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EESSÕNA

Käesolevas raamatus on esitatud lühidalt põhilised faktid diferentseeru-
vate kompleksmuutuja funktsioonide kohta ning vaadeldud nende mõningaid
rakendusi. Raamat on mõeldud eeskätt õpikuna matemaatika, füüsika ja
elektro-automaatika eriala üliõpilastele, kuid võib huvi pakkuda ka neile, kel
tuleb tegelda kompleksmuutuja teooria ja operaatorarvutuse rakendustega.

Paljudes matemaatikavaldkondades on tarvis väljuda reaalarvude hulgast
ja vaadelda vastavaid küsimusi kompleksarvude hulgal. Alles siis ilmnevad
mitmedki faktid ja omadused täiel kujul. Nii on see hästituntud algebra põ-
hiteoreemiga, mida on vaadeldud ka käesolevas raamatus. See kehtib ka ana-
lüütiliste (astmeridade summana esitatavate) funktsioonide kohta, sest ka
nende omadused ei avane reaalarvude hulgal täielikult.

Käesolev esitus toetub regulaarse (vaadeldava punkti mingis ümbruses
ühese ja diferentseeruva) funktsiooni mõistele. Sellest mõistest lähtudes näi-
datakse, et regulaarne funktsioon on esitatav teatava integraali kujul oma
rajaväärtuste kaudu (Cauchy valem), millest omakorda ilmneb, et mõisted
Ďregulaarne funktsioonŞ ja Ďanalüütiline ühene funktsioonŞ ühtivad.

Analüütilist jätkamist kasutades määratletakse ka mitmene analüütiline
funktsioon, kui rakendustes vaadeldakse valdavalt üheseid funktsioone.

Käesolev materjal (jaotised 1 kuni 8) katab põhilises osas ülikooli mate-
maatika ja rakendusmatemaatika eriala üliõpilastele ettenähtud programmi.
Teiste erialade üliõpilastel, kes samuti õpivad kompleksmuutuja funktsiooni-
de teooriat, tuleb esitatud materjalist teha oma programmile vastav valik.
Materjal on püütud esitada selliselt, et käesolevat raamatut saaksid kasuta-
da õpikuna ka pedagoogilise instituudi matemaatika-füüsika eriala ja ülikooli
füüsika eriala üliõpilased ja polütehnilise instituudi elektro-automaatika eri-
ala tudengid. Eeskätt viimaste vajadusi silmas pidades on käsitletud üsna
põhjalikult Laplace’i teisendust ja selle rakendusi ning esitatud Fourier’ tei-
senduse kõige olulisemad omadused. Jaotises 9 on käsitletud analüütiliste
funktsioonide väljateoorias rakendamise põhimomente. Konkreetse näitena
on vaadeldud lennuki tiiva proĄili uurimise klassikalisi tulemusi, mis de-
monstreerivad üsna ilmekalt kompleksmuutuja funktsioonide teooria mõis-
tete kasutamise viljakust väljateooria ülesannete lahendamisel.

Lisas on esitatud kolm tabelit: elementaarfunktsioonide konformsed ku-
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4 EESSÕNA

jutused, Laplace’i teisenduse põhiomadused ja Laplace’i teisenduse valemid.
Viimases tabelis on valemeid mõnevõrra rohkem kui raamatus tõestatud ja
kasutatud. Seda on tehtud eeskätt nende huvides, kes tegelevad operaator-
arvutuse rakendustega.

Raamatus on hulgaliselt ülesandeid, mille lahendamine peaks aitama pa-
remini omandada teoreetilist materjali.

Raamatu lõpus on käsitletud küsimuste alase õppekirjanduse soovitus-
nimestik. Raamatutes [5], [11] ja [13] leidub hulgaliselt täiendavaid näiteid
ja juhiseid operaatorarvutuse rakenduste kohta. Kõige täielikum Laplace’i
teisenduse valemitekogu on raamatus [7].



1. KOMPLEKSARVUD

1.1. KOMPLEKSARVUD JA TEHTED NENDEGA

Kompleksarvudeks nimetatakse reaalarvude järjestatud paare z = (x,y),
millega teataval kindlal viisil deĄneeritakse aritmeetilised tehted ning võrdus.
Olgu antud kaks kompleksarvu z1 = (x1,y1) ja z2 = (x2,y2). nende võrdus,
summa ja korrutis deĄneeritakse järgmiselt:

1) z1 = z2, kui x1 = x2 ja y1 = y2;

2) z1 + z2 = (x1 +x2,y1 +y2);

3) z1z2 = (x1x2 −y1y2,x1y2 +x2 +y1).

Esitatud deĄnitsioonidest lähtudes saab näidata, et iga z = (x,y) puhul
kehtib võrdus

z = (x,y) = (x,0)+(0,1)(y,0). (1.1)

Sellest avaldisest paneme tähele, et eriline osa on kompleksarvul i = (0,1)
ning kõigil neil kompleksarvudel, millele vastavas paaris teine arv on null.
Kui deĄneerida veel kahe kompleksarvu vahe kui summa pööroperatsioon
ning jagatis kui korrutise pöördoperatsioon, siis osutub, et kõigi nende tehe-
te suhtes käitub paar (x,0) nagu reaalarv x. Seetõttu võime nad omavahel
samastada, s.t. x = (x,0). Sel viisil saame, et kompleksarvude hulk sisaldab
reaalarvude hulga, kusjuures 0 = (0,0).

Kõike seda arvestades võime võrduse (1.1) kirjutada kujul z = (x,y) =
x+iy. Seda võrdust nimetatakse kompleksarvu algebraliseks kujuks.

Reaalarve

x= Rez = Re(x,y) ja y = Imz = Im(x,y)

nimetatakse vastavalt kompleksarvu z reaal- ja imaginaarosaks. Kui
Imz ̸= 0, siis nimetatakse arvu z imaginaararvuks ning kui lisaks selle-
le Rez = 0, siis puhtimaginaararvuks.

Et ka tasandi iga punkti P (ehk siis tema kohavektor
−→
OP ) (joon. 1.1)

on määratud järjestatud reaalarvupaariga (oma koordinaatidega), siis saame
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6 PEATÜKK 1. KOMPLEKSARVUD
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Joonis 1.2

korraldada üksühese vastavuse kompleksarvude ja tasandi punktide vahel.
Teisiti öeldes: me võime kõik kompleksarvud kujutada koordinaattasandil.
Niisugust tasandit nimetatakse komplekstasandiks. Seejuures nimetatakse
x-telge reaalteljeks ning y-telge imaginaarteljeks.

Samastades kompleksarvu z = (x,y) kohavektoriga
−→
OP = (x,y), saame

kompleksarvude liitmist ja lahutamist geomeetriliselt interpreteerida kui neil
vastavate vektorite liitmist ja lahutamist (joon. 1.2).

Ülesanded

1. Tõestada, et

a) z1 + z2 = z2 + z1 (summa kommutatiivsus);

b) (z1 + z2)+ z3 = z1 +(z2 + z3) (summa assotsiatiivsus);

c) z1z2 = z2z1 (korrutise kommutatiivsus);

d) (z1z2)z3 = z1(z2z3) (korrutise assotsiatiivsus);

e) z1(z2 + z3) = z1z2 + z1z3 (distributiivsus).

2. Näidata, et i2 = (0,1) (0,1) = (−1,0), s.t. i2 = −1.

3. Näidata, et vahe z1 −z2 on üheselt määratud mistahes kompleksarvude
z1 ja z2 puhul.

4. Leida
z1

z2
. Veenduda, et selline jagatis on üheselt määratud iga z2 ̸= 0

korral.

5. Näidata, et
z1

z2
= z1 · 1

z2
.



1.2. KOMPLEKSARVU MOODUL JA ARGUMENT 7

6. Tõestada, et kahe kompleksarvu korrutis on null parajasti siis, kui vä-
hemalt üks teguritest on võrdeline nulliga.

7. Tõestada, et (1+ z)3 = 1+2z+ z2.

8. Leiada graaĄliselt z1 + z2 ja z1 − z2, kui

a) z1 = 2+i, z2 = 1+2i;

b) z1 = −3+ i, z2 = 1+4i;

c) z1 = 3i, z2 = −2− i;

d) z1 = −2+2i, z2 = −3i.

1.2. KOMPLEKSARVU MOODUL JA ARGUMENT

z

x

y

0

r

ϕ

Joonis 1.3

Et tasandi punkti (x,y) saab määrata ka
polaarkoordinaatides, kusjuures

x= r cosφ ja y = r sinφ, (1.1)

siis kompleksarvu z määrab ka reaalarvu-
paar (r,φ), milles esimest arvu nimetatakse
kompleksarvu z mooduliks ning teist ar-
gumendiks. Neid tähistatakse vastavalt ♣z♣
ja Argz. vahetult geomeetrilisest pildist on
selge, et kompleksarvu moodul on üheselt
määratud, kuid argument mitte. Kui φ on kompleksarvu argumendiks, siis
on ka seda iga arv φ+ 2kφ (k = 0,±1,±2, . . .). Kompleksarvu z sellist argu-
mendi väärtust φ, mis rahuldab võrdusi

−π < φ⩽ π,

nimetatakse argumendi peaväärtuseks ning tähistatakse sümboliga argz.
Puhtgeomeetrilistest kaalutustest on selge, et argument on määratud iga
kompleksarvu z ̸= 0 puhul. Kompleksarvul x = 0 aga pole argumenti. Arv
z = 0 on määratud sellega, et tema moodul võrdub nulliga.

Võrdusest (1.1) saame, et

r = ♣z♣ =
√

x2 +y2,
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millest omakorda järeldub seos

argz =

{

arccos x
r , kui y ⩾ 0,

−arccos x
r , kui y < 0.

Asendades kompleksarvu algebralises kujus suured x ja y valemite (1.1)
põhjal, saame, et

z = r(cosφ+isinφ). (1.2)

Seda avaldist nimetatakse kompleksarvu trigonomeetriliseks kujuks.
Matemaatiline analüüsi kursuses tõestatakse nn. Euleri valem

eiφ = cosφ+isinφ,

mille abil saame võrdusest (1.2) kompleksarvu z eksponentkuju

z = reiφ.

Mitmesugustes arvutustes on kasulik rakendada just kompleksarvu ekspo-
nentkuju tema kompaktsuse tõttu.

Vaatleme kompleksarvude korrutamist trigonomeetrilisel kujul. Olgu z1 =
r1(cosφ1 +isinφ1) ja z2 = r2(cosφ2 +isinφ2). Sel juhul saame, et

z1z2 = r1(cosφ1 +isinφ1)r2(cosφ2 +isinφ2)

= r1r2 [(cosφ1 cosφ2 − sinφ1 sinφ2)+ i(sinφ1 cos2 +sinφ2 cosφ1)]

= r1r2 [cos(φ1 +φ2)+ isin(φ1 +φ2)] = r1r1ei(φ1+φ2)

s.t.

z1z2 = r1r2ei(φ1+φ2).

Täieliku induktsiooni meetodi abil võime üldistada saadud valemi mista-
hes lõpliku arvu tegurite juhul. Kui seejärel võtaksime kõik tegurid võrdseina,
saaksime nn. Moivre’i valemi zn = rneinφ, kus n on naturaalarv.

Analoogiliselt korrutamisega saaksime, et
z1

z2
=
r1

r2
[cos(φ1 −φ2)+ isin(φ1 −φ2)] =

r1

r2
ei(φ1−φ2).

Pöördume tagasi kompleksarvude summa ja vahe juurde. Puhtgeomeet-
riliste kaalutluste (kolmnurga külgede vahekorra) põhjal saame, et

♣z1 + z2♣ ⩽ ♣z1♣+ ♣z2♣,
♣z1 − z2♣ ⩾ ♣z1♣− ♣z2♣.

Edaspidiseks on aga eriti oluline märkida, et suurus ♣z1 − z2♣ on võrdne
komplekstasandi punktide z1 ja z2 vahelise kaugusega (vt. joon1.2).
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Ülesanded

1. Näidata, et
1

eiφ
= e−iφ.

2. Kirjutada järgmised kompleksarvud trigonomeetrilisel ja eksponentku-
jul:

a) 3i,

b) −i,

c) 2,

d) −2,

e) 1+ i,

f) −1− i,

g)
√

3− i,

h) 1− i
√

3,

i) 3+5i,

j) −3+5i,

k) 2−5i,

l) −2−5i.

3. Leida argz, kui

a) z =
−2

1+ i
√

3
,

b) z =
i

−2−2i
,

c) z =
(√

3− i
)6

,

d) z = z1z2,

e) z = zn
1 ,

f) z =
z1

z2
.

4. Olgu z0 mingi kompleksarv ning R positiivne reaalarv. Näidata, et kui
z asub punkti −z0 ümbritseval ringjoonel, mille raadius on R, siis ta
rahuldab võrrandeid

a) ♣z+ z0♣ =R, b) z = −z0 +Reiφ.

5. Millised punktihulgad on komplekstasandil määratud järgmiste seoste-
ga:

a) ♣z− i♣< 3,

b) ♣z+2i♣ ⩾ 2,

c) ♣z−3−4i♣ = 5,

d) ♣z+2♣+ ♣z−2♣ = 5,

e) ♣z− i♣ = ♣z+2♣

f)
∣

∣

∣

∣

z−3

x−2

∣

∣

∣

∣

⩾ 1,

g) arg(z+i) = −φ

4
,

h)
φ

3
< arg(z− i)<

3φ

4
.

1.3. KAASKOMPLEKSARVUD

Kompleksarvu z = (x,y) kaaskompleksarvu ehk kaaskompleksiks ni-
metatakse arvu z = (x,−y). Sellest deĄnitsioonist järeldub, et kompleksarvu
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z kaaskompleksiks on z, s.t. (z) = z. Samuti märkame, et (vt. joon. 1.4)

argz = −argz

ning

♣z♣ = ♣z♣.

Seega

z = (re−iφ).

z

z

x

y

0

ϕ

−ϕ

Joonis 1.4

Vahetul kontrollimisel võime veenduda,
et

z1 + z2 = z1 + z2,

z1 − z2 = z1 − z2,
(

z1

z2

)

=
z1

z2
.

(1.1)

z1z2 = z1z2,

Osutub, et korrutis zz on alati reaalne. Tõe-
poolest,

zz = (x,y) (x,−y) = x2 +y2 = ♣z♣2,

s.t.

♣z♣ =
√
zz.

Seda arvestades saame kergesti anda eeskirja kompleksarvude jagamiseks al-
gebralisel kujul: jagatise

z1

z2
algebralise kuju leidmiseks tuleb selle murru lu-

gejat ja nimetajat korrutada nimetaja kaaskompleksiga.
Tõepoolest, kui z1 = (x1,y1) ja z2 = (x2,y2), siis

z1

z2
=
z1x2

z2x2
=

(x1 +iy1)(x2 − iy2)

x2
2 +y2

2

=
(x1x2 +y1y2)+ i(x2y1 −x1y2)

x2
2 +y2

2

=
x1x2 +y1y2

x2
2 +y2

2

+ i
x2y1 −x1y2

x2
2 +y2

2

.
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Ülesanded

1. Näidata, et

Rez =
1

2
(z+ z) ja Imz = −1

2
(z− z).

2. Kirjutada komplekskujul võrrandid

(a) x2 +2x+y2 −y = 1,

(b) x2 −y2 = 1.

Vastus. (a) zz+
(

1+
i

2

)

z+
(

1− i

2

)

z = 1,

(b) z2 + z = 2.

3. Tõestada võrdused (1.1).

4. Näidata, et ringjoone ♣z− z0♣ = R punktid rahuldavad võrrandit zz−
z0z− z0z+ z0z̄0 =R2.

5. Millisel juhul on võrrand

azz̄+ Āz+Az̄+ b= 0,

kus a ja b on reaalarvud ning A Ű kompleksarv, ringjoone võrrandiks?

Vastus. ♣A♣2 −ab > 0, a ̸= 0.

6. Milline on sirge võrrand komplekskujul?

Vastus. Āz+Az̄+ b= 0.

1.4. STEREOGRAAFILINE PROJEKTSIOON

Eelnevas veendusime, et kompleksarvude hulga ja tasandi punktide vahel
saab korraldada üks-ühest vastavust. Näitame, et ka sfääri punktid ja komp-
leksarvud võib seada üks-ühesesse vastavusse. Selleks asetame kompleksta-
sandile mingi sfääri, mis toetub komplekstasandile nullpunktis (vt. joon. 1.5).
Kui nüüd paneme sirge läbi komplekstasandi punkti z ja diameetri otspunkti
P , siis see sirge lõikab sfääri mingis punktis ζ. Sel viisil saamegi üks-ühese
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O z

y
S

x

P

Joonis 1.5

vastavuse komplekstasandi ja antud sfääri punktide vahel. Niisugust vas-
tavust nimetatakse stereograaĄliseks projektsiooniks ning vaadeldavat
kerapinda Ű kompleksarvude sfääriks.

Kui ♣z♣ → ∞, siis ζ läheneb punktile P . Siinjuures on täiesti ükskõik, mil-
lises suunas z kaugeneb nullpunktist. Sellest lähtudes võtame kasutusele uue
ĎkompleksarvuŞ z = ∞, mida nimetame lõpmatuseks ehk lõpmatuspunk-
tiks ning mis vastab sfääri punktile P . Paneme tähele, et kompleksarvude
sfääril on lõpmatuspunkt (punkt P ) ühene. Kui vaadelda kompleksarvude
kujutamist tasandil, võib tekkida mulje, et on lõpmata palju lõpmatuspunk-
te.∗ Edaspidi aga osutub lõpmatuspunkti ühesuse nõue üsnagi oluliseks.

Komplekstasandit, millele on lisatud lõpmatuspunkt, nimetatakse kinni-
seks ehk täielikuks tasandiks.

Täielikul tasandil võime deĄneerida ka seosed

a

0
= ∞ ja

a

∞ = 0 (a ̸= 0, a ̸= ∞).

1.5. PIIRKONNAD

Komplekstasandi punkti z0 ümbruseks (täpsemalt ε-ümbruseks) nime-
tatakse nende punktide z hulka, mis rahuldvad võrratust

♣z− z0♣< ε.

∗Reaalarvude puhul vaadeldaksegi kaht lõpmatust, +∞ ja −∞.
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Punkti ümbruseks on seega ring keskpunktiga selles punktis. Lõpmatus-
punkti ümbruseks nimetatakse hulka

♣z♣> ε.

Piirkonnaks nimetatakse punktihulka D, mis rahuldab järgmisi tingi-
musi:

a) koos punktiga z kuulub hulkaD ka selle punkti mingi ümbrus (lahtisuse
omadus);

b) iga kahte punkti z1 ja z2 hulgast D on võimalik ühendada pideva joo-
nega, mis täielikult kuulub hulka D (sidususe omadus).

Edaspidi määrame piirkondi mitmesuguste võrratustega, näiteks, ♣z♣ <
1, Rez > 0, 2 < ♣z − 1♣ < 3 jne. Seejuures ütleme lihtsalt: Ďring ♣z♣ < 1Ş,
Ďpooltasand Rez > 0Ş, Ďpiirkond 2< ♣z−1♣< 3Ş jne.

Kui koos punktiga kuulub vaadeldavasse hulka ka selle punkti mingi ümb-
rus, siis nimetatakse seda punkti selle hulga sisepunktiks. Hulka, mis koos-
neb vaid sisepunktidest, nimetatakse lahtiseks. Piirkond on seega lahtine
hulk.

Hulga rajapunktiks nimetatakse punkte, mille iga ümbrus sisaldab nii
vaadeldavasse hulka kuuluvaid kui ka mittekuuluvaid punkte. Rajapunktide
hulka nimetatakse rajaks. Piirkonda koos oma rajaga nimetatakse kinni-
seks piirkonnaks.

Piirkonna raja sidusate osade arv määrab piirkonna sidususe järgu. Nii
nimetame piirkonda ♣z−1♣< 1 ühelisidusaks ning piirkonda 1< ♣z− i♣< 2
(rõngas) kahelisidusaks. Joonisel 1.6 on esitatud neljalisidus piirkond.

Kui piirkonna raja koosneb enam kui ühest sidusast osast, siis nimeta-
takse piirkonda mitmelisidusaks.

Piirkonna raja korral määratakse kindel läbimise suund. Raja positiivseks
suunaks loetakse see, mida mööda liikudes vaadeldav piirkond jääb vasakule.
On oluline ka rajapunktide kordsus. Öeldakse, et punkt A on n-kordseks
rajapunktiks, kui raja täielikul läbimisel punkt A läbitakse n korda.

Piirkonda nimetatakse lõpmatuks, kui vähemalt tema raja sisaldab lõp-
matuspunkti. Vastasel korral kõneleme tõkestatud piirkonnast.

Ülesanded

1. Kirjelda geomeetriliselt järgmisi piirkondi:
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Joonis 1.6

a) −π < argz < π, ♣z♣< 2;

b) 1< ♣z−2i♣< 2,
π

4
< argz <

3π

4
;

c) ♣2z+3♣> 4;

d) Re
(

1

z

)

<
1

2
;

e) ♣z+4♣> ♣z♣;
f) Im(z−1)2 > 0;

g)
∣

∣

∣

∣

z+1

z−2

∣

∣

∣

∣

> 2.



2. FUNKTSIOON JA TEMA TULETIS

2.1. FUNKTSIOONI MÕISTE

Vaatleme mingit kompleksarvude hulka D. Kui z tähistab suvalist arvu
hulgast D, siis öeldakse, et z on kompleksarvuliste väärtustega muutuv suu-
rus ehk kompleksmuutuja. Iga kompleksarvu z ∈D nimetatakse seejuures
selle kompleksmuutuja väärtuseks.

Kui kompleksmuutuja z igale väärtusele z ∈D on vastavusse seatud mingi
kindel kompleksarv w, siis öeldakse, et hulgal D on deĄneeritud kompleks-
muutuja funktsioon w = f(z).

Muutuja z väärtusi nimetatakse originaalideks. Kompleksarvu f(z) ni-
metatakse funktsiooni väärtuseks ehk kujutiseks. Viimased moodusta-
vad hulga, mida nimetatakse funktsiooni väärtuste ehk kujutiste hulgaks.

Kui igale originaalile vastab ainult üks kujutis, siis nimetatakse funkt-
siooni üheseks, vastupidisel korral Ű mitmeseks. Kui iga kujutis on vastav
vaid ühele originaalile, siis nimetatakse funktsiooni üheleheliseks, vasta-
sel korral Ű mitmeleheliseks. Seega esitab ühene ja üheleheline funktsioon
üks-ühest vastavust.

Lepime kokku kasutatavas sümboolikas ja terminoloogias. Termineid
ĎfunktsioonŞ ja ĎkujutusŞ kasutame sünonüümidena. Neid tähistame süm-
bolitega f , g, F jne. Kõrvuti nendega kasutame samas tähenduses sümboleid
w= f(z), w= g(z), w=F (z) jne. Viimastes tuleb suurusi w ja z vaadelda kui
muutujaid, mitte aga kui konkreetseid kompleksarve. Sümboleid f(z) ja g(z)
kasutame punkti z kujutise tähenduses, või siis teatava avaldise lühemaks
märkimiseks, näiteks f(z) = z4 − 2z+ 5. Me ütleme, et see avaldis Ďmäärab
funktsiooniŞ või siis Ďesitab funktsiooniŞ. Nii näiteks ütleme: ĎOlgu funkt-
sioon määratud avaldisega z2 + 1Ş ja ĎAvaldis

∑

zk esitab diferentseeruvat
funktsiooni ringis ♣z♣< 1Ş.

Kui meil on üks-üksühene vastavus kahe hulga D ja D1 vahel, siis on
meil määratud kaks funktsiooni, w = f(z) ja z = g(w), kus z = g[f(z)] ning
w= [g(w)]. Neid funktsioone nimetatakse teineteise suhtes pöördfunktsioo-
nideks. Niisiis on igal funktsioonil, mis teostab üks-ühese kujutuse, pöörd-
funktsioon.

15
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Kui hulgaks D on naturaalarvude hulk, siis nimetatakse funktsiooni ja-
daks, mida tähistatakse (zn).

Kui hulgaks D on mingi reaalarvude hulk T , siis saame nn. reaalse ar-
gumendiga kompleksmuutuja funktsiooni

z = f(t) = x(t)+ iy(t), t ∈ T.

Sellisena funktsioon ei paku oluliselt uut võrreldes analüüsis vaadeldud
funktsioonidega, sest z = f(t) avaldub siin kahe reaalmuutuja funktsiooni li-
neaarkombinatsioonina, mistõttu funktsiooni z= f(t) omadused on täielikult
sarnased funktsioonide x= x(t) ja y = y(t) omadega.

Omaduste poolest hoopis erinevamad funktsioonid saame sel juhul, kui nii
originaalide kui ka kujutiste hulkadeks on teatavad piirkonnad. Viimast nime-
tatakse antud funktsiooni määramispiirkonnaks ehk originaalide piirkon-
naks. Kujutiste hulka nimetatakse kujutispiirkonnaks ehk funktsiooni
muutumispiirkonnaks.

Kui reaalmuutuja funktsiooni korral kasutame piltlikkuse saavutamiseks
funktsiooni graaĄkut (seal on see kahedimensioonilise ruumi objekt), siis
kompleksmuutuja funktsiooni korral pole see mõeldav. Selle graaĄk oleks
neljadimensioonilise ruumi objekt. Geomeetrilise pildi saamiseks kasutame
kahte tasandit: ühele (z-tasand) kanname originaalid, teisele (w-tasand) ku-
jutised. Seda silmas pidades ütlemegi, et funktsioon kujutab z-tasandi mingi
piirkonna piirkonnaks w-tasandil.

Näide 1. Vaatleme funktsiooni

w = kz,

kus k on positiivne reaalarv. Olgu z = reiφ ja w= ρeiθ. Seosest w= kz saame,
et

ρ= kr ja Θ = φ+2nπ.

Nendest võrdustest näeme, et punktide z ja w polaarnurgad on võrdsed, kuid
kujutise polaarkaugus on suurem (kui k > 1) või väiksem (kui k < 1) originaali
omast (vt. joon. 2.1). Teisiti öeldes: toimub k-kordne mastaabi muutus.

Näide 2. Olgu

w = eiαz, kus α on mingi reaalarv.
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x

y

0

1

z

u

v

0

k

w

Joonis 2.1

Siit saame seosed:

ρ= r ning Θ = φ+α+2nπ.

Nendest seostest näeme, et vaadeldava kujutise korral pöördub iga ring ♣z♣ ⩽
R nurga α võrra (vt. joon. 2.5).

Erijuhul, kui α =
π

2
, s.t. w = iz, saame tasandi pöörde täisnurga võrra,

kui aga α= π, s.t. w = −z, siis saame tasandi pöörde sirgnurga võrra.

y

xRO

z

α

v

u
O

Re
iα

w

Joonis 2.2

Näide 3. Vaatleme funktsiooni

w = z+ b.
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Olgu w = u+iv, z = x+iy ning b= β1 +iβ2. Selle funktsiooni korral

u= x+β1 ning v = y+β2,

s.t. toimub tasandi lüke vektori b võrra (vt. joon. 2.2) Nii näiteks kujutub
ring ♣z♣< r ringiks ♣w− b♣< r.

y

xO

z

v

u
O

b

w

Joonis 2.3

Näide 4. Vaatleme lineaarfunktsiooni

w = az+ b.

Olgu a= keia ja b= β1 +iβ2. Tähistades

z1 = kz, z2 = eiaz1 ja w = z2 + b,

saame, et antud funktsiooniga teostatav kujutus on vaadeldav kolme eespool
käsitletud kujutuse järjestikuse rakendamisena. Kui a ̸= 1, saame funktsiooni

w = az+ b

esitada kujul

w−β = a(z−β),

kus β =
b

1−a
. Saadud seosest järeldub, et a ̸= 1 korral leidub niisugune punkt

β, mille suhtes lineaarfunktsioon teostab tasandi pöörde nurga arga võrra
ning ♣a♣ kordse mastaabi muutuse. Erijuhul, kui b= 0, toimub see nullpunkti
suhtes.
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Näide 5. Vaatleme funktsiooni

w = z2.

Olgu jällegi z = reiφ ja w = ρeiθ Siin saame seosed:

ρ= r2 ja θ = 2φ+2nπ.

Nendest selgub, et z-tasandi punktid, mille moodulid on võrdsed ning argu-
mendid erinevad arvu π või selle täisarvkordsete võrra, kujutuvad w-tasandile
üheks ja samaks punktiks. Siit järeldub, et piirkond −π

2
< argz <

π

2
kujutub

piirkonnaks −π < argw < π, s.t. kogu w-tasandiks, välja arvatud reaaltelje
negatiivne osa.

Kui meil on määratud mingi funktsioon w = f(z) hulgal D, siis see tä-
hendab, et igale piirkonda D kuuluvale kompleksarvule z on vastavusse sea-
tud mingi kompleksarv w. Et aga z = x+ iy ja w = u+ iv on määratud oma
reaal- ja imaginaarosadega, siis vastavus w = f(z) määrab meile kaks kahe
muutuja funktsiooni

u= u(x,y) ja v = v(x,y).

Seega

w = u+iv = f(z) = u(x,y)+ iv(x,y).

Funktsioone u ja v nimetatakse kompleksmuutuja funktsiooni w = f(z)
reaal- ja imaginaarosaks.

Näide 6. Kui w = z2, siis

w = z2 = (x+iy)2 = (x2 −y2)+ i2xy,

s.t.

u(x,y) = x2 −y2 ja v(x,y) = 2xy.

Ülesanded

1. Leida funktsiooni

w = f(z) =
y

x
+i

1

1−x

määramispiirkond.
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2. Leida sirgete y = α (α> 0) ja poolsirgete x= β (y > 0) kujutised funkt-
siooniga w = z2.

3. Milliseid jooni esitavad võrrandid (t ∈ R):

a) z = t(1+ i),

b) z = acos t+ibsin t,

c) z = t+
i

t
,

d) z = t2 +
i

t2
,

e) z = αeit +βe−it,
(α ja β reaalarvud).

4. Leida järgmiste funktsioonide reaal- ja imaginaarosad:

a) w =
1

z
,

b) w = z+2z,

c) w = z3

d) w =
1

z2
,

e) w =
z−1

z
,

f) w =
1

z− i
.

2.2. PIIRVÄÄRTUS

Vaatleme kompleksarvuliste väärtustega järjestatud suurusi. Nende all
mõistame niisuguseid muutuvaid suurusi w, mille korral vähemalt osa w väär-
tuste w1,w2 puhul on määratud, kumb väärtustest teisele järgneb. Siinjuures
nõuame, et see järjestus oleks: 1) transitiivne, s.t. kui w2 järgneb väärtusele
w1, w3 aga väärtusele w2, siis järgneb w3 ka väärtusele w1 2) suunatud, s.t.
iga kahe väärtuse w1 ja w2 puhul leidub w3, mis järgneb kummalegi väärtu-
sele w1,w2. Viimast arvestades kõneleme ka, et suurus w muutub suunatud
protsessis.

Matemaatilise analüüsi kursuses tutvusime reaalarvuliste väärtustega
suuruse piirväärtuse mõistega. Seame endale ülesandeks taandada kompleks-
arvuliste väärtustega järjestatud suuruse piirväärtustega seotud mõisted ja
nendekohased teoreemid analoogilstele mõistetele ja teoreemidele reaalarvu-
liste suuruste korral. Aluse selleks annavad kompleksarvu deĄnitsioon ning
kauguse mõiste komplekstasandil. Nende põhjal saame allpool vaadeldava
seose (2.1), mis võimaldabki meil lahendada oma ülesande.

Järjestatud suuruste näidetena mainiksime järgmisi:

w = zn (n→ ∞), w = z(t) (t→ 0) ja w = f(z) (z → a),
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millega tuleb meil sageli kohtuda järgnevates osades. Et need kompleksarvu-
liste väärtustega suurused on tõepoolest järjestatud suurused, jätame tões-
tada lugejale. Märgime vaid, et selleks on vaja selgitada, mida tähendab igal
üksikul juhul järgnevus, ning kontrollida transitiivsust ja suunatust.

Me nimetame kompleksset muutuvat suurust w lõpmata väikeseks ehk
hääbuvaks vaadeldavas protsessis, kui selles protsessis on reaalarvuliste
väärtustega suurus ♣w♣ lõpmata väike, s.t.

lim ♣w♣ = 0.

Kompleksarvu A= a+ib nimetame muutuva suuruse w= u+iv piirväär-
tuseks vaadeldavas suunatud protsessis, kui selles protsessis vahe w−A on
lõpmata väike. Seda, et A on suuruse w piirväärtuseks, märgime järgmiselt:

limw = A.

Teoreem. Muutuva suuruse w= u+iv piirväärtuseks on konstant A= a+ ib
parajasti siis, kui vaadeldavas protsessis limu= a ning

limv = b.

Tõestus. Teoreemi väide järeldub vahetult võrratustest

♣u−a♣
♣v− b♣

}

⩽ ♣w−A♣ ⩽ ♣u−a♣+ ♣v− b♣, (2.1)

kui peame silmas äsjatoodud piirväärtuse deĄnitsiooni ning vastvat deĄnit-
siooni reaalarvuliste muutuvate suuruste korral. Võrraltusteahela (2.1) parem
pool esitab teoreemi tingimuste piisavuse ning vasak pool Ű tarvilikkuse.

Rakendustes on sageli otstarbekas kasutada piirväärtuse deĄnitsiooni mõ-
nevõrra teisel, kuid ülaltooduga samaväärsel kujul.

Konstanti A nimetatakse muutuva suuruse w piirväärtuseks, kui vastavalt
igale positiivsele arvule ε leidub vaadeldavas protsessis niisugune koht, millest
alates kehtib võrratus

♣w−A♣< ε.

Vaatleme nüüd jada (zn) piirväärtust ning rakendame selle puhul äsja-
esitatud üldist piirväärtuse deĄnitsiooni. Jada puhul iseloomustab protsessi
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jada indeksi kasvamine. Koha määrab siin indeks, s.t. mingi naturaalarv.
Seega:

arv A on jada (zn) piirväärtuseks, kui vastavalt igale arvule ε > 0 leidub
selline naturaalarv N(ε), nii et iga n > N puhul

♣zn −A♣< ε.

Jada, millel on piirväärtus, nimetatakse koonduvaks. Ülaltoodud teo-
reemi abil saame kompleksliikmetega jadadele üle kanda Cauchy kriteeriumi,
mida tunneme reaalarvuliste jadade puhul.

Cauchy kriteerium. Jada (zn) on koonduv parajasti siis, kui vastavalt igale
arvule ε > 0 leidub naturaalarv N(ε), nii et iga n > N(ε) ning iga naturaal-
arvu p korral kehtib võrratus

♣zn+p − zn♣< ε.

Teise konkreetse rakendusena vaatleme funktsiooni w = f(z) piirväärtust
punktis a, s.t. funktsiooni f piirväärtust protsessis z−a, mida märgime süm-
boliga

lim
z→a

f(z).

Siinjuures eeldame, et funktsioon f on määratud punkti a mingis ümbruses
(välja arvuatud võib-olla punktis a endas). Selles protsessis on koht määra-
tud punkti z kaugusega punktist a. Piirväärtuse deĄnitsiooni rakendamisel
saame:

kompleksarv A on funktsioon w = f(z) piirväärtuseks punktis a, kui vas-
tavalt igale arvule ε > 0 leidub selline δ(ε)> 0, nii et iga võrratusi

0< ♣z−a♣< δ(ε)

rahuldava z puhul kehtib võrratus

♣f(z)−A♣< ε.

Näide 1. Tõestada, et lim
z→i

♣z♣ = 1.

Äsjaesitatud deĄnitsiooni põhjal tuleb meil näidata, et iga ε > 0 puhul
leidub niisugune δ(ε)> 0, et ♣z− i♣< δ(ε) korral kehtib võrratus ♣♣z♣−1♣< ε.
Et aga (vt. jaotis 1.2)

∣

∣

∣♣z♣−1
∣

∣

∣=
∣

∣

∣♣z♣− ♣i♣
∣

∣

∣< ♣z− i♣
siis võib võtta δ(ε) = ε.
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Näide 2. Näitame, et ei eksisteeri lim
z→0

z

z
.

Selle näitamiseks läheneme punktile 0 kahte erinevat teed pidi ning veen-
dume, et sel korral saame erinevad piirväärtused, mis ütlebki, et vaadeldaval
funktsioonil pole piirväärtust punktis 0.

1) Olgu z = x+ iy. Läheneme nullile piki reaaltelge, s.t. y = 0. Sel juhul

z = z = x ning seega lim
z

z
= 1.

2) Kui aga läheneme nullile piki imaginaartelge, s.t. x= 0, siis z = iy ning

z = −iy, mistõttu lim
z

z
= −1.

Ülesanded

1. Näidata, et punkt A (♣A♣ ≠ 0 ning argA ̸= π) on muutuva suuruse w
piirväärtuseks parajasti siis, kui lim ♣w♣ = ♣A♣ ja limargw = argA.

2. Tõestada, et

a) lim
z→z0

c= c,

b) lim
z→z0

(az+ b) = az0 + b,

c) lim
z→z0

(z2 + c) = z2
0 + c,

d) lim
z→z0

Re z = Re z0,

e) lim
z→z0

z = z0,

f) lim
z→1−i

[x+i(2x+y)] = 1+ i.

3. Tõestatud teoreemi abil näidata, et komplekssete muutuvate suuruste
piirväärtuste korral kehtivad aritmeetiliste tehete puhul samasugused
teoreemid nagu reaalarvuliste suuruste puhul.

4. Näidata, et iga suurus, millel on piirväärtus, on tõkestatud.

5. Näidata, et ka kompleksarvuliste jadade puhul kehtib BolzanoŰ
Weierstrassi teoreem.

2.3. FUNKTSIOONI PIDEVUS

Edasises ainekäsituses on eriti tähtis funktsiooni pidevuse mõiste.
Funktsiooni w = f(z) nimetatakse pidevaks punktis z0 ∈D, kui∗

∗Funktsiooni väärtust ja piirväärtust vaatleme lõplikena.
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1) eksisteerib f(z0),

2) eksisteerib lim
z→z0

f(z),

3) lim
z→z0

f(z) = f(z0).

Sellest deĄnitsioonist lähtudes saame, et funktsioon w = f(z) on pidev
punktis z0 parajasti siis, kui vastavalt igale arvule ε > 0 leidub selline arv
δ(ε)> 0, et ♣z− z0♣< δ(ε) puhul

♣f(z)−f(z0)♣< ε.

Piirväärtuse omadustest järeldub vahetult, et pidevate funktsioonide sum-
ma, vahe, korrutis ja jagatis on pidevad funktsioonid (viimase puhul ei tohi
jagaja väärtus vaadeldavas punktis võrduda nulliga).

Vaatleme mingit originaali väärtust z ning temale lähedased originaali
väärtused kirjutame kujul z+∆z. Suurust ∆z nimetatakse originaali muu-
duks. Et funktsioon w = f(z) oleks pidev punktis z, peab

lim
∆z→0

f(z+∆z) = f(z)

ehk teisiti

lim
∆z→0

[f(z+∆z)−f(z)] = 0.

Vahet f(z+ ∆z) − f(z) nimetatakse funktsiooni f muuduks punktis z.
Meie tõestasime sellega, et funktsioon f on pidev punktis z parajasti siis, kui
selles punktis lõpetamata väikesele originaali muudule vastab lõpmata väike
funktsiooni muut.

Kui funktsioon f on pidev piirkonna D igas punktis, siis nimetatakse seda
funktsiooni pidevaks piirkonnaks D.

Näide. Näitame, et argz on pidev igas punktis z, mis ei asu reaaltelje nega-
tiivsel osal.

Et z = 0 ja z = ∞ puhul pole argz määratud, siis neid z väärtusi me ei
vaatle. Olgu z0 punkt, mis ei asu reaaltelje negatiivsel osal. Võtame mingi
arvu ε > 0. Tähistame sümboliga δ sellise ringi raadiuse, mille keskpunkt
asub punktis z0. Asugu see ring sektoris argz0 −ε < φ < argz0 +ε ning ärgu
ta sisaldagu reaaltelje negatiivse osa punkte (vt. joon. 2.4). Sel juhul järeldub
võrratusest ♣z−z0♣< δ võrratus ♣argz−argz0♣. Et z0 ja ε olid suvalised, siis
olemegi tõestanud oma väite.
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y

xO

z0

δ
ε

Joonis 2.4

Selle tõestuse juures on oluline tähele panna, et vastavalt arvule ε > 0
konstrueeritud arv δ sõltus punkti z0 valikust. Kui aga sellist sõltuvust ei
esine, siis saame nn. ühtlase pidevuse.

Funktsiooni f nimetatakse ühtlaselt pidevaks piirkonnas D, kui vasta-
valt arvule ε > 0 leidub selline δ(ε) > 0, nii et piirkonna D iga kahe punkti
z1 ja z2 puhul kehtib võrratus

♣f(z1)−f(z2)♣< ε,

kui ♣z1 − z2♣< δ(ε).

Ülesanded

1. Näidata, et funktsioon w = f(z) = u+iv on pidev punktis z0 = x0 +iy0

parajasti siis, kui funktsioonid u = u(x,y) ja v = v(x,y) on pidevad
punktis (x0,y0).

2. Sõnastada pidevate funktsioonide kohta käivad Cantori ja Weierstrassi
teoreemid kompleksmuutuja korral. Tõestada need analoogid.

3. Tõestada, et pidevate funktsioonide kompositsioon on pidev funkt-
sioon.

4. Näidata, et funktsioonid w = z+i, w =
1

z
ja w = z2 on pidevad punktis

z = i.
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2.4. DIFERENTSEERUVAD FUNKTSIOONID

Vaatleme mingis piirkonnas D deĄneeritud funktsiooni w = f(z). Tähis-
tame:

∆w = f(z+∆z)−f(z).

Kui eksisteerib piirväärtus lim
∆z→0

∆w

∆z
, siis nimetatakse funktsiooni f di-

ferentseeruvaks punktis z. Seda piirväärtust nimetatakse funktsiooni f tu-
letiseks punktis z ning tähistatakse sümboliga f ′(z).

Näide 1. Olgu w = z2. Sel juhul

∆w = (z+∆z)2 − z2 = z2 +2z∆z+∆z2 − z2 = 2z∆z2

ning siit

lim
∆z→0

∆w

∆z
= lim

∆z→0

2z∆z+∆z2

∆z
= lim

∆z→0
(2z+∆z) = 2z.

Seega

(

z2
)′

= 2z.

Näide 2. Olgu w = ♣z♣2 = zz. Siin

∆w = (z+∆z)(z+∆z)− zz = (z+∆z)(z+∆z)− zz =

= zz+ z∆z+ z∆z+∆z∆z− zz = z∆z+ z∆z+∆z∆z,

millest

∆w

∆z
= z

∆z

∆z
+ z+∆z.

Saadud summa piirväärtus aga ei eksisteeri (v.a. juhul, kui z = 0), sest vas-
tavalt jaotise 2.2 näitele 2 ei eksisteeri esimese liidetava piirväärtus. Seega
pole vaadeldav funktsioon diferentseeruv üheski punktis peale punkti z = 0.
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Selle näite põhjal veendusime, et ka üsna lihtsad kompleksmuutuja funkt-
sioonid ei pruugi olla diferentseeruvad. Kui vaadelda sama funktsiooni y =
♣x♣2 = x2 reaalmuutuja korral, siis on see diferentseeruv igas punktis. Sellest
järeldub, et kompleksmuutuja korral on diferentseeruvuse nõue hoopiski ran-
gem kui reaalmuutuja puhul, kuigi formaalselt on diferentseeruvus deĄnee-
ritud mõlemal juhul ühtemoodi. Selle tõsiasja sisulise tähendusega tutvume
mõnevõrra hiljem, kui vaatleme kõrgemat järku tuletisi.

Olgu funktsioon w= f(z) diferentseeruv punktis z. Vastavalt piirväärtuse
ja diferentseeruvuse deĄnitsioonile on suurus

η =
∆w

∆z
−f ′(z)

diferentseeruva funktsiooni puhul lõpmata väike protsessis ∆z→ 0. Viimasest
võrdusest saame, et

∆w = f ′(z)∆z+η∆z. (2.1)

Selle võrduse paremal poolel on esimene liidetav teistega võrreldes madala-
mat järku lõpmata väike† (kui f ′(z) ̸= 0). Nagu reaalmuutuja funktsioonide
puhul, nii nimetatakse ka siin suurust f ′(z)∆z funktsiooni muudu peaosaks.
See suurus sõltub lineaarselt originaali muudust ∆z ning teda nimetatakse
funktsiooni diferentsiaaliks ja tähistatakse

dw = f ′(z)∆z.

Kui võtta w = z, siis w′ = 1 ning dw = dz = ∆z. Seega võime kirjutada

dw = f ′(z)dz,

millest

f ′(z) =
dw

dz
.

Seosest (2.1) järeldub, et diferentseeruva funktsiooni korral vastab lõp-
mata väikesele originaali muudule lõpmata väike funktsiooni muut. Seega on
iga diferentseeruv funktsioon ka pidev.

†Lõpmata väikesi suurusi võrreldakse kompleksmuutuja puhul täpselt samuti kui reaal-
muutuja korral.
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Et formaalselt on funktsiooni diferentseeruvus deĄneeritud samuti kui
reaalmuutuja funktsiooni korral, siis on diferentseerimise reeglid kompleks-
muutuja funktsioonide puhul samasugused kui need, mida tunneme mate-
maatilise analüüsi kursusest. Vaatleme siinkohal vaid liitfunktsiooni diferent-
seerimise reeglit.

Olgu antud funktsioonid w = f(ζ) ja ζ = g(z), kus z ja ζ kuuluvad vas-
tavalt piirkondadesse D ja D1 (D1 ⊂D), s.t. esimese funktsiooni määramis-
piirkond sisaldab teise funktsiooni kujutispiirkonna. Eeldame, et funktsioon
f on diferentseeruv punktis z, mistõttu seose (2.1) põhjal

∆ζ = g′(z)∆z+α∆z, (2.2)

kus lim
∆z→0

α= 0. Olgu funktsioon f diferentseeruv punktis ζ = g(z). Sel juhul

∆w = f ′(ζ)∆ζ+β∆ζ, (2.3)

kus lim
∆ζ→0

β = 0. Et aga lim
∆z→0

∆ζ = 0, siis ka lim
∆z→0

β = 0. Seoste (2.2) ja (2.3)

põhjal saame, et

∆w = f ′(ζ)[g′(z)∆z+α∆z]+β[g′(z)∆z+α∆z] =

= f ′(ζ)g′(z)∆z+[αf ′(ζ)+βg′(z)+αβ]∆z =

= f ′(ζ)g′(z)∆z+y∆z,

kus γ = αf ′(ζ) +βg′(z) +αβ. Et lim
∆z→0

γ = 0, siis saamegi siit matemaatilise

analüüsi kursusest tuntud valemi

lim
∆z→0

∆w

∆z
=
dw

dz
= f ′(ζ)g′(z) =

dw

dζ

dζ

dz
.

Lõpetuseks deĄneerime kaks olulist mõistet. Funktsiooni, mis on piirkon-
na D igas punktis ühene ja diferentseeruv, nimetatakse regulaarseks piir-
konnas D. Funktsiooni f nimetatakse regulaarseks punktis z, kui sellel
punktil leidub ümbrus, kus f on regulaarne.

Kui vaatleme diferentseeruvuse ja regulaarsuse nõudeid piirkonna puhul,
siis üheste funktsioonide korral need ühtivad. Punktis regulaarsuse nõue on
aga rangem kui punktis diferentseeruvuse nõue. Nii on näites 2 vaadeldud
funktsioon diferentseeruv punktis z = 0, kuid see ei ole seal regulaarne.

Ülesanded

1. Leida tuletised funktsioonidest
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a) w = (2z+i)4,

b) w =
z− i

z
,

c) w = 3z2 −4z+i,

d) w =
2x

z−1
.

Vastus. a) w′ = 8(2z+i)3,

b) w′ =
i

z2
,

c) w′ = 6z−4,

d) w′ = − 2i

(z− i)2
.

2. Näidata, et funktsioonid w = Rez, w = Imz, w = z pole diferentseeru-
vad.

3. Leida funktisooni w = (2 + i)z2 diferentsiaal punktides z = 2− i, z =
1

2
ja z = −i.

Vastus. 10∆z, (2+ i)∆z ja 2(1−2i)∆z.

2.5. CAUCHYŰRIEMANNI VÕRRANDID

Eelmises jaotises nägime, et ka suhteliselt lihtsad pidevad kompleksmuu-
tuja funktsioonid võivad mitte osutuda diferentseeruvaiks. Seepärast tuleks
leida tingimused, mille järgi saaks otsustada funktsiooni diferentseeruvuse
üle. Lahendamegi selle probleemi.

Olgu meil funktsioon

w = f(z) = u(x,y)+ iv(x,y).

Eeldame, et see funktsioon on diferentseeruv punktis z, s.t. eksisteerib piir-
väärtus

lim
∆z→0

∆w

∆z
.

Siinjuures on oluline tähele panna, et piirväärtuse deĄnitsiooni kohaselt
ei sõltu see piirväärtus sellest, millisel viisil ∆z läheneb nullile. Teisiti öeldes,

kui teame, et piirväärtus lim
∆z→0

∆w

∆z
eksisteerib, siis piisab tema leidmiseks, kui

vaatleme vaid teatavat kindlat suuruse ∆z nullile lähenemise viisi (näiteks
piki sirget).

Lähenegu ∆z = ∆x+ i∆y nullile selliselt, et ∆y = 0, s.t. punkt z+ ∆z
ligineb punktile z paralleelselt reaalteljega. Sel juhul ∆z = ∆x ning

f ′(z) = lim
∆z→0

∆w

∆z
= lim

∆x→0

(u+∆u)+ i(v+∆v)− (u+iv)

∆x
= lim

∆x→0

∆u+i∆v

∆x
=
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= lim
∆x→0

(

∆u

∆x
+i

∆v

∆x



=
∂u

∂x
+i

∂v

∂x
.

Kui aga ∆z läheneb nullile nii, et ∆x= 0, siis saame

f ′(z) = lim
∆y→0

∆u+i∆v

i∆y
= lim

∆y→0

(

∆v

∆y
− i

∆u

∆y



=
∂v

∂y
− i

∂u

∂y
.

Eelduse kohaselt oli funktsioon diferentseeruv. Seetõttu peavad kahel eri-
neval lähenemisel saadud tulemused olema võrdsed, s.t.

∂u

∂x
+i

∂v

∂x
=
∂v

∂y
− i

∂u

∂y
.

Seega funktsiooni diferentseeruvuse korral:

∂u

∂x
=
∂v

∂y
;
∂u

∂y
= −∂v

∂x
.

Saadud võrrandeid nimetatakse CauchyŰRiemanni võrranditeks.
Näitame, et CauchyŰRiemanni võrrandite täidetus on ka funktsiooni dife-

rentseeruvuse piisavaks tingimuseks Ű eeldusel, et kahe muutuja funktsioonid
u ja v on diferentseeruvad. Viimane asjaolu tähendab seda, et

∆u=
∂u

∂x
∆x+

∂u

∂y
∆y+η1♣∆z♣,

∆v =
∂v

∂x
∆x+

∂v

∂y
∆y+η2♣∆z♣,

(2.1)

kus ♣∆z♣ =
√

∆x2 +∆y2 ning η1,η2 lähenevad nullile, kui ∆z → 0. Seoste
(2.1) ja CauuchyŰRiemanni võrrandite abil saame, et

∆w

∆z
=

∆u+i∆v

∆x+i∆y
=

=

(

∂u
∂x∆x+ ∂u

∂y ∆y
)

+i
(

∂v
∂x∆x+ ∂v

∂y ∆y
)

+(η1 +η2)♣∆z♣
∆x+i∆y

=

=

(

∂u
∂x +i∂v

∂x

)

∆x+i
(

∂u
∂x + ∂v

∂x

)

∆y

∆x+i∆y
+(η1 +η2)

♣∆z♣
∆z

=

=
∂u

∂x
+i

∂v

∂x
+(η1 +η2)

♣∆z♣
∆z

.



2.5. CAUCHYŰRIEMANNI VÕRRANDID 31

Saadud tulemuste põhjal
∣

∣

∣

∣

∆w

∆z
−
(

∂u

∂x
+i

∂v

∂x



∣

∣

∣

∣

= ♣η1 +η2♣ → 0,

kui ∆z → 0. Seega, funktsioon w = f(z) on diferentseeruv ning

f ′(z) =
∂u

∂x
+i

∂v

∂x
.

Näide. Näitame, et funktsioon w= f(z) on diferentseeruv igas nullist erinevas
punktis.

Et

w =
1

z
=

1

x+iy
=

x

x2 +y2
+i

−y
x2 +y2

,

siis tuleb meil veenduda, et funktsioonid

u=
x

x2 +y2
ja v =

−y
x2 +y2

rahuldavad CauchyŰRiemanni võrrandeid. Arvutades saame, et

∂u

∂x
=

y2 −x2

(x2 +y2)2
,

∂u

∂y
=

−2xy

(x2 +y2)2
,

∂v

∂x
=

2xy

(x2 +y2)2
,

∂v

∂y
=

y2 −x2

(x2 +y2)2
,

kui x2 + y2 = ♣z♣2 ̸= 0. Siit näemegi, et CauchyŰRiemanni võrrandid on täi-

detud, s.t. funktsioon w =
1

z
on diferentseeruv.

