w
n!
- " ['(a+1)
. pa+1
|
6. g wt n
€ (p w)ntl




TABEL 3. LAPLACE’I TEISENDUSE VALEMID 257

Jrk. F@) F(p)=LI[f(t)]
nr.
w
7. inwt
sinw P o
p
8. t
cosw P+l
w
9. hwt
snw p2_w2
p
10. hwt
cnw p2_w2
2w
11. | sinwt _—
p(p? +4w?)
2 2
2
12. | cos®wt %
p(p? +4w?)
202
13. | ch?wt _—
p(p? —4w?)
2 2
-2
14. | ch?wt L
p(p? —4w?)
15. | e Msinwt S A—
(p+ )2+ w?
+ A
16. | e Mcoswt S -
(p+ )2+ w?
17. | e Mshwt +
(p+A)" —w?
A
18. | e Mchwt #
(p+A)" —w?
2
19. | tsinwt wp

(p?+w?)’
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LISAD
Jrk. f(t) F(p)=LI[f(t)]
nr.
2 2
20. | tcoswt i 5
(P +w?)
2
21. | tshwt wp 5
(p? —w?)
2 2
22. | tchwt prw 5
(p* —w?)
+1
23 t"sinwt n'Im(p+1w)n
’ : (p2—|—w2)n+1
. \n+l
24 tnCOSCL)t nlw
: : (p2+w2)n+1
25. | e Msin(wt+a) weosa + (p+A)sina
(p+)\)2+w2
26. e_Atcos(wt~|—a) (p+A)cosa —wsina
(p+ ) +w?
bt _ Lat _
27. ¢ © lnp ¢
t p—>b
sinwt
28. — —arctan — = arccos —
t w w
.2 2
t 1 4
99, | 22 “n? ‘5
t 4 p
—at 1
30, | S
VTt VPt o
1 o? e_o‘ p
31. —e 4
Vot /P
2 2+w2_
32, | /= sinwt VT TP
Tt p2 +w?



TABEL 3. LAPLACE’I TEISENDUSE VALEMID

Jrk. F@) F(p)=LI[f(t)]
nr.
9 2+w2+
33. \/>coswt D
mt p?+w?
5 o Ip2 — 2
34. —shwt P P
7t pQ_WQ
5 41 /p2 — W2
35. —chwt P P
Tt p?—w?
Oosinu 1
36. | si(t) = —/ du ——arctanp
;o u
tsinu 1
37. | 8i) = [ Zdu = arccotp
)
[ee]
1 1
38. | Ci(t) =ci(t) = —/Cosudu —1In
y U p p2+1
OOe_u
39. | —Ei(—t) = /—du —In(p+1)
;Y P
Vi
2 2 1
40. | erf (V7 :f/ —u? g
er (\/_) ") e U NS
1
41. | Exf (Vt) =1 —erf (Vt _
(V) =1-et (Vi) PESERY =
1
42. | elerf (vt
o =1y
1
43. | ' Erf (Vi
. \/27_
p+1l—p
44, S(t)zl/smudu TV o7
2m ) Vu 2\ p2+1

259



260

LISAD

Jrk. F) F(p)=L[f ()]
nr.
45. | C(t) /_1 /tcosud ! \/”p2+1+p
. = — u —_
27T0 \/a 2p /pQ_'_l
1
46. | Jolat), a>0 ——
/p2+a2
n
(ot Wit o)
47. | Jplat), a>0,n=1,2,...
" am/p? + a2
n 1 @ n
48. [ t2,(2vat), >0, n=12,... pn+1e7af
1
49. | Ip(at), >0 _—
/p? — a2
n
(p—\/pQ—az)
50. | In(at), a>0,n=1,2,...
" am/p? — a2
51. | 6(t) 1
52. | §(t—7) TP
dnJrl
53. (t) = 6™ (¢) "
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