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I peatükk.

Mitme muutuja funktsiooni

piirväärtus ja pidevus

� 1. Eukleidiline ruum Rm

1.1. m-mõõtmelise eukleidilise ruumi mõiste

Olgu m P N. Tähistame

Rm :�  px1, . . . , xmq : x1, . . . , xm P R
(

(hulga Rm elemendid on niisiis kõikvõimalikud reaalarvuliste komponentidega m-
komponendilised järjendid). Hulga Rm elemente nimetame punktideks. Me kasutame
tähistust pxiqmi�1 :� px1, . . . , xmq. Arvusid x1, . . . , xm nimetame selle punkti koordi-
naatideks.

Kõneldes edaspidi tasandist või lihtsalt ruumist, mõistame me selle all vastavalt ruumi R2

ja R3: tasandi (ja ruumi) igale punktile vastavad (�kseeritud ristkoordinaadistiku puhul) tema

üheselt määratud koordinaadid; teiselt poolt, iga tasandi (ja ruumi) punkt on üheselt määratud

oma koordinaatidega.

Punktide P � px1, . . . , xmq P Rm ja Q � py1, . . . , ymq P Rm vaheline kaugus
dpP,Qq de�neeritakse võrdusega

dpP,Qq �
d

m̧

i�1

|yi � xi|2. (1.1)

Hulka Rm koos temas valemiga (1.1) de�neeritud kaugusega nimetataksem-mõõtme-
liseks eukleidiliseks ruumiks Rm.

Valemi (1.1) poolt antud kaugus ruumides R1 � R, R2 ja R3 langeb kokku nn. loomuliku kaugu-
sega nendes ruumides: nendes ruumides tuleb punktide P ja Q vaheline valemist (1.1) rehkendatav
kaugus dpP,Qq sama, mis lõigu PQ pikkus (rehkendatuna välja elementaargeomeetrilistele argu-
mentidele tuginedes).

Tõepoolest, juhul m � 1, tähistades P � pxq �: x ja Q � pyq �: y,
dpP,Qq � |y � x|;

juhul m � 2, tähistades P � px1, y1q ja Q � px2, y2q,
dpP,Qq �

a
|x2 � x1|2 � |y2 � y1|2

(selle võrduse parem pool on Pythagorase teoreemi abil leitud lõigu PQ pikkus); juhul m � 3,

1
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tähistades P � px1, y1, z1q ja Q � px2, y2, z2q,

dpP,Qq �
a
|x2 � x1|2 � |y2 � y1|2 � |z2 � z1|2

(ka selle võrduse parem pool on Pythagorase teoreemi abil leitud lõigu PQ pikkus).

Loetleme kauguse olulisemad omadused: mis tahes P,Q,R P Rm korral

1� dpP,Qq � 0 ðñ P � Q;

2� dpP,Qq � dpQ,P q;
3� dpP,Qq ¤ dpP,Rq � dpR,Qq.

Omadusi 1��3� nimetatakse kauguse aksioomideks. Aksioom 3� väidab sisuliselt, et
kolmnurga ühegi külje pikkus ei ületa ülejäänud kahe külje pikkuste summat. See-
pärast nimetatakse aksioomi 3� kolmnurga võrratuseks. Aksioomid 1� ja 2� järeldu-
vad vahetult kauguse de�nitsioonist. Kolmnurga võrratust on kõige lihtsam järeldada
Minkowski võrratusest (vt. arutelu järgmises punktis teoreemi 1.1 järel), kuid see
on tõestatav ka vahetult, nagu me seda järgnevalt teeme.

Kolmnurga võrratuse 3� tõestus. Olgu P � px1, . . . , xmq, Q � py1, . . . , ymq,
R � pz1, . . . , zmq P Rm. Kolmnurga võrratuse tõestuseks peame näitama, etd

m̧

i�1

|yi � xi|2 ¤
d

m̧

i�1

|yi � zi|2 �
d

m̧

i�1

|zi � xi|2,

milleks, arvestades, et

c
m°
i�1

|yi � xi|2 ¤
c

m°
i�1

�|yi � zi| � |zi � xi|
�2
, piisab näidata,

et d
m̧

i�1

�|yi � zi| � |zi � xi|
�2 ¤d

m̧

i�1

|yi � zi|2 �
d

m̧

i�1

|zi � xi|2

ehk, tähistades iga i P t1, . . . ,mu korral ai :� |yi � zi| ja bi :� |zi � xi|,d
m̧

i�1

pai � biq2 ¤
d

m̧

i�1

a2i �
d

m̧

i�1

b2i

ehk (tõstes selle võrratuse mõlemad pooled ruutu)

m̧

i�1

pai � biq2 ¤
m̧

i�1

a2i � 2

d
m̧

i�1

a2i

d
m̧

i�1

b2i �
m̧

i�1

b2i

ehk, arvestades, et
m°
i�1

pai � biq2 �
m°
i�1

a2i � 2
m°
i�1

ai bi �
m°
i�1

b2i ,

m̧

i�1

ai bi ¤
d

m̧

i�1

a2i

d
m̧

i�1

b2i (1.2)
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ehk (tõstes jällegi selle võrratuse mõlemad pooled ruutu)� m̧

i�1

ai bi


2

¤
� m̧

i�1

a2i


� m̧

i�1

b2i



. (1.3)

Kuna� m̧

i�1

ai bi


2

�
� m̧

i�1

ai bi


� m̧

j�1

aj bj



�

m̧

i�1

m̧

j�1

ai bi aj bj

�
m̧

i�1

a2i b
2
i �

m̧

i,j�1
i j

ai bi aj bj �
m̧

i,j�1
j i

ai bi aj bj �
m̧

i�1

a2i b
2
i � 2

m̧

i,j�1
i j

ai bi aj bj

ja� m̧

i�1

a2i


� m̧

i�1

b2i



�
� m̧

i�1

a2i


� m̧

j�1

b2j



�

m̧

i�1

m̧

j�1

a2i b
2
j

�
m̧

i�1

a2i b
2
i �

m̧

i,j�1
i j

a2i b
2
j �

m̧

i,j�1
j i

a2i b
2
j �

m̧

i�1

a2i b
2
i �

m̧

i,j�1
i j

pa2i b2j � a2j b
2
i q,

siis võrratus (1.3) on samaväärne võrratusega

2
m̧

i,j�1
i j

ai bi aj bj ¤
m̧

i,j�1
i j

pa2i b2j � a2j b
2
i q,

mis kehtib, sest mis tahes i, j P t1, . . . ,mu korral

a2i b
2
j � a2j b

2
i � 2ai bi aj bj � pai bj � aj biq2 ¥ 0.

Märkus 1.1. Võrratust (1.2) (mis kehtib mis tahes a1, b1, . . . , am, bm ¥ 0 korral),
nimetatakse Cauchy võrratuseks.

Ülesanne 1.1. Tõestada tagurpidi kolmnurga võrratus: mis tahes P,Q,R P Rm korral

dpP,Qq ¥ ��dpP,Rq � dpQ,Rq��.
Tagurpidi kolmnurga võrratus väidab sisuliselt, et kolmnurga kahe külje pikkuste vahe ei ületa
kolmanda külje pikkust.

Näpunäide. Kasutada kauguse aksioome 2� ja 3�.

1.2. Minkowski võrratus

Kõige lihtsam moodus kauguse kolmnurga aksioomi tõestuseks on järeldada ta Minkowski võrra-
tusest.
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Teoreem 1.1 (Minkowski võrratus). Olgu a1, b1, . . . , am, bm ¥ 0 ning olgu p ¡ 1 (a1, b1, . . . , am, bm
ja p on reaalarvud). Siis � m̧

i�1

pai � biqp

 1

p

¤
� m̧

i�1

api


 1
p

�
� m̧

i�1

bpi


 1
p

. (1.4)

Minkowski võrratusest järeldub kolmnurga aksioom eukleidilise kauguse jaoks: mis tahes punk-
tide P � px1, . . . , xmq, Q � py1, . . . , ymq, R � pz1, . . . , zmq P Rm korral, võttes Minkowski võrratu-
ses p � 2, ai � |yi � zi| ja bi � |zi � xi|, saame

dpP,Qq �
gffe m̧

i�1

|yi � xi|2 ¤
gffe m̧

i�1

�|yi � zi| � |zi � xi|
�2

¤
gffe m̧

i�1

|yi � zi|2 �
gffe m̧

i�1

|zi � xi|2 � dpP,Rq � dpR,Qq.

Minkowski võrratust on mugav järeldada Rogers�Hölderi võrratusest.

Teoreem 1.2 (Rogers�Hölderi võrratus). Olgu p, q P p1,8q kaaseksponendid, s.t. 1
p � 1

q � 1. Mis
tahes reaalarvude a1, b1, . . . , am, bm ¥ 0 korral

m̧

i�1

aibi ¤
�

m̧

i�1

api

� 1
p
�

m̧

i�1

bqi

� 1
q

. (1.5)

Märkus 1.2. Cauchy võrratus (1.2) on erijuht Rogers�Hölderi võrratusest (1.5), kus p � q � 2.

Rogers�Hölderi võrratust, omakorda, on mugav järeldada Youngi võrratusest.

Teoreem 1.3 (Youngi võrratus). Olgu p, q P p1,8q kaaseksponendid, s.t. 1
p � 1

q � 1. Mis tahes
reaalarvude a, b ¥ 0 korral

a
1
p b

1
q ¤ a

p
� b

q
. (1.6)

Märkus 1.3. Youngi võrratus formuleeritakse sageli järgneval (lausega 1.3 samaväärsel) kujul: kui
p, q P p1,8q on kaaseksponendid, siis mis tahes reaalarvude a, b ¥ 0 korral

ab ¤ ap

p
� bq

q
.

Minkowski võrratuse tõestus. Olgu a1, b1, . . . , am, bm ¥ 0. Kuna mis tahes i P t1, . . . ,mu
korral

pai � biqp � pai � biqpai � biqp�1 � aipai � biqp�1 � bipai � biqp�1,

siis Rogers�Hölderi võrratuse põhjal, valides q P p1,8q selliselt, et 1
p � 1

q � 1 (siis 1
q � p�1

p ja
qpp� 1q � p),

m̧

i�1

pai � biqp �
m̧

i�1

aipai � biqp�1 �
m̧

i�1

bipai � biqp�1

¤
�

m̧

i�1

api

� 1
p
�

m̧

i�1

pai � biqpp�1qq
� 1

q

�
�

m̧

i�1

bpi

� 1
p
�

m̧

i�1

pai � biqpp�1qq
� 1

q

�
���

m̧

i�1

api

� 1
p

�
�

m̧

i�1

bpi

� 1
p

�
�
m̧

i�1

pai � biqp
� 1

q

.



� 1. Eukleidiline ruum Rm 5

Kui a1 � � � � � am � 0, siis võrratuse (1.4) kehtivus on ilmne. Kui mingi i P t1, . . . , nu korral
ai ¡ 0, siis järeldub eelnevast võrratuste-võrdusteahelast, et�

m̧

i�1

pai � biqp
�1� 1

q

¤
�

m̧

i�1

api

� 1
p

�
�

m̧

i�1

bpi

� 1
p

,

mis, arvestades, et 1� 1
q � 1

p , on samaväärne võrratusega (1.4).

Rogers�Hölderi võrratuse tõestus. Kui a1 � � � � � am � 0 või b1 � � � � � bm � 0, siis on
võrratuse (1.5) kehtivus ilmne. (Õigupoolest kehtib niisugusel juhul selles mitteranges võrratuses
võrdus.) Vaatleme nüüd juhtu, kus vähemalt üks arvudest a1, . . . , am ja vähemalt üks arvudest
b1, . . . , bm erinevad nullist. Siis iga i P t1, . . . ,mu korral, võttes Youngi võrratuses (1.6)

a � api°m
k�1 a

p
k

ja b � bqi°m
k�1 b

q
k

,

saame
aibi

p°m
k�1 a

p
kq

1
p p°m

k�1 b
q
kq

1
q

¤ api
p
°m

k�1 a
p
k

� bqi
q
°m

k�1 b
q
k

.

Seega

m̧

i�1

aibi

p°m
k�1 a

p
kq

1
p p°m

k�1 b
q
kq

1
q

¤
°m

i�1 a
p
i

p
°m

k�1 a
p
k

�
°m

i�1 b
q
i

q
°m

k�1 b
q
k

� 1

p
� 1

q
� 1,

millest järeldub võrratus (1.5).

Youngi võrratuse tõestus. Olgu a, b ¥ 0. Kui b � 0, siis võrratus (1.6) ilmselt kehtib; seega
võime järgnevas eeldada, et b ¡ 0. Tähistades λ :� 1

p , omandab võrratus (1.6) kuju

aλb1�λ ¤ λa� p1� λqb
ehk (jagades selle võrratuse mõlemad pooled läbi arvuga b)�a

b

	λ

¤ λ
a

b
� 1� λ.

Tähistades t :� a
b , piisab Youngi võrratuse tõestuseks niisiis näidata, et iga t P p0,8q korral

tλ � λt ¤ 1� λ.

Selleks vaatleme funktsiooni φptq � tλ � λt. Kuna

φ1ptq � λtλ�1 � λ � λptλ�1 � 1q,
siis φ1ptq ¡ 0, kui t P p0, 1q, ning φ1ptq   0, kui t P p1,8q. Niisiis, φp1q on funktsiooni φmaksimaalne
väärtus intervallis p0,8q; seega iga t P p0,8q korral

tλ � λt ¤ φp1q � 1� λ,

nagu soovitud.

Ülesanne 1.2. Tõestada, et

(a) Rogers�Hölderi võrratuses (1.5) kehtib võrdus parajasti siis, kui leidub arv ξ P R nii, et
bqi � ξ api iga i P t1, . . . ,mu korral või api � ξ bqi iga i P t1, . . . ,mu korral;

(b) Minkowski võrratuses (1.4) kehtib võrdus parajasti siis, kui leidub arv η P R nii, et bi � η api
iga i P t1, . . . ,mu korral või ai � η bpi iga i P t1, . . . ,mu korral.
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1.3. Kerad ja risttahukad. Punkti ümbrused

De�nitsioon 1.1. Olgu P0 � px01, . . . , x0mq P Rm ning olgu r ¡ 0.
Hulka

BpP0, rq :�
 
P P Rm : dpP, P0q   r

(
(s.t. niisuguste ruumi Rm punktide P hulka, mille kaugus punktist P0 on väiksem
kui r) nimetatakse lahtiseks keraks (ruumis Rm) keskpunktiga P0 ja raadiusega r.

Hulka
BpP0, rq :�

 
P P Rm : dpP, P0q ¤ r

(
(s.t. niisuguste ruumi Rm punktide P hulka, mille kaugus punktist P0 ei ületa arvu r)
nimetatakse kinniseks keraks (ruumis Rm) keskpunktiga P0 ja raadiusega r.

Hulka
SpP0, rq :�

 
P P Rm : dpP, P0q � r

(
(s.t. niisuguste ruumi Rm punktide P hulka, mis asuvad punktist P0 kaugusel r)
nimetatakse sfääriks (ruumis Rm) keskpunktiga P0 ja raadiusega r.

Juhul m � 1, s.t. ruumis R1 � R, on lahtine kera ja kinnine kera vastavalt vahemik ja lõik:
tähistades P0 � px0q �: x0,

BpP0, rq � tx P R : |x� x0|   ru � tx P R : x0 � r   x   x0 � ru � px0 � r, x0 � rq,
BpP0, rq � tx P R : |x� x0| ¤ ru � tx P R : x0 � r ¤ x ¤ x0 � ru � rx0 � r, x0 � rs.

Juhul m � 2, s.t. ruumis R2, on lahtine kera, kinnine kera ja sfäär vastavalt lahtine ring, kinnine
ring ja ringjoon: tähistades P0 � px0, y0q,

BpP0, rq �
 px, yq : |x� x0|2 � |y � y0|2   r2

(
,

BpP0, rq �
 px, yq : |x� x0|2 � |y � y0|2 ¤ r2

(
,

SpP0, rq �
 px, yq : |x� x0|2 � |y � y0|2 � r2

(
.

Juhul m � 3, s.t. ruumis R3, on lahtine kera, kinnine kera ja sfäär vastavalt lahtine kera, kinnine
kera ja kerapind (ehk sfäär) selles tähenduses, nagu me neid tunneme analüütilisest geomeetriast:
tähistades P0 � px0, y0, z0q,

BpP0, rq �
 px, y, zq : |x� x0|2 � |y � y0|2 � |z � z0|2   r2

(
,

BpP0, rq �
 px, y, zq : |x� x0|2 � |y � y0|2 � |z � z0|2 ¤ r2

(
,

SpP0, rq �
 px, y, zq : |x� x0|2 � |y � y0|2 � |z � z0|2 � r2

(
.

De�nitsioon 1.2. Lahtist kera BpP0, εq ruumis Rm nimetatakse punkti P0 ε-ümbru-
seks ja tähistatakse ka sümboliga UεpP0q.

Mis tahes hulka ruumis Rm, mis sisaldab punkti P0 mingi ε-ümbruse, nimetatakse
punkti P0 ümbruseks.

De�nitsioon 1.3. Olgu ai, bi P R, ai   bi, i � 1, . . . ,m. Hulka

pa1, b1q � � � � � pam, bmq �
 px1, . . . , xmq : xi P pai, biq, i � 1, . . . ,m

(
�  px1, . . . , xmq : ai   xi   bi, i � 1, . . . ,m

( (1.7)

nimetatakse lahtiseks koordinaatristtahukaks. Hulka

ra1, b1s � � � � � ram, bms �
 px1, . . . , xmq : xi P rai, bis, i � 1, . . . ,m

(
�  px1, . . . , xmq : ai ¤ xi ¤ bi, i � 1, . . . ,m

( (1.8)

nimetatakse kinniseks koordinaatristtahukaks.
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Vahemikke pa1, b1q, . . . , pam, bmq ja lõike ra1, b1s, . . . , ram, bms nimetatakse vasta-
valt risttahukate (1.7) ja (1.8) servadeks.

Edaspidi, kõneldes lihtsalt (kinnistest ja lahtistest) risttahukatest, mõistame me
nende all (vastavalt kinnisi ja lahtisi) koordinaatristtahukaid. Risttahukat, mille kõik
servad on võrdse pikkusega, nimetatakse kuubiks.

Risttahukaid ja kuupe ruumis R2 nimetatakse vastavalt ristkülikuteks ja ruutu-
deks. Ristkülikute (sealhulgas ruutude) puhul kõneldakse servade asemel külgedest.

Punkti P0 � px01, . . . , x0mq, kus iga i P t1, . . . ,mu korral x0i :� bi�ai
2

(s.t. punkti,
mille koordinaadid on risttahukate (1.7) ja (1.8) vastavate servade keskpunktid),
nimetatakse risttahukate (1.7) ja (1.8) keskpunktiks.

Tähistades iga i P t1, . . . ,mu korral

di :� bi � ai
2

� bi � x0i � x0i � ai,

esituvad risttahukad (1.7) ja (1.8) vastavalt kujul

px01 � d1, x
0
1 � d1q � � � � � px0m � dm, x

0
m � dmq

�  px1, . . . , xmq : x0i � di   xi   x0i � di, i � 1, . . . ,m
(

�  px1, . . . , xmq : |xi � x0i |   di, i � 1, . . . ,m
(

ja

rx01 � d1, x
0
1 � d1s � � � � � rx0m � dm, x

0
m � dms

�  px1, . . . , xmq : x0i � di ¤ xi ¤ x0i � di, i � 1, . . . ,m
(

�  px1, . . . , xmq : |xi � x0i | ¤ di, i � 1, . . . ,m
(

(vt. ka joonist 1.1).

Lause 1.4. (a) Iga kera B korral ruumis Rm leiduvad sama keskpunktiga kuubid
C1 ja C2 nii, et

C1 � B � C2.

(b) Iga (koordinaat)risttahuka C korral ruumis Rm leiduvad sama keskpunktiga
kerad B1 ja B2 nii, et

B1 � C � B2.

Muuhulgas järeldub lausest 1.4, (b), et (koordinaat)risttahukas keskpunktiga P0

on punkti P0 ümbrus. Lahtiseid ja kinniseid (koordinaat)risttahukaid keskpunkti-
ga P0 nimetatakse vastavalt punkti P0 lahtisteks ja kinnisteks risttahukakujulisteks
ümbrusteks.

Lause 1.4 tõestamiseks on otstarbekas eelnevalt tõestada üks lemma (mida on
mugav kasutada ka näiteks lause 2.1 tõestuses).
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x

y

a b

s =
a+ b

2

uu

c

d

t =
c+ d

2

v

v

(s, t)

{ {
{
{

Joonis 1.1. Ristkülik ra, bs� rc, ds on joonisel helesiniseks värvitud. Selle rist-
küliku keskpunkt on ps, tq. Tähistades u :� b�a

2 ja v :� d�c
2 , esitub see ristkülik

võrdusega ra, bs � rc, ds � rs� u, s� us � rt� v, t� vs.

Lemma 1.5. Olgu P � px1, . . . , xmq, P0 � px01, . . . , x0mq P Rm. Siis

max
1¤i¤m

|xi � x0i | ¤ dpP, P0q ¤
?
m max

1¤i¤m
|xi � x0i |. (1.9)

Tõestus. Arvestades, et dpP, P0q �
c

m°
i�1

|xi � x0i |2, sisalduvad võrratused (1.9)

järgnevas võrratusteahelas:

max
1¤i¤m

|xi � x0i | ¤
d

m̧

i�1

|xi � x0i |2 ¤
b
m max

1¤i¤m
|xi � x0i |2 �

?
m max

1¤i¤m
|xi � x0i |.

Lause 1.4 tõestus. Lause väited piisab tõestada ainult lahtiste kerade B ja lah-
tiste (koordinaat)risttahukate C jaoks, sest iga kinnine kera sisaldab mingit sama
keskpunktiga lahtist kera ja sisaldub mingis sama keskpunktiga lahtises keras; sa-
muti, iga kinnine (koordinaat)risttahukas sisaldab mingit sama keskpunktiga lah-
tist (koordinaat)risttahukat ja sisaldub mingis sama keskpunktiga lahtises (koordi-
naat)risttahukas.
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Olgu P0 � px01, . . . , x0mq P Rm.

(a). Olgu r ¡ 0. Vaatleme lahtist kera B :� BpP0, rq. Olgu P � px1, . . . , xmq P
Rm. Siis, kasutades lemmat 1.5, ühelt poolt,

P P B ðñ dpP, P0q   r ùñ max
1¤i¤m

|xi � x0i |   r

ðñ P P px01 � r, x01 � rq � � � � � px0m � r, x0m � rq �: C2,

seega B � C2; teiselt poolt,

P P B ðñ dpP, P0q   r

ðù ?
m max

1¤i¤m
|xi � x0i |   r ðñ max

1¤i¤m
|xi � x0i |  

r?
m

ðñ P P
�
x01 � r?

m
, x01 � r?

m

	
� � � � �

�
x0m � r?

m
, x0m � r?

m

	
�: C1,

niisiis B � C1.

(b). Olgu d1, . . . , dm ¡ 0. Tähistame

C :� px01 � d1, x
0
1 � d1q � � � � � px0m � dm, x

0
m � dmq.

Olgu P � px1, . . . , xmq P Rm. Siis, kasutades lemmat 1.5, ühelt poolt,

P P C ðñ |xi � x0i |   di iga i P t1, . . . ,mu korral
ùñ max

1¤i¤m
|xi � x0i |   max

1¤i¤m
di �: d

ùñ dpP, P0q  
?
md ðñ P P BpP0,

?
mdq �: B2,

seega C � B2; teiselt poolt,

P P C ðñ |xi � x0i |   di iga i P t1, . . . ,mu korral
ðù max

1¤i¤m
|xi � x0i |   min

1¤i¤m
di �: r

ðù dpP, P0q   r ðñ P P BpP0, rq �: B1,

niisiis C � B1.

1.4. Lahtised ja kinnised hulgad ruumis Rm

Olgu D � Rm.

De�nitsioon 1.4. Öeldakse, et punkt P P Rm on hulga D
� sisepunkt, kui leidub ε ¡ 0 nii, et UεpP q � D (s.t. punktil P leidub ümbrus,
mis tervenisti sisaldub hulgas D);

� rajapunkt, kui iga ε ¡ 0 korral

UεpP q XD �� H ja UεpP q X pRmzDq �� H
(s.t. punkti P iga ümbrus sisaldab nii hulga D punkte kui ka hulka D mitte-
kuuluvaid punkte).



10 I. Mitme muutuja funktsiooni piirväärtus ja pidevus

A

B

Joonis 1.2. Punkt A on joonisel sinisega kujutatud hulga sisepunkt (ruu-
mis R2 ehk tasandil), sest punktil A leidub ümbrus, mis tervenisti sisaldub
selles hulgas. Punkt B on selle hulga rajapunkt, sest punkti B iga ümbrus
sisaldab nii selle hulga punkte kui ka sellesse hulka mittekuuluvaid punkte.

De�nitsioon 1.5. Hulga D kõigi sisepunktide hulka nimetatakse hulga D sisemu-
seks ja tähistatakse sümboliga D�.

Hulga D kõigi rajapunktide hulka nimetatakse hulga D rajaks ja tähistatakse
sümboliga BD.

Hulga D ja tema raja ühendit nimetatakse hulga D sulundiks ja tähistatakse
sümboliga D:

D :� D Y BD.
Järgnev lause, mis toob välja sisemuse, raja ja sulundi lihtsamad omadused,

järeldub vahetult vastavatest de�nitsioonidest.

Lause 1.6. (a) D� � D � D;

(b) D� X BD � H;

(c) hulga D iga punkt on kas hulga D sisepunkt või selle hulga rajapunkt, s.t.
iga P P D korral realiseerub täpselt üks järgmistest teineteist välistavatest
võimalustest:

P P D� või P P BD;

(d) BD � BpRmzDq;
(e) iga P P Rm korral realiseerub täpselt üks järgmistest üksteist välistavatest või-

malustest:
P P D�, P P BD või P P pRmzDq�.

NB! Kas
peaks siin eraldi
välja tooma, et
D � D� Y BD? De�nitsioon 1.6. Öeldakse, et hulk D on

� lahtine, kui D � D� (s.t. kõik hulga D punktid on tema sisepunktid);

� kinnine, kui D � BD (s.t. hulk D sisaldab oma raja).

Ülesanne 1.3. Tõestada, et mis tahes lahtine hulk ruumis Rm on mis tahes selle hulga punkti
ümbrus.
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Vahetult de�nitsioonist järeldub, et hulk D on kinnine parajasti siis, kui D � D.

Tõepoolest,

D on kinnine ðñ D � BD ðñ D � D Y BD ðñ D � D Y BD ðñ D � D.

Lause 1.7. (a) Lahtine kera ruumis Rm on lahtine hulk.

(b) Kinnine kera ruumis Rm on kinnine hulk.

Väite (b) tõestamiseks on otstarbekas eelnevalt tõestada järgnev lihtne lause.
NB! Kas peaks
eraldi välja tooma
järgmise järelduse
lausest 1.8: hulk D
on kinnine para-

jasti siis, kui te-

ma täiend RmzD
on lahtine.

Lause 1.8. Hulk D on lahtine parajasti siis, kui tema täiend RmzD on kinnine.

Tõestus:

D on lahtine ðñ D � D� ðñ D X BD � H ðñ BD � RmzD
ðñ BpRmzDq � RmzD ðñ RmzD on kinnine.

Lause 1.7 tõestus. Olgu P0 P Rm ning olgu r ¡ 0.

(a). Olgu P P BpP0, rq. Veendumaks kera BpP0, rq lahtisuses, piisab näidata, et
P on selle kera sisepunkt, s.t. leidub ε ¡ 0 nii, et UεpP q � BpP0, rq. Selleks paneme
tähele, et mis tahes ε ¡ 0 ja Q P UεpP q korral (kolmnurga võrratuse põhjal)

dpQ,P0q ¤ dpQ,P q � dpP, P0q   ε� dpP, P0q;

niisiis, kui võtta ε :� r � dpP, P0q ¡ 0, siis mis tahes Q P UεpP q korral

dpQ,P0q   ε� dpP, P0q � r � dpP, P0q � dpP, P0q � r,

s.t. Q P BpP0, rq ning seega UεpP q � BpP0, rq.
(b). Veendumaks kera BpP0, rq kinnisuses, piisab lause 1.8 põhjal näidata, et

täiend RmzBpP0, rq on lahtine, milleks, �kseerides vabalt P P RmzBpP0, rq, piisab
näidata, et P on hulga RmzBpP0, rq sisepunkt, s.t. leidub ε ¡ 0 nii, et UεpP q �
RmzBpP0, rq. Selleks paneme tähele, et mis tahes ε ¡ 0 ja Q P UεpP q korral (tagur-
pidi kolmnurga võrratuse põhjal, vt. ülesannet 1.1)

dpQ,P0q ¥ dpP, P0q � dpP,Qq ¡ dpP, P0q � ε;

niisiis, kui võtta ε :� dpP, P0q � r ¡ 0, siis mis tahes Q P UεpP q korral

dpQ,P0q ¡ dpP, P0q � ε � dpP, P0q �
�
dpP, P0q � r

� � r,

s.t. Q P RmzBpP0, rq ning seega UεpP q � RmzBpP0, rq.
Märkus 1.4. Teine võimalus lause 1.7 tõestamiseks on tõestada kõigepealt järgnev
lause.
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Lause 1.9. Mis tahes P0 P Rm ning r ¡ 0 korral

BBpP0, rq � SpP0, rq ja BBpP0, rq � SpP0, rq.

Teisisõnu, kera raja ruumis Rm on sama keskpunkti ja raadiusega sfäär.

Kinnise kera kinnisus järeldub lausest 1.9 vahetult kinnisuse de�nitsiooni põhjal.
Veendumaks lahtise kera lahtisuses, piisab lause 1.8 põhjal näidata, et tema täiend
on kinnine, mis, arvestades, et hulga ja tema täiendi rajad on võrdsed, järeldub
jällegi lausest 1.9 vahetult hulga kinnisuse de�nitsiooni põhjal.