Ülesanded

1. Arvestades, et x= r cosφ ja y= r sinφ, näidata, et polaarkoordinaatides
avaalduvad CauchyŰRiemanni võrrandid kujul

∂u

∂r
=

1

r

∂u

∂φ
,

1

r

∂u

∂φ
= −∂v

∂r

2. Eelmise ülesande tulemust kasutades tõestada, et funktsioon w= zn (n
täisarv) on diferentseeruv.

3. Veenduda, et järgmiste avaldistega määratud funktsioonid pole dife-
rentseeruvad:
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a) z− z,

b) 2x+xy2i,

c) ex(cosy− i siny),

d) x2 siny− iy cosx.

4. Millistes punktides on järgmistel funktsioonidel tuletis:

a) w =
1

z+1
, b) w = x2 +iy2, c) w = z Imz?

Leida tuletised neis punktides, kus nad eksisteerivad.

5. Kui w = u+ iv = x3 − i(y− 1)3, siis
∂u

∂x
+ i

∂v

∂x
= 3x2. Miks on 3x2 selle

funktsiooni tuletiseks ainult punktis z = i?

2.6. HARMOONILISED FUNKTSIOONID

Eeldades, et funktsioonidel u ja v eksisteerivad pidevad teist järku osatu-
letised, saame CauchyŰRiemanni võrrandeid diferentseerides, et

∂2u

∂x2
=

∂2v

∂y∂x
,

∂2u

∂y2
= − ∂2v

∂x∂y
.

Sellest järeldub, et funktsioon u rahuldab nn. Laplace’i võrrandit

∂2u

∂x2
+
∂2u

∂y2
= 0.

Funktsiooni, mis rahuldab mingis piirkonnas Laplace’i võrrandit, nimetatak-
se selles piirkonnas harmooniliseks funktsiooniks. Me tõestasime, et tea-
tud eeldustel (teist järku osatuletiste olemasolu korral)∗ on diferentseeruva
kompleksmuutuja funktsiooni reaalosa harmooniline funktsioon. Analoogili-
selt saab näidata sedasama ka imaginaarosa kohta.

Funktsioone u ja v, mis rahuldavad peale Laplace’i võrrandi veel CauchyŰ
Riemanni võrrandeid, nimetatakse kaasharmoonilisteks. Osutub, et igale
harmoonilisele funktsioonile saab leida kaasharmoonilise. Selle fakti tõestusel
me käesolevas raamatus ei peatu, vaid piirdume näidetega.

∗Hiljem näeme, et tehtud eeldus on alati täidetud.
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Näide 1. Leida kaasharmooniline funktsioonile u= x2 −y2. Et v oleks kaar-
harmooniline, peab ta täitma tingimusi (CauchyŰRiemanni võrrandeid)

∂v

∂x
= −∂u

∂y
= 2y,

∂v

∂y
= −∂u

∂x
= 2x.

Esimesest seosest saame, et

v =
∫

(

−∂u

∂y



dx+φ(y) =
∫

2ydx+φ(y) = 2xy+φ(y).

Teise seose põhjal

∂v

∂y
= 2x+φ′(y) = 2x,

s.t. φ′(y) = 0. Seega φ(y) = const ning siit

v = 2xy+C.

Näide 2. Leida diferentseeruv kompleksmuutuja funktsioon
w = f(z) = u+iv, kui v = ex siny.

Leiame
∂v

∂x
= ex siny ja

∂v

∂y
= ex cosy.

Vastavalt Cauchy-Riemanni võrrandeile saame, et

u=
∫

ex cosydx+φ(y) = ex cosy+φ(y),

millest
∂u

∂y
= −ex siny+φ′(y) = −ex siny.

Siit tuleneb, et φ′(y) = 0, s.t. φ(y) = const. Seega

f(z) = u+iv = ex cosy+C+iex siny = ex(cosy+isiny)+C.

Ülesanded

1. Funktsiooni w = zn = (x+ iy)n reaal- ja imaginaarosi nimetatakse n-
astme harmoonilisteks polünoomideks. Leida kõik harmoonilised
polünoomid kuni 4. astmeni.

2. Leida diferentseeruv funktsioon w = f(z) = u+iv, kui
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a) u= x2 −y2 +2x,

b) u=
x

x2 +y2
,

c) v = 2xy+3x,

d) u=
x

x2 +y2
−2y,

e) v = − y

(x+1)2 +y2
,

f) v = arctan
y

x
, x > 0.

Vastus. a) w = z2 +2z+Ci,

b) w =
1

z
+Ci,

c) w = z2 +3iz+C,

d) w =
1

z
+2iz+Ci,

e) w =
1

z+1
+C,

f) w =
1

2
ln(x2 +y2)+

+iarctan
y

x
+C.

3. Tõestada, et piirkonnas D diferentseeruv ja reaalarvuliste väärtustega
funktsioon on selles piirkonnas konstantne.

4. Olgu f ′(z) = 0 piirkonnas D. Näidata, et f(z) = const.

2.7. TULETISE GEOMEETRILINE TÄHENDUS

Uurime diferentseeruva funktsiooniga teostatava kujutuse geomeetrilisi
omadusi. Selle uurimise aluseks võtame jaotises 2.1 vaadeldud näited 1 ja 2,
mille põhjal võime väita, et funktsioon

w = az

teostab kujutuse, mille kujutisvektor w on originaaliga z võrreldes pööratud
nurga α= arga võrra ning tema pikkus on muutunud ♣a♣ kordselt.

Sellest järeldub, et kujutuse

w−w0 = a(z− z0)

korral kujutub punktist z0 punkti z suunduv vektor punktist w0 punkti w
suunduvaks vektoriks; kujutisvektor on originaaliga võrreldes pöördunud nur-
ga α= arg a võrra ning tema pikkus on muutunud ♣a♣ kordselt.

Olgu funktsioon w= f(z) diferentseeruv. Vaatleme punkte, milles f ′(z) ̸=
0. Sel juhul

∆w = f ′(z)∆z+β,
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kus β on esimese liidetavaga võrreldes kõrgemat järku lõpmata väike suurus.
Küllalt väikese ∆z puhul kehtib seega ligikaudne võrdus

∆w = f ′(z)∆z (2.1)

Seosest (2.1) näeme, et vektor ∆w on võrreldes vektoriga ∆z pöördunud
nurga argf ′(z) võrra ning tema pikkus on muutunud ∆z pikkusega võrreldes
suuruse ♣f ′(z)♣ kordselt. Et see kehtib igasuguse küllalt väikese ∆z ja temale
vastava ∆w korral, siis saame sellest järeldada järgmise fakti:

kujutamisel diferentseeruva funktsiooniga f toimub neis punktides, kus
f ′(z) ̸= 0, tasandi pööre nurga δ = argf ′(z) võrra ning mastaabi muutus
♣f ′(z)♣ kordselt (vt. joonis 2.5).

0

x

y

z +∆z

∆z

α

z

0

u

v

w +∆w

w

α
δ

Joonis 2.5

Et kõigi vektorite ∆z kujutised on pööratud oma originaalide suhtes ühe
ja sama nurga δ võrra, siis on punkti z läbiva kahe joone C1 ja C2 vaheline
nurk võrdne (nii suuruse kui ka suuna poolest) vastavate kujutisjoonte S1 ja
S2 vahelise nurgaga (vt. joonis 2.6). Selles väljendub nn. nurkade säilivuse
omadus.

Teiselt poolt, nagu nägime, muutub vektori ∆z pikkus igas suunas ühte
viisi, s.t. lõpmata väikese raadiusega ringjoonK (keskpunktiga punktis z) ku-
jutub jooneks L, mille punktide kaugused mingist ringjoonest (keskpunktiga
punktis w) on suurusega ϱ võrreldes kõrgemat järku lõpmata väikesed. Selles
väljendub nn. lõpmata väikeste ringjoonte invariantsuse omadus.
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K
z

r

C1

C2
L

S1

̺

w

S2

Joonis 2.6

Kujutust, millel on kaks eespool mainitud omadust, nimetatakse kon-
formseks kujutuseks. Niisiis, iga diferentseeruv kompleksmuutuja funkt-
sioon teostab konformse k u j u t a m i s e (s.t. säilitab nurgad nii suuruse
kui ka suuna poolest ning muudab mastaapi igas suunas ühte viisi) kõigis
punktides, kus tuletis on nullist erinev.

Meie nägime eelnevas, et kui originaaliks on lõpmata väike ring pind-
alaga πr2, siis on kujutiseks piirkond, mis on ligilähedaselt ring pindala-
ga ♣f ′(z)♣2πr2, s.t. pindala muutub ♣f ′(z)♣2 kordselt. Seda tulemust teame
matemaatilise analüüsi kursusest, milles näidati, et muutujate vahetuse
u= u(x,y); v = v(x,y), s.t. kujutuse w = f(z) = u(x,y)+iv(x,y) puhul muu-
tub pindala jakobiaani

D(u,v)

D(x,y)
=

∣

∣

∣

∣

∣

∣

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

∣

∣

∣

∣

∣

∣

(2.2)

kordselt. Ent CauchyŰRiemanni võrrandeid arvestades saame, et jakobiaan
võrdub avaldisega

(

∂u

∂x

2

+

(

∂v

∂x

2

=
∣

∣

∣f ′(z)
∣

∣

∣

2
.

See on funktsiooni mooduli teine geomeetriline tähendus.
Kui f ′(z) ̸= 0, on teisendus u = u(x,y), v = v(x,y) regulaarne, mistõttu

eksisteerib pöördteisendus∗ x = x(u,v) ja y = y(u,v). Seda tulemust komp-
leksmuutuja funktsiooni seisukohalt tõlgendades saame, et nende punktide

∗Kangro, G. Matemaatiline analüüs II, Tln., 1968, lk. 281.
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ümbruses, kus f ′(z) = 0, eksisteerib funktsioonil w = f(z) ühine pöördfunkt-
sioon

z = g(w) = x(u,v)+ iy(u,v).

Ülesanded

1. Leida tasandi pööre ja mastaabi muutus kujutamisel funktsiooniga w=
z2 punktides:

a) z = 1,

b) z =
1

2
,

c) z = −1

4
,

d) z = 1+i,

e) z =
√

3− i,

f) z = −2+ i.

Vastus. a) 0 ja 2,

b) 0 ja 1,

c) π ja
1

2
,

d)
π

4
ja 2

√
2,

e) −π

6
ja 4,

f) −π

2
ja 4.

2. Sama funktsiooni w = z3 puhul.

Vastus. a) 0 ja 3,

b) 0 ja
3

4
,

c) 0 ja
3

16
,

d)
π

2
ja 6,

e) −π

3
ja 12,

f) −π ja 12.

3. Milline z-tasandi osa surutakse kokku ja milline venitatakse välja järg-
miste funktsioonidega kujutamisel:

a) w = z2,

b) w =
1

z
,

c) w = z2 +2z,

d) f(z) = ex(cosy+isiny).

Vastus. Kokku surutakse

a) ♣z♣< 1

2
,

b) ♣z♣> 1,

c) ♣z+1♣< 1

2
,

d) x= Rez < 0.

Välja venitatakse:
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a) ♣z♣> 1

2
,

b) 0< ♣z♣< 1,

c) ♣z+1♣> 1

2
,

d) Rez > 0.



3. ELEMENTAARFUNKTSIOONID

3.1. ASTMEFUNKTSIOON

Eelpool selgitasime, mida mõistame astmena zn, kus n on positiivne
täisarv. Järgnevas tutvume astmefunktsiooni w = zn mõne lihtsama oma-
dusega. Selle funktsiooni diferentseeruvust saab kõige lihtsamini kontrolli-
da Moivre’i valemi või CauchyŰRiemanni võrrandite (polaarkoordinaatides)
abil, või siis vahetult tuletise deĄnitsioonist lähtudes, kasutades täieliku in-
duktsiooni meetodit.

Asudes uurima astmefunktsiooni omadusi, vaatleme lihtsuse mõttes kõi-
gepealt ruutfunktsiooni.

a) Funktsioon w= z2. Eelnevas nägime (vt. näide 5 jaotises 2.1), et funkt-
sioon pole üheleheline, s.t. igale kujutisele ei vasta ainult üks originaal. Sel-
lise vastavuse lähemaks selgitamiseks võtame nullpunktist lähtuva kiire ning
pöörame teda vastupidiselt kellaosuti liikumise suunale (vt. joon. 3.1). Kiirele

x

y

(1)

(2)

(3)

(4)

(5)

ϕ

u

v

(1)
(2)

(3)

(4)

(5)

θ

Joonis 3.1

z-tasandil vastab kiir w-tasandil (vt. näide 5 jaotises 2.1), kusjuures polaar-
nurk w-tasandil kasvab poole kiiremini vastavast polaarnurgast z-tasandil.
Pööratava kiire kujutis katab kogu w-tasandi juba siis, kui z-tasandi kiir
katab vaid ülemise pooltasandi. Kui nüüd läbime oma z-tasandi kiirega ka
alumise pooltasandi, katab kujutiskiir w-tasandi teistkordselt.

Et saada üks-ühest vastavust kujutiste ja originaalide vahel, selleks
võtame kujutistasandeid kaks. Seejuures olgu z-tasandi ülemisele poolele

39



40 PEATÜKK 3. ELEMENTAARFUNKTSIOONID

vastavad kujutised w-tasandi esimesel eksemplaril ning alumisele poolele
vastavad kujutised teisel. Ühendame need tasandid nii, et kujutiskiir saaks
liikuda pidevalt, kui pööratav kiir teeb originaalide tasandil täispöörde.
Selleks lõikame mõlemad tasandid läbi piki reaaltelje positiivset osa, ühen-
dame esimese tasandi lõike ülemise serva teise tasandi lõike alumise servaga
ning vastupidi (vt. joon. 3.2). Niisugust kahelehelist pinda nimetatakse
ruutfunktsiooni väärtuste Riemanni pinnaks. Selle pinna konstruktsiooni
kohaselt võime öelda, et funktsioon w = z2 kujutab kogu z-tasandi pidevalt
ja üks-üheselt oma väärtuste Riemanni pinnaks. Saadud pind on kahelehe-
line, sest ta koosneb kahest komplekstasandi eksemplarist (lehest). Nendel
kahel lehel on ühisteks punktideks 0 ja ∞.

O
I

II

Joonis 3.2

Kui läbime nullpunkti ümbritseva ringjoone ♣z♣ = r ühel korral, siis lä-
bibsellele vastav punkt Riemanni pinnal nullpunkti ümbritseva ringjoone
♣w♣ = r2 kahel korral. Sama märkame ka siis, kui vaatleme nullpunkti ase-
mel lõpmatuspunkti. See annab põhjuse nimetada neid punkte vaadeldava
Riemanni pinna teist järku hargnemispunktideks. Need on punktid, kus
on seotud vaadeldava pinna üksikud lehed.

b) Funktsioon w = zn. Kui tähistame z = reiφ ja w = ϱeiΘ, siis saame

ϱ= rn ja Θ = nφ+2kπ, k = 0,±1, . . . .

Näeme, et nullpunktist lähtuva kiire kujutiseks selle funktsiooni puhul on jäl-
legi nullpunktist lähtuv kiir, kuid selline kiir, mille polaarnurk on originaali
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O

u

n

n− 1

n− 2

n− 3

3

2

1

Joonis 3.3

omast n korda suurem. Toimides nii nagu ruutfunktsiooni puhul, saame üks-
ühese vastavuse z-tasandi ja w-tasandi n eksemplari vahel. Kui ühendame
need n eksemplari, nagu näidatud joonisel 3.3, saame pideva vastavuse. Saa-
dud pinda nimetatakse funktsiooni w = zn väärtuste Riemanni pinnaks. See
on n-leheline pind, mille hargnemispunktideks on jällegi w = 0 ja w = ∞. Et
ringjoone ♣z♣ = r ühekordsele läbimisele vastab n-kordne ringjoone ♣w♣ = rn

läbimine, siis nimetatakse punkte w = 0 ja w = ∞ n-järku hargnemis-
punktideks.

Ülesanded

1. Leida ruudu 0< Rez < 1, 0< Imz < 1 kujutis, selle pindala ning raja-
joone pikkus kujutamisel funktsiooniga w = z2.

Vastus.

S =
8

3
, l = 2ln

(

1+
√

2
)

+2
(

1+
√

2
)

.

2. Leida jooned, kus funktsioon w= z2 teostab võrdse mastaabi muutuse,
ning jooned, kus ta teostab ühe ja samasuguse tasandi pöörde.

Vastus.
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a) ♣z♣ = const, b) argz = const.

3. On antud funktsioon w = z2:

a) leida joonte x= y, ♣z♣ =R, argz= a kujutised ja selgitada, millised
neist joontest kujutuvad üks-üheselt;

b) leida joonte u= C ja v = C (w = u+iv) originaalid.

Vastus. a) u= 0 (v⩾ 0), ♣w♣ =R2, argz= 2a. Ainult viimane kujutub
üks-üheselt.

b) x2 −y2 = C (kui C = 0, siis sirgete paar); xy =
C

2
(kui C = 0, siis

sirgete paar).

4. Leida funktsioon, mis kujutab piirkonna ♣arg(z + 3)♣ < π

6
ülemiseks

pooltasandiks.

Vastus. w = i(z+3)3.

5. Konstrueerida funktsiooni w = (z− i)2 väärtuste Riemanni pind.

3.2. JUURFUNKTSIOON

Nimetame n-astme juureks kompleksarvust z kompleksarvu w = n
√
z,

mille puhul

wn = z. (3.1)

Kui tähistame z = reiφ ja w = ϱeiΘ, saame võrdusest (3.1), et

ϱn = r ja nΘ = argz+2kπ = φ+2kπ, k = 0,±1, . . . ,

millest

ϱ= n
√
r ja Θ =

argz+2kπ

n
=
φ+2kπ

n
, k = 0,±1, . . . . (3.2)

Võrdusest (3.2) selgub, et saame n oluliselt erinevat Θ väärtust, mis vastavad
k väärtustele 0,1, . . . ,n− 1. Tähistame need vastavalt Θ0, Θ1, . . . ,Θn−1. Kui
aga k = n, siis saame

Θn =
φ

n
+2π = Θ0 +2π.
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Selline polaarnurk koos polaarkaugusega n
√
r määrab w-tasandil sama punkti,

mille määrab Θ0. Seega on juurel n
√
z erinevaid väärtusi n.

Juurfunksioon w = n
√
z on seega mitmene funktsioon.

Nii rakenduslikust kui ka teoreetilisest seisukohast on aga oluline, et
funktsioon oleks ühene. Üheks viisiks, kuidas saame muuta mitmese funkt-
siooni üheseks, on see, et vaatleme originaali muutumise piirkonnana mit-
te komplekstasandit, vaid teatud mitmelehelist Riemanni pinda. Eelmises
jaotises saime niisuguse pinna, mille puhul astmefunktsioon w = zn seab
üks-ühesesse vastavusse z-tasandi ja vaadeldava Riemanni pinna punktid.
Et juurfunktsioon w= n

√
z on astmefunktsiooni pöördfunktsiooniks, siis seab

ta tõepoolest astmefunktsiooni z =wn väärtuste Riemanni pinna igale punk-
tile vastavusse parajasti komplekstasandi ühe punkti ning see vastavus on
üks-ühene. Seda pinda nimetatakse juurfunktsiooni Riemanni pinnaks.
Niisiis on astmefunktsiooni väärtuste Riemanni pind selle funktsiooni pöörd-
funktsiooni Ű juurfunktsiooni Riemanni pinnaks.

Mitmesuguste rakenduste seisukohalt on aga oluline, et saaksime niisugu-
se ühese funktsiooni, kus ka originaalid muutuvad tavalisel komplekstasandil.
Teisiti öeldes otsime niisuguseid piirkondi z-tasandil, kus saame seda mitmest
funktsiooni vaadelda ühesena.

Valemite (3.2) põhjal

w = n
√
z = n

√

♣z♣ei Argz
n ,

millest selgub, et juurfunktsiooni mitmesus tuleneb kompleksarvu z argu-
mendi Argz mitmesusest. Viimase eri väärtustele vastavad juurfunktsiooni
erinevad väärtused. Et saavutada ühesust, lõikame z-tasandi läbi piki reaal-
telje negatiivset osa, nagu tegime Argz puhul. Sel juhul ei ole võimalik liiku-
mine ümber nullpunkti ning Argz võib muutuda ühes järgmistest vahemikest
(−π,π), (π,3π) jne. Nii saame n erinevat ühest funktsiooni

w = n
√

♣z♣ei argz+2kπ
n (k = 0,1, . . . ,n−1),

mida nimetatakse juurfunktsiooni ühesteks harudeks. Esimest neist
(k= 0) nimetatakse juurfunktsiooni peaharuks (analoogiliselt argumendi
peaharuga).

Punkte, millel leidub niisugune ümbrus, milles ümber vaadeldava punkti
liikudes jõuame mitmese funktsiooni ühe haru juurest teise jurude, nimeta-
takse selle funktsiooni hargnemispunktideks. Funktsioonil w = n

√
z on

need 0 ja ∞.
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Ülesanded

1. Leida mitmese funktsiooni w= 4
√
z−1 see haru, mille puhul w(2) = −1.

2. Arvutada funktsiooni w = 6
√
z− i kõikide harude väärtused punktides

z1 = 64+i, z2 = −1+ i, z3 = 1.

3.3. EKSPONENTFUNKTSIOON

Arvestades matemaatilise analüüsi kursusest teadaolevat Euleri vale-
mit

eiy = cosy+isiny

ja reaalarvude korral kehtivaid eksponentfunktsiooni omadusi, on loomulik
deĄneerida

ez = exeiy, (3.1)

sest z = x+iy.
Võrdusest(3.1) saame, et

♣ez♣ = ex ning Argez = y+2kπ, k = 0,±1, . . . .

Sellest tuleneb, et ez1 = ez2 , kui Imz1 − Imz2 = 2kπ,Rez1 = Rez2, s.t.
funktsiooni w = ez periood on 2πi.

Funktsiooni

w = ez

nimetatakse eksponentfunktsiooniks. Eelnevast järeldub, et see funkt-
sioon pole üheleheline. Niisiis on ka eksponentfunktsiooni puhul vaja konst-
rueerida tema väärtuste Riemanni pind. Enne selle juurde asumist aga näi-
tame, et eksponentfunktsioon on diferentseeruv. Selleks leiame võrdustest

w = u+iv = ez = ex(cosy+isinx),

et

u= ex cosy ja v = ex siny.
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u

v

0
−2

−1

0

1

2

Joonis 3.4

Vahetu kontroll näitab, et CauchyŰRiemanni võrrandid on rahuldatud iga x
ja y korral, s.t. eksponentfunktsioon on kõikjal diferentseeruv.

Konstrueerime nüüd eksponentfunktsiooni väärtuste Riemanni pinna. Sel-
leks paneme tähele, et x-telg kujutub u-telje positiivseks osaks. Tõepoo-
lest, x-telje punktide puhul y = 0, s.t. argw = 0, ning −∞ < x < ∞, s.t.
0< ♣w♣ = ex <∞. Iga x-teljega paralleelse sirge kujutiseks on w-tasandi null-
punktist lähtuv kiir, mille polaarnurk võrdub selle sirge kaugusega x-teljest.
Kui nihutame z-tasandil x-teljega paralleelset sirget ülespoole, pöördub selle
kujutiseks olev kiir vastupidi kellaosuti liikumisele. Kujutiskiir katab kogu w-
tasandi; kui sirge z-tasandil katab riba laiusega 2π. Kui sirge katab järgmise
riba laiusega 2π, siis katab kujutiskiir uuesti kogu w-tasandi jne. jne. Kui me
aga liiguksime sirgega z-tasandil allapoole, liiguks kujutiskiir ainult kellaosu-
ti liikumise suunas, kuid muus osas analoogiliselt eelnevaga. Sellest arutelust
järeldub, et eksponentfunktsiooni väärtuste Riemanni pind peab olema lõp-
matuleheline. Need lehed peavad olema ühendatud nii, et x-teljega paralleelse
sirge pidevale liikumisele vastaks kujutiskiire pidev liikumine mööda vasta-
vat Riemanni pinda. Selle saavutamiseks võtame lõpmata palju w-tasandi
eksemplare, lõikame need läbi piki reaaltelje positiivset osa. Iga eksemplari
lõike alumise serva ühendame järgmise eksemplari lõike ülemise servaga ning
ülemise serva eelmise eksemplari alumise servaga (vt. joon. 3.4).

Kui kujutleda seda Riemanni pinda R asetsevana mingi w-tasandi kohal,
siis asub w-tasandi iga punkti kohal lõpmata palju pinnaR punkte. Erandeiks
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on vai w = 0 ja w = ∞, mille kohal on vaid üks pinna R punkt.
Kui läbida z-tasandil sirge x = a, siis pinnal R vastab sellele liikumine

ümber punkti w = 0 (lõpmata palju kordi), kusjuures liigutakse pinna R
ühelt lehelt teisele. Seda liikumist võime aga vaadelda ka liikumisena ümber
punkti w = ∞. Seetõttu nimetatakse punkte w = 0 ja w = ∞ vaadeldava
pinna R lõpmata järku hargnemispunktideks.

Vaadeldes funktsiooniga w= ez teostatavat kujutist konformsuse seisuko-
halt, näeme, et see funktsioon teostab igas punktis konformse kujutuse, sest
(ez)′ = ez ̸= 0 iga z puhul. Selle kujutuse puhul, nagu nägime, kujutub riba
0< Imz < π ülemiseks pooltasandiks ning riba 0< Imz < 2π kogu tasandiks
väljalõikega piki reaaltelje positiivset osa.

Ülesanded

1. Näidata, et ez1ez2 = ez1+z2 .

2. Milleks kujutuvad funktsiooniga w = ez

a) jooned x= C, y = C;

b) sirged y = kx+ b;

c) riba α < y < β (0 ⩽ α < β ⩽ 2π);

d) sirgete y = x ja y = x+2π vahel asuv riba;

e) poolriba x < 0, 0< y < α < 2π;

f) poolriba x > 0, 0< y < α⩽ 2π;

g) ristkülik α < x < β, γ < y < δ (δ−γ ⩽ 2π)?

Vastus. a) ρ= const, θ = const;

b) spiraal ρ= e
θ−b

k , kui k ̸= 0; kiir θ = b, kui k = 0;

c) nurk α < θ < β (kui α= 0 ja β = 2π, siis kogu tasand, lõikega piki
reaaltelje positiivset osa);

d) kogu tasand, lõikega mööda spiraali ρ= eθ;

e) sektor ρ < 1, 0 < θ < α (kui α = 2π, siis ühikring, lõikega piki
punkte 0 ja 1 ühendavat raadiust);

f) piirkond ρ> 1, 0<θ<α (kui α= 2π, siis ühikringi väline piirkond,
lõikega piki reaaltelje positiivset osa punktist 1 kuni +∞);
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g) piirkond eα < ρ < eβ, γ < θ < δ (kui δ−γ = 2π, siis rõngas ümber
nullpunkti lõikega piki kiirt θ = γ).

3. Kujutada ülemisele pooltasandile sirgete y = x ja y = x+ h vaheline
piirkond.

Vastus. w = e
π(1−i)z

h .

4. Milleks kujutab funktsioon w= ez riba 0< Imz < π, lõikega piki punkte
0 ja

π

2
i ühendavat sirglõiku?

Vastus. Ülemine pooltasand, millest on välja jäetud ühikringjoone esi-
mese veerandi osa.

3.4. LOGARITMFUNKTSIOON

Kompleksarvu z logaritmiks Lnz nimetatakse kompleksarvu w, mille
puhul z = ew, Olgu z = reiφ ning w = u+iv. Sel juhul

reiφ = eueiv,

s.t. eu = r ning v = φ+2kπ. Sellest saame, et

w = Lnz = u+iv = lnr+i(φ+2kπ), (3.1)

ehk teisiti

Lnz = ln ♣z♣+i(argz+2kπ), k = 0,±1, . . . . (3.2)

Seega näeme, et kompleksarvude hulgal on logaritmil lõpmata palju väär-
tusi. Teiselt poolt: seosest (3.2) ilmneb, et kompleksarvude puhul eksisteerib
logaritm igasugusest arvust z, välja arvatud vaid 0 ja ∞.

Funktsiooni w = Lnz nimetatakse logaritmfunktsiooniks. Viimane on
eksponentfunktsiooni pöördfunktsioon, kusjuures kehtivad seosed

eLnz = z ning Lnez = z+2kπi.

Et logaritmfunktsioon on eksponentfunktsiooni pöördfunktsioon, siis kujutab
ta viimase väärtuste Riemanni pinna (vt. joon. 3.4) üksüheselt kompleks-
tasandile. Seda Riemanni pinda nimetatakse samuti logaritmfunktsiooni
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Riemanni pinnaks. Punktid z = 0 ja z = ∞ on tema hargnemispunktideks.
Neid nimetatakse logaritmilisteks hargnemispunktideks.

Osutub, et logaritmfunktsioonil on oma Riemanni pinna igas punktis (väl-
ja arvatud z = 0 ja z = ∞) tuletis. Seda võib kergesti kontrollida CauchyŰ
Riemanni võrrandite (polaarkoordinaatides) abil, kui arvestada seost (3.1).

Et logaritmfunktsioon (vaadelduna komplekstasandil) on lõpmata mit-
mene, siis huvitab meid tema regulaarsete (s.t. üheste ja diferentseeruvate)
harude eraldamine. Nende harude analüütilised avaldised saame seosest (3.2),
kui asetame sellesse kordaja k erinevaid väärtusi. Haru, mille saame k = 0
korral, nimetatakse logaritmi peaharuks ning tähistatakse

lnz = ln ♣z♣+iargz. (3.3)

Logaritmfunktsiooni analüütilisest avaldisest (3.2) selgub, et tema ha-
rusid võib eraldada nendes piirkondades, kus on eraldatavad Argz üksikud
väärtused. See on aga võimalik z-tasandil, millest on välja lõigatud reaaltel-
je negatiivne osa. Kui vaatleme logaritmi harude eraldamist tema Riemanni
pinnal, siis tuleb lõigata Riemanni pinna lehed läbi piki reaaltelje negatiivset
osa. Seega on lehed üksteisest eraldatud, sest ei saa liikuda ühelt lehelt teise-
le ilma lõiget ületamata. Peaharule vastab sel juhul Riemanni pinna see osa,
mis asub lehe 0 ülemisel poolel ning lehe (−1) alumisel poolel (vt. joon. 3.4).
Need kaks osa moodustavad tasandi, millest on välja lõigatud vaid reaaltel-
je negatiivne osa. Seega võime öelda, et funktsioon (3.3) kujutab z-tasandi,
millest on välja lõigatud reaaltelje negatiivne osa, ribaks −π < Imw<π, seal-
hulgas ülemise pooltasandi ribaks 0< Imw<π. Selline kujutus on konformne

iga z puhul, sest (lnz)′ =
1

z
̸= 0.

Ülesanded

1. Arvutada logaritm ja tema peaväärtus järgmistest avaldistest:

a) (1+ i)6,

b)
(

1− i
√

3
)4

,

c) (−1+ i)
(

−1+ i
√

3
)

,

d)
1− i

(

3+ i
√

3
)2 .

Vastus. Peaväärtused: a) 3ln2 − i
π

2
; b) 4ln2 + i

2π

3
; c)

3

2
ln2 − i

7π

12
;

d)
1

2
ln2− ln12− i

7π

12
.
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2. Milleks kujutab funktsioon w = lnz

a) jooned ♣z♣ =R;

b) jooned argz = φ;

c) nurga 0< argz < α⩽ π;

d) sektori ♣z♣< 1, 0< argz < α⩽ π;

e) rõnga r1 < ♣z♣< r2, lõikega piki lõiku [−r1,−r2]?

Vastus. a) u= c; b) v= c; c) riba 0<v <α; d) poolriba u< v,0<v <α;
e) ristkülik lnr1 < u < lnr2, −π < v < π.

3. Konstrueerida funktsiooni w = Lnz(z−1) Riemanni pind.

3.5. ÜLDINE ASTMEFUNKTSIOON

Üldiseks astmefunktsiooniks nimetatakse funktsiooni

w = za = eaLnz, (3.1)

kus a= α+iβ. Kui arvestame logaritmi avaldist, saame seosest (3.1), et

za = e(α+iβ)Lnz = eα lnr−β(φ+2kπ)ei[α(φ+2kπ)]+β lnr, (3.2)

kus r = ♣z♣, φ= argz ja k = 0,±1, . . ..
Seosest (3.2) selgub, et β ̸= 0 puhul on w = za lõpmata mitmene funkt-

sioon. Kui aga β = 0, siis

w = za = zα = eα lnreiα(φ+2kπ). (3.3)

Võrdusest (3.3) selgub, et

♣w♣ = rα ning (Argw)k = α(φ+2kπ)+2pπ, k,p= 0,±1, . . . .

Saadud tulemusest näeme, et ainult täisarvulise a korral on funktsioon w= za

ühene, sest ainult sel juhul saame kõigi täisarvude k ja p puhul ühe ja sama
kompleksarvu argumendiga αφ= aφ.

Ratsionaalarvulise a =
n

m
puhul saame n oluliselt erinevat argumendi

väärtust:

θ0 = aφ, θ1 = aφ+
m

n
2π, . . . , θn−1 = aφ+

m

n
(n−1)2π.
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Kui a on irratsionaalarv, saame iga k puhul oluliselt erineva argumendi
väärtuse, sest siis kehtib iga täisarvu n puhul järgmine seos:

a(φ+2k1π)−a(φ+2k2π) ̸= 2nπ.

Üldise astmefunktsiooni deĄnitsiooni põhjal saame, et selle funktsiooni
üheseid harusid võib eraldada samas piirkonnas kui logaritmfunktsiooni pu-
hulgi. Niisiis, w= za on regulaarne komplekstasandil, millest on välja lõigatud
reaaltelje negatiivne osa.

Kui üldise astmefunktsiooni avaldises võtame logaritmi peaharu, siis saa-
me ühese funktsiooni, mida nimetatakse üldise astmefunktsiooni peaha-
ruks:

w = za = ea lnz. (3.4)

Sellest saame liitfunktsiooni diferentseerimise reegli kohaselt

dw

dz
=

d

dz
za =

d

dz
ea lnz a

z
= aza−1.

Siit näeme, et vaadeldav funktsioon teostab konformse kujutuse oma regu-
laarsuse piirkonnas igas punktis (punktid z = 0 ja z = ∞ kuuluvad väljalõi-
kele). Millist laadi on see konformne kujutus? Selle määramiseks kasutame
seost (3.4), mille kohaselt (olgu konkreetsuse mõttes a > 0)

w = ez2 , kus z2 = az1 ning z1 = lnz.

Vaatleme, milline piirkond kujutub w-tasandi ülemiseks pooleks. Eks-
ponentfunktsiooni omaduste tõttu on selleks z2-tasandi riba 0 < Imz2 < π.
Viimase originaaliks z1-tasandil on riba 0< Imz1 <

π

a
. Selle riba originaaliks

z-tasandil on aga nurk 0 < argz <
π

a
. Seega saimegi piirkonna, mis kujutub

funktsiooniga w = za (a > 0) ülemiseks pooltasandiks.

Ülesanded

1. Kujutada ülemiseks pooltasandiks järgmised piirkonnad:
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a) 0< argz <
π

3
; b) −π

3
< argz < 0; c) ♣argz♣< π

4
.

Vastus. a) w = z3; b) w = −z3; c) w = iz4.

3.6. LINEAARFUNKTSIOON

Juba jaotise 2.1 näidetes 1Ű4 uurisime lineaarse funktsiooniga

w = az+ b (3.1)

teostatava kujutuse iseloomu. Teeme siinkohal veel mõned märkmed selles
suunas. On loomulik eeldada, et a ̸= 0, s.t. w′ = a ̸= 0. Sellest järeldub, et
lineaarfunktsioon teostab kõikjal konformse kujutamise.

Märgime veel, et lineaarfunktsioon kujutab iga ringjoone jälle ringjoo-
neks. Tõepoolest, kui meil on ringjoon

♣z− z0♣ = r,

siis seose (3.1) põhjal saame, et kujutispunktid rahuldavad võrrandit
∣

∣

∣

∣

∣

w− b

a
− z0

∣

∣

∣

∣

∣

= r,

ehk siit

♣w−w0♣ = ♣a♣r,

kus w0 = az0 + b. Sellest arutelust järeldub, et ringjoone keskpunkt kujutub
kujutisringjoone keskpunktiks ning raadius muutub teguri ♣a♣ kordselt.

Näitame veel, et iga sirge kujutub sirgeks, kusjuures lähtesirge suhtes
sümmeetrilised punktid kujutuvad kujutissirge suhtes sümmeetrilisteks punk-
tideks. Olgu meil mingi sirge suhtes kaks sümmeetrilist punkti z1 ja z2. Sel
juhul on see sirge määratud võrrandiga

♣z− z1♣ = ♣z− z2♣. (3.2)

Asendades selles võrrandis z seose (3.1) põhjal, saame võrduse
∣

∣

∣

∣

∣

w− b

a
− z1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

w− b

a
− z2

∣

∣

∣

∣

∣

,
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millest

♣w−w1♣ = ♣w−w2♣, (3.3)

kus w1 = az1 + b ja w2 = az2 + b. Võrrandist (3.3) järeldub, et sirge (3.2)
kujutub sirgeks, kusjuures punktide z1 ja z2 kujutispunktid w1 ja w2 on
sümmeetrilised sirge (3.3) suhtes.

Mõnevõrra hiljem näitame, et ka ringjoone suhtes sümmmeetrilised punk-
tid kujutuvad kujutistingjoone suhtes sümmeetrilisteks punktideks. See jä-
reldub murdlineaarse funktsiooni vastavast omadusest.

3.7. FUNKTSIOON w =
1

z

Vaatleme funktsiooni w =
1

z
, mis on määratud iga nullpunktist erineva z

puhul. Ent laiendatud komplekstasandit vaadeldes võime öelda, et funktsioon

w=
1

z
on määratud igas punktis (sel juhul

1

0
= ∞). Et w′ = − 1

z2
̸= 0, siis teos-

tab vaadeldav funktsioon igas punktis konformse kujutuse. Vaatleme, millist
laadi on see kujutus. On selge, et siin iga sirge ei kujutu sirgeks. Tõepoolest,
iga sirge läbib lõpmatuspunkti. Lõpmatuspunktiks aga kujutub nullpunkt.
Seega võib sirgeks kiujutuda ainult niisugune joon, mis läbib nullpunkti.

Osutub aga, et vaadeldav funktsioon kujutab iga ringjoone ja sirge jälle
ringjooneks või sirgeks, kusjuures sirge võib kujutuda ringjooneks ning vas-
tupidi. Selle tõestuseks lähtume sirgete ja ringjoonte ühisest võrrandist (vt.
jaotise 1.3 ülesandeid 5 ja 6)

azz̄+ Āz+Az̄+ b= 0, (3.1)

kus A on kompleksarv, a ja b Ű reaalarvud, ning on täidetud võrratus

♣A♣2 −ab > 0. (3.2)

Antud funktiooni korral z =
1

w
, mistõttu võrrandist (3.1) saame et

bww̄+ Āw̄+Aw+a= 0.

Ka see on ringjoone või sirge võrrand, sest tingimus (3.2) on täidetud.
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Arvestades, et ringjoonte või sirgete ühisest hulgast läbivad lõpmatus-

punkti ainult viimased, saame, et sirgeteks kujutuvad funktsiooniga w =
1

z
kõik need ja ainult need sirged ning ringjooned, mis läbivad nullpunkti.

Kui uurida funktsiooniga w=
1

z
teostatavat kujutust lähemalt, siis märka-

me, et ühikringi jätab see kujutus paigale. Paigale jäävad ka punktid z = 1 ja
z = −1. Viimaseid nimetatakse selle funktsiooni püsipunktideks. Ühikringi
iga sisepunkt kujutub välispunktiks ning vastupidi, kusjuures

argw = −argz

Ülesanded

1. Milleks kujutab funktsioon w =
1

z

a) ringjooned x2 +y2 = ax;

b) ringjooned x2 +y2 = bx;

c) sirged y = x+ b;

d) sirged y =mx;

e) punkti z0 ̸= 0 läbivad sirged;

f) parabooli y = x2?

Vastus. a) u =
1

a
, b) sirged v = −1

b
, c) ringjooned b(u2 + v2) + u+ v = 0,

d) sirged v = −mu, e) punkte w0 =
1

x0
ja w = 0 läbivad ringjooned, f) u2 =

−v3

v+1
.

3.8. MURDLINEAARNE FUNKTSIOON

Vaatleme murdlineaarset funktsiooni

w =
ax+ b

cz+d
, (3.1)

millel on kompleksmuutuja funktsioonide teoorias küllaltki oluline koht. See
seletub ühelt poolt tema huvitavate geomeetriliste omadustega, teiselt poolt
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aga praktiliste rakenduste rohkusega. Osutub nimelt, et selle funktsiooniga
saab esitada paljusid väga olulisi konformseid kujutisi. Eelnevas juba mär-
kisime, et üheks oluliseks piirkonnaks, millele kujutatakse teisi piirkondi, on
ühikring. Edasises näeme, et kõik ühikringi konformsed kujutused iseendale
on esitatavad murdlinearse funktsiooniga.

Kui funktsiooni (3.1) avaldises teostada jagamine, siis saame, et

w =
a

c
+

bc−ad

c(cz+d)
. (3.2)

Tulemusest ilmneb, et on mõtet vaadelda vaid niisuguseid murdlineaarseid
funktsioone, mille puhul bc−ad ̸= 0. Samuti saame võrdusest (3.2), et funkt-
siooni (3.1) võib vaadelda kompositsioonina funktsioonidest

z1 = cz+d,

z2 =
1

z1
,

w =
a

c
+
bc−ad

c
z2.

Arvestades kahe eelmise paragrahvi tulemusi, võime öelda, et murdlineaarne
funktsioon teostab igas punktis konformse kujutuse, mille suhtes ringjoonte ja
sirgete ühine hulk on invariantne, s.t. iga sirge ja ringjoon kujutub jälle kas

ringjooneks või sirgeks. Et ainult punkt z1 = 0, s.t. z = −d

c
, kujutub lõpma-

tuspunktiks, siis sirgeteks kujutuvad vaid niisugused sirged ja ringjooned, mis

läbivad punkti z = −d

c
. Viimast nimetatakse murdlineaarse funktsiooni

(3.1) pooluseks.

Märgime ka, et iga sirge kujutis peab läbima punkti w =
a

c
, sest see on

lõpmatuspunkti kujutiseks, nagu kergesti järeldub seosest (3.2).
Et ka murdlineaarse funktsiooni pöördfunktsioon on murdlineaarne, siis

võib iga sirge ja ringjoon olla vaid sirge või ringjoone kujutiseks.
Murdlineaarse funktsiooni avaldist vaadeldes märkame, et selles on kolm

sõltumatut kordajat (neljandaga võime murru lugeja ja nimetaja jagada).
Nende kolme kordaja, s.t. murdlineaarse funktsiooni määramiseks on vaja
ette anda kolme punkti kujutised, Niisiis määravad murdlineaarse funktsiooni
seosed:

w1 =
az1 + b

cz1 +d
, w2 =

az2 + b

cz2 +d
w3 =

az3 + b

cz3 +d
(3.3)
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Seostest (3.1) ja (3.3) järeldub, et

w−w1

w−w2
:
w3 −w1

w3 −w2
=
z− z1

z− z2
:
z3 − z1

z3 − z2
. (3.4)

Selle võrduse vasakul ja paremal pool seisvaid avaldisi nimetatakse nelja
punkti liitsuhteks. Seos (3.4) ütleb, et nelja punkti liitsuheon murdlineaar-
se kujutuse invariant. Et seda kontrollida, tuleb võrduste (3.1) ja (3.3) põhjal
asendada võrduse (3.4) vasakul poolel w,w1,w2,w3. Peale lihtsustamist saak-
simegi võrduse (3.4) parema poole.

Seose (3.4) põhjal on hea leida sellist murdlineaarset funktsiooni, mis Ąk-
seeritud kolm punkti kujutab etteantud kolmeks punktiks. Kui mõni vaadel-
davatest punktidest on ∞, siis asendame seda punkti sisaldava liikme arvuga
1.

Näide 1. Leida murdlineaarne funktsioon, mis punktid 2,1 ja ∞ kujutab
vastavalt punktidesse ∞, i ja 0.

Asendades antud arvud võrdusesse (3.4), saame

1

w−1
:

1

0− i
=
z−2

z−1
:

1

1
,

millest

−i

w− i
=
z−2

z−1
.

ehk

w =
i

z−2
.

A

z0

z1

z2
R

C

S2

S1

Joonis 3.5

Näitame, et murdlineaarne funktsioon kujutab ringjoone (või sirge) suhtes
sümmeteilised punktid kujutisringjoone suhtes sümmemtrilisteks punktideks.

Meenutame, et punkte z1 ja z2 nimetatakse ringjoone ♣z− z0♣ = R suh-
tes sümmetriliseks, kui nad asuvad mingil keskpunktist lähtuval kiirel ning
♣z1 −z0♣♣z2 −z0♣ =R2 (vt. 1). Ülalmainitud murdlineaarse funktiooni omadus
järeldub kergesti järgmisest teoreemist.

Teoreem. Punktid on ringjoone suhtes sümmeetrilised parajasti siis, kui nad
asuvad selle ringjoonega ortogonaalsete ringjoonte kimbu tippudes.
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Tõestus. Tarvilikkus. Olgu punktid z1 ja z2 sümmeetrilised ringjoone C suh-
tes (vt. joon. 17), s.t.

♣z1 − z0♣♣z2 − z0♣ =R2 = ♣A− z0♣2. (3.5)

Elementaargeomeetriast tuntud teoreemi (ringjoone puutuja ja lõikaja lõiku-
de kohta) põhjal saaame, et lõik Az0 on ringjoone S1 puutujaks, s.t. ringjoo-
ned C ja S1 on omavahel risti.

Piisavus. Olgu ringjooned S1 ja S2 risti ringjoonega C. Ringjoonte S1 ja
S2 lõikepunktidega z1 ja z2 määratud sirge (kimbu telg) on risti ringjoonega
C ning läbib seega ringjoone C keskpunkti z0. Ülalmainitud elementaargeo-
meetria teoreemi kohaselt saame nüüd rahuldatud, et on rahuldatud seos
(3.5). Seega on punktid z1 ja z2 sümmeetrilised ringjoone C suhtes.

Ülesanded

1. Tõesta võrdus (3.4).

2. Näidata, et iga murdlineaarsee funktsiooniga teostatav kujutus on igas
punktis konformne.

3. Tõestada, et ringjoone suhtes sümmeetriliste punktide deĄnitsioon on
üldistuseks sümmeetriale sirge suhtes, kui sirget vaadelda lõpmatult
suure raadiusega ringjoonena.

4. Leida murdlineaarne funktsioon, mis kujutab punktid 1,∞, i

a) vastavalt punktideks i,1,1+ i;

b) vastavalt punktideks ∞, i,1;

c) vastavalt punktideks 0,∞,1.

Vastus. a) w =
(1+ i)z+1+3i

(1+ i)z+3+i
, b) w =

iz+2+i

z+1
, c) w =

1− i

2
(z+1)

5. Leida ülemise pooltasandi kujutus iseendaks, kui

a) w(0) = 1, w(1) = 2 ja w(2) = ∞,

b) w(0) = 1, w(i) = 2i.

Vastus. a) w =
2

2− z
, b) w = −2

2z+1

z−2
.
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6. Milleks kujutab funktsioon w =
z

z−1
nurga 0< argz <

π

4
?

Vastus. Alumine pooltasand, millest on välja lõigatud ring
∣

∣

∣

∣

w− 1

2
+

i

2

∣

∣

∣

∣

<

√
2

2

7. Milleks kujutab funktsioon w = −i
z−1

z+1
ühikringi ülemise poole?

Vastus. Komplekstasandi esimene veerand.

8. Leida funktsioonid, mis kujutavad järgmised piirkonnad ülemiseks
pooltasandiks:

a) ♣z♣< 1, ♣z−1♣< 1;

b) ♣z♣> 2,
∣

∣

∣z−
√

2
∣

∣

∣<
√

2;

c) Imz > 1, ♣z♣< 2;

d) ♣z♣< 2, 0< argz <
π

4
;

e) ♣z♣> 2, 0< Argz <
3

2
π;

f) kogu tasand, millest on välja lõigatud punkte 1+i ja 2+2i ühendav
lõik;

g) ♣z♣< 2, ♣z−1♣> 1;

h) ♣z♣> 2, ♣z−1♣> 1.

Vastus. a) w = −
(

2z+
√

3−1

2z−
√

3− i

3/2

; b) w =



z−
√

2(1− i)

z−
√

2(1+ i)

]4

;

c) w = −
(

z+
√

3−1

2z−
√

3− i

3

; d) w =

(

z4 +16

z4 −16

2

; e) w =

(

3
√
z+ 3

√
4

3
√
z− 3

√
4

2

;

f) w =
(

z−1− i

2+2i− z

)1/2

; g) w = e2πi z
z−2 ; h) w = e2/3πi z−4

z−2 .

3.9. ŽUKOVSKI FUNKTSIOON

Nõnda nimetatakse funktsiooni

w =
1

2

(

z+
1

z

)

. (3.1)
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Seda funktsiooni kasutas N. J. Žukovski (1847Ű1921) oma aerodünaami-
kaalastes uurimustes. Oma töödega pani ta aluse lennuki tiiva ehituse teo-
reetilistele uurimisele. Põgusalt tutvume sellega jaotises 9.

Kui diferentseerida Žukovski funktsiooni, siis selgub, et see teostab kõiki-
des punktides konformse kujutamise (välja arvatud punktid z = ±1). Funkt-
siooniga (3.1) määratud kujutus pole aga üks-ühene, sest seos

z1 +
1

z1
= z2 +

1

z2

on rahuldatud kahel juhul: z1 = z2 ning z1 =
1

z2
. Seega kujutuvad punktid z ja

1

z
üheks ja samaks punktiks, s.t. meil on tegemist kahelehelise funktsiooniga.

Et määrata piirkonda D, kus Žukovski funktsioon teostab üks-ühese kuju-
tuse, peame valime piirkonna, mille mistahes kaks punkti ei rahulda seost
z1z2 = 1. Sellisteks piirkondadeks on ♣z♣< 1 ja ♣z♣> 1.

Selgitame, milleks kujutab Žukovski funktsioon ühikringi ♣z♣< 1. Samaks
piirkonnaks kujutub siis ka piirkond ♣z♣> 1, sest nende kahe piirkonna punk-
tide vahel määrab seos z1z2 = 1 üks-ühese vastavuse. Ringi ♣z♣< 1 kujutispiir-
konna määramiseks vaatleme raadiuste argz = φ (0< r < 1) ning ringjoonte
♣z♣ = 1 (r < 1) kujutisi. Olgu z = reiφ ning w= u+iv, siis seosest (3.1) saame,
et

u=
1

2

(

r+
1

r

)

cosφ, v =
1

2

(

r− 1

r

)

sinφ (3.2)

Nende seoste põhjal võime öelda, et ringjoone ♣z♣ = r kujutiseks on ellips
pooltelgedega

ar =
1

2

(

r+
1

r

)

ja br =
1

2

(

r− 1

r

)

. (3.3)

Selle ellipsi fookused asuvad punktides z = ±1. Kui r → 0, siis ar → ∞ ning
br → ∞. Kui r → 1, siis ar → 1 ning br → 0. Seega on ühikringjoone ♣z♣ = r
kujutiseks kahekordne lõik [−1,1] (nii ühikringjoone ülemine kui ka alumine
pool kujutuvad lõiguks [−1,1]).

Kui läbime ringjoone ♣z♣ = r positiivses suunas, siis läbitakse vastav ellips

negatiivses suunas. Tõepoolest, et r− 1

r
< 0, siis φ ∈

[

0,
π

2

]

puhul v < 0.

Sellest järeldub, et ühikringi ülemine pool kujutub alumiseks pooltasandiks
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ning alumine pool ülemiseks. Seega võime öelda, et piirkond ♣z♣< 1 kujutub
kogu tasandiks, millest on välja lõigatud lõik [−1,1].

Kui vaatleme raadiuse argz = φ kujutist, siis saame seoste (3.2) põhjal
(elimineerides suuruse r), et selle määrab võrrand

u2

cos2φ
− v2

sin2φ
= 1.

Saadud võrrand esitab hüperbooli, kusjuures ka selle hüperbooli fookused
asuvad punktides z = ±1. Osutub aga, et raadius ei kujutu mitte kogu hü-
perbooliks, vaid ainult selle teatavaks osaks. Tõepoolest, kui 0< φ <

π

2
, siis

saame seoste (3.2) põhjal, et u > 0 ning v < 0. Seega on esimeses veerandis
asuva raadiuse kujutiseks neljandas veerandis asuv hüperbooli haru. Kui aga
võtame sama raadiuse pikenduse kolmandas veerandis, s.t. φ asemel nurga
φ−π, siis on selle kujutiseks teises veerandis asuv hüperbooli haru. Kui φ
asemel võtta −φ ning π−φ, siis saame sama hüperbooli harud vastavalt I
ning III veerandis.

Me nägime, et punktid z1 ja z2 kujutuvad üheks ja samaks punktiks,
kui z1z2 = 1, s. t. argz1 = −argz2. Seega asub üheks ja samaks punktiks
kujutuvatest punktidest üks ülemises, teine alumises pooltasandis.

Eelnevas nägime, et ühikringi alumine pool kujutus ülemiseks poolta-
sandiks ning ülemine pool alumiseks. Seda arvestades võime nüüd väita, et
ülemise pooltasandi osa väljaspool ühikringi kujutub kogu ülemiseks poolta-
sandiks ning alumise pooltasandi vastav osa kogu alumiseks pooltasandiks.