Veel ühte võimalust lause 1.7 tõestuseks on kirjeldatud ülesandes 2.2.

Lause 1.9 tõestus.

Ülesanne 1.4. Tõestada lause 1.9.

Märkus 1.5. Ruumi Rm hulkade korral võivad esineda kõik järgnevad (üksteist
välistavad) olukorrad:

(1) hulk on lahtine, kuid mitte kinnine;

(2) hulk on kinnine, kuid mitte lahtine;

(3) hulk pole ei kinnine ega lahtine;

(4) hulk on samaaegselt nii kinnine kui ka lahtine.

Seejuures hulk on samaaegselt nii kinnine kui ka lahtine (s.t. realiseerub olukord (4))
parajasti siis, kui tema raja on tühi hulk. Ainsad niisuguse omadusega hulgad
ruumis Rm on tühi hulk H ja kogu hulk Rm ise.

Ülesanne 1.5. Tõestada, et ainsad hulgad ruumis Rm, mille raja on tühi hulk, on hulk Rm ja
tühi hulk H.

Näpunäide. Olgu D � Rm ning olgu P � px1, . . . , xmq P D ja Q � py1, . . . , ymq P RmzD.
Tõestada, et leidub hulga D rajapunkt, mis asub punkte P ja Q ühendaval sirglõigul �

x1 � tpy1 � x1q, . . . , xm � tpym � xmq
�
: t P r0, 1s(.

1.5. Hulga tõkestatus ruumis Rm

De�nitsioon 1.7. Öeldakse, et hulk D � Rm on tõkestatud, kui ta sisaldub mingis
keras, s.t. leiduvad punkt Q P Rm ja reaalarv r ¡ 0 nii, et D � BpQ, rq.
Ülesanne 1.6. Tõestada, et hulk ruumis Rm on tõkestatud parajasti siis, kui ta sisaldub mingis
keras keskpunktiga p0, . . . , 0loomoon

m arvu null

q.

Järgnev lause järeldub vahetult ülesandest 1.6, arvestades, et lause 1.4 põhjal
sisaldub iga kera ruumis Rm mingis sama keskpunktiga kuubis ning, vastupidi, iga
kuup ruumis Rm sisaldub mingis sama keskpunktiga keras.
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Lause 1.10. Hulk D � Rm on tõkestatud parajasti siis, kui leidub arv M ¥ 0 nii,
et

D � r�M,M s � � � � � r�M,M sloooooooooooooooomoooooooooooooooon
m tegurit

.

Teisisõnu, hulk D on tõkestatud parajasti siis, kui ta sisaldub mingis kuubis kesk-
punktiga p0, . . . , 0q.

Lause 1.10 võime ümber sõnastada ka järgmiselt: hulk D ruumis Rm on tõkestatud
parajasti siis, kui tema punktide kõikvõimalike koordinaatide hulk on tõkestatud, s.t.
leidub arv M ¥ 0 nii, et

|xi| ¤M iga P � px1, . . . , xmq P D ja iga i P t1, . . . ,mu korral.

1.6. Hulga sidusus ruumis Rm

Hulga sidususe de�nitsioon ruumis Rm toetub Jordani joone mõistele, mis omakorda
toetub funktsiooni T Ñ Rm, kus T � R, pidevuse mõistele. Neile kahele mõistele
ongi pühendatud käesoleva jaotise kolm esimest alajaotist.

1.6.1. Funktsiooni T Ñ Rm, kus T � R, pidevus

De�nitsioon 1.8. Olgu T � R. Öeldakse, et funktsioon Φ: T Ñ Rm on pidev
punktis t0 P T , kui iga reaalarvu ε ¡ 0 korral leidub reaalarv δ ¡ 0 nii, et�

t P T, |t� t0|   δ
�

ùñ d
�
Φptq,Φpt0q

�   ε.

Öeldakse, et funktsioon Φ: T Ñ Rm on pidev, kui ta on oma määramispiirkonna T
igas punktis pidev.

Paneme tähele, et juhul m � 1 langeb äsjade�neeritud funktsiooni Φ: T Ñ Rm

pidevuse mõiste kokku kursusest �Ühe muutuja matemaatiline analüüs� tuttava (ühe
muutuja) funktsiooni Φ: T Ñ R pidevuse mõistega, sest sel juhul d

�
Φptq,Φpt0q

� �
|Φptq � Φpt0q|.

Märgime, et funktsioonide Φ: T Ñ Rm ning funktsioonide süsteemide

x1 � ϕ1ptq, . . . . . . , xm � ϕmptq, t P T, (1.10)

vahel on üksühene vastavus: ühelt poolt, süsteem (1.10) määrab funktsiooni

Φ: T Q t ÞÝÑ �
ϕ1ptq, . . . , ϕmptq

� P Rm; (1.11)

teiselt poolt, mis tahes funktsioon Φ: T Ñ Rm määrab ühesel viisil funktsioonid
(1.10), mis rahuldavad tingimust (1.11) � sellise omadusega funktsioonide (1.10)
väärtused mis tahes punktis t P T on de�neeritud võrdustega

ϕ1ptq � ξ1, . . . . . . , ϕmptq � ξm, kus Φptq � pξ1, . . . , ξmq.
Seejuures funktsioon Φ: T Ñ Rm on pidev parajasti siis, kui teda (tingimuse (1.11)
abil) määravad funktsioonid (1.10) on pidevad.

Ülesanne 1.7. Tõestada, et funktsioon Φ: T Ñ Rm on pidev parajasti siis, kui teda (tingi-
muse (1.11) abil) määravad funktsioonid (1.10) on pidevad.
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1.6.2. Pideva joone mõiste ruumis Rm

De�nitsioon 1.9. Olgu T � R intervall. Pidevat funktsiooni Φ: T Ñ Rm nimeta-
takse pidevaks jooneks ehk Jordani jooneks ehk lihtsalt jooneks ruumis Rm. Hulka
tΦptq : t P T u ruumis Rm (s.t. funktsiooni Φ väärtuste hulka) nimetatakse seejuures
joone Φ jäljeks. Funktsiooni Φ argumendile viidatakse kui parameetrile.

Kuidas on pideva joone de�nitsioon 1.9 kooskõlas meie eelmatemaatilise arusaa-
maga joontest? Joont Φ: T Ñ Rm on kõige lihtsam ette kujutada kui ruumis Rm

eeskirja u � Φptq järgi liikuva punkti trajektoori: ajahetkel t P T asub liikuv punkt
ruumi Rm punktis Φptq (vt. joonist 1.3, kus m � 2).

x

y

Φ(t)

ϕ1(t)

ϕ2(t)

Joonis 1.3. Siin Φptq �
�
ϕ1ptq, ϕ2ptq

�
, s.t. ϕ1ptq ja ϕ2ptq on punkti Φptq

(rist)koordinaadid.

Sageli, kõneldes joonest, peetakse tegelikult silmas hoopis teatava joone jälge.
Näiteks öeldes, et teatav joon ruumis Rm sisaldub ruumi Rm teatavas alamhulgas,
peetakse tegelikult silmas, et kõnealuse joone jälg sisaldub kõnealuses hulgas; öeldes,
et teatav joon ruumis Rm läbib teatavat punkti (ruumis Rm), peetakse tegelikult
silmas, et kõnealuse joone jälg sisaldab kõnealust punkti. Sedalaadi terminoloogilist
ebatäpsust, mis üldjuhul sisulist kaksipidimõistmist ei tekita, lubame endale käes-
olevas konspektis ka meie.

Kui intervall T on lõik, s.t. T � rα, βs mingite α, β P R, α   β, korral, siis
nimetatakse joont Φ kaareks. Ruumi Rm punkte Φpαq ja Φpβq nimetatakse seejuures
vastavalt kaare Φ alguspunktiks ja kaare Φ lõpp-punktiks. Kaare algus- ja lõpp-punkti
nimetatakse selle kaare otspunktideks. Öeldes, et kaar ruumis Rm ühendab ruumi Rm

punkte A ja B, peetakse silmas, et A ja B on selle kaare otspunktid.
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1.6.3. Joone esitusviise

Kuigi käsiloleva punkti põhimõiste � ruumi Rm alamhulga sidususe � de�neerimiseks
vajaminev matemaatiline aparatuur sai meil eelnevates punktides sisse toodud, lük-
kame sidususe mõiste de�neerimise edasi järgmisse jaotisse: käsilolev jaotis on parim
võimalik koht tutvumaks mõnede sagedaminikasutatavate joone esitusviisidega.

Kõikjal selles jaotises on T � R mingi intervall.

1.6.3.1. Joone esitus parameetriliste võrranditega

Olgu
x1 � ϕ1ptq, . . . . . . , xm � ϕmptq, t P T, (1.12)

pidevad funktsioonid. Siis ka funktsioon

Φ: T Q t ÞÝÑ �
ϕ1ptq, . . . , ϕmptq

� P Rm

on pidev (vt. ülesannet 1.7), s.t. see funktsioon on joon (selle joone jälge juhul, kus
m � 2, on kujutatud joonisel 1.3). Selle joone kohta öeldakse, et ta on esitatud
parameetrilisel kujul võrranditega (1.12) (või et see joon on esitatud parameetriliste
võrranditega (1.12).

Märgime, et iga pidev joon ruumis Rm on ühesel viisil esitatav parameetrilise
võrrandite abil (vt. jaotise 1.6.1 lõiku, mis algab sõnadega �Märgime, et�).

1.6.3.2. Tasandilise joone esitus võrrandiga y � fpxq

Jooni ruumis R2 nimetatakse tasandilisteks joonteks. Selles ja järgmises alajao-
tises tutvustame kaht sagedastikasutatavat tasandiliste joonte esitusviisi.

Olgu funktsioon
y � fpxq, x P T, (1.13)

pidev funktsioon. Siis ka funktsioon

T Q t ÞÝÑ �
t, fptq� P R2

on pidev (sest �koordinaatfunktsioonid� T Q t ÞÑ t P R ja T Q t ÞÑ fptq P R on
pidevad; vt. ülesannet 1.7), s.t. see funktsioon on joon. Selle joone kohta öeldakse, et
ta on esitatud võrrandiga (1.13). Märgime, et võrrandiga (1.13) esitatud tasandilise
joone esitus parameetrilisel kujul on

x � t, y � fptq, t P T.

1.6.3.3. Tasandilise joone esitus polaarkoordinaatides

Kõikjal järgnevas, kõneldes polaarkoordinaatidest �xy-tasandil� R2, loeme poolu-
seks koordinaatide alguspunkti ja polaarteljeks x-telje positiivse osa. Sel juhul ta-
sandi mis tahes punkti ristkoordinaadid x ja y ning polaarkoordinaadid ϕ ja r (siin
ϕ tähistab polaarnurka ja r polaarraadiust) on seotud võrdustega

x � r cosϕ, y � r sinϕ; (1.14)
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vt. joonist 1.4.

x

y

P

r

r cosϕ

r sinϕ

ϕ

Joonis 1.4. Punkti P ristkoordinaadid x ja y ning polaarkoordinaadid r ja ϕ
on seotud võrdustega (1.14).

Olgu funktsioon
r � rpϕq, ϕ P T, (1.15)

pidev. Siis ka funktsioon Φ: T Ñ R2, mis seab parameetri väärtusele ϕ hulgast T
vastavusse tasandi R2 punkti, mille polaarnurk ja polaarraadius on vastavalt ϕ ja
rpϕq, on pidev (sest võrduste (1.14) põhjal Φ: T Q ϕ ÞÑ �

rpϕq cosϕ, rpϕq sinϕ� P R2

ning �koordinaatfunktsioonid� T Q ϕ ÞÑ rpϕq cosϕ P R ja T Q ϕ ÞÑ rpϕq sinϕ P R on
pidevad; vt. ülesannet 1.7). Selle joone kohta öeldakse, et ta on esitatud polaarkoor-
dinaatides võrrandiga (1.15). Märgime, et polaarkoordinaatides võrrandiga (1.15)
esitatud tasandilise joone esitus parameetrilisel kujul on

x � rpϕq cosϕ, y � rpϕq sinϕ, ϕ P T
(selle joone jälge on rohelisega kujutatud joonisel 1.5).NB! Must-valge

televisiooni
vaatajad seda jälge
rohelisena ei näe!

1.6.4. Hulga sidusus ruumis Rm

De�nitsioon 1.10. Öeldakse, et hulk D � Rm on sidus, kui tema mis tahes ka-
he punkti korral leidub neid punkte ühendav pidev kaar, mis tervikuna sisaldub
hulgas D.

1.7. Täiendavaid ülesandeid

Ülesanne 1.8. Olgu n P N, olgu hulk U � Rm punkti P0 � px0
1, . . . , x

0
mq P Rm ümbrus ruumis Rm

ning olgu hulk V � Rn punkti Q0 � py01 , . . . , y0nq P Rn ümbrus ruumis Rn. Tõlgendame otsekorru-
tist U � V ruumi Rm�n alamhulgana, samastades iga punkti

�px1, . . . , xmq, py1, . . . , ynq
� P U � V

punktiga px1, . . . , xm, y1, . . . , ynq P Rm�n. Tõestada, et niisuguse tõlgenduse korral on hulk U � V
punkti R0 :� px0

1, . . . , x
0
m, y01 , . . . , y

0
nq P Rm�n ümbrus ruumis Rm�n.
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x

y

Φ(ϕ)

r(
ϕ)

r(ϕ) cosϕ

r(ϕ) sinϕ

ϕ

Joonis 1.5

Ülesanne 1.9. Tõestada, et

(a) 1� Rm ja H on lahtised hulgad ruumis Rm;

2� kui I on mis tahes indeksite hulk ning Ui, i P I, on lahtised hulgad ruumis Rm, siis ka
nende hulkade ühend

�
iPI Ui on lahtine (s.t. mis tahes kogumi lahtiste hulkade ühend

ruumis Rm on lahtine hulk);

3� kui n P N ning U1, . . . , Un on lahtised hulgad ruumis Rm, siis ka nende hulkade ühisosa�n
i�1 Ui on lahtine (s.t. lõpliku arvu lahtiste hulkade ühisosa ruumis Rm on lahtine

hulk);

(b) 1� Rm ja H on kinnised hulgad ruumis Rm;

2� kui I on mis tahes indeksite hulk ning Fi, i P I, on kinnised hulgad ruumis Rm, siis
ka nende hulkade ühisosa

�
iPI Fi on kinnine (s.t. mis tahes kogumi kinniste hulkade

ühisosa ruumis Rm on kinnine hulk);

3� kui n P N ning F1, . . . , Fn on kinnised hulgad ruumis Rm, siis ka nende hulkade ühend�n
i�1 Fi on kinnine (s.t. lõpliku arvu kinniste hulkade ühend ruumis Rm on kinnine

hulk).

Näpunäide. Ülesande (b)-osa tõestuses on mugav kasutada (a)-osa koos lausega 1.8.

Ülesanne 1.10. Olgu D � Rm. Tõestada, et

(a) D� � RmzpRmzDq (teisisõnu, hulga sisemus on tema täiendi sulundi täiend);

(b) D � Rmz�pRmzDq�� (teisisõnu, hulga sulund on tema täiendi sisemuse täiend).

Näpunäide. Kasutada lauset 1.6, (e) ja (d).

Ülesanne 1.11. Olgu D � Rm. Tõestada, et

(a) sisemus D� on lahtine hulk;

(b) sulund D on kinnine hulk;

(c) raja BD on kinnine hulk;

(d) BpBDq � BD.



18 I. Mitme muutuja funktsiooni piirväärtus ja pidevus

Näpunäide. Väite (a) tõestamisel on mugav kasutada lauset 1.7, (a), mille kohaselt lahtine kera
on lahtine, ja ülesannet 1.3 mis ütleb, et mis tahes lahtine hulk ruumis Rm on mis tahes selle hulga
punkti ümbrus.

Väide (b) järeldub ülesandest 1.10, (b), väitest (a) ja lausest 1.8.
Väited (c) ja (d) on hulga kinnisuse de�nitsiooni põhjal samaväärsed. Üks moodus nende

väidete tõestamiseks on tõestada väide (d), lähtudes vahetult rajapunkti de�nitsioonist (siin on
mugav kasutada lauset 1.7, (a), ja ülesannet 1.3). Teine moodus on tõestada väide (c), pannes
kõigepealt tähele, et BD � Rmz�D� Y pRmzDq�� (vt. lauset 1.6, (e)) ning rakendades seejärel
väidet (a), ülesannet 1.9, (a), 2�, ja lausest 1.8 (mis teisisõnu ütleb, et hulk on kinnine parajasti
siis, kui tema täiend on lahtine). Veel üks moodus väite (c) tõestamiseks on veenduda kõigepealt,
et BD � D X RmzD, ning rakendada seejärel väidet (b) ja ülesannet 1.9, (b), 2�.

Ülesanne 1.12. Olgu hulgad D, E � Rm sellised, et D � E . Tõestada, et siis ka D� � E� ja D � E .
(Selles ülesandes tõestatavatele sisemuse ja sulundi omadustele viidatakse vastavalt kui sisemuse
monotoonsusele ja sulundi monotoonsusele.)

Näpunäide. Sisalduvuse D � E tõestamisel kasutada ülesannet 1.10, (b), ja sisemuse mono-
toonsust. Teine moodus selle sisalduvuse tõestamiseks on lähtuda vahetult sulundi de�nitsioonist.
Kolmas moodus selle sisalduvuse tõestamiseks on kasutada järgmise paragrahvi lauset 2.2.

Ülesanne 1.13. Tõestada, et tõkestatud hulga D � Rm sulund D on tõkestatud hulk.
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2.1. Jada koonduvus ruumis Rm

De�nitsioon 2.1. Kui igale arvule n P N on vastavalt mingile eeskirjale seatud
vastavusse mingi (üheselt määratud) punkt Pn P Rm, siis öeldakse, et on antud jada

P1, P2, . . . , Pn, . . . . (2.1)

Jada (2.1) tähistatakse ka sümboliga pPnq8n�1 või lihtsalt pPnq. Kõneldes ruumi Rm

punktide jadast, ütleme me edaspidi lihtsalt jada ruumis Rm.

De�nitsioon 2.2. Öeldakse, et jada pPnq ruumis Rm koondub punktiks P P Rm,
kui

dpPn, P q ÝÝÝÑ
nÑ8

0,

s.t. iga reaalarvu ε ¡ 0 korral leidub indeks N P N nii, et�
n P N, n ¥ N

�
ùñ dpPn, P q   ε.

Punkti P nimetatakse seejuures jada pPnq piirväärtuseks ja kirjutatakse

lim
nÑ8

Pn � P või Pn ÝÝÝÑ
nÑ8

P.

Ülesanne 2.1. Olgu jadad pPnq ja pQnq ruumis Rm ning punktid P,Q P Rm sellised, et Pn ÝÝÝÑ
nÑ8 P

ja Qn ÝÝÝÑ
nÑ8 Q ruumis Rm. Tõestada, et

(a) dpPn, Qq ÝÝÝÑ
nÑ8 dpP,Qq;

(b) dpPn, Qnq ÝÝÝÑ
nÑ8 dpP,Qq.

Näpunäide. Kasutada tagurpidi kolmnurga võrratust (vt. ülesannet 1.1).

Järgnev lause kirjeldab koonduvust ruumis Rm.

Lause 2.1. Olgu Pn � pxn1 , . . . , xnmq, P � px1, . . . , xmq P Rm, n � 1, 2, . . . . Järgmised
väited on samaväärsed:

(i) Pn ÝÝÝÑ
nÑ8

P ruumis Rm;

(ii) xni ÝÝÝÑ
nÑ8

xi iga i P t1, . . . ,mu korral.

Teisisõnu, lause 2.1 ütleb, et jada pPnq8n�1 ruumis Rm koondub punktiks P P Rm

parajasti siis, kui selle jada punktide vastavate koordinaatide jadad koonduvad punk-
ti P vastavateks koordinaatideks (niisugusel juhul öeldakse, et jada pPnq8n�1 koondub
koordinaaditi punktiks P ). Niisiis, koonduvus ruumis Rm on samaväärne koordinaa-
diti koonduvusega.
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Lause 2.1 tõestus. Lemma 1.5 põhjal iga n P N korral

0 ¤ max
1¤i¤m

|xni � xi| ¤ dpPn, P q ¤
?
m max

1¤i¤m
|xni � xi|,

järelikult arvjada piirväärtuse sändvit²teoreemi põhjal

dpPn, P q ÝÝÝÑ
nÑ8

0 ðñ max
1¤i¤m

|xni � xi| ÝÝÝÑ
nÑ8

0.

Seega

Pn ÝÝÝÑ
nÑ8

P ruumis Rm ðñ dpPn, P q ÝÝÝÑ
nÑ8

0 ðñ max
1¤i¤m

|xni � xi| ÝÝÝÑ
nÑ8

0

ðñ |xni � xi| ÝÝÝÑ
nÑ8

0 iga i P t1, . . . ,mu korral
ðñ xni ÝÝÝÑ

nÑ8
xi iga i P t1, . . . ,mu korral.

2.2. Sulundi punkti ja kinnisuse kirjeldus jadade keeles

Lause 2.2. Olgu D � Rm ning olgu P P Rm. Järgmised väited on samaväärsed:

(i) P P D (s.t. punkt P kuulub hulga D sulundisse);

(ii) iga ε ¡ 0 korral UεpP q XD �� H (s.t. punkti P iga ümbrus lõikab hulka D);

(iii) leiduvad punktid Pn P D, n � 1, 2, . . . , nii, et Pn ÝÝÝÑ
nÑ8

P (s.t. leidub hulga D
punktide jada, mis koondub punktiks P ).

Tõestus. (i)ñ(ii). Olgu P P D. Siis kehtib vähemalt üks tingimustest P P D ja
P P BD. Kui P P D, siis punkti P iga ümbrus sisaldab hulka D kuuluva punkti P .
Kui P P BD, siis rajapunkti de�nitsiooni põhjal lõikab punkti P iga ümbrus hulka D.
Niisiis igal juhul tingimus (ii) kehtib.

(ii)ñ(i). Kehtigu (ii). Peame näitama, et P P D. Kui P P D, siis see sisalduvus
ilmselt kehtib (sest D � D). Vaatleme nüüd juhtu, kus P R D. Siis punkti P iga
ümbrus sisaldab hulka D mittekuuluva punkti P . Kuna tingimuse (ii) põhjal sisaldab
punkti P iga ümbrus ka hulga D punkte, siis P P BD, seega P P D (sest BD � D),
nagu soovitud.

(ii)ñ(iii). Kehtigu (ii). Siis iga n P N korral leidub punkt Pn P U 1
n
pP q X D.

Punktid Pn rahuldavad tingimusi

0 ¤ dpPn, P q   1

n
ÝÝÝÑ
nÑ8

0,

seega jada piirväärtuse sändvit²teoreemi põhjal ka dpPn, P q ÝÝÝÑ
nÑ8

0, s.t. Pn ÝÝÝÑ
nÑ8

P .

Kuna Pn P D iga n P N korral, siis tingimus (iii) kehtib.

(iii)ñ(ii). Kehtigu (iii) ning olgu ε ¡ 0. Kuna Pn ÝÝÝÑ
nÑ8

P ehk, teisisõnu,

dpPn, P q ÝÝÝÑ
nÑ8

0, siis leidub n P N nii, et dpPn, P q   ε. Aga nüüd Pn P UεpP q X D;

järelikult (ii) kehtib.
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Lause 2.3. Hulk D � Rm on kinnine parajasti siis, kui ta sisaldab kõik oma ele-
mentide koonduvate jadade piirväärtused, s.t. parajasti siis, kui kehtib implikatsioon�

Pn P D, n � 1, 2, . . . , Pn ÝÝÝÑ
nÑ8

P
�

ùñ P P D. (2.2)

Tõestus. Tarvilikkus. Olgu hulk D kinnine ning olgu punktid Pn P D, n � 1, 2, . . . ,
ja P P Rm sellised, et Pn ÝÝÝÑ

nÑ8
P . Peame näitama, et P P D. Kuna hulk D on

kinnine, siis D � D, seega piisab näidata, et P P D. See sisalduvus järeldub lause 2.2
samaväärsusest (i)ô(iii).

Piisavus. Kehtigu implikatsioon (2.2) ning olgu P P BD. Hulga D kinnisuseks
piisab näidata, et P P D. Kuna P P BD � D, siis lause 2.2 samaväärsuse (i)ñ(iii)
põhjal leiduvad punktid Pn P D, n � 1, 2, . . . , nii, et Pn ÝÝÝÑ

nÑ8
P . Implikatsiooni

(2.2) põhjal järeldub siit, et P P D, nagu soovitud.

Ülesanne 2.2. Järeldada lause 1.7 (kinnise kera kinnisus ja lahtise kera lahtisus) lausest 2.3.

Näpunäide. Kasutada ülesannet 2.1. Lahtise kera lahtisuse tõestuseks näidata, et tema täiend on
kinnine ja rakendada lauset 1.8.

2.3. Hulga kuhjumispunkt

De�nitsioon 2.3. Punkti P P Rm nimetatakse hulga D � Rm kuhjumispunktiks,
kui iga ε ¡ 0 korral UεpP qX

�
DztP u� �� H (s.t. punkti P iga ümbrus sisaldab temast

erinevaid hulga D punkte).

Märkus 2.1. Rõhutame, et ruumis Rm üldjuhul

� hulgal võib kuhjumispunkte leiduda, aga võib ka mitte leiduda;

� hulga kuhjumispunkt võib kuuluda sellesse hulka, aga võib ka mitte kuuluda.

Ülesanne 2.3. Tõestada, et

(a) ruumi Rm lõplikul alamhulgal ei ole kuhjumispunkte;

(b) kui r ¡ 0, P0 � px0
1, x

0
2, . . . , x

0
mq P Rm, P1 :� px0

1� r, x0
2, . . . , x

0
mq P Rm, siis P1 on nii lahtise

kera BpP0, rq kui ka kinnise kera BpP0, rq kuhjumispunkt, kusjuures P1 P BpP0, rq, kuid
P1 R BpP0, rq.

Lause 2.4. Olgu D � Rm ning olgu P P Rm. Järgmised väited on samaväärsed:

(i) P on hulga D kuhjumispunkt;

(ii) P P DztP u (s.t. punkt P kuulub hulga DztP u sulundisse);
(iii) leiduvad punktid Pn P DztP u, n � 1, 2, . . . , nii, et Pn ÝÝÝÑ

nÑ8
P (s.t. leidub

punktist P erinevate hulga D punktide jada, mis koondub punktiks P ).

Tõestus. (i)ô(ii) järeldub vahetult kuhjumispunkti de�nitsioonist ja lause 2.2
samaväärsusest (ii)ô(i).

(ii)ô(iii) järeldub vahetult lause 2.2 samaväärsusest (i)ô(iii).
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2.4. Bolzano�Weierstrassi teoreem

De�nitsioon 2.4. Öeldakse, et jada pPnq8n�1 ruumis Rm on tõkestatud, kui tema
elementide hulk tPn : n P Nu on tõkestatud.

Ülesanne 2.4. Tõestada, et koonduv jada ruumis Rm on tõkestatud.

Teoreem 2.5 (Bolzano�Weierstrassi teoreem). Igal tõkestatud jadal ruumis Rm lei-
dub koonduv osajada.

Tõestus. Olgu pPnq8n�1 � �pxn1 , . . . , xnmq�8n�1
tõkestatud jada ruumis Rm. Lau-

se 1.10 põhjal on ka selle jada punktide vastavate koordinaatide jadad

pxn1 q8n�1, pxn2 q8n�1, . . . . . . , pxnmq8n�1

tõkestatud. Seega Bolzano�Weierstrassi teoreemi põhjal (arvjadade jaoks) leidub ja-

da pPnq8n�1 punktide esimeste koordinaatide jadal pxn1 q8n�1 koonduv osajada pxk
1
n

1 q8n�1,

teiste koordinaatide (osa)jadal pxk1n2 q8n�1 leidub koonduv osajada pxk2n2 q8n�1 jne. Kir-
jeldatud protseduuri tulemusena me saame (kasvavad) indeksite jadad

pk1nq8n�1, pk2nq8n�1, . . . . . . , pkmn q8n�1

nii, et

� jada pki�1
n q8n�1 on jada pkinq8n�1 osajada iga i P t1, . . . ,m� 1u korral;

� jada pxkini q8n�1 koondub iga i P t1, . . . ,mu korral.

Aga nüüd kõik vastavate koordinaatide (osa)jadad pxkmni q8n�1, i � 1, . . . ,m, koondu-

vad (sest iga i P t1, . . . ,mu korral on pxkmni q8n�1 koonduva jada pxkini q8n�1 osajada),
seega osajada pPkmn q8n�1 koondub (sest ta koondub koordinaaditi).

2.5. Cauchy kriteerium jada koonduvuseks

De�nitsioon 2.5. Öeldakse, et jada pPnq ruumis Rm on Cauchy jada ehk funda-
mentaaljada, kui iga reaalarvu ε ¡ 0 korral leidub indeks N P N nii, et�

k, n P N, k, n ¥ N
�

ùñ dpPk, Pnq   ε.

Teoreem 2.6 (Cauchy kriteerium jada koonduvuseks). Jada ruumis Rm koondub
parajasti siis, kui ta on Cauchy jada.

Tõestus. Tarvilikkus. Koondugu jada pPnq ruumis Rm punktiks P P Rm ning olgu
ε ¡ 0. Veendumaks, et pPnq on Cauchy jada, peame leidma indeksi N P N nii, et�

k, n P N, k, n ¥ N
�

ùñ dpPk, Pnq   ε.
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Mis tahes k, n P N korral kolmnurga võrratuse põhjal

dpPk, Pnq ¤ dpPk, P q � dpP, Pnq.
Niisiis, kui valida indeks N P N nii, et�

n P N, n ¥ N
�

ùñ dpPn, P q   ε

2
,

siis kõikide k, n ¥ N korral

dpPk, Pnq ¤ dpPk, P q � dpP, Pnq   ε

2
� ε

2
� ε.

Piisavusele esitame kaks erinevat tõestust. Neist esimene toetub jada koonduvuse
kirjeldusele ruumis Rm (lausele 2.1) ja Cauchy kriteeriumile arvjadade koonduvu-
seks, teine aga Bolzano�Weierstrassi teoreemile 2.5.