Kui tahame konstrueerida niisugust Riemanni pinda, milleks Žukovski
funktsioon kujutaks kogu z-tasandi üks-üheselt, siis tuleb võtta kaks w-
tasandi eksemplari, lõigata need läbi piki lõiku [−1,1] ning ühendada lõigete
servad nii, et ühe tasandi alumiselt poolelt liiguksime teise tasandi ülemisele
poolele ja vastupidi. See on vajalik seetõttu, et ühikringjoon kujutuks lõi-
guks [−1,1], kusjuures lähenemisele ühikringjoone ülemisele osale seestpoolt
vastaks kujutispunkti lähenemine lõigule [−1,1] altpoolt, väljastpoolt lähe-
nemisele aga ülaltpoolt lähenemine. Ühikringjoone alumisele poolele lähene-
misel on olukord vastupidine. Niisiis tuleb esimese tasandi lõike alumine serv
ühendada teise tasandi lõike ülemise servaga ning vastupidi (vt. joon. 3.6).
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−1 +1

v

u

B
′

A
′

A

B

Joonis 3.6

3.10. TRIGONOMEETRILISED JA HÜPERBOOL-
SED FUNKTSIOONID

Euleri valemist

eix = cosx+isinx

saame (kui x asemel võtame −x), et

e−ix = cosx− i sinx

Nende kahe seose põhjal

sinx=
eix − e−ix

2i
ning cosx=

eix +e−ix

2
.

Laiendame funktsioonide ńsiinusż ja ńkoosinusż määramispiirkonda nii,
et see haaraks kompleksarvude hulga. Selleks asendame äsjasaadud võrduses
reaalmuutuja x kompleksmuutujaga z. Niisiis, deĄneerime funktsiooni ńsii-
nusż ja ńkoosinusż kompleksse argumendi korral võrdustega:

w = sinz =
eiz − e−iz

2i
ning w = cosz =

eiz +e−iz

2
.
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1

1

2

2

si
n

ch

sh

Joonis 3.7

Olles selliselt deĄneerinud funktsioonid w = sinz ja w = cosz, võime va-
hetult kontrollida, et neil funktsioonidel on järgmised omadused:

1) reaalse argumendi korral ühtivad need funktsioonid keskkoolikursusest
tuntud siinuse ja koosinusega;

2) nad on kogu komplekstasandil regulaarsed, kusjuures

(sinz)′ = cosz ning (cosz)′ = −sinz;

3) nende perioodiks on reaalarv 2π;

4) kehtivad tuttavad trigonomeetrilised seosed:

sin2 z+cos2 z = 1, sin2z = 2sinz cosz jne.;

5) w = sinz on paaritu, w = cosz aga paarisfunktsioon.

Ei saa aga öelda, et kõik trigonomeetriliste funktsioonide omadused, mis
on neil reaalarvude hulgas, säiliksid kompleksse argumendi korral. Nii teame,
et iga reaalarvu x korral

♣sinx♣ ⩽ 1 ja ♣cosx♣ ⩽ 1.
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See omadus ei kehti kompleksse argumendi puhul. Nii näiteks,

cos i =
e+e−1

2
≈ 1,54 ning sin i =

e+e−1

2i
≈ −1,17i.

Joonisel 3.7 on kujutatud pind s = ♣sinz♣. Seda pinda nimetatatkse sii-
nuse reljeeĄks.

Funktsioonidega w = cosz ja w = sinz määratud kujutuste uurimiseks
taandame need funktsioonid juba tuntud funktsioonide kompositsioonideks.
Vastavalt funktsiooni w = cosz deĄnitsioonile saame, et teda võib vaadelda
järgmiste funktsioonide kompositsioonina:

z1 = iz, z2 = ez1 ja w =
1

2

(

z2 +
1

z2

)

. (3.1)

Funktsiooni w = sinz puhul saame vastavalt:

z1 = iz, z2 = ez1 , z3 = −iz2 ja w =
1

2

(

z3 +
1

z3

)

.

Selgitame nüüd, millise piirkonna kujutab funktsioon w = cosz kogu w-
tasandiks. Kasutame selleks seoseid (3.1) tagant ettepoole. Viimasest seosest
(Žukovski funktsioon) järeldub, et z2-tasandi ühikring kujutub w-tasandiks,
millest on välja lõigatud vaid lõik [−1,1]. Edasi tuleb selgitada, millise piir-
konna kujutab funktsioon z2 = ez1 ühikringiks. Eelnevast teame, et niisugust
piirkonda pole. Küll aga kujutab vaadeldav funktsioon poolriba Rez1 < 0,
−π < Imz1 < π ühikringiks, lõikega piki raadiust [−1,0]. Seega ei saa me ka
w-tasandil z2-tasandi lõigu [−1,0] kujutist, s. t. u-telje osa (−∞,−1]. Jääb
veel selgitada, millise piirkonna kujutab funktsioon z1 = iz ülalmärgitud pool-
ribaks. Et funktsiooni z1 = iz teostab vaid tasandi pöörde ümber nullpunk-
ti nurga

π

2
võrra, siis on otsitavaks piirkonnaks poolriba −π < Rez < π,

Imz > 0. Niisiis: funktsioon w = cosz kujutab poolriba −π < Rez < π,
Imz > 0 kogu w-tasandiks, lõikega piki reaaltelje osa (−∞,1].

Ülejäänud kaks trigonomeetrilist funktsiooni w = tanz ja w = cotz deĄ-
neerime võrdustega:

tanz =
sinz

cosz
= −i

eiz − e−iz

eiz +e−iz
= −i

e2iz −1

e2iz +1
,

cotz =
cosz

sinz
= i

eiz +e−iz

eiz − e−iz
= i

e2iz +1

e2iz −1
.
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Joonis 3.8

Nende funktsioonidega teostatavaid kujutusi võime vaadelda kui lineaarsete,
murdlineaarsete ja eksponentfunktsioonidega teostatavate kujutuste kompo-
sitsioone.

Joonisel 3.8 on kujutatud tangensi reljeef, s. t. pind s= ♣tanz♣.
Analoogiliselt trigonomeetriliste funktsioonidega deĄneeritakse vastavad

hüperboolsed funktsioonid, nimelt

w = shz =
ez − e−z

2
, w = chz =

ez +e−z

2
,

w = thz =
shz

chz
, w = cthz =

cthz

shz
.

Võrreldes neid funktsioone trigonomeetriliste funktsioonidega, näeme, et

shz = isin iz, chz = cos iz, thz = −i tan iz, cthz = icot iz.
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3.11. ARKUS- JA AREAFUNKTSIOONID

Trigonomeetriliste funktsioonide pöördfunktsioone nimetatakse arkus-
funktsioonideks. Neid tähistatakse vastavalt:

w = Arcsinz, w = Arccosz, w = Arctanz, w = Arccotz.

Osutub, et arkusfunktsioone saab avaldada logaritmfunktsioonide kaudu.
Teeme seda näiteks funktsiooni w = Arccosz puhul. Et vastavalt deĄnitsioo-
nile z = cosw, siis

z =
eiw +e−iw

2
=

e2iw +1

2eiw
.

Meid huvitab avaldada w muutuja z kaudu. Selleks paneme tähele, et

e2iw −2zeiw +1 = 0,

millest saame

eiw = z±
√

z2 −1

ning seega

w = Arccosz = −iLn(z±
√

z2 −1). (3.1)

Et aga

1

z+
√
z2 −1

= z−
√

z2 −1, (3.2)

siis võime valemis (3.1) miinusmärgid juure ja logaritmi eest ära jätta. (Mii-
nusmärgist juure ees võib loobuda sellepärast, et ruutjuur on kahene funkt-
sioon. Seos (3.2) lubab miinusmärgi ära jätta ka logaritmi eest.) Seega

w = Arccosz = iLn(z+
√

z2 −1)

Eelmises jaotises nägime, et funktsioon w = cosz kujutab poolriba −π <
Rez < π, Imz < 0 kogu w-tasandiks, millest on välja lõigatud vaid poolsirge
−∞ < Rew < 1, Imw = 0. Sellest järeldub, et vaadeldavas w-tasandi piir-
konnas saab eraldada funktsiooni w= arccos(z) regulaarse haru. Funktsiooni
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w = arccos(z) sellist regulaarset haru, mis kujutub kogu z-tasandi (väljalõi-
kega piki poolsirget −∞ < Rez < 1, Imz = 0) poolribaks −π < Rew < π,
Imw < 0, nimetatakse arkuskoosinuse peaharuks ning tähistatakse w =
arccos(z).

Ka teiste trigonomeetriliste funktsioonide pöördfunktsioonid võib avalda-
da logaritmfunktsioonide kaudu. Kehtivad valemid:

Arcsinz =
π

2
−Arccosz =

π

2
− iLn(z+

√

z2 −1),

Arctanz =
π

2
−Arccotz =

1

2i
Ln
(

i− z

i+ z

)

.

Hüperboolsete funktsioonide pöördfunktsioone nimetatatkse areafunkt-
sioonideks ning tähistatakse vastavalt w = Arshz, w = Archz, w = Arthz,
w = Arcthz.

Kehtivad järgmised valemid:

Arshz = ln(z+
√

z2 +1), Archz = ln(z+
√

z2 −1),

Arthz =
1

2
ln(

1+ z

1− z
),Arcthz =

1

2
ln(

z+1

z−1
),

millest näeme, et kõik areafunktsioonid on mitmesed funktsioonid.
Kõikide nende mitmeste funktsioonide puhul võime eraldada nende üksi-

kud harud, nagu seda teigime funktsiooni w = Arccosz puhul.
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4. KOMPLEKSMUUTUJA FUNKTSIOO-
NIDE INTEGREERIMINE

4.1. INTEGRAALI MÕISTE JA OMADUSED

DeĄneerime joonintegraali mõiste kompleksmuutuja funktsioonide korral.
Joontega vaatleme Jordani jooni, s.t. jooni, mis on määratud võrrandiga

z = z(t) = x(t)+ iy(t)

kus x(t) ja y(t) on pidevad mingil lõigul [α,β]. Eeldame, et parameetri mis-
tahes kahe väärtuse t1 ja t2 puhul z(t1) ̸= z(t2), s.t. vaadeldavatel joontel ei
ole kordseid punkte. Erandiks võivad olla vaid α ja β. Kui z(α) = z(β), siis
nimetatakse vaadeldavat joont kinniseks.

Kui eksisteerib pidev tuletis z′(t) lõigul [α,β], siis nimetatakse vastavat
joont siledaks. Joont, mis pole sile, kuid on jaotatav lõplikuks arvuks si-
ledateks osadeks, nimetatakse tükati siledaks. Edapsidi vaatlemegi tükati
siledaid jooni.

Olgu funktsioon

w = F (t) = U(t)+ iV (t)

pidev lõigul [α,β]. Niisuguse funktsiooni puhul deĄneerime integraali

β
∫

α

F (t)dt=

β
∫

α

U(t)dt+

β
∫

α

V (t)dt.

Selliselt deĄneeritud integraali koraal kehtivad järgmised omadused

67
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Re

β
∫

α

F (t)dt=

β
∫

α

ReF (t)dt, (4.1)

β
∫

α

kF (t)dt= k

β
∫

α

F (t)dt, (4.2)

β
∫

α

[F1(t)+F2(t)]dt=

β
∫

α

F1(t)dt+

β
∫

α

F2(t)dt, (4.3)

∣

∣

∣

∣

∣

∣

∣

β
∫

α

F (t)dt

∣

∣

∣

∣

∣

∣

∣

⩽

β
∫

α

♣F (t)♣dt. (4.4)

Omadustes (4.1)Ű(4.3) on suhteliselt lihtne veenduda, kui arvestada mate-
maatilise analüüsi kursusest tuntud määratud integraali omadusi. Järgnevas
tõestame vaid seose (4.4). Selleks tähistame

β
∫

α

F (t)dt= r0eiφ0

(deĄnitsiooni põhjal on integraal mingi kompleksarv). Siit
∣

∣

∣

∣

∣

∣

∣

β
∫

α

F (t)dt

∣

∣

∣

∣

∣

∣

∣

= r0 = r0eiφ0e−iφ0 = e−iφ0

β
∫

α

F (t)dt=

β
∫

α

e−iφ0F (t)dt.

Et saadud võrduste ahela vasakpoolseks lüliks on reaalarv, siis on seda ka
parempoolne, mistõttu

∣

∣

∣

∣

∣

∣

∣

β
∫

α

F (t)dt

∣

∣

∣

∣

∣

∣

∣

=

β
∫

α

e−iφ0F (t)dt= Re

β
∫

α

e−iφ0F (t)dt=

β
∫

α

Re
[

e−iφ0F (t)
]

dt.

Teiselt poolt

Re
[

e−iφ0F (t)
]

⩽

∣

∣

∣Re[e−iφ0F (t)
∣

∣

∣⩽

∣

∣

∣e−iφ0F (t)
∣

∣

∣= ♣F (t)♣.

Viimase kahe seose põhjal saamegi (arvestades määratud integraali mono-
toonsuse omadust) võrratuse (4.4).
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Olgu w = f(z) mingi funktsioon, mis on pidev tükati siledal ning lõpliku
pikkusega joonel C. Integraali ühe joone C (võrrandiga z = z(t), t ∈ [α,β]
deĄneerime võrdusega

∫

C

f(z)dz =

β
∫

α

f [z(t)]z′(t)dt. (4.5)

Et z′(t) = x′(t)+ iy′(t), siis

∫

C

f(z)dz =

β
∫

α

f [x(t)+ iy(t)][x′(t)+ iy′(t)]dt.

Kui tähistame f(z) = u+iv, siis seose (4.5) põhjal saame, et

∫

C

f(z)dz =

β
∫

α

(u+iv)(x′ +iy′)dt=

β
∫

α

(ux′ −vy′)dt+i

β
∫

α

(vx′ +uy′)dt,

ehk teisiti
∫

C

f(z)dz =
∫

C

udx−vdy+i
∫

C

udy+vdx, (4.6)

Seostest (4.2) ja (4.3) järeldub, et
∫

C

kf(z)dz = k
∫

C

f(z)dz,

∫

C

[f(z)+g(z)]dz =
∫

C

f(z)dz+
∫

C

g(z)dz.

DeĄnitsiooni (4.5) põhjal võime veenduda, et kui C = C1 +C2, siis
∫

C

f(z)dz =
∫

C1

f(z)dz+
∫

C2

f(z)dz.

Samast deĄnitsioonist järeldub samuti, et

∫

−C

f(z)dz =

α
∫

β

f [z(t)]z′(t)dt= −
β
∫

α

f [z(t)]z′(t)dt= −
∫

C

f(z)dz.
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Saadud seos kujutab endast joonintegraali hästi tuntud omadust, mis väidab,
et integreerimissuuna muutmine vastupidiseks toob kaasa integraali väärtuse
märgi muutmise.

Seoste (4.4) ja (4.5) põhjal saame, et

∣

∣

∣

∣

∣

∣

∫

C

f(z)dz

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

β
∫

α

f [z(t)]z′(t)dt

∣

∣

∣

∣

∣

∣

∣

⩽

β
∫

α

♣f [z(t)]♣z′(t)♣dt=
∫

C

♣f(z)♣ ♣dz♣,

sest ♣dz♣ = ♣z′(t)♣dt, kui integreerimine toimub parameetri kasvamise suunas
dt ⩾ 0). Tähistades joone C pikkuse sümboliga s, saame viimasest võrratu-
sest, et

∣

∣

∣

∣

∣

∣

∫

C

f(z)dz

∣

∣

∣

∣

∣

∣

⩽M

β
∫

α

♣z′(t)♣dt=M

β
∫

α

√

[x′(t)]2 +[y′(t)]2dt=Ms,

kus ♣f(z)♣ ⩽M iga z ∈ C puhul. Valemit
∣

∣

∣

∣

∣

∣

∫

C

f(z)dz

∣

∣

∣

∣

∣

∣

⩽Ms,

nimetatakse integraali mooduli hindamise valemiks.

Näide. Leiame
∫

C

z2dz, kui C on ühikringjoone ülemine pool ning lähtepunk-

tiks on z = 1. Joone C võrrandiks on z = eit, kus t ∈ [0,π]. Seega

∫

C

z2dz =

π
∫

0

e2itieit dt=

π
∫

0

e3it dt= i
e3it

3i

∣

∣

∣

∣

∣

π

0

= −2

3

Ülesanded

1. Arvutada
∫

C

f(z)dz,

kui f(z) = y−x−3x2i ning C on
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a) sirglõik punktist 0 punktini 1+ i,

b) murdjoon punktist 0 punkti 1+ i läbi punkti i.

Vastus. a) 1− i; b) 1/2(1− i).

2. Arvutada

∫

C

z+2

z
dz,

kui jooneks C on

a) poolringjoon z = 2eit, t ∈ [0,π],

b) poolringjoon z = 2eit, t ∈ [0,−π],

c) ringjoon z = 2eit, t ∈ [−π,π].

Vastus. a) −4+2πi; b) −4−2πi; c) 4πi.

3. Näidata, et

∫

C

(3z+1)dz = 0,

kus jooneks C on ruudu 0 ⩽ Rez ⩽ 1, 0 ⩽ Imz ⩽ 1 rajajoon.

4. Näidata, et
∣

∣

∣

∣

∣

∣

∫

C

dz

z2 +1

∣

∣

∣

∣

∣

∣

⩽
π

3
,

kui C on ringjoone ♣z♣ = 2 koordinaattasandi esimeses veerandis asuv
osa.

5. Näidata, et

∫

C

dz

z− z0
= 2πi,

∫

C

dz

(z− z0)n
= 0 (n= 2,3, . . .),

kui C on ringjoon ♣z− z0♣ = r.
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4.2. CAUCHY TEOREEM

Osutub, et kui funktsioon w = f(z) = u+ iv ja tema tuletis on pidevad
kinnisel joonel C ning sellega piiratud piirkonnas, siis

∫

C

udx−vdy = 0,

∫

C

vdx+udy = 0.

(4.1)

Tõepoolest, matemaatilise analüüsi kursusest tuntud teoreemi kohaselt
(joonintegraal üle kinnise joone C)

∫

C

P dx+Qdy = 0,

kui funktsioonide P ja Q osatuletised on pidevad joonega C piiratud kinnises
piirkonnas ning

∂P

∂y
=
∂Q

∂x
.

Et eelduse kohaselt f ′(z) eksisteerib ja on pidev vaadeldavas kinnises piir-
konnas, siis integraalide (4.1) puhul on viimane tingimus täidetud Cauchy -
Riemanni võrrandite põhjal.

Eelmise paragrahvi võrduse (4.6) põhjal siis ka

∫

C

f(z)dz = 0. (4.2)

Sellega oleme tõestanud nn. Cauchy teoreemi:

Teoreem 1. Kui f(z) ning tema tuletis on pidevad tõkestatud üheli sidusas
piirkonnas D, siis võrdus (4.2) on õige iga piirkonda D kuuluva kinnise joone
C korral.

Sellisele tulemusele jõudis Cauchy juba 1825. a. Osutub aga, et iga dife-
rentseeruva kompleksmuutuja funktsiooni tuletis on pidev. Seega peaks vas-
tav väide kehtima ka ilma tuletise pidevuse eelduseta. Et see on tõesti nii,
seda näitas 1900. a. E. Coursat (1858Ű1936).
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Joonis 4.1

Sellel teoreemil on kompleksmuutuja funktsioonide seas keskne koht. Te-
ma abil saab näiteks esitada regulaarseid funktsioone integraalide kaudu.
Teoreemi suure tähtsuse tõttu on püütud teda veelgi üldistada. Rakendusli-
kust seisukohast lähtudes on küllaltki oluline järgnevas vaadeldav teoreem,
mille esitamiseks on aga vaja tutvuda mõistega pidevus kuni rajani.

Olgu a ja b kaks punkti piirkonnast D või tema rajalt C. Nende punktide
vaheliseks kauguseks mööda piirkonda D nimetatakse suurust

ϱD(a,b) = inf ∆(γ),

kus ∆(γ) on joone γ pikkus ning alumine raja on võetud kõigi nende joonte
suhtes, mis ühendavad punkte a ja b ning kuuluvad piirkonda D.

Funktsiooni f nimetatakse kuni rajani pidevaks piirkonnas D, kui iga
punkti a korral piirkonnast D või tema rajalt C kehtib võrdus

lim
ϱD(z,a)→0

f(z) = f(a).

Märkus. Kui a on piirkonna D sisepunkt või niisugune rajapunkt, mis pole
rajajoonele kordseks punktiks, siis

lim
ϱD(z,a)→0

f(z) = lim
z→a
z∈D

f(z).



74PEATÜKK 4. KOMPLEKSMUUTUJA FUNKTSIOONIDE INTEGREERIMINE

Näide. Vaatleme funktsiooni w =
√
z = r

1
2 e

iϕ
2 , kus z = reiφ, 0 < r < 1 ja

−π < φ < π. Selline funktsioon on regulaarne (seega ka pidev) vaadeldavas
piirkonnas D, milleks on ühikring lõikega piki raadiust [−1,0] (vt. joon 4.1).
Kui rajapunktides ζ määrata funktsiooni f väärtused seosega

f(ζ) = lim
ϱD(z,ζ)→0

f(z),

siis saame vaadeldavas piirkonnas kuni rajani pideva funktsiooni. Selline
täiendav deĄneerimine aga ei muuda funktsiooni pidevaks lõike [−1,0]. Tõe-
poolest, kui võtame mingi punkti ζ = x+ i0 (−1 < x < 0), siis võime seda
punkti vaadelda asuvana nii lõike ülemisel kui ka alumisel serval. Vaadeldes
seda punkti lõike ülemise serva punktina, saame, et

f(ζ) = lim
ϱD(z,ζ)→0

f(z) = lim
z→x

Imz>0

f(z) = ♣x♣ 1
2 e

iπ
2 = i♣x♣ 1

2 .

Kui aga vaadelda sama punkti asuvana lõike alumisel serval, siis

f(ζ) = lim
ϱD(z,ζ)→0

f(z) = lim
z→x

Imz>0

f(z) = ♣x♣ 1
2 e− iπ

2 = −i♣x♣ 1
2 .

Seega saame erinevad väärtused sõltuvalt sellest, kummal serval asuvana
vaatleme punkti ζ. Siit aga järeldub, et vaadeldavat funktsiooni ei saa muuta
pidevaks kinnises piirkonnas D. Küll aga saime kuni rajani pideva funkt-
siooni, sest lõike ülemise ja alumise serva punktid ei ole lähedased mööda
piirkonda võetud kauguse mõttes. Nii on ϱD(a,b) = 1, kui a = −0,5 ja on
vaadeldud lõike alumise serva punktina.

Sellest näitest selgub, et mõiste Ďpidevus kuni rajaniŞ on eriti oluline
nende piirkondade korral, millel on liibuvaid rajajoone osi.

Sõnastame nüüd teoreemi, mis on üldistuseks Cauchy teoreemile.

Teoreem 2. Kui funktsioon f on regulaarne ühelisidusas tõkestatud piirkon-
nas D ja on selles piirkonnas pidev kuni rajani C, siis

∫

C

f(z)dz = 0.

Selle teoreemi tõestus ei mahu käesoleva lühikursuse raamidesse. Edasises
nimetame ka seda teoreemi Cauchy teoreemiks.
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Ülesanded

1. Näidata, et
∫

♣z♣=1

f(z)dz = 0,

kui

a) f(z) = (z2 +2z+2)−1,

b) f(z) = ze−z,

c) f(z) = tanz,

d) f(z) = ln(z+2i).

2. Olgu f diferentseeruv ühelisidusas piirkonnas D. Olgu C1 ja C2 kaks
tükati siledat joont, mis ühendavad punkti a punktiga b. Näidata, et

∫

C1

f(z)dz =
∫

C2

f(z)dz,

s.t. integraali väärtus ei sõltu integreerimisteekonna kujust, vaid ainult
selle otspunktidest.

4.3. NEWTONIŰLEIBNIZI VALEM

Funktsiooni F nimetatakse funktsiooni f algfunktsiooniks mingis piir-
konnas D, kui selle piirkonna igas punktis z kehtib võrdus

F ′(z) = f(z).

Osutub, et funktsiooni w = f(z) algfunktsioon pole üheselt määratud. Tõe-
poolest, kui algfunktsiooniks on w = F (z), siis on selleks ka iga funktsioon
kujul w = F (z) + const. Teiselt poolt, kui F ja G on mingi funktsiooni f
algfunktsioonideks, siis

G′(z)−F ′(z) = [G(z)−F (z)]′ = 0,

millest

G(z)−F (z) = const.



76PEATÜKK 4. KOMPLEKSMUUTUJA FUNKTSIOONIDE INTEGREERIMINE
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z

z + h

C

D

Joonis 4.2

Saadud võrdus ütleb, et funktsiooni w= f(z) kõik algfunktsioonid avalduvad
kujul

w = F (z)+C,

kus F on mingi algfunktsioon ning C konstant.
Järgnevas vaatleme funktsiooni f , mis on regulaarne ühelisidusas tõkes-

tatud piirkonnas D. Kui valime selles piirkonnas mingid kaks punkti z0 ja z,
siis integraal üle punkte z0 ja z ühendava joone ei sõltu integreerimisteekon-
na kujust (järeldus Cauchy teoreemist) vaid ainult selle otspunktidest z0 ja
z. Seetõttu on mõtet kirjutada

z
∫

z0

f(ζ)dζ.

Kui loeme punkti z0 Ąkseerituks, määrab see integraal ülemise raja z suhtes
ühese funktsiooni,

w = φ(z) =

z
∫

z0

f(ζ)dζ.

Järgnevas näitame, et φ on funktsiooni f üks algfunktsioonides, s. t.

φ′(z) = f(z). (4.1)

Funktsiooni tuletise deĄnitsiooni põhjal on võrdus (4.1) samaväärne seo-
sega

lim
h→0

∣

∣

∣

∣

∣

φ(z+h)−φ(z)

h
−f(z)

∣

∣

∣

∣

∣

= 0. (4.2)
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Siin eeldame, et z+h∈D (vt. joon. 4.2). Võrduse (4.2) näitamiseks märgime,
et

φ(z+h)−φ(z)

h
=

1

h

z+h
∫

z

f(ζ)dζ

ning

f(z) =
1

h

z+h
∫

z

f(z)dζ.

Neid seoseid arvestades võime kirjutada, et

φ(z+h)−φ(z)

h
−f(z) =

1

h

z+h
∫

z

[f(ζ)−f(z)]dζ. (4.3)

Regulaarsuse tõttu on funktsioon pidev piirkonnas D, s. t. ka punktis z,
mistõttu vastavalt arvule ε > 0 võime leida niisuguse δ(ε), et iga ζ ∈ D ja
♣ζ− z♣< δ(ε) puhul

♣f(ζ)−f(z)♣< ε. (4.4)

Seoste (4.3) ja (4.4) põhjal saame, kasutades integraali mooduli hindamise
valemit, et

∣

∣

∣

∣

∣

φ(z+h)−φ(z)

h
−f(z)

∣

∣

∣

∣

∣

<
1

h
· ε · ♣h♣ = ε,

kui ♣h♣< δ(ε). Saadud võrratus on samaväärne seosega (4.2), millega olemegi
tõestanud võrduse (4.1).

Olgu F mingi algfunktsioon funktsioonile f . Sel juhul

z
∫

z0

f(ζ)dζ = F (z)+C. (4.5)

Võttes viimases võrduses z = z0, saame, et

C = −F (z0).
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Asendades selle võrdusse (4.5), saame NewtoniŰLeibnizi valemi

z
∫

z0

f(ζ)dζ = F (z)−F (z0).

Seega näeme, et kui funktsioon on ühelisidusas tõkestatud piirkonnas re-
gulaarne, saab teda integreerida NewtoniŰLeibnizi valemi abil. Sellega oleme
põhjendanud, et kompleksmuutuja funktsioone võib integreerida samuti kui
reaalmuutuja funktsioone.

Näide. Arvutame

1+i
∫

− π
4

e2izdz =
1

2i
e2iz

∣

∣

∣

∣

i+1

− π
4

=
1

2i

[

e2i(1+i) − e
iπ
2

]

=
1

2i

[

e−2(1−i) +i
]

.

Ülesanded

1. Arvutada integraalid

a)
1−i
∫

0

z2dz, b)

i
2
∫

i

eπzdz, c)
π+2i
∫

0

cos
z

2
dz.

Vastus. a)
1

3
(1− i)3, b)

1

π
(1+ i), c) e+

1

e
.

4.4. INTEGRAAL MITMELISIDUSAS
PIIRKONNAS

Vaatleme funktsiooni f , mis on regulaarne mingis tõkestatud mitmelisi-
dusas piirkonnas D. Olgu selleks piirkonnaks joonisel 23 kujutatud kolmeli-
sidus piirkond, mille raja moodustavad kinnised jooned C1, C2 ja C3. Nende
joonte positiivseks suunaks loeme kellaosuti liikumisele vastupidise suuna.
Kui tähistame raja tähega C, siis

C = C1 +(−C2)+(−C3), (4.1)

sest raja positiivseks suunaks loetakse suunda, mida mööda liikudes piirkond
jääb vasakule.
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l1
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Joonis 4.3

Meie eesmärgiks on laiendada Cauchy teoreemi sellistele piirkondadele.
Selleks eeldame, et funktsioon f on pidev kuni rajani C. Tõestame, et neil
eeldustel

∫

C

f(z)dz = 0.

Tõepoolest, ühendades raja üksikud osad omavahel joontega l1 ja l2, saame
ühelisidusa piirkonna, mille rajajooneks on joon

Γ = C+ l1 + l2 +(−l1)+(−l2).

Saadud piirkonna puhul kehtib Cauchy teoreem ning seega
∫

Γ

f(z)dz = 0.

Jooniselt 4.3 on näha, et joone Γ täielikul läbimisel läbitakse jooned l1 ja l2
kahel korral, kuid erinevates suundades, mistõttu

∫

Γ

f(z)dz =
∫

C

f(z)dz = 0.

Seosest (4.1) saame, et
∫

C1

f(z)dz =
∫

C2

f(z)dz+
∫

C3

f(z)dz.

Saadud tulemuse põhjal võime sõnastada järgmise teoreemi.

Teoreem. Kui funktsioon w = f(z) on regulaarne mitmelisidusas tõkestatud
piirkonnas ja pidev kuni selle rajani, siis integraal üle rajajoone välimise
osa on võrdne summaga integraalidest üle sisemiste väljalõigete rajajoonte,
kus integreerimissuunaks on suund, mida mööda liikudes piirkond (väljalõige)
jääb vasakule.
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Ülesanded

1. Näidata, et

∫

♣z♣=4

dz

(z− i)(z+2)
=

∫

♣z+2♣=1

dz

(z+2)(z− i)
+

∫

♣z−i♣=1

dz

(z− i)(z+2)
.

2. Arvestades jaotise 4.1 ülesannet 5, arvutada eelmises ülesandes esinev
integraal.

Vastus. 0. (Ülesande lahendamiseks avaldame integraalialuse murru
osamurdude summana.)

3. Tõestada, et kui f on diferentseeruv igas punktis, välja arvatud punkt
z = a, siis mistahes punkti a hõlmava kinnise joone C korral

∫

C

f(z)dz =
∫

♣z−a♣=r

f(z)dz.

4. Eelmise ülesande põhjal leida

∫

C

dz

(z−a)n
,

kus C on mingi kinnine joon.

Vastus. a) 0, kui joon C ei hõlma punkti a, või kui n ̸= −1, b) 2πi,
kui joon C hõlmab punkti a ning n= −1.

4.5. CAUCHY VALEM

Rakendades teoreemi 2 jaotisest 4.2, näitame, et tõkestatud piirkonnas D
regulaarse ja kuni C pideva funktsiooni w = f(z) väärtused piirkonnas D on
määratud selle funktsiooni väärtustega rajal C. Sellest tõestame, et

f(z) =
1

2πi

∫

C

f(ζ)

ζ− z
dζ, (4.1)

kui rajajoon C läbitakse positiivses suunas.
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z

S

D

C

Joonis 4.4

Valemi (4.1) tõestamiseks ümbritseme punkti z ringjoonega S (vt. joon.
4.4), mis täielikult kuulub piirkonda D. Ringjoone S raadiuse valime nii
väikese, et ζ ∈ S puhul

♣f(z)−f(ζ)♣< ε, (4.2)

kus ε > 0 on suvaliselt valitud arv. Funktsiooni f pidevuse tõttu on see või-
malik.

Kui loeme joone S positiivseks suunaks kellaosuti liikumisele vastassuuna,
siis saame eelmise jaotise teoreemi põhjal, et

∫

C

f(ζ)

ζ− z
dζ =

∫

S

f(ζ)

ζ− z
dζ. (4.3)

Vastavalt ülesandele 5 jaotisest 4.1 võime kirjutada, et

f(z) =
1

2πi

∫

S

f(z)

ζ− z
dζ. (4.4)

Seoste (4.3) ja (4.4) põhjal

f(z)− 1

2πi

∫

C

f(ζ)

ζ− z
dζ =

1

2πi

∫

S

f(z)−f(ζ)

ζ− z
dζ.

Rakendades saadud võrduse puhul integraali mooduli hindamise valemit, saa-
me seose (4.2) tõttu, et

∣

∣

∣

∣

∣

∣

f(z)− 1

2πi

∫

C

f(ζ)

ζ− z
dζ

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1

2πi

∫

S

f(z)−f(ζ)

ζ− z
dζ

∣

∣

∣

∣

∣

∣

⩽
1

2π

ε

r
2πr = ε.

Arvu ε suvalisust arvestades viimane võrratus tõestabki valemi (4.1), mi-
da nimetatakse Cauchy valemiks. Regulaarsete funktsioonide teoorias on
see valem väga tähtis.
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Ülesanded

1. Olgu

g(z) =
∫

♣ζ♣=3

2ζ2 − ζ−2

ζ− z
dζ (♣z♣ ≠ 3).

Leida g(2). Milline on funktsiooni w = g(z) väärtus, kui ♣z♣> 3?

Vastus. g(2) = 8πi; g(z) = 0, kui ♣z♣> 3.

2. Leida järgmised integraalid:

a)
∫

C

e−z

z−πi/2
dz,

b)
∫

C

z

2z+1
dz,

c)
∫

C

cos(z)

z(z2 +8)
dz,

kus C on ruudu ♣x♣ ⩽ 2, ♣y♣ ⩽ 2 rajajoon.

Vastus. a) 2π; b) −πi/2; c) πi/4.

4.6. CAUCHY TÜÜPI INTEGRAALID

Cauchy valemi

f(z) =
1

2πi

∫

C

f(ζ)

ζ− z
dζ (4.1)

põhjal saime esitada tõkestatud piirkonnas D regulaarset funktsiooni, teades
tema väärtusi selle piirkonna rajajoonel C. Osutub aga, et valemis (4.1) esi-
nev integraal eksisteerib iga z /∈C puhul, kui f on pidev joonel C. Siinjuures
ei tarvitse joon C olla kinnine. Vaatlemegi järgnevas funktsiooni

w = F (z) =
1

2πi

∫

C

f(ζ)

ζ− z
dζ, (4.2)

kus f on pidev joonel C. Selliselt deĄneeritud funktsioon on määratud ko-
gu z-tasandil, välja arvatud joone C punktides. Integraali (4.2) nimetatakse
Cauchy tüüpi integraaliks. Selle integraali kohta kehtib järgmine teo-
reem.
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Teoreem 1. Funktsioon (4.2) on mistahes arv kordi diferentseeruv, kusjuures

F (n)(z) =
n!

2πi

∫

C

f(ζ)

(ζ− z)n+1
dζ. (4.3)

Tõestus. Näitame, et

F ′(z) =
1

2πi

∫

C

f(ζ)

(ζ− z)2
dζ. (4.4)

Vastavalt tuletise deĄnitsioonile

F ′(z) = lim
h→0

F (z+h)−F (z)

h
.

Arvutades saame, et

F (z+h)−F (z)

h
=

1

2πih

∫

C



1

ζ− z−h
− 1

ζ− z

]

f(ζ)dζ =

=
1

2πi

∫

C

f(ζ)dζ

(ζ− z−h)(ζ− z)
.

Olgu punkti z ja joone C vaheline kaugus 2d. Eeldame, et ♣h♣< d. Sel juhul
(vt. joon. 4.5)

♣ζ− z♣> d, ♣ζ− z−h♣> d,

mistõttu
1

♣z− ζ♣ <
1

d
,

1

♣ζ− z−h♣ <
1

d
.

Viimaste võrratuste põhjal saame, et
∣

∣

∣

∣

∣

∣

F (z+h)−F (z)

h
− 1

2πi

∫

C

f(ζ)

(ζ− z)2
dζ

∣

∣

∣

∣

∣

∣

=
1

2π

∣

∣

∣

∣

∣

∣

∫

C

hf(ζ)dζ

(ζ− z−h)(ζ− z)2

∣

∣

∣

∣

∣

∣

⩽

⩽
Ms

2πd3
♣h♣,

kus M = max
ζ∈C

♣f(ζ)♣ ning s on joone C pikkus. Et h → 0 puhul viimase võr-

ratuse parem pool läheneb nullile, siis olemegi tõestanud valemi (4.4).
Valem (4.3) tõestatakse täieliku induktsiooni meetodil. Jätame selle lu-

gejale.
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C d

z

z + h

ζ

Joonis 4.5

Ka siis, kui w = f(z) on regulaarne mingis tõkestatud piirkonnas D ning
pidev kuni rajani, on teoreemi 1 eeldused täidetud. Sellega oleme tõestanud
järgmise teoreemi.

Teoreem 2. Kui funktsioon f on regulaarne tõkestatud piirkonnas D ning
pidev kuni rajajooneni C, siis eksisteerivad funktsioonil f vaadeldavas piir-
konnas mistahes järku tuletised, kusjuures

f (n) =
n!

2πi

∫

C

f(ζ)

(ζ− z)n+1
dζ. (4.5)

Teisiti öeldes: teoreem 2 väidab, et iga regulaarne kompleksmuutuja
funktsioon on mistahes arv kordi diferentseeruv. Reaalmuutuja funktsioo-
nidel sellist omadust ei ole. Nende puhul ei järeldu tuletise olemasolust isegi
selle pidevus, ammugi siis veel teist järku tuletise olemasolu.

Valemist (4.5) saame, et kui f on regulaarne ringis ♣ζ − z♣ < R ja pidev
kuni rajajooneni, siis

♣f (n)(z)♣ =
n!

2π

∣

∣

∣

∣

∣

∣

∣

∫

♣ζ−z♣=R

f(ζ)dζ

(ζ− z)n+1

∣

∣

∣

∣

∣

∣

∣

⩽
n!M2πR

2πRn+1
=
n!M

Rn
,

kus M = max
♣ζ−z♣=R

♣f(ζ)♣. Võttes n= 1, saame, et

♣f ′(z)♣ ⩽ M

R
. (4.6)

Olgu f regulaarne ja tõkestatud kogu komplekstasandil, s.t. ♣f(z)♣ ⩽M
iga z puhul. Siis järeldub võrratusest (4.6) (kui R → ∞), et

♣f ′(z)♣ ≡ 0.
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Seega f(z) = const. Me oleme sellega tõestanud järgmise, üsna huvitava teo-
reemi, mis on jällegi iseloomulik vaid kompleksmuutuja funktsioonidele.

Liouville’i teoreem. Kui funktsioon w = f(z) on regulaarne ja tõkestatud
kogu komplekstasandil, siis on ta konstantne.

Märkus. Liouville’i teoreemist järeldub, et kogu komplekstasandit ei saa kon-
formselt kujutada ühekski tõkestatud piirkonnaks (näiteks ühikringiks).

Liouville’i teoreemist järeldub ka nn. algebra põhiteoreem:
Igal komplekssete kordajatega mittekonstantsel polünoomil on vähemalt

üks nullkoht kompleksarvude vallas.

Tõestus. Olgu meil mingi polünoom P (z). Oletame, et polünoomil P (z) pole
ühtki nullkohta, s.t. iga z puhul ♣P (z)♣ > a > 0. Kui vaatleme funktsiooni

w =G(z) =
1

P (z)
, siis

♣G(z)♣ =
1

P (z)
<

1

a
.

Et viimane võrratus kehtib iga z puhul, siis Liouville’i teoreemi põhjal
G(z) = const, millest ka P (z) = const. Saadu on aga vastuolus eeldusega,
mille kohaselt P (z) on konstandist erinev polünoom.

Järgnevas esitame veel ühe rakenduse teoreemile 2, näidates, et Cauchy
teoreemil on pöördteoreem.

Morera teoreem. Kui funktsioon f on pidev ühelisidusas tõkestatud piir-
konnas D ning

∫

C

f(z)dz = 0 (4.7)

iga piirkonda D kuuluva kinnise joone C puhul, siis f on selles piirkonnas
regulaarne.

Tõestus. Tingimusest (4.7) järeldub, et funktsioon

w = F (z) =

z
∫

z0

f(ζ)dζ

on ühene. Et F ′(z) = f(z) (selle võrduse tõestasime jaotises 4.3), siis teoreemi
2 põhjal eksisteerib ka F ′′(z) = f ′(z). Seega f on ühene ja diferentseeruv
piirkonna D igas punktis, s.t. ta on selles piirkonnas regulaarne.
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Ülesanded

1. Leida

∫

C

tan z
2

(z−2)3
dz,

kui C on kinnine joon, mis hõlmab punkti 2.

Vastus.
πi

2

sin1

cos3 1
.

2. Leida

∫

C

chz
z4

dz,

kus C on kinnine joon.

Vastus. 0 (sõltumata joonest C).

3. Leida

∫

C

ez dz

z(1− z)3
,

kus C on kinnine joon.

Vastus. a) 2πi, kui joon C hõlmab punkti 0, kuid ei hõlma punkti 1;

b) −eπi, kui joon C hõlmab punkti 1, kuid ei hõlma punkti 0;

c) (2− e)πi, kui joon C hõlmab nii punkti 0 kui ka punkti 1;

d) 0, kui joon C ei hõlma ei punkti 0 ega punkti 1.

4. Olgu funktsioon w = f(z) regulaarne joonega C piiratud kinnises piir-
konnas. Näidata, et iga z0 /∈ C korral

∫

C

f ′(z)dz

z− z0
=
∫

C

f(z)dz

(z− z0)2
.
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4.7. PARAMEETRIST SÕLTUVAD INTEGRAALID

Vaatleme funktsiooni, mis on esitatud parameetrist sõltuva integraalina:

w = F (z) =
∫

Γ

f(ζ,z)dζ, z ∈D. (4.1)

Teoreem 1. Olgu täidetud järgmised tingimused:

1) Γ on lõpliku pikkusega tükati sile joon;

2) funktsioon f on pidev kahe muutuja funktsioon, kui ζ ∈ Γ ja z ∈D, kus
D on komplekstasandi mingi piirkond;

3) iga Ąkseeritud ζ ∈ Γ korral on f regulaarne (muutuja z järgi) piirkonnas
D.

Sel juhul on seosega (4.1) määratud funktsioon F regulaarne piirkonnas
D.

Tõestus. Kasutame Morera teoreemi. Tingimuste 1 ja 2 põhjal on funktsioon
F pidev piirkonnas D. Jääb näidata, et

∫

C

F (z)dz = 0

iga piirkonda D kuuluva kinnise joone C korral. Tõepoolest,

∫

C

F (z)dz =
∫

C





∫

Γ

f(ζ,z)dζ



dz =
∫

Γ





∫

C

f(ζ,z)dz



dζ = 0,

sest Cauchy teoreemi põhjal
∫

C

f(ζ,z)dz = 0 iga ζ ∈ Γ puhul.

Integreerimisjärjekorda võib muuta, arvestades kahekordse integraali oma-
dusi (reaalmuutujate korral). Sellega on teoreem tõestatud.

Teoreem 2. Olgu täidetud teoreemi 1 tingimused. Sel juhul

F ′(z) =
∫

Γ

∂f(ζ,z)

∂z
dζ iga z ∈D korral. (4.2)
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Tõestus. Valime suvalise punkti z ∈D ning ringjoone γ, mis kuulub piirkon-
da D ning hõlmab punkti z. Sel juhul saame (kasutades valemit regulaarse
funktsiooni tuletise kohta), et

F ′(z) =
1

2πi

∫

γ

F (t)

(t− z)2
dt=

1

2πi

∫

γ

1

(t− z)2





∫

Γ

f(ζ, t)dζ



dt=

=
∫

Γ





1

2πi

∫

γ

f(ζ, t)

(t− z)2
dt



 dζ =
∫

Γ

∂f(ζ,z)

∂z
dζ.

Teoreem on tõestatud.

Kui seni oleme vaadelnud lõpliku pikkusega tükati siledaid jooni, siis nüüd
asume vaatlema niisuguseid jooni, mis on küll lõpmatud, kuid mille iga lõp-
liku pikkusega osa on tükati sile. Eeldame, et tegu on joonega, millel on
alguspunkt a (ühepoolselt lõpmatu joon). Vaatleme selle joone osa Cs, mis
jääb punktide a ja b vahele ning mille pikkus on s. Vaatleme joonel C pidevat
funktsiooni g. Sel juhul eksisteerivad integraalid

∫

Cs

g(ζ)dζ.

Kui eksisteerib piirväärtus

lim
s→∞

∫

Cs

g(ζ)dζ,

siis seda nimetatakse funktsiooni g päratuks integraaliks üle joone C
ning tähistatakse

lim
s→∞

∫

Cs

g(ζ)dζ =
∫

C

g(ζ)dζ.

Sel juhul öeldakse, et vaadeldav päratu integraal koondub.
Kui on tegu kahepoolselt lõpmatu joonega (näiteks sirgega), siis valime

sellel joonel mingi punkti a ning vaatleme kaht ühepoolselt lõpmatut joont.
Üle nende võetud päratute integraalide summa annab meile päratu integraali
üle vaadeldava joone.
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Järgnevalt vaatleme parameetrist sõltuvaid päratuid integraale

F (z) =
∫

C

f(z,ζ)dζ, z ∈D. (4.3)

Öeldakse, et vaadeldav päratu integraal koondub ühtlaselt hulgal D, kui iga
ε > 0 korral leidub selline M > 0, et

∣

∣

∣

∣

∣

∣

∣

F (z)−
∫

C8

f(z,ζ)dζ

∣

∣

∣

∣

∣

∣

∣

< ε

iga s >M ja iga z ∈D puhul.
Weierstrassi tunnus: Kui iga ζ ∈ C ja z ∈ D korral ♣f(ζ,z)♣ ⩽ φ(ζ)

ning koondub integraal
∫

C

♣φ(ζ)♣ ♣dζ♣,

siis päratu integraal (4.3) koondub ühtlaselt hulgal D.

Märkus. Analoogiliselt deĄneeritakse päratu integraal ning selle juurde kuu-
luvad mõisted ka juhul, kui joone C pikkus s0 on küll lõplik, kuid joonel C
vaadeldav funktsioon ei ole tõkestatud joone lõpp-punkti ümbruses. Sel juhul

∫

C

g(ζ)dζ = lim
s→s0

∫

C8

g(ζ)dζ.

Matemaatilise analüüsi kursusest teame mitmeid parameetrist sõltuva-
te päratute integraalide omadusi∗. Et need omadused kehtivad ka komp-
leksmuutuja korral, saab tõestada analoogiliselt või siis arvestades asjaolu,
et integraal kompleksmuutuja funktsioonist on esitatav kahe reaalmuutuja
funktsiooni integraalide kaudu. Vaatleme paari omadust, mida vajame hil-
jem Laplace’i teisenduse juures (jaotis 10).

Teoreem 3. Olgu Γ tükati sile lõpmatu joon ning olgu lisaks teoreemi 1
tingimustele 2) ja 3) täidetud tingimus:

4) integraal (4.1) koondub ühtlaselt igas kinnises piirkonnas D′ ⊂D.

∗Kangro, G. Matemaatiline analüüs II, Tln., 1968, lk. 240–246.
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Sel juhul on funktsioon F regulaarne piirkonnas D.

Teoreem 4. Kui lisaks teoreemi 1 tingimustele integraal (4.2) koondub üht-
laselt piirkonnas D′ ⊂D, siis kehtib valem (4.2).

Need teoreemid tõestatakse analoogiliselt teoreemidega 1 ja 2, kusjuures
integreerimisjärjekorra muutmine on nüüd lubatud vastavate päratute integ-
raalide ühtlase koonduvuse tõttu.

Ülesanded

1. Näidata, et seosega

Γ(z) =

∞
∫

0

tz−1e−tdt

määratud Euleri Γ-funktsioon on regulaarne pooltasandis Rez > 0.



5. ANALÜÜTILISED FUNKTSIOONID

5.1. KOMPLEKSLIIKMETEGA READ

Vaatleme ridu
∑

k

uk = u0 +u1 + . . .+uk + . . . ; (5.1)

mille liikmeteks on kompleksarvud uk = ak + ibk. Rida (5.1) nimetatakse
koonduvaks, kui koondub tema osasummade jada, s.t. eksisteerib piirväär-
tus

lim
n→∞

n
∑

k=0

uk = lim
n→∞

Sn = S.

Et aga

Sn =
n
∑

k=0

uk =
n
∑

k=0

(ak +ibk) =
n
∑

k=0

ak +i
n
∑

k=0

bk = An +iBn,

siis

lim
n→∞

Sn = lim
n→∞

An +i lim
n→∞

Bn.

Sellest näeme, et rida (5.1) koondub parajasti siis, kui koonduvad read
∑

k

ak

ja
∑

k

bk. Need on reaalsete liikmetega read, mille koonduvuseks on tarvilik,

et limak = limbk = 0. Seega võib ka rida (5.1) koonduda vaid siis, kui

lim
k→∞

uk = lim
k→∞

(ak +ibk) = 0.

Kui rea osasummade jada ei koondu, siis nimetatakse rida hajuvaks.
Koos reaga (5.1) vaadeldakse ka rida

∑

k

♣uk♣ = ♣u0♣+ ♣u1♣+ . . .+ ♣uk♣+ . . . (5.2)

91
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Kui rida (5.2) on koonduv, siis nimetatakse rida (5.1) absoluutselt koondu-
vaks. Rea absoluutset koonduvust saab kindlaks teha matemaatilise analüüsi
kursusest tuntud positiivsete liikmetega ridade koonduvustunnuste abil, sest
rida (5.2) on positiivsete liikmetega.

Osutub, et rida (5.1) koondub absoluutselt parajasti siis, kui read
∑

ak

ja
∑

bk on absoluutselt koonduvad. Täpselt samuti kui reaalsete liikmete-

ga ridade korral saab Cauchy kriteeriumi abil näidata, et rea absoluutsest
koonduvusest järeldub tema tavaline koonduvus.

Ülesanded

1. Uurida ridade
∑

n
un koonduvust, kui

a) un =
1+in

2n
,

b) un = cossinn,

c) un =
cosn+isinn

n2
.

Vastus. a) koondub absoluutselt,

b) hajub,

c) koondub absoluutselt.

5.2. FUNKTSIONAALREAD

Nii kompleksmuutuja funktsioonide omaduste uurimise kui ka nende ra-
kenduste vaatlemise seisukohalt huvitavad meid eeskätt funktsionaalread

∑

k

uk(z) = u0(z)+u1(z)+ . . .+uk(z)+ . . . . (5.1)

Kui Ąkseerime muutuja z väärtuse, siis saame reast (5.1) arvrea.
Olgu uk(z) (k = 0,1, . . .) määratud piirkonnas D. Me nimetame rida (5.1)

koonduvaks punktis z0 ∈ D, kui koondub arvrida
∑

uk(z0). Rida (5.1)

nimetatakse koonduvaks piirkonnaks D, kui ta koondub piirkonna D igas
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punktis. Analoogiliselt deĄneeritakse rea (5.1) absoluutne koonduvus mingis
punktis z0 ∈D ning piirkonnas D.

Tähistame rea (5.1) osasumma sümboliga Sn(z). Funktsionaalrea koon-
dumine piirkonnas D tähendab, et iga z ∈ D puhul eksisteerib lim

n→∞
Sn(z).

Tähistame

w = f(z) = lim
n→∞

Sn(z).

Seega võime öelda, et piirkonnas D koonduva rea summa määrab selles piir-
konnas ühese funktsiooni. Märkides seda fakti, ütleme, et rida (5.1) koondub
funktsiooniks f .

Kui arvestame rea koonduvuse ning jada piirväärtuse mõisteid, võiksime

piirkonnas D funktsiooniks f koonduva rea
∑

uk(z) deĄnitsiooni esitada

järgmiselt.

Öeldakse, et rida
∑

uk(z) koondub funktsiooniks f piirkonnas D, kui iga

z ∈D ja iga ε > 0 puhul leidub seline naturaalarv N(ε,z), nii et

♣f(z)−Sn(z)♣< ε

iga n > N (ε, z) puhul.
Analoogiliselt sellele deĄneeritakse ka rea ühtlane koonduvus.

Öeldakse, et rida
∑

uk(z) koondub ühtlaselt funktsiooniks f piirkonnas D,

kui ε > 0 puhul leidub selline naturaalarv N(ε), nii et

♣f(z)−Sn(z)♣< ε

iga z ∈D ja n > N(ε) puhul.
Võrreldes ühtlase koonduvuse ja tavalise koonduvuse deĄnitsioone, mär-

kame, et tavalise koonduvuse puhul ei nõuta arvu N sõltumatust punktis z.
Ühtlase koonduvuse puhul nõutakse aga, et iga ε korral võib naturaalarv N
valida sõltumatuna punktist z, s.t. kogu piirkonna jaoks ühtlasena.