Piisavuse esimene tõestus. Olgu pPnq8n�1 �
�pxn1 , . . . , xnmq�8n�1

Cauchy jada ruu-
mis Rm. Siis ka selle jada elementide vastavate koordinaatide jadad

pxn1 q8n�1, pxn2 q8n�1, . . . . . . , pxnmq8n�1 (2.3)

on Cauchy jadad, sest mis tahes i P t1, . . . ,mu korral lemma 1.5 põhjal

|xki � xni | ¤ dpPk, Pnq kõikide k, n P N korral;

seega Cauchy kriteeriumi põhjal arvjada koonduvuseks jadad (2.3) koonduvad, s.t.
jada pPnq8n�1 koondub koordinaaditi; järelikult lause 2.1 põhjal jada pPnq8n�1 koon-
dub.

Piisavuse teine tõestus. Olgu pPnq Cauchy jada ruumis Rm. Jada pPnq koondu-
vuseks piisab näidata, et

(1) iga Cauchy jada ruumis Rm on tõkestatud;

(2) kui Cauchy jadal ruumis Rm on olemas koonduv osajada, siis see jada koondub
samaks piirväärtuseks, milleks see osajadagi.

Tõepoolest, kui väited (1) ja (2) kehtivad, siis väite (1) ja Bolzano�Weierstrassi
teoreemi 2.5 põhjal leidub jadal pPnq koonduv osajada, seega väite (2) põhjal jada
pPnq koondub.
Ülesanne 2.5. Tõestada väited (1) ja (2).

2.6. Täiendavaid ülesandeid
NB! Ülesannet
2.6 kasutatakse
teoreemi II.1.11
tõestuses.

Ülesanne 2.6. Olgu U � Rm lahtine hulk ja K � Rm kinnine tõkestatud hulk, kusjuures K � U .
Nagu kõikjal eelnevas, tähistame lahtise ja kinnise kera keskpunktiga P P Rm ja raadiusega α ¡ 0
vastavalt sümbolitega BpP, αq ja BpP, αq, s.t. BpP, αq :�  

Q P Rm : dpP,Qq   α
(
ja BpP, αq :� 

Q P Rm : dpP,Qq ¤ α
(
.

(a) Tõestada, et leidub reaalarv α ¡ 0 nii, et BpP, αq � U iga P P K korral.

(b) Väitest (a) järeldub niisuguse reaalarvu γ ¡ 0 olemasolu, et BpP, γq � U iga P P K korral.
Tõestada, et ühend

�
PPK BpP, γq � U on (ruumis Rm) kinnine tõkestatud hulk.
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3.1. Mitme muutuja funktsiooni mõiste

De�nitsioon 3.1. Kujutusi

f : D ÝÑ R, kus D � Rm, (3.1)

nimetatakse m muutuja funktsioonideks.
Kõikvõimalikke m muutuja funktsioone, kus m ¥ 2, nimetatakse mitme muutuja

funktsioonideks.

Funktsiooni (3.1) määramispiirkonna D iga punkt P � px1, . . . , xmq P D on ühe-
selt määratud oma koordinaatidega x1, . . . , xm; teiselt poolt, punktiga P P D on
üheselt määratud tema koordinaadid x1, . . . , xm. Termin �m muutuja funktsioon�
on niisiis põhjendatud asjaoluga, et sellise funktsiooni väärtused on määratud mää-
ramispiirkonna D punktide koordinaate tähistavate m muutuja x1, . . . , xm väärtus-
tega. Neid muutujaid (nagu ka määramispiirkonna punkte tähistavat muutujat P )
nimetatakse funktsiooni (3.1) argumentideks ning, kui selle funktsiooni väärtuste
märkimiseks kasutada muutujat u, siis selle funktsiooni märkimiseks kasutatakse ka
tähistust

u � fpx1, . . . , xmq või u � fpP q või u � upx1, . . . , xmq või u � upP q.

3.2. Mitme muutuja funktsiooni piirväärtus

Olgu funktsioon u � fpP q � fpx1, . . . , xmq määratud hulgas D � Rm ning olgu
P0 � px01, . . . , x0mq P Rm määramispiirkonna D kuhjumispunkt.

De�nitsioon 3.2. Öeldakse, et funktsiooni f piirväärtus punktis P0 (või piirväärtus
protsessis P Ñ P0) on arv c (või et funktsioon f koondub arvuks c protsessis P Ñ P0

(või argumendi väärtuse lähenemisel punktile P0)) ja kirjutatakse

lim
PÑP0

fpP q � c või fpP q ÝÝÝÝÑ
PÑP0

c,

või
lim

x1Ñx0
1. . . . . .

xmÑx0
m

fpx1, . . . , xmq � c või fpx1, . . . , xmq ÝÝÝÝÝÑ
x1Ñx01. . . .

xmÑx0m

c,

kui iga reaalarvu ε ¡ 0 korral leidub reaalarv δ ¡ 0 nii, et�
P P D, 0   dpP, P0q   δ

�
ùñ |fpP q � c|   ε.

Ruumis Rm kasutame piirprotsessi px1, . . . , xmq ÝÑ px0
1, . . . , x

0
mq märkimisel ka tähistust

x1, . . . , xm ÝÑ x0
1, . . . , x

0
m; näiteks tähistame funktsiooni u � fpx, yq piirväärtust punktis px0, y0q

sümboliga lim
x,yÑx0,y0

fpx, yq; kui seejuures x0 � y0 �: a, siis kirjutame lim
x,yÑa,a

asemel lihtsalt lim
x,yÑa

.

24
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De�nitsioon 3.3. Kui fpP q ÝÝÝÝÑ
PÑP0

0, siis öeldakse, et funktsioon f on punktis P0

lõpmata väike (või protsessis P Ñ P0 lõpmata väike või ka, et funktsioon f hääbub
protsessis P Ñ P0).

De�nitsioon 3.4. Öeldakse, et funktsiooni f piirväärtus punktis P0 (või piirväärtus
protsessis P Ñ P0) on 8 (loetakse: lõpmatus) ja kirjutatakse

lim
PÑP0

fpP q � 8 või fpP q ÝÝÝÝÑ
PÑP0

8,

kui iga reaalarvu E ¡ 0 korral leidub realarv δ ¡ 0 nii, et�
P P D, 0   dpP, P0q   δ

�
ùñ fpP q ¡ E.

De�nitsioon 3.5. Öeldakse, et funktsiooni f piirväärtus punktis P0 (või piirväärtus
protsessis P Ñ P0) on �8 (loetakse: miinus lõpmatus) ja kirjutatakse

lim
PÑP0

fpP q � �8 või fpP q ÝÝÝÝÑ
PÑP0

�8,

kui iga reaalarvu E ¡ 0 korral leidub realarv δ ¡ 0 nii, et�
P P D, 0   dpP, P0q   δ

�
ùñ fpP q   �E.

De�nitsioon 3.6. Kui |fpP q| ÝÝÝÝÑ
PÑP0

8, siis öeldakse, et funktsioon f on punktis P0

lõpmata suur (või protsessis P Ñ P0 lõpmata suur).

Teoreem 3.1 (mitme muutuja funktsiooni piirväärtuse Heine kriteerium). Olgu P0

funktsiooni f määramispiirkonna D kuhjumispunkt ning olgu c P R Y t�8,8u.
Järgmised väited on samaväärsed:

(i) fpP q ÝÝÝÝÑ
PÑP0

c;

(ii)
�
Pn P DztP0u, n � 1, 2, . . . , Pn ÝÝÝÑ

nÑ8
P0

� ùñ fpPnq ÝÝÝÑ
nÑ8

c.

Teisisõnu, funktsiooni f piirväärtus punktis P0 on c parajasti siis, kui iga punktiks P0

koonduva punktist P0 erinevate määramispiirkonna D punktide jada pPnq8n�1 korral
on vastava funktsiooni väärtuste jada

�
fpPnq

�8
n�1

piirväärtus c.

Tõestus. Tõestame teoreemi ainult juhu c P R jaoks. Juhtudel c � 8 ja c � �8
on tõestus analoogiline.

(i)ñ(ii). Kehtigu (i) ning olgu punktid Pn P DztP0u, n � 1, 2, . . . , sellised, et
Pn ÝÝÝÑ

nÑ8
P0. Fikseerides vabalt ε ¡ 0, piisab meil implikatsiooni (i)ñ(ii) tõestuseks

leida indeks N P N nii, et�
n P N, n ¥ N

�
ùñ |fpPnq � c|   ε.
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Kuna fpP q ÝÝÝÝÑ
PÑP0

c, siis leidub reaalarv δ ¡ 0 nii, et�
P P D, 0   dpP, P0q   δ

�
ùñ |fpP q � c|   ε.

Kuna Pn ÝÝÝÑ
nÑ8

P0, siis leidub indeks N P N nii, et�
n P N, n ¥ N

�
ùñ dpPn, P0q   δ.

Kui nüüd n ¥ N , siis Pn P D ja 0   dpPn, P0q   δ ning järelikult

|fpPnq � c|   ε.

(ii)ñ(i). Kehtigu (ii). Oletame vastuväiteliselt, et (i) ei kehti. Siis leidub reaalarv
ε ¡ 0 nii, et iga n P N korral leidub punkt Pn P DztP0u, mille korral

dpPn, P0q   1

n
, kuid |fpPnq � c| ¥ ε.

Aga nüüd Pn ÝÝÝÑ
nÑ8

P0, kuid mitte fpPnq ÝÝÝÑ
nÑ8

c, mis on vastuolus eeldusega (ii).

Järeldus 3.2. Mitme muutuja funktsioonil saab antud punktis eksisteerida ülimalt
üks piirväärtus.

Tõestus. Olgu P0 funktsiooni f määramispiirkonna D � Rm kuhjumispunkt ning
olgu α, β P RY t8,�8u sellised, et

fpP q ÝÝÝÝÑ
PÑP0

α ja fpP q ÝÝÝÝÑ
PÑP0

β.

Teoreemi tõestuseks piisab näidata, et α � β. Selleks valime mingi punktiks P0

koonduva punktist P0 erinevate määramispiirkonna D punktide jada pPnq8n�1 (nii-
sugune jada eksisteerib lause 2.4 põhjal, sest P0 on hulga D kuhjumispunkt); siis
funktsiooni piirväärtuse Heine kriteeriumi (teoreemi 3.1) põhjal

fpPnq ÝÝÝÑ
nÑ8

α ja fpPnq ÝÝÝÑ
nÑ8

β

ning järelikult arvjada piirväärtuse ühesuse tõttu α � β, nagu soovitud.

3.3. Funktsiooni piirväärtuse omadusi

Olgu D � Rm ning olgu f : D Ñ R ja g : D Ñ R. Funktsioonide f ja g summa
f � g : D Ñ R, vahe f � g : D Ñ R, korrutis f � g : D Ñ R ning, kui gpP q �� 0 iga
P P D korral, siis ka jagatis f

g
: D Ñ R on de�neeritud �punktiviisi�:

pf � gqpP q � fpP q � gpP q, pf � gqpP q � fpP q � gpP q,
pf � gqpP q � fpP q � gpP q, f

g
pP q � fpP q

gpP q ,
P P D.
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Teoreem 3.3. Eksisteerigu funktsioonidel f ja g lõplik piirväärtus oma määramis-
piirkonna D � Rm kuhjumispunktis P0. Siis ka nende funktsioonide summal f � g,
vahel f�g, korrutisel fg ning, kui limPÑP0 gpP q �� 0, siis ka jagatisel f{g eksisteerib
punktis P0 lõplik piirväärtus, kusjuures

lim
PÑP0

�
fpP q � gpP q� � lim

PÑP0

fpP q � lim
PÑP0

gpP q,
lim

PÑP0

�
fpP q � gpP q� � lim

PÑP0

fpP q � lim
PÑP0

gpP q,
lim

PÑP0

�
fpP q gpP q� � lim

PÑP0

fpP q lim
PÑP0

gpP q,

lim
PÑP0

fpP q
gpP q �

lim
PÑP0

fpP q
lim

PÑP0

gpP q .

Tõestus. Tähistame

lim
PÑP0

fpP q �: α ja lim
PÑP0

gpP q �: β.

Olgu punktid Pn P DztP0u, n � 1, 2, . . . , sellised, et Pn ÝÝÝÑ
nÑ8

P0. Teoreemi 3.1

(funktsiooni piirväärtuse Heine kriteeriumi) põhjal piisab teoreemi tõestuseks näi-
data, et

fpPnq � gpPnq ÝÝÝÑ
nÑ8

α � β, fpPnq gpPnq ÝÝÝÑ
nÑ8

αβ ja
fpPnq
gpPnq ÝÝÝÑnÑ8

α

β

(siin viimane koonduvus peab aset leidma eeldusel, et β �� 0), mis kehtib arvjada
piirväärtuse vastavate omaduste põhjal, sest (jällegi teoreemi 3.1 põhjal)

fpPnq ÝÝÝÑ
nÑ8

α ja gpPnq ÝÝÝÑ
nÑ8

β.

Lause 3.4 (mitme muutuja funktsiooni piirväärtuse monotoonsus). Leidugu funkt-
sioonide f ja g määramispiirkonna D � Rm kuhjumispunktil P0 ümbrus U , mille
korral

fpP q ¤ gpP q iga P P pU XDqztP0u korral.
Kui eksisteerivad piirväärtused lim

PÑP0

fpP q ja lim
PÑP0

gpP q, siis

lim
PÑP0

fpP q ¤ lim
PÑP0

gpP q.

Tõestus. Eksisteerigu piirväärtused

lim
PÑP0

fpP q �: α ja lim
PÑP0

gpP q �: β.

Lause tõestuseks peame näitama, et α ¤ β. Selleks valime mingi punktiks P0 koon-
duva punktist P0 erinevate hulgaD punktide jada pPnq8n�1 (niisugune jada eksisteerib
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lause 2.4 põhjal, sest P0 on hulga D kuhjumispunkt). Kuna Pn ÝÝÝÑ
nÑ8

P0, siis leidub

indeks N P N nii, et
n ¥ N ùñ Pn P U .

Nüüd mis tahes n ¥ N korral Pn P pU XDqztP0u, seega
fpPnq ¤ gpPnq.

Kuna teoreemi 3.1 (funktsiooni piirväärtuse Heine kriteeriumi) põhjal

lim
nÑ8

fpPnq � α ja lim
nÑ8

gpPnq � β,

siis arvjada piirväärtuse monotoonsuse tõttu α ¤ β, nagu soovitud.

Lause 3.5 (mitme muutuja funktsiooni piirväärtuse sändvit²teoreem). Leidugu funkt-
sioonide f , g ja h määramispiirkonna D � Rm kuhjumispunktil P0 ümbrus U , mille
korral

fpP q ¤ gpP q ¤ hpP q iga P P pU XDqztP0u korral.
Kui eksisteerivad piirväärtused lim

PÑP0

fpP q ja lim
PÑP0

hpP q, kusjuures need piirväärtused

on võrdsed:
lim

PÑP0

fpP q � lim
PÑP0

hpP q �: c, (3.2)

siis eksisteerib ka piirväärtus lim
PÑP0

gpP q, kusjuures

lim
PÑP0

gpP q � c.

Tõestus. Eksisteerigu piirväärtused lim
PÑP0

fpP q ja lim
PÑP0

hpP q ning kehtigu võrdus

(3.2). Olgu pPnq8n�1 punktiks P0 koonduv punktist P0 erinevate määramispiirkonnaD
punktide jada (niisugune jada eksisteerib lause 2.4 põhjal, sest P0 on hulga D kuh-
jumispunkt). Veendumaks, et lim

PÑP0

gpP q � c, piisab teoreemi 3.1 (funktsiooni piir-

väärtuse Heine kriteeriumi) põhjal näidata, et

lim
nÑ8

gpPnq � c. (3.3)

Kuna Pn ÝÝÝÑ
nÑ8

P0, siis leidub indeks N P N nii, et

n ¥ N ùñ Pn P U .

Nüüd mis tahes n ¥ N korral Pn P pU XDqztP0u, seega
fpPnq ¤ gpPnq ¤ hpPnq.

Kuna (jällegi teoreemi 3.1 põhjal)

lim
nÑ8

fpPnq � lim
nÑ8

hpPnq � c,

siis arvjada piirväärtuse sändvit²teoreemi põhjal kehtib (3.3).
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Lause 3.6. Olgu P0 funktsioonide f ja g määramispiirkonna D � Rm kuhjumis-
punkt, kusjuures

(1) fpP q ÝÝÝÝÑ
PÑP0

0;

(2) funktsioon g on punkti P0 mingis ümbruses tõkestatud, s.t leiduvad punkti P0

ümbrus U ja arv M ¥ 0 nii, et

|gpP q| ¤M iga P P U XD korral.

Siis ka

fpP q gpP q ÝÝÝÝÑ
PÑP0

0.

Teisisõnu, lause 3.6 ütleb, et antud piirprotsessis hääbuva funktsiooni ja tõkesta-
tud funktsiooni korrutis on selles piirprotsessis hääbuv.

Lause 3.6 tõestus. Olgu pPnq8n�1 punktiks P0 koonduv punktist P0 erinevate
määramispiirkonna D punktide jada (niisugune jada eksisteerib lause 2.4 põhjal,
sest P0 on hulga D kuhjumispunkt). Veendumaks, et fpP q gpP q ÝÝÝÝÑ

PÑP0

0, piisab

teoreemi 3.1 (funktsiooni piirväärtuse Heine kriteeriumi) põhjal näidata, et

fpPnq gpPnq ÝÝÝÑ
nÑ8

0. (3.4)

Selleks märgime, et

� fpPnq ÝÝÝÑ
nÑ8

0 (see järeldub eeldusest (1) teoreemi 3.1 põhjal);

� jada
�
gpPnq

�8
n�1

on tõkestatud, sest kuna Pn ÝÝÝÑ
nÑ8

P0, siis leidub indeks N P N
nii, et

n ¥ N ùñ Pn P U ,

seega

|gpPnq| ¤M iga n ¥ N korral,

järelikult

|gpPnq| ¤ max
 |gpP1q|, . . . , |gpPNq|,M

(
iga n P N korral.

Kuna hääbuva arvjada ja tõkestatud arvjada korrutis on hääbuv arvjada, siis (3.4)
kehtib.
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3.4. Mitme muutuja funktsiooni pidevus

Olgu funktsioon u � fpP q � fpx1, . . . , xmq määratud hulgas D � Rm ning olgu
P0 � px01, . . . , x0mq P D.

De�nitsioon 3.7. Öeldakse, et funktsioon f on pidev punktis P0, kui iga reaalarvu
ε ¡ 0 korral leidub reaalarv δ ¡ 0 nii, et�

P P D, dpP, P0q   δ
�

ùñ |fpP q � fpP0q|   ε.

Paneme tähele, et

� funktsioon f on pidev igas tema määramispiirkonna D isoleeritud punktis (s.t.
igas niisuguses hulga D punktis, millel leidub ümbrus, mis ei sisalda ühtegi
sellest punktist erinevat hulga D punkti);

� kui P0 on määramispiirkonna D kuhjumispunkt, siis funktsiooni f pidevus
selles punktis tähendab, et

lim
PÑP0

fpP q � fpP0q.

Olgu ∆x1, . . . ,∆xm P R sellised, et P :� px01 �∆x1, . . . , x
0
m �∆xmq P D. Vahet

∆u :� ∆upP q :� fpP q � fpP0q � fpx01 �∆x1, . . . , x
0
m �∆xmq � fpx01, . . . , x0mq

nimetatakse funktsiooni f (täis)muuduks punktis P0, mis vastab argumentide x1, . . . , xm
muutudele ∆x1, . . . ,∆xm. Funktsiooni f pidevuse tingimuse selle funktsiooni mää-
ramispiirkonna kuhjumispunkti jaoks võime kirja panna ka järgneval nn. diferents-
kujul: kui P0 P D on funktsiooni u � fpP q määramispiirkonna kuhjumispunkt, siis
see funktsioon on pidev punktis P0 parajasti siis, kui

∆u ÝÝÝÝÝÝÝÝÝÝÑ
∆xiÑ0, i�1,...,m

0.

Järgnev teoreem on kiire järeldus teoreemist 3.1 (mitme muutuja funktsiooni
piirväärtuse Heine kriteeriumist).

Teoreem 3.7 (mitme muutuja funktsiooni pidevuse Heine kriteerium). Olgu funkt-
sioon f määratud hulgas D � Rm ning olgu P0 � px01, . . . , x0mq P D. Järgmised väited
on samaväärsed:

(i) funktsioon f on pidev punktis P0;

(ii)
�
Pn P D, n � 1, 2, . . . , Pn ÝÝÝÑ

nÑ8
P0

� ùñ fpPnq ÝÝÝÑ
nÑ8

fpP0q.
Teisisõnu, funktsioon f on pidev punktis P0 parajasti siis, kui iga punktiks P0 koon-
duva määramispiirkonna D punktide jada pPnq8n�1 korral koondub vastav funktsiooni
väärtuste jada

�
fpPnq

�8
n�1

funktsiooni väärtuseks fpP0q punktis P0.

De�nitsioon 3.8. Öeldakse, et funktsioon f on pidev, kui ta on pidev igas oma
määramispiirkonna punktis.

OlguH � D0 � D. Öeldakse, et funktsioon f on pidev hulgas D0, kui ahend f |D0

on pidev funktsioon.
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3.5. Piirväärtus protsessis }P } Ñ 8

De�nitsioon 3.9. Olgu P P Rm. Arvu

}P } :� d
�
P, p 0, . . . , 0loomoon

m arvu null

q�
(s.t. punkti P kaugust punktist p 0, . . . , 0loomoon

m arvu null

q) nimetatakse punkti P normiks.

De�nitsioon 3.10. Olgu funktsiooni f määramispiirkond D tõkestamata.
Me ütleme, et funktsiooni f piirväärtus protsessis }P } Ñ 8 on

� arv c P R, kui iga reaalarvu ε ¡ 0 korral leidub reaalarv D ¡ 0 nii, et�
P P D, }P } ¡ D

�
ùñ |fpP q � c|   ε;

� 8 (loetakse: lõpmatus), kui iga reaalarvu E ¡ 0 korral leidub reaalarv D ¡ 0
nii, et �

P P D, }P } ¡ D
�

ùñ fpP q ¡ E;

� �8 (loetakse: miinus lõpmatus), kui iga reaalarvu E ¡ 0 korral leidub reaalarv
D ¡ 0 nii, et �

P P D, }P } ¡ D
�

ùñ fpP q   �E.

Kui funktsiooni f piirväärtus protsessis }P } Ñ 8 on c (c P R Y t8,�8u), siis me
kirjutame

lim
}P }Ñ8

fpP q � c või fpP q ÝÝÝÝÑ
}P }Ñ8

c.

Kehtib teoreemi 3.1 (mitme muutuja funktsiooni piirväärtuse Heine kriteeriumi) järgnev ana-
loog.

Teoreem 3.8. Olgu funktsiooni f määramispiirkond ülalt tõkestamata ning olgu c P RYt�8,8u.
Järgmised väited on samaväärsed:

(i) fpP q ÝÝÝÝÝÑ
}P }Ñ8

c;

(ii)
�
Pn P D, n � 1, 2, . . . , }Pn} ÝÝÝÑ

nÑ8 8
�

ùñ fpPnq ÝÝÝÑ
nÑ8 c.

Toetudes teoreemile 3.8, on lihtne tõestada järelduse 3.2 analoog mitme muutuja funktsiooni piir-

väärtuse ühesusest protsessis }P } Ñ 8 ning samuti teoreemi 3.3 ja lausete 3.4�3.6 analoogid

piirprotsessi }P } Ñ 8 jaoks eeldusel, et funktsioonide f ja g (ning lauses 3.5 ka funktsiooni h)

ühine määramispiirkond D on ülalt tõkestamata.
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3.6. Piirväärtus mööda pidevat joont

Olgu funktsioon f määratud hulgas D � Rm, olgu P0 määramispiirkonna D kuh-
jumispunkt ning olgu Φ: T Ñ Rm (siin T � R on mingi intervall) pidev joon
ruumis Rm, mis läbib punkti P0 ning mis sisaldub määramispiirkonnas D, välja
arvatud, võib-olla, punkt P0, millelt me ei eelda kuulumist määramispiirkonda D.
Seejuures me eeldame, et leidub parajasti üks t0 P T nii, et P0 � Φpt0q.
De�nitsioon 3.11. Kui eksisteerib (lõplik või lõpmatu) piirväärtus

lim
tÑt0

f
�
Φptq�,

siis seda piirväärtust nimetame funktsiooni f piirväärtuseks punktis P0 (või argu-
mendi väärtuse lähenemisel punktile P0) mööda joont Φ,

Lause 3.9. Kui funktsioonil f eksisteerib oma määramispiirkonna D � Rm kuhju-
mispunktis P0 (lõplik või lõpmatu) piirväärtus

lim
PÑP0

fpP q �: c, (3.5)

siis c on ka funktsiooni f piirväärtus punktis P0 mööda mis tahes pidevat joont (mis
läbib punkti P0 ning mis sisaldub määramispiirkonnas D, välja arvatud, võib-olla,
punkt P0).

Tõestus. Eksisteerigu funktsioonil f punktis P0 (lõplik või lõpmatu) piirväärtus
(3.5), olgu punkti P0 sisaldav ning määramispiirkonnas D sisalduv (välja arvatud,
võib-olla, punkt P0) pidev joon antud parameetriliste võrranditega

x1 � ϕ1ptq, . . . . . . , xm � ϕmptq, t P T,

kus T � R on mingi intervall, ning olgu t0 P T (ainus) selline punkt, et

P0 �
�
ϕ1pt0q, . . . , ϕmpt0q

�
.

Peame näitama, et
lim
tÑt0

f
�
ϕ1ptq, . . . , ϕmptq

� � c. (3.6)

Olgu ptnq8n�1 mingi punktist t0 erinevate intervalli T punktide jada, mille korral
lim
nÑ8

tn � t0. Funktsiooni piirväärtuse Heine kriteeriumi põhjal piisab võrduseks

(3.6) näidata, et
lim
nÑ8

f
�
ϕ1ptnq, . . . , ϕmptnq

� � c

ehk, tähistades iga n P N korral

Pn :� �
ϕ1ptnq, . . . , ϕmptnq

�
,

piisab näidata, et
lim
nÑ8

fpPnq � c. (3.7)
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Funktsioonide ϕ1, . . . , ϕm pidevuse tõttu funktsiooni pidevuse Heine kriteeriumi põh-
jal

lim
nÑ8

ϕ1ptnq � ϕ1pt0q, . . . . . . , lim
nÑ8

ϕmptnq � ϕmpt0q;
s.t. jada pPnq8n�1 koondub punktiks P0 koordinaaditi, seega lause 2.1 põhjal lim

nÑ8
Pn �

P0 ning järelikult lause 3.1 (mitme muutuja funktsiooni piirväärtuse Heine kritee-
riumi) põhjal kehtib (3.7) (sest lim

PÑP0

fpP q � c).

Ülesanne 3.1. Tõestada lause 3.9 toetudes punkti P0 läbiva joone esitusele kujul Φ: T Ñ Rm,
kus T � R on mingi intervall (ja mitte selle joone esitusele parameetrilisel kujul nagu eelnevas
tõestuses), ning vahetult piirväärtuse de�nitsioonile (ja mitte piirväärtuse Heine kriteeriumile nagu
eelnevas tõestuses).

Näpunäide. Vaadelda eraldi juhtusid, kus c P R, c � 8 ja c � �8.
NB! Näitele 3.1
viidatakse näi-
tes 3.2.

Näide 3.1. Veendume, et kahe muutuja funktsiooni px, yq ÞÑ xy
x2�y2 piirväärtus punktis p0, 0q

lim
x,yÑ0

xy

x2 � y2
(3.8)

ei eksisteeri. Vaadeldava kahe muutuja funktsiooni piirväärtus punktis p0, 0q mööda joont y � x
(parameetri rollis on siin muutuja x) on

lim
x,yÑ0
y�x

xy

x2 � y2
� lim

xÑ0

x � x
x2 � x2

� 1

2
;

piirväärtus punktis p0, 0q mööda joont y � 2x (parameetri rollis on siin muutuja x) on

lim
x,yÑ0
y�2x

xy

x2 � y2
� lim

xÑ0

x � 2x
x2 � p2xq2 �

2

5
;

need piirväärtused on erinevad; järelikult lause 3.9 põhjal piirväärtus (3.8) ei eksisteeri.

3.7. Korduvad piirväärtused

Olgu kahe muutuja funktsioon u � fpx, yq määratud punkti px0, y0q P R2 mingis
ümbruses, välja arvatud, võib-olla, punktis px0, y0q endas. Eksisteerigu iga punkti x
korral koordinaadi x0 mingist ümbrusest (välja arvatud, võib-olla, punkti x0 enda
korral) lõplik piirväärtus

lim
yÑy0

fpx, yq �: gpxq.
Kui eksisteerib piirväärtus

lim
xÑx0

gpxq �: lim
xÑx0

lim
yÑy0

fpx, yq, (3.9)

siis seda piirväärtust nimetatakse korduvaks piirväärtuseks.
Analoogiliselt de�neeritakse korduv piirväärtus

lim
yÑy0

lim
xÑx0

fpx, yq (3.10)

(ning samuti ka korduvad piirväärtused rohkem kui kahe muutuja funktsioonide
jaoks).
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Üldiselt ei järeldu korduvate piirväärtuste (3.9) ja (3.10) olemasolust piirväärtuse

lim
x,yÑx0,y0

fpx, yq. (3.11)

olemasolu.
NB! See on Rei-
mersi ül.-kogu, II,
lk. 57, näide 2.3.8 Näide 3.2. Piirväärtus

lim
x,yÑ0

xy

x2 � y2

ei eksisteeri (vt. näidet 3.1); samas vastavad korduvad piirväärtused eksisteerivad: mis tahes x �� 0
korral

lim
yÑ0

xy

x2 � y2
� 0

x2
� 0

ning seega lim
xÑ0

lim
yÑ0

xy
x2�y2 � 0. Analoogiliselt saame, et ka lim

yÑ0
lim
xÑ0

xy
x2�y2 � 0.

Samuti ei järeldu piirväärtuse (3.11) olemasolust korduvate piirväärtuste (3.9) ja
(3.10) olemasolu.

NB! See on Rei-
mersi ül.-kogu, II,
lk. 57, näide 2.3.9

Näide 3.3. Piirväärtus
lim

x,yÑ0
y sin

1

x

on olemas, kuid üks vastavatest korduvatest piirväärtustest ei eksisteeri. Tõepoolest, minnes üle
polaarkoordinaatidele: x � r cosϕ, y � r sinϕ, on piirprotsess x, y Ñ 0 sama, mis piirprotsess
r Ñ 0; seega

lim
x,yÑ0

y sin
1

x
� lim

rÑ0
r sinϕ sin

1

r cosϕ
� 0,

sest hääbuva ja tõkestatud funktsiooni korrutis on hääbuv (märgime, et funktsioon pϕ, rq ÞÑ
sinϕ sin 1

r cosϕ on tõkestatud). Samuti mis tahes x �� 0 korral lim
yÑ0

y sin 1
x � 0, seega

lim
xÑ0

lim
yÑ0

y sin
1

x
� 0.

Samas mitte ühegi y �� 0 korral piirväärtus lim
xÑ0

y sin 1
x ei eksisteeri, seega ei eksisteeri ka korduv

piirväärtus lim
yÑ0

lim
xÑ0

y sin 1
x .

Lause 3.10. Olgu kahe muutuja funktsioon u � fpx, yq määratud punkti px0, y0q P R2

mingis ümbruses, välja arvatud, võib-olla, punktis px0, y0q endas, kusjuures eksistee-
rib (lõplik või lõpmatu) piirväärtus

lim
x,yÑx0,y0

fpx, yq �: c.

(a) Kui iga punkti x korral punkti x0 mingist ümbrusest (välja arvatud, võib-olla,
punkti x0 enda korral) eksisteerib lõplik piirväärtus

lim
yÑy0

fpx, yq �: gpxq, (3.12)

siis eksisteerib ka korduv piirväärtus lim
xÑx0

lim
yÑy0

fpx, yq, kusjuures

lim
xÑx0

lim
yÑy0

fpx, yq � lim
x,yÑx0,y0

fpx, yq � c.
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(b) Kui iga punkti y korral punkti y0 mingist ümbrusest (välja arvatud, võib-olla,
punkti y0 enda korral) eksisteerib lõplik piirväärtus

lim
xÑx0

fpx, yq,

siis eksisteerib ka korduv piirväärtus lim
yÑy0

lim
xÑx0

fpx, yq, kusjuures

lim
yÑy0

lim
xÑx0

fpx, yq � lim
x,yÑx0,y0

fpx, yq � c.

Tõestus. Tõestame ainult väite (a). (Väide (b) tõestatakse sümmeetriliselt.)
Olgu reaalarv δ ¡ 0 selline, et iga (punktist x0 erineva) punkti x P px0�δ, x0�δq

korral eksisteerib lõplik piirväärtus (3.12), ning olgu pxnq8n�1 punktiks x0 koonduv
punktist x0 erinevate vahemiku px0� δ, x0� δq punktide jada. Funktsiooni piirväär-
tuse Heine kriteeriumi põhjal piisab väite (a) tõestuseks näidata, et gpxnq ÝÝÝÑ

nÑ8
c.

Iga n P N korral, arvestades, et fpxn, yq ÝÝÝÑ
yÑy0

gpxnq, saame valida punkti yn nii,

et

|yn � y0|   1

n
ja

��fpxn, ynq � gpxnq
��   1

n
.

Kuna xn ÝÝÝÑ
nÑ8

x0 ja yn ÝÝÝÑ
nÑ8

y0, siis lause 2.1 põhjal pxn, ynq ÝÝÝÑ
nÑ8

px0, y0q
ruumis R2, seega funktsiooni piirväärtuse Heine kriteeriumi põhjal fpxn, ynq ÝÝÝÑ

nÑ8
c

ning järelikult

gpxnq �
�
gpxnq � fpxn, ynq

�� fpxn, ynq ÝÝÝÑ
nÑ8

c

(siin gpxnq � fpxn, ynq ÝÝÝÑ
nÑ8

0, sest |gpxnq � fpxn, ynq|   1
n
ÝÝÝÑ
nÑ8

0), nagu soovitud.
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põhiomadused

4.1. Pideva funktsiooni märgi säilivus

Teoreem 4.1. Olgu D � Rm ning olgu funktsioon f : D Ñ R pidev punktis P0 P D.
Kui fpP0q �� 0, siis leidub δ ¡ 0 nii, et

iga P P UδpP0q XD korral fpP q �� 0 ja sgn fpP q � sgn fpP0q

(s.t. leidub punkti P0 ümbrus, milles selle funktsiooni väärtusted erinevad nullist
ning on sama märgiga, mis fpP0q).
Tõestus. Tähistame α :� fpP0q �� 0. Funktsiooni f pidevuse tõttu punktis P0

leidub δ ¡ 0 nii, et�
P P D, dpP, P0q   δ

�
ùñ |fpP q � fpP0q|   |α|

2
,

s.t. iga P P UδpP0q XD korral

fpP0q � |α|
2
  fpP q   fpP0q � |α|

2
.

Niisiis, kui fpP0q ¡ 0, siis iga P P UδpP0q XD korral

fpP q ¡ fpP0q � |α|
2
� fpP0q � fpP0q

2
� fpP0q

2
¡ 0;

kui aga fpP0q   0, siis iga P P UδpP0q XD korral

fpP q   fpP0q � |α|
2
� fpP0q � �fpP0q

2
� fpP0q

2
  0.

4.2. Aritmeetilised tehted pidevate funktsioonidega

Järgnev teoreem on kiire järeldus funktsiooni pidevuse de�nitsioonist ja teoree-
mist 3.3.

Teoreem 4.2. Olgu D � Rm ning olgu funktsioonid f : D Ñ R ja g : D Ñ R pidevad
punktis P0 P D. Siis ka nende funktsioonide summa f � g, vahe f � g, korrutis fg
ning, kui gpP0q �� 0, siis ka jagatis f{g on pidevad punktis P0.

Järeldus 4.3. Olgu f ja g pidevad funktsioonid, millel on ühine määramispiirkond.
Siis ka nende funktsioonide summa f � g, vahe f � g, korrutis fg ning, kui funkt-
sioon g pole üheski määramispiirkonna punktis 0, siis ka jagatis f{g on pidevad
funktsioonid.

36
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4.3. Pidevate funktsioonide liitfunktsiooni pidevus

Olgu l P N ning olgu hulgas ∆ � Rl määratud funktsioonid

x1 � ϕ1pQq � ϕ1pt1, . . . , tlq,
x2 � ϕ2pQq � ϕ2pt1, . . . , tlq,
. . . . . . . . . . . . . . . . . . . . . . . . . . . ,

xm � ϕmpQq � ϕmpt1, . . . , tlq.
Olgu hulk D � Rm selline, et

D �
!�
ϕ1pQq, . . . , ϕmpQq

�
: Q P ∆

)
,

ning olgu hulgas D määratud funktsioon

u � fpP q � fpx1, . . . , xmq.
Siis on hulgas ∆ määratud funktsioon

u � f
�
ϕ1pQq, . . . , ϕmpQq

� � f
�
ϕ1pt1, . . . , tlq, . . . , ϕmpt1, . . . , tlq

�
. (4.1)

Ülaltoodud moel saadud (täpsemalt, kahe või enama funktsiooni järjest rakendamise
teel saadud) funktsioone nimetatakse liitfunktsioonideks.

Teoreem 4.4. Olgu funktsioonid ϕ1, . . . , ϕm pidevad punktis Q0 P ∆ ning olgu funkt-
sioon f pidev punktis

P0 �
�
ϕ1pQ0q, . . . , ϕmpQ0q

�
.

Siis ka liitfunktsioon (4.1) on pidev punktis Q0.

Tõestus. Olgu pQnq8n�1 selline hulga ∆ punktide jada, et Qn ÝÝÝÑ
nÑ8

Q0. Teoree-

mi 3.7 (pidevuse Heine kriteeriumi) põhjal piisab liitfunktsiooni (4.1) pidevuseks
punktis Q0 näidata, et

f
�
ϕ1pQnq, . . . , ϕmpQnq

� ÝÝÝÑ
nÑ8

f
�
ϕ1pQ0q, . . . , ϕmpQ0q

�
ehk, tähistades iga n P N korral

Pn :� �
ϕ1pQnq, . . . , ϕmpQnq

�
,

piisab näidata, et
fpPnq ÝÝÝÑ

nÑ8
fpP0q. (4.2)

Funktsioonide ϕ1, . . . , ϕm pidevuse tõttu punktis Q0 teoreemi 3.7 põhjal

ϕ1pQnq ÝÝÝÑ
nÑ8

ϕ1pQ0q, . . . . . . , ϕmpQnq ÝÝÝÑ
nÑ8

ϕmpQ0q;

s.t. jada pPnq8n�1 koondub punktiks P0 koordinaaditi, seega lause 2.1 põhjal Pn ÝÝÝÑ
nÑ8

P0

ning järelikult (jällegi teoreemi 3.7 põhjal) funktsiooni f pidevuse tõttu punktis P0

kehtib (4.2).
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4.4. Mitme muutuja elementaarfunktsioonid

De�nitsioon 4.1. Olgu D � Rm. Funktsioone D Ñ R, mis on saadud (hulga D
punktide koordinaate tähistavatest) m sõltumatust muutujast lõpliku arvu aritmee-
tiliste tehete, ühe muutuja elementaarfunktsioonide ja liifunktsiooni moodustamise
operatsioonide rakendamise teel, nimetatakse m muutuja elementaarfunktsiooni-
deks.

Kui m ¥ 2, siis m muutuja elementaarfunktsioone nimetatakse mitme muutuja
elementaarfunktsioonideks.

Järgneva teoreemi võtame käesolevas kursuses teadmiseks ilma seda tõestamata.

Teoreem 4.5. Kõik mitme muutuja elementaarfunktsioonid on pidevad.

Teoreemi 4.5 saab rakendada elementaarfunktsiooni piirväärtuse leidmisel: kui
f on mitme muutuja elementaarfunktsioon ning P0 on selle funktsiooni määramis-
piirkonna punkt, mis on ühtlasi selle määramispiirkonna kuhjumispunkt, siis teoree-
mi 4.5 põhjal

lim
PÑP0

fpP q � fpP0q.

4.5. Sidusas hulgas pideva funktsiooni vahepealsed väärtused

Teoreem 4.6 (Bolzano�Cauchy teoreem). Olgu funktsioon f pidev sidusas hulgas
D � Rm, olgu A,B P D ning rahuldagu reaalarv c tingimust

fpAq ¤ c ¤ fpBq (või fpBq ¤ c ¤ fpAq, kui fpBq   fpAq).

Siis mis tahes punkte A ja B ühendaval pideval kaarel, mis sisaldub tervikuna hul-
gas D, leidub punkt C nii, et fpCq � c.

Tõestus. Olgu tervikuna hulgas D sisalduv punkte A ja B ühendav kaar antud
parameetriliste võrranditega

x1 � ϕ1ptq, . . . , xm � ϕmptq, t P rα, βs,

kus ϕ1, . . . , ϕm on lõigus rα, βs pidevad funktsioonid ning

A � �
ϕ1pαq, . . . , ϕmpαq

�
ja B � �

ϕ1pβq, . . . , ϕmpβq
�
.

Siis u : rα, βs Q t ÞÑ f
�
ϕ1ptq, . . . , ϕmptq

� P R on lõigus rα, βs pidev funktsioon (sest
ta on pidevate funktsioonide liitfunktsioon), kusjuures upαq � fpAq ja upβq �
fpBq; järelikult Bolzano�Cauchy teoreemi põhjal lõigus pideva funktsiooni vahe-
pealsetest väärtustest leidub t0 P rα, βs nii, et upt0q � c ehk, teisisõnu, tähistades
C :� �

ϕ1pt0q, . . . , ϕmpt0q
�
,

fpCq � f
�
ϕ1pt0q, . . . , ϕmpt0q

� � upt0q � c.
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4.6. Kinnises tõkestatud hulgas pideva funktsiooni tõkestatus

De�nitsioon 4.2. Olgu D � Rm ning olgu f : D Ñ R. Öeldakse, et funktsioon f
on tõkestatud, kui tema väärtuste hulk tfpP q : P P Du on tõkestatud, s.t. leiduvad
arvud α, β P R nii, et α ¤ fpP q ¤ β iga P P D korral.

NB! Kas Weierst-
rassi teoreemidele
ikka viidatakse
kui �esimesele� ja
�teisele�? Jah, nii
[F] kui ka [IP]
teevad nii!

Teoreem 4.7 (Weierstrassi esimene teoreem). Tõkestatud kinnises hulgas pidev
funktsioon on tõkestatud selles hulgas.

Tõestus. Olgu funktsiooon f pidev tõkestatud kinnises hulgas D � Rm. Oletame
vastuväiteliselt, et funktsioon f ei ole tõkestatud hulgas D. Siis iga n P N korral
leidub punkt Pn P D nii, et

|fpPnq| ¡ n.

Jada pPnq8n�1 on tõkestatud (sest tema elemendid asuvad tõkestatud hulgas D), järe-
likult Bolzano�Weierstrassi teoreemi 2.5 põhjal leidub tal koonduv osajada pPknq8n�1.
Tähistame P0 :� lim

nÑ8
Pkn ; siis hulga D kinnisuse tõttu lause 2.3 põhjal P0 P D. Ku-

na funktsioon D Q P ÞÑ |fpP q| P R on pidev (sest ta on pidevate funktsioonide
D Q P ÞÑ fpP q P R ja R Q u ÞÑ |u| P R liitfunktsioon), siis teoreemi 3.7 (funkt-
siooni pidevuse Heine kriteeriumi) põhjal |fpPknq| ÝÝÝÑ

nÑ8
|fpP0q|. Teiselt poolt, kuna

punktid Pkn rahuldavad tingimust

|fpPknq| ¡ kn ÝÝÝÑ
nÑ8

8,

siis |fpPknq| ÝÝÝÑ
nÑ8

8. Saadud vastuolu tõestab teoreemi.

4.7. Kinnises tõkestatud hulgas pideva funktsiooni rajad

Teoreem 4.8 (Weierstrassi teine teoreem). Tõkestatud kinnises hulgas pidev funkt-
sioon saavutab selles hulgas oma väärtuste hulga rajad. Teisisõnu, kui funktsiooon f
on pidev tõkestatud kinnises hulgas D � Rm, siis leiduvad punktid P0, Q0 P D nii, et

fpP0q � sup
PPD

fpP q ja fpQ0q � inf
PPD

fpP q.

Esitame Weierstrassi teisele teoreemile 4.8 kaks tõestust, millest esimene toetub
Bolzano�Weierstrassi teoreemile 2.5 ning teine Weierstrassi esimesele teoreemile 4.7.

Weierstrassi teise teoreemi 4.8 esimene tõestus. Olgu funktsiooon f pi-
dev tõkestatud kinnises hulgas D � Rm. Tähistame

M :� sup
PPD

fpP q ja m :� inf
PPD

fpP q

ning valime iga n P N korral punkti Pn P D nii, et

fpPnq ¡M � 1

n
.
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Siis jada pPnq8n�1 on tõkestatud (sest tema elemendid asuvad tõkestatud hulgas D),
järelikult Bolzano�Weierstrassi teoreemi 2.5 põhjal leidub tal koonduv osajada pPknq8n�1.
Tähistame P0 :� lim

nÑ8
Pkn ; siis hulga D kinnisuse tõttu lause 2.3 põhjal P0 P D. Teo-

reemi 3.7 (funktsiooni pidevuse Heine kriteeriumi) põhjal fpPknq ÝÝÝÑ
nÑ8

fpP0q. Kuna
punktid Pkn rahuldavad tingimusi

M ¥ fpPknq ¡M � 1

kn
ÝÝÝÑ
nÑ8

M,

siis arvjada piirväärtuse sändvit²teoreemi põhjal

fpP0q � lim
nÑ8

fpPknq �M.

Tõestame nüüd sellise punkti Q0 P D olemasolu, mille korral fpQ0q � inf
PPD

fpP q.
Selleks märgime, et ka funktsioon �f on pidev hulgas D, järelikult eelnevalt tõestatu
põhjal leidub punkt Q0 P D nii, et

�fpQ0q � sup
PPD

��fpP q� � � inf
PPD

fpP q,

aga nüüd
fpQ0q � inf

PPD
fpP q.

Weierstrassi teise teoreemi 4.8 teine tõestus. Olgu funktsiooon f pidev
tõkestatud kinnises hulgas D � Rm. Tähistame M :� sup

PPD
fpP q (see supreemum on

Weierstrassi esimese teoreemi 4.7 põhjal lõplik) ja oletame vastuväiteliselt, et

fpP q  M iga P P D korral. (4.3)

Siis funktsioon

g : D Q P ÞÝÑ 1

M � fpP q P R

on pidev (sest ta on saadud pidevatest funktsioonidest aritmeetiliste tehete abil;
juhime veel tähelepanu, et eelduse (4.3) põhjal M � fpP q �� 0 hulgas D); seega
Weierstrassi esimese teoreemi 4.7 põhjal on funktsioon g tõkestatud. Teiselt poolt,
valides hulga D punktide jada pPnq8n�1, mille korral fpPnq ÝÝÝÑ

nÑ8
M , saame, et

M � fpPnq ÝÝÝÑ
nÑ8

0� ning seega gpPnq ÝÝÝÑ
nÑ8

8, mis on vastuolus funktsiooni g

tõkestatusega.

Sellise punkti Q0 P D olemasolu, mille korral fpQ0q � inf
PPD

fpP q, saab näidata

täpselt samamoodi nagu eelmises tõestuses.

Märkus 4.1. Tingimust fpQ0q � inf
PPD

fpP q �: m rahuldava punkti Q0 P D olemas-

olu teoreemi 4.8 tõestuses võib näidata ka analoogiliselt punkti P0 olemasolu tões-
tusele, valides analoogiliselt esimese tõestusega punktidQn P D nii, et fpQnq   m� 1

n

(punktiks Q0 sobib sellisel juhul jada pQnq mis tahes koonduva osajada piirväärtus),
või, analoogiliselt teise tõestusega, oletades vastuväiteliselt, et fpP q ¡ m iga P P D
korral ja vaadeldes sel juhul funktsiooni h : D Q P ÞÝÑ 1

fpP q�m
P R.
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4.8. Kinnises tõkestatud hulgas pideva funktsiooni ühtlane
pidevus

De�nitsioon 4.3. Olgu funktsioon f määratud hulgas D � Rm.
Öeldakse, et funktsioon f on hulgas D ühtlaselt pidev, kui iga reaalarvu ε ¡ 0

korral leidub reaalarv δ ¡ 0 nii, et�
P,Q P D, dpP,Qq   δ

�
ùñ |fpP q � fpQq|   ε.

Vahetult de�nitsioonist on ilmne, et hulgas D ühtlaselt pidev funktsioon on pidev
selles hulgas. Vastupidine väide üldjuhul ei kehti. Vastavasisulisi kontranäiteid on
lihtne leida juba vahemikus määratud pidevate ühe muutuja funktsioonide kohta �
näiteks funktsioon y � 1

x
on vahemikus x P p0, 1q pidev, kuid mitte ühtlaselt pidev.

Teoreem 4.9 (Cantori teoreem). Tõkestatud kinnises hulgas pidev funktsioon on
selles hulgas ühtlaselt pidev.

Tõestus. Olgu funktsioon f pidev tõkestatud kinnises hulgas D � Rm. Oletame
vastuväiteliselt, et f ei ole ühtlaselt pidev selles hulgas. Siis leidub reaalarv ε ¡ 0
selliselt, et iga indeksi n P N korral leiduvad punktid Pn, Qn P D, mille korral

dpPn, Qnq   1

n
, kuid

��fpPnq � fpQnq
�� ¥ ε.

Jada pPnq8n�1 on tõkestatud (sest tema elemendid asuvad tõkestatud hulgas D), järe-
likult Bolzano�Weierstrassi teoreemi 2.5 põhjal leidub tal koonduv osajada pPknq8n�1.
Tähistame P0 :� lim

nÑ8
Pkn ; siis ka lim

nÑ8
Qkn � P0, sest

0 ¤ dpQkn , P0q ¤ dpQkn , Pknq � dpPkn , P0q ¤ 1

kn
� dpPkn , P0q ÝÝÝÑ

nÑ8
0

ning arvjada piirväärtuse sändvit²teoreemi põhjal seega ka dpQkn , P0q ÝÝÝÑ
nÑ8

0. Hul-

ga D kinnisuse tõttu lause 2.3 põhjal P0 P D. Kuna funktsioon f on pidev hulgas D,
siis teoreemi 3.7 (funktsiooni pidevuse Heine kriteeriumi) põhjal fpPknq ÝÝÝÑ

nÑ8
fpP0q

ja fpQknq ÝÝÝÑ
nÑ8

fpP0q. Nüüd ühel poolt

lim
nÑ8

��fpPknq � fpQknq
�� � ��fpP0q � fpQ0q

�� � 0, (4.4)

teiselt poolt ��fpPknq � fpQknq
�� ¥ ε iga n P N korral,

mis on vastuolus tingimusega (4.4).



42 I. Mitme muutuja funktsiooni piirväärtus ja pidevus



II peatükk.

Mitme muutuja funktsioonide

diferentsiaalarvutus

� 1. Mitme muutuja funktsiooni osatuletised ja
diferentseeruvus

1.1. Mitme muutuja funktsiooni osatuletised

Olgu funktsioon u � fpP q � fpx1, . . . , xmqmääratud punkti P0 � px01, . . . , x0mq P Rm

mingis ümbruses.

De�nitsioon 1.1. Olgu i P t1, . . . ,mu. Kui eksisteerib (lõplik või lõpmatu) piir-
väärtus

lim
∆xiÑ0

fpx01, . . . , x0i�1, x
0
i �∆xi, x

0
i�1, . . . , x

0
mq � fpx01, . . . , x0mq

∆xi
,

siis seda piirväärtust nimetatakse funktsiooni f (esimest järku ehk lihtsalt esime-
seks) osatuletiseks argumendi xi järgi punktis P0 ja tähistatakse sümbolitega

Bf
Bxi pP0q, Bu

Bxi pP0q, f 1xi
pP0q, u1xi

pP0q, fxi
pP0q, uxi

pP0q (1.1)

või

Bf
Bxi px

0
1, . . . , x

0
mq,

Bu
Bxi px

0
1, . . . , x

0
mq, f 1xi

px01, . . . , x0mq, u1xi
px01, . . . , x0mq,

fxi
px01, . . . , x0mq, uxi

px01, . . . , x0mq.
Kui mingi hulga D � Rm igas punktis P eksisteerib lõplik osatuletis f 1xi

pP q, siis
hulgas D on määratud (esimest järku) osatuletisfunktsioon (argumendi xi järgi)

f 1xi
: D Q P ÞÝÑ f 1xi

pP q P R,

mida nimetatakse ka lihtsalt funktsiooni f (esimest järku ehk lihtsalt esimeseks)
osatuletiseks argumendi xi järgi. Seda osatuletist (s.t. osatuletisfunktsiooni) tähis-
tatakse sümbolitega

Bf
Bxi ,

Bu
Bxi , f 1xi

, u1xi
, fxi

, uxi
. (1.2)

43
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Tähistused (1.1) on tähistustega (1.2) hästi kooskõlas: (lõplik) osatuletis antud punk-
tis on osatuletisfunktsiooni väärtus selles punktis.

Märkus 1.1. Märkimaks funktsiooni u � fpP q � fpx1, . . . , xmq esimest järku osa-
tuletisfunktsiooni muutuja xi järgi, kasutatakse tähistuste (1.2) kõrval sageli ka tä-
histusi

B
Bxi f ja

B
Bxi u.

Märkus 1.2. Vahetult osatuletise de�nitsioonist näeme, et ühe muutuja funktsiooni

y � fpxq osatuletis muutuja x järgi on sama, mis selle funktsiooni tuletis:
Bf
Bx �

df

dx
(ehk, alternatiivsetes tähistustes, f 1x � f 1).

Märkus 1.3. Vahetult osatuletise de�nitsioonist järeldub, etmmuutuja funktsiooni
u � fpP q � fpx1, . . . , xmq osatuletis punktis P0 � px01, . . . , x0mq muutuja xi järgi on
ühe muutuja funktsiooni

gpxq � fpx01, . . . , x0i�1, x, x
0
i�1, . . . , x

0
mq

tuletis punktis x0i :
f 1xi
pP0q � g1px0i q.

See tähelepanek on kasulik mitme muutuja funktsiooni osatuletiste arvutamisel: lei-
des funktsiooni u � fpx1, . . . , xmq osatuletist muutuja xi järgi, loeme ülejäänud
muutujad x1, . . . , xi�1, xi�1, . . . , xm �kseeritud konstantideks ning leiame osatule-
tise u1xi

nagu ühe muutuja xi funktsiooni tuletise.

Näide 1.1. Leiame funktsiooni u � x4 sin3
�
x7y � 5y11

�
osatuletised.

Tõlgendades muutujat y �kseeritud konstandina ja leides tuletise funktsioonist u kui ühe
muutuja x funktsioonist, saame

u1x �
�
x4
�1
x
sin3

�
x7y � 5y11

�� x4
�
sin3

�
x7y � 5y11

�	1
x

� 4x3 sin3
�
x7y � 5y11

�� x4 � 3 sin2�x7y � 5y11
�
cos

�
x7y � 5y11

� � 7x6y

� x3 sin2
�
x7y � 5y11

� � �4 sin�x7y � 5y11
�� 21x7y cos

�
x7y � 5y11

�	
.

Tõlegendades muutujat x �kseeritud konstandina ja leides tuletise funktsioonist u kui ühe muu-
tuja y funktsioonist, saame

u1y � x4 � 3 sin2�x7y � 5y11
�
cos

�
x7y � 5y11

� � �x7 � 55y10
�

� 3x4
�
x7 � 55y10

�
sin2

�
x7y � 5y11

�
cos

�
x7y � 5y11

�
.

Märkus 1.4. Ühe muutuja funktsiooni puhul järeldub lõpliku tuletise olemasolust
mingis punktis selle funktsiooni pidevus selles punktis. Mitme muutuja funktsiooni
puhul analoogiline väide ei kehti: m muutuja funktsiooni u � fpP q � fpx1, . . . , xmq
puhul ei järeldu esimest järku osatuletiste f 1x1

pP0q, . . . , f 1xm
pP0q olemasolust ja lõp-

likkusest funktsiooni f pidevus punktis P0.
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NB! See on Rei-
mersi ül.-kogu, II,
lk. 67, ül. 447 Näide 1.2. Näites I.3.2 veendusime, et piirväärtus lim

x,yÑ0

xy

x2 � y2
ei eksisteeri; seega funktsioon

fpx, yq �
$&%

xy

x2 � y2
, kui x2 � y2 �� 0,

0, kui x2 � y2 � 0,

ei ole pidev punktis p0, 0q. Samas leiduvad sellel funktsiooni punktis p0, 0q lõplikud osatuletised:

Bf
Bx p0, 0q � lim

hÑ0

fp0� h, 0q � fp0, 0q
h

� lim
hÑ0

h 0

h2 � 02
� 0

h
� 0

ning, sümmeetriliselt,
Bf
By p0, 0q � 0.

1.2. Mitme muutuja funktsiooni diferentseeruvus

Olgu funktsioon u � fpP q � fpx1, . . . , xmqmääratud punkti P0 � px01, . . . , x0mq P Rm

mingis ümbruses U . Kõneldes funktsiooni f argumentide x1, . . . , xm muutudest
∆x1, . . . ,∆xm punktis P0, eeldame edaspidi alati, kasutades tähistusi

∆P :� p∆x1, . . . ,∆xmq ja P0 �∆P :� px01 �∆x1, . . . , x
0
m �∆xmq

(juhime tähelepanu, et viimane tähistus on kooskõlas ruumi Rm vektorruumistruk-
tuuriga), et P :� P0 �∆P P U .

Tähistame
ρ :�

b
∆x21 � � � � �∆x2m � dpP, P0q.

Vahet NB! Tähistust
∆u kasutatakse
teoreemi 1.3
tõestuses.

∆u :� fpP q � fpP0q � fpP0 �∆P q � fpP0q
� fpx01 �∆x1, . . . , x

0
m �∆xmq � fpx01, . . . , x0mq,

(1.3)

nimetatakse funktsiooni f muuduks punktis P0, mis vastab argumentide x1, . . . , xm
muutudele ∆x1, . . . ,∆xm.

De�nitsioon 1.2. Öeldakse, et funktsioon u � fpP q � fpx1, . . . , xmq on diferent-
seeruv punktis P0 � px01, . . . , x0mq, kui leiduvad arvud A1, . . . , Am P R selliselt, et
selle funktsiooni muut punktis P0, mis vastab argumentide x1, . . . , xm muutudele
∆x1, . . . ,∆xm, rahuldab tingimust

fpP0�∆P q� fpP0q� pA1∆x1� � � ��Am ∆xmq � opρq protsessis ρÑ 0, (1.4)

s.t.

lim
ρÑ0

fpP0 �∆P q � fpP0q � pA1∆x1 � � � � � Am ∆xmq
ρ

� 0.

Allpool märkuses 1.5 veendume, et m muutuja funktsiooni diferentseeruvuse
de�nitsiooni 1.2 juht m � 1 on kooskõlas kursuses �Ühe muutuja matemaatiline
analüüs� antud ühe muutuja funktsiooni diferentseeruvuse de�nitsiooniga. Eelnevalt
on aga otstarbekas m muutuja funktsiooni diferentseeruvuse mõistet veidi uurida.