Nagu matemaatilise analüüsi kursuses, nii ka siin saab tõestada järgmise
teoreemi.

Teoreem 1. Kui piirkonnas D ühtlaselt koonduva rea liikmed on pidevad
punktis z0, siis on ka rea summa selles punktis pidev.

Rea ühtlase koonduvuse määramiseks kasutatakse sageli järgmist
Weierstrassi tunnust.
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Teoreem 2. Kui funktsionaalrea
∑

k

uk(z) liikmed rahuldavad võrratust

♣uk(z)♣ ⩽ ak (k = 0,1, . . .) (5.2)

iga z ∈D puhul ning rida
∑

ak on koonduv, siis koondub see funktsionaalrida

ühtlaselt piirkonnas D.

Tõestus. Võrratuse (5.2) ning positiivsete liikmetega ridade võrdlusteoreemi
põhjal saame, et vaadeldav funktsionaalrida koondub absoluutselt igas punk-
tis z ∈D . Seega määrab tema summa seal funktsiooni f . Kui tähistame rea
osasumma sümboliga Sn(z), siis

♣f(z)−Sn(z)♣ = ♣fn+1(z)+fn+2(z)+ . . .♣ ⩽
⩽ ♣fn+1(z)♣+ ♣fn+2(z)♣+ . . .⩽ an+1 +an+2 + . . .

Et aga rida
∑

ak on koonduv, siis saame siit, et vastavalt arvule ε > 0 leidub

niisugune N(ε), millest suuremate n väärtuste puhul

♣f(z)−Sn(z)♣ ⩽ an+1 +an+2 + . . . < ε iga z korral.

Seega koondub rida
∑

uk(z) ühtlaselt.

Järgnevas vaatleme ühtlaselt koonduvate ridade liikmeti diferentseerimist
ja integreerimist. Vastavate küsimuste selgitamiseks esitame kaks järgnevat
teoreemi.

Teoreem 3. Kui rida
∑

uk(z) koondub ühtlaselt piirkonnas D, siis iga piir-

konda D kuuluva joone C puhul

∫

C





∑

k

uk(z)



dz =
∑

k

∫

C

uk(z)dz. (5.3)

Tõestus. Märgime rea summa sümboliga f(z). Võrduse (5.3) tõestamiseks
peame näitama, et

lim
n→∞

n
∑

k=0

∫

C

uk(z)dz =
∫

C

f(z)dz. (5.4)
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Selleks valime vastavalt suvalisele arvule ε >0 naturaalarvu N , et iga n >N
ja iga z ∈D puhul

♣f(z)−Sn(z)♣ =

∣

∣

∣

∣

∣

∣

f(z)−
n
∑

k=0

uk(z)

∣

∣

∣

∣

∣

∣

<
ε

s
,

kus s on joone C pikkus. Sel juhul
∣

∣

∣

∣

∣

∣

∫

C

f(z)dz−
n
∑

k=0

uk(z)dz

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∫

C



f(z)−
n
∑

k=0

uk(z)



dz

∣

∣

∣

∣

∣

∣

⩽
ε

s
· s= ε.

Saadud võrratus näitab seose (5.4) kehtivust, millega teoreem ongi tõestatud.

Teoreem 4. Olgu funktsioonid uk (k = 0,1, . . .) regulaarsed tõkestatud piir-

konnas D ning pidevad kuni rajajooneni C. Kui rida
∑

uk(z) koondub ühtal-

selt rajajoonel C, siis

1) see rida koondub ka piirkonnas D ning rea summa f(z) määrab seal
regulaarse funktsiooni;

2) tuletistest moodustatud read
∑

k

u
(l)
k (z) (l = 1,2, . . .) koonduvad piirkon-

nas D, kusjuures

∑

k

u
(l)
k (z) = f (l)(z).

Tõestus. 1) Olgu z suvaline punkt piirkonnast D ning ξ suvaline punkt ra-
jajoonelt C. Siis ♣ξ − z♣ > 0. Seega, iga Ąkseeritud z korral koondub rida
∑

k

1

2πi(ξ− z)
uk(ξ) ühtlaselt rajajoonel C. Seda rida võib liikmeti integreeri-

da, mistõttu Cauchy valemi põhjal

∑

k

1

2πi

∫

C

uk(ξ)

ξ− z
dξ =

∑

k

uk(z), (5.5)

millest järeldubki, et meie funktsionaalrida koondub iga z puhul. Olgu tema

summa f(z). Rajajoonel C on funktsioon w= f(ξ) =
∑

k

uk(ξ) pidev, mistõttu
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seose (5.5) asemel võime kirjutada

f(z) =
∑

k

uk(z) =
1

2πi

∫

C

∑

uk(ξ)

ξ− z
dξ =

1

2πi

∫

C

f(ξ)

ξ− z
dξ.

Saadud tulemustest näeme, et funktsioon f avaldub Cauchy tüüpi integ-
raalina piirkonnas D ning on seetõttu regulaarne.

2) Täiesti analoogiliselt eelnevaga tõestame ridada
∑

k

u
(l)
k (z) koonduvuse,

võttes vaid ξ− z asemel suuruse
1

l!
(ξ− z)l+1.

Teisest küljest,

∑

k

u
(l)
k (z) =

l!

2πi

∫

C

∑

k uk(ξ)

(ξ− z)l+1
dξ =

l!

2πi

∫

C

f(ξ)

(ξ− z)l+1
dξ = f (l)(z).

Sellega ongi teoreem tõestatud.

Äsjasõnastatud teoreemi tuntakse Weierstrassi teoreemina ning see
pärineb aastast 1859.

5.3. ASTMEREAD

Kõikidest funktsionaalridadest on erilise tähtsusega astmeread

∑

n
cn(z−a)n, (5.1)

kus a ja cn (n = 0,1, . . .) on konstandid. Juhul z = a võrduvad rea (5.1)
kõik liikmed (peale esimese) nulliga ning astmerea summa on sel juhul c0.
Järelikult koondub iga astmerida (5.1) punktis a. Kas aga leidub ka teisi
z väärtusi, mille puhul rida (5.1) koondub, sellele annab vastuse järgmine
teoreem.

CauchyŰHadamard’i teoreem. Astmerida (5.1) koondub ringis ♣z−a♣ <
R ja hajub piirkonnas ♣z−a♣>R, kusjuures R =

1

p
ning p= lim n

√

♣cn♣.∗

∗Sümbol lim tähistab ülemist piirväärtust.
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Tõestus. Vaatleme rea (5.1) koonduvust mingis Ąkseeritud punktis z.

1) Olgu ♣z−a♣<R =
1

p
, s.t. p♣z−a♣< 1. Et aga

lim
n→∞

n
√

♣cn(z−a)n♣ = p♣z−a♣, (5.2)

siis

n
√

♣cn(z−a)n♣< q < 1, kui n > n0

ning n0 on küllalt suur. Saadud võrratuse ning positiivsete ridade võrdlus-
teoreemi põhjal võime öelda, et rida (5.1) koondub punktis z absoluutselt,

sest koondub geomeetriline rida
∑

qn (0< q < 1).

2) Kui aga ♣z−a♣>R =
1

p
, siis seose (5.2) põhjal saame, et võrratus

n
√

♣cn(z−a)n♣> 1

kehtib lõpmata paljude n väärtuste korral. Viimase põhjal pole punktis z rea
(5.1) üldliikme piirväärtus null, mistõttu rida ei saa koonduda selles punktis.
Seega vaadeldavas piirkonnas rida (5.1) hajub.

Märkus. CauchyŰHadamard’i teoreem on õige ka juhul, kui p = 0 ja p = ∞.
Neil kordadel vastavalt R = ∞ ja R = 0.

Tõestus. 1) Kui p= 0, siis

lim
n→∞

n
√

♣cn♣ = lim
n→∞

n
√

♣cn♣ = 0.

Võttes mingi z väärtuse (z ̸= a), näeme, et küllalt suurte n väärtuste korral

n
√

♣cn♣< 1

2♣z−a♣ .

Viimasest võrratusest aga järeldub, et

♣cn(z−a)n♣< 1

2n
,

mis garanteerib rea (5.1) koonduvuse punktis z.
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2) Olgu p= ∞. Näitame, et sel juhul ei koondu rida (5.1) üheski punktis
peale punkti z = a. Oletame väite vastaselt, et rida (5.1) koondub punktis
z0 ̸= a. Sel juhul peaks lim

n→∞
cn(z0 −a)n = 0 , millest omakorda järelduks, et

♣cn(z0 −a)n♣<M ehk teisiti

n
√

♣cn♣<
n
√
M

♣z0 −a♣ .

Et aga lim
n→∞

n
√
M = 1, siis viimase võrratuse põhjal p ̸= ∞. Selline järeldus on

aga vastuolus eeldusega. Saadud vastuolu ütlebki, et rida (5.1) ei saa koon-
duda punktis z0. Et z0 oli suvaline (punktist a erinev) punkt, siis tõepoolest
R = 0.

Suurust R nimetatakse astmerea koonduvusraadiuseks ning ringi
♣z−a♣<R koonduvusringiks.

Millise iseloomuga on astmerea koonduvus oma koonduvusringis, seda
aitab selgitada järgmine teoreem.

Abeli I teoreem. Kui astmerida (5.1) koondub punktis z0, siis koondub
ta absoluutselt igas punktis z, mille puhul ♣z− a♣ < ♣z0 − a♣. Seejuures igas
kinnises ringis ♣z−a♣⩽ q♣z0 −a♣ (0< q < 1) koondub vaadeldav rida ühtlaselt.

Tõestus. Olgu rida
∑

cn (z0 −a)n koonduv. Sel juhul leidub M > 0, nii et
∣

∣

∣cn (z0 −a)n
∣

∣

∣⩽M. Ringi ♣z−a♣ ⩽ q ♣z0 −a♣ punktides

∣

∣

∣cn (z−a)n
∣

∣

∣=
∣

∣

∣

∣

cn (z0 −a)n
(

z−a

z0 −a

)n∣
∣

∣

∣

⩽Mqn.

Et rida
∑

n
Mqn on võrratuste 0< q < 1 tõttu koonduv, siis Weierstrassi tun-

nuse põhjal on rida (5.1) ühtlaselt koonduv ringis ♣z−a♣ ⩽ q♣z0 −a♣. Samast
saame ka, et rida on absoluutselt koonduv selle ringi igas punktis.

Et iga z puhul, mis rahuldab tingimust ♣z−a♣< ♣z0 −a♣, võib leida reaal-
arvu q, nii et ♣z − a♣ ⩽ q♣z0 − a♣ ja 0 < q < 1, siis on see teoreem sellega
tõestatud.

Koonduvusringis määrab astmerida (rea summa) ühese funktsiooni, mis
osutub seal regulaarseks. Tõepoolest, võttes mingi z väärtuse ringist ♣z−a♣<
R saame ikka leida niisuguse reaalarvu, et vaadeldav z on ringi ♣z−a♣ ⩽ qR
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sisepunkt. Eelmise jaotise viimase teoreemi põhjal saamegi, et astmerea sum-
ma on vaadeldavas punktis regulaarne. Nimetatud teoreemi rakendamiseks
tuleb käaesoleval juhul vaid võtta piirkonnaks D valitud kinnine ring ning
panna tähele, et rea (5.1) liikmed on regulaarsed kogu komplekstasandil.

Astmerea (5.1) summana määratud funktsiooni tuletise saame eelmise
paragrahvi teoreemi 4 põhjal leida rea (5.1) liikmeti diferentseerimisel, s.t.

f ′(z) =
∑

n
ncn (z−a)n−1 .

Osutub, et sel viisil saadud rea koonduvusraadius on võrdne rea (5.1) omaga,
sest

lim
n→∞

n
√

♣ncn♣ = lim
n→∞

n
√

♣cn♣.

Ülesanded

1. Leida astmeridade koonduvusraadiused:

a)
∞
∑

n=1

zn

n
,

b)
∞
∑

n=0

zn

n!
,

c)
∞
∑

n=1

nnzn,

d)
∞
∑

n=0

z3n,

e)
∞
∑

n=0

(2+ in)nzn,

f)
∞
∑

n=0

(cos in)zn,

g)
∞
∑

n=0

(n+an)zn.

Vastus. a) R = 1,

b) R = ∞,

c) R = 0,

d) R = 1,

e) R = 1/3,

f) R = 1/e,

g) R = 1, kui ♣a♣ ⩽ 1; R =
1

♣a♣ ,
kui ♣a♣> 1.

2. Leida järgmiste ridade koonduvuspiirkonnad:
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a)
∞
∑

n=1

(z−1)n

n2(1+ i)n
,

b)
∞
∑

n=1

n

(z−1+ i)n
,

c)
∞
∑

n=0

1

2n+1

(

4+3i

z−2i

)n

,

d)
∞
∑

n=0

(

z

3

)n

+
∞
∑

n=1

(

2

z

)n

,

e)
∞
∑

n=0

(z+1)n

3n (n+1)
+

∞
∑

n=1

n2 +5

(z+1)n .

Vastus. a) ♣z−1♣<
√

2,

b) ♣z−1+ i♣> 1,

c) ♣z−2i♣> 5,

d) 2< ♣z♣< 3,

e) 1< ♣z+1♣< 3.

3. Näidata, et geomeetrilise rea
∞
∑

n=0

zn koonduvuspiirkonnaks on ühikring

ning tema summaks
1

1− z
.

5.4. TAYLORI RIDA

Astmerida

∑

n
cn(z−a)n

nimetatakse funktsiooni ω = f(z) Taylori reaks punktis a, kui

cn =
f (n)(a)

n!
(n= 0,1, . . .).

Teoreem 1. Iga astmerida on oma summa Taylori rida.

Tõestus. Olgu

f(z) =
∑

n
cn(z−a)n. (5.1)

Võttes z = a, saame, et c0 = f(a). Kui rida (5.1) liikmeti diferentseerida
ning võtta seejärel z = a, saame, et c1 = f ′(a). Teistkordsel diferentseerimisel

saaksime c2 =
1

2
f ′′(a) jne. sellega olemegi tõestanud teoreemi 1.
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d

a z

rD

C

Joonis 5.1

Teoreemist 1 järeldub, et funktsiooni võib vaid ühesel viisil arendada ast-
mereaks punktis a. Me ütleme, et funktsioon f on punktis a arendatav ast-
mereaks, kui leidub selline R> 0, nii et võrdus (5.1) kehtib ringis ♣z−a♣<R.
Funktsiooni f nimetatakse analüütiliseks punktis z = a, kui ta on selles
punktis arendatav astmereaks. Eelmise jaotise viimase teoreemi põhjal saa-
me, et iga vaadeldavas punktis analüütiline funktsioon on seal ka regulaarne.
Järgnevas näitame vastupidist.

Teoreem 2. Punktis a regulaarne funktsioon f on selles punktis analüütiline,
kusjuures funktsiooni f Taylori rida (punktis a) koondub suurimas ringis
♣z−a♣<R, milles f on regulaarne.

Tõestus. 1) Näitame, et f on analüütiline piirkonna D suvalises punktis a,
kus D on funktsiooni f regulaarsuse piirkond. Tähistame tähega d punkti
a kauguse piirkonna D rajajoonest (vt. joon. 5.1). Võtame ümber punkti a
ringjoone C, mille raadius r < d. Olgu z suvaline punkt valitud ringist. Sel
juhul ♣z−a♣ = qr, kus 0< q < 1. Cauchy valemi põhjal võime kirjutada, et

f(z) =
1

2πi

∫

c

f(ζ)

ζ− z
dζ.

Funktsiooni f reaksarendamiseks kasutame seost

1

ζ− z
=

1

ζ−a− (z−a)
=

1

1− z−a
ζ−a

1

ζ−a
=

=
1

ζ−a

∞
∑

k=0

(

z−a

ζ−a

k

=
∞
∑

k=0

(z−a)k

(ζ−a)k+1
,
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sest eelduse kohaselt
∣

∣

∣

∣

∣

z−a

ζ−a

∣

∣

∣

∣

∣

=
qr

r
= q < 1.

Äsjasaadud reaksarenduse põhjal võime kirjutada, et

1

2πi

f(ζ)

ζ− z
=

∞
∑

k=0

1

2πi

f(ζ)

(ζ−a)k+1
(z−a)k. (5.2)

See rida osutub ühtlaselt koonduvaks ringjoonel C. Tõepoolest, kui ζ ∈ C,
siis

∣

∣

∣

∣

∣

1

2πi

f(ζ)

(ζ−a)k+1
(z−a)k

∣

∣

∣

∣

∣

⩽
M

2π

rkqk

rk+1
=

M

2πr
qk,

kus M = max
ζ∈C

♣f(ζ)♣. Seega on rida (5.2) Weierstrassi tunnuse põhjal ühtlaselt

koonduv ringjoonel C ning me võime teda liikmeti integreerida. Seda tehes
saame, et

f(z) =
1

2πi

∫

c

f(ζ)dζ

ζ− z

∞
∑

k=0





1

2πi

∫

c

f(ζ)dζ

(ζ−a)k+1



 · (z−a)k =
∞
∑

k=0

ck(z−a)k,

kus

ck =
1

2πi

∫

c

f(ζ)dζ

(ζ−a)k+1
=
f (k)(a)

k!
.

Sellega olemegi tõestanud, et funktsioon ω = f(z) on punkti a ümbruses
(ringis ♣z−a♣< r) arendatav Taylori reaks, s.t. on analüütiline punktis a.

2) Tõestuse käigus nägime, et r ⩽ d, kusjuures r võis olla kui tahes lä-
hedane suurusele d. On selge, et r ei saa olla suurem kui d, sest vastasel
korral saaksime, et funktsioon f on regulaarne ringis, mis ulatub väljaspoo-
le piirkonda D. Seda aga ei saa olla, sest D oli funktsiooni f regulaarsuse
piirkond.

Sellega on meie teoreem tõestatud.

Märkus 1. Äsjatõestatu põhjal saame määrata funktsiooni ω = f(z) Taylori
rea koonduvusraadiuse ilma seda rida ennast leidmata. Nimelt: funktsioo-
ni f Taylori rea (punktis z = a) koonduvusraadius on võrdne punkti z = a
kaugusega lähimast iseärasest punktist, s.t. punktist, kus f pole regulaarne.
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Märkus 2. Funktsiooni f Taylori rea koonduvusringi rajajoonel ♣z− a♣ = R
leidub punkte, kus f pole regulaarne. Tõepoolest, kui f oleks regulaarne igas
selle ringjoone punktis ζ, siis leiduks ring ♣z− ζ♣ < rζ , kus f on regulaarne.
Tähistades r = min

ζ∈C
rζ , saaksime, et f on regulaarne ringis ♣z− a♣ < R+ r.

Siis aga peaks funktsiooni f Taylori rida koonduma ringis raadiusega R+ r.
Saadud vastuolu tõestabki väite.

Ülesanded

1. Arendada järgmised funktsioonid Taylori reaks ja määrata nende ridade
koonduvuspiirkonnad:

a) w = ez punktis a= 1,

b) w =
1

z2
punktides a= −1 ja a= 2.

Vastus. a) ez = e
∞
∑

n=0

1

n!
(z−1)n, ♣z−1♣<∞,

b)
1

z2
=

∞
∑

n=0

(n+1)(z+1)n, ♣z+1♣< 1;

1

z2
=

1

4

∞
∑

n=0

(−1)n(n+1)
(

z−2

2

)n

, ♣z−2♣< 2.

2. Arendada Taylori reaks punktis a= 0:

a) w = coshz;

b) w = sin2 z;

c) w =
z

z2 −2z+5
;

d) w = Arctanz (Arctan0 = 0);

e) w =

z
∫

0

cosζ−1

ζ2
dζ;

f) w =

z
∫

0

sinζ2dζ.

Leida saadud ridade koonduvusraadiused.

Vastus. a)
∞
∑

n=0

z2n

(2n)!
, R = ∞,

b)
∞
∑

n=1

(−1)n+1 22n−1z2n

(2n)!
, R = ∞,
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c)
1

4i

∞
∑

k=1

(1−2i)k − (1+2i)k

5k
zk, R =

√
5,

d)
∞
∑

n=0

(−1)n z
2n+1

2n+1
, R = 1,

e)
∞
∑

n=1

(−1)n

(2n)!

z2n+1

2n+1
, R = ∞,

f)
∞
∑

n=0

(−1)n

(2n+1)!

z4n+3

4n+3
, R = ∞.

3. Leida järgmiste avaldistega määratud funktsioonide Taylori rea (Ąkseeri-
tud punktis a) koonduvusraadiused:

a)
1

2z+3
, a= 0,

b)
√
z+i, a= 1,

c)
√

cosz, a= 0,

d)
z−2

ez +1
, a= 0,

e)
1

sin(2z+ z2)
, a= i.

Vastus. a) R = 3/2, b) R =
√

2, c) R = π/2, d) R = π, e) R = 1.

5.5. ANALÜÜTILISTE FUNKTSIOONIDE AIN-
SUSE TEOREEM

Me teame, et murdlineaarne funktsioon on üheselt määratud, kui on tea-
da selle funktsiooni väärtused kolmes punktis. Seda seetõttu, et iga murd-
lineaarne funktsioon määratakse kolme üksteisest sõltumatu parameetriga
(kordajaga). Lineaarsel funktsioonil on neid kaks, mistõttu ta on määratud
oma väärtustega kahes punktis. Et analüütilist funktsiooni esitab astmerida,
millel on lõpmata palju kordajaid, siis nähtavasti saab analüütilist funktsioo-
ni üheselt määrata vaid sel juhul, kui on teada selle funktsiooni väärtused
lõpmata paljudes punktides. Osutub aga, et sellest veel ei piisa.

Näide 1. Kogu tasandil analüütilised funktsioonid w = sinz ja w = g(z) ≡ 0
on võrdsed lõpmatul punktihulgal ¶0,±π,±2π, . . .♢, kuid need funktsioonid
pole võrdsed kõikjal.

Kehtib aga järgmine analüütiliste funktsioonide ainsuse teoreem.
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Teoreem. Kui piirkonnas D on analüütilised funktsioonid f ja g võrdsed sel-
le piirkonna lõpmatul punktihulgal E, millel on vähemalt üks kuhjumispunkt
piirkonnas D, siis need funktsioonid ühtivad kogu piirkonnas D.

Tõestus. 1) Olgu piirkonnaks D ring ♣z− a♣ < R ning olgu hulga E kuhju-
mispunktiks punkt a. Olgu veel

f(z) =
∞
∑

n=0

cn(z−a)n,

g(z) =
∞
∑

n=0

bn(z−a)n.

Valime niisuguste punktide zk ∈ E jada, mille korral f(zk) = g(zk) ning
lim

k→∞
zk = a.

Arvestades funktsioonide f ja g võrdsust hulgal E, võime kirjutada, et

∞
∑

n=0

cn(zk −a)n =
∞
∑

n=0

bn(zk −a)n.

Kui läheme viimases võrduses piirile summa märgi all (seda võime teha, sest
piirkonna D mis tahes sisemises kinnises ringis koondub astmerida ühtlaselt),
siis saame, et c0 = b0. Seega kehtib võrdus

∞
∑

n=1

cn(zk −a)n =
∞
∑

n=1

bn(zk −a)n.

Jagades viimase võrduse vahega zk − a ning seejärel korrates eelnevat mõt-
tekäiku, saame, et c1 = b1. Niiviisi järk-järgult edasi minnes saaksime mis
tahes indeksi m korral näidata, et cm = bm. Seega on vaadeldavate astmeri-
dade kordajad võrdsed, mistõttu on võrdsed ka funktsioonid f ja g.

2) Olgu nüüd D suvaline piirkond ning E ⊂D lõpmatu hulk, kus f(z) =
g(z). Punkt a ∈D olgu hulga E kuhjumispunkt.

Fikseerime hulgas D suvalise punkti z ning näitame, et ka selles punktis
f(z) = g(z). Selleks ühendame punktid a ja z piirkonda D kuuluva joonega
C. (vt. joon. 5.2). Võtame ümber punkti a mingi ringi, mis kuulub täielikult
piirkonda D. See sisaldab lõpmata palju hulga E punkte, sest punkt a on
hulga E kuhjumispunkt. Seega tõestuse esimese osa põhjal ühtivad funkt-
sioonid f ja g selles ringis. Järelikult kuulub see ring tervikuna hulke E. Oli
ju viimane nende punktide hulk, kus f(z) ja g(z) ühtivad.
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a
a1

z

C

D

Joonis 5.2

Valime nüüd joonel C punkti a1, mis kuulub eelnevas vaadeldud ringi (vt.
joon. 5.2). Ka a1 on hulga E kuhjumispunkt ning me võime oma mõttekäiku
korrata, võttes punkti a asemel punkti a1. Järgnevalt valime punkti a2 jne.,
kuni saavutame olukorra, kus selliselt valitud ring sisaldab punkti z. Niiviisi
näeme lõpuks, et vaadeldavad funktsioonid ω = f(z) ja ω = g(z) on võrd-
sed selles Ąkseeritud punktis z. Punkti z suvalisuse tõttu olemegi tõestanud
funktsioonide ω = f(z) ja ω = g(z) võrdsuse kogu piirkonnas D.

Järeldus. Matemaatilise analüüsi kursuses saadi järgmised reaksarendused:

ex = 1+x+
x2

2!
+ . . .=

∞
∑

n=0

xn

n!
, −∞< x <∞,

sinx= x− x3

3!
+
x5

5!
− . . .=

∞
∑

n=0

(−1)n x2n+1

(2n+1)!
, −∞< x <∞,

cosx= 1− x2

2!
+
x4

4!
− . . .=

∞
∑

n=0

(−1)n x2n

(2n)!
, −∞< x <∞.

Need reaksarendused on õiged ka vastavate kompleksmuutuja funktsioonide
puhul, kui x asendada muutujaga z.

Seda võime väita seetõttu, et astmeridadega

∞
∑

n=0

zn

n!
,

∞
∑

n=0

(−1)n z2n+1

(2n+1)!
,

∞
∑

n=0

(−1)n z2n

(2n)!

määratud funktsioonid langevad kokku vastavalt funktsioonidega w= ez, w=
sinz ja w= cosz lõpmatul punktihulgal (reaalteljel), millel on kuhjumispunkt
(mistahes reaalarv).
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Analoogiliselt saame, et kõik matemaatilise analüüsi kursusest tuntud
reaksarendused on õiged ka vastavate kompleksmuutuja funktsioonide või
nende üheste harude korral.

Eelnevas vaatlesime funktsioone (w = ez, w = sinz ja w = cosz), mille
Taylori read koonduvad kogu komplekstasandil. Niisuguseid funktsioone ni-
metatakse täisfunktsioonideks. On selge, et täisfunktsioonid on regulaar-
sed kogu komplekstasandil ning seega kehtib nende kohta Liouville’i teoreem.
Sellest järeldub, et kompleksmuutuja funktsioonid w= sinz ja w= cosz pole
tõkestatud, nagu nad on seda reaalmuutuja korral.

5.6. ANALÜÜTILISE FUNKTSIOONI NULLKO-
HAD

Punkti z0 nimetatakse funktsiooni f nullkohaks, kui f(z0) = 0. Kui aga

f(z0) = f ′(z0) = . . .= f (n−1)(z0) = 0

ning fn(z0) ̸= 0, siis nimetatakse punkti z0 n-järku nullkohaks. Sellest
deĄnitsioonist järeldub, et punkt z0 on analüütilise funktsiooni f n-järku
nullkoht parajasti siis, kui

f(z) = (z− z0)n [b0 + b1(z− z0)+ . . . ] , (5.1)

kus b0 ̸= 0. Valemist (5.1) saame kergesti nn. L’Hospitali reegli

lim
z→a

f(z)

g(z)
=
f (n)(a)

g(n)(a)
, (5.2)

kui punkt a on n-järku nullkoht funktsioonile g ning vähemalt n-järku null-
koht funktsioonile f . Tõepoolest, nendel eeldustel

f(z) = (z−a)n[b0 + b1(z− za)+ . . . ],

g(z) = (z−a)n[d0 +d1(z− za)+ . . . ], d0 ̸= 0.

Kui arvestame, et punkti a teatavas ümbruses koonduvad nurksulgudes
seisvad read ühtlaselt, mistõttu võime minna piirile igas liidetavas eraldi,
järeldubki nendest võrdustest valem (5.2).

Eelmises jaotises tõestatud ainsuse teoreemi põhjal saame mõningast in-
formatsiooni analüütilise funktsiooni f nullkohtade hulga kohta, kui võrdleme
seda funktsiooni teise analüütilise funktsiooniga w = g(z) ≡ 0.
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Teoreem. Mittekonstantsel analüütilisel funktsioonil w = f(z) on igas kin-
nises ja tõkestatud piirkonnas ülimalt lõplik arv nullkohti.

Tõestus. Tõepoolest, kui funktsioonil w = f(z) oleks vaadeldavas kinnises
ja tõkestatud piirkonnas lõpmatu arv nullkohti, siis oleks viimastel BolzanoŰ
Weierstrassi teoreemi põhjal kuhjumispunkt vaadeldavas piirkonnas. Ainsuse
teoreemi põhjal peaks siis f(z) ≡ 0.

Järeldus. Mittekonstantse analüütilise funktsiooni f nullkohtade hulk on üli-
malt loenduv.

Tõestus. Olgu D funktsiooni f analüütilisuse piirkond. Vaatleme kinniseid
hulki Fn ⊂ D (n = 1,2, . . .), mille rajade kaugused piirkonna D rajast on
vastavalt 1/n. Igas hulgas Fn on vaid lõplik arv funktsiooni f nullkohti.
Seega saab neid kogu piirkonnas olla ülimalt loenduv hulk†.

Äsjatõestatud omadustest järeldub, et analüütilise funktsiooni nullkohad
on isoleeritud, s.t. iga nullkoha puhul leidub ümbrus, mis ei sisalda teisi null-
kohti.

Ülesanded

1. Punkti b nimetatakse funktsiooni f A-punktiks, kui f(b) =A. Näidata,
et igas tõkestatud kinnises piirkonnas on analüütilisel funktsioonil vaid
lõplik arv A-punkte.

2. Tõestada, et analüütilise funktsiooni A-punktide hulk on ülimalt loen-
duv.

3. Leida järgmiste avaldistega määratud funktsioonide nullkohad ja nende
järk:

a) z2 +4,

b) z sinz,

c) sin3 z,

d)
sin3 z

z
,

e) sinz3,

f) (2+ e2z)3.

Vastus. a) esimest järku nullkohad 2i ja −2i,

†Kui piirkonna D raja sisaldab ka lõpmatuspunkti, loeme punkti z kauguse lõpmatus-
punktist võrdseks punkti 1

z
kaugusega nullpunktist.
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b) teist järku nullkoht 0, esimest järku nullkohad kπ (k = ±1,±2, . . .),

c) kolmandat järku nullkohad kπ (k = 0,±1,±2, . . .),

d) kolmandat järku nullkoht 0, esimest järku nullkohad 3
√
kπ ja

1

2
3
√
kπ(−1± i

√
3) (k = ±1,±2, . . .),

e) kolmandat järku nullkohad
1

2
ln2+ i(

1

2
+k)π (k = 0,±1,±2, . . .).

5.7. TEHTED ANALÜÜTILISTE FUNKTSIOONI-
DEGA

Iga analüütilist funktsiooni esitab vaadeldava punkti z = a ümbruses seal
koonduv astmerida

∑

n
cn(z−a)n.

Edaspidi vaatleme lihtsuse mõttes juhtu, kus a= 0. Sel juhul saame null-
punkti ümbruses analüütilised funktsioonid. Olgu meil kaks sellist funktsioo-
ni:

w = f(z) =
n
∑

n
cnz

n, (5.1)

w = g(z) =
n
∑

n
bnz

n, (5.2)

Ridade (5.1) ja (5.2) koonduvusraadiused olgu vastavalt r ja R, kusjuures
r ⩽R.

Rea koonduvuse deĄnitsioonist järgneb vahetult, et funktsioonide f ja g
summale vastav astmerida

∑

n
(cn + bn)zn =

∑

n
dnz

n

koondub ringis ♣z♣< r. Analoogilise tulemuse saame ka vahe f −g puhul.
Korrutist f(z)g(z) esitab astmerida (ridade korrutis)

∑

n
hnz

n, kus hn =
n
∑

k=0

ckbn−k. (5.3)
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Et read (5.1) ja (5.2) on absoluutselt koonduvad ringis ♣z♣ < r, siis on seda
ka rida (5.3).

Osutub, et kui g(0) ̸= 0, on jagatis w= f(z)/g(z) nullpunktis analüütiline.
Tõepoolest,

f(z)

g(z)
=
c0 + c1z+ c2z

2 + . . .

b0 + b1z+ b2z2 + . . .
= g0 +g1z+g2z

2 + . . . ,

s.t.

c0 + c1z+ c2z
2 + . . .= (g0 +g1z+ . . .)(b0 + b1z+ . . .).

Ridade korrutise deĄnitsiooni arvestades saame kordajate g0,g1, . . . määra-
miseks järgmised seosed

b0g0 = c0,

b0g1 + b1g0 = c1,

. . . . . . . . . . . . . . . . . .

b0gn + b1gn−1+ . . .+ bng0 = cn,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(5.4)

Nendest seostest saame järk-järgult leida kõik otsitavad kordajad gk, kui
b0 = g0 ̸= 0.

Võttes f(z) ≡ 1, s.t. c0 = 1 ja ck = 0 (k = 1,2,3, . . .), saame seoste (5.4)

põhjal leida funktsiooni w =
1

g
(z) reaksarenduse.

Vaatleme lõpuks rida
∑

n
fn(z), mille liikmeteks on ringis ♣z♣ < r analüü-

tilised funktsioonid

fn(z) =
∑

k

cnkz
k.

Koondugu rida
∑

fn(z) kinnises ringis ♣z♣ ⩽ ϱ < r ühtlaselt. Sel juhul esitab
tema summa f(z) funktsiooni ringis ♣z♣< ϱ. Seega

f(z) =
∞
∑

n=0

fn(z) =
∞
∑

n=0

∞
∑

k=0

cnkz
k =

∞
∑

k=0

akz
k.

Näitame, et

ak =
∞
∑

n=0

cnk,
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s.t., et reas
∞
∑

n=0

∞
∑

k=0

cnkz
k

võib vahetada summeerimisjärjekorda. Selles väites sisaldub nn. Weierstrassi
teoreem topeltridade kohta. Selle õigsuses veendumiseks paneme kõigepealt
tähele, et rida

∑

k=0

akz
k on funktsiooni f Taylori rida. Seega

ak =
f (k)(0)

k!
(k = 0,1, . . .).

Et aga jaotise 5.2 teoreemi (4) põhjal

f (k)(0)

k!
=

∞
∑

n=0

f
(k)
n (0)

k!
=

∞
∑

n=0

cnk,

siis sellega ongi meie väide tõestatud.

Ülesanded

1. Leida ez + cosz, ez − cosz,
ez

1− z
ja

ez

chz
reaksarendused punktis a = 0

ja määrata saadud ridade koonduvuspiirkonnad.

Vastus.

ez +cosz =
∞
∑

n=0

z2n+1

(2n+1)!
+2

∞
∑

n=0

z4n

(4n)!
, ♣z♣<∞,

ez − cosz =
∞
∑

n=0

z2n+1

(2n+1)!
+2

∞
∑

n=0

z4n+2

(4n+2)!
, ♣z♣<∞,

ez

1− z
=

∞
∑

n=0





∞
∑

k=0

1

k!



zn, ♣z♣< 1,

ez

chz
= 1+ z+

∞
∑

n=1

g2n+1
2n+1,

kus g2n+1 =
1

(2+1)!
−

∞
∑

k=1

1

(2k)!
g2(n−k)+1, ♣z♣< π

2
,

2. Leida topeltridade teoreemi põhjal järgmiste avaldiste reaksarendused
(esimesed liikmed kuni astmeni z4) punktis a= 0:
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a) ez sinz,

b) sin
1

1− z
,

c) (1+ z)z = ez ln1+z

d) e
z

1−z ,

e) ln(1+ez),

Vastus. a) 1+ z2 +
z4

3
+ . . . ,

b) sin1+ z cos1 +
(

cos1− 1

2
sin1

)

z2 +
(

5

6
cos1− sin1

)

z3 +
. . . ,

c) 1−
∞
∑

n=1





n
∑

k=1

(

n−1

k−1





zn,

d) ln2+
1

2
z+

1

8
z2 − 1

192
z4 + . . . ,

e) 1+ z2 − 1

2
z3 +

5

6
z4 + . . . .

5.8. ANALÜÜTILINE JÄTKAMINE

Me deĄneerisime analüütilise funktsiooni kui astmerea summana esitatava
funktsiooni. Et aga astmerida koondub üldjuhul vaid teatavas lõpliku raadiu-
sega ringis, siis saame astmerea abil deĄneerida analüütilist funktsiooni vaid
lokaalses mõttes. Näiteks astmerida

∑

zn koondub vaid ringis ♣z♣ < 1 ning
järelikult deĄneerib ta analüütilise funktsiooni vaid seal. Teiselt poolt: selle
astmerea summa (1−z)−1 määrab regulaarse (siis ka analüütilise) funktsioo-
ni kogu komplekstasandil, välja arvatud punkt z = 1. Seega tekib probleem,
kuidas deĄneerida analüütiline funktsioon globaalses mõttes, lähtudes deĄnit-
sioonist lokaalses mõttes astmerea abil. Astmerea summat (nagu vaadeldud
näites) me sel eesmärgil kasutada ei saa, sest üldjuhul pole meil astmerea
summa jaoks teist avaldist (esitist) peale astmerea enda. Püstitatud problee-
mile annab lahenduse analüütilise jätkamise mõiste.

Olgu funktsioonid w = f1(z) ja w = f2(z) analüütilised vastavalt piirkon-
dades D1 ja D2 ning D1 ∩D2 = ∅. Olgu f1(z) = f2(z) iga z ∈D1 ∩D2 puhul.
Sel juhul öeldakse, et f2 on funktsiooni f1 vahetuks analüütiliseks jätkuks
piirkonnast D1 piirkonda D2 Ainsuse teoreemi põhjal on selline analüütiline
jätk üheselt määratud.

Näide. Vaatleme analüütilisi funktsioone

w = f1(z) =
∑

n
zn, ♣z♣< 1 (=D1),
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ja

w = f2(z) =
1

1− i

∑

n

(

z− i

1− i

)n

, ♣z− i♣<
√

2 (=D2).

Et iga z ∈D1 puhul f1(z) =
1

1− z
ja iga z ∈D2 puhul

f2(z) =
1

1− i

1

1− z−i
1−i

=
1

1− z

ning D1 ∩D2 = ∅, siis on f2 funktsiooni f1 analüütiliseks jätkuks ja vastupidi.

Ülesanded

1. Arvestades vastavaid seoseid reaalse argumendi korral, näidata, et
kompleksse z korral kehtivad järgmised seosed:

a) shz+chz = ez,

b) ch2 z− sh2 z = 1,

c) sin2z = 2sinz cosz,

d) sin
(

π

2
− z

)

= cosz.

2. Näidata, et funktsioon w = f(z) = (1+z2)−1, z ̸= 1, on funktsiooni

w = g(z) =
∞
∑

n=0

(−1)nz2n

analüütiliseks jätkuks.

3. Leida funktsiooni w= lnz analüütiline jätk ülemisest pooltasandist alu-
misse üle reaaltelje negatiivse osa. Veenduda, et saadud jätk erineb
alumises pooltasandis funktsioonist w = lnz.

Vastus. w = lnz+2πi.

4. Arvestades, et iga x > 0 puhul kehtib seos Γ(x+ 1) = xΓ(x), tõestada
sama seose kehtivus kogu parempoolses pooltasandis Rez > 0.
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r1r a

P

0

{

Joonis 5.3

5.9. ANALÜÜTILINE JÄTKAMINE ASTMERIDA-
DE ABIL

Olgu meil analüütiline funktsioon

w = f(z) =
∑

n
cnz

n, ♣z♣< r. (5.1)

Valime ringis ♣z♣< r mingi punkti a ning arendame funktsiooni f selles punk-
tis astmereaks. Sel juhul saame

w = f1(z) =
∑

n
bn(z−a)n, (5.2)

kus

bn =
f (n)(a)

n!
=

∞
∑

n=k

(

k

n



cka
k−n.

Märgime rea (5.1) kooduvusraadiuse sümboliga r1. On selge, et r1 ⩾ r−
♣a♣. Kui r1 = r−♣a♣ (vt. joon. . . ), pole funktsioon w= f(z) regulaarne punktis
P ning uus funktsioon w = f1(z) ei ole määratud üheski punktis väljaspool
esialgset ringi ♣z♣< r.

Kui aga r1 > r− ♣a♣, siis w = f1(z) deĄneerib funktsiooni f analüütili-
se jätku väljaspoole ringi ♣z♣ < r. On aga selge, et sellisel viisil me ei saa
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funktsiooni analüütiliselt jätkata korraga eriti kaugele, sest r1 ⩾ r+ ♣a♣< 2r.
Viimane seos tuleneb sellest, et iga astmerea koonduvusringi rajajoonel asub
vähemalt üks punkt, kus vastav funktsioon pole regulaarne.

Olles nüüd saanud analüütilise jätku w= f1(z), võime seda protsessi edasi
teostada, võttes ringis ♣z− a♣ < r1 uue punkti b. Sellist protsessi võiksime
jätkata senikaua, kui see on võimalik.

Oletame, et me oleme oma funktsiooni (5.2) jätkanud kõikjale, nii pal-
ju kui üldse võimalik. Sel viisil oleme laiendanud funktsiooni f deĄnitsiooni
ringist ♣z♣ < r mingisse piirkonda D ja saanud uue funktsiooni F , mis on
määratud piirkonnas D. Viimanekoosneb jätkamisel saadud ringidest. Teisi-
ti öeldes: piirkond D on teatavate ringide (lahtiste hulkade) ühend (seega ka
lahtine). Kui nüüd osutub, et üheski punktis z0 ∈D ei ole võimalik funkstioo-
ni F arendada ritta, mis koonduks ka väljaspool piirkonda D, siis öeldakse,
et D on funktsiooni f loomulik olemasolu piirkond.

Näide 1. Funktsiooni

w = f(z) =
∞
∑

n=0

zn!

loomulikuks olemasolu piirkonnaks on ühikring ♣z♣ < 1. Selle näitamiseks
veendume, et ühikringjoone ♣z♣ = 1 üheski punktis pole funktsioon f regu-
laarne, mistõttu teda pole võimalik jätkata üle ühikringjoone. Toodud väite
tõestuseks piisab näitamisest, et ♣f(z)♣ → ∞, kui z läheneb ühikringjoonele

piki mistahes raadiust, millele vastav polaarnurk φ =
p

q
2π (p ja q on täisar-

vud). Kui z kuulub nimetatud raadiusele, siis

z = re2πip/q.

Sel juhul

f(z) =
∑

n
rn!e2πin!p/q.

Et aga n⩾ q puhul
p

q
n! on täisarv, siis

f(z) =
q−1
∑

n=0

rn!e2πin!p/q +
∞
∑

n=q
rn!,
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z0 = a

b

Joonis 5.4

millest

♣f(z)♣ ⩾
∞
∑

n=q
rn! −

∣

∣

∣

∣

q−1
∑

n=0

zn!
∣

∣

∣

∣

Saadud võrratusest näemegi, et ♣f(z)♣ → ∞, kui r→ 1. Et punktid z= e2πin!p/q

katavad ühikringjoone tihedalt, siis selgubki, et jätkamine väljapoole ühikrin-
gi pole võimalik, sest vastasel korral peaks leiduma ühikringjoonel terve kaar,
kus f on regulaarne. Me nägime, et nende punktide hulk, kus funktsiooni f
piirväärtus on lõpmatus, on tihe ringjoonel ♣z♣ = 1. Sellest aga järeldub, et f
pole regulaarne üheski ühikringjoone punktis.

Vaadeldud näites nägime, et funktsiooni f deĄneeriv astmerida ei koon-
dunud üheski ühikringjoone punktis ning vastav funktsioon ei olnud jätka-
tav väljapoole ühikringi. Osutub aga, et astmerida võib küll hajuda igas
ühikringjoone punktis, kuid ometi on talle vastav funktsioon jätkatav välja-
poole ühikringi.

Näide 2. Olgu w = f(z) =
∑

n
zn. Kui z = eiφ, siis ♣zn♣ = 1. Seega ei koondu

rida
∑

n
zn üheski punktis z = eiφ, sest rea üldliikme piirväärtus pole null.

Ometi aga on see funktsioon jätkatav kogu komplekstasandile, välja arvatud
punkt z = 1.

Sageli teostatakse analüütilist jätkamist piki mingit joont C, laienda-
des sel viisil analüütilise funktsiooni deĄnitsiooni punktist a punktini b (vt.
joon. 5.4). Niisuguse protsessiga kohtume juba siis, kui tõestame analüütiliste
funktsioonide ainsuse teoreemi.

Ülesanded
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1. Funktsioon w = f(z) =
∑

n

zn

n
olgu arendatud astmereaks punktis z =

−1

2
. Millisesse piirkonda saame sel juhul funktsiooni f analüütilise jät-

ku?

Vastus.
∣

∣

∣

∣

z+
1

2

∣

∣

∣

∣

<
3

2
.

2. Tõestada, et funktsioonid

w = f(z) = 1+az+a2z2 + . . .

ja

w = g(z) =
1

1− z
− (1−a)z

(1− z)2
+

(1−a)2z2

(1− z)3
− . . .

on teineteise suhtes analüütilisteks jätkudeks.

3. Tõestada, et funktsiooni

w = f(z) =
∑

n
z2n

loomulikuks olemasolu piirkonnaks on ühikring.

5.10. GLOBAALSELT DEFINEERITUD
ANALÜÜTILINE FUNKTSIOON

Vaatleme mingit piirkondade ahelatD1,D2, . . . ,Dn (vt. joon 5.5), kus selle
ahela igal kahel järjestikusel piirkonnad Dk ja Dk+1 ühisosa Dk ∩Dk+1 ei ole
tühi hulk. Igas piirkonnas Dk olgu antud analüütiline funktsioon w = fk(z),
kusjuures fk(z) = fk+1(z), kui z ∈ Dk ∩Dk+1. Sel juhul öeldakse, et fn

on funktsiooni f1 analüütiliseks jätkuks piki piirkonade ahelat. De-
Ąneerides piirkonnas D = ∪Dk analüütilise funktsiooni w = F (z) võrdustega
F (z) = fk(z), kui z ∈ Dk, saame, et funktsioon F on analüütiliseks jätkuks
igale funktsioonile f1, f2, . . . ,fn. Igaüht neist analüütilistest funktsioonidest
f1, f2, . . . ,fn nimetatakse analüütilise funktsiooni F elemendiks.

Funktsioon F , mille me niisugusel analüütilisel jätkamisel saame, osutub
üldjuhul mitmeseks, sest selle ahela eri piirkondadel (mitte üksnes järjesti-
kustel) võib olla ühiseid punkte, kus vastavad funktsioonid ei tarvitse ühtida.
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Dn

Dn−1

D4

D3D2
D1

Joonis 5.5

Lepime kokku, et kleebime selle ahela eri piirkonnad kokku nendes osades,
kus vastavad funktsioonid on kõik võrdsed ning jätame kokku kleepimata
seal, kus vähemalt kaks on omavahel erinevad (fj(z) ̸= fm(z)). Sel viisil saa-
me mingi mitmelehelise Riemanni pinna.

Näide. Lähtume funktsiooni w =
√
z astmereast punktis z = 1 kui analüü-

tilise funktsiooni elemendist ning jätkame teda piki ringjoont ♣z♣ = 1. Iga
uue elemendi puhul on vastava rea koonduvusraadius võrdne ühega (kaugus
punktist 0 kui punktist, kus w =

√
z pole regulaarne). On selge, et mingi

lõpliku arvu sammude järel jõuame funktsioonielemendini, millele vastaval
koonduvusringil on ühiseid punkte lähteks olnud funktsioonielemendi omaga
(vt. joon. 5.6). Nendes ühistes punktides pole aga vaadeldavate elementide
väärtused võrdsed (ruutjuure eri harude väärtused).

Funktsiooni F , mille saame. kui jätkame analüütilist funktsiooni w = fz,
z ∈D1 piki kõikvõimalikke ahelaid, nimetatakse täielikuks analüütiliseks
funktsiooniks ning viimase määramispiirkonda (mingit Riemanni pinda)
selle täieliku analüütilise funktsiooni loomulikuks olemasolu piirkon-
naks. Vaadeldes määramispiirkonnana selle mitmese Riemanni pinna üksi-
kuid lehti, saame eraldada vaadeldava mitmese analüütilise funktsiooni ühe-
sed harud.

Punkte, mis kuuluvad analüütilise funktsiooni loomulikku olemasolu piir-
konda või selle rajale, nimetatakse selle funktsiooni iseärasteks punkti-
deks, kui selles punktis on rikutud kasvõi ühte selle funktsiooni haru regu-
laarsus.

Näide. Funktsioonile w =
(

4
√
z+1

)−1
on punkt z = 1 iseäraseks punktiks,

sest selles punktis pole määratud üks vaadeldava funktsiooni neljast harust
(nimelt see, mille puhul 4

√
1 = −1).
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x

y

1

Joonis 5.6

5.11. SÜMMEETRIAPRINTSIIP

Eelnevates jaotistes vaatlesime analüütilist jätkamist astmeridade abil.
Selle praktiline teostus on aga sageli üsna tülikas. Seetõttu pakub huvi ka
teine analüütilise jätkamise moodus, mis rajaneb nn. sümmeetriaprintsiibile.
Enne aga tõestame teoreemi, mida tuntakse pidevusprintsiibina.

Teoreem 1. Olgu funktsioonid f1 ja f2 analüütilised vastavalt piirkondades
D1 ja D2 millel on ühine rajajoone osa C. Kui need funktsioonid on pidevad
kuni rajani C ning f1(z) = f2(z) iga z ∈ C puhul, siis on need funktsioonid
teineteisele analüütilisteks jätkudesks

Tõestus. DeĄneerime funktsiooni

w = f(z) =











f1(z), kui z ∈D1

f2(z), kui z ∈D2

f1(z) = f2(z), kui z ∈ C.

Teoreemi 1 tõestuseks kasutame Morera teoreemi. Selleks peame näitama, et
integraal funktsioonist f üle mistahes kinnise joone, mis kuulub piirkonda

D =D1 ∪D2 ∪C

(vt. joon. 5.7), võrdub nulliga. Kui see kinnine joon kuulub täielikult ühte
ossa (kas piirkonda D1 või D2), siis on vastav integraal tõepoolest null, sest
funktsioonid f1 ja f2 on analüütilised ja kehtib Cauchy teoreem.

Vaatleme juhtu, kus mingi kinnine joon kuulub osaliselt piirkonda D1,
osaliselt piirkonda D2. Joone vastavad osad märgime sümbolitega C1 ja C2.
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D2
D1

A

C1

B

C2

Joonis 5.7

Sel juhul

∫

C1+C2

f(z)dz =
∫

C1

f(z)dz+

B
∫

A

f(z)dz+

A
∫

B

f(z)dz+
∫

C2

f(z)dz =

=











∫

C1

f1(z)dz+

B
∫

A

f1(z)dz











+











A
∫

B

f2(z)dz+
∫

C2

f2(z)dz











= 0,

sest Cauchy teoreemi põhjal võrduvad mõlemad loogelistes sulgudes seisvad
avaldised nullidega.

Äsjatõestatud teoreemi põhjal tõestame nüüd järgmise teoreemi, mida
nimetatakse RiemanniŰSchwarzi sümmeetriaprintsiibiks.

Teoreem 2. Olgu w= f(z) regulaarne piirkonnas D, mille rajajoon sisaldab
reaaltelje lõigu L. Olgu f pidev kuni lõiguni L. Kui funktsioonil f on lõigu
L punktides reaalarvulised väärtused, siis on võimalik funktsiooni f jätkata
analüütiliselt piirkonda D1, mis on sümmeetriline piirkonnaga D reaaltelje
suhtes. See analüütiline jätk on esitatav kujul

w = F (z) = f(z).

(Kui piirkondadel D ja D1 on ühiseid punkte, siis ei tarvitse funktsioonidel
f ja F väärtused nendes punktides ühtida.)

Tõestus. Vastavalt pidevusprintsiibile peame näitama, et F on regulaarne
piirkonnas D1, pidev kuni lõiguni L ning et F (z) = f(z) iga z ∈ L puhul.

Regulaarsuse näitamiseks piisab selle funktsiooni diferentseeruvuse näita-
misest. Tuletis aga eksisteerib igas punktis a∈D1, sest eksisteerib piirväärtus

lim
z→a

F (z)−F (a)

z−a
= lim

z→a

f(z)−f(a)

z−a
= lim

z→a

(

f(z)−f(a)

z−a



= f ′(a).
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xz1 = z1

a

L

z

D

z

D1

a

Joonis 5.8

Et a ∈D (vt. joon. 5.8), siis viimane suurus eksisteerib ning seega eksis-
teerib ka F ′(a).

Pidevus kuni lõiguni L järeldub seosest

♣F (z1)−F (z)♣ = ♣f(z1)−f(z)♣.

Kui z ∈ L, siis z = z ning f(z) = f(z). Seega iga z ∈ L puhul

F (z) = f(z) = f(z) = f(z).

Teoreem on sellega tõestatud.

Märkus 3. Arvestades murdlineaarse funktsiooni omadusi võiksime tõestada,
et teoreem 2 on üldistatav juhule, kus lõigu L asemel on suvaline ringjoone
kaar S ning funktsiooni väärtused kaarel S kuuluvad mingile teisele ringjoone
kaarele.

Märkus 4. Funktsiooni F deĄnitsioonist järeldub, et funktsioonid f ja F
kujutavad vastavalt piirkonnadD jaD1 piirkondadeks, mis on sümmeetrilised
reaaltelje suhtes.
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6. ANALÜÜTILISE FUNKTSIOONI
ISEÄRASED PUNKTID

6.1. ISOLEERITUD ISEÄRASED PUNKTID

Analüütilise funktsiooni f iseäraseks ehk singulaarseks punktiks ni-
metatakse iga punkti z0, kus f pole ühel või teisel põhjusel regulaarne. Kui
leidub iseärase punkti z0 niisugune ümbrus, kus pole teisi iseäraseid punkte
peale punkti z0, siis nimetatakse vaadeldavat punkti isoleeritud iseäraseks
punktiks. Kui selles ümbruses 0 < ♣z− z0♣ < R on vaadaldav funktsioon f
ühene, siis öeldakse, et punkt z0 on ühese iseloomuga iseärane punkt. Niisu-

guse punkti näiteks on nullpunkt funktsioonile w = f1(z) =
1

z
. Seevastu aga

funktsiooni w =
√
z puhul on nullpunkt hoopiski teist laadi iseäraseks punk-

tiks, ta on hargnemispunkt. Viimasel juhul öeldakse, et iseärasel punkti on
mitmene iseloom. Selliseid iseärasusi me käesolevas raamatus ei vaatle.

Vaatleme järgnevalt niisuguseid iseäraseid punkte, mille puhul leidub piir-
kond 0< ♣z−z0♣<R, kus w = f(z) on regulaarne. Niisuguste isoleeritud sin-
gulaarsete punktide juures eristame kolme tüüpi iseärasusi, olenevalt sellest,
kuidas vaadeldava punkti ümbruses käitub funktsioon f .

Punkti z0 nimetatakse funktsiooni f kõrvaldatavaks iseäraseks punk-
tiks, kui eksisteerib lõplik piirväärtus

lim
z→z0

= A.

Punkti z0 nimetatakse funktsiooni f pooluseks, kui

lim
x→z0

f(z) = ∞.

Punkti z0 nimetatakse funktsiooni f oluliselt iseäraseks punktiks, kui
funktsioonil f pole selles punktiks ei lõplikku ega lõpmatut piirväärtust.

Näide 1. Vaatleme funktsiooni w = f(z) =
sin(z)

z
. Selle funktsiooni ainsaks

iseäraseks punktiks on nullpunkt. Et aga lim
z→0

f(z) = 1, siis on vaadeldav punkt

sellele funktsioonile kõrvaldatav iseärane punkt.

123
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Näide 2. Murdlineaarse funktsiooni w =
az+ b

cz+ b
iseäraseks punktiks Ű poolu-

seks on z0 = −d

c
.

Näide 3. Nullpunkt on iseäraseks punktiks ka funktsioonile w = e
1/z. Kui z

läheneb nullile nii, et ta on positiivne, siis
1

z
→ +∞ ning e

1/z → +∞. Kui aga

z läheneb nullile reaaltelje negatiivselt poolelt, siis
1

z
→ −∞ ning e

1/2 → 0.

Vaadeldav punkt on seega oluliselt iseärane punkt.

Niisuguste isoleeritud punktide täielikumaks uurimiseks on meil vaja ana-
lüütilist aparatuuri, mis võimaldaks esitada regulaarset funktsioon piirkon-
nas 0 < ♣z− z0♣ < R. Sellise aparatuuri annab järgmises jaotises vaadedav
Laurent’i rida.

Ülesanded

1. Tõestada, et kui z= a on funktsioonide w= f(z) ja w= g(z) isoleeritud
isepärane punkt, siis on ta seda ka funktsioonidele w = f(z) + g(z) ja
w = f(z)g(z).

2. Olgu funktsioonil w= f(z) kõrvaldatav katkevus punktis a. Näidata, et
sel juhul on punkt a funktsioonile w= f(z)+g(z) sama liiki isoleeritud
isepäraseks punktiks, nagu ta on funktsioonile w = g(z).

6.2. LAURENT’I RIDA

Olgu funktsioon w= f(z) regulaarne rõngas r < ♣z−a♣<R (erijuhul r= 0
ja R= ∞). Võtame selles rõngas kaks ringjoont C1 ja C2 (vt. joon. 6.1). Olgu
need ringjooned valitud nii, et vaadeldav punkt asub nende vahel. Meie jaoks
on oluline, et joontel C1 ja C2 on funktsioon pidev ning me võime rakendada
joontega C1 ja C2 piiratud piirkonna jaoks Cauchy valemit. Viimase põhjal

f(z) =
1

2πi

∫

C2

f(ζ)dζ

ζ− z
− 1

2πi

∫

C1

f(ζ)dζ

ζ− z
, (6.1)
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a

r

C1

C2

R

Joonis 6.1

Kui ζ ∈ C1, siis

∣

∣

∣

∣

∣

ζ−a

z−a

∣

∣

∣

∣

∣

< 1, ning me saame, et

1

ζ− z
=

1

ζ−a− (z−a)
=

1

z−a

1
ζ−a
z−a −1

:=
∞
∑

k=0

(ζ−a)k

(z−a)k+1
.

Saadud rida osutub ühtlaselt koonduvaks joonel C1 ning ta on seda ka pärast

korrutamist teguriga
1

2πi
f(ζ), mistõttu

− 1

2πi

∫

C1

f(ζ)dζ

ζ− z
=

∞
∑

k=0







1

2πi

∫

C1

f(ζ)(ζ−a)kdζ







1

(z−a)k+1
. (6.2)

Kui aga ζ ∈ C2, siis

∣

∣

∣

∣

∣

z−a

ζ−a

∣

∣

∣

∣

∣

< 1 ning

1

ζ− z
=

∞
∑

k=0

(z−a)k

(ζ−a)k+1
.

Analoogiliset eelnevaga saame siis, et

1

2πi

∫

C2

f(ζ)dζ

ζ− z
=

∞
∑

k=0







1

2πi

∫

C2

f(ζ)dζ

(ζ−a)k+1





(z−a)k. (6.3)

Tähistades

ak =
1

2πi

∫

c2

f(ζ)dζ

(ζ−a)k+1
(k = 0,1, . . .), (6.4)
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bk =
1

2πi

∫

C1

f(ζ)(ζ−a)k−1dζ (k = 1,2, . . .), (6.5)

saame seoste (6.2) ja (6.3) põhjal, et

f(z) =
∞
∑

k=0

ak(z−a)k +
∞
∑

k=0

bk+1

(z−a)k+1
=

∞
∑

k=0

ak(z−a)k +
∞
∑

k=1

bk
(z−a)k

=

=
∞
∑

k=−∞

ck(z−a)k,

kui ck = ak (k = 0,1, . . .) ning ck = b−k (k = −1,−2, . . .). Et Cauchy teo-
reemi põhjal (mitmelisidusate piirkondade puhul) võime valemites (6.4) ja
(6.5) ringjooned C1 ja C2 asendada nende vahel asuva ringjoonega C, mille
keskpunkt on punktis a, siis suuruste ck deĄnitsiooni kohaselt

ck =
1

2πi

∫

C

f(ζ)dζ

(ζ−a)k+1
(k = 0,±1,±2, . . .). (6.6)

Seega kehtib vaadeldava rõnga r < ♣z−a♣<R igas punktis z seos

f(z) =
∞
∑

k=−∞

ck(z−a)k, (6.7)

kus kordajad ck avalduvad valemiga (6.6). Rida (6.7) nimetatakse Laurent’i
reaks, kusjuures mittenegatiivsete astendajatega liikmete summat

f1(z) =
∞
∑

k=0

ck(z−a)k

nimetatakse Laurent’i rea korrapäraseks osaks. Negatiivsete astendajatega
liimete summat

f2(z) =
−∞
∑

k=−1

ck(z−a)k =
∞
∑

k=1

c−k

(z−a)k

nimetage Laurent’i rea peaosaks. Erijuhul, kui peaosa võrdub nulliga, saame
Laurent’i reast Taylori rea.

Et korrapärane osa on astmerida, siis tema koonduvuspiirkonnaks on ring
♣z−a♣<R, mis ulatub punktist a kuni funktsiooni ω = f1(z) (siis ka funkt-
siooni ω= f(z) , sest ω= f1(z)+f2(z)) lähima iseärase punktini. Mis puutub
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peaosasse, siis see on astmerida suuruse t = (z− a)−1 suhtes ning koondub
mingis ringis ♣t♣< 1/r, s.t. piirkonnas ♣z−a♣> r. Raadiust r võib vähendada
senikaua, kuni piirkond ♣z− a♣ > r ei sisalda ühtegi f2 iseärast punkti. Vii-
mane on ka funktsiooni f iseärane punkt. Seega on funktsiooni f Laurent’i
rea (6.7) koonduvuspiirkonnaks maksimaalne rõngas r < ♣z− a♣ < R, kus f
on regulaarne.

Näitame nüüd, et Laurent’i reaksarendus on ühene. Teisiti öeldes, kui rida

∞
∑

k=−∞

ck(z−a)k (6.8)

koondub mingis rõngas r < ♣z−a♣<R, siis on ta seal oma summa Laurent’i
rida.

Tõepoolest, avaldises

∞
∑

k=−∞

ck(z−a)k =
∞
∑

k=0

ck(z−a)k +
∞
∑

k=1

c−k

(z−a)k

koonduvad viimased read vastavalt piirkondades ♣z− a♣ < R ja ♣z− a♣ > r.
Seega on real (6.8) mõte vaid juhul, kui r < R. Sel juhul määrab rida (6.8)
oma summana teatava funktsiooni f . Abeli 1. teooremi kohaselt koondub rida
∞
∑

k=0

ck(z−a)k ühtlaselt igas kinnises ringis ♣z−a♣ ⩽ R1 < R. Sama teoreemi

põhjal koondub teine rida
∞
∑

k=1

c−k(z−a)−k ühtlaselt igas kinnises piirkonnas

(♣z−a♣)−1
⩽ 1/r1 < 1/r, s.t. piirkonnas ♣z−a♣ ⩾ r1 > r. Seega koondub rida

(6.8) ühtlaselt igas kinnises ĎrõngasŞ r < r1 ⩽♣z−a♣ ⩽R1 <R.
Võtame nüüd mingi ringjoone ♣z− a♣ = ϱ (r1 < ϱ < R1). Et rida (6.8)

koondub ühtlaselt sellel ringjoonel, siis võib avaldist

1

2πi

f(ζ)

(ζ−a)n+1
=

1

2πi

∞
∑

k=−∞

ck(ζ−a)k−n−1

(f(z) tähistab rea (6.8) summat) liikmeti integreerida üle ringjoone ♣ζ −
a♣ = ϱ (lühilduse mõttes märgime viimase sümboliga C). Vaadeldava avaldise
parema poole liikmete integreerimisel saame cn, s.t.

1

2πi

∫

C

f(ζ)dζ

(ζ−a)n+1
= cn.
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Tõepoolest, et

∫

C

(ζ−a)m dζ =







0, kui m ̸= −1,

2π, kui m= −1,

siis viimase rea liikmeti integreerimisel saame nullist erineva tulemuse −2πi
vaid sel juhul kui k−n−1 = −1, s.t. k = n.

Saadud tulemustest selgub, et rea (6.8) kordajad on selle rea summa suh-
tes Laurent’i rea kordajad, See aga ütlebki, et funktsiooni võib Laurent’i
reaks arendada vaid ühesel viisil.

Sellel tõsiasjal on suur praktiline tähtsus. Nüüd me ei tarvitse kasutada
valemeid (6.6), kui tahame funktsiooni arendada Laurent’i reaks (valemis
(6.6) esineva integraali arvutamine on enamasti väga tülikas), sest sageli
õnnestub leida rida (6.8) hoopis lihtsamate vahenditega. Kui saame rea, mis
teatavas ĎrõngasŞ koondub vaadeldavaks funktsiooniks, siis võime väita, et
saadu ongi selle funktsiooni Laurent’i rida. Illustreerime ülalöeldut näitega.

Näide. Vaatleme funktsiooni

ω = f(z) =
3

(z−1)(z+2)

arendamist Laurent’i reaks z astmete järgi (sel juhul a= 0). Et funktsioonil
f on kaks iseärast punkti z1 = 1 ja z2 = −2, siis on võimalik valida kolm
erinevat piirkonda (ĎrõngastŞ): ♣z♣ < 1, 1 < ♣z♣ < 2 ja ♣z♣ > 2. Need on kolm
ĎrõngastŞ, milleks jagatakse tasand ringjoontega, mis läbivad funktsiooni f
iseäraseid punkte ning mille keskpunkt asub nullpunktis.

Laurent’i rea saamiseks esitame f(z) kui ratsionaalse murru osamurdude
summana:

f(z) =
3

(z−1)(z+2)
=

1

z−1
− 1

z+2
.

Iga vaadeldava ĎrõngaŞ puhul teisendame need osamurrud selliselt, et meil
oleks tegemist geomeetrilise rea summaga. Niisuguse meetodiga saame iga
ratsionaalset funktsiooni arendada Laurent’i reaks ükskõik millises ĎrõngasŞ.

1. Vaatleme piirkonda ♣z♣< 1. Sel juhul

z

z−1
= − 1

1− z
= −

∞
∑

k=0

zk (6.9)
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ning

− 1

z+2
= −1

2

1

1+ z/2
= −1

2

∞
∑

k=0

(

−z

2

)k

=
∞
∑

k=0

(

−1

2

)k+1

zk. (6.10)

Seega saime, et vaadeldavas piirkonnas

f(z) =
∞
∑

k=0



(

−1

2

)k+1

−1

]

zk.

Saadud rida osutub astmereaks. See on ka loomulik, sest piirkonnas
♣z♣< 1 on meie funktsioon regulaarne ning seega analüütiline.

2. Olgu nüüd 1 < ♣z♣ < 2. Ka sel juhul on reaksarendus (6.10) õige, sest
∣

∣

∣

∣

z

2

∣

∣

∣

∣

< 1. Ei kehti aga (6.9), sest antud juhul ♣z♣> 1. Siin saame, et

1

z−1
=

1

z

1

1− 1
z

=
1

z

∞
∑

k=0

(

1

z

)k

=
∞
∑

k=0

1

zk+1
=

∞
∑

k=1

1

zk
(6.11)

Seega, piirkonnas 1< ♣z♣< 2 kehtib valem

f(z) =
∞
∑

k=0

(−1

2
)k+1zk +

∞
∑

k=0

z−k.

Saadud rida on tüüpiline Laurent’i rida.

3. Olgu lõpuks ♣z♣ > 2. Siis
∣

∣

∣

∣

1

z

∣

∣

∣

∣

< 1, mistõttu kehtib seos (6.11). Ei kehti

aga (6.10), sest
∣

∣

∣

∣

z

2

∣

∣

∣

∣

> 1. Antud juhul

− 1

z+2
= −1

z

1

1+ 2
z

= −1

z

∞
∑

k=0

(

−2

z

)k

=
∞
∑

k=1

(−2)k−1

zk
.

Seega saame, et ♣z♣> 2 puhul

f(z) =
∞
∑

k=1

1+(−2)k−1

zk
.

Saime, et sel korral koosneb Laurent’i rida vaid oma peaosast.
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Kui valemi (6.6) puhul tähistame ringjoone C raadiuse tähega ϱ, siis
saame, et

♣ck♣ =
∣

∣

∣

1

2πi

∫

C

f(ζ)dζ

(ζ−a)k+1

∣

∣

∣⩽
Mϱ2π

2πϱk+1
=
M

ϱk
,

kus M = max
ζ∈s

♣f(ζ)♣. Äsjasaadud võrratusest

♣ck♣ ⩽ M

ϱk
(k = 0,±1,±2, . . .)

nimetatkse Laurenti’i rea kordajate Cauchy võrratuseks.

Ülesanded

1. Arendada järgmiste avaldistega määratud funktsioonid Laurent’i reaks
antud piirkondades:

a)
1

z2(1− z)
, 0< ♣z♣< 1 ja ♣z♣> 1,

b)
z2 −2z+5

(z−2)(z2 +1)
, 0< ♣z−2♣< 1 ja 1< ♣z♣< 2,

c) z2e1/z, 0< ♣z♣<∞,

d) ez+1/z, 0< ♣z♣<∞,

e) sinz sin
1

z
, 0< ♣z♣<∞.

Vastus. a)
∞
∑

n=0

zn−2 ja −
∞
∑

n=0

z−(n+3),

b)
1

z−2
+ i

∞
∑

n=0

(−1)n (2+ i)n+1 − (2− i)n+1

5n+1
(z− 2)n, kusjuures r =

√
5, ja

2
∞
∑

n=1

(−1)n

z2n
−

∞
∑

n=0

zn

2n+1

c)
1

2
+ z+ z2 +

∞
∑

n=1

1

(n+2)!zn
,
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d)
∞
∑

n=0

cnz
n +

∞
∑

n=1

cnz
−n, cn =

∞
∑

k=0

1

k!(n+k)!
,

e)
∞
∑

n=0

cnz
2n +

∞
∑

n=1

cnz
−2n, cn =

∞
∑

k=0

1

(2k+1)!(2n+2k+1)!
.

6.3. KÕRVALDATAV ISEÄRANE PUNKT

Olgu funktsioonil f punktis z0 kõrvaldatav iseärane punkt, s.t lim
z→z0

f(z) =

A. Sellest järeldub, et funktsioon f on tõkestatud (♣f(z)♣ ⩽M) teatavas piir-
konnas 0< ♣z−z0♣<r, mis ei sisalda teisi iseäraseid punkte. Arendame funkt-
siooni f Laurent’i reaks selles piirkonnas (punkti z0 ümbruses):

f(z) =
∞
∑

k=−∞

ck(z− z0)k.

Cauchy võrratuse põhjal saame, et

♣ck♣ ⩽ M

ϱk
=Mϱ−k,

kus M on funktsioon f tõke vaadeldavas piirkonnas. Et ϱ võib olla kui tahes
väike, siis k < 0 korral saame, et ck = 0. Seega puudub vaadeldavas Laurent’i
reas peaosa.

Osutub, et see tulemus kehtib ka ümberpöördult. Olgu 0 < ♣z− z0♣ < r
puhul

f(z) = c0 + c1(z− z0)+ . . . (1)

Minnes selles võrduses piirile (z → z0), saame, et

lim
z→z0

f(z) = c0

s.t puntkis z0 on kõrvaldatav iseärane punkt.
Me oleme seega tõestanud järgmie teoreemi.

Teoreem. Funktsiooni f isoleeritud iseärane punkt z0 on kõrvaldatav pa-
rajasti siis, kui vaadeldava punkti ümbruses funktsiooni f Laurent’i rida ei
sisalda peaosa.
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Märkus 5. Kui f(z0) = c0, oleks funktsioon punktis z0 regulaarne. Et aga
selles punktis on eelduse kohaselt kõrvaldatav katkevus, siis kas f(z0) pole
määratud või f(z0) ̸= c0. Me võime selle iseärasuse ĎkõrvaldadaŞ, kui deĄ-
neerime f(z0) = c0. Siit järeldubki nimetus Ďkõrvaldatav iseärane punktŞ.

Märkus 6. Oma teoreemi tõestamisel nägime, et kui iseärase punkti z0 pu-
hul on funktsioon f mingis piirkonnas 0 < ♣z− z0♣ < r tõkestatud, siis on
z0 funktsioon kõrvaldatav iseärane punkt. Vastupidine järeldub kõrvaldata-
va iseärase punkti deĄnitsioonist. Seega: iseärane punkt z0 on funktsiooni
f kõrvaldatavaks iseärasuseks parajasti siis, kui f(z) on tõkestatud mingis
piirkonnas 0< ♣z− z0♣< r.

Näide. Olgu ω = f(z) =
1

z
(ez −1). Siin z = 0 on iseärane punkt. Et

ez −1 =
∞
∑

k=0

zk

k!
−1 = z+

z2

2!
+
z3

3!
+ . . . ,

siis

f(z) = 1+
z2

2!
+
z3

3!
+ . . . .

Seega on antud funktsioonil kõrvaldatav iseärasus punktis z = 0.

6.4. POOLUSED JA NULLKOHAD

Kui punkt z0 on funktsiooni f poolus, siis vastavalt pooluse deĄnitsioonile
lim

z→z0
f(z) = ∞. Siit aga järeldub, et iga M > 0 puhul leidub piirkond 0 <

♣z− z0♣ < r, milles (♣f(z)♣) > M . Selles piirkonnas on siis funktsioon w =
g(z) = 1/f(z) regulaarne, kusjuures lim

z→z0
g(z) = 0. DeĄneerides g(z0) = 0,

saame, et w = g(z) on regulaarne ringis ♣z− z0♣< r
Vastupidi, kui z0 on regulaarse funktsiooni ω = g(z) nullkoht, siis leidub

analüütiliste funktsioonide ainsuse teoreemi kohaselt piirkond 0 < ♣z− z0♣ <
r, milles pole teisi ω = g(z) nullkohti. Selles piirkonnas on siis funktsioon
ω = f(z) = 1/g(z) regulaarne, kusjuures punktis z0 on tal poolus.

Sellega on meil tõestatud järgmine teoreem.

Teoreem 1. Funktsioonil w = f(z), mis on regulaarne piirkonnas 0 < ♣z−
z0♣< r, on punktis z0 poolus parajasti, siis kui funktsioonil

w = g(z) =
1

f(z)
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on selles punktis nullkoht.

Märkus. Äsjasõnastatud teoreemi puhul loeme funktsioon g väärtuseks punk-
tis z0 tema piirväärtust selles punktis. Eeldame ka, et g pole samaselt null.

Kui z0 on funktsiooni g k-järku nullkoht, siis

g(z) = ck(z− z0)k + ck+1(z− z0)k+1 + . . .=

= (z− z0)k[ck + ck+1(z− z0)+ . . .] = (z− z0)kφ(z),

kus φ(z0) = ck ̸= 0.

Funktsiooni w = g(z) = 1/f(z) nullkoha järku nimetatakse funktsiooni f
pooluse järguks.

Teoreem 2. Isoleeritud iseärane punkti z0 on funktsiooni f pooluseks pa-
rajasti siis, kui selle punkti ümbruses vaadeldava funktsiooni Laurent’i rea
peasosa sisaldab vaid lõpliku arvu liikmeid, s.t punkti z0 ümbruses kehtib va-
lem

f(z) =
c−k

(z− z0)k
+ . . .+

c−1

z− z0
+ c0 + c1(z− z0)+ . . .+ cn(z− z0)n + . . . .

Seejuures on suurim astendaja, mis esineb peasoas liikmete nimetajas, võrdne
pooluse järguga.

Tõestus. 1. Olgu z0 funktsiooni f k-järku poolus. Sel juhul on funktsioonil
w = g(z) = 1/f(z) k-järku nullkoht punktis z0, s.t

ω = g(z) =
1

f(z)
= (z− z0)kφ(z),kusφ(z0) ̸= 0.

Viimase tingimuse tõttu on funktsioon ω = 1/f(z) analüütiline punktis
z0, mistõttu

f(z) =
1

(z− z0)k

1

φ(z)
=

1

(z− z0)k
[b0 + b1(z− z0)+ . . .] =

=
b0

(z− z0)k
+

b1
(z− z0)k−1

+ . . .
bk−1

z− z0
+ bk + bk+1(z− z0)+ . . . .

Saadud rida on funktsiooni w = f(z) Laurent’i rida punkti z0 ümbru-
ses. Tema peaosa sisaldab lõpliku arvu liikmeid. Tarvilikkus on seega
tõestatud.



134 PEATÜKK 6. ANALÜÜTILISE FUNKTSIOONI ISEÄRASED. . .

2. Kehtigu mingis piirkonnas 0< ♣z− z0♣< r võrdus

f(z) =
ck

(z− z0)k
+ . . .+

c1
z− z0

+ c0 + c1(z− z0)+ . . . .

Siit saame, et

f(z) =
1

(z− z0)k
[c−k + c−k+1(z− z0)+ . . .] =

φ(z)

(z− z0)k
,

kus φ(z0) ̸= 0. Viimasest aga järeldub, et

g(z) =
1

f(z)
= (z− z0)k 1

φ(z)
,

kus ω = 1/φ(z) on analüütiline punktis z0. Seega on z0 funktsiooni g k-
järku nullkoht. Vastavalt teoreemile ???? ning deĄnitsioonile on punkt
z0 funktsiooni f k-järku poolus. Teoreem on sellega tõestatud.

Ülesanded

1. Leida järgmiste avaldistega määratud funktsioonide poolused ja mää-
rata nende järk:

a)
1

z2 − z3
,

b)
sinz

(1+ z2)2
,

c)
sin4z

z(1− e−z)

d)
1

sinz− sina
,

e)
1

1+e2z
,

f)
1

ez −1
− 1

z
,

Vastus. a) 0 Ű 2.järku ja 1 Ű 1. järku poolus; b) ±i Ű 2. järku poolused; c) 0

Ű 1. järku ja 2kπi (k = ±1,±2, . . .) Ű 1. järku poolused; d) kui a ̸= (2m+1)
π

2
(m= 0,±1, . . .), siis z = 2kπ+a ja z = (2k+1)π−a (k= 0,±1, . . .) on 1. järku

poolused; kui a = (2m+ 1)
π

2
, siis m = 2p korral on punktid z = 2kπ+

π

2
2.

järku poolused, m = 2p+ 1 korral on puntkid z = (2kπ+ 1)π+
π

2
2. järku

poolused; e) z = (2k+1)
π

2
i (k = 0,±1,±2, . . .) 1. järku poolused; f) z = 2kπi

(k = ±1,±2, . . .) 1. järku poolused.
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6.5. OLULISELT ISEÄRANE PUNKT

Eelmises kahes jaotises saadud tulemusi arvestades võime öelda, et kehtib
järgmine teoreem.

Teoreem. Isoleeritud iseärane punkt z0 on funktsiooni f oluliselt iseärane
punt parajasti siis, kui funktsiooni f Laurent’i rea peasoa selle punkti ümb-
ruses sisaldab lõpmatu palju liikmeid.

Järgnevas tõestame ühe teoreemi oluliselt iseäraste punktide kohta, mis
aitab lähemalt iseloomustada funktsiooni käitumist oluliselt iseärase punkti
ümbruses.

Sohhotski teoreem. Kui z0 on funktsiooni f oluliselt iseäraseks punktiks,
siis leidub mis tahes kompleksarvu A (ka A= ∞) puhul punktiks z0 koonudv
jada (zn), mille puhul lim

n→∞
f(zn) = A.

Tõestus. 1) Olgu A = ∞. Et f ei saa olla tõkestatud üheski piirkonnas

0 < ♣z− z0♣ < 1

n
(vastasel korral oleks z0 kõrvaldatav iseärane punkt),

siis valime sellest piirkonnast punkti zn, mille puhul ♣f(zn)♣ < n. Siit
saamegi, et lim

n→∞
f(zn) = ∞.

2) Olgu A ̸= ∞. Kui igas piirkonnas 0 < ♣z− z0♣ < 1

n
leidub punkte, kus

f(z) = A, siis ongi Sohhotski teoreemi väide õige. Kui aga leidub piir-

kond 0< ♣z− z0♣< 1

N
, milles f(z) ̸= A, siis on funktsioon

ω = g(z) =
1

f(z)−A

regulaarne selles piirkonnas. Punkt z0 on oluliselt iseärane punkt ka
funktsioonile ω= g(z), mistõttu eelneva põhjal leidub punktiks z0 koon-
duv jada (zn), mille puhul

lim
n→∞

g(zn) = ∞.

Siit aga

lim
n→∞

f(zn) = lim
n→∞



A+
1

g(zn)

]

= A.

Teoreem on sellega tõestatud.
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Ülesanded

1. Olgu funktsioonil ω = f(z) punktis a n-järku poolus. Näidata, et funk-
tioonil ω = f(z) + g(z) on selles punktis m-järku poolus (m > n) või
oluliselt iseärane punkt sõltuvalt sellest, kas see punkt on funktioonile
ω = g(z) m-järku poolus või oluliselt iseärane punkt.

2. Selgitada tõisasja, et kui z = a on funktsioonide f ja g oluliselt iseära-
ne punkt, siis summale f + g võib ta olla kõrvaldatav iseärane punkt,
poolus kui ka oluliselt iseärane punkt.

3. Olgu funktsioonil f m-järku poolus ning funktioonil g kas n-järku poo-
lus või oluliselt iseärane punkt punktis a. Tõestada, et sel juhul on
funktsioonil fg selles punktis kas (m+n)-järku poolus või oluliselt isa-
ärane punkt.

4. Näidata, et kui punkt z = a on funktioonide f ja g oluliselt iseära-
ne punkt, võib funktsioonil fg selles punktis olla iga liiki isoleeritud
iseärane punkt.

5. Olgu funktioon f analüütiline piirkonnas 0 < ♣z− a♣ < r ning punkt
a funktsiooni f nullkohtade kuhjumispunkt. Näidata, et punkt a on
funktsiooni f oluliselt iseärane punkt juhul, kui see funktsioon pole
selles piirkonnas konstantne.

6.6. FUNKTSIOONI KÄITUMINE LÕPMATUS-
PUNKTIS

Kui funktsioon f on regulaarne mingis piirkonnas R< ♣z♣<∞ siis ütleme,
et lõpmatuspunkt on selle funktsiooni isoleeritud iseärane punkt. DeĄneeri-
me iseärasuse tüübi lõpmatuspunktis samuti kui lõplikus punktis. Soovides
leida kriteeriume (analoogilisi jaotistes 6.3Ů6.5 tooduile) iseärasuse tüübi

määramiseks teeme muutuja vahetuse z =
1

ζ
ning saame

f(z) = f

(

1

ζ



= F (ζ).

Et ω= f(z) on regulaarne piirkonnasR< ♣z♣<∞, siis ω=F (ζ) on regulaarne

piirkonnas 0< ♣ζ♣< 1

R
ning tal on seal sama liiki iseärasus, mis funktsioonil

ω = f(z) lõpmatuspunktis.
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Kui funktsioonil ω = f(z) on lõpmatuspunktis isoleeritud iseärane punkt,
siis kõrvaldatava iseärasuse korral

f(z) = F (ζ) = c0 + c1ζ+ . . .= c0 +
c1
z

+ . . . ,

poolus puhul aga

f(z) = F (ζ) =
b−k

ζk
+
b−k+1

ζk−1
+ . . .+

b−1

ζ
+

∞
∑

n=0

bnζ
n =

= ckz
k + ck−1z

k−1 + . . .+ c1z+
∞
∑

n=0

c−n

zn

ning oluliselt iseärase punkti puhul

f(z) = F (ζ) =
∞
∑

k=1

b−k

ζk
+

∞
∑

n=0

bnζ
n =

∞
∑

n=1

cnz
n +

∞
∑

n=0

c−n

zn
.

Nendest reaksarendustest selgub, et lõpmatuspunkti ümbruses moodus-
tavad rea peaosa positiivsete astendajatega liikmed ja korrapärase osa mit-
tepositiivsete astendajatega liikmed.

Kui funktsioonil f on lõpmatuspunktis kõrvaldatav iseärasus, siis deĄnee-
rime f(∞) = lim

z→∞
f(z) ja nimetame funktsiooni f regulaarseks lõpmatus-

punktis.

Teoreem. Kui funktsioon f on regulaarne täielikul komplekstasandil, siis ta
on konstantne.

Tõestus. Regulaarsusest lõpmatuspunktis järeldub, et leiduvad konstant
M1 > 0 ning piirkond ♣z♣>R, kus

♣f(z)♣ ⩽M1

Et aga eelduse kohaselt on f regulaarne ka kinnises piirkonnas ♣z♣ ⩽ R, siis
on ta seal pidev ning seega tõkestatud, s.t.

♣f(z)♣ ⩽M2.

Võttes M = max(M1,M2), saame, et ♣f(z)♣ ⩽M iga z puhul.
Seega saime, et funktsioon f on tõkestatud kogu tasandil, mistõttu Liou-

ville’i teoreemi põhjal on ta konstantne.

Tõestatud teoreemist järeldub, et huvi pakuvad vaid need analüütilised
funkstioonid, millel on vähemalt üks (kas siis lõplik või lõpmatu) iseärane
punkt. Neid vaatlemegi lähemalt järgmises jaotises.
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Ülesanded

1. Kas saab järgmiste avaldistega määratud funktsioone arendada Lau-
rent’i reaks lõpmatuspunkti ümbruses:

a) cos
1

z
,

b) cotz,

c) ln
1

z−1
,

d)
√

z(z−1)?

Vastus. a) jah, b) ei, c) ei, d) ja (mõlemate harude puhul)

2. Arendada funktsioon ω= ln
z−a

z− b
Laurent’i reaks lõpmatuspunkti ümb-

ruses.

Vastus.
∞
∑

n=1

bn −an

nzn
, kus ♣z♣>max(♣a♣, ♣b♣).

6.7. LIHTSAMAD ANALÜÜTILISTE FUNKSTIOO-
NIDE KLASSID

Me teame, et kui ω = f(z) on täisfunktsioon, siis rida

f(z) =
∑

n
cnz

n (6.1)

koondub kogu komplekstasandil, s.t. piirkonnas ♣z♣<∞. Seetõttu võime rida
(6.1) vaadelda ka kui funktsiooni ω = f(z) arendust Laurent’i reaks punktis
z = ∞. Seda asjaolu silmas pidades saame öelda järgmist:

1) kui täisfunktsioon on regulaarne ka lõpmatuspunktis, siis on ta kons-
tantne;

2) kui lõpmatuspunkt on täisfunktsiooni pooluseks, siis on see funktsioon
polünoom (täisratsionaalne funktsioon);

3) kui lõpmatuspunkt on oluliselt iseärane punkt funktsioonile ω = f(z),
siis sisaldab rida (6.1) lõpmata palju liikmeid.

Viimasel juhul nimetatakse funktsiooni f täistranstsendentseks
funktsiooniks. Sellise funktsiooni näideteks on ω = ez, ω = sinz, ω = cosz
jt.
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Funktsiooni f , millel kõik lõplikus kauguses asuvad iseärased punktid on
poolused, nimetatakse meromorfseks. Osutub, et komplekstasandi igas lõp-
likus ja kinnises osas võib meromorfsel funktsioonil olla vaid lõplik arv poo-
luseid. Tõepoolest, kui seal oleks lõpmata hulk pooluseid, siis oleks neil vähe-
malt üks kuhjumishulk a. Viimane on selle funktsiooni iseärane punkt, sest
selles punktis ei saa funktsioonil olla lõplikku piirväärtust. Seega ei saa funkt-
sioon olla regulaarne oma pooluste kuhjumispunktis. Teiselt poolt: punkt a
ei ole poolus, sest poolus on isoleeritud iseärane punkt, mida aga pole punkt
a. Seega saame, et kui funktsioonil f oleks mingis lõplikus ja kinnises piirkon-
nas lõpmatu hulk pooluseid, siis oleks tal lõplikus kauguses veel üks iseärane
punkt, mis pole poolus. Ent see on vastuolus meromorfse funktsiooni deĄnit-
siooniga. Seega on meie väide tõestatud.

Kogu komplekstasandil aga võib meromorfsel funktsioonil olla lõpmatu
hulk pooluseid (näiteks funktsioonidel ω = tanz ja ω = cotz).

Teoreem. Kui funktsiooni f kõik iseärased punktid täielikul komplekstasandil
on poolused, on see funktsioon ratsionaalne.

Tõestus. Märgime kõigepealt, et tehtud eeldustel on funktsioonil f vaid lõplik
arv pooluseid. Tõepoolest, kui neid oleks lõpmata palju, siis oleks vähemalt
lõpmatuspunkt nende kuhjumispunktiks, mistõttu sellel funktsioonil oleks
täielikul tasandil ka teisi iseäraseid punkte peale pooluste.

Olgu punktid a1, . . . ,an funktsiooni f poolused (lõplikus kauguses asuvad
poolused). Nende pooluste ümbruses olgu Laurent’i ridade peaosad vastavalt

g1(z) =
am

(z−a1)m
+ . . .+

a1

z−a1
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

gn(z) =
cp

(z−an)p
+ . . .+

c1
z−a1

.

Lõpmatuspunkti ümbruses olgu funktsiooni f Laurent’i rea peaosa

g(z) = A1z+ . . .+Aqz
q

(kui funktsioon f on regulaarne lõpmatuspunktis, siis A1 = . . .= Aq = 0).
Vaatleme funktsiooni

ω = h(z) = f(z)−g(z)−
n
∑

k=1

gk(z).
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See funktsioon on regulaarne igas lõplikus punktis z ̸= an, sest ta avaldub
lõpliku arvu regulaarsete funktsioonide summana. Igas punktis z = ak on tal
kõrvaldatav iseärane punkt, sest kõikide nende puntkide ümbruses puudub
funktsiooni h Laurent’i reaksarendistel peaosa. Tõepoolest, punkti z = ak

ümbruses on funktioonide ω = f(z) ja ω = gk(z) Laurent’i ridade peaosad
võrdsed ning kõik ülejäänud funktsioonid h avaldises peale nende funktsioo-
nide on regulaarsed punktis z = ak. Sama kehtib ka lõpmatuspunkti korral.

Kui deĄneerida sobivalt funktsiooni h väärtused punktides z = ak (k =
1,2, . . . ,n) ja z = ∞, siis saame funktsiooni, mis on regulaarne täielikul ta-
sandil, s.t. h(z) = A0. Seega

f(z) = A0 +g(z)+
n
∑

k=1

gk(z) = A0 +A1z+A2z
2 +

+ . . .+Aqz
q +

am

(z−a1)m
+ · · ·+ a1

z−a1
+

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+
cp

(z−an)p
+ · · ·+ c1

z−an
.

Saadud võrdusest järeldubki meie teoreemi väide, sest kui teostaksime
viimases avaldises vajalikud aritmeetilised tehted, ilmneks, et funktsioon f
avaldub kahe polünoomi jagatisena, s.t. on ratsionaalne.

Märkus. Viimati saadud võrdus näitab muuseas, et igat ratsionaalset funkt-
siooni on võimalik esitada selle täisosa ja osamurdude summana. Reaalsete
ratsionaalsete funktsioonide puhul vaadeldi seda esitist seoses ratsionaalsete
funktsioonide integreerimisega.



7. RESIIDIDE TEOORIA

7.1. RESIIDID

Kui funktsioon f on regulaarne puntki a mingis ümbruses, siis kehtib
Cauchy teoreemi põhjal võrdus

∫

C

f(z)dz = 0

igas sellesse ümbrusesse kuuluva kinnise joone C puhul. Kui aga punkt a
on isoleeritud iseärane punkt, erineb selle integraali väärtus üldiselt nullist.
Osutub, et selle integraali väärtus ei sõltu joone kujust. Oluline on vaid,
et joon C ei hõlmaks funktsiooni f teisi iseäraseid punkte peale punkti a.
Tõepoolest, arendades funktsiooni f Laurent’i reaks piirkonnas 0< ♣z−a♣<
r, saame avaldise

f(z) =
∞
∑

n=0

cn(z−a)n +
∞
∑

n=1

c−n

(z−a)n
.

Et saadud rida koondub ühtlaselt joonel C, kui viimane kuulub ülalmärgitud
piirkonda, siis võime seda rida liikmeti integreerida üle joone C, mistõttu

∫

C

f(z)dz = 2πic−1,

sest

∫

C

(z−a)m dz =







0, kui m ̸= −1,

2πi, kui m= −1.

Saadud tulemustest selgub, et eriline tähtsus on isoleeritud iseärase punkti
ümbruses võetud Laurent’i rea kordajal c−1, mistõttu on talle antud eriline
nimetus Ů resiid. Selle mõiste tõi kompleksmuutuja funktsioonide teooriasse
Cauchy, kes näitas ka resiidi mõistele mitmesuguseid rakendusi.

Hilisemal perioodil on resiidi mõistet deĄneeritud mitmeti. Oma sisult on
need deĄnitsioonid aga ühetähenduslikud. Et saavutada ühtsust nii lõplike
punktide kui ka lõpmatuspunkti puhul, deĄneerime resiidi mõiste järgmiselt.

141
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Funktsiooni f resiidiks punktis a nimetatakse suurust

res [f(z);a] =
1

2πi

∫

C

f(z)dz,

kus C on punkti a niisugune ümbruse rajajoon, mis iseärastest punktidest
sisaldab vaid punkti a.

Märkus. Arvestades, et ümbruse rajajoone positiivseks suunaks on see, mi-
da mööda liikudes ümbrus jääb vasakule, saame esitatud deĄnitsioonist, et
lõpliku a korral

res [f(z);a] =
1

2πi

∫

♣z−a♣=r

f(z)dz

ning lõpmatuspunkti puhul

res [f(z);∞] = − 1

2πi

∫

♣z♣=R

f(z)dz.

On vahetult selge, et toodud deĄnitsioon on sisuliselt samaväärne sellega,
et nimetada resiidiks kordajat c−1. Teiselt poolt on oluline märkida erine-
vust, mis ilmneb lõpliku ja lõpmatuspunkti vahel. Kui z = a on lõplik ning
funktsiooni f Laurent’i rea kordaja c−1 = 0. Seega on resiid võrdne nulliga
funktsiooni lõplikus kauguses asuva kõrvaldatava iseärase punkti suhtes. Kui
aga kõrvaldatavaks iseäraseks punktiks on lõpmatuspunkt (sel juhul öeldak-
se, et funktsioon on regulaarne lõpmatuspunktis), ei tarvitse resiid olla null.

Näiteks funktsiooni ω =
1

z
puhul

res
[

1

z
;∞

]

= − 1

2πi

∫

♣z♣=R

1

z
dz = − 1

2πi
·2πi = −1.

Oluline on rõhutada, et lõpmatuspunkti puhul ei võrdu resiid lõpmatus-
punkti ümbruses võetud Laurent’i rea

f(z) =
∞
∑

n=0

cnz
n +

∞
∑

n=1

c−n

zn

kordajaga c−1, vaid selle vastandväärtusega −c−1. Et sel juhul kuulub kor-
daja c−1 rea korrapärasesse ossa, ei tarvitse viimane võrduda nullliga, kui
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funktsioon on lõpmatuspunktis regulaarne. Erandjuhtudel võib see siiski nii
olla, näiteks

res
[

1

z2
;∞

]

= 0.

Arvestades resiidi mõistet, võime Cauchy teoreemi üldistada resiidide
teooria põhiteoreemiks.

Teoreem. Kui funktioon f on regulaarne tõkestatud piirkonnas D, välja
arvatud lõplik arv punkte a1,a2, . . . ,an, ning pidev kuni selle piirkonna ra-
jajooneni C, siis

∫

C

f(z)dz = 2πi
n
∑

k=1

res [f(z);ak] .

Tõestus. Eraldame kõik iseärased punktid ak ringjoontega Ck, mis omavahel
ei lõiku ega asu üksteise sees. Ülejääänud piirkonnas on f regulaarne ning
me võime kasutada Cauchy teoreemi mitmelisidusate piirkondade jaoks. Selle
põhjal

∫

C

f(z)dz =
∞
∑

k=1

∫

Ck

f(z)dz.

Arvestades resiidi deĄnitsiooni, saame siit vahetult teoreemi väite.

Järeldus. Kui funktsioon f on regulaarne täielikul komplekstasandil, välja
arvatud lõplik arv punkte, siis on tema resiidide summa kõikide iseäraste
punktide suhtes (kaasa arvatud lõpmatuspunkt) võrdne nulliga.

Tõestus. Võtame ringjoone ♣z♣ =R selliselt, et kõik lõplikus kauguses asuvad
iseärased punktid ak (k = 1,2, . . . ,n) on selle ringjoonega hõlmatud. Äsja-
tõestatud teoreemi põhjal

2πi
n
∑

k=1

res [f(z);ak] =
∫

♣z♣=R

f(z)dz.

Teiselt poolt, deĄnitsiooni põhjal

2πi res [f(z);∞] = −
∫

♣z♣=R

f(z)dz.

Nendest kahest võrdusest järeldubki väide.
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Ülesanded

1. Olgu h regulaarne punktis a ning h(a) ̸= 0. Näidata, et punkt a on
funktsioonile

ω = f(z) =
h(z)

z−a

pooluseks ning res [f(z);a] = h(a)

2. Arvutada järgmised integraalid:

a)
∫

♣z♣=r

sin
1

z
dz,

b)
∫

♣z♣=r

sin2 1

z
dz,

c)
∫

♣z♣=r

zne2/zdz (n on täisarv),

d)
∫

♣z♣=2

5z−2

(z−1)z
dz.

Vastus. a) 2πi, b) 0, c)
2n+2

(n+1)!
·πi (n⩾ −1) ja 0 (n <−1), d) 10πi.

7.2. RESIIDIDE ARVUTAMINE

a) Funktsiooni f esimest järku pooluse z = a puhul kehtib valem

f(z) =
c−1

z−a
+φ(z),

kus φ on analüütiline punkt a ümbruses. Sellest võrdusest leiame, et

c−1 = (z−a)f(z)− (z−a)φ(z),

millest saame (minnes piirile z → a) järgmise valemi resiidi leidmiseks:

res [f(z);a] = c−1 = lim
z→0

(z−a)f(z), (7.1)

sest lim
z→a

(z−a)φ(z) = 0.

Näide 1. Olgu f(z) =
z2

z2 −4
. Leiame res[f(z);2]. Saame, et

res



z2

z2 −4
;2

]

= lim
z→2

(z−2)
z2

z2 −4
= lim

z→2

z2

z+2
= 1.
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Kui funktsioon avaldub kujul

f(z) =
g(z)

h(z)
, kus g(a) ̸= 0,

ning z = a on funktsiooni h esimest järku nullkoht (seega on punkt a funkt-
siooni f esimest järku poolus), siis

res[f(z);a] = lim
z→a

(z−a)
g(z)

h(z)
= lim

z→a

g(z)
h(z)
z−a

.

Et aga

lim
z→a

h(z)

z−a
= lim

z→a

h(z)−h(a)

z−a
= h′(a),

siis saame siit valemi

res



g(z)

h(z)
;a

]

=
g(a)

h′(a)
. (7.2)

Näide 2. Olgu w = f(z) = cotz. Punktid z = kπ (k = 0,±1,±2, . . .) on selle
funktsiooni esimest järku poolusteks. Leiame nendes resiidid valemi (7.2)
põhjal:

res[cotz;kπ] =
cosz

(sinz)′

∣

∣

∣

∣

∣

z=kπ

= 1.

b) Olgu punkt z = a funktsiooni f kõrgemat järku pooluseks. Ka sel ju-
hul saame suhteliselt lihtsa valemi resiidi leidmiseks. See valem osutub üldis-
tuseks valemile (7.1). Me teame, et funktsiooni f k-järku pooluse a ümbruses
kehtib seos

f(z) = φ(z)+
c−1

z−a
+

c−2

(z−a)2
+ . . .+

c−k

(z−a)k
,

kus φ on analüütiline vaadeldavas ümbruses. Sellest seosest saame, et

(z−a)kf(z) = (z−a)kφ(z)+ c−1(z−a)k−1 + . . .+ c−k.

Kui viimast seost diferentseerida k−1 korda, siis saame võrduse

dk−1

dzk−1
[(z−a)kf(z)] =

dk−1

dzk−1
[(z−a)kφ(z)]+ (k−1)!c−1. (7.3)
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Et z = a on avaldisega (z− a)kφ(z) määratud funktsiooni suhtes vähemalt
k-järku nullkoht, siis

lim
z→a

dk−1

dzk−1
[(z−a)kφ(z)] = 0.

Viimast tulemust arvestades saame seose (7.3) põhjal järgmise valemi:

res[f(z);a] = c−1 =
1

(k−1)!
lim
z→a

dk−1

dzk−1
[(z−a)kf(z)]. (7.4)

Kui võtta k = 1, siis saame valemist (7.4) valemi (7.1).

Näide 3. Leida funktsiooni w = f(z) = (z2 +1)−n resiid punktis z = i.
Vastavalt valemile (7.4) saame, et

res[f(z); i] = lim
z→i

1

(n−1)!

dn−1

dzn−1



(z− i)n 1

(z2 +1)n

]

= lim
z→i

1

(n−1)!

dn−1

dzn−1



1

(z+i)n

]

= lim
z→i

(−1)n−1n(n+1) . . .(2n−2)

(n−1)!(z+i)2n−1

= (i2)n−1n(n+1) . . .(2n−2)

(n−1)!(2i)2n−1

=
1

i

n(n+1) . . .(2n−2)

(n−1)!

1

22n−1

= −i

(

n−1

2n−2



2i−2n.

c) Vaatleme nüüd juhtu, kus punkt a on funktsiooni f oluliselt iseärane
punkt. Sel juhul ei ole resiidi leidmiseks nii lihtsaid valemeid kui pooluste
korral. Oluliselt iseärase punkti korral kasutatakse selleks enamikel juhtudel
Laurent’i rida vaadeldava punkti a ümbruses. Viimase puhul on vaja määrata
vaid kordaja c−1. Sageli on seda kordajat suhteliselt lihtne leida.

Näide 4. Leida funktsiooni w = ez+1/z resiidid iseäraste punktide suhtes. Et
vaadeldava funktsiooni iseäraseks punktiks on punkt z = 0, siis tuleb leida
selle funktsiooni reaksarendus punkti z = 0 ümbruses. On aga teada, et

ez =
∞
∑

n=0

zn

n!
ning e1/z =

∞
∑

n=0

1

n!zn
,
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mistõttu

ez+1/z = eze1/z :=

(

1+ z+
z2

2!
+ . . .



(

1+
1

z
+

1

2!z2
+ . . .

)

.

Korrutades need kaks rida, saame z−1 sisaldavad liikmed vaid juhul, kui
korrutame esimese rea esimese liikme teise rea teise liikmega, teise kolman-
daga, kolmanda nejandaga jne. Seega

c−1 =
∞
∑

n=0

1

n!(n+1)!
.

Sellega olemegi leidnud resiidi nullpunkti suhtes.
Teiseks iseäraseks punktiks on z = ∞. Et rohkem iseäraseid punkte pole,

siis saame eelmises jaotises toodud järelduse põhjal, et

res[f(z);∞] = −res[f(z);0] = −
∞
∑

n=0

1

n!(n+1)!
.

Analoogilisel viisil saab nii mõnigi kord kasutada nimetatud järeldust
resiidide leidmiseks.

d) Mõnel juhul resiidi leidmine lihtsustub, kui peame silmas seoseid

res[f(z)+g(z);a] = res[f(z);a]+ res[g(z);a] ja

res[kf(z);a] = k res[f(z);a],

mis järelduvad vahetult resiidi deĄnitsioonist.

Näide 5. Leida funktsiooni w= cos
1

z+1
+

ez

z+1
resiidid tema iseäraste punk-

tide suhtes.
Sel juhul on iseäraseks punktiks z = −1, mis esimese liidetava suhtes on

oluliselt iseärane punkt ning teise suhtes esimest järku poolus. Viimase korral
saame, et

res



ez

z+1
;−1

]

=
ez

(z+1)′

∣

∣

∣

∣

∣

z=−1

= e−1 =
1

e
.

Mis puutub esimesse liidetavasse, siis, arvestades cosz Maclaureni rida,
saame reaksarenduse

cos
1

z+1
= 1− 1

2!(z+1)2
+ . . .
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Selles reas puudub liige, milles esineks avaldis (z+1)−1. Seega

c−1 = res
[

cos
1

z+1
;−1

]

= 0

ning siit

res[f(z);−1] =
1

e
.

Teine iseärane punkt on z = ∞. Resiidide teooria põhiteoreemi järelduse
põhjal saame, et

res[f(z);∞] = −1

e
.

Ülesanded

1. Olgu funktsioonid g ja h regulaarsed punktis a, kusjuures punkt a on
funktsiooni h teist järku nullkoht. Näidata, et sel juhul

res



g(z)

h(z)
;a

]

= 2
g′(a)

h′′(a)
− 2

3

g(a)h′′′(a)

[h′′(a)]2
.

2. Leida järgmiste avaldistega määratud funktsioonide resiidid kõikide
lõplike isoleeritud iseäraste punktide suhtes:

a)
z+1

z2 −2z
,

b) thz,

c)
1− e2z

z4
,

d)
1

sinz
,

e)
z2n

(1+ z)n
,

f)
arctanz

z
.

Vastus. a) res[f ;0] = −1

2
, res[f ;2] =

3

2
, b) res

[

f ; i
(

π

2
+kπ

)]

= 1,

c) res[f ;0] = −4

3
, d) res[f ;kπ] = (−1)k, e) res[f ;−1] = (−1)n+1

(

n+1

2n



,

f) res[f ;0] = 0.

3. Leida funktsiooni w = f(z) =
(

sin
1

z

)−1

resiidid kõikide isoleeritud ise-

äraste punktide suhtes.
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Vastus. res
[

f(z);
1

kπ

]

= (−1)k+1 1

k2π2
(k= ±1,±2, . . .) ja res[f(z);∞] =

−1

6
.

4. Piirkonnas ♣z♣>R kehtigu võrdus

f(z) = c0 +
c1
z

+ . . . .

Leida res[(f(z))2;∞].

Vastus. −2c0c1.

5. Näidata, et

res[f(z)g(z);a] =
n
∑

k=1

c−k

(k−1)!
g(k−1)(a),

kui g on analüütiline punktis a ning punkti a ümbruses kehtib seos

f(z) =
∞
∑

k=−n

ck(z−a)k.