Järgnev teoreem annab kaks funktsiooni diferentseeruvusega samaväärset tingi-
must, mida sageli kasutatakse ka diferentseeruvuse de�nitsioonina.
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Teoreem 1.1. Olgu funktsioon u � fpP q � fpx1, . . . , xmq määratud punkti P0 �
px01, . . . , x0mq P Rm mingis ümbruses. Järgmised väited on samaväärsed:

(i) funktsioon f on diferentseeruv punktis P0;

(ii) leiduvad arvud A1, . . . , Am P R selliselt, et funktsiooni f muut (1.3) esitub
kujul

fpP0 �∆P q � fpP0q � A1∆x1 � � � � � Am∆xm � α, (1.5)

kus funktsioon α � αp∆P q � αp∆x1, . . . ,∆xmq rahuldab tingimust α � opρq
protsessis ρÑ 0;

(iii) leiduvad arvud A1, . . . , Am P R selliselt, et funktsiooni f muut (1.3) esitub
kujul

fpP0�∆P q�fpP0q � A1∆x1�� � ��Am ∆xm�α1∆x1�� � ��αm ∆xm, (1.6)

kus funktsioonid αi � αip∆P q � αip∆x1, . . . ,∆xmq rahuldavad tingimust
αi ÝÝÑ

ρÑ0
0, i � 1, . . . ,m.

Teoreem 1.1 on vahetu järeldus järgnevast lemmast, mida me kasutame ka all-
pool teoreemide 1.3 ja 1.4 tõestamisel. See lemma ütleb, et de�nitsiooni 1.2 tingimusi
rahuldavad arvukomplektid A1, . . . , Am, teoreemi 1.1 väite (ii) tingimusi rahuldavad
arvukomplektid A1, . . . , Am ning teoreemi 1.1 väite (iii) tingimusi rahuldavad arvu-
komplektid A1, . . . , Am on täpselt ühed ja samad. Veelgi enam, teoreemis 1.3 tõesta-
me, et kui funktsioon u � fpP q � fpx1, . . . , xmq on diferentseeruv punktis P0 P Rm,
siis tal eksisteerivad selles punktis lõplikud esimest järku osatuletised kõigi argumen-
tide x1, . . . , xm järgi, kusjuures ainus ülalloetletud tingimusi rahuldav arvukomplekt
A1, . . . , Am on

A1 � Bf
Bx1 pP0q, . . . . . . , Am � Bf

Bxm pP0q.

Lemma 1.2. Olgu funktsioon u � fpP q � fpx1, . . . , xmq määratud punkti P0 �
px01, . . . , x0mq P Rm mingis ümbruses ning olgu A1, . . . , Am P R. Järgmised väited on
samaväärsed:

(i) funktsiooni f muut (1.3) rahuldab tingimust (1.4);

(ii) funktsiooni f muut (1.3) esitub kujul (1.5), kus funktsioon α � αp∆P q �
αp∆x1, . . . ,∆xmq rahuldab tingimust α � opρq protsessis ρÑ 0;

(iii) funktsiooni f muut (1.3) esitub kujul (1.6), kus funktsioonid αi � αip∆P q �
αip∆x1, . . . ,∆xmq rahuldavad tingimust αi ÝÝÑ

ρÑ0
0, i � 1, . . . ,m.

Tõestus. (i)ñ(ii) on ilmne, kui de�neerida

α :� fpP0 �∆P q � fpP0q � pA1∆x1 � � � � � Am ∆xmq.

(ii)ñ(i) on samuti ilmne.
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(ii)ñ(iii). Kehtigu (ii). Siis

fpP0 �∆P q � fpP0q �
�
A1∆x1 � � � � � Am∆xm

�
� α

∆x21 � � � � �∆x2m
ρ2

� α

ρ

∆x1
ρ

∆x1 � � � � � α

ρ

∆xm
ρ

∆xm

� α1∆x1 � � � � � αm ∆xm,

kus αi � α

ρ

∆xi
ρ

, i � 1, . . . ,m. Kuna

|αi| ¤
����αρ

���� ÝÝÑρÑ0
0, i � 1, . . . ,m,

siis αi ÝÝÑ
ρÑ0

0, i � 1, . . . ,m. Seega kehtib (iii).

(iii)ñ(ii). Kehtigu (iii). Siis kehtib valem (1.5), kus

α � α1∆x1 � � � � � αm ∆xm;

seejuures α � opρq protsessis ρÑ 0, sest����αρ
���� � ����α1

∆x1
ρ

� � � � � αm
∆xm
ρ

���� ¤ |α1| |∆x1|
ρ

� � � � � |αm| |∆xm|
ρ

¤ |α1| � � � � � |αm| ÝÝÑ
ρÑ0

0.

Seega (ii) kehtib.

Järgnev teoreem ütleb, et funktsiooni diferentseeruvusest antud punktis järeldub
selle funktsiooni kõikvõimalike esimest järku osatuletiste olemasolu ja lõplikkus selles
punktis.

Teoreem 1.3. Olgu funktsioon u � fpP q � fpx1, . . . , xmq diferentseeruv punk-
tis P0 � px01, . . . , x0mq P Rm. Siis funktsioonil f eksisteerivad punktis P0 lõpli-
kud esimest järku osatuletised kõikide argumentide järgi. Seejuures ainus reaalar-
vukomplekt A1, . . . , Am, mis rahuldab (m muutuja funktsiooni diferentseeruvuse) de-
�nitsiooni 1.2 tingimusi (ning lemma 1.2 põhjal seega ka ainus reaalarvukomplekt
A1, . . . , Am, mis rahuldab teoreemi 1.1 väite (ii) tingimusi, ning ainus reaalarvu-
komplekt A1, . . . , Am, mis rahuldab teoreemi 1.1 väite (iii) tingimusi), on

A1 � Bf
Bx1 pP0q, . . . . . . , Am � Bf

Bxm pP0q.

Tõestus. Teoreemi 1.1 samaväärsuse (i)ô(iii) põhjal leiduvad arvud A1, . . . , Am P
R nii, et funktsiooni f muut ∆u punktis P0, mis vastab argumentide x1, . . . , xm
muutudele ∆x1, . . .∆xm, esitub kujul

∆u � A1∆x1 � � � � � Am ∆xm � α1∆x1 � � � � � αm ∆xm, (1.7)
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kus funktsioonid αi � αip∆x1, . . . ,∆xmq rahuldavad tingimust

αip∆x1, . . . ,∆xmq ÝÝÝÝÝÝÝÝÝÑ
∆x1,...,∆xmÑ0

0, i � 1, . . . ,m.

Fikseerime vabalt j P t1, . . . ,mu. Tähistades
∆xj

u :� fpx01, . . . , x0j�1, x
0
j �∆xj, x

0
j�1, . . . , x

0
mq � fpx01, . . . , x0mq,

piisab teoreemi tõestuseks näidata, et

lim
∆xjÑ0

∆xj
u

∆xj
� Aj

(sest osatuletis
Bf
Bxj pP0q on de�neeritud kui selles valemis esinev piirväärtus ning

lemma 1.2 põhjal rahuldavad de�nitsiooni 1.2 tingimusi, teoreemi 1.1 väite (ii) tin-
gimusi ning teoreemi 1.1 väite (iii) tingimusi täpselt ühed ja samad arvukomplektid
A1, . . . , Am).

Kui ∆x1 � � � � � ∆xj�1 � ∆xj�1 � � � � � ∆xm � 0, siis ∆xj
u � ∆u, seega

valemi (1.7) põhjal

∆xj
u � ∆u � Aj ∆xj � αjp0, . . . , 0,∆xj, 0, . . . , 0q∆xj

ning järelikult

∆xj
u

∆xj
� Aj � αjp0, . . . , 0,∆xj, 0, . . . , 0q ÝÝÝÝÑ

∆xjÑ0
Aj,

nagu soovitud.

Teoreem 1.4. Olgu funktsioon u � fpP q � fpx1, . . . , xmq määratud punkti P0 �
px01, . . . , x0mq P Rm mingis ümbruses. Järgmised väited on samaväärsed:

(i) funktsioon f on diferentseeruv punktis P0;

(ii) funktsioonil f eksisteerivad punktis P0 kõik lõplikud esimest järku osatuletised
Bf
Bx1 pP0q, . . . , BfBxm pP0q, kusjuures selle funktsiooni muut (1.3) punktis P0 rahul-

dab tingimust

fpP0 �∆P q � fpP0q �
� Bf
Bx1 pP0q∆x1 � � � � � Bf

Bxm pP0q∆xm


� opρq

protsessis ρÑ 0;

(1.8)

(iii) funktsioonil f eksisteerivad punktis P0 kõik lõplikud esimest järku osatuletised
Bf
Bx1 pP0q, . . . , BfBxm pP0q, kusjuures selle funktsiooni muut (1.3) esitub kujul

fpP0 �∆P q � fpP0q � Bf
Bx1 pP0q∆x1 � � � � � Bf

Bxm pP0q∆xm � α, (1.9)

kus funktsioon α � αp∆P q � αp∆x1, . . . ,∆xmq rahuldab tingimust α � opρq
protsessis ρÑ 0;
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(iv) funktsioonil f eksisteerivad punktis P0 kõik lõplikud esimest järku osatuletised
Bf
Bx1 pP0q, . . . , BfBxm pP0q, kusjuures selle funktsiooni muut (1.3) punktis P0 esitub

kujul

fpP0 �∆P q � fpP0q
� Bf
Bx1 pP0q∆x1 � � � � � Bf

Bxm pP0q∆xm � α1∆x1 � � � � � αm ∆xm,
(1.10)

kus funktsioonid αi � αip∆P q � αip∆x1, . . . ,∆xmq rahuldavad tingimust
αi ÝÝÑ

ρÑ0
0, i � 1, . . . ,m.

Tõestus. (i)ñ(ii) järeldub (m muutuja funktsiooni diferentseeruvuse) de�nitsioo-
nist 1.2 ja teoreemist 1.3.

(ii)ñ(i) järeldub de�nitsioonist 1.2.

(ii)ô(iii)ô(iv) järeldub lemmast 1.2.

Märkus 1.5. Kursuses �Ühe muutuja matemaatiline analüüs� de�neeriti ühe muu-
tuja funktsiooni y � fpxq diferentseeruvus punktis x0 kui lõpliku tuletise f 1px0q
olemasolu. See de�nitsioon on kooskõlas m muutuja funktsiooni diferentseeruvuse
de�nitsiooniga 1.2 juhul m � 1.

Tõepoolest, kui eksisteerib lõplik tuletis

f 1px0q :� lim
∆xÑ0

fpx0 �∆xq � fpx0q
∆x

,

siis, de�neerides funktsiooni α � αp∆xq :� fpx0 �∆xq � fpx0q
∆x

� f 1px0q, kehtib
tingimus α ÝÝÝÝÑ

∆xÑ0
0, kusjuures funktsiooni f muut punktis x0 esitub kujul

fpx0 �∆xq � fpx0q � f 1px0q∆x� α∆x;

niisiis teoreemi 1.1 samaväärsuse (i)ô(iii) põhjal funktsioon f on diferentseeruv
de�nitsiooni 1.2 (juhu m � 1) järgi.

Teiselt poolt, kui funktsioon y � fpxq on diferentseeruv de�nitsiooni 1.2 mõttes
(juhul m � 1), siis teoreemi 1.3 põhjal eksisteerib tal punktis x0 lõplik (osa)tuletis
(muutuja x järgi) f 1xpx0q � f 1px0q (vt. märkust 1.2), niisiis see funktsioon on diferent-
seeruv kursuses �Ühe muutuja matemaatiline analüüs� antud de�nitsiooni mõttes.

Näites 1.2 veendusime, et m muutuja funktsiooni lõplike (esimest järku) osatu-
letiste olemasolust (kõigi muutujate järgi) antud punktis ei järeldu üldjuhul selle
funktsiooni pidevust selles punktis. Järgnev lause ütleb, et m muutuja funktsiooni
diferentseeruvus antud punktis (millest teoreemi 1.3 põhjal järeldub kõigi lõplike
esimest järku osatuletiste olemasolu selles punktis) toob endaga kaasa selle funkt-
siooni pidevuse selles punktis. Seega lõplike esimest järku osatuletiste olemasolust
antud punktis ei järeldu üldjuhul funktsiooni diferentseeruvust selles punktis. Veelgi
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enam: näites 1.5 vaadeldakse kahe muutuja funktsiooni, mis on pidev punktis p0, 0q
ning millel eksisteerivad punktis p0, 0q lõplikud esimest järku osatuletised mõlema
argumendi järgi, kuid mis pole diferentseeruv punktis p0, 0q. Seega ka antud punktis
pideva funktsiooni puhul ei järeldu üldjuhul lõplike esimest järku osatuletiste ole-
masolust selles punktis funktsiooni diferentseeruvust selles punktis.

Lause 1.5. Antud punktis diferentseeruv funktsioon on selles punktis pidev.

Tõestus. Funktsioon u � fpP q � fpx1, . . . , xmq on pidev (oma määramispiirkonna
kuhjumis)punktis P0 P Rm parajasti siis, kui

∆u � fpP q � fpP0q ÝÝÑ
ρÑ0

0.

Kui eeldada, et funktsion f on diferentseeruv punktis P0, siis see koonduvus järeldub
esitusest (1.5) (sest kui α � opρq protsessis ρÑ 0, siis ammugi α ÝÝÑ

ρÑ0
0).

Selle punkti lõpetuseks toome mõned näited konkreetsete funktsioonide diferent-
seeruvuse kindlakstegemisest antud punktis.

NB! See on Rei-
mersi ül.-kogu, II,
lk. 74, ül. 512

Näide 1.3. Veendume, et kahe muutuja funktsioon

fpx, yq �
$&%px� yq2 sin 1a

x2 � y2
, kui x2 � y2 �� 0,

0, kui x2 � y2 � 0,

on diferentseeruv punktis p0, 0q. Selleks leiame esmalt selle funktsiooni esimest järku osatuletised
punktis p0, 0q:

Bf
Bx p0, 0q � lim

hÑ0

fp0� h, 0q � fp0, 0q
h

� lim
hÑ0

h2 sin
1?
h2

h
� lim

hÑ0
h sin

1

|h| � 0

ning, sümmeetriliselt,
Bf
By p0, 0q � 0. Teoreemi 1.4 samaväärsuse (i)ô(ii) põhjal piisab funktsiooni f

diferentseeruvuseks punktis p0, 0q (ning on selleks ühtlasi ka tarvilik) näidata, et

fp0�∆x, 0�∆yq � fp0, 0q � 0∆x� 0∆y � opρq protsessis ρÑ 0

(siin ρ �
a
∆x2 �∆y2), s.t.

p∆x�∆yq2 sin 1a
∆x2 �∆y2

� opρq protsessis ρÑ 0.

Veendume selles. Minnes üle polaarkoordinaatidele : ∆x � ρ cosϕ, ∆y � ρ sinϕ, saameNB! Kas see
�Minnes üle polaar-
koordinaatidele:
∆x � ρ cosϕ,
∆y � ρ sinϕ�
on aktsepteeritav
keeleline konstrukt-
sioon? Tagapool
kasutatakse seda
veel kaks korda.

p∆x�∆yq2 sin 1?
∆x2�∆y2

ρ
�

ρ2pcosϕ� sinϕq2 sin 1

ρ

ρ
� ρ pcosϕ� sinϕq2 sin 1

ρ
ÝÝÝÑ
ρÑ0

0.

NB! See on Rei-
mersi ül.-kogu, II,
lk. 74, ül. 513

Näide 1.4. Veendume, et kahe muutuja funktsioon

fpx, yq �
$&%px2 � y2q sin 1

x2 � y2
, kui x2 � y2 �� 0,

0, kui x2 � y2 � 0,
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on diferentseeruv punktis p0, 0q. Selleks leiame esmalt selle funktsiooni esimest järku osatuletised
punktis p0, 0q:

Bf
Bx p0, 0q � lim

hÑ0

fp0� h, 0q � fp0, 0q
h

� lim
hÑ0

h2 sin
1

h2

h
� lim

hÑ0
h sin

1

h2
� 0

ning, sümmeetriliselt,
Bf
By p0, 0q � 0. Teoreemi 1.4 samaväärsuse (i)ô(ii) põhjal piisab funktsiooni f

diferentseeruvuseks punktis p0, 0q (ning on selleks ühtlasi ka tarvilik) näidata, et

fp0�∆x, 0�∆yq � fp0, 0q � 0∆x� 0∆y � opρq protsessis ρÑ 0

(siin ρ �
a
∆x2 �∆y2), s.t.

p∆x2 �∆y2q sin 1

∆x2 �∆y2
� opρq protsessis ρÑ 0.

Veendume selles:

p∆x2 �∆y2q sin 1

∆x2 �∆y2

ρ
�

ρ2 sin
1

ρ2

ρ
� ρ sin

1

ρ2
ÝÝÝÑ
ρÑ0

0.

NB! See on Rei-
mersi ül.-kogu, II,
lk. 74, ül. 511

Näide 1.5. Veendume, et kahe muutuja funktsioon

fpx, yq �
$&%

x2y

x2 � y2
, kui x2 � y2 �� 0,

0, kui x2 � y2 � 0,

on pidev punktis p0, 0q ning tal eksisteerivad selles punktis lõplikud osatuletised, kuid ta ei ole
diferentseeruv selles punktis.

Funktsiooni f pidevuseks punktis p0, 0q piisab näidata, et fpx, yq ÝÝÝÝÑ
x,yÑ0

fp0, 0q � 0. Minnes

üle polaarkoordinaatidele : ∆x � ρ cosϕ, ∆y � ρ sinϕ, saame

lim
x,yÑ0

fpx, yq � lim
x,yÑ0

x2y

x2 � y2
� lim

rÑ0

r3 cos2 ϕ sinϕ

r2
� lim

rÑ0
r cos2 ϕ sinϕ � 0.

Funktsioonil f eksisteerivad punktis p0, 0q lõplikud osatuletised

Bf
Bx p0, 0q � lim

hÑ0

fp0� h, 0q � fp0, 0q
h

� lim
hÑ0

h2 0

h2

h
� 0

ja

Bf
By p0, 0q � lim

hÑ0

fp0, 0� hq � fp0, 0q
h

� lim
hÑ0

0h

h2

h
� 0;

seega teoreemi 1.4 samaväärsuse (i)ô(ii) põhjal on tema diferentseeruvuseks punktis p0, 0q tarvilik
(ning ka piisav), et

fp0�∆x, 0�∆yq � fp0, 0q � 0∆x� 0∆y � opρq protsessis ρÑ 0

(siin ρ �
a
∆x2 �∆y2), s.t.

fp∆x,∆yq � ∆x2∆y

∆x2 �∆y2
� opρq protsessis ρÑ 0. (1.11)
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Minnes üle polaarkoordinaatidele : ∆x � ρ cosϕ, ∆y � ρ sinϕ, saame

fp∆x,∆yq
ρ

�
ρ3 cos2 ϕ sinϕ

ρ2

ρ
� cos2 ϕ sinϕ.

Siit näeme, et piirväärtus lim
ρÑ0

fp∆x,∆yq
ρ

ei eksisteeri (sest ta sõltub lähenemisteest) ; seega (1.11)

ei kehti ning järelikult funktsioon f pole diferentseeruv punktis p0, 0q.

1.3. Piisav tingimus mitme muutuja funktsiooni
diferentseeruvuseks

Teoreem 1.6. Eksisteerigu funktsioonil u � fpP q � fpx1, . . . , xmq punkti P0 �
px01, . . . , x0mq P Rm mingis ümbruses lõplikud (esimest järku) osatuletised kõigi argu-
mentide järgi, kusjuures vastavad osatuletisfunktsioonid on pidevad punktis P0. Siis
funktsioon f on diferentseeruv punktis P0.

Tõestus. Olgu reaalarv δ ¡ 0 selline, et funktsioonil f eksisteerivad lõplikud osa-
tuletised punktis P0 kuubikujulises ümbruses

C :�
!
px1, . . . , xmq P Rm : max

1¤i¤m
|xi � x0i |   δ

)
.

Kõikjal järgnevas vaatleme vaid selliseid (funktsiooni f) argumentide muutusid
∆x1, . . . ,∆xm, mille korral |∆xi|   δ, i � 1, . . . ,m, ehk, teisisõnu, P0 � ∆P P C,
kus ∆P :� p∆x1, . . . ,∆xmq ja P0 �∆P � px01 �∆x1, . . . , x

0
m �∆xmq.

Teoreemi tõestuseks piisab näidata, et funktsiooni u � fpP q muut ∆u :�
fpP0�∆P q�fpP0q (s.t. muut punktis P0, mis vastab argumentide x1, . . . , xm muutu-
dele ∆x1, . . .∆xm) esitub valemiga (1.6), kus funktsioonid αi � αip∆x1, . . . ,∆xmq
rahuldavad tingimust αi ÝÝÑ

ρÑ0
0, i � 1, . . . ,m.

Tähistame iga i P t1, . . . ,mu korral xi :� x0i �∆xi; siis

∆u � fpx1, x2, x3, . . . , xm�1, xmq � fpx01, x02, x03, . . . , x0m�1, x
0
mq

�fpx1, x2, x3, . . . , xm�1, xmq � fpx01, x2, x3, . . . , xm�1, xmq
� fpx01, x2, x3, . . . , xm�1, xmq � fpx01, x02, x3, . . . , xm�1, xmq
� fpx01, x02, x3, . . . , xm�1, xmq � fpx01, x02, x03, . . . , xm�1, xmq
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

� fpx01, x02, x03, . . . , x0m�1, xmq � fpx01, x02, x03, . . . , x0m�1, x
0
mq

� g1px1q � g1px01q � g2px2q � g2px02q � � � � � gmpxmq � gmpx0mq,
kus funktsioonid gi on de�neeritud võrdustega

gipxq � fpx01, . . . , x0i�1, x, xi�1, . . . , xmq, i � 1, . . . ,m.

Iga i P t1, . . . ,mu korral funktsioon gi rahuldab lõigus rx0i , xis (või lõigus rxi, x0i s, kui
xi   x0i ) kõiki Lagrange'i keskväärtusteoreemi eeldusi; seega leidub arv θi P p0, 1q
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(mis sõltub argumentide x1, . . . , xm muutudest ∆x1, . . . ,∆xm) nii, et

gipxiq � gipx0i q � g1ipx0i � θi ∆xiq∆xi
� Bu
Bxi px

0
1, . . . , x

0
i�1, x

0
i � θi ∆xi, xi�1, . . . , xmq∆xi

(märgime, et kui xi � x0i , s.t. ∆xi � 0, siis sobib θi rolli mis tahes arv vahemikust
p0, 1q). Niisiis,

∆u �
m̧

i�1

�
gipxiq � gipx0i q

� � m̧

i�1

Bu
Bxi px

0
1, . . . , x

0
i�1, x

0
i � θi ∆xi, xi�1, . . . , xmq∆xi

�
m̧

i�1

Bu
Bxi pP0q∆xi �

m̧

i�1

αip∆x1, . . . ,∆xmq∆xi,

kus iga i P t1, . . . ,mu korral

αip∆x1, . . . ,∆xmq � Bu
Bxi px

0
1, . . . , x

0
i�1, x

0
i � θi ∆xi, xi�1, . . . , xmq � Bu

Bxi px
0
1, . . . , x

0
mq.

Kuna osatuletised (s.t. osatuletisfunktsioonid)
Bu
Bx1 , . . . ,

Bu
Bxm on pidevad punktis P0,

siis funktsioonid α1, . . . , αm rahuldavad tingimust αi ÝÝÑ
ρÑ0

0, i � 1, . . . ,m, ning seega

funktsioon f on diferentseeruv punktis P0.

Märkus 1.6. Mitme muutuja funktsiooni f diferentseeruvusest punktis P0 ei järeldu
üldjuhul tema osatuletiste (s.t. osatuletisfunktsioonide) pidevus t punktis P0.

Näide 1.6. Näites 1.4 veendusime, et kahe muutuja funktsioon

fpx, yq �
$&%px2 � y2q sin 1

x2 � y2
, kui x2 � y2 �� 0,

0, kui x2 � y2 � 0,

on diferentseeruv punktis p0, 0q. Näitame, et kogu tasandil R2 eksisteerivad lõplikud osatuletised
Bf
Bx px, yq ja

Bf
By px, yq, kuid osatuletisfunktsioonid

Bf
Bx ja

Bf
By ei ole pidevad punktis p0, 0q.

Näites 1.4 veendusime, et
Bf
Bx p0, 0q �

Bf
By p0, 0q � 0. Kõikjal hulgas R2ztp0, 0qu

Bf
Bx px, yq �

�
px2 � y2q sin 1

x2 � y2


1

x

� 2x sin
1

x2 � y2
� px2 � y2q cos 1

x2 � y2

�
� 2x

px2 � y2q2



� 2x sin
1

x2 � y2
� 2x

x2 � y2
cos

1

x2 � y2
.

Siit näeme, et piirväärtus lim
x,yÑ0

Bf
Bx px, yq ei eksisteeri (ning, lisaks, osatuletis

Bf
Bx on punkti p0, 0q

igas ümbruses tõkestamata); niisiis osatuletis
Bf
Bx ei ole punktis p0, 0q pidev.

Tõepoolest, valides iga n P N korral rn ¡ 0 nii, et
1

r2n
� 2nπ (s.t. rn � 1?

2nπ
), ning tähistades

Pn :� prn, 0q ja Qn :� p�rn, 0q, saame, arvestades, et rn ÝÝÝÑ
nÑ8 0,

Pn ÝÝÝÑ
nÑ8 p0, 0q ja Qn ÝÝÝÑ

nÑ8 p0, 0q.



54 II. Mitme muutuja funktsioonide diferentsiaalarvutus

Samal ajal

Bf
Bx pPnq � 2rn sin

1

r2n
� 2rn

r2n
cos

1

r2n
� 2rn sin 2nπ � 2

rn
cos 2nπ � � 2

rn
ÝÝÝÑ
nÑ8 �8

ning, analoogiliselt,
Bf
Bx pQnq ÝÝÝÑ

nÑ8 8.

Sümmeetriliselt saame, et piirväärtus lim
x,yÑ0

Bf
By px, yq ei eksisteeri (ning, lisaks, osatuletis

Bf
By

on punkti p0, 0q igas ümbruses tõkestamata); niisiis osatuletis
Bf
By ei ole punktis p0, 0q pidev.

Näide 1.7. Näites 1.3 veendusime, et kahe muutuja funktsioon

fpx, yq �
$&%px� yq2 sin 1a

x2 � y2
, kui x2 � y2 �� 0,

0, kui x2 � y2 � 0,

on diferentseeruv punktis p0, 0q. Näitame, et kogu tasandil R2 eksisteerivad lõplikud osatuletised
Bf
Bx px, yq ja

Bf
By px, yq, kuid osatuletisfunktsioonid

Bf
Bx ja

Bf
By ei ole pidevad punktis p0, 0q.

Näites 1.3 veendusime, et
Bf
Bx p0, 0q �

Bf
By p0, 0q � 0. Kõikjal hulgas R2ztp0, 0qu

Bf
Bx px, yq �

�
px� yq2 sin 1a

x2 � y2


1

x

� 2px� yq sin 1a
x2 � y2

� px� yq2 cos 1a
x2 � y2

�
� 2x

2px2 � y2q 3
2



� 2px� yq sin 1a

x2 � y2
� x px� yq2
px2 � y2q 3

2

cos
1a

x2 � y2
.

Siit näeme, et piirväärtus lim
x,yÑ0

Bf
Bx px, yq ei eksisteeri; niisiis osatuletis

Bf
Bx ei ole punktis p0, 0q pidev.

Tõepoolest, minnes üle polaarkoordinaatidele : x � r cosϕ, y � r sinϕ, saame

Bf
Bx px, yq � 2rpcosϕ� sinϕq sin 1

r
� r cosϕ r2pcosϕ� sinϕq2

r3
cos

1

r

� op1q � cosϕ pcosϕ� sinϕq2 cos 1
r

protsessis r Ñ 0.

Valides iga n P N korral rn ¡ 0 nii, et
1

rn
� 2nπ (s.t. rn � 1

2nπ
), ning tähistades Pn :�

prn cos 0, rn sin 0q � prn, 0q ja Qn :� �
rn cos

π
2 , rn sin

π
2

� � p0, rnq, saame, arvestades, et rn ÝÝÝÑ
nÑ8 0,

Pn ÝÝÝÑ
nÑ8 p0, 0q ja Qn ÝÝÝÑ

nÑ8 p0, 0q.

Samal ajal

Bf
Bx pPnq � op1q � cos 0 pcos 0� sin 0q2 cos 1

rn
� op1q � cos 2nπ � op1q � 1 ÝÝÝÑ

nÑ8 �1,
Bf
Bx pQnq � op1q � cos

π

2

�
cos

π

2
� sin

π

2

	2

cos
1

rn
� op1q � 0 ÝÝÝÑ

nÑ8 0;

järelikult funktsiooni piirväärtuse Heine kriteeriumi põhjal piirväärtus lim
x,yÑ0

Bf
Bx px, yq ei eksisteeri.

Sümmeetriliselt saame, et piirväärtus lim
x,yÑ0

Bf
By px, yq ei eksisteeri; niisiis osatuletis

Bf
By ei ole

punktis p0, 0q pidev.
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1.4. Kahe muutuja funktsiooni diferentseeruvuse
geomeetriline tõlgendus (kahe muutuja funktsiooni
graa�ku puutujatasand)

De�nitsioon 1.3. Olgu kahe muutuja funktsiooni z � fpx, yq määramispiirkond
D � R2. Hulka !�

x, y, fpx, yq� : px, yq P D
)
� R3

nimetatakse funktsiooni f graa�kuks.

De�nitsioon 1.4. Olgu kahe muutuja funktsioon z � fpx, yq pidev punkti px0, y0q P
R2 mingis ümbruses. Tähistame M0 :� �

x0, y0, fpx0, y0q
�
(märgime, et punkt M0

asub funktsiooni f graa�kul).
Tasandit π nimetatakse funktsiooni f graa�ku puutujatasandiks punktisM0, kui

graa�ku punkteM :� �
x, y, fpx, yq� jaM0 ühendava sirge ning selle tasandi vaheline

nurk läheneb protsessis px, yq Ñ px0, y0q nullile.
Paneme tähele, et funktsiooni f pidevuse tõttu punktis px0, y0q on punkti px, yq

lähenemine punktile px0, y0q (s.t. koonduvus px, yq Ñ px0, y0q) samaväärne graa�ku
punkti M � �

x, y, fpx, yq� lähenemisega punktile M0 (mööda seda graa�kut) . See-
tõttu sõnastatakse graa�ku puutujatasandi de�nitsioon sageli ka järgmiselt: tasan-
dit π nimetatakse funktsiooni f graa�ku puutujatasandiks punktis M0, kui graa�ku
punkti M lähenemisel punktile M0 (mööda seda graa�kut) läheneb neid punkte
ühendava sirge ja selle tasandi vaheline nurk nullile (vt. joonist 1.1).