6. Arvutada järgmised integraalid:

a)
∫

♣z♣=4

3z2 +2

(z−1)(z2 +9)
dz,

b)
∫

♣z♣=2

dz

z3(z+4)
,

c)
∫

♣z♣=2

tanz dz,

d)
∫

♣z♣=2

dz

sh2z
,

e)
∫

♣z♣=k

tankz dz (k = 1,2, . . .).

Vastus. a) 6π, b)
πi

32
, c) −4πi, d) −πi, e) −4



2k2 −1

2π

]

πi.

7.3. RESIIDIDE KASUTAMINE INTEGRAALIDE
ARVUTAMISEL

Vaatleme resiidide teooria rakendamise võimalusi määratud (ka päratu-
te) integraalide arvutamisel. Siinjuures peatume vaid kolmel üldisemal ning
suhteliselt lihtsasti käsitletaval juhul.
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Vaatleme integraali

∞
∫

−∞

P (x)

Q(x)
dx,

kus P (x) ja Q(x) on polünoomid. Et selline integraal eksisteeriks, peab po-
lünoomi Q(x) aste olema vähemalt kahe võrra kõrgem lugeja omast ning
polünoomil Q(x) ei tohi olla reaalteljel nullkohti. Eeldame, et need tingimu-
sed on täidetud.

0−R R x

y

z1

z2

z3
zn

Joonis 7.1

Võtame vaatluse alla funktsiooni

w = F (z) =
P (z)

Q(z)
.

On selge, et tehtud eeldustel lim
z→∞

zF (z) = 0, kusjuures viimane võrdus
kehtib z suhtes ühtlaselt, s.t. ei sõltu muutuja z lõpmatusele lähenemise
viisist. Et funktsioonil F on vaid lõplik arv iseäraseid punkte Ů pooluseid
(nimetaja nullkohti) Ů, siis võime valida nii suure raadiusega ringjoone ♣z♣ =
R, mis hõlmab kõiki ülemises pooltasandis asuvaid iseäraseid punkte (vt.
joon. 7.1). Seega resiidide teooria põhiteoreemi kohaselt

R
∫

−R

F (x)dx+
∫

CR

F (z)dz = 2πi
∑

Imzk>0

res[F (z);zk].

Et ülemises pooltasandis pole väljaspool vaadeldavat poolringi ühtegi ise-
ärast punkti, siis R kasvades viimase võrduse parem pool ei muutu. Seda
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arvestades läheme piirile R → ∞. Osutub, et

lim
R→∞

∫

CR

F (z)dz = 0. (7.1)

Tõepoolest, funktsioonile F seatud kitsenduste tõttu ♣zF (z)♣< ε, kui ♣z♣ =R
ning R on küllalt suur, mistõttu

∣

∣

∣

∣

∣

∣

∣

∫

CR

F (z)dz

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∫

CR

zF (z)
1

z
dz

∣

∣

∣

∣

∣

∣

∣

< ε
1

R
πR = πε.

Saadud tulemust arvestades võime öelda, et
∞
∫

−∞

F (x)dx= 2π
∑

Imzk>0

res[F (z);zk]. (7.2)

Näide 1. Leiame integraali
∞
∫

0

1

1+x2
dx.

Vastavalt valemile (7.2) saame, et
∞
∫

0

dx

1+x2
=

1

2

∞
∫

−∞

dx

1+x2
=

1

2
2π res

[

1

z2 +1
; i
]

= π
1

2z

∣

∣

∣

∣

z=i
= πi

1

2i
=
π

2
.

Osutub, et võrdus (7.1) on õige ka teistel eeldustel funktsiooni F kohta.
Ühe niisuguse tingimuse annab järgmine teoreem, mida tuntakse Jordani
lemmana.

Jordani lemma. Kui piirkonnas ♣z♣ > R0, Imz > −a kehtib võrdus
lim

R→∞
z→∞

f(z) = 0 argz suhtes ühtlaselt, siis valem (7.1) on õige, kui

F (z) = eiλf(z), kus λ > 0.

Tõestus. Olgu z = x+ iy = reiφ, MR = max
z∈CR

♣f(z)♣ ja α = arcsin
a

R
. Eelduse

põhjal MR → 0, kui R → ∞. Sel korral ka α → 0, kusjuures αR → a (vt.
joon. 7.2). Kui a > 0, siis kaartel AB ja DE saame, et ♣eiλz♣ = e−λy

⩽ eαλ.
Järelikult kehtib seos

∣

∣

∣

∣

∣

∣

∫

γ

eiλzf(z)dz

∣

∣

∣

∣

∣

∣

⩽MReaλαR → 0, kui R → ∞,
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0
x

y

α

A

B

C

D

E a

Joonis 7.2

kus γ on kas kaar AB või DE.

Arvestades seost sinφ⩾
2

π
φ, kui 0 ⩽ φ⩽

π

2
, saame, et kaarel BCD

∣

∣

∣eiλz
∣

∣

∣= e−λRsinφ
⩽ e− 2λR

π φ,

mistõttu

∣

∣

∣

∣

∣

∣

∫

BCD

eiλzf(z)dz

∣

∣

∣

∣

∣

∣

⩽MRR

π/2
∫

0

e− 2λR
π φdφ=MR

π

2λ
(1− e−λR) → 0,

kui R → ∞. Sellega on lemma tõestatud juhul, kus a > 0.
Juhul a⩽ 0 tõestus vaid lihtsustab, sest siis pole vaja vaadelda integraale

üle kaarte AB ja DE. Lemma on sellega täielikult tõestatud.

Märkus. Jaotises 10, seoses Laplace’i teisenduse pööramisega, tuleb meil vaa-
delda Jordani lemmat mõnevõrra teisel kujul. Seal p = iz, s.t. joonisel 7.2
esitatu on pööratud 90◦ võrra vastupidi kellaosuti liikumise suunale.

Käesolevas rakendame Jordani lemmat (võttes a= 0) selleks, et arvutada
integraale

∞
∫

−∞

f(x) cosλxdx ja
∞
∫

−∞

f(x) sinλxdx,

kus λ > 0 ja funktsioon f rahuldab Jordani lemma tingimusi. Selgitame seda
võimalust järgmise näitega:
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Näide 2. Arvutame integraali

I =

∞
∫

0

xsinxdx

(x2 +1)(x2 +4)
.

Et integraali all on paarisfunktsioon, siis

I =
1

2

∞
∫

−∞

xsinxdx

(x2 +1)(x2 +4)
.

Pidades silmas Euleri valemit eix = cosx+isinx, saame, et

I =
1

2
Im

∞
∫

−∞

xeixdx

(x2 +1)(x2 +4)
.

Viimase integraali arvutame valemi (7.2) abil, mille põhjal

∞
∫

−∞

xeixdx

(x2 +1)(x2 +4)
= 2πi

{

res



zeiz

(z2 +1)(x2 +4)
; i

]

+

+res



zeiz

(z2 +1)(z2 +4)
; 2i

]}

= 2πi

{

zeiz

(z+i)(z2 +4)

∣

∣

∣

∣

z=1
+

+
zeiz

(z2 +1)(z+2i)

∣

∣

∣

∣

z=2i

}

= 2πi

{

ie−1

2i(−1+4)
+

2ie−2

(−4+1)4i

}

=

=
πi

3e

(

1− 1

e

)

.

Seega

I =
π

6e

(

1− 1

e

)

.

c) Vaatleme integraale

2π
∫

0

R(cosx,sinx)dx,

kus integraalialune funktsioon on ratsionaalne cosx ja sinx suhtes. Teeme
muutuja vahetuse z = eix, s.t.

cosx=
z2 +1

2z
, sinx=

z2 −1

2iz
, dx=

dz

iz
.
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Tehes vajalikud asendused, saame, et

2π
∫

0

R(cosx,sinx)dx=
∫

♣z♣=1

R

(

z2 +1

2z
,
z2 −1

2iz



dz

iz
=

∫

♣z♣=1

G(z)dz.

Vastavalt resiidide teooria põhiteoreemile

2π
∫

0

R(cosx,sinx)dx= 2πi
∑

♣zk♣<1

res[G(zk);zk].

Siinjuures on muidugi oluline, et üski funktsiooni G iseärastest punktidest ei
asuks ühikringjoonel. Siis ei oleks ka R(cosx,sinx) pidev lõigus [0,2π].

Näide 3. Leiame integraali

I =

2π
∫

0

dx

5+4sinx
.

Vastavalt ülaltoodud valemitele saame, et

5+4sinx= 5+4
z2 −1

2iz
=

1

iz
(2z2 +5iz−2)

ning

I =
∫

♣z♣=1

dz

2z2 +5iz−2
=

1

2

∫

♣z♣=1

dz

(z+2i)(z+i/2)
.

Ühikringis asub vaid üks viimase integraali aluse funktsiooni poolustest Ű

z = − i

2
Ű, mille suhtes resiid on

2

3i
. Seega

I = 2πi
1

2

2

3i
=

2

3
π.

Ülesanded

1. Näidata, et

a)
∞
∫

0

x2dx

(x2 +9)(x2 +4)2
=

π

200
,
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b)
∞
∫

0

x2dx

x6 +1
=
π

6
,

c)
∞
∫

0

dx

x4 +1
=
π

√
2

4
,

d)
∞
∫

0

dx

(x2 +1)2
=
π

4
,

e)
∞
∫

−∞

xdx

(x2 +1)(x2 +2x+2)
= −π

5
,

f)
∞
∫

0

cosax

x2 +1
dx=

π

2
e−a (a > 0),

g)
∞
∫

0

cosx

(x2 +1)2
=
π

2e
,

h)
∞
∫

−∞

xsinax dx

x4 +4
=
π

2
e−a sina (a > 0),

i)
∞
∫

−∞

sinx dx

x2 +4x+5
= −π

e
sin2,

j)
∞
∫

0

xsinax dx

x2 + b2
=
π

2
e−♣ab♣ sgna (a,b Ű reaalarvud).

2. Arvutada integraalid:

a)
π
∫

−π

cosxdx

5+4cosx
,

b)
π
∫

−π

dx

1+sin2x
,

c)
2π
∫

0

cos2 3xdx

5−4cos2x
,

d)
2π
∫

0

dx

(a+cosx)2
.

Vastus. a) −π

3
, b) π

√
2, c)

3

8
π, d) 2πa(a2 −1)−3/2 (a > 1).
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7.4. LOGARITMILINE RESIID

Funktisiooni w = f(z) logaritmiliseks resiidiks nimetatakse tema lo-
garitmilise tuletise w = f ′(z)/f(z) resiidi vaadeldavas punktis. Logaritmilise
tuletise avaldisest on selge, et tema iseäraseks punktiks on ka funktsiooni f
nullkoht. Vaatlemegi kõigepealt juhtu, kus punkt b on funktsiooni f m-järku
nullkoht. Sel juhul kehtib punkti b ümbruses seos

f(z) = (z− b)mφ(z), (7.1)

kus φ on analüütiline punktis b ning φ(b) ̸= 0. Siis aga

f ′(z)

f(z)
= [Lnf(z)]′ = [Ln(z− b)mφ(z)]′ =

= [mLn(z− b)+Lnφ(z)]′ =
m

z− b
+
φ′(z)

φ(z)
.

Et φ(b) ̸= 0, siis on funktsioon w = φ′(z)/φ(z) analüütiline punktis b ning
seega

f ′(z)

f(z)
=

m

z− b
+ c0 + c1(z− b)+ . . . .

Viimasest seosest järeldub, et

res



f ′(z)

f(z)
; b

]

=m.

Me saime, et funktsiooni logaritmiline resiid nullkoha suhtes võrdub selle null-
koha järguga.

Vaatleme juhtu, kus punkt a on funktsiooni w = f(z) k-järku poolus. Sel
juhul saame seose (7.1) asemel võrduse

f(z) =
ψ(z)

(z−a)k
,

kus ψ on analüütiline punktis a ning ψ(a) ̸= 0. Analoogiliselt eelnevaga
leiame, et

f ′(z)

f(z)
=

k

z−a
+ c0 + c1(z−a)+ . . . ,
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mistõttu

res



f ′(z)

f(z)
; a

]

= −k.

Seega: funktsiooni logaritmiline resiid pooluse suhtes võrdub selle pooluse jär-
gu vastandarvuga.

Olgu funktsioon f pidev ja nullist erinev kinnisel joonel C. Kui funkt-
sioonil f on joonega C piiratud piirkonnas lõplik arv nullkohti, b1, b2, . . . , bq
ning ainsate iseäraste punktidena lõplik arv pooluseid a1, a2, . . . , ap, siis

1

2πi

∫

C

f ′(z)

f(z)
dz =

q
∑

k=1

res



f ′(z)

f(z)
; bk

]

+
p
∑

k=1

res



f ′(z)

f(z)
; ak

]

.

Kui iga nullkohta ja poolust lugeda niimitu korda, kui suur on tema järk,
siis eelnevas sooritatud arvutuste põhjal võime viimase võrduse kirjutada
kujul

1

2πi

∫

C

f ′(z)

f(z)
dz =N −P, (7.2)

kus N on selle funktsiooni nullkohtade ja P pooluste arv joonega C hõlmatud
piirkonnas.

Saadud seosest järeldub nn. argumendi printsiip:
Kui tõkestatud piirkonnas D rajajooneni C pideval funktsioonik f on piir-

konnas D iseäraste punktidena vaid lõplik arv pooluseid ning rajajoonel C see
funktsioon ei võrdu nulliga, siis on funktsiooni väärtuse argumendi muutus
rajajoone C täielikul läbimisel 2π korda suurem selles piirkonnas D asuvate
funktsiooni f nullkohtade ja pooluste arvu vahest.

Tõestus. Et

f ′(z)

f(z)
dz = d[Lnf(z)] = d[ln ♣f(z)♣]+ id[Argf(z)],

siis

z2
∫

z1

f ′(z)

f(z)
dz = ln ♣f(z2)♣− ln ♣f(z1)♣+i[Argf(z2)−Argf(z1)].
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Kui z1 = z2, saame integraali üle kinnise joone C. Et ♣f(z1)♣ = ♣f(z2)♣, siis
(vt. joon. 7.3)

1

2πi

∫

C

f ′(z)

f(z)
dz =

1

2πi
i[Argf(z2)−Argf(z1)] =

1

2πi
∆C Argf(z).

Saadud võrduse vasak pool võrdub eelmise teoreemi kohaselt joonega C hõl-
matud nullkohtade ja pooluste arvu vahega. Sellega ongi argumendi printsiip
tõestatud.

z
C

z1 = z2

w = t(z)

w = 0

w = t(z1) = t(z2)

Joonis 7.3

Ülesanded

1. Olgu funktsioon g analüütiline joonega C piiratud piirkonnas ning ol-
gu funktsioonil f selles piirkonnas lõplik arv nullkohti a1, . . . ,an (vas-
tavalt järkudega m1, . . . ,mn) ning iseäraste punktidena vaid poolused
b1, . . . , bq (vastavalt järkudega r1, . . . , rq). Näidata, et sel juhul

1

2πi

∫

C

g(z)
f ′(z)

f(z)
dz =

n
∑

k=1

mkg(ak)−
q
∑

k=1

rkg(bk).

2. Tõestada, et kui f on regulaarne joonel C ja sellega piiratud piirkonnas,
siis võrrandi f(z) = a lahendite arv selles piirkonnas võrdub integraaliga

1

2πi

∫

C

f ′(z)dz

f(z)−a
.
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7.5. ROUCHE TEOREEM

Argumendi printsiibi järeldusena tõestame teoreemi, mis võimaldab ot-
sustada funktsiooni nullkohtade arvu üle.

Rouche teoreem. Kui funktsioonid f ja g on regulaarsed ühelisidusas ja
tõkestatud piirkonnas D ning pidevad selle rajajooneni C, kusjuures iga z ∈
C puhul ♣f(z)♣ > ♣g(z)♣, siis on funktsioonidel f ja f + g ühepalju nullkohti
piirkonnas D.

Tõestus. Et

arg[f(z)+g(z)] = argf(z)+arg



1+
g(z)

f(z)

]

,

siis tuleb argumendi printsiibi kohaselt (pooluseid pole) meil Rouche teoreemi
tõestamiseks veenduda, et

∆C arg



1+
g(z)

f(z)

]

= 0. (7.1)

See on aga tõesti nii, sest kompleksarv

ω = 1+
g(z)

f(z)

kuulub teoreemi eelduse (♣f(z)♣ > ♣g(z)♣) kohaselt ringi ♣ω− 1♣ < 1. Viimane
aga ei sisalda nullpunkti ning seega saavutab ω argument joone C täielikul
läbimisel oma esialgse väärtuse. Niisiis kehtib võrdus (7.1) ning seeläbi ka
Rouche teoreem.

Näide. Leiame võrrandi

z9 −9z4 +3z3 +2z2 −1 = 0 (7.2)

lahendite arvu ühikringis ♣z♣< 1.
Võtame f(z) = z9 − 9z4 ning g(z) = 3z3 + 2z2 − 1. Sel juhul ringjoone

♣z♣ = 1 punktides

♣f(z)♣ = ♣z9 −9z4♣ ⩾
∣

∣

∣♣z9♣− ♣9z4♣
∣

∣

∣= 8
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ning

♣g(z)♣ = ♣3z3 +2z2 −1♣ ⩽ ♣3z3♣+ ♣2z2♣+1 = 6

Sellest näeme, et Rouche teoreemi tingimused on täidetud ning seega on
võrrandil (7.2) ühikringis sama palju lahendeid, kui neid on seal võrrandil

f(z) = z9 −9z4 = z4(z5 −9) = 0

Viimasel on neid 4 (z = 0 on neljakordne lahend), sest 5
√

9> 1.

Rouche teoreemi järeldusena tõestame veel korda algebra põhiteoree-
mi:

igal n-astme polünoomil on parajasti n nullkohta.

Tõestus. Olgu

Pn(z) = anz
n +an−1z

n−1 + . . .+a1z+a0, an ̸= 0.

Võtame f(z) = anz
n ja g(z) = an−1z

n−1 + an−2z
n−2 + . . .+ a1z + a0. Siis

Pn(z) = f(z)+g(z) ning

lim
z→∞

g(z)

f(z)
= 0.

Viimase seose põhjal leidub niisugune R > 0, mille puhul piirkonnas ♣z♣< R
kehtib võrratus

∣

∣

∣

∣

∣

g(z)

f(z)

∣

∣

∣

∣

∣

< 1.

Me saame, et ringi ♣z♣ ⩽ R suhtes on täidetud Rouche teoreemi tingimused,
mistõttu funktsioonide Pn ja f on ühepalju nullkohti ringis ♣z♣<R. Viimasel
on neid n (0 on n-järku nullkoht). Teoreem on tõestatud.

Ülesanded

1. Leida järgmiste võrrandite lahendite arv sulgudes näidatud piirkonda-
des:

a) z9 −2z6 + z2 −8z−2 = 0 (♣z♣< 1),

b) 2z5 − z3 +3z2 − z+8 = 0 (♣z♣< 1),
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c) z4 −5z+1 = 0 (♣z♣< 1, 1< ♣z♣< 2),

d) z4 −8z+10 = 0 (♣z♣< 1, 1< ♣z♣< 3).

Vastus. a) 1, b) 0, c) 1 ja 3, d) 0 ja 4.

2. Mitu lahendit on võrrandil ez = azn (n on naturaalarv) ringis ♣z♣<R,
kui ♣a♣> eRR−n?

Vastus. n.

7.6. ANALÜÜTILISE FUNKTSIOONI PÖÖRAMI-
NE

Analüütilisele funktsioonile pöördfunktsiooni leidmisel osutub õigeks täp-
selt samasugune väide, nagu seda tunneme diferentseeruvate reaalmuutuja
funktsioonide puhul. Nimelt, kehtib järgmine

Teoreem. Ühese analüütilise funktsiooni f jaoks on tingimus f ′(z0) ̸= 0 tar-
vilik ja piisav selleks, et punktil z0 leiduks ümbrus, kus funktsioon f on ühe-
leheline.

Tõestus. Kehtigu ringis ♣z− z0♣<R seos

w = f(z) = w0 +a1(z− z0)+a2(z− z0)2 + . . . .

Et f ′(z0) ̸= 0, siis leidub niisugune ring ♣z− z0♣ ⩽ ϱ, milles f(z) ̸= w0 kui
z ̸= z0. Tähistame sümboliga γ ringjoone ♣ζ − z0♣ = ϱ, mille kujutiseks olgu
joon Γ (joon. 7.4). Kui võtame δ = min

ω∈Γ
♣ω−w0♣, siis iga w1 korral ringist

♣w−w0♣< δ kehtib seos

♣f(ζ)−w0♣> ♣w0 −w1♣, kus ζ ∈ γ.

Selle võrratuse ja Rouche teoreemi põhjal on võrranditel

f(z)−w0 = 0,

f(z)−w1 = f(z)−w0 +(w0 −w1) = 0

ühepalju lahendeid ringis ♣z− z0♣ < ϱ. Et esimesel võrrandil on seal üks la-
hend, siis on seda ka teisel võrrandil. Seega: tõepoolest, igale kujutisele ringist
♣w−w0♣ < δ vastab parajasti üks originaal, s.t. funktsioon w = f(z) on seal
üheleheline. Teoreem on tõestatud.
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z0

γ

̺

R w0

w1

δ

Γ =
f(
γ)

Joonis 7.4

Järeldus 1. Analüütilisel funktsioonil f on punkti z0 teatavas ümbruses ühe-
ne pöördfunktsioon parajasti siis, kui f ′(z) ̸= 0. See pöördfunktsioon on ana-
lüütiline.

Tõestus. Teoreemi tõestuse käigus nägime, et pöördfunktsioon z = φ(w) on
ühene ringis ♣w−w0♣< δ. Et diferentseeruva funktsiooni pöördfunktsioon on
diferentseeruv, siis φ on regulaarne ning seega ka analüütiline ringis ♣w−
w0♣< δ.

Märkus. Esitatud teoreemi tõestusest ilmneb, et mittekonstatne funktsioon
w = f(z) kujutab punkti z0 ümbruse ♣z− z0♣ < ϱ piirkonnaks, mis sisaldab
punkti w0 = f(z0) mingi ümbruse. Seda ka siis, kui f ′(z0) = 0.

Järeldus 2. Mittekonstantne analüütiline funktsioon kujutab lahtise hulga
lahtiseks hulgaks.

Tõestus. Lahtise hulga igal punktil z0 on ümbrus, mis kuulub sellese hulka.
Niisugune ümbruse kujutis sisaldab punkti z0 kujutise w0 mingi ümbruse,
s.t. et w0 on kujutishulga sisepunkt. Kujutishulk on lahtine.

Järeldus 3. Mittekonstantne analüütiline funktsioon kujutab piirkonna piir-
konnaks.

Tõestus. Et piirkond on lahtine ja sidus hulk, siis eelmist järeldust arvestades
on vaja veenduda kujutishulga sidususes. Viimane aga järeldub faktist, et
joon kujutub jooneks.

7.7. MOODULI MAKSIMUMI PRINTSIIP

Mooduli maksimumi printsiibina tuntakse järgmist teoreemi.
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Teoreem. Kui mittekonstantne funktsioon on analüütiline piirkonnas D ja
pidev selle rajajooneni C, siis funktsiooni moodul ei saavuta oma maksimaal-
set väärtust piirkonnas D, vaid rajajoonel C.

Tõestus. Oletame väite vastaselt, et funktsiooni moodulil on maksimaalne
väärtus punktis zo ∈ D. Et aga punktil w0 = f(z0) on ümbrus, mis koosneb
vaid kujutistest f(z), siis saame selle ümbrusest (joon. 7.5) valida kujutise
w1 = f(z1), mille puhul ♣w1♣> ♣w0♣, s.t. ♣f(z1)♣> ♣f(z0)♣. Saime vastuolu, mis
tõestabki teoreemi.

C

z0

D

0

y

x

w0

w1

0

v

u

Joonis 7.5

Mooduli miinimumi printsiip. Kui mittekonstantne funktsioon on ana-
lüütiline ja nullist erinev piirkonnas D ning pidev selle rajajooneni C, siis
selle funktsiooni moodul ei saavuta oma minimaalset väärtust piirkonnas D,
vaid rajajoonel C.

Tõestus on analoogiline eelnevaga.

7.8. HARMOONILISTE FUNKTSIOONIDE
OMADUSI

Harmooniliste ja regulaarsete funktsioonide vahel on tihe seos. Näitame,
et ka nende funktsioonide omadused on sarnased. Täpsemalt öeldes: kanna-
me eelmises jaotises tõestatud tulemused üle harmoonilistele funktsioonidele.
Alustame teoreemist, mida tuntakse ekstreemumi printsiibina. Kirjutiste
lihtsustamiseks tähistame u(x,y) = u(z).
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Teoreem 1. Kinnises piirkonnas D ei saavuta mittekonstantne harmooniline
funktsioon u oma ekstremaalset väärtust selle piirkonna sisepunktis.

Tõestus. Oletame väite vastaselt, et funktsioon u saavutab oma maksimumi
puntkis z0 ∈D. Kui piirkond D on mitmelisidus, siis ühendame rajajoone ük-
sikud sidusad osad omavahel nii, et piirkond D muutub ühelisidusaks piirkon-
naks G ning z0 jääb ka viimase sisepunktiks. Piirkonnas G leiame funktsioo-
nile u kaasharmoonilise v ning moodustame regulaarse funktsiooni g= u+iv.
Ka funktsioon w= eg(z) on regulaarne piirkonnasG ning ♣eg(z)♣ = eu(z). Et aga
eu(z) ja u(z) saavutavad maksimumi koos, siis peaks regulaarse funktsiooni
w= eg(z) moodul saavutama oma maksimumi piirkonnaG sisepunktis. See on
aga mooduli maksimumi printsiibi järgi võimatu. Saadud vastuolu tõestabki,
et funktsioonil u ei saa olla maksimumi piirkonna D sisepunktis.

Selle tõestamiseks, et funktsioon u ei saavuta ka oma miinimumi piir-
konna D sisepunktis, võtame u1(z) = −u(z) ning kasutame äsjatõestatud
tulemust maksimumi kohta.

Teoreem 2. Kui funktsioon on kogu tasandil harmooniline ja ühepoolselt
tõkestatud (näiteks ülalt), siis on ta konstantne.

Tõestus. Olgu u(z) ⩽M . Moodustame regulaarsed funktsioonid w = g(z) =

u(z) + iv(z) ning w = eg(z). Siis ♣eg(z)♣ = eu(z)
⩽ eM ning seega (Liouville’i

teoreemi põhjal) eg(z) = const. Siit omakorda järeldub, et g(z) = const. Et
kompleksmuutuja funktsioon on konstantne parajasti siis, kui selle reaal- ja
imaginaarosad on konstantsed, siis saamegi järeldusena teoreemi väite.

Ülesanded

1. Tõestada, et suvalisel harmoonilisel funktsioonil on mistahes järku osa-
tuletisi ja et need on samuti harmoonilised funktsioonid.

2. Näidata, et kui kahel harmoonilisel funktsioonil on võrdsed väärtused
piirkonna D rajajoonel, siis ühtivad need funktsioonid kogu piirkonnas
D.
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8.1. KONFORMSE KUJUTAMISE
PÕHIÜLESANNE

Kui jaotises 2.7 vaatlesime tuletise geomeetrilist tähendust, siis selgitasi-
me, et regulaarne funktsioon w = f(z), z ∈D, teostab konformse kujutamise,
kui f ′(z) ̸= 0 iga z ∈D puhul. Üks-ühest kujutust nimetatakse konformseks,
kui säilivad nurgad nii suuruse kui ka suuna poolest ning kehtib lõpmata väi-
keste ringjoonte invariantsus. Näitame nüüd, et iga konformne kujutus on
esitatav analüütilise (ehk regulaarse) funktsiooniga. Selleks tõestame järg-
mise teoreemi.

Teoreem 1. Kui funktsioon w = f(z) kujutab konformselt piirkonna D piir-
konnaks G, siis f on regulaarne ning f ′(z) ̸= 0 iga z ∈D puhul.

z0

∆z1

∆z2

∆w1

∆w2

Joonis 8.1

Tõestus. Et iga ühene kujutus on vaadeldav funktsioonina, siis võime ka kon-
formse kujutuse puhul kõneleda funktsioonist w = f(z), z ∈D. Jääb näidata,
et iga z ∈ D puhul f ′(z) ̸= 0. Tõepoolest, vaadeldes punkti z0 kujutist w0

ning kahe punktist z0 lähtuva lõpmata väikese vektori kujutist (joon. 8.1),
saame konformse kujutuse deĄnitsiooni põhjal, et

♣∆w2♣
♣∆z2♣ =

♣∆w1♣
♣∆z1♣ = k ̸= 0

ning

arg∆w2 −arg∆w1 = arg∆z2 −arg∆z1.

165
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Viimane neist seostest esitub kujul

arg∆w2 −arg∆z2 = arg∆w1 −arg∆z1

ehk

arg
∆w2

∆z2
= arg

∆w1

∆z1
= α.

Seega saame piirile minnes, et

lim
∆z1→0

∆w1

∆z1
= lim

∆z2→0

∆w2

∆z2
= keiα,

millest ∆z1 ja ∆z2 suvalisuse tõttu järeldamegi, et eksisteerib f ′(z) ning
♣f ′(z0)♣ = k ̸= 0. Teoreem on tõestatud.

Järeldus 1. Kahe konformse kujutuse kompositsioon on konformne kujutus.

Järeldus 2. Konformse kujutuse pöördkujutus on konformne kujutus.

Konformse kujutamise põhiülesandeks nimetatakse järgmist üles-
annet:

antud piirkondade paari D ja G jaoks leida piirkonnas D regulaarne
funktsioon w = f(z), mille koraal f ′(z) ̸= 0 iga z ∈D jaoks ning mis kujutab
piirkonna D piirkonnaks G.

Ülesanded

1. Tõestada, et funktsioon w=
2iz

z+3
kujutab ringi ♣z−1♣< 2 konformselt

ühikringiks ♣w♣< 1.

2. Tõestada, et funktsioon w = z2 kujutab piirkonna −π < argz < −π

2
konformselt pooltasandiks Imw > 0 ja piirkonna ♣z♣< 2, 0< argz <

π

2
piirkonnaks ♣w♣< 4, Imw > 0.

3. Tõestada, et funktsioon w= eiz kujutab piirkonna 0<Rez <π, Imz > 0
konformselt poolringiks ♣w♣< 1, Imw > 0.
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8.2. KONFORMSE KUJUTAMISE OMADUSI

Järgnevas tõestame kaks teoreemi, millest esimest tuntakse üksühese
vastavuse printsiibina ja teist rajade vastavuse printsiibina.

Teoreem 1. Kui piirkonnas D regulaarne funktsioon w = f(z) kujutab piir-
konna D üks-üheselt piirkonnaks G, siis on see kujutus konformne.

Tõestus. Jaotises 7.6 tõestasime, et kujutus w= f(z) on üks-ühene parajasti
siis, kui f ′(z) ̸= 0 ühegi z puhul. Viimane tingimus aga tähendab, et kujutus
on konformne. Teoreem on tõestatud.

Öeldakse, et kujutamisel säilib joone C suund, kui punkti pidevale liiku-
misele joone C positiivses suunas vastab tema kujutispunkti liikumine kuju-
tisjoone Γ positiivses suunas.

Teoreem 2. Olgu tõkestatud piirkonnas D, mis on piiratud rajajoonega C,
antud regulaarne funktsioon w= f(z). Kui see funktsioon on pidev ka rajajoo-
nel C ning kujutab joone C üks-üheselt piirkonna G rajajooneks Γ ja säilitab
joone suuna, siis funktsioon w = f(z) kujutab piirkonna D konformselt piir-
konnaks G.

Tõestus. Meil piisab näidata, et funktsioon w = f(z) kujutab piirkonna D
üks-üheselt piirkonnaks G. Selleks aga veendume, et (joon. 8.2)

z1

D

C
w2

w1

G

Γ

F1

F2

Joonis 8.2

1) iga w ∈ G jaoks eksisteerib parajasti üks selline z1 ∈ D, mille puhul
f(z1) = w1;
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2) ühegi w2 /∈G∪Γ jaoks ei eksisteeri originaali piirkonnas D.

Moodustame funktsioonid.

w = F1(z) = f(z)−w1,

w = F2(z) = f(z)−w2

ning rakendame argumendi printsiipi. Et moodustatud funktsioonid on regu-
laarsed, siis raja C täielikul läbimisel muutuvad nende argumendid arvu 2π ja
nullkohtade arvu korrutise võrra. Jooniselt 8.2 on näha, et ∆C argF1(z) = 2π
ja ∆c argF2(z) = 0. Seega on funktsioonil F1 piirkonnas D1 üks nullkoht,
funktsioonil F2 aga mitte ühtegi. Väited 1) ja 2) ning seega ka kogu teoreem
on tõestatud.

Märkus. Kui joone C positiivsele suunale vastaks joone negatiivne suund, siis
saaksime, et ∆c argF1(z) = −2π ja ∆c argF2(z) = 0. Arvestades argumendi
printsiipi, on niisugune olukord võimalik sel juhul, kui funktsioonil f (seega
ka funktsioonid F1 ja F2) on piirkonnas D üks esimest järku poolus ning
nullkohti funktsioonil F2 üks, funktsioonil F1 aga ei ühtegi. Selline situat-
sioon vastab olukorrale, kus f kujutab piirkonna D joone Γ suhtes väliseks
piirkonnaks ning üks punktidest kujutub lõpmatuspunktiks.

Ülesanded

1. Tõestada, et funktsioon w = −i
z−1

z+1
kujutab ühikringi ülemise poole

konformselt komplekstasandi esimeseks veerandiks.

2. Tõestada, et funktsioon w = coshz kujutab piirkonna Rez > 0, 0 <
Imz < π konformselt ülemiseks pooltasandiks.

3. Tõestada, et funktsioon w = tanz kujutab piirkonna 0 < Rez < π,
Imz > 0 konformselt ülemiseks pooltasandiks lõikega piki lõiku [0, i].

8.3. KONFORMSE KUJUTAMISE PÕHIÜLESAN-
DE LAHENDUVUS

Millistel tingimustel on konformse kujutamise põhiülesanne lahenduv,
sellele annab vastuse
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Riemanni teoreem. Iga üheli sidusat piirkonda, mille raja sisaldab vähe-
malt kaks punkti, on võimalik konformselt kujutada ühikringiks.

Käesolevas me seda teoreemi ei tõesta. Näitame vaid teoreemi eelduste
tähtsust. Osutub, et mitmelisidusat piirkonda D ei saa kujutada konformselt
ühelisidusaks piirkonnaks D1. Tõepoolest, kui D on mitmelisidus, võib temas
valida kinnise joone C, mis hõlmab ka piirkonda D mittekuuluvaid punkte.
Kui D1 on ühelisidus, on joone C kujutis selles piirkonnas kinnine joon C1,
mis hõlmab ainult piirkonna D1 punkte. Deformeerime joont C1 piirkonnas
D1 nii, et ta lõpuks kõdub üheks punktiks. Kui kujutis oleks konformne, siis
on nii tema kui ka tema pöördkujutis pidevad ning seetõttu peaks ka joon C
kõduma üheks punktiks, kuid sealjuures nii, et ta ei väljuks piirkonnast D.
See on võimatu.

Mis puutub tingimusse, et raja peab sisaldama vähemalt kaks punkti, siis
seda ei saa ära jätta kasvõi Liouville’i teoreemi tõttu. Viimase põhjal ei saa
kogu tasandit (rajaks ainult lõpmatuspunkt) ühikringiks kujutada.

Märkus. Riemanni teoreemis räägitakse ühikringist, kuid selle asemel võiks
olla mis tahes ühelisidus piirkond, mille rajal on samuti vähemalt kaks punkti.
Niisuguse piirkonna saab äsjasõnastatud teoreemi abil kujutada konformselt
ühikringiks. Pöördkujutus oleks samuti konformne ning kujutaks ühikringi
vaadeldavaks piirkonnaks. Et kahe konformse kujutamise järjest rakendamine
on jällegi konformne kujutus, siis saamegi siit Riemanni teoreemi näiliselt
üldisema sõnastuse.

On selge, et kui leidub üks konformne kujutus, mis kujutab piirkonna
D ühikringiks, siis leidub niisuguseid kujutusi lõpmata palju. Tõepoolest,
iga kujutus, mis koosneb vaadeldavast konformsest kujutusest ning pöördest
(ümber nullpunkti), on samuti konformne. Millistel tingimustel on konformse
kujutamise põhiülesandel ühene lahend, sellele annab vastuse järgmine

Teoreem. Leidub üks ja ainult üks funktsioon w = f(z), mis kujutab ettean-
tud ühelisidusa piirkonna D, mille rajal on vähemalt kaks punkti, ühikringiks
♣w♣< 1 ning täidab tingimusi

f(z0) = w0, argf ′(z0) = α0, (8.1)

kus z0 ∈D ja ♣w0♣< 1.

Tõestus. Oletame, et niisuguseid funktsioone on kaks,

w1 = f(z) ja w2 = φ(z).
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Tähistame piirkonna D raja C punktid tähega ζ. Tingimusest (8.1) ja rajade
vastavusest saame, et (w0 = 0 korral)

f(z0) = 0, argf ′(z0) = α0, ♣f(ζ)♣ = 1,

φ(z0) = 0, argφ′(z0) = α0, ♣φ(ζ)♣ = 1.

Vaatleme funktsiooni

w2 = φ
[

f−1(w1)
]

= g(w1).

See funktsioon kujutab ühikringi ühikringiks, kusjuures

g(0) = φ[f−1(0)] = φ(z0) = 0

ja

g′(0) = φ′(z0)
d

dw1
f−1(0) = φ′(z0)

1

f ′(z0)
=
r2eiα0

r1eiα0
=
r2

r1
> 0.

Vaatleme nüüd abifunktsiooni h, mis on deĄneeritud järgmiselt:

h(w1) =







g(w1)
w1

, 0< ♣w1♣< 1,

g′(0), w1 = 0.

Funktsioon h on pidev ja nullist erinev kinnises ringis ♣w1♣ ⩽ 1, kusjuures
♣h(w1)♣ = 1, kui ♣w1♣ = 1. Mooduli maksimumi ja miinimumi printsiipide põh-
jal

♣h(w1)♣ ≡ 1, ♣w1♣< 1.

Siit saame, et h(w1) ≡ const. Tingimusest h(0) = g′(0) > 0 järeldame, et
h(w1) ≡ 1. Funktsiooni h deĄnitsiooni põhjal saame, et

w2 = g(w1) = w1.

Seega funktsioonid f ja φ langevad kokku ning teoreem on sellega tõestatud.

Märkus. Tingimusi (8.1), mis määravad konformset kujutamist teostava
funktsiooni üheselt, nimetatakse normeerivateks tingimusteks. Kui vaa-
delda neid normeerivaid tingimusi (8.1), siis märkame, et need sisaldavad
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kolm reaalset parameetrit (w0 reaal- ja imaginaarosa ning α). Osutub, et
tingimuste (8.1) asemel võib vaadelda ka teisi tingimusi, mis samuti sisal-
davad kolme reaalset parameetrit ning normeerivad konformse kujutamise.
Näiteks, anname ette ühe sisepunkti ja ühe rajapunkti kujutise:

f(z0) = w0, f(z1) = w1

(z0 ∈ D ja ♣w0♣ < 1, z1 ∈ C ning ♣w1♣ = 1). Konformne kujutus on üheselt
määratud ka siis, kui Ąkseerida kolme rajapunkti kujutised:

f(zk) = wk (k = 1,2,3).

Ülesanded

1. Leida ülemise pooltasandi kujutus w = f(z) iseendaks, kui

a) f(0) = 1, f(1) = 2, f(2) = ∞;

b) f(0) = 1, f(i) = 2i.

Vastus. a) w =
2

2− z
; b) w = −2

2z+1

z−2
.

8.4. NÄITEID KONFORMSE KUJUTAMISE KOH-
TA

Käesolevas jaotises vaatleme mõningaid lihtsaid, kuid edasise ainekäsit-
luse seisukohalt tähtsaid näiteid.

Näide 1. Leida funktsioon, mis kujutab ühikringi konformselt ühikringiks,
kusjuures punkt z0 (♣(z0)♣< 1) kujutub nullpunktiks.

Et siin ringjoon peab kujutama ringjooneks (rajade vastavus), siis otsi-
me vastavat funktsiooni murdlineaarsete funktsioonide hulgast. Selle murd-
lineaarse funktsiooni määramiseks on meil tingimus f(z0) = 0. Et aga null-
punktiga on ühikringjoone suhtes sümmeetriline lõpmatuspunkt, siis peab
punktiga z0 sümmeetriline punkt z1 (vt. joon. 8.3) kujutuma lõpmatuspunk-
tiks, s.t. f(z1) = ∞. Milline punkt on sümmeetriline punktiga z0? Vastavalt

sümmeetriliste punktide deĄnitsioonile ♣z0♣♣z1♣ = 1, millest ♣z1♣ =
1

♣z0♣ , ning

argz0 = argz1, mistõttu z1 =
1

z0
.
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0 1

z0

z1

x

y

Joonis 8.3

Saadud kahe punkti z0 ja 1/z0 kujutise järgi püüame määrata otsitavat
murdlineaarset funktsiooni

ω =
az+ b

cz+d
. (8.1)

Vastavalt konformse kujutamise ühesuse teoreemile võime öelda, et otsitaval
funktsioonil jääb üks reaalne parameeter määramatuks, sest me ei Ąkseeri-
nud pöörde suurust punktis z0. Niisiis peame saama määrata murdlineaarse
funktsiooni, milles on vaid üks reaalne parameeter.

Seosest

w = f(z0) =
az0 + b

cz0 +d
= 0

saame, et az0 + b= 0, s.t. b= −az0. Teiselt poolt,

w = f
(

1

z0

)

=
a+ bz0

c+dz0
= ∞,

s.t. c+dz0 = 0, millest c= −dz0. Asendamisel seosesse (8.1) saame, et

w =
az−az0

−dz0z+d
=
a

d

z− z0

1− z0z
.
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Et aga ühikringjoone punkt z= 1 peab kujutuma ühikringjoone punktiks,
siis

♣f(1)♣ =
∣

∣

∣

∣

a

d

∣

∣

∣

∣

∣

∣

∣

∣

1− z0

1− z0

∣

∣

∣

∣

=
∣

∣

∣

∣

a

d

∣

∣

∣

∣

= 1,

s.t
a

d
= eiα, kus α on mingi reaalarv. Seega saame, et otsitavaks funktsiooniks

on

w = eiα =
z− z0

1− z0z
. (8.2)

Leides saadud funktsiooni tuletise punktis z0

f ′(z0) = eiα 1− z0z0

(1− z0z)2

∣

∣

∣

∣

∣

z=z0

= eiα 1

1−♣z0♣2 ,

näeme, et parameetri α määrab tasandi pööre punktis z0, sest arg f ′(z0) = α.
Kui avaldada seosest (8.2) muutuja z, saame selle kujutuse pöördkuju-

tuse, s. t. funktsiooni, mis kujutab ühikringi ühikringiks, kusjuures nullpunkt
kujutub etteantud punktiks z0 (♣z0♣< 1).

Näide 2. Kujutada ülemine pooltasand Im z > 0 ühikringiks ♣ω♣< 1 selliselt,
et punkt z0 (Imz0 > 0) kujutub nullpunktiks.

Otsime seda funktsiooni jällegi murdlineaarsete funktsioonide hulgast,
sest rajaks olev sirge peab kujutuma ringjooneks. Et sel juhul rajade suh-
tes sümmeetrilised punktid peavad kujutuma sümmeetrilisteks punktideks,
siis

w(z0), w(z0) = ∞.

Kui tähistame

w =
az+ b

cz+d
,

siis eelnevate tingimuste põhjal saame, et

az0 + b= 0, cz0 +d= 0,

millest

w =
a

c

z− z0

z− z0
.
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Et punkt z = 0 on originaalide piirkonna rajapunkt, siis peab tema ku-
jutispunkt asuma ühikringjoonel. Seega saame, nagu eelmisegi näite puhul,
et

a

c
= eiα, kus α on reaalne parameeter. Kokkuvõttes võime kirjutada, et

otsitav funktsioon avaldub kujul

w = eiα z− z0

z− z0
.

Selle funktsiooni pöördfunktsioon kujutab ühikringi ülemiseks pooltasan-
diks, kusjuures w(0) = z0 (Im z0 > 0).

Näide 3. Leida funktsioon, mis kujutab ülemise pooltasandi konformselt üle-
miseks pooltasandiks.

Otsime murdlineaarset funktsiooni

w =
az+ b

cz+d
.

Põhimõtteliselt saab kordajate leidmiseks moodustada süsteemi 4 reaalarvu-
lisest originaalist z koos nende reaalarvuliste kujutistega w. Sellise lineaarse
süsteemi lahendid a,b,c,d on ka reaalarvud.

Vastupidi, kui kordajad a,b,c,d on reaalsed, siis kujutub reaaltelg reaaltel-
jeks. Et reaaltelje suund jääks samaks (siis kujutub ülemine pooltasand üle-
miseks pooltasandiks), peab funktsiooni tuletise argument võrduma nulliga
iga reaalarvulise z puhul, s. t. tuletis peab neis punktides olema positiivne.

Leides vastava tuletise, saame tingimusena, et

ad− bc

(cx+d)2
> 0,

millest

ad− bc > 0. (8.3)

Seega: ülemise pooltasandi kujutab iseendaks niisugune murdlineaarne funkt-
sioon, mille kordajad on reaalsed ning täidavad tingimust (8.3).

Ülesanded

1. Kujutada ühikring ühikringiks nii, et

a) w
(

1

2

)

= 0 ja argw′
(

1

2

)

= 0;
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b) w
(

i

2

)

= 0 ja argw′
(

i

2

)

=
π

2
;

c) w(0) = 0 ja argw′(0) = −π

2
;

d) w(a) = 0 ja argw′(a) = α.

Vastus. a) w=
2z−1

2− z
; b) w=

2iz+1

2− iz
; c) w= −iz d)

w−a

1−aw
= eiα z−a

1−az
.

2. Kujutada ülemine pooltasand ühikringiks selliselt, et

a) w(i) = 0 ja argw′(i) = −π

2
;

b) w(2i) = 0 ja w′(2i)> 0.

Vastus. a) w =
z− i

z+i
; b) w = i

z−2i

z+2i
.

3. Kujutada ring ♣z♣<R ühikringiks.

Vastus. w =Reiα z− z0

R2 − z0z
.

4. Leida järgmised konformsed kujutised:

a) ring ♣z♣<R pooltasandiks Imw > 0;

b) pooltasand Rez > 0 ühikringiks ♣w♣< 1;

c) pooltasand Rez > 0 pooltasandiks Rew > 0.

Vastus. a)
aReiα−az

Reiα −z
, Ima > 0; b) w = eiα z−a

z+a
, Rea > 0;

c) w =
az+ib

icz+d
, a,b,c,d Ű reaalarvud, mis täidavad tingimust ad+bc > 0.

8.5. DIRICHLET’ ÜLESANNE

Mitmed väljateooria ja hüdromehaanika probleemid taanduvad järgmisele
matemaatilisele ülesandele:

Leida piirkonnas D harmooniline funktsioon u = h(x,y), mis selle piir-
konna rajajoonel C omandab etteantud pidevalt muutuvad väärtused.

Seda ülesannet nimetatakse Dirichlet’ ülesandeks. Harmoonilise funkt-
siooni u = h(x,y) väärtusena rajapunktis ζ = (ξ,η) = ξ+ iη mõistame piir-
väärtust lim

z→ζ
h(x,y), kus z ∈D ja z= (x,y) = x+iy. Lahendame selle ülesande
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konformset kujutamist kasutades. Ühtlasi näeme, et Dirichlet’ ülesanne on
lahenduv nendesamade piirkondade korral, mida saab konformselt kujutada
ühikringiks. Esitame Dirichlet’ ülesande lahendamise üldskeemi ning leiame
lahendid Poisson’i integraalidena ringi ja ülemise pooltasandi tarvis.

a) Vaatleme kõigepealt üldjuhtu. Lühiduse mõttes kirjutame h(x,y) ase-
mel h(z) ning rajaväärtuste h(ξ,η) asemel h(ζ).

Kujutleme nüüd, et on teada funktsioon φz, mis kujutab piirkonna D
konformselt ühikringiks ♣w♣< 1, kusjuures suvaliselt Ąkseeritud punkt z ∈D
kujutub punktiks w = 0. Ringis ♣w♣ < 1 vaatleme regulaarset funktsiooni F ,
mille reaalosaks on∗ U = h ◦φ−1

z , s.t. h = U ◦φz. Kui võtame ω = eiθ, siis
dω = ieiθ dθ ning Cauchy valemi põhjal

F (0) =
1

2πi

∫

♣ω♣=1

F (ω)dω

ω
=

1

2π

2π
∫

0

F
(

eiθ
)

dθ

ehk

U(0)+ iV (0) =
1

2π

2π
∫

0

U
(

eiθ
)

dθ+
i

2π

2π
∫

0

V
(

eiθ
)

dθ,

kus V on funktsioonis F imaginaarosa. Viimase võrduse põhjal

U(0) =
1

2π

2π
∫

0

U
(

eiθ
)

dθ =
1

2πi

∫

♣ω♣=1

U(ω)

ω
dω

Seose ω = φz(ζ) tõttu saame üle minna muutujale ζ. Kui veel arvestame, et
h(z) = U [φz(z)] = U(0), saame valemi

h(z) =
1

2πi

∫

C

φ′
z(ζ)

φz(ζ)
h(ζ)dζ. (8.1)

b) Olgu piirkonnas D ülemine pooltasand. Tema rajaks on reaaltelg, mille
punktid märgime tähega t. Otsitava harmoonilise funktsiooni rajaväärtuseks
olgu h(t).

∗Sümbol ◦ tähistab funktsioonide kompositsiooni (liitfunktsiooni).
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Funktsiooniks, mis kujutab ülemise pooltasandi konformselt ühikringiks
ja punkti z nullpunktiks, on murdlineaarne funktsioon (vt. näide 2 eelmises
jaotises)

w = φz(σ) =
σ− z

σ− z
,

kus σ on suvaline punkt ülemiselt pooltasandilt. Seega

φz(t) =
t− z

t− z

ning

φ′
z(t)

φz(t)
=

z− z

(t− z)(t− z)
=

z− z

♣t− z♣2 .

Olgu z = x+iy. Siis

φ′
z(t)

φz(t)
=

2iy

♣t−x− iy♣2 =
2yi

(t−x)2 +y2

Valemi (8.1) põhjal saame (seost h(x,y) = h(z) arvestades), et

h(x,y) =
y

π

∞
∫

−∞

h(t)dt

(t−x)2 +y2
. (8.2)

Valem (8.2) annab otsitava harmoonilise funktsiooni väärtused integraalina,
mida nimetatakse Poisson’i integraaliks ülemise pooltasandi tarvis.

c) Valemi (8.1) põhjal leiame veel ringis ♣σ♣<R harmoonilise funktsiooni,
mille rajaväärtused on h(ζ) = u(t), kus ζ =Reit, t ∈ [0,2π].

Funktsiooniks φz, mis kujutab ringi ♣σ♣ < R konformselt ühikringiks sel-
liselt, et punkt z kujutub nullpunktiks, on eelmise jaotise ülesande 3 põhjal
(võttes α= 0) murdlineaarne funktsioon

w = φz =R
σ− z

R2 − zσ
.

Arvutades, saame, et

φ′
z(ζ) =R

R2 −♣z♣2
(R2 − zζ)2
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ning

φ′(ζ)

φz(ζ)
=

R2 −♣z♣2
(R2 − zζ)(ζ− z)

.

Kui võtta ζ =Reit ja z = reiφ, siis

φ′
z(ζ)

φz(ζ)
dζ =

(R2 − r2)ieit dt

R2eit −Rre−iφe2it −Rreiφ + r2eit
=

=
(R2 − r2)idt

R2 + r2 −Rrei(t−φ) −Rrei(φ−t)
=

(R2 − r2)idt

R2 + r2 −2rRcos(t−φ)
.

Tähistades h(x,y) = h(z) = h(reiφ) = u(r,φ), saame valemi (8.1) põhjal, et

u(r,φ) =
1

2π

2π
∫

0

R2 − r2

R2 + r2 −2Rr cos(t−φ)
u(t)dt. (8.3)

Otsitava harmoonilise funktsiooni väärtused saime integraalina, mida ni-
metatakse Poisson’i integraaliks ringi tarvis.

8.6. SCHWARZI VALEMID

Me teame, et regulaarset funktsiooni saab Cauchy valemi põhjal esita-
da tema rajaväärtuste kaudu. Teiselt poolt teame, et regulaarne funktsioon
on määratud oma reaalosaga. Eelmise jaotise põhjal saame nüüd järeldada,
et regulaarset funktsiooni on võimalik esitada tema reaalosa rajaväärtuste
kaudu. Vaatleme seda ülemise pooltasandi ja ringi puhul, lähtudes eelmise
jaotise valemitest (8.2) ja (8.3).

Olgu f ülemises pooltasandis regulaarne funktsioon, mille reaalosaks on
h(x,y) raja väärtustega h(t), −∞< t <∞. Et

y

(t−x)2 +y2
= Re

1

i(t− z)
,

siis eelmise jaotise valemi (8.2) põhjal saame võrduse

h(x,y) =
1

π

∞
∫

−∞

Re
1

i(t− z)
h(t)dt= Re

1

πi

∞
∫

−∞

h(t)

t− z
dt,
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millest

f(z) =
1

πi

∞
∫

−∞

d(t)

t− z
dt+iC, (8.1)

kus C on reaalarvuline konstant, sest reaalosa määrab regulaarse funktsiooni
puhtimaginaarse liidetava täpsuseni (vt. jaotis 2.6).