NB! Joonisel
1.1 ei peaks
punktid M0 ja
M olema �kausi�
�serval�, vaid �külje
peal�. Hea oleks,
kui xy-tasandil
oleksid kujutatud
punkte P0 ja P
ning punktidest
M0 ja M oleks
tõmmatud xy
tasandile ristsirged
(vastavalt punkti
P0 ja P ).

Järgnev teoreem ütleb, et kahe muutuja funktsiooni diferentseeruvus antud punk-
tis tähendab geomeetriliselt selle funktsiooni graa�ku (z-teljega mitteparalleelse) puu-
tujatasandi olemasolu vastavas graa�ku punktis.

Teoreem 1.7. Olgu funktsioon z � fpP q � fpx, yq pidev punkti P0 :� px0, y0q P R2

mingis ümbruses. Kui funktsioon f on diferentseeruv punktis P0, siis tema graa-
�kul eksisteerib puutujatasand punktis M0 :� �

x0, y0, fpP0q
�
. Selle puutujatasandi

võrrand on

z � fpP0q � Bf
Bx pP0q px� x0q � Bf

By pP0q py � y0q. (1.12)

Teiselt poolt, kui funktsiooni f graa�kul eksisteerib punktis M0 puutujatasand, kus-
juures see puutujatasand pole paralleelne z-teljega, siis funktsioon f on diferentseeruv
punktis P0.

Tõestus. Olgu funktsioon z � fpx, yq diferentseeruv punktis P0. Veendumaks,
et tasand (1.12) on tema graa�ku puutujatasand punktis M0, piisab näidata, et
graa�ku punkti M :� �

x, y, fpx, yq� lähenemisel punktile M0 (mööda graa�kut)
läheneb neid punkte läbiva sirge ja selle tasandi vaheline nurk nullile ehk, teisisõnu, NB! Kas märkida,

et punkt M0 asub
tasandil (1.12)?

NB! Joonis?

tähistades P :� px, yq, vektori
ÝÝÝÑ
M0M � �

x� x0, y � y0, fpP q � fpP0q
�
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x

y

z

M0

M

φ

Joonis 1.1

ja tasandi (1.12) normaalvektori

n⃗ �
�Bf
Bx pP0q, BfBy pP0q,�1



vaheline nurk =

�ÝÝÝÑ
M0M, n⃗

�
läheneb täisnurgale π

2
protsessis P Ñ P0. Tähistame

ρ :� dpP, P0q �
a
px� x0q2 � py � y0q2.

Kuna piirprotsess P Ñ P0 tähendab, et ρÑ 0, ning

=
�ÝÝÝÑ
M0M, n⃗

�Ñ π

2
ðñ cos=

�ÝÝÝÑ
M0M, n⃗

�Ñ 0,

siis jääb meil näidata, et cos=
�ÝÝÝÑ
M0M, n⃗

� ÝÝÑ
ρÑ0

0. Selleks märgime, et

cos=
�ÝÝÝÑ
M0M, n⃗

� � ÝÝÝÑ
M0M � n⃗��ÝÝÝÑM0M

�� |n⃗|
(sümbolid

��ÝÝÝÑM0M
��, |n⃗| ning ÝÝÝÑM0M � n⃗ tähistavad vastavalt vektorite

ÝÝÝÑ
M0M ja n⃗ pikkusi

ning nende skalaarkorrutist). Kuna funktsiooni f diferentseeruvuse tõttu punktis P0

ÝÝÝÑ
M0M �n⃗ � Bf

Bx pP0q px�x0q�BfBy pP0q py�y0q�
�
fpP q�fpP0q

� � opρq protsessis ρÑ 0,
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siis

cos=
�ÝÝÝÑ
M0M, n⃗

� � 1

|n⃗|
opρq��ÝÝÝÑM0M

�� � 1

|n⃗|
ρ��ÝÝÝÑM0M

�� opρqρ ÝÝÑ
ρÑ0

0

(sest��ÝÝÝÑM0M
�� �b

|x� x0|2 � |y � y0|2 �
��fpP q � fpP0q

��2 �b
ρ2 � ��fpP q � fpP0q

��2 ¥ ρ

ning seega 0 ¤ ρ��ÝÝÝÑM0M
�� ¤ 1), nagu soovitud.

Teiselt poolt, eksisteerigu funktsiooni z � fpx, yq graa�kul z-teljega mitteparal-
leelne puutujatasand punktis M0; olgu selle puutujatasandi võrrand NB! Kas see on

hea � muutujad x ja
y on kinni � või po-
le kinni?? Las jääb
(esialgu?) nii!z � fpP0q � A px� x0q �B py � y0q. (1.13)

Märgime, et m⃗ :� pA,B,�1q on selle puutujatasandi normaalvektor.
Märkides, nagu eelnevaski P :� px, yq, ρ :� dpP, P0q �

apx� x0q2 � py � y0q2
jaM � �

x, y, fpx, yq� � �
x, y, fpP q�, piisab funktsiooni f diferentseeruvuseks punk-

tis P0 näidata, et

A px� x0q �B py � y0q �
�
fpP q � fpP0q

�
ρ

ÝÝÑ
ρÑ0

0

ehk, teisisõnu,
ÝÝÝÑ
M0M �m⃗

ρ
ÝÝÑ
ρÑ0

0. Kuna

ÝÝÝÑ
M0M � m⃗

ρ
� |m⃗|

ÝÝÝÑ
M0M � m⃗��ÝÝÝÑM0M

�� |m⃗|
��ÝÝÝÑM0M

��
ρ

� |m⃗| cos=�ÝÝÝÑM0M, m⃗
� ��ÝÝÝÑM0M

��
ρ

,

kusjuures cos=
�ÝÝÝÑ
M0M, m⃗

� ÝÝÑ
ρÑ0

0 (sest tasand (1.13) on funktsiooni f graa�ku

puutujatasand), siis, veendumaks, et
ÝÝÝÑ
M0M �m⃗

ρ
ÝÝÑ
ρÑ0

0, piisab näidata, et

��ÝÝÝÑM0M
��

ρ
� Op1q protsessis ρÑ 0.

Selleks, arvestades, et

��ÝÝÝÑM0M
��

ρ
�

b
ρ2 � ��fpP q � fpP0q

��2
ρ

�
d
1�

����fpP q � fpP0q
ρ

����2,
piisab näidata, et

fpP q � fpP0q
ρ

� Op1q protsessis ρÑ 0.
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Selleks märgime, et��fpP q � fpP0q
��

¤ ��fpP q � fpP0q � A px� x0q �B py � y0q
��� |A| |x� x0| � |B| |y � y0|

� ��ÝÝÑML
��� |A| |x� x0| � |B| |y � y0|,

kus punkt L :� �
x, y, A px� x0q �B py � y0q � fpP0q

�
on punkti M läbiva z-teljega

paralleelse sirge ja puutujatasandi (1.13) lõikepunkt.
Tähistades tähega N punkti M ristprojektsiooni puutujatasandile (1.13), pane-

me tähele, et kõik (täisnurksed) kolmnurgad △MLN on sarnased (sest kõik hüpote-
nuusid ML on paralleelsed � nad on paralleelsed z-teljega � ning kõik kaatetid MN
on paralleelsed � nad on risti puutujatasandiga (1.13)), seega leidub konstant κ ¡ 0
nii, et alati

��ÝÝÑML
�� � κ

��ÝÝÑMN
��. Tähistades tähega ψ punkte M ja M0 läbiva sirge ja

puutujatasandi (1.13) vahelise nurga, saame nüüd, et��ÝÝÑML
����ÝÝÝÑM0M
�� � κ

��ÝÝÑMN
����ÝÝÝÑM0M
�� � κ sinψ ÝÝÑ

ρÑ0
0.

Siit järeldub, et �piisavalt väikeste� ρ väärtuste korral

��ÝÝÑML
�� ¤ 1

2

��ÝÝÝÑM0M
�� � 1

2

b
ρ2 � ��fpP q � fpP0q

��2 ¤ ρ� ��fpP q � fpP0q
��

2
,

seega

��fpP q � fpP0q
�� ¤ |A| |x� x0| � |B| |y � y0| � ρ

2
�

��fpP q � fpP0q
��

2

ning järelikult��fpP q � fpP0q
��

ρ
¤ 2|A| |x� x0|

ρ
� 2|B| |y � y0|

ρ
� 1 ¤ 2|A| � 2|B| � 1.

1.5. Mitme muutuja funktsiooni esimest järku
täisdiferentsiaal

Olgu funktsioon u � fpP q � fpx1, . . . , xmq diferentseeruv punktis P0 � px01, . . . , x0mq P
Rm.

De�nitsioon 1.5. Avaldist

dupP0q :� dfpP0q :� Bu
Bx1 pP0q∆x1 � � � � � Bu

Bxm pP0q∆xm

nimetatakse funktsiooni f (esimest järku ehk lihtsalt esimeseks) täisdiferentsiaaliks
punktis P0, mis vastab argumentide x1, . . . , xm muutudele ∆x1, . . . ,∆xm.
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Kui funktsioon u � fpP q � fpx1, . . . , xmq on diferentseeruv hulga D � Rm igas
punktis P , siis, �kseerides argumentide x1, . . . , xm muutude väärtused∆x1, . . . ,∆xm
(s.t. lugedes need muudud �kseeritud konstantideks), võime selle funktsiooni esi-
mest järku täisdiferentsiaali tõlgendada muutuja P (ehk siis m muutuja x1, . . . , xm)
funktsioonina du � dupP q (ehk, teisiti tähistades, df � dfpP q):

du � dupP q � Bu
Bx1 pP q∆x1 � � � � � Bu

Bxm pP q∆xm

ehk (jättes eelnevas esituses argumendi P kirjutamata)

du � Bu
Bx1 ∆x1 � � � � � Bu

Bxm ∆xm.

Iga i P t1, . . . ,mu korral nimetame argumendi xi diferentsiaaliks dxi tema muu-
tu ∆xi, s.t.

dxi :� ∆xi, i � 1, . . . ,m.

See tähistus on motiveeritud järgneva aruteluga: kui tõlgendada argumendi xi diferentsiaali
dxi (m muutuja) funktsiooni v � xi diferentsiaalina, siis

dxi � dv � v1x1
∆x1 � � � � � v1xi�1

∆xi�1 � v1xi
∆xi � v1xi�1

∆xi�1 � � � � � v1xm
∆xm

� 0∆x1 � � � � � 0∆xi�1 � 1∆xi � 0∆xi�1 � � � � � 0∆xm

� ∆xi.

Vastavalt sellele tähistusele

du � Bu
Bx1 dx1 � � � � � Bu

Bxm dxm.

Märkus 1.7. Vahetult on kontrollitav, et kui funktsioonid u � fpP q � fpx1, . . . , xmq ja v �
gpP q � gpx1, . . . , xmq on diferentseeruvad punktis P0 P Rm, siis mis tahes arvude α, β P R korral
ka funktsioon α f � β g on diferentseeruv selles punktis, kusjuures

dpα f � β gqpP0q � αdfpP0q � β dgpP0q.

1.6. Mitme muutuja liitfunktsioonide diferentseerimine

Olgu funktsioon
u � fpP q � fpx1, . . . , xmq

määratud hulgas D � Rm ning olgu hulgas ∆ � Rl määratud funktsioonid

x1 � ϕ1pQq � ϕ1pt1, . . . , tlq,
x2 � ϕ2pQq � ϕ2pt1, . . . , tlq,
. . . . . . . . . . . . . . . . . . . . . . . . . . . ,

xm � ϕmpQq � ϕmpt1, . . . , tlq

sellised, et
D �  pϕ1pQq, . . . , ϕmpQqq : Q P ∆

(
.
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Sel juhul saame vaadelda liitfunktsiooni

u � gpQq � gpt1, . . . , tlq :� f
�
ϕ1pQq, . . . , ϕmpQq

�
� f

�
ϕ1pt1, . . . , tlq, . . . , ϕmpt1, . . . , tlq

�
, Q � pt1, . . . , tlq P ∆. (1.14)

Teoreem 1.8. Olgu funktsioonid ϕ1, . . . , ϕm diferentseeruvad punktis

Q0 � pt01, . . . , t0l q P ∆

ning olgu funktsioon f diferentseeruv punktis

P0 � px01, . . . , x0mq �
�
ϕ1pQ0q, . . . , ϕmpQ0q

� P D.

Siis ka liitfunktsioon (1.14) on diferentseeruv punktis Q0. Seejuures iga j P t1, . . . , lu
korral

Bu
Btj pQ0q �

m̧

i�1

Bf
Bxi pP0q Bϕi

Btj pQ0q.

Tõestus. Teoreemi tõestuseks piisab veenduda, et funktsiooni u � gpQq muut
punktis Q0, mis vastab argumentide t1, . . . , tl muutudele ∆t1, . . . ,∆tl,

∆u � gpt01 �∆t1, . . . , t
0
l �∆tlq � gpt01, . . . , t0l q

� f
�
ϕ1pt01 �∆t1, . . . , t

0
l �∆tlq, . . . , ϕmpt01 �∆t1, . . . , t

0
l �∆tlq

�
� f

�
ϕ1pt01, . . . , t0l q, . . . , ϕmpt01, . . . , t0l q

�
esitub kujul

∆u � C1∆t1 � � � � � Cl ∆tl � γ1∆t1 � � � � � γl ∆tl,

kus iga j P t1, . . . , lu korral

Cj �
m̧

i�1

Bf
Bxi pP0q Bϕi

Btj pQ0q

ning, tähistades r :� a
∆t21 � � � � �∆t2l , funktsioon γj � γjp∆t1, . . . ,∆tlq rahuldab

tingimust γj ÝÝÑ
rÑ0

0.

Funktsiooni f diferentseeruvuse tõttu punktis P0 esitub argumentide x1, . . . , xm
muutudele ∆x1, . . . ,∆xm vastav funktsiooni f muut punktis P0 valemiga

fpP q � fpP0q � Bf
Bx1 pP0q∆x1 � � � � � Bf

Bxm pP0q∆xm � α1∆x1 � � � � � αm ∆xm,

kus P � px01 � ∆x1, . . . , x
0
m � ∆xmq ning iga i P t1, . . . ,mu korral funktsioon

αi � αip∆x1, . . . ,∆xmq rahuldab tingimust αi ÝÝÑ
ρÑ0

0 (siin, nagu kõikjal, ρ �a
∆x21 � � � � �∆x2m). Tähistame edaspidises

∆xi :� ϕipt01 �∆t1, . . . , t
0
l �∆tlq � ϕipt01, . . . , t0l q, i � 1, . . . ,m.
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Kuna funktsioonid ϕ1, . . . , ϕm on diferentseeruvad punktis Q0, siis iga i P t1, . . . ,mu
korral

∆xi � Bϕi

Bt1 pQ0q∆t1 � � � � � Bϕi

Btl pQ0q∆tl � βi
1∆t1 � � � � � βi

l ∆tl,

kus iga j P t1, . . . , lu korral funktsioon βi
j � βi

jp∆t1, . . . ,∆tlq rahuldab tingimust
βi
j ÝÝÑ

rÑ0
0 (siin, nagu ennegi, r �a

∆t21 � � � � �∆t2l ). Niisiis,

∆u �
m̧

i�1

� Bf
Bxi pP0q � αi



∆xi

�
m̧

i�1

� Bf
Bxi pP0q � αi


�
ļ

j�1

�Bϕi

Btj pQ0q � βi
j



∆tj

�

�
ļ

j�1

�
m̧

i�1

Bf
Bxi pP0q Bϕi

Btj pQ0q
�
∆tj

�
ļ

j�1

�
m̧

i�1

�� Bf
Bxi pP0q � αi

	
βi
j � αi

Bϕi

Btj pQ0q

�

∆tj

� C1∆t1 � � � � � Cl ∆tl � γ1∆t1 � � � � � γl ∆tl,

kus

γj �
m̧

i�1

�� Bf
Bxi pP0q � αi



βi
j � αi

Bϕi

Btj pQ0q


, j � 1, . . . , l.

Teoreemi tõestuseks jääb veenduda, et funktsioonid γ1, . . . , γl rahuldavad tingimust
γj ÝÝÑ

rÑ0
0, j � 1, . . . , l. Selleks piisab näidata, et iga i P t1, . . . ,mu korral αi ÝÝÑ

rÑ0
0,

milleks arvestades, et αi ÝÝÑ
ρÑ0

0, piisab näidata, et ρ ÝÝÑ
rÑ0

0. Kuna funktsiooni-

de ϕ1, . . . , ϕm diferentseeruvusest punktis Q0 järeldub nende funktsioonide pidevus
selles punktis, siis iga i P t1, . . . ,mu korral ∆xi ÝÝÑ

rÑ0
0, järelikult ρ ÝÝÑ

rÑ0
0, nagu

soovitud.
NB! Kas see juht,
kus m � 3 ja l �
2, ikka vajab eraldi
väljatoomist?

Konkreetsuse mõttes sõnastame teoreemi 1.8 eraldi juhu jaoks, kus m � 3 ja
l � 2.

Olgu funktsioon
w � fpP q � fpx, y, zq

määratud hulgas D � R3 ning olgu hulgas ∆ � R2 määratud funktsioonid

x � xpQq � xpu, vq, y � ypQq � ypu, vq, z � zpQq � zpu, vq (1.15)

sellised, et

D �
!�
xpQq, ypQq, zpQq� : Q P ∆

)
.

Sel juhul saame vaadelda liitfunktsiooni

w � gpQq � gpu, vq :� f
�
xpQq, ypQq, zpQq� � f

�
xpu, vq, ypu, vq, zpu, vq�,

Q � pu, vq P ∆. (1.16)
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Teoreem 1.9. Olgu funktsioonid (1.15) diferentseeruvad punktis Q0 � pu0, v0q P ∆
ning olgu funktsioon f diferentseeruv punktis

P0 � px0, y0, z0q �
�
xpQ0q, ypQ0q, zpQ0q

� P D.

Siis ka liitfunktsioon (1.16) on diferentseeruv punktis Q0. Seejuures

Bg
BupQ0q � Bf

Bx pP0q BxBupQ0q � Bf
By pP0q ByBupQ0q � Bf

Bz pP0q BzBupQ0q,
Bg
Bv pQ0q � Bf

Bx pP0q BxBv pQ0q � Bf
By pP0q ByBv pQ0q � Bf

Bz pP0q BzBv pQ0q.

Järgneva järelduse � Lagrange'i keskväärtusteoreemi mitme muutuja funktsioo-
nide jaoks � sõnastamiseks toome kõigepealt sisse ruumi Rm kahte punkti ühendava
sirglõigu mõiste.

De�nitsioon 1.6. Punkte P0 � px01, . . . , x0mq P Rm ja P � px1, . . . , xmq P Rm

ühendavaks sirglõiguks nimetatakse (ruumi Rm) punktihulka

P0P :�  px01 � t∆x1, . . . , x
0
m � t∆xmq P Rm : t P r0, 1s(

kus ∆xi :� xi � x0i , i � 1, . . . ,m.

Järeldus 1.10 (Lagrange'i keskväärtusteoreem mitme muutuja funktsioonide jaoks).
Olgu funktsioon u � fpP q � fpx1, . . . , xmq pidev punktides P0 � px01, . . . , x0mq P Rm

ja P � px01�∆x1, . . . , x
0
m�∆xmq P Rm, kus P �� P0, ning diferentseeruv neid punkte

ühendava sirglõigu igas punktis, välja arvatud, võib-olla, punktides P0 ja P endis.
Siis leidub punkt R punkte P0 ja P ühendaval sirglõigul punktide P0 ja P vahel (s.t.
R � px01 � θ∆x1, . . . , x

0
m � θ∆xmq mingi θ P p0, 1q korral) selliselt, et

fpP q � fpP0q �
m̧

i�1

Bf
Bxi pRq∆xi.

Tõestus. Vaatleme funktsiooni

Φptq � fpx01 � t∆x1, . . . , x
0
m � t∆xmq � f

�
ϕ1ptq, . . . , ϕmptq

�
, t P r0, 1s,

kus ϕiptq � x0i � t∆xi, i � 1, . . . ,m; siis fpP q � fpP0q � Φp1q �Φp0q. Funktsioon Φ
rahuldab lõigus r0, 1s kõiki Lagrange'i keskväärtusteoreemi eeldusi � ta on selles
lõigus pidev ning, vastavalt teoreemile 1.8, vahemikus p0, 1q diferentseeruv, sest mis
tahes t P p0, 1q korral funktsioonid ϕ1, . . . , ϕm on diferentseeruvad punktis t ning
funktsioon f on diferentseeruv punktis

Pt :�
�
ϕ1ptq, . . . , ϕmptq

� � px01 � t∆x1, . . . , x
0
m � t∆xmq;

seejuures

Φ1ptq � Bf
Bx1 pPtqϕ11ptq � � � � � Bf

Bxm pPtqϕ1mptq �
m̧

i�1

Bf
Bxi pPtq∆xi.
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Lagrange'i keskväärtusteoreemi kohaselt leidub arv θ P p0, 1q nii, et Φp1q � Φp0q �
Φ1pθq ning järelikult, tähistades R :� Pθ � px01 � θ∆x1, . . . , x

0
m � θ∆xmq,

fpP q � fpP0q � Φp1q � Φp0q � Φ1pθq �
m̧

i�1

Bf
Bxi pPθq∆xi �

m̧

i�1

Bf
Bxi pRq∆xi.

Jaotise (ja ühtlasi paragrahvi) lõpetuseks tõestame järeldusena Lagrange'i keskväärtusteoree-
mist mitme muutuja funktsioonide jaoks (s.t. järeldusest 1.10) järgneva teoreemi 1.11, millel on
(läbi lause V.5.6, (cc)) oluline roll muutuja vahetuse valemi (teoreemi V.5.4) tõestuses kordse
integraali jaoks.

Teoreem 1.4 ütleb (muuhulgas), et kui m muutuja funktsioon f on diferentseeruv punktis
P � px1, . . . , xmq, siis, tähistades ∆P :� p∆x1, . . . ,∆xmq ja P�∆P :� px1�∆x1, . . . , xm�∆xmq,
vahe NB! Tuua sisse

mõiste �funktsioo-
ni muudu lineaarne
peaosa�?

αpP,∆P q :� fpP �∆P q � fpP q �
� Bf
Bx1

pP q∆x1 � � � � � Bf
Bxm

pP q∆xm



rahuldab tingimust αpP,∆P q

ρ ÝÝÝÑ
ρÑ0

0, kus ρ :�
a
∆x2

1 � � � � �∆x2
m. Järgnev teoreem 1.11 ütleb, et

kui funktsioonil f eksisteerivad pidevad osatuletised lahtises hulgas U � Rm, siis mis tahes (ruumis NB! Kas siin

see �(ruumis Rm)
kinnise tõkestatud
alamhulga� on
õigesti mõistetav?

Rm) kinnise tõkestatud alamhulga K � U korral on see koonduvus ühtlane punktide P P K suhtes.

Teoreem 1.11. Eksisteerigu funktsioonil u � fpP q � fpx1, . . . , xmq lahtises hulgas U � Rm pide-
vad osatuletised (s.t. osatuletisfunktsioonid) kõigi argumentide järgi ning olgu tõkestatud alamhulk
K � U kinnine ruumis Rm. Tähistame punktide P � px1, . . . , xmq P Rm ja ∆P � p∆x1, . . . ,∆xmq P
Rm korral P �∆P :� px1 �∆x1, . . . , xm �∆xmq P Rm ja ρ :�

a
∆x2

1 � � � � �∆x2
m. Siis

fpP �∆P q � fpP q �
�
Bf
Bx1

pP q∆x1 � � � � � Bf
Bxm

pP q∆xm

	
ρ

ÝÝÝÑ
ρÑ0

0

ühtlaselt punktide P P K suhtes.

Tõestus. Olgu ε ¡ 0. Teoreemi tõestuseks piisab leida reaalarv δ ¡ 0 nii, et mis tahes punkti
∆P � p∆x1, . . . ,∆xmq P Rm korral, mis rahuldab tingimust ρ �

a
∆x2

1 � � � � �∆x2
m   δ, kehtib

tingimus

fpP �∆P q � fpP q �
m̧

i�1

Bf
Bxi

pP q∆xi   ε

gffe m̧

i�1

|∆xi|2 iga P P K korral. (1.17)

Selleks valime reaalarvu γ ¡ 0 nii, et BpP, γq � U iga P P K korral (meenutame, et sümbol BpP, γq
tähistab kinnist kera ruumis Rm keskpunktiga P P Rm ja raadiusega γ ¡ 0, s.t. BpP, γq :�  

Q P
Rm : dpP,Qq ¤ γ

(
); siis ühend D :� �

PPK BpP, γq � U on (ruumis Rm) kinnine tõkestatud hulk
(nii sellise reaalarvu γ ¡ 0 olemasolu kui ka ühendi D kinnisus ja tõkestatus on tõestatud ülesandes
I.2.6).

Olgu ∆P � p∆x1, . . . ,∆xmq P Rm selline, et ρ �
a
∆x2

1 � � � � �∆x2
m   γ ning olgu P �

px1, . . . , xmq P K suvaline. Siis Lagrange'i keskväärtusteoreemi põhjal mitme muutuja funktsioonide
jaoks (s.t. järelduse 1.10 põhjal) leidub reaalarv θ P p0, 1q nii, et

fpP �∆P q � fpP q �
m̧

i�1

Bf
Bxi

pP � θ∆P q∆xi,
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kus P � θ∆P :� px1 � θ∆x1, . . . , xm � θ∆xmq P Rm. Seega Rogers�Hölderi võrratuse põhjal (vt.
teoreemi I.1.2)

fpP �∆P q � fpP q �
m̧

i�1

Bf
Bxi

pP q∆xi �
m̧

i�1

� Bf
Bxi

pP � θ∆P q � Bf
Bxi

pP q


∆xi

¤
gffe m̧

i�1

���� BfBxi
pP � θ∆P q � Bf

Bxi
pP q

����2
gffe m̧

i�1

|∆xi|2.

Cantori teoreemi I.4.9 põhjal leidub reaalarv δ0 ¡ 0 nii, et�
Q,R P D, dpQ,Rq   δ0

�
ùñ

���� BfBxi
pQq � Bf

Bxi
pRq

����   ε?
m
, i � 1, . . . ,m.

Arvestades, et dpP, P � θ∆P q � θρ   ρ, järeldub eelnevast, et kui punkt ∆P � p∆x1, . . . ,∆xmq P
Rm rahuldab tingimust ρ �

a
∆x2

1 � � � � �∆x2
m   mintγ, δ0u �: δ. siis kehtib tingimus (1.17)

(põhjendada!) .
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Olgu funktsioon u � fpP q � fpx1, . . . , xmqmääratud punkti P0 � px01, . . . , x0mq P Rm

mingis ümbruses ning läbigu punkti P0 suunatud telg l, mille suund on määratud
vektoriga s⃗ � pa1, . . . , amq. Olgu s⃗0 � pc1, . . . , cmq vektori s⃗ suunaline ühikvektor,

s.t. s⃗0 :� s⃗

|s⃗| , kus sümbol |s⃗| tähistab vektori s⃗ pikkust.

NB! Rõhutame,
et meie käsitluses
on x1-telg, x2-telg
ja x3-telg omavahel
paarikaupa risti!

Märkus 2.1. Kuim � 2 võim � 3, siis vektori s⃗ suunalise (ja ühtlasi telje l suunalise) ühikvektori
s⃗0 � pc1, . . . , cmq koordinaadid on vastavalt vektori s⃗ ja x1-telje, vektori s⃗ ja x2-telje jne vaheliste
nurkade koosinused:

ci � cosαi, i � 1, . . . ,m,

kus αi on nurk vektori s⃗ ja xi-telje vahel (ehk, teisisõnu, nurk telje l ja xi-telje vahel ehk nurk
vektori s⃗0 ja xi telje vahel).

Veendume selles. Vaatleme ainult juhtu, kus m � 3 (juhtu, kus m � 2, käsitletakse analoogi-
liselt). Tähistades sümbolitega x⃗1, x⃗2 ja x⃗3 vastavalt x1-, x2- ja x3-telje suunalised ühikvektorid,
s.t. x⃗1 :� p1, 0, 0q, x⃗2 :� p0, 1, 0q ja x⃗3 :� p0, 0, 1q, saame ühelt poolt

s⃗0 � x⃗1 � c1 1� c2 0� c3 0 � c1,

teiselt poolt aga
s⃗0 � x⃗1 � |s⃗0| |x⃗1| cosα1 � cosα1;

niisiis c1 � cosα1. Võrdused c2 � cosα2 ja c3 � cosα3 tõestatakse analoogiliselt.

De�nitsioon 2.1. Kui eksisteerib piirväärtus

lim
tÑ0

fpP0 � ts⃗0q � fpP0q
t

,

siis seda piirväärtust nimetatakse funktsiooni f tuletiseks punktis P0 telje l suunas
(või vektori s⃗ suunas) ja tähistatakse sümbolitega

Bf
Bl pP0q, Bu

Bl pP0q, Bf
Bs⃗ pP0q, Bu

Bs⃗ pP0q

või

Bf
Bl px

0
1, . . . , x

0
mq,

Bu
Bl px

0
1, . . . , x

0
mq,

Bf
Bs⃗ px

0
1, . . . , x

0
mq,

Bu
Bs⃗ px

0
1, . . . , x

0
mq.

Toome välja mõned (vahetult de�nitsioonist 2.1 järelduvad) edasises kasulikuks

osutuda võivad valemid tuletise
Bf
Bs⃗ pP0q arvutamiseks: kui see tuletis eksisteerib, siis

Bf
Bs⃗ pP0q � lim

tÑ0

fpP0 � ts⃗0q � fpP0q
t

� lim
tÑ0

fpx01 � tc1, . . . , x
0
m � tcmq � fpx01, . . . , x0mq

t

� lim
τÑ0

fpx01 � τ |s⃗|c1, . . . , x0m � τ |s⃗|cmq � fpx01, . . . , x0mq
τ |s⃗|

� lim
tÑ0

fpx01 � ta1, . . . , x
0
m � tamq � fpx01, . . . , x0mq
t|s⃗| � lim

tÑ0

fpP0 � ts⃗q � fpP0q
t|s⃗| .

65
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Märkus 2.2. Vahetult de�nitsioonist järeldub, et funktsiooni u � fpP q � fpx1, . . . , xmq osa-
tuletised punktis P0 vastavalt muutujate x1, . . . , xm järgi on funktsiooni f tuletised punktis P0

vastavalt x1-telje, x2-telje jne suunas. (Eriti selgelt on see näha eelneva võrratusteahela teisest
võrdusest.)

De�nitsioon 2.2. Vektorit

gradfpP0q :� ∇fpP0q :�
�
f 1x1
pP0q, . . . , f 1xm

pP0q
�

nimetatakse funktsiooni f gradiendiks punktis P0.
Sümbolit ∇ loetakse: �nabla� või �atled�. Nimetus �nabla� tuleb heebreakeelsest sõnast vana-

aegse har�sarnase muusikariista kohta � elava fantaasiaga lugeja suudab kindlasti leida teatava

sarnasuse selle sümboli ja har� vahel; �atled� on �delta� loetuna tagant ettepoole, sümbol ∇ on

tagurpidi sümbol ∆!

Teoreem 2.1. Olgu funktsioon u � fpP q � fpx1, . . . , xmq diferentseeruv punktis
P0 � px01, . . . , x0mq P Rm. Siis funktsioonil f eksisteerib punktis P0 tuletis mis tahes
vektori s⃗ �� 0⃗ :� p0, . . . , 0loomoon

m arvu 0

q suunas, kusjuures see tuletis on võrdne gradiendi ∇fpP0q

ja vektori s⃗ suunalise ühikvektori skalaarkorrutisega:

Bf
Bs⃗ pP0q � ∇fpP0q � s⃗|s⃗| �

∇fpP0q � s⃗
|s⃗| . (2.1)

Esitame teoreemile 2.1 kaks tõestust, millest esimene toetub vahetult funktsiooni
diferentseeruvuse de�nitsioonile ning teine liitfunktsiooni diferentseerimise reeglile
teoreemile 1.8.

Teoreemi 2.1 tõestus, mis toetub funktsiooni diferentseeruvuse defi-

nitsioonile.Olgu s⃗0 � pc1, . . . , cmq vektori s⃗ �� 0⃗ suunaline ühikvektor, s.t. s⃗0 � s⃗

|s⃗| .
Teoreemi tõestuseks tuleb näidata, et

fpP0 � ts⃗0q � fpP0q
t

ÝÝÑ
tÑ0

f 1x1
pP0q c1 � � � � � f 1xm

pP0q cm. (2.2)

Funktsiooni f diferentseeruvuse tõttu punktis P0 esitub selle funktsiooni muut punk-
tis P0, mis vastab argumentide muutudele∆x1, . . . ,∆xm, kasutades tähistust∆P :�
p∆x1, . . . ,∆xmq, valemiga

fpP0 �∆P q � fpP0q � f 1x1
pP0q∆x1 � � � � � f 1xm

pP0q∆xm � αp∆P q, (2.3)

kus funktsioon α � αp∆P q � αp∆x1, . . . ,∆xmq rahuldab tingimust

αp∆x1, . . . ,∆xmq
ρ

ÝÝÑ
ρÑ0

0 (2.4)

(siin, nagu kõikjal, ρ :�
a
∆x21 � � � � �∆x2m). Valemi (2.3) põhjal, arvestades, et

ts⃗0 � ptc1, . . . , tcmq,
fpP0 � ts⃗0q � fpP0q

t
� f 1x1

pP0q tc1 � � � � � f 1xm
pP0q tcm � αptc1, . . . , tcmq
t

� f 1x1
pP0q c1 � � � � � f 1xm

pP0q cm � αptc1, . . . , tcmq
t

.
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Kuna
αptc1, . . . , tcmq

t
ÝÝÑ
tÑ0

0 (see järeldub koonduvusest (2.4) (põhjendada!) ), siis

(2.2) kehtib.

Teoreemi 2.1 tõestus, mis toetub liitfunktsiooni diferentseerimise

reeglile. Olgu s⃗0 � pc1, . . . , cmq vektori s⃗ �� 0⃗ suunaline ühikvektor, s.t. s⃗0 � s⃗

|s⃗| .
De�neerime funktsiooni

gptq :� fpP0 � ts⃗0q � fpx01 � tc1, . . . , x
0
m � tcmq.

Kuna funktsioon f on määratud punkti P0 mingis ümbruses, siis funktsioon g
on määratud punkti t � 0 teatavas ümbruses. Kuna gp0q � fpP0q, siis tuletis
Bf
Bs⃗ pP0q � lim

tÑ0

fpP0 � ts⃗0q � fpP0q
t

eksisteerib parajasti siis, kui eksisteerib tuletis

g1p0q � lim
tÑ0

gptq � gp0q
t

; seejuures need kaks tuletist on võrdsed. Seega piisab teo-

reemi tõestuseks näidata, et eksisteerib tuletis g1p0q, kusjuures g1p0q � ∇fpP0q � s⃗|s⃗| .
Funktsioon g on tõlgendatav liitfunktsioonina

gptq � f
�
ϕ1ptq, . . . , ϕmptq

�
,

kus ϕiptq � x0i � tci, i � 1, . . . ,m. Kuna

� funktsioonid ϕ1, . . . , ϕm on diferentseeruvad punktis 0, kusjuures ϕ1ip0q � ci,
i � 1, . . . ,m;

� funktsioon f on diferentseeruv punktis P0 � px01, . . . , x0mq �
�
ϕ1p0q, . . . , ϕmp0q

�
,

siis liitfunktsiooni diferentseerimise reegli (teoreemi 1.8) põhjal funktsioon g on dife-
rentseeruv punktis 0, kusjuures

g1p0q �
m̧

i�1

f 1xi
pP0qϕ1ip0q �

m̧

i�1

f 1xi
pP0q ci � ∇fpP0q � s⃗0 � ∇fpP0q � s⃗|s⃗| ,

nagu soovitud.

Märkus 2.3. Kui teoreemis 2.1 loobuda eeldusest funktsiooni f diferentseeruvuse
kohta punktis P0, siis valem (2.1) üldjuhul ei kehti.

Näide 2.1. Vaatleme kolme muutuja funktsiooni

u � fpx, y, zq � 3
?
xyz.

Sellel funktsioonil on punktis p0, 0, 0q olemas lõplik tuletis mis tahes suunas: kui s⃗ � pa, b, cq on
vektor pikkusega 1, siis

Bf
Bs⃗ p0, 0, 0q � lim

tÑ0

fp0� ta, 0� tb, 0� tcq � fp0, 0, 0q
t

� lim
tÑ0

3
?
ta tb tc

t
� lim

tÑ0

t 3
?
abc

t
� 3
?
abc.
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Eelnevast nähtub ka, et funktsioonil f eksisteerivad punktis p0, 0, 0q lõplikud osatuletised muutujate
x, y ja z järgi (sest need osatuletised on tuletised vastavalt x-, y- ja z-telje suunas), kusjuures

f 1xp0, 0, 0q � f 1yp0, 0, 0q � f 1zp0, 0, 0q � 0;

niisiis ∇fp0, 0, 0q � p0, 0, 0q. Seega mis tahes ühikvektori s⃗ � pa, b, cq korral
∇fp0, 0, 0q � s⃗ � 0a� 0b� 0c � 0,

kuid
Bf
Bs⃗ p0, 0, 0q �

3
?
abc �� 0, kui a, b, c �� 0.

Näide 2.2. Vaatleme kahe muutuja funktsiooni

z � fpx, yq � 3
a
x2y.

Sellel funktsioonil on punktis p0, 0q olemas lõplik tuletis mis tahes suunas: kui s⃗ � pa, bq on vektor
pikkusega 1, siis

Bf
Bs⃗ p0, 0q � lim

tÑ0

fp0� ta, 0� tbq � fp0, 0q
t

� lim
tÑ0

3
?
t2a2 tb

t
� lim

tÑ0

t
3
?
a2b

t
� 3
?
a2b.

Eelnevast nähtub ka, et funktsioonil f eksisteerivad punktis p0, 0q lõplikud esimest järku osatule-
tised muutujate x ja y järgi (sest need osatuletised on tuletised vastavalt vektorite p1, 0q ja p0, 1q
suunas), kusjuures

f 1xp0, 0q � f 1yp0, 0q � 0;

niisiis ∇fp0, 0q � p0, 0q. Seega mis tahes ühikvektori s⃗ � pa, bq korral
∇fp0, 0q � s⃗ � 0a� 0b � 0,

kuid
Bf
Bs⃗ p0, 0q �

3
?
a2b �� 0, kui a, b �� 0.

Teoreem 2.2. Olgu funktsioon u � fpP q � fpx1, . . . , xmq diferentseeruv punktis
P0 � px01, . . . , x0mq P Rm. Siis funktsiooni f tuletis punktis P0 mis tahes suunas
ei ületa tema tuletist selles punktis gradiendi ∇fpP0q suunas (ehk, teisisõnu, tuletis
gradiendi suunas on kõikvõimalikes suundades võetud tuletiste maksimaalne väär-
tus). Funktsiooni f tuletis punktis P0 gradiendi ∇fpP0q suunas on võrdne gradiendi
∇fpP0q pikkusega

��∇fpP0q
��.

Tõestus. Funktsiooni f tuletis punktis P0 gradiendi ∇fpP0q suunas on teoree-
mi 2.1 põhjal

Bf
B∇fpP0qpP0q � ∇fpP0q �∇fpP0q��∇fpP0q

�� �
��∇fpP0q

��2��∇fpP0q
�� � ��∇fpP0q

��,
s.t. see tuletis on võrdne gradiendi ∇fpP0q pikkusega.

Mis tahes s⃗ P Rm, s⃗ �� 0⃗, korral, de�neerides s⃗0 � pc1, . . . , cmq :� s⃗

|s⃗| (s.t. s⃗0 on
vektori s⃗ suunaline ühikvektor), on funktsiooni f tuletis punktis P0 vektori s⃗ suunas
teoreemi 2.1 ja Rogers�Hölderi võrratuse (vt. teoreemi I.1.2) põhjal

Bf
Bs⃗ pP0q � ∇fpP0q � s⃗|s⃗| � ∇fpP0q � s⃗0 �

m̧

i�1

f 1xi
pP0q ci ¤

m̧

i�1

|f 1xi
pP0q| |ci|

¤
d

m̧

i�1

|f 1xi
pP0q|2

d
m̧

i�1

|ci|2 �
��∇fpP0q

�� |s⃗0| � ��∇fpP0q
��, (2.5)

s.t. see tuletis ei ületa funktsiooni f tuletist punktis P0 gradiendi∇fpP0q suunas.
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Märkus 2.4. Võrratusteahelast (2.5) ja ülesandest I.1.2 järeldub, et teoreemis 2.2 (s.t. punktis P0

diferentseeruva funktsiooni f korral) punktis P0 kõikvõimalikes suundades võetud (funktsiooni f)
tuletiste maksimaalne väärtus

��∇fpP0q
�� (gradiendi ∇fpP0q pikkus) saavutatakse parajasti gradi-

endi ∇fpP0q suunas.

Märkus 2.5. Kui m � 2 või m � 3, siis võime teoreemi 2.2 tõestuses Rogers�Hölderi võrratuse
asemel toetuda trigonomeetria-alastele teadmistele. Esitame niisuguse tõestuse.

Teoreemi 2.2 tõestus juhtude m � 2 ja m � 3 jaoks, mis ei kasuta Rogers�Hölderi
võrratust. Funktsiooni f tuletis punktis P0 vektori s⃗ �� 0⃗ suunas on teoreemi 2.1 põhjal, tähis-
tades sümboliga θ nurga selle vektori ja gradiendi ∇fpP0q vahel,

Bf
Bs⃗ pP0q � ∇fpP0q � s⃗

|s⃗| �
��∇fpP0q

�� |s⃗| cos θ
|s⃗| � ��∇fpP0q

�� cos θ.
Näeme, et sellel tuletisel on suurim võimalik väärtus parajasti juhul, kui cos θ � 1, s.t. θ � 0 ehk,
teisisõnu, vektori s⃗ ja gradiendi ∇fpP0q suunad ühtivad. Eelnevast võrdusteahelast näeme ka, et
tuletis punktis P0 gradiendi ∇fpP0q suunas on

Bf
B∇fpP0q pP0q �

��∇fpP0q
�� cos 0 � ��∇fpP0q

��.
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3.1. Kõrgemat järku osatuletised

Olgu funktsioon u � fpP q � fpx1, . . . , xmqmääratud punkti P0 � px01, . . . , x0mq P Rm

mingis ümbruses ning olgu i P t1, . . . ,mu. Kui funktsioonil f eksisteerib igas punk-
tis P punkti P0 mingist ümbrusest U lõplik osatuletis f 1xi

pP q, siis selles ümbruses on
määratud osatuletisfunktsioon

f 1xi
: U Q P ÞÝÑ f 1xi

pP q P R.

De�nitsioon 3.1. Olgu j P t1, . . . ,mu. Kui osatuletisfunktsioonil f 1xi
eksisteerib

punktis P0 (lõplik või lõpmatu) osatuletis argumendi xj järgi pf 1xi
q1xj
pP0q, siis seda

osatuletist nimetatakse funktsiooni f teist järku (ehk lihtsalt teiseks) osatuletiseks
punktis P0 (argumentide xi ja xj järgi) ning tähistatakse sümbolitega

B2f
Bxj Bxi pP0q, B2u

Bxj Bxi pP0q, f2xixj
pP0q, u2xixj

pP0q, fxixj
pP0q, uxixj

pP0q (3.1)

või

B2f
Bxj Bxi px

0
1, . . . , x

0
mq,

B2u
Bxj Bxi px

0
1, . . . , x

0
mq, f2xixj

px01, . . . , x0mq, u2xixj
px01, . . . , x0mq,

fxixj
px01, . . . , x0mq, uxixj

px01, . . . , x0mq.
Seejuures, kui j �� i, siis seda teist järku osatuletist nimetatakse segaosatuletiseks
(ehk segatuletiseks).

Kui mingi hulga D � Rm igas punktis P eksisteerib lõplik teist järku osatuletis
f2xixj

pP q, siis hulgas D on määratud (teist järku) osatuletisfunktsioon (argumentide
xi ja xj järgi)

f2xixj
: D Q P ÞÝÑ f2xixj

pP q P R,
mida nimetatakse ka lihtsalt (funktsiooni f) teist järku (ehk lihtsalt teiseks) osa-
tuletiseks (argumentide xi ja xj järgi). Seda osatuletist (s.t. osatuletisfunktsiooni)
tähistatakse sümbolitega

B2f
Bxj Bxi ,

B2u
Bxj Bxi , f2xixj

, u2xixj
, fxixj

, uxixj
. (3.2)

Tähistused (3.1) on tähistustega (3.2) hästi kooskõlas: (lõplik) teist järku osatuletis
antud punktis on vastava osatuletisfunktsiooni väärtus selles punktis.

Üldiselt,

B2f
Bxj Bxi �

B
� Bf
Bxi

	
Bxj ,

B2u
Bxj Bxi �

B
� Bu
Bxi

	
Bxj , f2xixj

� pf 1xi
q1xj
, u2xixj

� pu1xi
q1xj
,

fxixj
� pfxi

qxj
, uxixj

� puxi
qxj
.

70
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Me kasutame tähistusi (juhu j � i jaoks)

B2f
Bxi Bxi �:

B2f
Bx2i

,
B2u

Bxi Bxi �:
B2u
Bx2i

, f2xixi
�: f2x2

i
, u2xixi

�: u2x2
i
,

fxixi
�: fx2

i
, uxixi

�: ux2
i
.

(3.3)

Näide 3.1. Leiame funktsiooni

u � fpx, yq �
$&%xy

x2 � y2

x2 � y2
, kui x2 � y2 �� 0,

0, kui x2 � y2 � 0,

teist järku osatuletised. Kui px, yq �� p0, 0q, saame vahetult diferentseerides

Bf
Bx px, yq �

�
x3y � xy3

x2 � y2


1

x

� x4y � 4x2y3 � y5

px2 � y2q2 ,

millest sümmeetria põhjal
Bf
By px, yq �

x5 � 4x3y2 � xy4

px2 � y2q2 ;

seega, jällegi vahetult diferentseerides,

B2f
Bx2

px, yq �
�
x4y � 4x2y3 � y5

px2 � y2q2

1

x

� �4x3y3 � 12xy5

px2 � y2q3
ja

B2f
By Bx px, yq �

�
x4y � 4x2y3 � y5

px2 � y2q2

1

y

� x6 � 9x4y2 � 9x2y4 � y6

px2 � y2q3 ,

millest sümmeetria põhjal vastavalt

B2f
By2 px, yq �

�12x5y � 4x3y3

px2 � y2q3
ja

B2f
Bx By px, yq �

x6 � 9x4y2 � 9x2y4 � y6

px2 � y2q3 .

Leiame funktsiooni f esimest järku osatuletised punktis p0, 0q:
Bf
Bx p0, 0q � lim

hÑ0

fp0� h, 0q � fp0, 0q
h

� lim
hÑ0

0� 0

h
� 0,

Bf
By p0, 0q � lim

hÑ0

fp0, 0� hq � fp0, 0q
h

� lim
hÑ0

0� 0

h
� 0.

Nüüd saame leida funktsiooni f teist järku osatuletised punktis p0, 0q:

B2f
Bx2

p0, 0q � lim
hÑ0

Bf
Bx p0� h, 0q � Bf

Bx p0, 0q
h

� lim
hÑ0

0� 0

h
� 0,

B2f
By Bx p0, 0q � lim

hÑ0

Bf
Bx p0, 0� hq � Bf

Bx p0, 0q
h

� lim
hÑ0

�h5

h4
� 0

h
� lim

hÑ0

�h5

h5
� �1,

B2f
By2 p0, 0q � lim

hÑ0

Bf
By p0, 0� hq � Bf

By p0, 0q
h

� lim
hÑ0

0� 0

h
� 0,

B2f
Bx By p0, 0q � lim

hÑ0

Bf
By p0� h, 0q � Bf

By p0, 0q
h

� lim
hÑ0

h5

h4
� 0

h
� lim

hÑ0

h5

h5
� 1.
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Üldiselt, (m muutuja) funktsiooni kõrgemat järku osatuletised de�neeritakse re-
kursiivselt , sarnaselt teist järku osatuletistega. Haarame järgnevas kaasa ka (eelne-
vas juba de�neeritud) teist järku osatuletiste juhu.

Olgu n ¥ 2, kusjuures eeldame, et meil on de�neeritud m muutuja funktsiooni
pn� 1q-järku osatuletisfunktsioonid.

Olgu funktsioon u � fpP q � fpx1, . . . , xmq määratud punkti P0 � px01, . . . , x0mq P
Rm mingis ümbruses ning olgu i1, . . . , in P t1, . . . ,mu. Eksisteerigu funktsioonil f
igas punktis P punkti P0 mingist ümbrusest U lõplik pn � 1q-järku osatuletis
f
pn�1q
xi1

...xin�1
pP q (argumentide xi1 , . . . , xin�1 järgi). Siis selles ümbruses on määratud

pn� 1q-järku osatuletisfunktsioon

f pn�1q
xi1

...xin�1
: U Q P ÞÝÑ f pn�1q

xi1
...xin�1

pP q P R.

De�nitsioon 3.2. Kui pn � 1q-järku osatuletisfunktsioonil f pn�1q
xi1

...xin�1
eksisteerib

punktis P0 (lõplik või lõpmatu) osatuletis argumendi xin järgi
�
f
pn�1q
xi1

...xin�1

�1
xin
pP0q,

siis seda osatuletist nimetatakse funktsiooni f n -ndat järku (ehk lihtsalt n-ndaks;NB! Siin on süm-
bolite f ja n kõrvu-
tiolek halb. kirjutatakse ka: n-järku) osatuletiseks punktis P0 (argmentide xi1 , . . . , xin järgi) ja

tähistatakse sümbolitega

Bnf
Bxin � � � Bxi1

pP0q, Bnu
Bxin � � � Bxi1

pP0q, f pnqxi1
...xin

pP0q, upnqxi1
...xin

pP0q,
fxi1

...xin
pP0q, uxi1

...xin
pP0q

(3.4)

või

Bnf
Bxin � � � Bxi1

px01, . . . , x0mq,
Bnu

Bxin � � � Bxi1
px01, . . . , x0mq,

f pnqxi1
...xin

px01, . . . , x0mq, upnqxi1
...xin

px01, . . . , x0mq,
fxi1

...xin
px01, . . . , x0mq, uxi1

...xin
px01, . . . , x0mq.

Seejuures, kui mõned indeksitest i1, . . . , in pole omavahel võrdsed (s.t. tegemist pole
olukorraga, kus xi1 , . . . , xin on üks ja sama argument), siis seda n-ndat järku osa-
tuletist nimetatakse segaosatuletiseks (ehk segatuletiseks).

Kui mingi hulga D � Rm igas punktis P eksisteerib lõplik n-ndat järku osa-
tuletis f pnqxi1

...xin
pP q, siis hulgas D on määratud (n-ndat järku) osatuletisfunktsioon

(argumentide xi1 , . . . , xin järgi)

f pnqxi1
...xin

: D Q P ÞÝÑ f pnqxi1
...xin

pP q P R,

mida nimetatakse ka lihtsalt (funktsiooni f) n-ndat järku (ehk lihtsalt n-ndaks; kir-
jutatakse ka: n-järku) osatuletiseks (argumentide xi1 , . . . , xin järgi). Seda osatuletist
(s.t. osatuletisfunktsiooni) tähistatakse sümbolitega

Bnf
Bxin � � � Bxi1

,
Bnu

Bxin � � � Bxi1
, f pnqxi1

...xin
, upnqxi1

...xin
, fxi1

...xin
, uxi1

...xin
. (3.5)

Tähistused (3.4) on tähistustega (3.5) hästi kooskõlas: (lõplik) n-ndat järku osa-
tuletis antud punktis on vastava osatuletisfunktsiooni väärtus selles punktis.
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Üldiselt,

Bnf
Bxin � � � Bxi1

�
B
�

Bn�1f
Bxin�1

���Bxi1

	
Bxin

,
Bnu

Bxin � � � Bxi1
�
B
�

Bn�1u
Bxin�1

���Bxi1

	
Bxin

,

f pnqxi1
...xin

� pf pn�1q
xi1

...xin�1
q1xin

, upnqxi1
...xin

� pupn�1q
xi1

...xin�1
q1xin

,

fxi1
...xin

� pfxi1
...xin�1

qxin
, uxi1

...xin
� puxi1

...xin�1
qxin

.

Märkus 3.1. Märkimaks funktsiooni u � fpP q � fpx1, . . . , xmq n-ndat järku osa-
tuletist argumentide xi1 , . . . , xin järgi, kasutatakse tähistuste (3.5) kõrval sageli ka
tähistusi Bn

Bxin � � � Bxi1
f ja

Bn
Bxin � � � Bxi1

u;

niisiis (kooskõlas märkuses 1.1 kirjeldatud tähistustega)

Bn
Bxin � � � Bxi1

f � B
Bxin

� Bn�1

Bxin�1 � � � Bxi1
f



.

Mitme muutuja funktsioonide kõrgemat järku osatuletiste märkimisel kasutatak-
se teist järku osatuletiste puhul kasutatavate lihtsustavate tähistuste (3.3) analooge:
näiteks kolme muutuja funktsiooni u � fpx, y, zq korral

B3f
Bx Bx Bx �:

B3f
Bx3 , f3xxx �: f3x3 ,

B5f
Bx Bz Bz Bx By �:

B5f
Bx Bz2 Bx By , f p5qyxzzx �: f p5qyxz2x,

B6f
By By By Bx Bz Bz �:

B6f
By3 Bx Bz2 , f p6qzzxyyy �: f p6qz2xy3 .

3.2. Kõrgemat järku diferentseeruvus

Juhul, kui n ¥ 2, de�neeritakse m-muutuja funktsiooni n-kordne diferentseeruvus
antud punktis rekursiivselt : n-kordse diferentseeruvuse de�nitsioon toetub pn� 1q-
kordse diferentseeruvuse mõistele.

De�nitsioon 3.3. Olgu n ¥ 2. Öeldakse, et m muutuja funktsioon f on n korda
diferentseeruv punktis P0 P Rm, kui see funktsioon on n � 1 korda diferentseeruv
punkti P0 mingis ümbruses (s.t. igas punktis punkti P0 mingist ümbrusest on see
funktsioon n � 1 korda diferentseeruv), kusjuures selle funktsiooni pn � 1q-järku
osatuletisfunktsioonid on diferentseeruvad punktis P0.

Öeldakse, et funktsioon f on n korda diferentseeruv hulgas D � Rm, kui see
funktsioon on n korda diferentseeruv hulga D igas punktis.

Vahetult eelnevast de�nitsioonist nähtub, et antud punktis n korda diferentsee-
ruval funktsioonil eksisteerivad selles punktis kõikvõimalikud lõplikud n-ndat järku
osatuletised, sest funktsiooni f pn� 1q -järku osatuletisfunktsioonide diferentsee- NB! Siin on süm-

bolite f ja pn � 1q
kõrvutiolek halb.



74 II. Mitme muutuja funktsioonide diferentsiaalarvutus

ruvusest punktis P0 järeldub funktsioonil f kõikvõimalike n-ndat järku osatuletiste
olemasolu ja lõplikkus selles punktis (sest teoreemi 1.3 põhjal funktsiooni diferentsee-
ruvusest antud punktis järeldub sellel funktsioonil lõplike esimest järku osatuletiste
olemasolu selles punktis kõigi argumentide järgi ning funktsiooni pn� 1q-järku osa-
tuletisfunktsioonide esimest järku osatuletised on parajasti selle funktsiooni n-ndat
järku osatuletised).

Vastavalt de�nitsioonile 3.3 tähendab m muutuja funktsiooni f kahekordne dife-
rentseeruvus punktis P0 P Rm, et funktsioon f on diferentseeruv punkti P0 mingis
ümbruses (ja seega teoreemi 1.3 põhjal eksisteerivad sellel funktsioonil selles ümbru-
ses lõplikud esimest järku osatuletised kõigi argumentide järgi), kusjuures selle funkt-
siooni esimest järku osatuletisfunktsioonid on diferentseeruvad punktis P0 (ning see-
ga teoreemi 1.3 põhjal sellel funktsioonil eksisteerivad kõikvõimalikud lõplikud teist
järku osatuletised selles punktis). Järgnev teoreem kirjeldab m muutuja funktsiooni
n-kordset diferentseeruvust punktis P0 P Rm juhul, kui n ¥ 3.

Teoreem 3.1. Olgu m muutuja funktsioon f määratud punkti P0 P Rm mingis
ümbruses ning olgu n ¥ 3. Järgmised väited on samaväärsed:

(i) funktsioon f on n korda diferentseeruv punktis P0;
NB! Siin on süm-
bolite f ja pn � 2q
kõrvutiolek halb. (ii) funktsiooni f pn� 2q -järku osatuletisfunktsioonid on diferentseeruvad punk-

ti P0 mingis ümbruses, kusjuures selle funktsiooni pn�1q-järku osatuletisfunkt-
sioonid on diferentseeruvad punktis P0.

Teoreem 3.1 on järeldus järgnevast teoreemist, mis kirjeldab m muutuja funktsiooni
n-kordset diferentseeruvust lahtises hulgas U � Rm juhul, kui n ¥ 2.

Teoreem 3.2. Olgu m muutuja funktsioon f määratud lahtises hulgas U � Rm ning
olgu n ¥ 2. Järgmised väited on samaväärsed:

(i) funktsioon f on n korda diferentseeruv hulgas U ;
NB! Siin on süm-
bolite f ja pn � 1q
kõrvutiolek halb. (ii) funktsiooni f pn� 1q-järku osatuletisfunktsioonid on diferentseeruvad hul-

gas U .

Teoreemi 3.1 tõestus. Samaväärsus (i)ô(ii) järeldub teoreemist 3.2, sest selleNB! Siin on süm-
bolite f ja pn � 1q
kõrvutiolek halb. teoreemi põhjal on funktsiooni f pn� 1q -kordne diferentseeruvus punkti P0 mingis

lahtises ümbruses samaväärne selle funktsiooni pn�2q-järku osatuletisfunktsioonide
diferentseeruvusega selles ümbruses.

Teoreemi 3.2 tõestus. (i)ñ(ii) on ilmne, sest funktsiooni f n -kordne diferent-NB! Siin on süm-
bolite f ja n kõrvu-
tiolek halb. seeruvus hulgas U tähendab selle funktsiooni n-kordset diferentseeruvust selle hulga

igas punktis, millest järeldub selle funktsiooni pn � 1q-järku osatuletiste diferent-
seeruvus selle hulga igas punktis, mis aga tähendab funktsiooni f pn� 1q -järkuNB! Siin on süm-

bolite f ja pn � 1q
kõrvutiolek halb. osatuletiste diferentseeruvust hulgas U .

(ii)ñ(i). Vaatleme kõigepealt juhtu, kus n � 2. Kehtigu (ii), s.t. funktsioo-
ni f esimest järku osatuletisfunktsioonid on diferentseeruvad hulgas U , s.t. need



� 3. Kõrgemat järku osatuletised ja diferentsiaalid 75

osatuletisfunktsioonid on diferentseeruvad hulga U igas punktis. Siis (lause 1.5 põh-
jal) funktsiooni f esimest järku osatuletisfunktsioonid on ka pidevad hulga U igas
punktis, järelikult teoreemi 1.6 põhjal on funktsioon f diferentseeruv hulga U igas
punktis, s.t. funktsioon f on diferentseeruv hulgas U . Veendumaks, et kehtib (i), s.t.,
et funktsioon f on kaks korda diferentseeruv hulgas U , jääb vaid (veel kord) märkida,
et vastavalt tehtud eeldusele on funktsiooni f esimest järku osatuletisfunktsioonid
diferentseeruvad hulga U igas punktis.