Eelmise jaotise valemist (8.3) saame analoogilise tulemuse ringi ♣z♣ < R
tarvis, arvestades, et

R2 − r2

R2 −2Rr cos(t−φ)+ r2
= Re

ζ+ z

ζ− z
,

kus ζ = Reit ja z = reiφ. Viimase võrduse põhjal leiame, et ringis ♣z♣ < R
regulaarne funktsioon f on määratud valemiga

f(z) =
1

2π

2π
∫

0

u(t)
ζ+ z

ζ− z
dt+iA, (8.2)

kus u(t) on funktsiooni f reaalosa rajaväärtus kohal ζ = Reit ning A reaal-
arvuline konstant.

Valemeid (8.1) ja (8.2) nimetatakse Schwarzi valemiteks.



180 PEATÜKK 8. KONFORMNE KUJUTAMINE



9. REGULAARSETE FUNKTSIOONIDE
RAKENDAMINE VÄLJATEOORIAS

9.1. TASAPARALLEELNE VEKTORVÄLI

Regulaarsetel funktsioonidel on suur tähtsus aero- ja hüdrodünaamika,
soojusjuhtivuse, elektro-ja raadiotehnika, elastsusteooria jm. küsimuste kä-
sitlemisel. Kõikide nende puhul on tegemist teatavate vektorväljadega, mida
küllaltki heas lähenduses saab vaadelda tasaparalleelsetena ehk tasandilis-
tena. Tasaparalleelse vektorvälja korral leidub niisugune tasand, millega
selle vektorvälja vektorid on paralleelsed ning iga selle tasandiga ristuva sirge
punktidele vastavad võrdsed vektorid. Selle tasandi võtame xOy tasandiks
ehk lihtsalt z-tasandiks. Sel juhul võime esialgse vektorvälja asemel vaadelda
vektorvälja z-tasandil. Punktile z = (x,y) vastaku vektor

−→
A = Ax(x,y)

−→
i +Ay(x,y)

−→
j

mida vaatleme kompleksarvuna A= Ax +iAy.

9.2. KOMPLEKSNE POTENTSIAAL

Olgu meil vektorväli
−→
A ja selles kinnine joon C. Vaatleme joone C punk-

tidele vastavaid vektoreid
−→
A ning tähistame nende projektsioone (koos mär-

giga) puutujale sümboliga As. Seejuures loeme vektori projektsiooni As po-
sitiivseks, kui selle vektori suunas liikudes jääb joonega piiratud piirkond
vasakule (joon. 9.1).

Vektorvälja
−→
A tsirkulatsiooniks üle kinnise joone C nimetatakse suu-

rust

Γc =
∫

c

As(x,y)ds

Arvestades, et
−→
ds =

−→
i dx+

−→
j dy ning

(
−→
A ·−→ds) = Asds= Ax(x,y)dx+Ay(x,y)dy,

181
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C
−→

A

As

Joonis 9.1

saame valemi

Γc =
∫

c

(
−→
A ·−→ds) =

∫

c

Axdx+Ay dy. (9.1)

Tsirkulatsiooni pindtihedust, s.t. piirväärtust tsirkulatsiooni ΓC ja joone-
ga C piiratud kujundi pindala S suhtest, kui joon tõmbub kokku punktiks
z, nimetatakse vektorvälja rootoriks ehk keeriseks punktis z:

rot
−→
A = lim

C→z

1

S

∫

c

(
−→
A ·−→ds).

Matemaatilise analüüsi kursusest teame, et

rot
−→
A =

∂Ay

∂x
− ∂Ax

∂y
.

Kui ühelisidusas piirkonnas D iga kinnise joone C korral ΓC = 0, siis peab
integraalialune avaldis valemis (9.1) võrduma mingi funktsiooni u= φ(x,y)
täisdiferentsiaaliga, s.t.

−→
A = gradu= gradφ(x,y).

Niisugust vektorvälja nimetatakse potentsiaalseks. Sel juhul vektori
−→
A

koordinaatideks on

Ax =
∂u

∂x
; Ay =

∂u

∂y
.
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On aga teada, et avaldis Axdx+Ay dy on mingi funktsiooni täisdiferent-
siaaliks parajasti siis, kui∗

∂Ax(x,y)

∂y
=
∂Ay(x,y)

∂x
(9.2)

iga z = (x,y) puhul piirkonnas D (siinjuures on eeldatud avaldiste Ax ja Ay

ning vastavate osatuletiste pidevust). Tingimuse (9.2) võib kirjutada kujul

rot
−→
A =

∂Ay

∂x
− ∂Ax

∂y
= 0.

Kui tingimus (9.2) ei ole täidetud üksikutes punktides, mis kuuluvad joo-
nega C piiratud piirkonda, siis üldjuhul ΓC ̸= 0. Kui selliseid punkte on vaid
üks (punkt z0), siis seda punkti nimetatakse keerispunktiks ning suurust
ΓC keerise intensiivsuseks punktis z0.

Vektorvälja
−→
A vooks läbi joone C nimetatakse suurust

NC =
∫

C

An ds=
∫

C

(
−→
A ·−→dn) =

∫

C

Axdy−Aydx,

kus
−→
dn = −→n ds =

−→
i dy− −→

j dx ning −→n on joone C normaali suunaline ühik-
vektor. Siinjuures on vektor

−→
dn valitud selliselt, et (

−→
dn · −→

ds) = 0 ning
−→
dn on

kinnise joone C puhul välisnormaal.
Voo pindtihedust, s.t. piirväärtust voo NC ja joonega C piiratud kujundi

pindala S suhtest, kui joon C tõmbub kokku punktis z, nimetatakse välja
divergentsiks ehk hajuvuseks punktis z:

div
−→
A = lim

C→z

1

S

∫

C

(
−→
A ·−→dn).

Matemaatilise analüüsi kursusest on teada, et

div
−→
A =

∂Ax

∂x
+
∂Ay

∂y
.

Kui NC = 0 iga kinnise joone C korral vaadeldavas ühelisidusas piirkonnas
D, siis peab leiduma selline kahe muutuja funktsioon v = ψ(x,y), et

dv = dψ(x,y) = Axdy−Aydx,

∗Kangro, M. Matemaatiline analüüs II, Tln., 1968, lk. 183–185.
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s.t.

∂v

∂x
= −Ay ja

∂v

∂y
= Ax.

Kui eeldada avaldiste Ax(x,y) ja Ay(x,y) ning nende osatuletiste
∂

∂y
Ay ja

∂

∂x
Ax pidevust, siis tingimus

Ay(x,y)

∂y
=
Ax(x,y)

∂x
(9.3)

ehk

div
−→
A = 0

on tarvilik ja piisav selleks, et kehtiks võrdus NC = 0 iga kinnise joone C
puhul piirkonnast D. Niisugust vektorvälja

−→
A nimetatakse solenoidaalseks.

Kui tingimus (9.3) pole täidetud mõnes üksikus punktis joonega C piira-
tud piirkonnast, siis üldjuhul NC ̸= 0. Kui selliseks punktiks on vaid punkt
z0, siis seda punkti nimetatakse välja allikaks ja suurust NC allika inten-
siivsuseks.

Kui vektorväli
−→
A on nii potentsiaalne kui ka solenoidaalne, siis leiduvad

kahe muutuja funktsioonid u= φ(x,y) ja v = ψ(x,y), nii et

du= dφ(x,y) = Axdx+Aydy,

dv = dψ(x,y) = Axdy−Aydx.

Avaldist (või sellega määratud funktsiooni)

f(z) = φ(x,y)+ iψ(x,y)

nimetatakse selle vektorvälja kompleksseks potentsiaaliks.
Arvestades CauchyŰRiemanni võrrandeid ja seoseid

∂φ

∂x
= Ax =

∂ψ

∂y
,

∂φ

∂y
= Ay = −∂ψ

∂x
.

on kompleksse potentsiaaliga määratud funktsioon ω = f(z) regulaarne.
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Veendume, et kompleksne potentsiaal f(z) annab meile üsna palju infor-
matsiooni vektorvälja

−→
A kohta. Et

f ′(z) =
∂φ(x,y)

∂x
+i

∂ψ(x,y)

∂x
= Ax − iAy

siis
−→
A = Ax +iAy = f ′(z)

ning

♣−→A ♣ = ♣f ′(z)♣, arg
−→
A = −argf ′(z).

Funktsioonide φ ja ψ nivoojooned

φ(x,y) = c1 ja ψ(x,y) = c2

moodustavad ortogonaalse võrgu, sest need kujutuvad funktsioonigaw= f(z)

ristkoordinaatide võrguks. Nivoojooned φ(x,y) = c1 on risti vektoritega
−→
A ,

sest

−→
A = gradu=

∂u

∂x

−→
i +

∂u

∂y

−→
j .

Seega on vektorid
−→
A nivoojoonte ψ(x,y) = c2 puutujaiks, mis tähendab, et

jooned ψ(x,y) = c2 on selle vektorvälja vektorjoonteks.
Arvutamisel saame, et
∫

c

f ′(z)dz = Γc +iNc.

Edaspidi eeldame, et vektorvälja potentsiaalsust ja solenoidaalsust määra-
vad tingimused (9.2) ja (9.3) on täidetud peaaegu kõigis vaadeldava piirkon-
na punktides. Erandiks võivad olla vaid üksikud punktid, mida nimetame
vektorvälja iseärasteks punktideks.

9.3. NÄITEID KOMPLEKSSETEST POTENT-
SIAALIDEST

Näide 1. Vaatleme vektorvälja, millel on üks allikas koordinaatide alguses
ning keerised puuduvad.
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x

y

0

r

−→

A

Joonis 9.2

Et väli on sümmeetriline, siis
−→
A = g(r)−→r ehk

−→
A = g(r)z,

kus −→r on punkti z kohavektor ning r tema moodul. Tähistame allika in-
tensiivsuse sümboliga N . Et punkt z = 0 on ainsaks allikaks, siis voog läbi
suvalise ringjoone ♣z♣ = r on N , s.t.

N =
∫

♣z♣=r

(
−→
A ·−→dn) =

∫

♣z♣=r

An ds.

Vektor
−→
A on risti ringjoonega ♣z♣ = r (joon. 9.2), mistõttu An = ♣−→A ♣ =A ning

N =
∫

♣z♣=r

Ads= g(r)r

2π
∫

0

rdφ= g(r)r22π.

Seega

g(r) =
N

2πr2
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ning

−→
A =

N

2πr2
−→r =

N

2π♣z♣2 z =
Nz

2πzz
=

N

2πz
.

Kompleksse potentsiaali saame seosest
−→
A = f ′(z), s.t.

f ′(z) =
N

2π

1

z
,

millest

f(z) =
N

2π
Lnz+C.

Näide 2. Vaatleme vektorvälja, mille ainsaks iseäraseks punktiks on z = 0,
mis olgu keerispunktiks intensiivsusega Γ.

r

0 x

y

−→

A

Joonis 9.3

Ka siin lähtume välja sümmeetrilisusest, mille alusel
−→
A = h(r)iz

(joon. 9.3). Vektor
−→
A peab olema risti vektoriga −→r , s.t. Arg

−→
A =

π

2
+arg−→r =

π

2
+argz. Võttes suvalise ringjoone ♣z♣ = r, saame, et

N =
∫

♣z♣=r

(
−→
A ·−→ds) =

∫

♣z♣=r

h(r)rds= h(r)r
∫

♣z♣=r

ds= h(r)r22π.
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Seega

h(r) =
Γ

2πr2

ning

−→
A =

Γ

2πr2
iz =

Γiz

2πzz
=

Γi

2πz
.

Seose
−→
A = f ′(z) põhjal saame kompleksse potentsiaali

f(z) =
Γ

2πi
Lnz+C.

Näide 3. Vaatleme vektorvälja, mille kompleksseks potentsiaaliks on f(z) =
(a+ib)Lnz, kus a ja b on reaalarvud.

Et z = 0 on funktsiooni f ainsaks iseäraseks punktiks, siis on see punkt
ka ainsaks iseäraseks punktiks vektorväljale. Vaatleme joonena C ringjoont
♣z♣ = r. Sel juhul

ΓC +iNC =
∫

C

f ′(z)dz = (a+ib)
∫

C

dz

z
= 2πi(a+ib),

millest

ΓC = −2πb ja NC = 2πa.

Seega on punkt z = 0 nii allikaks kui ka keerispunktiks.
Tähistades z = reiφ, eraldame kompleksse potentsiaali reaal- ja imagi-

naarosa:

(a+ib)Lnz = (a+ib)(lnr+i(φ+2kπ)) =

= a lnr− b(φ+2kπ)+ i(b lnr+a(φ+2kπ)).

Imaginaarosa v = b lnr+ a(φ+ 2kπ) põhjal leiame vektorjooned v = const.
Me saame, et nendeks on logaritmilised spiraalid:

r = Ce−(a/b)φ.
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O

Joonis 9.4

Näide 4. Vaatleme süsteemi, kus punktis z1 = h on allikas intensiivsusega N
ja punktis z2 = 0 allikas intensiivsusega −N (äravool). Kompleksseks potent-
siaaliks on sel juhul summa

fh(z) =
N

2π
Ln(z+h)− N

2π
Lnz.

Edasi vaatleme piirjuhtu, kus h→ 0 ja N → ∞, kusjuures Nh→ p. Sel juhul

f(z) = lim
h→0

Nh

2π

Ln(z+h)−Ln(z)

h
=

p

2π

1

z

Saadud süsteemi nimetatakse dipooliks momendiga p. Vektorjoonteks on
(joon. 9.4) siin nullpunkti läbivad ringjooned, mille keskpunktid asuvad ima-
ginaarteljel.
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D

y

xO R−R

Joonis 9.5

9.4. VOOLAMINE POOLTASANDIS

Järgnevates jaotistes vaatleme kompleksse potentsiaali rakendamist voo-
lamisülesannete lahendamisel. Seejuures selgub konformse kujutamise oluline
tähendus. Saame ettekujutuse ka sellest, milline eriline osa on juba eespool
vaadeldud lihtsatel piirkondadel Ű ringil ja pooltasandil.

Vaatleme enesega mittelõikuvat (üldiselt siledat) joont, mille mõlemad
otsad ulatuvad lõpmatusse. Selline joon C jagab tasandi kaheks osaks D1

ja D2. Vaatleme vedeliku (või gaasi) voolamist pooltasandis D1, eeldades,
et see vedelik pole kokkusurutav ning puuduvad allikad. Vektorvälja moo-
dustavad vedelikuosakeste kiirusvektorid. Joone C punktides peavad need
olema suunatud piki joone C puutujat. Seega on joon C üheks vektorjoo-
neks, s. t. on määratud võrrandiga ψ(x,y) = v0. Et kompleksne potentsiaal
on määratud konstantse liidetava täpsuseni (vektorväli määrab kompleksse
potentsiaali tuletise seosega f ′(z) =

−→
A ), siis võime võtta v0 = 0. Selliselt va-

litud kompleksse potentsiaali puhul funktsioon w = f(z) kujutab vaadeldava
pooltasandi ülemiseks või alumiseks pooltasandiks. Konformse kujutamise
ainsuse teoreemi põhjal on niisuguseid funktsioone lõpmata palju, mistõttu
ühesuse tagamiseks võib seada lisatingimusi. Hüdrodünaamika (või aerodü-
naamika) ülesannetes seatakse tavaliselt järgmised tingimused:

∣

∣

∣f ′(∞)
∣

∣

∣= v∞ ja f(∞) = ∞. (9.1)

Vaatleme konkreetse näitena joonisel 9.5 esitatud piirkonda D ning selles
vedeliku voolamist vasakult paremale. Leiame funktsiooni, mis kujutab antud
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piirkonda D ülemiseks pooltasandiks. Selleks võtame

z1 =
z−R

z+R
.

Valitud funktsioon kujutab reaaltelje reaalteljeks ning ringjoone ♣z♣ = R
reaalteljega ristuvaks sirgeks. Et punkt z = R+Ri kujutub punktiks z1 =
1

5
(1 + 2i) ning punkt z = R punktiks z1 = 0, siis piirkonna D kujutiseks on

z1-tasandi I veerand. Ülemise pooltasandi saame, kui rakendame ruutfunkt-
siooni, võttes

z2 = z2
1 =

(

z−R

z+R

)2

. (9.2)

Et saadud funktsioon on vaid üks võimalikest funktsioonidest, mis kujutab
piirkonna D ülemiseks pooltasandiks, siis see funktsioon ei tarvitse täita li-
satingimusi (9.1). Tõepoolest, saadud funktsioon ei kujuta lõpmatuspunkti
lõpmatuseks.

Soovitud omadustega funktsiooni leidmiseks rakendame suvalist funkt-
siooni, mis kujutab ülemise pooltasandi konformselt ülemiseks pooltasan-
diks. Nagu teame (vt. jaotis 8.4 näide 3), on selleks reaalsete kordajatega
murdlineaarne funktsioon

w =
az2 + b

cz2 +d
.

Asendades viimases avaldises suuruse z2 valemi (9.2) põhjal, saame funkt-
siooni

w = f(z) =
(a+ b)z2 +2(b−a)Rz+(a+ b)R2

(c+d)z2 +2(d− c)Rz+(c+d)R2
,

kus a, b, c ja d on reaalsed konstandid. Selgitame, millisel juhul see funktsioon
rahuldab tingimusi (9.1). Paneme tähele, et tingimuse f ′(∞) = v∞ ̸= 0 tõttu
peab selle ratsionaalfunktsiooni nimetaja aste olema madalam kui lugeja oma
(jagatise tuletise valemist!), s. t. c+d= 0. Teiselt poolt, tingimuse f(∞) = ∞
põhjal järeldame, et a+ b ̸= 0. Seega

w = f(z) =
(a+ b)z2 +2(b−a)Rz+(a+ b)R2

2(d− c)Rz
= αz+β+

αR2

z
,
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kus

α=
a+ b

2(d− c)R
ja β =

b−a

d− c
.

Saadud avaldisest leiame, et

w′ = f ′(z) = α− αR2

z2
.

Et punktis z = Ri võrdub tasandi pööre nulliga (puutuja suund Ű reaaltelje
positiivne suund Ű säilib!), siis argf ′(Ri) = 0, s. t. f ′(Ri) = 2α > 0. Tingimu-
sest ♣f ′(∞)♣ = ♣α♣ = v∞ saame, et α = v∞. Arvestades veel, et kompleksne
pooltasand on määratav konstantse liidetava täpsuseni, võtame β = 0, mis-
tõttu otsitavaks kompleksseks potentsiaaliks võime võtta avaldise

f(z) = v∞

(

z+
R2

z



.

Leitud kompleksse potentsiaali põhjal

♣−→A ♣ = ♣f ′(z)♣ =

∣

∣

∣

∣

∣

v∞

(

1− R2

z2

∣

∣

∣

∣

∣

.

Punktides z = ±R on
−→
A = 0. Neid punkte nimetatakse selle vektorvälja krii-

tilisteks punktideks. Leides funktsiooni f imaginaarosa

ψ(x,y) = v∞

(

y− R2y

x2 +y2



,

saame, et vaadeldava vektorvälja vektorjooned (voolujooned) esituvad võr-
randiga

(x2 +y2 −R2)y = C(x2 +y2).

Kui C = 0, esitub vektorjoon kahe võrrandiga y= 0 (reaaltelg) ja x2 +y2 =R2

(antud ringjoon). Selleks vektorjooneks on niisiis piirkonna D rajajoon.
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xR

Joonis 9.6

9.5. VOOLAMINE ÜMBER KINNISE JOONE

Vaatleme tasaparalleelset voolamist ümber ringsilindri, mis on risti voo-
lamistasandiga. Tasandil vastaks sellele voolamine ümber ringjoone. Valime
koordinaatide süsteemi selliselt, et koordinaatide alguspunkt asub ringjoone
keskpunktis ning voolamine toimub x-telje positiivses suunas (joon. 9.6). Sel
viisil saavutame sisuliselt sama olukorra, mida vaatlesime eelmises jaotises.
Niisuguse voolamise kompleksseks potentsiaaliks on

v∞

(

z+
R2

z



. (1)

Vaatleme mõnevõrra üldisemat olukorda. Olgu tegemist ka keerisega ümber
silindri. Jaotise 9.3 näite 2 põhjal on niisuguse voolamise kompleksseks po-
tentsiaaliks

Γ

−2π
iLnZ =

Γ

2πi
Lnz, (9.1)

kus Γ tähistab keerise intensiivsust. Liites avaldised (1) ja (9.1), saamegi
vaadeldava üldisema voolamise kompleksse potensiaali

f(z) = v∞

(

z+
R2

z



+
Γ

2πi
Lnz.

Sellise voolamise puhul võrdub kiirus lõpmatuspunktis arvuga v∞ ning kee-
rise intensiivsus punkti z = 0 suhtes on Γ.
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Arvutades

f ′(z) = v∞

(

1− R2

z2



+
Γ

2πiz
,

saame leida antud voolamise kriitilised punktid, s. t. punktid, kus kiirus
võrdub nulliga. Selleks tuleb lahendada võrrand f ′(z) = 0. Et see võrrand
taandub ruutvõrrandiks

z2 +
Γ

2πiv∞
z−R2 = 0,

siis kriitilisteks punktideks on

z1,2 =
Γ

4πv∞
i±

√

√

√

√R2 − Γ2

16π2v2
∞
.

x

y

z1z2

0

ϕ

Joonis 9.7

Siin tuleb ilmsiks kolm erinevat olukorda.
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Joonis 9.8

1. Kui ♣Γ/(4πv∞)♣ < R, siis ♣z1♣ = ♣z2♣ = R ning need punktid asuvad y-
telje suhtes sümmeetriliselt (joon. 9.7). Punkt z2 on voolu hargnemis-
punkt ning punkt z1 on voolu koondumispunkt. Arvutades saaksime,
et koondumispunkti argumendi saab määrata seosest

sinφ=
Γ

4πRv∞
. (9.2)

2. Kui ♣Γ/(4πv∞)♣ = R, siis on tegemist vaid ühe, imaginaarteljel asuva
kriitilise punktiga (joon. 9.8).

3. Kui ♣Γ/(4πv∞)♣ > R, siis saame kaks imaginaarteljel asuvat kriitilist
punkti z1 ja z2, mille puhul ♣z1♣ · ♣z2♣ =R2, s. t. üks neist asub vaadelda-
vas ringis ning teine väljaspool seda. Viimast läbiv kinnine voolujoon
jagab kõik voolujooned kahte ossa: kinnised ja mittekinnised jooned
(joon. 9.9). Seega näeme, et kolme suuruse v∞, Γ ja R erinev vahekord
määrab meile oluliselt erineva iseloomuga voolamise.
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x
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0

Joonis 9.9

Kui vaadelda voolamist ümber suvalise kinnise joone C (joon. 9.10), siis
tuleb appi võtta konformne kujutamine; kujutada joonest C väljaspoole jääv
piirkond D piirkonnaks ♣ζ♣>R. Kujutuse ζ = φ(z) valime nii, et φ(∞) = ∞
ja argφ′(∞) = 0, s. t. φ′(∞) > 0. Arvestades, et raadiuse R võime valida
vabalt, teeme seda nii, et φ′(∞) = 1. Niisuguse valiku korral potentsiaal

f [φ(z)] = ν∞



φ(z)+
R2

φ(z)

]

+
Γ

2πi
Lnφ(z) (9.3)

kirjeldab voolamist ümber joone C, mille puhul kiirus lõpmatuses on v∞ ja
tsirkulatsioon joonel C on Γ. Tõepoolest,

d

dz
f [φ(z)] ♣z=∞ = f ′(∞)φ′(∞) = v∞ ·1 = v∞

ning
∫

C

d

dz
f [φ(z)]dz =

∫

♣ζ♣=R

f ′(ζ)dζ = Γ.
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9.6. ŽUKOVSKI PROFIIL

Käesolevas jaotises vaatleme lennuki tiiva ristlõiget (Žukovski proĄili)
ümbritseva piirkonna kujutamist ringjoont ümbritsevaks piirkonnaks.

Lähtume sellest, et kujutame tasandi, millest on välja lõigatud ringjoone
kaar Γ (joon. 9.11), tasandiks, millest on välja lõigatud ring keskpunktiga

punktis K = ih (joon. 9.12). Kasutame ühelt poolt funktsiooni z1 =
z−a

z+a
, mis

kujutab vaadeldava kaare nullpunktist lähtuvaks kiireks. See kiir moodustab
reaaltelje negatiivse osaga nurga α, sest vaadeldava funktsiooni tuletis on
positiivne punktis z = a, s. t. tuletise argument on 0, mistõttu pööret selles
punktis ei ole.

Teiselt poolt, kasutades sama funktsiooni w-tasandi kujutamiseks, saame,
et funktsioon

w1 =
w−a

w+a

kujutab vaadeldava ringjoone w1-tasandi sirgeks, mis läbib nullpunkti ja mille
tõusunurk on

β = π− π

2
− α

2
=
π

2
− α

2
.

Kui kasutame järgnevalt kujutust w2 = w2
1, saame kogu w2-tasandi lõikega

piki kiirt, mis moodustab reaaltelje positiivse suunaga nurga 2β = π−α. Me
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O x

y

ih

−a a

Γ

1

2
α

α

Joonis 9.11

O u

v

ih

C

−a a
β

1

2
α

Joonis 9.12

saime w2-tasandil sama piirkonna kui z1-tasandil. Seega võime võtta z1 =
w2 = w2

1 ehk

z−a

z+a
=
(

w−a

w+a

)2

. (9.1)

Avaldades leitud seosest muutuja z, saame funktsiooni

z =
1

2

(

w+
a2

w



,

mis a= 1 korral on tuntud Žukovski funktsioonina.
Kui avaldame seosest (9.1) muutuja w, siis saame eelnevale pöördfunkt-

siooni

w = z+
√

z2 −a2. (9.2)

Uurime seda kujutust mõnevõrra lähemalt. Vaatleme w-tasandil veel ring-
joont C ′, mille keskpunktiks on K ′ ning mis puutub ringjoont C punktis
w = a (joon. 9.13). Selle ringjoone originaaliks on mingi kinnine joon Γ′, mis
ümbritseb kaart Γ ning puutub seda punktis z = a (joon. 9.14). Joonel Γ′ on
seega tagasipöördepunkt punktis z = a. Funktsioon (9.2) kujutab joonega Γ′
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piiratud kujundi (Žukovski proĄili) välise piirkonna ringjoone C ′ suhtes vä-
liseks piirkonnaks. Siit saame võimaluse lennuki tiibade proĄili arvutamiseks.
Viimane sõltub kolmest parameetrist a, h, ja d. Esimene neist iseloomustab
tiiva laiust, teine Ű tiiva kõverust ning kolmas (ringjoonte keskpunktide va-
heline kaugus) Ű tiiva paksust.

β

C ′

K = ih

C

O
u

v

−a a

K ′

d

Joonis 9.13

O x

y

ih

−a a

Γ

Γ
′

Joonis 9.14

9.7. VOOLAMINE ÜMBER ŽUKOVSKI PROFIILI

Eelmises jaotises leidsime funktsiooni (9.2), mis kujutab konformselt Žu-
kovski proĄili välise piirkonna mingist ringjoonest väljaspoole jäävaks tasan-
di osaks. Et rakendada jaotise 9.5 valemit (9.3), tuleb see ringjoon kujutada
niisuguseks ringjooneks, mille keskpunkt asub nullpunktis. Seda saame teha
nihke teel, võttes

w1 = φ1(z) = w−K0 = z−K ′ +
√

z2 −a2,

kus K ′ on ringjoone C ′ keskpunkt (joon. 9.13). Selle funktsiooni korral
φ1(∞) = ∞ ning φ′

1(∞) = 2. Jaotise 9.5 valemi (9.3) rakendamiseks on aga
vaja, et tuletis lõpmatuspunktis võrduks ühega. Seepärast võtame φ1 asemel
funktsiooni

w = φ(z) =
1

2
(z−K ′ +

√

z2 −a2).
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Valemi (9.3) rakendamiseks jääb veel leida keerise intensiivsus Γ. Selleks ka-
sutame nn. Tšaplõgini tingimust; voolamisel ümber kontuuri, millel on
teravik (nurk puutujate vahel on väiksem kui π), nihkub voolu koondumis-
punkt teraviku tippu. Leiame teraviku tipu a kujutise, arvestades, et

K ′ = ih+dei(π−arctanh/a) = ih−dei−arctanh/a.

Teraviku kujutiseks on seega punkt

B=φ(a) =
1

2
(a−K ′) =

1

2
(a− ih+de−iarctanh/a =

1

2
(
√

a2 +h2 +d)e−iarctanh/a.

Et koondumispunkti argument ja keerise intensiivsus Γ on seotud jaotise 9.5
valemiga (9.2), siis saamegi määrata suuruse Γ:

Γ = 4πRv∞ sin(−arctanh/a) = −4πv∞R sinarctanh/a.

Et

sin(arctanh/a) =
h√

a2 +h2

ja

R =
1

2
(
√

a2 +h2 +d),

siis

Γ = −2πv∞

(

h+
d√

a2 +h2



.

9.8. TŠAPLÕGINI VALEM

Kui kiirus on väiksem helikiirusest, võib õhku vaadelda kokkusurumatu
vedelikuna. Lennuki tiiva kuju uurides kujutleme, et tiib on paigal ning õhk
kui kokkusurumatu vedelik voolab ümber tiiva.

Rõhk tiivale avaldub Bernoulli valemiga

p= A− ϱ

2
v2,
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kus A on konstant, ϱ Ű õhu tihedus ja v Ű kiirus vaadeldavas punktis. Et rõhk
on risti vaadeldava jooneelemendiga dz (vektor), siis viimasele mõjuv rõhk
(vektor) avaldub kujul

(

A− ϱ

2
v2
)

idz.

Tähistades joonele C mõjuva kogurõhu (vektori) tähega P , saame integ-
reerides, et

P =
∫

C

(

A− ϱ

2
v2
)

idz = − iϱ

2

∫

C

v2dz,

sest Cauchy teoreemi põhjal
∫

C

Aidz = 0.

Et −→v = f ′(z) ning v = ♣−→v ♣ = ♣f ′(z)♣, kui f(z) on vaadeldavat voolamist kir-
jeldav kompleksne potentsiaal, siis

P = − iϱ

2

∫

C

♣f ′(z)♣2dz. (9.1)

dz

C

x

y

0

Joonis 9.15

Arvestame asjaolu, et joone C punktides on kiirusvektor suunatud piki
puutujat (joon. 9.15). Seega

Argf ′(z) = Argdz = a,
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millest

Argf ′(z) = −a

ning

Arg([f ′(z)]2dz) = −2a+a= −a.

Et

Arg(♣f ′(z)♣2dz) = 0+a= a ja ♣[f ′(z)]2dz♣ = ♣♣f ′(z)♣2 dz♣,

siis

♣f ′(z)♣2 dz = [f ′(z)]2dz.

Selle seose põhjal saame valemist 9.1, et

P =
ρi

2

∫

c

[f ′(z)]dz.

Seda valemit tuntakse Tšaplõgini valemina.

9.9. ŽUKOVSKI TEOREEM

Kui eeldada, et lennuki tiiba ümbritsevas piirkonnas on vaadeldav vek-
torväli potentsiaalne ja solenoidaalne, siis on ka sellele vastav kompleksne
potentsial f(z) regulaarne väljaspool joont C. Sama omadus on siis ka tule-
tisel f ′(z), mille võime seetõttu arendada lõpmatuspunkti ümbruses Laurent’i
ritta:

f ′(z) = v∞ +
c−1

z
+
c−2

z2
+ . . . ,

kus v∞ on kiirusvektori v∞ kaaskompleks.
Olgu L kinnine joon, mis hõlmab joone C. Rakendades Cauchy teoreemi

kahelisidusa piirkonna korral, saame seose
∫

C

[f ′(z)]2dz =
∫

L

[f ′(z)]2dz.

Et

[f ′(z)]2 = v2
∞ +

2v∞c−1

z
+
c2−1 +2v∞c−2

z2
+ . . . ,
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siis Tšaplogini valemi põhjal

P =
ρi

2

∫

L

[f ′(z)]2dz =
ρi

2
·2πi2v∞c−1 = −2πρv∞c−1.

Kordaja c−1 arvutame seosest
∫

L

f ′(z)dz =
∫

C

f ′(z)dz = Γ+ iN.

Seejuures peame silmas asjaolu, et joone C punktides on kiirusvektor puutuja
suunaline ning seetõttu N = 0. Seega

∫

C

f ′(z)dz = c−12πi = Γ,

millest

c−1 =
Γ

2πi
.

Vastavalt sellele saame, et

P = ρiv∞Γ,

ning

P = −iρv∞Γ.

Viimast seost tuntakse Žukovski teoreemina tõstejõust.
Et ρ> 0, siis vektor P on pööratud vektori v∞ suhtes nurga π/2 võrra, kui

Γ< 0 (voolamine ümber proĄili kellaosuti liikumise suunas), ning nurga −π/2
võrra, kui Γ > 0 (voolamine ümber proĄili vastupidine kellaosuti liikumise
suunale).
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10. LAPLACE’I TEISENDUS

10.1. LAPLACEI TEISENDUSE MÕISTE

Laplace’i teisenduseks nimetatakse võrdusega

F (p) =

∞
∫

0

e−ptf(t)dt (10.1)

määratud integraal-operaatorit, milles muutujat p vaadeldakse kompleks-
muutujana. Funktsioon f omagu reaalseid või kompleksseid väärtusi ning
tema määramispiirkonda kuulugu vähemalt kõik positiivsed reaalarvud t. Et
integraal (10.1) oleks määratud, tuleb funktsioonile f seada teatavad kit-
sendused. Arvestades ka integraali rakendusi, tehakse need kitsendused järg-
mised:

1) f(t) ≡ 0, t < 0;

2) poolsirge t≥ 0 igas lõplikus lõigus ei ole funktsioonil ega tema teataval
arvul tuletistel rohkem kui lõplik arv katkevuspunkte (need võivad olla
I liiki);

3) eksisteerivad konstandid M > 0 ja a ≥ 0 selliselt, et iga t > 0 puhul
♣f(t)♣ ⩽Meat.

Arvude a alumist raja nimetatakse funktsiooni f kasvu näitajaks.
Tingimusi 1)Ű3) rahuldavat funktsiooni nimetatakse originaaliks. Seosega
(10.1) määratud funktsiooni F nimetatakse funktsiooni f kujutiseks. Vas-
tavust originaali ja kujutise vahel märgitakse sümbolitega:

f(t) ≈ F (p), F (p) ≈ f(t)

või

F = L(f), F (p) = L[f(t)].

Kirjanduses võib esineda ka teistsuguseid sümboleid, kuid siinesitatud on
vast kõige enam kasutatavad.

Näitame, et iga tingimusi 1)Ű3) rahuldava funktsiooni jaoks eksisteerib
kujutis. Selleks tõestame järgmise teoreemi.

205
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Teoreem 1. Integraal (10.1) koondub absoluutselt pooltasandis Rep > a, kus
a on funktsiooni f kasvu näitaja. Igas pooltasandis Rep⩾ a0 > a koondub see
integraal ühtlaselt.

Tõestus. Tõepoolest, kui p= s+iσ, siis:

∞
∫

0

∣

∣

∣f(t)e−pt
∣

∣

∣ dt⩽

∞
∫

0

Meate−stdt⩽M

∞
∫

0

e−(s−a)t dt=
M

s−a
, (10.2)

mis ütlebki, et integraal koondub.
Kui nüüd Rep= s > a0 > a, saaksime eelmisest võrratuste ahelast, et

∞
∫

0

∣

∣

∣f(t)e−pt
∣

∣

∣ dt⩽M

∞
∫

0

e−(s−a)t dt⩽M

∞
∫

0

e−(a0−a)t dt=
M

a0 −a
.

Weierstrassi tunnuse põhjal järeldame, et integraal (10.1) on ühtlaselt koon-
duv piirkonnas Rep⩾ a0 > a. Teoreem on tõestatud.

Vaadeldes veel kord originaali määravaid tingimusi 1)Ű3), näeme, et tin-
gimusel 1) pole seost kujutise eksisteerimisega. Selle tingimuse seos reaalsete
ülesannetega väljendub asjaolus, et harilikult vaadeldakse algtingimustega
ülesandeid (diferentsiaalvõrrandeid). Seetõttu pole oluline, kuidas käitub ot-
sitav suurus (funktsioon) enne algpunkti (milleks võib alati võtta t= 0). Teisi-
ti öeldes, meid ei huvita uuritava nähtuse (funktsiooni) ĎminevikŞ, vaid ainult
tema muutumine t > 0 korral Ű ĎtulevikusŞ, milleks peame teadma uurita-
va nähtuse mõningaid karakteristikuid algpunktis (t = 0). Mis aga puutub
tingimustesse 2) ja 3), siis neid rahuldab enamik klassikalisi füüsikanähtusi
kirjeldavaid funktsioone. Nüüdisajal aga kasutatakse automaatsüsteemides
signaale (funktsioone), mis kestavad väga lühikest aega, kasvades peaaegu
momentaanselt väga suurte väärtusteni. Sel korral jäävad tingimused 2) ja
3) täitmata ning tekib vajadus üldistada originaali mõistet.

Üldistatud originaaliks nimetatakse funktsiooni f , mille korral leidub
niisugune reaalarv α, et koondub integraal

∞
∫

0

e−αt♣f(t)♣dt.

Veendume, et kujutis F on regulaarne funktsioon.
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Teoreem 2. Kui integraal (10.1) koondub pooltasandis Re p > a, siis funkt-
sioon F on regulaarne samas pooltasandis, kusjuures selle funktsiooni tuleti-
sed avalduvad kujul:

F (n)(p) = (−1)n
∞
∫

0

e−pttnf(t)dt.

Tõestus. Vastavalt omadusele 2 jaotisest 4.7 peame vaid näitama, et võrduses
esinev päratu integraal on ühtlaselt koonduv igas kinnises pooltasandis Rep⩾
a0 > a.

Võtame n= 1. Siis saame, et

∞
∫

0

f(t)te−pt dt⩽M

∞
∫

0

te−(a0−a)t dt=
M

(a0 −a)2
,

s.t. vaadeldav integraal on ühtlaselt koonduv pooltasandis Rep⩾ a0 > a.
Täieliku induktsiooni meetodit kasutades saaksime tõestada, et teoreemi

väide on õige iga n korral.

Teoreem 3. Kui F on mingi funktsiooni kujutiseks, siis

lim
Rep→∞

F (p) = 0.

Tõestus. Vahetu järeldus seosest (10.2).

Näide 1. Funktsiooni H, mis on määratud seosega

H(t) =







1, t⩾ 0,

0, t < 0,

nimetatakse ühikfunktsiooniks ehk Heaviside’i funktsiooniks. Arvuta-
misel saame, et

L(H) = L(1) =

∞
∫

0

e−pt dt= −1

p
e−pt

∣

∣

∣

∣

∣

∞

0

=
1

p
, Rep > 0.
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Näide 2. Olgu f(t) = eωt, kus ω = u+iv. Sel juhul

L(f) = L(eωt) =

∞
∫

0

eωte−pt dt=

=

∞
∫

0

e(ω−p)t dt=
1

ω−p
e(ω−p)t

∣

∣

∣

∣

∣

∞

0

=

=
1

p−ω
, Re p > Reω.

Seega

L(eωt) =
1

p−ω
, kui Re p > Reω.

Märkus. Mingist reaalteljel (vähemalt t ⩾ 0 puhul) määratud funktsioonist
f kui originaalist kõneldes mõistame teda funktsioonina f ·H, s.t.

f(t) ·H(t) =







f(t), t⩾ 0,

0, t < 0.

Teguri H(t) jätame lühiduse mõttes kirjutamata. Ent kui selle ärajätmine
võib põhjustada valesti mõistmist, kirjutame H(t) asemel lihtsalt 1 (vt. näide
2 järgmises jaotises).

10.2. LAPLACE’I TEISENDUSE OMADUSI

I. Lineaarsus. Operaator L on lineaarne, s.t.

L(λf +µg) = λL(f)+µL(g),

kus λ ja µ on konstandid.

Tõestus.

L = (λf +µg) =

∞
∫

0

[λf(t)+µg(t)]e−pt dt=

= λ

∞
∫

0

f(t)e−pt dt+µ

∞
∫

0

g(t)e−pt dt= λL(f)+µL(g).
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Näide 1. Leiame L(sinωt). Eelmise jaotise näite 2 põhjal

L(eiωt) =
1

p− iω
, kui Rep >− Imω,

ning

L(e−iωt) =
1

p+iω
, kui Rep > Imω,

Operaatori L lineaarsust kasutades saame, et

L(sinωt) = L

[

1

2i
(eiωt − e−iωt)

]

=

=
1

2i

[

L(eiωt)−L(e−iωt)
]

=
1

2i

(

1

p− iω
− 1

p+iω



=

=
1

2i

2iω

p2 +ω2
=

ω

p2 +ω2
, Rep > ♣ Imω♣.

Analoogiliselt saaksime, et

L(cosωt) =
p

p2 +ω2
, kui Rep > ♣ Imω♣.

II. Sarnasusteoreem. Kui λ > 0 ning

L[f(t)] = F (p), Rep > a,

siis

L[f(λt)] =
1

λ
F
(

p

λ

)

, Rep > λa.

Tõestus. Väite saame vahetult, kui teeme Laplace’i teisendust määravas in-
tegraalis muutuja vahetuse λt= τ.

III. Originaali tuletised. Kui f ′ ja f (n) on originaalid, siis

L[f ′(t)] = pL[f(t)]−f(0),

L[f (n)(t)] = pnL[f(t)]−pn−1f(0)−pn−2f ′(0)− . . .−f (n−1)(0).
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Tõestus. Ositi integreerimisel saame, et

L[f ′(t)] =

∞
∫

0

f ′(t)e−pt dt= [f(t)e−pt]∞0 +p

∞
∫

0

f(t)e−pt dt

Kuna Re p = s > a, siis ♣f(t)e−pt♣ ⩽Me−(s−a)t, mistõttu lim
t→∞

f(t)e−pt = 0.

Sellega olemegi tõestanud esimese valemi. Teine valem on tõestatav täieliku
induktsiooni meetodiga.

Märkus. Kui f(0) = 0, siis L[f ′(t)] = pL[f(t)], s.t. originaali diferentseeri-
misele vastab kujutise korrutamine argumendiga p.

IV. Kujutise tuletised. Kujutise diferentseerimisele vastab originaali
korrutamine teguriga −t, s.t.

dn

dpn
L[f(t)] = (−1)nL[tnf(t)].

Tõestus. Väide on tõestatud eelmise jaotise teoreemiga 2.

Näide 2. Leiame L(tn).
Heaviside’i funktsiooni kujutist kasutades saame, et

L(tn) = L(tn ·1) =
1

(−1)n

dn

dpn
L(1) = (−1)n dn

dpn

(

1

p



=
n!

pn+1
.

Näide 3.

L(tneωt) =
1

(−1)n

dn

dpn
L(eωt) =

= (−1)n dn

dpn

(

1

p−ω



=
n!

(p−ω)n+1
.

Näide 4. Leiame L(tα), kus α ∈ R. Vastavalt deĄnitsioonile

L(tα) =

∞
∫

0

e−pttα dt=

∞
∫

0

e−τ τα

pα+1
dτ =

1

pα+1

∞
∫

0

e−τ τα dτ,

kus pt= τ ja pdt= dτ . Seega

L(tα) =
1

pα+1
Γ(α+1),
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kui Rep ⩾ 0 ja α > −1. Kui α < 0, siis tα on originaal, kui aga −1 < α < 0,
siis tα ei ole originaal, sest tα → ∞, kui t→ 0. Viimasel juhul tα on üldistatud
originaal.

V. Originaali integreerimine. Originaali integreerimisele vastab jagami-
ne argumendiga p, s.t.

L





t
∫

0

f (τ)dτ



=
L[f (t)]

p
.

Tõestus. Veendume, et g (t) =

t
∫

0

f (τ)dτ on originaal. Kontrollimist vajab

vaid tingimus 3), sest ülejäänud kahe täidetus on ilmne. Tingimust 3) kont-
rollides saame:

∣

∣

∣

∣

∣

∣

t
∫

0

f (τ)dτ

∣

∣

∣

∣

∣

∣

⩽M

t
∫

0

eaτ dτ =
M

a

(

eat −1
)

⩽
M

a
eat,

s.t. tingimus 3) on täidetud. Et g (0) = 0, siis L[f (t)] = L[g′ (t)] = pL[g (t)],
millest saamegi väite.

VI. Kujutise integreerimine. Kui F (p) = L[f (t)] ning integraal
∞
∫

p

F (q)dq koondub, siis

∞
∫

p

F (q)dq = L



f (t)

t

]

.

Tõestus. Eeldame, et integreerimistee asub pooltasandis Rep ⩾ a0 > a. Sel
juhul

∣

∣

∣

∣

∣

∣

∞
∫

0

f (t)e−qt dt

∣

∣

∣

∣

∣

∣

⩽M

∞
∫

0

e−a0−a dt,

millest järeldub, et funktsiooni F deĄneeriv integraal koondub p suhtes üht-
laselt ning me võime järgmises integraalis muuta integreerimise järjekorda.
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Seega

∞
∫

p

F (q)dq =

∞
∫

p





∞
∫

0

f (t)eqtdt



dq =

∞
∫

0

f (t)

∞
∫

p

e−qtdqdt=

=

∞
∫

0

f (t)

t
e−ptdt= L



f (t)

t

]

.

Näide 5.

L

(

sin t

t

)

=

∞
∫

p

dq

1+ q2
=
π

2
−arctanp= arccotp.

Näide 6. Omaduse V põhjal saame, et

L(Si t) = L





t
∫

0

sinτ

τ
dτ



=
arccotp

p
.

VII. Hilinemisteoreem. Iga positiivse arvu τ korral L[f (t− τ)] =
e−pτL[f (t)].

Tõestus. Et f (t− τ) = 0 (joon. 10.1), kui t < τ , siis

L[f (t− τ)] =

∞
∫

τ

f (t− τ)e−ptdt=

∞
∫

0

f (u)e−p(u+τ)du=

= e−p(u+τ)
∞
∫

τ

f (t− τ)e−pudu= e−pτL[f (t− τ)].

Näide 7. Leiame treppfunktsiooni (joon. 10.2) y= f (t) =H (t)+2H (t− τ)−
3H (t−3τ) kujutise.

Et L[H (t)] =
1

p
, siis lineaarsuse omaduse ja hilinemisteoreemi põhjal saa-

me:

L[f (t)] = L[H (t)]+2L[H (t− τ)]−3L[H (t−3τ)] =

=
1

p
+2e−pτ 1

p
−3e−3τp 1

p
=

1

p

(

1+2e−pτ −3e−3pτ
)

.
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tτ

y

0

y = f(t) y = f(t− τ)

Joonis 10.1

τ 3τ t

y

0

1

3

Joonis 10.2

VIII. Nihketeoreem. Iga kompleksarvu λ korral

L
[

eλtf (t)
]

= F (p−λ) ,

kus F (p) = L[f (t)].

Tõestus. Vahetu deĄnitsiooni rakendamine.

Näide 8. Et L(sinωt) =
ω

p2 +ω2
, siis

ω

(p+λ)2 +ω2
= L

(

e−λt sinωt
)

.

Märkus. Kui λ on negatiivne reaalarv, siis originaal kirjeldab stabiliseeruvat
protsessi vōi sumbuvat võnkumist, mistōttu nihketeoreemi nimetatakse sageli
ka sumbumisteoreemiks.

IX. Perioodilise originaali kujutis. Kui originaal f on perioodiline funkt-
sioon perioodiga T , siis

L[f (t)] =
1

1− e−T p

T
∫

0

e−ptf (t)dt. (10.1)

Tõestus. Et

L[f (t)] =

∞
∫

0

e−ptf (t)dt=

T
∫

0

e−ptf (t)dt+

∞
∫

T

e−ptf (t)dt,
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siis tehes selles integraalis muutuja vahetuse t = τ + T ja arvestades seost
f (t+T ) = f (t), saame:

L[f (t)]

T
∫

0

e−ptf (t)dt+

∞
∫

0

e−p(τ+T )f (τ)dτ =

=

T
∫

0

e−ptf (t)dt+e−T pL[f (t)]

millest järeldubki väide (10.1).

Märkus. Asjatõestatud omadust on kasulik interpreteerida järgmiselt. Olgu

g (t) = f (t) [H (t)−H (t−T )],

s.t.

g (t) =

{

f (t) , t ∈ [0,T ]
0, t ∈ [0,T ]

Sel juhul

L[f (t)]
1

1− e−T p
L[g (t)].

π 2π 3π t

y

1

−1

Joonis 10.3

Näide. Olgu f (t) = sgn(sin t) (vt. joon. 60). Leiame kujutise. Et f on pe-
rioodiline funktsioon perioodiga 2π, siis saame rakendada viimast valemit,
võttes g (t) =H (t)−2H (t−π)+H (t−2π). Arvutades leiame, et

L[g (t)] =
1

p

(

1−2e−πp +e−2πp
)

=

(

1− e−πp
)2

p
,

millest

L[sgn(sin t)] =

(

1− e−πp
)2

p(1− e−2πp)
=

1− e−πp

p(1+e−πp)
=

1

p
= th

πp

2

Märkus. Praktikas ei ole oluline määrata seda piirkonda (pooltasandit), kus
kujutis eksisteerib. Oluline on teada, et niisugune pooltasand Rep > c on ole-
mas. Seetõttu jätame edaspidi kujutise eksisteerimise piirkonna märkimata.
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Ülesanded

1. Tõestada valemid 2, 9, 10, 11, 12, 13, 14, 19, 20, ja 27 tabelist 3.

10.3. PARAMEETRIST SÕLTUVATE
FUNKTSIOONIDE LAPLACE’I
TEISENDUSED

Vaatleme mingist parameetrist α sõltuvate originaalide Laplace’i teisen-
dusi. Olgu

L[f (t,α)] = F (p,α) , α ∈ [α1,α2] .

Teoreem 1. Kui eksisteerib piirväärtus lim
α→α0

f (t,α), siis

L

[

lim
α→α0

f (t,α)
]

= lim
α→α0

L[f,α].

Tõestus. Väide järeldub vastava päratu integraali ühtlasest koonduvusest,
mistōttu vōime minna piirile integraalimärgi all.

Teoreem 2. Kui eksisteerib osatuletis
∂

∂α
f (t,α), α ∈ [α1,α2], ja viimane on

originaal, siis

L



∂

∂α
f (t,α)

]

=
∂

∂α
F (p,α) .

Tõestus. Et
∞
∫

0

e−ptf (t,α)dt= F (p,α) ,

siis parameetri α järgi diferentseerides saame:

∂

∂α

∞
∫

0

e−ptf (t,α)dt=
∂

∂α
F (p,α) .

Eelduse kohaselt
∂

∂α
f (t,α) on originaal, mistõttu võime viimases avaldises

diferentseerida integraali märgi all. Teoreem on tõestatud.
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Näide 1. Et

L(sinαt) =
α

p2 +α2
,

siis parameetri α järgi diferentseerides saame seose

L(tcosαt) =
p2 −α2

(p2 +α2)2 .

Näide 2. Et

L(tα) =
Γ(α+1)

pα+1
,α >−1,

siis parameetri α järgi diferentseerides saame seose

L(tα ln t) =
1

pα+1

[

Γ′ (α+1)−Γ(α+1)lnp
]

.

Tähistades Γ′ (1) = −C ja eC = γ ning võttes α = 0, saame, et L(ln t) =

−1

p
ln(γp).

Teoreemi 2 rakendatakse ka osatuletistega võrrandite lahendamisel
Laplace’i teisenduse abil.

Teoreem 3. Kui on olemas integraalid

β
∫

βc

f (t,α)dα ja

β
∫

β0

F (p,α)dα,

siis

L







β
∫

β0

f (t,α)dα





=

β
∫

β0

F (p,α)dα.

Tõestus. Et
β
∫

β0

dα

A
∫

0

e−ptf (t,α)dt=

A
∫

0

dt

β
∫

β0

siis piirile minnes (A→ ∞) saamegi väite. Tõepoolest, eelduse kohaselt ek-
sisteerib piirväärtus vōrduse vasakust poolest, mistōttu peab eksisteerima ka
piirväärtus paremast poolest.
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Järeldus. Kui F (p) = L[f (t)], siis kehtivad seosed

L





∞
∫

t

f (u)

u
du



=
1

p

p
∫

0

F (q)dq, (10.1)

L





t
∫

0

f (u)

u
du



=
1

p

∞
∫

p

F (q)dq. (10.2)

∞
∫

0

f (u)

u
du=

∞
∫

0

F (q)dq. (10.3)

Tõestus. Sarnasusteoreemi põhjal

L

[

1

α
f
(

t

α

)]

= F (αp) , α > 0.

Rakendame eelmist teoreemi, võttes integreerimislõiguks lõigu [0,1]. Sel juhul
saame võrduse

L





1
∫

0

1

α
f
(

t

α

)

dα



=

1
∫

0

F (αp)dα.

Tehes siin muutujate vahetuse t= αu ja αp= q, saamegi valemi 10.1.
Valemi (10.2) tõestamiseks lähtume kujutise integreerimise omadusest,

mille põhjal

L



f (t)

t

]

=

∞
∫

p

F (q)dq.

Rakendades sellele seosele originaali integreerimise omadust, saamegi valemi
(10.2).

Kasutades Laplace’i teisenduse lineaarsust, saame valemite (10.1) ja
(10.2) liitmisel, et

L





∞
∫

0

f (u)

u
du



=
1

p

∞
∫

0

F (q)dq/

Selles seoses seisab operaatori L märgi all konstant, mille võime lineaarsuse

omaduse tõttu tuua operaatorimärgi ette. Et aga L(1) = H[H (t)] =
1

p
, siis

saamegi valemi 10.1.
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Selles järelduses tōestatud valemeid (10.1) ja (10.2) võib rakendada ku-
jutiste leidmisel, mida demonstreerime järgneva näitega. Valemit (10.3) saab
rakendada integraalide arvutamisel, millel peatume jaotises 11.5.

Näide 3. Integraalne koosinus deĄneeritakse seosega

ci (t) = −
∞
∫

−t

cosu

u
du,t > 0/

Seose 10.3 põhjal saame, et

L[ci (t)] = −1

p

p
∫

0

qdq

q2 +1
= − 1

2p
ln
(

p2 +1
)

.

Ülesanded

1. Tõestada valemid 36, 37 ja 40 tabelist 3.

10.4. PIIRTEOREEMID

Teoreem 1. Kui L[f(t)] = F (p) ja f ′(t) on originaal, siis lim
Rep→∞

pF (p) =

lim
t→0+

f(t).

Tõestus. Et f ′(t) on originaal, siis

L[f ′(t)] = pF (p)−f(0),

kus

f(0) = lim
t→0+

f(t)

Jaotise 10.1 Teoreemi 3 põhjal

lim
Rep→∞

[pF (p)−f(0)] = 0.

millest saamegi teoreemi väite.

Tõestatud teoreemi põhjal võib väärtuse f(0) leida kujutise kaudu.



10.5. KONVOLUTSIOON. BORELI TEOREEM 219

Teoreem 2. Kui L [f(t)]F (p), kus f ′(t) on originaal, ja eksisteerib lim
t→∞

f(t),

siis

lim
p→0

pF (p) = lim
t→∞

f(t).

Tõestus. Lähtume seosest
∞
∫

0

e−ptf ′(t)dt= pF (p)−f(0).

Läheneme selles võrduses piirile (p→ 0). Võime seda teha integraalimärgi all,
mistõttu saame

∞
∫

0

f ′(t)dt= lim
p→0

[pF (p)−f(0)] .

Et aga
∞
∫

0

f ′(t)dt= lim
p→0

f(t)−f(0),

siis viimase kahe võrduse põhjal saamegi teoreemi väite.

.

Ülesanded

1. Näidata, et f ′(0) = a, kui

L[f(t)] =
ap+ b

p(p2 + cp+d)
.

10.5. KONVOLUTSIOON. BORELI TEOREEM

Kahe funktsiooni f ja g konvolutsiooniks nimetatakse funktsiooni, mis
on määratud avaldisega

t
∫

0

f(τ)g(t− τ)dt.

Funktsioonide konvolutsioon on (korrutamisetaoline) tehe funktsioonide hul-
gas, seda tähistatakse sümboliga ∗ (näiteks, h= f ∗g või h(t) = f(t)∗g(t)).
Vaatleme konvolutsiooni omadusi.
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I. Kommutatiivsus: f ∗g = g ∗f .

Tõestus. Tehes konvolutsiooni f ∗g deĄneerivas integraalis muutuja va-
hetuse t− τ = u, saame

f(t)∗g(t) =

t
∫

0

f(τ)g(t− τ)dτ =

t
∫

0

g(u)f(t−u)du= g(t)∗f(t).

II. Assotsiatiivsus: (f ∗g)∗h= f ∗ (g ∗h).

III. Distributiivsus: f ∗ (g+h) = f ∗g+f ∗h.

Need omadused tõestatakse sarnaselt kommutatiivsuse omadusega.

IV. ♣f ∗g♣ ⩽ ♣f ♣ ∗ ♣g♣.

Tõestus. Et
∣

∣

∣

∣

∣

∣

t
∫

0

f(τ)g(t− τ)dτ

∣

∣

∣

∣

∣

∣

⩽

t
∫

0

♣f(τ)♣♣g(t− τ)♣dτ,

siis olemegi saanud vastava omaduse.

V. Kui funktsioonid f ja g on pidevad juhul t⩾ 0, siis on pidev ka nende
konvolutsioon.

Tõestus tuleneb vahetult määratud integraali pidevusest ülemise raja
järgi.

VI. Titchmarsh’i teoreem: Kui f ja g on pidevad t⩾ 0 puhul ning f ∗g=
0, siis vähemalt üks funktsioonidest on võrdne nulliga iga t⩾ 0 puhul.

Selle teoreemi tõestust me ei esita.

VII. Kui funktsioonid f ja g on originaalid, siis on seda ka nende konvolut-
sioon.
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Tõestus. Esimese kahe originaali eesitatud tingimuse täidetus on ilmne.
Vaatleme kolmandat tingimust. Olgu

♣f(t)♣ ⩽M1eat ja ♣g(t− τ)♣ ⩽M2ea(t−τ),

mille põhjal

∣

∣

∣

∣

∣

∣

t
∫

0

f(τ)g(t− τ)dτ

∣

∣

∣

∣

∣

∣

<M

t
∫

0

eaτ ea(t−τ)dτ =Mteat <Me(a+ϵ)t

kus ε on kui tahes väike positiivne arv. Seega on originaali tingimus 3)
konvolutsiooni puhul täidetud.

Boreli teoreem. Kui L [f(t)] =F (p) ja L [g(t)] =G(p), siis L¶f(t)∗g(t)♢ =
F (g) ·G(p).

Tõestus. Konvolutsiooni kujutis on määratud absoluutselt koondunva kahe-
kordse integraaliga, milles muudame integreerimise järjekorra (vt. joon. 10.4).
Saame, et

L

t
∫

0

f(τ)g(t− τ)dτ =

∞
∫

0

e−pt





t
∫

0

f(τ)g(t− τ)dτ



dt=

=

∞
∫

0

f(τ)





∞
∫

τ

e−ptg(t− τ)dt



dτ.

Tehes viimases integraalis muutuja vahetuse u= t− τ , du= dτ , saame, et

L[f(t)∗g(t)] =

∞
∫

0

f(τ)e−pτ dτ

∞
∫

0

g(u)e−pu du= F (p)G(p).

Teoreem on tõestatud.

Näide 1. Leiame originaali funktsioonile

w = F (p) =
1

(p2 +1)2
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0 t

τ

τ
∗
t

Joonis 10.4

Et
1

(p2 +1)2
= L(sin t), siis

F (p) =
1

p2 +1
· 1

p2 +1
=

t
∫

0

sin(t− τ)sinτ dτ =

=
1

2

t
∫

0

[cos(2τ − t)− cos t]dτ =
1

4
sin(2τ − t)

∣

∣

∣

∣

t

0
− 1

2
τ cos(t)

∣

∣

∣

∣

t

0
=

=
1

2
sin t− 1

2
tcos t.

Teoreem. Kui L[f(t)∗g(t)] = F (p)G(p), siis

L[f(t)]∗g′(t)+f(t)g(0)] = pF (p)G(p)

ja

L[g(t)]∗f ′(t)+g(t)f(0)] = pF (p)G(p)

Tõestus. Et

pF (p)G(p) = [pG(p)−g(0)]F (p)+g(0)F (p),

siis Boreli teoreemi, originaali diferentseerimise ja lineaarse omadust kasuta-
des saamegi esimese võrduse tõestada. Teise tõestame analoogiliselt.

Äsjatõestatud kahte võrdust nimetatakse Duhameli integraalideks.
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Ülesanded

1. Näidata, et

L





∞
∫

0

f(u)g(t;u)du



=G(p)F [q(p)],

kui

L[f(t)] = F (p) ja L[g(t;u) = e−uq(p)G(p)

ning q ja G on analüütilised funktsioonid (Efrose teoreem).

2. Näidata, et Efrose teoreem on Boreli teoreemi üldistus.

10.6. FOURIER’ TEISENDUS

Matemaatilise analüüsi kursusest teame∗, et kui funktsioon f on absoluut-
selt integreeruv kogu arvsirgel ning tal on igas punktis lõplikud ühepoolsed
tuletised f ′(t+) ja f ′(t−) igas punktis t, kus

f(t) =
1

2
[f(t+)−f(t−)],

kehtib seos

f(t) = lim
l→∞

1

2π

l
∫

−l

elstds=

∞
∫

−∞

f(u)e−lsudu. (10.1)

Märkides

f(s) =
1√
2π

∞
∫

−∞

f(u)e−lsudu, (10.2)

saame, et

f(s) = − 1√
2π

∞
∫

−∞

F (s)elstds, (10.3)

∗Vt. Kangro, G. Matemaatiline analüüs II, Tln, 1968, lk 258–263.
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kus viimane integraal on mõistetud nn. Cauchy peaväärtusena

∞
∫

−∞

f(s)elstds= lim
l→∞

l
∫

−l

F (s)elstds

Seost (10.2) nimetatakse Fourier’ teisenduseks ning seost (10.3) tema
pöördteisenduseks. Fourier’ teisendus on rakenduslikult väga tähtis mate-
maatilises füüsikas ja raadiotehnikas. Meil läheb seda vaja seoses Laplace’i
teisenduse pöördteisenduse vaatlemisega järgmises jaotises, kus muutjat s
tuleb vaadelda komplekssuutujana.

Kasutatakse järgmist sümboolikat ja terminoloogiat. Seost (10.1) märgis-
takse lühidalt

F(f) = F ehk F[f(t)] = F (s).

Funktsiooni f nimetatakse originaaliks ja funktsiooni F kujutiseks. Ku-
jutist F (s) nimetatakse funktsiooni y = f(t) spektraalseks tiheduseks,
kujutise moodulit ♣F (s)♣ Ű amplituudi tiheduseks ning kujutise argumen-
ti argf(s) Ű algfaasiks.

Lähtudes Fourier’ integraali deĄnitsioonist saab kontrollida järgmisi oma-
dusi.

I. Lineaarsus: F(λf +µg) = λf(f)+µF(g)

II. Originaali nihe: F[f(t± τ)] = e±lsτF[f(t)].

III. Kujutise nihe. Kui F[f(t)] = F (s), siis

F[f(t)e±lσt] = F(s±σ).

IV. Ljapunovi võrdus. Kui F(f) = F ja F(g) =G, siis

∞
∫

−∞

f(t)g(t)dt=

∞
∫

−∞

F (s)G(s)ds=

∞
∫

−∞

G(s)F (s)ds.

V. Parsevali võrdus. Kui F(f) = F , siis

∞
∫

0

[f(t)]2dt=

∞
∫

0

[F (s)]2ds.



10.7. LAPLACE’I TEISENDUSE PÖÖRAMINE 225

VI. Sarnasusteoreem. Kui F[f(t)] = F (s), siis

F[f(at)] =
1

a
F
(

s

a

)

VII. Originaali diferentseerimine. Kui F(f) = F ja f (k)(t) (k =
1,2, . . . ,n) on absoluutselt integreeruv kogu arvsirgel, siis

F[(f (k)(t)] = (is)kF[f(t)], k = 1,2, . . . ,n.

VIII. Kujutiste korrutamine. Kui F(f) = F ja F(g) = G, siis F(f ∗ g) =
F (s)G(s), kus

f(t)∗g(t) =
1√
2π

∞
∫

−∞

f(u)g(t−u)du.

Viimast avaldist nimetatakse funktsioonide f ja g konvolutsiooniks
piirkonnas (−∞,∞).

10.7. LAPLACE’I TEISENDUSE PÖÖRAMINE

Olgu L[f(t)] = F (p). Teisendust L−1, mille abil saame leida originaali
f(t), teades kujutist f(p), nimetatakse Laplace’i teisenduse pöördtei-
senduseks. See esitub RiemanniŰMellini valemiga

1

2πi

x+i∞
∫

x−i∞

eptF (p)dp=
1

2
[f(t+)+f(t−)], (10.1)

milles L[f(t)] = F (p), Rep= x> a, kus a on funktsiooni f kasvu näitaja. Sel-
les valemis on integraali mõistetud Cauchy peaväärtusena ning integreerimine
toimub piki imaginaarteljega paralleelset sirget. Rõhutame, et funktsiooni f
pidevuspunktis annab valemi (10.1) selle funktsiooni väärtuse f(t) ning esi-
mest liiki katkevuspunktis ühepoolsete piirväärtuste aritmeetilise keskmise.

Valemi (10.1) tõestamiseks märgime, et funktsioon

y = extf(t)
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on absoluutselt integreeruv kogu arvsirgel (vt. jaotis ???), kusjuures f(t) = 0,
kui t < 0. Seetõttu võib sellele funktsioonile rakendada eelmise jaotise valemit
(10.1); saame

e−xtf(t) =
1

2π

∞
∫

−∞

elstds

∞
∫

−∞

f(u)e−xue−lsudu.

ehk

f(t) =
1

2π

∞
∫

−∞

e(x+is)t ds

∞
∫

−∞

e−(x+is)uf(u)du.

Tähistame x+ is= p. Sel juhul dp= ids, kui p muutub mööda sirget Rep=
x= const, ning me saame, et

f(t) =
1

2π

x+i∞
∫

x−i∞

ept dp

∞
∫

0

e−puf(u)du

ehk

(f(t) =
1

2π

x+i∞
∫

x−i∞

eptF (p)dp.

Vastavalt eelmise jaotise alguses toodud märkustele tähendab f(t) siin

suurust
1

2
[f(t+)+f(t−)]. Valem (10.1) on sellega tõestatud.

Järgnevas vaatleme ühte teoreemi, mis annab piisava tingimuse originaali
olemasoluks.

Teoreem. Olgu funktsiooni F puhul rahuldatud järgmised tingimused:

1) F on regulaarne piirkonnas Rep > a;

2) kui Rep > a, siis lim
Imp→∞

f(p) = 0;

3)
∞
∫

−∞

♣F (x+iσ)♣dσ on koonduv.
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Sel juhul on funktsioon F kujutiseks ning tema orginaal avaldub kujul

f(t) =

x+i∞
∫

x−i∞

eptF (p)dp, (10.2)

kus x= Rep > a.

Tõestus. 1) Kõigepealt näitame, et funktsiooni f määrav integraal ei sõl-
tu sellest, milline on x > a. Vaatleme piirkonnas Re p = x > a ristkülikut
ABCD (vt. joonis 10.5). Et funktsioon F on regulaarne selles pooltasandis,
siis Cauchy teoreemi põhjal

∫

Γ

eptF (p)dp= 0, (10.3)

kus Γ on selle ristküliku rajajoon. Et
∣

∣

∣

∣

∣

∣

∫

AB

eptF (p)dp

∣

∣

∣

∣

∣

∣

⩽ ex2t

x2
∫

x1

♣F (x− iτ)♣dx

ja
∣

∣

∣

∣

∣

∣

∫

CD

eptF (p)dp

∣

∣

∣

∣

∣

∣

⩽ ex2t

x2
∫

x1

♣F (x+iτ)♣dx,

siis teoreemi eelduse 2) kohaselt saame
seosed:

τ

−τ

σ

s

A B

CD

x1 x2a
O

Joonis 10.5

lim
τ→∞

∫

AB

= lim
τ→∞

∫

CD

= 0

Seega saame seose (10.3) põhjal, et

lim
τ→∞

x2+iτ
∫

x2−iτ

eptF (p)dp− lim
τ→∞

x1+iτ
∫

x1−iτ

eptF (p)dp= 0

ehk
x2+i∞
∫

x2−i∞

eptF (p)dp=

x1+i∞
∫

x1−i∞

eptF (p)dp.
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Sellega olemegi tõestanud, et funktsiooni f määrav integraal ei sõltu suuruse
x valikust.

2) Vaatleme joonisel 10.6 kujutatud piirkonda G, mille rajaks on lõik BA
ja ringjoone kaar cr. Cauchy teoreemi põhjal

∫

cr

eptF (p)dp+
∫

BA

eptF (p)dp= 0

ehk

x+iσ
∫

x−iσ

eptF (p)dp=
∫

cr

eptF (p)dp.

Jordani lemma põhjal

lim
♣p♣→∞

∫

cr

eptF (p)dp= 0, kui t < 0,

mistõttu

σ

sO
a x

A = x− iσ

B = x+ iσ

G

Joonis 10.6

f(t) =

x+i∞
∫

x−i∞

eptF (p)dp= 0, kui t < 0. (10.4)

Kui t > 0, siis

♣f(t)♣ =

∣

∣

∣

∣

∣

∣

∣

1

2πi

x+i∞
∫

x−i∞

eptF (p)dp

∣

∣

∣

∣

∣

∣

∣

⩽
ext

2π

∞
∫

−∞

♣F (x+iσ)♣dσ.

Tähistades

1

2π

∞
∫

−∞

♣F (x+iσ)♣dσ =M ,

saame, et ♣f(t)♣⩽Mext. Seega näeme, et seosega (10.2) määratud funktsioon
on originaal.

3) Näitame lõpuks, et valemiga (10.2) määratud funktsioon on originaa-
liks funktsioonile F , s.t.

F (p) =

∞
∫

0

e−ptf(t)dt.
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Tõepoolest, teoreemi eelduse 3) põhjal võime funktsioonile F rakendada eel-
mise jaotise valemit (10.1):

F (x+iσ) =
1

2π

∞
∫

−∞

dt

∞
∫

−∞

F (x+iu)e−it(σ−u)du.

Tähistades p= x+iσ ja q = x+iu, saame, et

F (p) =
1

2πi

∞
∫

−∞

e−pt dt

x+i∞
∫

x−i∞

eqtF (q)dq.

Valemeid (10.2) ja (10.4) arvestades saamegi seose

F (p) =

∞
∫

0

e−ptf(t)dt.

10.8. ARENDUSTEOREEMID

Tõestame mõne teoreemi, mille abil saame originaali esitada reaksaren-
dusena. Seejuures seame kujutisele konkreetsed nõuded.

Teoreem 1 (esimene arendusteoreem). Kui kujutis F on regulaarne lõpma-
tuspunktis ning selle ümbruses on esitatav Laurent’i reana

F (p) =
∞
∑

k=1

ck
pk

,

siis originaaliks on täisfunktsioon f , mis on esitatav astmerea summana

f(t) =
∞
∑

k=1

ck
(k−1)!

tk−1.

Tõestus. Võtame q =
1

p
ja G(q) = F

(

1

q



. Siis

G(q) =
∞
∑

k=1

ckq
k
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määrab ringis ♣q♣< 1/R analüütilise funktsiooni G. Cauchy võrratuse põhjal
♣ck♣<MRk ning seega

♣f(t)♣ ⩽
∞
∑

k=1

♣ck♣ ♣t♣k−1

(k−1)!
⩽MR

∞
∑

k=0

(R♣t♣)k

k!
=MRe♣R♣t,

mis ütlebki, et f on täisfunktsioon. Viimane võrratus annab samuti, et f(t)
on originaal (3). tingimus). Et funktsiooni f deĄneeriv astmerida on ühtlaselt
koonduv, siis peale teguriga e−pt korrutamist võime teda liikmeti integreeri-
da. Kasutades seost L(tn) = n!/pn+1, saame, et funktsiooni f kujutiseks on
funktsioon F .

Märkus. On võimalik tõestada ka vastupidist: kui originaal f on täisfunkt-
sioon, mis rahuldab võrratust ♣f(t)♣ <Mea♣t♣, siis kujutis on regulaarne lõp-
matuspunktis.

Teoreem 2 (teine arendusteoreem). Olgu funktsiooni F puhul täidetud järg-
mised tingimused:

1) F on meromorfne ning pooltasandis Re p > a regulaarne;

2) leiduvad ringjooned Cn: ♣p♣ =Rn, R1 <R2 . . . , Rn → ∞, millistel F (p)
läheneb nullile ühtlaselt argumendi p suhtes, kui n→ ∞;

3) iga τ > a puhul on integraal
∞
∫

−∞

♣F (τ +iσ)♣dσ koonduv.

Sel juhul on funktsiooni F originaal määratud seosega

f(t) =
∑

k

res
[

F (p)ept;pk

]

, (10.1)

kus resiidid on võetud kõikide iseäraste punktide suhtes ning ♣pk+1♣ ⩾ ♣pk♣.

Tõestus. Valime mingi τ > a ning vaatleme ringjoone Cn seda osa ln, mis jääb
pooltasandisse Re p < τ (joon. 10.7). Ringjoone kaar ln koos lõiguga AnBn

moodustab kinnise joone, mille märgime sümboliga Γn. Et eelmise jaotise
teoreemi põhjal
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f(t) = lim
n→∞

1

2πi

∫

AnBn

eptF (p)dp

ning Jordani lemma põhjal, kui t > 0,

lim
n→∞

1

2πi

∫

ln

eptF (p)dp= 0,

siis

f(t) = lim
n→∞

1

2πi

∫

Γn

eptF (p)dp.

Selle integraali võime arvutada resiidide
teooria põhiteoreemi kohaselt, mistõttu

σ

sO
a τ

An

Bn

Cn

ln

Joonis 10.7

f(t) = lim
n→∞

∑

Γn

res
[

eptF (p);pk

]

.

Siit saamegi teoreemi väite.

Järeldus 1. Kui f(p) = P (p)/Q(p) on ratsionaalne lihtmurd, siis originaal
on määratud seosega

f(t) =
m
∑

k=1

1

(nk −1)!
lim

p→pk

dnk−1

dpnk−1

{

F (p)(p−pk)nkept
}

,

kus punktid pk (k = 1,2, . . . ,m) on funktsiooni F poolused, nk nende pooluste
järgud ning summas on võetud resiidid kõikide pooluste suhtes.

Tõestus. Väide järeldub vehetult seosest (10.1), arvestades resiidi väärtust
poolustes. Meenutame siinkohal ka seda, et ratsionaalse lihtmurru korral
lim

p→∞
F (p) = 0 ning pooluseid on lõplik arv.

Järeldus 2. Kui lihtmurru P (p)/Q(p) nimetaja nullkohad pk (k= 1,2, . . . ,m)
on kõik esimest järku, siis

f(t) =
m
∑

k=1

P (pk)

Q′(pk)
epkt. (10.2)
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Tõestus. Viimase valemi saame vahetult valemist (10.1), kasutades resiidi
arvutamise valemit esimest järku pooluse jaoks eelmisest jaotisest (10.2).

Rakendustes (eriti elektrotehnikas) esinevad sageli kujutised kujul

F (p) =
P (p)

pQ(p)
,

kus polünoomi P (p) aste ei ole polünoomi Q(p) omast suurem ning kõik
funktsiooni F poolused on esimest järku. Sel juhul resiid punktis 0 avaldub
kujul P (0)/Q(0), nagu see järeldub eelmise jaotise valemist (10.1). Arvesta-
des veel, et Q(pk) = 0 ning [pQ(p)]′ = Q(p) +pQ′(p), võime sel juhul valemi
(10.2) esitada kujul

f(t) =
P (0)

Q(0)
+

n
∑

k=1

P (pk)

pkQ′(pk)
epkt, (10.3)

kus summas on arvestatud kõik polünoomi Q(p) nullkohad pk.

Märkus 1. Kui polünoomid P (p) ja Q(p) on reaalsete kordajatega, siis on
poolusteks nii pk kui ka pk (kaaskompleksarv), kusjuures

P (pk)

Q′(pk)
epkt =

P (pk)

Q′(pk)
epkt,

mis tähendab, et ka resiidid pooluste pk ja pk suhtes on kaaskompleksarvud.
Kuna z+z = 2 Re z, siis järelduse 2 põhjal saame, et õige on järgmine väide.

Järeldus 3. Kui polünoomide P (p) ja Q(p) kordajad on reaalsed ning po-
lünoomi Q(p) nullkohad on kõik esimest järku, siis ratsionaalse lihtmurru
P (p)/Q(p) originaal avaldub kujul

f(t) =
∑ P (pk)

Q′(pk)
epkt +2 Re

∑ P (pk)

Q′(pk)
epkt,

kus arvudeks pk on esimeses summas kõik reaalarvulised poolused ning teises
summas kõik positiivsete imaginaarosadega poolused.

Märkus 2. Iga liige valemis (10.2) on esitatav kujul

P (pk)

Q′(qk)
eskt [cosσkt+sinσkt]
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kus pk = sk + iσk. Sellest on selge, et reaalarvulistele poolustele (σk = 0)
vastab mitteperioodiline võnkumine, negatiivse imaginaarosaga kompleksse-
tele poolustele Ű sumbuv võnkumine, puhtimaginaarsetele poolustele (sk = 0)
Ű harmooniline võnkumine. Positiivseid reaalarvulisi pooluseid ja positiivse
reaalosaga kompleksarvulisi pooluseid ei saa üldse olla, kui vaadeldav süsteem
ei võngu tõkestamatult kasvava amplituudiga. Öeldust järeldub, et statsio-
naarset võnkumist kirjeldab funktsioon f , mis on määratud seosega

f(t) = 2Re
∑ P (iσk)

Q′(iσk)
eiσkt,

kus summa on võetud kõigi nende pooluste suhtes, mille puhul pk = iσk,
σk > 0.

10.9. IMPULSSFUNKTSIOONID

Teame, et kujutise F (p) puhul lim
Rep→∞

F (p) = 0, mis tähendab, et

1,p,p2, . . . ei saa olla kujutised tavalises mõttes. Ent mõnel juhul tuleb ra-
kendustes vaadelda just niisuguseid seoseid, kus kujutisena tuleb arvesta-
da ka ülalmärgitud suurusi. Et L [H(t)] = p−1, siis originaali diferentseeri-
mise omadust arvestades peaks ühiku originaaliks olema H ′(t). Heaviside’i
funktsioon pole aga tavalises mõttes diferentseeruv, mistõttu tuleks laiendada
funktsiooni mõistet selliselt, et ka funktsioonil H oleks tuletis. Selle eesmärgi
saavutame, kui vaatleme Diraci δ-funktsiooni, mida võib iseloomustada
järgmiselt

δ(t) =







∞, t= 0,

0, t ̸= 0,

ning

∞
∫

−∞

δ(t)dt= 1.

Viimane tingimus tuleneb otseselt seosest H ′(t) = δ(t), sest viimase põhjal

∞
∫

−∞

δ(t)dt=

∞
∫

−∞

H ′(t)dt=H(∞)−H(−∞) = 1.
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Et funktsiooni (signaali) φ impulsiks nimetatakse suurust
∞
∫

−∞

φ(t)dt, siis

δ-funktsiooni nimetatakse ühikimpulsiga impulssfunktsiooniks või null-
järku impulssfunktsiooniks.

Diraci δ-funktsioonini võiksime jõuda ka järgmistest kaalutlustest lähtu-
des. Olgu funktsioonid δn deĄneeritud seosega (vt. joon. 10.8)

δn(t) =







n, 0 ⩽ t⩽ 1
n ,

0, t < 0 või t > 1
n .

Sel juhul

∞
∫

−∞

δn(t)dt= 1

ning

t0

n

1

n

Joonis 10.8

hn(t) =

t
∫

−∞

δn(u)du=



























0, t < 0,

nt, 0 ⩽ t⩽
1

n
,

1, t⩾
1

n
.

On loomulik lugeda õigeks seosed

lim
n→∞

δn(t) = δ(t) ja lim
n→∞

hn(t) =H(t).

Olgu φ mingi Laplace’i teisenduse originaal. Sel juhul

∞
∫

0

φ(t)δn(t)dt=

1
n
∫

0

φ(t)δn(t)dt= n

1
n
∫

0

φ(t)dt= nφ(τ)
1

n
= φ(τ),

kus 0< τ <
1

n
. Selle põhjal on loomulik lugeda kehtivaks seos

∞
∫

0

φ(t)δ(t) = φ(0) (10.1)
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(kui φ ei ole pidev punktis t= 0, siis φ(0) tähendab parempoolset piirväärtust
selles punktis).

Vastavalt seosele (10.1) saamegi, et

L[δ(t)] =

∞
∫

0

δ(t)e−pt dt= 1

ning hilinemisteoreemi põhjal

L[δ(t− τ)] = e−pt,

mis on samuti kooskõlas seosega (10.1). Nende seoste põhjal näeme, et on
õige teoreem kujutiste korrutamise kohta. Tõepoolest,

1 ·F (p) =

t
∫

0

f(τ)δ(t− τ)dτ = f(t).

Analoogiliselt on võimalik esitada ka kõrgemat järku impulssfunktsiooni-
de δ(n+1) mõiste selliselt, et

L[δ(n+1)(t)] = pn ning δ(n)(t) =H(n+1)(t).

Olgu märgitud, et impulssfunktsioonid kuuluvad distributsioonide (üldista-
tud funktsioonide) klassi. Viimaste kohta on loodud matemaatiline teooria,
aga käesolevas raamatus ei ole ruumi seda vaadelda.
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11. LAPLACE’I TEISENDUSE
RAKENDUSI

11.1. HARILIKUD LINEAARSED
DIFERENTSIAALVÕRRANDID

Vaatleme konstantsete kordajatega lineaarset diferentsiaalvõrrandit

anx
(n)(t)+an−1x

(n−1) + . . .+a1x
′(t)+a0x(t) = f(t).

Lühidalt kirjutatakse see võrrand

L(D)x(t) = f(t), (11.1)

kus L(D) on operaatorpolünoom:

L(D) = anD
n +an−1D

n−1 + . . .+a1D+a0,

milles D on diferentseerimise operaator, s.t.

D =
d

dt
, D2 =

d2

dt2
, . . . , Dn =

dn

dtn
.

Otsime vaadeldava võrrandi lahendit piirkonnas t⩾ 0 algtingimustel

x(k)(0) = xk (k = 0,1, . . . ,n−1).

Eeldame, et funktsioonid f ning x(k) (k = 0,1, . . . ,n) on originaalid, ning
tähistame

L[f(t)] = F (p),

L[x(t)] =X(p).

Originaali diferentseerimise eeskirja ning algtingimusi arvestades saame, et

L[x′(t)] = pX(p)−x0,

L[x′′(t)] = p2X(p)−x0p−x1,

. . .

L[x(n)(t)] = pnX(p)−
n
∑

k=1

xk−1p
n−k.

237
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Rakendades võrrandile (11.1) Laplace’i teisendust(arvestades teisenduse li-
neaarsust), saame kujutise suhtes võrrandi

L(p)X(p) = F (p)+Q(p),

mida nimetatakse operaatorvõrrandiks. Selles võrrandis on L(p) polü-
noom, mille kordajateks on operaatorpolünoomi kordajad ning Q(p) on
(n−1)-astme polünoom, mille kordajad on määratud algtingimustega (10.2).
Operaatorvõrrandist leiame otsitava funktsiooni kujutise:

X(p) =
F (p)+Q(p)

L(p)
.

Selle kujutise järgi leiame ka originaali. Selleks võib kasutada arendusteoree-
me, Laplace’i teisenduse omadusi ja nende teisenduste tabelit.

Näide 1. Lahendame diferentsiaalvõrrandi x′′ + x = 2cos t algtingimustel
x(0) = 0, x′(0) = −1.

Et L(cos t) =
p

p2 +1
ja

L(x′′) = p2L(x)−px(0)−x′(0) = p2L(x)+1,

siis Laplace’i teisenduse rakendamisel sellele võrrandile saame, et

p2L(x)+1+L(x) =
2p

p2 +1

ehk

L(x) =
2p

(p2 +1)2
− 1

p2 +1
.

Arvestades seost

2p

(p2 +1)2
= −

(

1

p2 +1

′

,

leiame Laplace’i teisenduse omadusi kasutades, et

L(x) = L(tsin t)−L(sin t),

millest saame võrrandi lahendi

x(t) = tsin t− sin t= (t−1)sin t.
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Sellest lahenduskäigust märkame, et operaatormeetodil diferentsiaalvõr-
randit lahendades arvestatakse algtingimusi juba lahenduskäigu alguses. Sel
moel ilmneb algtingimuste mõju juba enne lahendi leidmist. Kui xk = 0
(k= 0,1, . . . ,n−1) (algtingimused nullid), on operaatormeetodil lahendamine
eriti lihtne.

Operaatormeetodi eelised on eriti ilmekad ka siis, kui võrrandi parem
pool on tükati sile (või isegi tükati pidev). Operaatormeetodit kasutades ei
pea leidma iga sileduse (või pidevuse) piirkonna jaoks erilahendi, vaid saame
ühe, kõikide piirkondade jaoks kehtiva lahendi.

Näide 2. Lahendada diferentsiaalvõrrand

x′′ +4x= f(t)

algtingimustel x(0) = x′(0) = 0, kus

f(t) =















0, t < 0,

a, 0 ⩽ t < b,

0, t⩾ b.

Funktsiooni f võime Heaviside’i funktsiooni abil esitada järgmiselt:

f(t) = a [H(t)−H(t− b)] .

Rakendades võrrandile Laplace’i teisendust (arvestades originaali di-
ferentseerimise ja lineaarsuse omadusi, hilinemisteoreemi ning Heaviside’i
funktsiooni kujutist), saame operaatorvõrrandi

p2X(p)+4X(p) =
a

p

(

1− e−bp
)

,

millest

x(p) =
a(1− e−bp)

p(p2 +4)

Jaotise 10.8 valemi (10.3) põhjal (p1 = 2i, p2 = −2i)

a

p(p2 +4)
=
a

4
+

a

2i ·4i
e2it +

a

−2i · (−4i)
e−2it =

=
a

4
− a

4
cos2t=

a

2
sin2 t
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ning hilinemisteoreemi põhjal

ae−bp

p(p2 +4)
=
a

2
sin2(t− b)H(t− b).

Seega saame, et meie võrrandi lahend x(t) on

x(t) =
a

2

[

sin2 tH(t)− sin2(t− b)H(t− b)
]

.

Ülesanded

1. Lahendada Laplace’i teisendust kasutades järgmised diferentsiaalvõr-
randid:

a) x′′ +2x′ +x= sin t, x(0) = 0, x′(0) = −1;

b) x′′ −2x′ +x= et, x(0) = 0, x′(0) = 1;

c) x′′′ +x′ = t, x(0) = 0, x′(0) = −1, x′′(0) = 0;

d) x′′ +x= tcos t, x(0) = x′(0) = 0.

Vastus. a) x=
1

2
(e−t − te−t − cos t);

b) x=
(

1

2
t2 + t

)

et;

c) x=
1

2
t2 −1+cos t− sin t;

d) x=
1

4
(t2 sin t+ tcos t− sin t).

2. Lahendada järgmised diferentsiaalvõrrandid:

a) x′′ +4x′ +4x= 2e−t[1−H(t−1)], x(0) = 1, x′(0) = 0;

b) x′′ +x= f(t), x(0) = x′(0) = 0,

f(t) =















2, 0< t < 1,

4, t > 1,

0, t < 0.

Vastus. a) x= e−2t +2e−t −2H(t−1)
[

e−t − te−2t−1
]

;

b) x= (2− cos t)H(t)+ [2−2cos(t−1)]H(t−1).
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11.2. DUHAMELI INTEGRAALI KASUTAMINE

Olgu vaja lahendada n-järku diferentsiaalvõrrand

L(D)x(t) = f(t) (11.1)

algtingimustel x(k)(0) = 0, k = 0,1, . . . ,n− 1. Sel juhul esitub operaatorvõr-
randi lahend kujul

X(p) =
F (p)

L(p)
,

kus F (p) = L[f(t)].
Seosega

W (p) =
1

L(p)

määratud funktsiooni W nimetatakse võrrandi (11.1) ülekandefunktsioo-
niks. Viimase kaudu saame operaatorvõrrandi lahendi esitada seosega

X(p) =W (p)F (p). (11.2)

Seega on ülekandefunktsioon niisugune funktsioon, millega võrrandi parema
poole kujutist korrutades saame lahendi kujutise.

Olgu meil teada võrrandi (11.1) lahend x1(t), kui f(t) =H(t). Seose (11.2)
põhjal

L [x1(t)] =X1(p) =
1

p
W (p),

s.t.

W (p) = pX1(p).

Asendus seosesse (11.2) annab meile, et

X(p) = pX1(p)F (p),

millest Duhameli integraali (vt. jaotis 10.5) põhjal

x(t) = x1(t)f(0)+

t
∫

0

f ′(τ)x1(t− τ)dτ. (11.3)
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Näide. Lahendada võrrand

x′′ +x= e−t2

algtingimusel x′(0) = x(0) = 0.
Et käesoleval juhul ülekandefunktsioon avaldub seosega

W (p) =
1

p2 +1
,

siis

X1 =
1

p(p2 +1)
=

1

p
− p

p2 +1
,

millest x1(t) = 1−cos t . Seega saame seose (11.3) põhjal, et vaadeldava võr-
randi lahend avaldub kujul

x(t) =

t
∫

0

e−(t−τ)2

sinτdτ.

Seda integraali ei saa elementaarfunktsioonide kaudu avaldada.

Ülesanded

1. Lahendada diferentsiaalvõrrandid

a) x′′ −x′ =
1

1+et
, x(0) = x′(0) = 0;

b) xIV −2x′′ +x= 24tcos t, x(0) = x′(0) = x′′(0) = x′′′(0) = 0.

Vastus. a) x= ln(et +1)− t− ln2−1+et
[

1− t+ln(et +1)− ln2
]

;

b) x= 3(−4sin t+2tcos t+2sh t).

11.3. BESSELI FUNKTSIOONIDE KUJUTISED

Operaatormeetodit saab üsna edukalt rakendada ka niisuguste lineaarse-
te diferentsiaalvõrrandite lahendamisel, mille kordajateks ak on polünoomid
muutuja t suhtes. Kasutades originaali diferentseerimise omadust, saab ka sel
korral avaldada kõik kujutised L[akx

(k)(t)] otsitava kujutise X(p) = L[x(t)]



11.3. BESSELI FUNKTSIOONIDE KUJUTISED 243

ja tema tuletise kaudu. Sel viisil osutub operaatorvõrrandiks diferentsiaalvõr-
rand, mille järk on võrdne lahendatava võrrandi kordajapolünoomide kõrgei-
ma astmega. Peatumata selle juures üldjuhul, vaatleme, kuidas kirjeldatud
meetodil lahendada võrrand (11.1). Et selle lahend avaldub teatava spet-
siaalse funktsioonina, mida nimetatakse Besseli funktsiooniks, siis peatume
kõigepealt Besseli funktsioonide mõiste juures.

Diferentsiaalvõrrandi

z2y′′(z)+ zy′(z)+
(

z2 −v2
)

y(z) = 0

(v on konstant, mille puhul Rev >−1) lahendeid, mis ei ole samaselt võrdsed
nulliga, nimetatakse silindrilisteks funktsioonideks. Üheks niisuguseks
lahendiks on funktsioon Jv, mille määrab seos

Jv(z) =
∞
∑

k=0

(−1)k

k!Γ(v+k+1)

(

z

2

)v+2k

ning mida nimetatakse esimest liiki ν-järku Besseli funktsiooniks.
D’Alembert’i tunnuse abil võib kontrollida, et Besseli funktsiooni deĄneeriv
astmerida koondub kogu komplekstasandil, millest võib olla välja arvatud
punkt z = 0 .

Vaatleme järgnevas täisarvulist järku (ν = n,n = 0,1, . . .) Besseli funkt-
sioone. Need on täisfunktsioonid. Et Γ(n+k+1) = (n+k)!, siis

Jn(z) =
∞
∑

k=0

(−1)k

k!(n+k)!

(

z

2

)n+2k

,
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Lahendades operaatorvõrrandi ja leides saadud lahendile kui kujutisele vas-
tava originaali, saamegi vaadeldava integraalvõrrandi lahendi.

Näide 1. Olgu meil vaja lahendada esimest liiki Volterra integraalvõrrand

t
∫

0

sin(t−u)x(u)du = sin2 t

Käesoleval juhul λ = 1 ning k(t) = sin t. Et

L(sin t) =
1

p2 +1

ning

L(sin2 t) = L
[

1

2
(1− cos2t)

]

=
1

2

(

1

p
− p

p2 +4



,

siis vastavalt võrrandile (??) saame operaatorvõrrandi

1

p2 +1
X(p) =

1

2

(

1

p
− p

p2 +4



,

millest

X(p) =
1

2

(

1

p
+3

p

p2 +4



.

Kujutiste tabeli põhjal saame, et vaadeldava integraalvõrrandi lahendiks on

x(t) =
1

2
(1+3cos2t), t > 0.

Näide 2. Leiame lahendi integraalvõrrandile

x(t)+2

t
∫

0

et−ux(u)du = 1.

See võrrand on teist liiki Volterra integraalvõrrand, kus λ = 2. Vastavalt
võrrandile (??) saame operaatorvõrrandi

X(p)+
2

p−1
X(p) =

1

p
,
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mille lahendiks on

X(p) =
p−1

p(p+1)
=

2p−p−1

p(p+1)
=

2

p+1
− 1

p
.

Kujutiste tabeli põhjal leiame integraalvõrrandi lahendi

x(t) = 2e−t −1, t > 0.

Ülesanded

1. Lahendada järgmised integraalvõrrandid:

a) x(t) = t+

t
∫

0

(t−u)x(u)du,

b) x(t) = t+2

t
∫

0

cos(t−u)x(u)du,

c) 1− cos t =

t
∫

0

ch(t−u)x(u)du,

d) t3 =

t
∫

0

(t−u)2x(u)du.

Vastus. a) x = sh t, b) x = 2tet −2et + t+2, c) x = 2sin t− t, d x = 3.

11.7. OSATULETISTEGA VÕRRANDID

Operaatormeetod on edukalt rakendatav ka osatuletistega diferentsiaal-
võrrandite lahendamisel. Seejuures kasutame Laplace’i teisenduse omadusi
parameetrist sõltuvate funktsioonide kujutamisest. Operaatormeetodi raken-
damisel taandame osatuletistega võrrandi lahendamise hariliku diferentsiaal-
võrrandi lahendamisele. Arendamata üldist teooriat, piirdume vaid näitega.

Näide. Varras pikkusega l on ühte otsa (x = 0) pidi kinnitatud. Vabale otsale
(x = l) mõjub telje sihiline jõud F = Asinωt. Leida varda punktide pikivõn-
kumised. Pikivõnkumisi kirjeldab diferentsiaalvõrrand

∂2u(x,t)

∂t2
= a2 ∂2u(x,t)

∂x2
, (11.1)
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kus u = u(x, t) väljendab varda punkti x nihet ajamomendil t ning a2 on
varda materjalist sõltuv konstant. Alg- ja rajatingimused esituvad kujul:

u(x,0) =
∂u

∂t

∣

∣

∣

∣

t=0
= 0, u(0, t) = 0,

∂u

∂x

∣

∣

∣

∣

x=l
=

A

E
sinωt,

kus E on elastsusmoodul. Viimane tingimus tuleneb Hooke’i seadusest, mille
põhjal vardale mõjuv jõud F ja nihe u on seotud valemiga

F = E
∂u

∂x
.

Võrrandist (11.1) saame operaatorvõrrandi

p2U = a2 d2U

dx2
, (11.2)

kus U = U(x,p). Kui vaatleme muutujat p parameetrina, on operaatorvõrrand
teist järku harilik diferentsiaalvõrrand, mille karakteristliku võrrandi

p2 = a2λ2,

lahenditeks on

λ1 =
p

a
ja λ2 = −p

a
.

Seega avaldub võrrandi (11.2) üldlahend kujul

U = C1e(p/a)x +C2e(−p/a)x.

Meil on aga vaja leida lahend, mis rahuldaks tingimusi:

U ♣x=0 = 0,
dU

dx

∣

∣

∣

∣

x=l
=

A

E

ω

p2 +ω2.

Esimese tingimuse põhjal saame, et C2 = −C1, mistõttu

U = C1(e(p/a)x − e(−p/a)x = 2C1 sh
p

a
x.

Teise tingimuse põhjal saame nüüd, et

2C1
p

a
ch

p

a
l =

A

E

ω

p2 +ω2
,
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millest

2C1 =
b

p(p2 +ω2)ch
p

a
l

,

kus b =
Aaω

E
.

Sellega oleme leidnud operaatorvõrrandi lahendi

U =
b

p(p2 +ω2)

sh
x

a
p

ch
l

a
p

=
G(p)

B(p)
.

Originaali leidmiseks kasutame teist arendusteoreemi, sest saadud kujutisel
on loenduv hulk puhtimaginaarseid pooluseid, mis on paarikaupa kaaskomp-
lekssed. Ülemises pooltasandis asuvad poolused

p = iω, pk = i
πa

l

(

k − 1

2

)

= iωk (k = 1,2, . . .).

Punkt p = 0 ei ole poolus, vaid kujutise kõrvaldatav iseärane punkt, mille
suhtes resiid on null.

Me saame, et

u(x,t) = 2Re







G(iω)

B′(iω)
eiωt +

∞
∑

k=1

G(pk)

B′(pk)
eiωkt







,

kusjuures eeldame, et ωk ̸= ω (k = 1,2, . . .), mis sisuliselt tähendab resonantsi
puudumist.

Kui teha viimases avaldises vajalikud arvutused, saaksime, et

u(x,t) =
1

ω2 cos
ωl

a

sin
ω

a
xsinωt+

2ab

l

∞
∑

k=1

(−1)k
sin

ωk

a
x

ω2
k −ω2

sinωkt

ωk
.
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TABEL 1. KONFORMSED KUJUTUSED
ELEMENTAARFUNKTSIOONIDEGA

A

B

C

D x

y

α A′B′

C ′

D′ u

v

2α

w = z2

A′B′

C ′ D′

A
B

C
D

y v

x u

CB ja DA x2 −y2 = const
CD ja BA xy = const

w = z2
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y v

x u
C

D A

B
a

A′

D′ C ′

B′

a2

A′B′ : a2 − 1

4a2
v2 = u

w = z2

y v

x u
C

D

A

B

A′

D′

C ′

B′

w =
1

z

y v

x u
C
A B

A′

C ′

B′

w =
1

z
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y v

x uABC

D E Fπi

A′D′ C ′ B′E ′F ′

1

w = ez

y v

x uA B

C

DE πi

A′D′

C ′

B′E ′

1

w = ez

y v

x

u

A B

C

DE

F

πi

A′ B′

C ′

D′ E ′

F ′

w = ez
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y v

x u

A

B
C

D

E

π

2
−

π

2
A′B′C ′D′E ′

1−1

w = sinz

y v

x uC

A

B

D

π

2
A′C ′ B′

D′

1

w = sinz

y v

x u

BCD : y = b
B′C ′D′ :

u2

ch
2 b

+
v2

sh
2 b

= 1

A

BCD

E
π

2
−

π

2
A′ B′

C ′

D′

E ′ F ′

1−1

w = sinz
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x

y
A

B

C

D

E

i

u

v

A′

B′

C ′

D′

E ′
1

w =
z −1

z +1

x

y

A B C D E

−1 1

u

v

A′

B′

C ′

D′

E ′

1

w =
i− z

i+ z

x

y

A
B
1

C

D
E u

v

1

A′B′C ′D′E ′

w =
1

2

(

z +
1

z

)



254 LISAD

x

y

AB

C

DE
1 u

v

1

A′B′C ′D′E ′

w =
1

2

(

z +
1

z

)

TABEL 2. LAPLACE’I TEISENDUSE
PÕHIVALEMID JA OMADUSED

Jrk.
nr.

f (t) F (p) = L [f(t)]

1. f(t)H(t)

∞
∫

0

e−ptf(t)dt = F (p)

2. λf(t)+µg(t) λL[f(t)]+µL[g(t)]

3. f(αt), α > 0
1

α
F

(

p

α

)

4. f(t− τ), τ > 0 e−τpF (p)

5. eλtf(t) F (p−λ)

6. f ′(t) pF (p)−f(0)

7. f ′(t), f(0) = 0 pF (p)
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Jrk.
nr.

f (t) F (p) = L [f(t)]

8. f (n)(t) pnF (p)−pn−1f(0)−pn−2f ′(0)−
− . . .−f (n−1)(0)

9. f (n)(t), f(0) = f ′(0) = . . . = pnF (p)

= f (n−1)(0) = 0

10. (−1)ntnf(t) F (n)(p)

11.
t
∫

0

f(u)du
1

p
F (p)

12.
f(t)

t

∞
∫

p

F (q)dq

13.
t
∫

0

f(u)

u
du

1

p

∞
∫

p

F (q)dq

14.
∞
∫

t

f(u)

u
du

1

p

∞
∫

p

F (q)dq

15.
t
∫

0

f(u)g(t−u)du L[f (t)] ·L[g (t)] = F (p)G(p)

16. f(t)g(0)+

t
∫

0

f(u)g′(t−u)du pF (p)G(p)

17. g(t;u) e−uq(p)G(p)

∞
∫

0

f(u)g(t;u)du G(p)F [q(p)]
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Jrk.
nr.

f (t) F (p) = L [f(t)]

18. f(t)g(t)
1

2πi

x+i∞
∫

x−i∞

F (q)G(p− q)dq

19.
n
∑

k=1

mk
∑

l=1

Aklt
l−1

(l −1)!
epkt

n
∑

k=1

mk
∑

l=1

Akl

(p−pk)l

20.
∞
∑

n=0

cntn,
∞
∑

n=1

cnn!

pn+1

♣cn♣ <
MRn

n!
, M > 0, R > 0

TABEL 3. LAPLACE’I TEISENDUSE VALEMID

Jrk.
nr.

f (t) F (p) = L [f(t)]

1. H(t)
1

p

2. H(t− τ), τ > 0
1

p
e−τp

3. eωt 1

p−ω

4. tn n!

pn+l

5. tα Γ(α +1)

pα+1

6. tneωt n!

(p−ω)n+1
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Jrk.
nr.

f (t) F (p) = L [f(t)]

7. sinωt
ω

p2 +ω2

8. cosωt
p

p2 +ω2

9. shωt
ω

p2 −ω2

10. chωt
p

p2 −ω2

11. sin2 ωt
2ω2

p(p2 +4ω2)

12. cos2 ωt
p2 +2ω2

p(p2 +4ω2)

13. ch2 ωt
2ω2

p(p2 −4ω2)

14. ch2 ωt
p2 −2ω2

p(p2 −4ω2)

15. e−λtsinωt
ω

(p+λ)2 +ω2

16. e−λtcosωt
p+λ

(p+λ)2 +ω2

17. e−λt shωt
ω

(p+λ)2 −ω2

18. e−λt chωt
p+λ

(p+λ)2 −ω2

19. tsinωt
2ωp

(p2 +ω2)2
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Jrk.
nr.

f (t) F (p) = L [f(t)]

20. tcosωt
p2 −ω2

(p2 +ω2)2

21. tshωt
2ωp

(p2 −ω2)2

22. tchωt
p2 +ω2

(p2 −ω2)2

23. tn sinωt n!
Im(p+iω)n+1

(p2 +ω2)n+1

24. tn cosωt n!
Re(p+iω)n+1

(p2 +ω2)n+1

25. e−λt sin(ωt+α)
ω cosα +(p+λ)sinα

(p+λ)2 +ω2

26. e−λt cos(ωt+α)
(p+λ)cosα −ω sinα

(p+λ)2 +ω2

27.
ebt − eat

t
ln

p−a

p− b

28.
sinωt

t

π

2
−arctan

p

ω
= arccos

p

ω

29.
sin2 t

t

1

4
ln

p2 +4

p2

30.
e−αt

√
πt

1√
p+α

31.
1√
πt

e− α2

4t
e−α

√
p

√
p

32.

√

2

πt
sinωt

√

√

√

√

√

p2 +ω2 −p

p2 +ω2
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Jrk.
nr.

f (t) F (p) = L [f(t)]

33.

√

2

πt
cosωt

√

√

√

√

√

p2 +ω2 +p

p2 +ω2

34.

√

2

πt
shωt

√

√

√

√

p−
√

p2 −ω2

p2 −ω2

35.

√

2

πt
chωt

√

√

√

√

p+
√

p2 −ω2

p2 −ω2

36. si(t) = −
∞
∫

0

sinu

u
du −1

p
arctanp

37. Si(t) =

t
∫

0

sinu

u
du

1

p
arccotp

38. Ci(t) = ci(t) = −
∞
∫

t

cosu

u
du

1

p
ln

1
√

p2 +1

39. −Ei(−t) =

∞
∫

t

e−u

u
du

1

p
ln(p+1)

40. erf (
√

t) =
2

π

√
t

∫

0

e−u2

du
1

p
√

p+1

41. Erf (
√

t) = 1− erf (
√

t)
1

p+1+
√

p+1

42. et erf (
√

t)
1

(p−1)
√

p

43. et Erf (
√

t)
1

p+
√

p

44. S(t) =
1√
2π

t
∫

0

sinu√
u

du
1

2p

√

√

p2 +1−p
√

p2 +1
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Jrk.
nr.

f (t) F (p) = L [f(t)]

45. C(t) =
1√
2π

t
∫

0

cosu√
u

du
1

2p

√

√

p2 +1+p
√

p2 +1

46. J0(αt), α > 0
1

√

p2 +α2

47. Jn(αt), α > 0, n = 1,2, . . .

(

√

p2 +α2 −p

)n

αn
√

p2 +α2

48. t
n
2 Jn

(

2
√

αt
)

, α > 0, n = 1,2, . . .
1

pn+1
e− α

p α
n
2

49. I0 (αt), α > 0
1

√

p2 −α2

50. In (αt), α > 0, n = 1,2, . . .

(

p−
√

p2 −α2
)n

αn
√

p2 −α2

51. δ (t) 1

52. δ (t− τ) e−τp

53.
dn+1

dtn+1
H(t) = δ(n)(t) pn
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