Eeldame nüüd, et naturaalarv k ¥ 2 on selline, et implikatsioon (ii)ñ(i) kehtib,
kui n � k. Tõestamaks, et implikatsioon (ii)ñ(i) kehtib iga naturaalarvu n ¥ 2 kor-
ral, jääb näidata, et sel eeldusel implikatsioon (ii)ñ(i) kehtib ka juhul, kui n � k�1.
Selleks eeldame, et m muutuja funktsiooni f k -ndat järku osatuletisfunktsioonid NB! Siin on süm-

bolite f ja k kõrvu-
tiolek halb.on diferentseeruvad hulgas U , s.t. funktsiooni f k -ndat järku osatuletisfunktsioo-
NB! Siin on süm-
bolite f ja k kõrvu-
tiolek halb.

nid on diferentseeruvad hulga U igas punktis. Veendumaks implikatsiooni (ii)ñ(i)
kehtivuses juhul, kui n � k � 1, peame näitama, et funktsioon f on k � 1 korda
diferentseeruv hulga U igas punktis. Selleks piisab näidata, et

(1) funktsioon f on k korda diferentseeruv hulgas U ; NB! Siin on süm-
bolite f ja k kõrvu-
tiolek halb.

(2) funktsiooni f k -ndat järku osatuletisfunktsioonid on diferentseeruvad hulga U
igas punktis.

Tingimus (2) kehtib tehtud eelduse põhjal; niisiis jääb näidata, et kehtib tingi-
mus (1). Tehtud eelduse põhjal implikatsiooni (ii)ñ(i) kehtivusest juhul, kui n � k,
piisab selleks veenduda, et funktsiooni f pk � 1q -järku osatuletisfunktsioonid on NB! Siin on süm-

bolite f ja pk � 1q
kõrvutiolek halb.diferentseeruvad hulgas U , s.t. need osatuletisfunktsioonid on diferentseeruvad hul-

ga U igas punktis. Teoreemi 1.6 põhjal piisab selleks märkida, et nendel pk � 1q-
järku osatuletisfunktsioonidel eksisteerivad hulga U igas punktis lõplikud esimest
järku osatuletised (need esimest järku osatuletised on funktsiooni f k -ndat järku NB! Siin on süm-

bolite f ja k kõrvu-
tiolek halb.osatuletised), kusjuures vastavad esimest järku osatuletisfunktsioonid (s.t. funkt-
NB! Siin on süm-
bolite f ja k kõrvu-
tiolek halb.

siooni f k -ndat järku osatuletisfunktsioonid) on pidevad hulga U igas punktis (sest

NB! Siin on süm-
bolite f ja k kõrvu-
tiolek halb.

lause 1.5 põhjal järeldub funktsiooni f k -ndat järku osatuletisfunktsioonide dife-
rentseeruvusest hulga U igas punktis nende osatuletisfunktsioonide pidevus selle
hulga igas punktis).

Märkus 3.2. Paljudes allikates (nt. õpikutes [IP, I] ja [ISS]) de�neeritakse m muutuja funkt-
siooni n-kordne diferentseeruvus antud punktis de�nitsioonist 3.3 veidi erineval moel: funktsioon
u � fpP q � fpx1, . . . , xmq loetakse n korda diferentseeruvaks punktis P0 P Rm, kui sellel funktsioo-
nil eksisteerivad selle punkti mingis ümbruses kõikvõimalikud lõplikud pn � 1q-järku osatuletised,
kusjuures vastavad pn� 1q-järku osatuletisfunktsioonid on diferentseeruvad punktis P0.

On ilmne, et m-muutuja funktsiooni n-kordsest diferentseeruvusest punktis P0 (de�nitsiooni
3.3 mõttes) järeldub selle funktsiooni n-kordne diferentseeruvus märkuses 3.2 kirjeldatud mõttes,
sest funktsiooni pn � 1q-kordsest diferentseeruvusest punkti P0 mingis ümbruses järeldub sellel
funktsioonil kõikvõimalike pn� 1q-järku osatuletiste olemasolu ja lõplikkus selles ümbruses. NB! Konspekti

autorile teada-
olevad näited sellise
olukorra kohta on
mittetriviaalsed.

Teiselt poolt (kui m ¥ 2 ja n ¥ 2), üldjuhul ei järeldu m muutuja funktsiooni n-kordsest
diferentseeruvusest antud punktis märkuses 3.2 kirjeldatud mõttes selle funktsiooni n-kordset dife-
rentseeruvust selles punktis (de�nitsiooni 3.3 mõttes).
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Samas, m-muutuja funktsioon on n korda diferentseeruv lahtises hulgas U � Rm (de�nitsioo-
ni 3.3 mõttes) parajasti siis, kui see funktsioon on n korda diferentseeruv selle hulga igas punktis
märkuses 3.2 kirjeldatud mõttes � see samaväärsus järeldub vahetult teoreemist 3.2.

Märgime, et kõik teoreemid/laused/lemmad/järeldused käesolevas konspektis, kus eelduseks on

mingi funktsiooni n-kordne diferentseeruvus (juhul n ¥ 2) ükskõik kas mingis etteantud punktis

või etteantud hulgas, jäävad kehtima ka juhul, kui n-kordset diferentseeruvust mõista märkuses 3.2

kirjeldatud mõttes, kusjuures ka nende tulemuste tõestused sellise juhu jaoks jäävad sõna-sõnalt

(või peaaegu sõna-sõnalt) samaks. Siin on üks huvitav nüanss seoses järeldusega 3.5. Nimelt, sel-

le järelduse tõestus toetub väitele, et (juhul, kui n ¥ 2) antud punktis n korda diferentseeruv

funktsioon on selles punktis ka n� 1 korda diferentseeruv. Kui n-kordset diferentseeruvust mõista

de�nitsiooni 3.3 mõttes, on see ilmne; kui aga n-kordset diferentseeruvust mõista märkuses 3.2

kirjeldatud mõttes, pole see üldsegi (nii) ilmne.

Olgu n ¥ 2. Näitame, et antud punktis märkuses 3.2 kirjeldatud mõttes n korda diferentseeruv

funktsioon on nimetatud mõttes ka n�1 korda diferentseeruv selles punktis. Selleks eeldame, et m

muutuja funktsioon f on punktis P0 nimetatud mõttes n korda diferentseeruv, s.t. funktsioonil f

eksisteerivad punkti P0 mingis ümbruses U kõikvõimalikud lõplikud pn�1q-järku osatuletised, kus-

juures vastavad osatuletisfunktsioonid on diferentseeruvad punktis P0. Siis funktsioonil f eksistee-

rivad ümbruses U kõikvõimalikud lõplikud pn�2q-järku osatuletised (sest pn�1q-järku osatuletised

on pn� 2q-järku osatuletisfunktsioonide esimest järku osatuletised), seega, veendumaks, et funkt-

sioon f on n�1 korda diferentseeruv punktis P0 märkuses 3.2 kirjeldatud mõttes, jääb näidata, etNB! Siin on süm-
bolite f ja pn � 2q
kõrvutiolek halb. funktsiooni f pn� 2q -järku osatuletisfunktsioonid on diferentseeruvad punktis P0. Teoreemi 1.6

põhjal piisab selleks märkida, et nimetatud pn�2q-järku osatuletisfunktsioonidel eksisteerivad lõp-

likud esimest järku osatuletised punkti P0 ümbruses U (need esimest järku osatuletised on funkt-NB! Siin on süm-
bolite f ja pn � 1q
kõrvutiolek halb. siooni f pn� 1q -järku osatuletised), kusjuures vastavad esimest järku osatuletisfunktsioonid on

pidevad punktis P0 (sest lause 1.5 põhjal järeldub funktsiooni f pn� 1q -järku osatuletisfunkt-NB! Siin on süm-
bolite f ja pn � 1q
kõrvutiolek halb. sioonide diferentseeruvusest punktis P0 nende osatuletisfunktsioonide pidevus punktis P0).

3.3. Piisavaid tingimusi segaosatuletiste sõltumatuseks
diferentseerimise järjekorrast

Lk. 71 näite 3.1 funktsiooni u � fpx, yq puhul kehtis väljaspool punkti p0, 0q võr-
dus f2xy � f2yx, s.t. samade argumentite järgi võetud segaosatuletis ei sõltunud

diferentseerimise järjekorrast. Samas pole see mitte alati nii: selles samas näitesNB! Kuidas seda
mõista?

NB! Või �Sellessa-
mas�?

f2xyp0, 0q �� f2yxp0, 0q.
Selles jaotises anname mõned piisavad tingimused segaosatuletiste sõltumatuseks

diferentseerimise järjekorrast.

Teoreem 3.3. Olgu funktsioon u � fpP q � fpx, yq kaks korda diferentseeruv punktis
P � px, yq P R2. Siis

f2xypP q � f2yxpP q.
Tõestus. Teoreemi eeldustel leidub reaalarv d ¡ 0, mille korral funktsioonil f
eksisteerivad (esimest järku) osatuletised (s.t. osatuletisfunktsioonid) f 1x ja f

1
y punkti

P � px, yq ümbruses px� d, x� dq � py � d, y � dq. De�neerime funktsiooni

Φphq � fpx� h, y � hq � fpx� h, yq � �
fpx, y � hq � fpx, yq�, h P p�d, dq. (3.6)
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Teoreemi tõestuseks piisab näidata, et, ühelt poolt, NB! Joonis?

Φphq � f2xypx, yqh2 � oph2q protsessis hÑ 0 (3.7)

ning, teiselt poolt,

Φphq � f2yxpx, yqh2 � oph2q protsessis hÑ 0, (3.8)

sest nende esituste kehtides f2xypx, yq � oph2q
h2 � f2yxpx, yq � oph2q

h2 protsessis h Ñ 0,
millest järeldub, et f2xypx, yq � f2yxpx, yq.

Esituse (3.7) saamiseks �kseerime vabalt h P p�d, dqzt0u ja de�neerime funkt-
siooni

ϕpξq � fpξ, y � hq � fpξ, yq, ξ P px� d, x� dq; (3.9)

siis
Φphq � ϕpx� hq � ϕpxq.

Kuna funktsioon ϕ rahuldab lõigus rx, x� hs (või lõigus rx� h, xs, kui h   0) kõiki
Lagrange'i keskväärtusteoreemi eeldusi, kusjuures

ϕ1pξq � f 1xpξ, y � hq � f 1xpξ, yq,
siis leidub arv θ P p0, 1q nii, et NB! Kas on vaja

rõhutada, et θ sõl-
tub arvust h?

Φphq � ϕpx�hq�ϕpxq � ϕ1px�θhqh � �
f 1xpx�θh, y�hq�f 1xpx�θh, yq

�
h. (3.10)

Kuna osatuletis(funktsioon) f 1x on diferentseeruv punktis P � px, yq, siis tema muut
punktis P esitub kujul

f 1xpx�∆x, y �∆yq � f 1xpx, yq
� f2xxpx, yq∆x� f2xypx, yq∆y � α1p∆x,∆yq∆x� α2p∆x,∆yq∆y,

kus funktsioonid α1 ja α2 rahuldavad tingimust αip∆x,∆yq ÝÝÝÝÝÝÑ
∆x,∆yÑ0

0, i � 1, 2.

Seega

f 1xpx� θh,y � hq � f 1xpx� θh, yq
� f 1xpx� θh, y � hq � f 1xpx, yq �

�
f 1xpx� θh, yq � f 1xpx, yq

�
� f2x2px, yq θh� f2xypx, yqh� α1pθh, hq θh� α2pθh, hqh

� �
f2x2px, yq θh� α1pθh, 0q θh

�
� f2xypx, yqh� α1pθh, hq θh� α2pθh, hqh� α1pθh, 0q θh.

Niisiis, arvestades, et α1pθh, hq θh � α2pθh, hqh � α1pθh, 0q θh � ophq protsessis
hÑ 0,

Φphq � �
f2xypx, yqh� ophq�h � f2xypx, yqh2 � ophqh � f2xypx, yqh2 � oph2q

protsessis hÑ 0.

Esitus (3.8) saadakse sümmeetria põhjal.
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Järgnev teoreem ütleb, et teoreemi 3.3 väide jääb kehtima ka veidi teistsuguste
eelduste korral.

Teoreem 3.4. Eksisteerigu funktsioonil u � fpP q � fpx, yq punkti P � px, yq P R2

mingis ümbruses segaosatuletised f2xy ja f2yx, kusjuures need osatuletised (s.t. osa-
tuletisfunktsioonid) on pidevad punktis P . Siis

f2xypP q � f2yxpP q.

Tõestus. Teoreemi tõestus on oma üldideelt sarnane teoreemi 3.3 tõestusega. Teh-
tud eeldustel leidub reaalarv d ¡ 0, mille korral funktsioonil f eksisteerivad punkti
P � px, yq ümbruses D :� px � d, x � dq � py � d, y � dq teist järku osatuletised
(s.t. osatuletisfunktsioonid) f2xy ja f2yx (ning seega ühtlasi ka esimest järku osatu-
letised (s.t. osatuletisfunktsioonid) f 1x ja f 1y). De�neerides funktsiooni (3.6), piisab
(analoogiliselt teoreemi 3.3 tõestusele) saada esitused (3.7) ja (3.8).

Täpselt nagu ka teoreemi 3.3 tõestuses , de�neeritakse esituse (3.7) saamiseks
kõigepealt funktsioon (3.9) ning seejärel saadakse (ühe muutuja funktsiooni) Lagran-
ge'i keskväärtusteoreemile toetudes esitus (3.10). Kuna funktsioonil f eksisteerib
ristkülikus D lõplik segaosatuletis f2xy, siis funktsioon

vpηq � f 1xpx� θh, ηq, η P py � d, y � dq,

rahuldab lõigus ry, y�hs (või lõigus ry�h, ys, kui h   0) kõiki Lagrange'i keskväär-
tusteoreemi eeldusi, kusjuures

v1pηq � f2xypx� θh, ηq,

järelikult leidub arv pθ P p0, 1q nii, etNB! Kas on vaja

rõhutada, et pθ sõl-
tub arvust h?

f 1xpx� θh, y � hq � f 1xpx� θh, yq � vpy � hq � vpyq � v1py � pθhqh
� f2xypx� θh, y � pθhqh.

Osatuletise f2xy pidevuse tõttu punktis px, yq

f2xypx� θh, y � pθhq � f2xypx, yq � op1q protsessis hÑ 0,

seega

Φphq � �
f2xypx, yq � op1q�h2 � f2xypx, yqh2 � oph2q protsessis hÑ 0.

Esitus (3.8) saadakse sümmeetria põhjal.

Selle punkti lõpetuseks tõestame ühe olulise järelduse teoreemist 3.3.
NB! Siin
on sümbolite
fpx1, . . . , xmq
ja n kõrvutiolek
halb; samuti on
sümbolite f ja n
kõrvutiolek halb.

Järeldus 3.5. Olgu funktsioon u � fpP q � fpx1, . . . , xmq n korda diferentsee-
ruv punktis P � px1, . . . , xmq P Rm. Siis funktsiooni f n -ndat järku osatuletised
punktis P ei sõltu diferentseerimise järjekorrast.
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Tõestus. Piisab vaadelda juhtu, kus n ¥ 2. Olgu i1, . . . , in P t1, . . . ,mu ning
olgu k1, . . . , kn indeksite 1, . . . , n mingi ümberjärjestus. Järelduse tõestuseks piisab
näidata, et

f pnqxi1
...xin

pP q � f pnqxik1
...xikn

pP q. (3.11)

Selleks omakorda, arvestades, et

� indeksite 1, . . . , n mis tahes ümberjärjestus on saadav järjendist 1, . . . , n nii, et
selles järjendis muudetakse mingite kahe kõrvuti olevate indeksite järjekorda,
saadud järjendis muudetakse omakorda mingite kahe kõrvuti olevate indeksite
järjekorda jne., kusjuures niisugust kõrvuti olevate indeksite järjekorra muut-
mist teostatakse lõplik arv kordi,

piisab näidata, et indeksite 1, . . . , n mis tahes ümberjärjestuse j1, . . . , jn ja mis tahes
l P t2, . . . , nu korral

f pnqxj1
...xjl�2

xjl�1
xjl

xjl�1
...xjn

pP q � f pnqxj1
...xjl�2

xjl
xjl�1

xjl�1
...xjn

pP q. (3.12)

(põhjendada, miks siit järeldub võrdus (3.11)!) . Olgu j1, . . . , jn mingi indeksite 1, . . . , n
ümberjärjestus ning olgu l P t2, . . . , nu. Võrduse (3.12) tõestuseks piisab näidata, et

f plqxj1
...xjl�2

xjl�1
xjl
pP q � f plqxj1

...xjl�2
xjl

xjl�1
pP q

(põhjendada, miks sellest võrdusest järeldub võrdus (3.12)!) . See võrdus kehtib teo-
reemi 3.3 põhjal. Tõepoolest, kuna funktsioon f on n korda diferentseeruv punk-
tis P , siis funktsioon f on ka l korda diferentseeruv punktis P , järelikult osatuletis-
funktsioon f

pl�2q
xj1

...xjl�2
on kaks korda diferentseeruv punktis P (põhjendada!) (kui

l � 2, siis osatuletisfunktsiooni f pl�2q
xj1

...xjl�2
all mõistetakse funktsiooni f ennast), see-

ga teoreemi 3.3 põhjal

f plqxj1
...xjl�2

xjl�1
xjl
pP q � pf pl�2q

xj1
...xjl�2

q2xjl�1
xjl
pP q

� pf pl�2q
xj1

...xjl�2
q2xjl

xjl�1
pP q � f plqxj1

...xjl�2
xjl

xjl�1
pP q

(põhjendada!) .

3.4. Kõrgemat järku diferentsiaalid

Olgu funktsioon u � fpP q � fpx1, . . . , xmq diferentseeruv hulga D � Rm igas punk-
tis P . Fikseerides argumentide x1, . . . , xm diferentsiaalide väärtused dx1, . . . , dxm
(s.t. lugedes need diferentsiaalid �kseeritud konstantideks), võime selle funktsiooni
esimest järku täisdiferentsiaali tõlgendada muutuja P (ehk siismmuutuja x1, . . . , xm)
funktsioonina du � dupP q:

du � dupP q � Bf
Bx1 pP q dx1 � � � � � Bf

Bxm pP q dxm.
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Eeldame nüüd, et funktsioon f on �kseeritud punktis P P D kaks korda diferent-

seeruv (siis osatuletisfunktsioonid
Bf
Bx1 , . . . ,

Bf
Bxm on diferentseeruvad punktis P ). Siis

(vt. märkust 1.7) ka selle funktsiooni esimest järku täisdiferentsiaal du (tõlgendatu-
na eespool kirjeldatud viisil m muutuja funktsioonina) on diferentseeruv punktis P ,
kusjuures tema (s.t. selle täisdiferentsiaali) täisdiferentsiaal selles punktis avaldub
kujul

dpduqpP q � d
� Bf
Bx1

	
pP q dx1 � � � � � d

� Bf
Bxm

	
pP q dxm �

m̧

i�1

d
� Bf
Bxi

	
pP q dxi.

Tähistades selles võrduses osatuletisfunktsioonide
Bf
Bx1 , . . . ,

Bf
Bxm täisdiferentsiaali-

de avaldistes argumentide x1, . . . , xm diferentsiaalid (selguse huvides) sümbolitega
δx1, . . . , δxm (eristamaks neid �kseeritud väärtustest dx1, . . . , dxm), s.t.

d
� Bf
Bxi

	
pP q � B2f

Bx1 Bxi pP q δx1 � � � � � B2f
Bxm Bxi pP q δxm, i � 1, . . . ,m,

saame

dpduqpP q �
m̧

i�1

� m̧

j�1

B2f
Bxj Bxi pP q δxj



dxi �

m̧

i�1

m̧

j�1

B2f
Bxj Bxi pP q δxj dxi.

Selle diferentsiaali väärtust (s.t. funktsiooni f esimest järku täisdiferentsiaali du
täisdiferentsiaali dpduq väärtust punktis P ), kui δxi � dxi, i � 1, . . . ,m, nimetatak-
se funktsiooni f teist järku (ehk lihtsalt teiseks) täisdiferentsiaaliks punktis P ja
tähistatakse sümboliga d2upP q või d2fpP q:

d2upP q :� d2fpP q :�
m̧

i�1

m̧

j�1

B2f
Bxj Bxi pP q dxi dxj. (3.13)

Kui funktsioon u � fpP q � fpx1, . . . , xmq on hulga D � Rm igas punktis kaks
korda diferentseeruv, siis analoogiliselt esimest järku täisdiferentsiaali juhuga või-
me argumentide x1, . . . , xm diferentsiaalide dx1, . . . , dxm �kseeritud väärtuste korral
funktsiooni f teist järku täisdiferentsiaali tõlgendada muutuja P (ehk siis m muu-
tuja x1, . . . , xm) funktsioonina d2u � d2upP q; seejuures esitusest (3.13) (jättes seal
argumendi P kirjutamata) saame, et

d2u �
m̧

i�1

m̧

j�1

B2f
Bxj Bxi dxi dxj.

Juhime tähelepanu, et funktsiooni f kaks korda diferentseeruvuse tõttu hulgas DNB! Kas �kaks
korda diferent-
seeruvuse� on
aktsepteeritav
keelend?

(järelduse 3.5 põhjal)

B2f
Bxj Bxi �

B2f
Bxi Bxj kõikide i, j P t1, . . . ,mu korral.
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Nii näiteks kahe muutuja funktsiooni z � fpx, yq teist järku täisdiferentsiaal esitub
kujul

dz � df � B2f
Bx2 dx

2 � 2
B2f
By Bx dx dy �

B2f
By2 dy

2,

kolme muutuja funktsiooni u � fpx, y, zq teist järku täisdiferentsiaal esitub kujul

du � df � B2f
Bx2 dx

2 � B2f
By2 dy

2 � B2f
Bz2 dz

2

� 2
B2f
By Bx dx dy � 2

B2f
Bz By dy dz � 2

B2f
Bz Bx dx dz

jne.

Funktsiooni kolmandat ja kõrgemat järku täisdiferentsiaalid de�neeritakse ana-
loogiliselt. Üldiselt, kui n ¥ 2, siis n korda diferentseeruva funktsiooni u � fpP q � NB! Siin

on sümbolite
fpx1, . . . , xmq ja n
kõrvutiolek halb.

fpx1, . . . , xmq n -ndat järku täisdiferentsiaal dnu de�neeritakse rekursiivselt võr-
dusega dnu � dpdn�1uq, kus pn � 1q-järku täisdiferentsiaali dn�1u avaldises argu-
mentide x1, . . . , xm diferentsiaalid dx1, . . . , dxm loetakse �kseeritud konstantideks
ja seda täisdiferentsiaali tõlgendatakse m muutuja x1, . . . , xm funktsioonina ning
selle funktsiooni täisdiferentsiaalis dpdn�1uq võetakse argumentide x1, . . . , xm dife-
rentsiaalid δx1, . . . , δxm võrdseks vastavalt diferentsiaalidega dx1, . . . , dxm.

Nii näiteks funktsiooni u � fpP q � fpx1, . . . , xmq kolmandat järku täisdiferent-
siaal on NB! Kas lugeja

saab aru, kuidas
seda

��
δx1�dx1...

mõista tuleb?
d3u � dpd2uq��

δx1�dx1,...,δxm�dxm
� d

� m̧

i�1

m̧

j�1

B2f
Bxj Bxi dxi dxj


����
δx1�dx1,...,δxm�dxm

�
m̧

i�1

m̧

j�1

�
d

� B2f
Bxj Bxi


����
δx1�dx1,...,δxm�dxm

�
dxi dxj

�
m̧

i�1

m̧

j�1

�
m̧

k�1

B3f
Bxk Bxj Bxi δxk

����
δx1�dx1,...,δxm�dxm

�
dxi dxj

�
m̧

i�1

m̧

j�1

m̧

k�1

B3f
Bxk Bxj Bxi dxi dxj dxk

ja, analoogiliselt, neljandat järku täisdiferentsiaal on

d4u �
m̧

i�1

m̧

j�1

m̧

k�1

m̧

l�1

B4f
Bxl Bxk Bxj Bxi dxi dxj dxk dxl

ning, üldiselt, n-ndat järku täisdiferentsiaal on

dnu �
m̧

i1�1

� � �
m̧

in�1loooomoooon
n summamärki

Bnf
Bxin � � � Bxi1

dxi1 � � � dxin .
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Arvestades, et n korda diferentseeruva funktsiooni n-ndat järku segaosatuletised ei
sõltu diferentseerimise järjekorrast, saame siit näiteks valemid kahe muutuja funkt-
siooni z � fpx, yq kõrgemat järku täisdiferentsiaalide jaoks:

d3z � B3f
Bx3 dx

3 � 3
B3f
By Bx2 dx

2 dy � 3
B3f
By2 Bx dx dy

2 � B3f
By3 dy

3,

d4z � B4f
Bx4 dx

4 � 4
B4f
By Bx3 dx

3 dy � 6
B4f

By2 Bx2 dx
2 dy2 � 4

B4f
By3 Bx dx dy

3 � B4f
By4 dy

4

jne. Sarnasuse tõttu binoomvalemiga esitatakse üldine valem kahe muutuja funkt-
siooni z � fpx, yq n -ndat järku täisdiferentsiaali jaoks kujulNB! Siin on süm-

bolite fpx, yq ja n
kõrvutiolek halb.

dnz �
� B
Bx dx�

B
By dy


n

f.

Järgnevat lauset vajame me teoreemi 4.2 (Taylori valemi jääkliikmega Peano
kujul) tõestuses.

Lause 3.6. Olgu n P N, n ¥ 2, ning olgu funktsioon

u � fpP q � fpx1, . . . , xmq

n korda diferentseeruv punktis P0 � px01, . . . , x0mq P Rm. Tõlgendame diferentsiaali
dnfpP0q muutujate h1, . . . , hm funktsioonina, võttes selle diferentsiaali avaldises
dx1 � h1, . . . , dxm � hm. Siis iga i P t1, . . . ,mu korral

B dnf
Bhi pP0q � n dn�1f 1xi

pP0q, (3.14)

kus diferentsiaali dn�1f 1xi
pP0q avaldises dx1 � h1, . . . , dxm � hm.

Tõestus. Fikseerime vabalt i P t1, . . . ,mu. Tähistame I :� t1, . . . ,mu ja J :�
t1, . . . ,muztiu; siis kõikide l, p P N korral

I l �
l tegurithkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkj

t1, . . . ,mu � � � � � t1, . . . ,mu ja Jp �
p tegurithkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkj

t1, . . . ,muztiu � � � � � t1, . . . ,muztiu .

Kui l P tn � 1, nu, siis iga p P t0, 1, . . . , lu korral tähistame sümboliga I lp hulga I l

selliste järjendite pi1, . . . , ilq alamhulga, mille indeksist i erinevate komponentide
arv on p, ning kõikide p P t1, . . . , lu ja pk1, . . . , kpq P Jp korral tähistame sümboliga
I lpk1,...,kpq hulga I

l
p selliste järjendite pi1, . . . , ilq alamhulga, mille indeksist i erinevad

komponendid loetuna esialgses järjekorras (s.t. järjendiga pi1, . . . , ilq antud järje-
korras) on k1, . . . , kp.

Tähistame kõikide pi1, . . . , inq P In korral

δni1,...,inf :� f pnqxi1
...xin

pP0qhi1 � � �hin ;
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siis dnfpP0q �
°

pi1,...,inqPIn
δni1,...,inf ning seega

B dnfpP0q
Bhi �

¸
pi1,...,inqPIn

B δni1,...,inf
Bhi �

ņ

p�0

¸
pi1,...,inqPInp

B δni1,...,inf
Bhi

� nf
pnq
xn
i
pP0qhn�1

i �
n�1̧

p�1

¸
pk1,...,kpqPJp

¸
pi1,...,inq
PIn
pk1,...,kpq

B δni1,...,inf
Bhi

(siin me arvestasime, et ainus element hulgas In0 on

n indeksit ihkkkikkkj
pi, . . . , iq, kusjuures B δni,...,if

Bhi
�

nf
pnq
xn
i
pP0qhn�1

i , ning et mis tahes pi1, . . . , inq P Inn korral
B δni1,...,inf

Bhi
� 0). Teiselt poolt,

tähistades kõikide pj1, . . . , jn�1q P In�1 korral

δn�1
j1,...,jn�1

f 1xi
:� pf 1xi

qpn�1q
xj1

...xjn�1
pP0qhj1 � � �hjn�1 � f pnqxixj1

...xjn�1
pP0qhj1 � � �hjn�1 ,

saame (arvestades, et ainus element hulgas In�1
0 on

n� 1 indeksit ihkkkikkkj
pi, . . . , iq , kusjuures δn�1

i,...,if
1
xi
�

f
pnq
xn
i
pP0qhn�1

i )

dn�1f 1xi
pP0q �

¸
pj1,...,jn�1qPIn�1

δn�1
j1,...,jn�1

f 1xi
�

n�1̧

p�0

¸
pj1,...,jn�1qPIn�1

p

δn�1
j1,...,jn�1

f 1xi

� f
pnq
xn
i
pP0qhn�1

i �
n�1̧

p�1

¸
pj1,...,jn�1qPIn�1

p

δn�1
j1,...,jn�1

f 1xi

� f
pnq
xn
i
pP0qhn�1

i �
n�1̧

p�1

¸
pk1,...,kpqPJp

¸
pj1,...,jn�1q
PIn�1
pk1,...,kpq

δn�1
j1,...,jn�1

f 1xi
.

Soovitud võrduse (3.14) tõestuseks piisab niisiis näidata, et mis tahes p P t1, . . . , n�1u
ja pk1, . . . , kpq P Jp korral¸

pi1,...,inq
PIn
pk1,...,kpq

B δni1,...,inf
Bhi � n

¸
pj1,...,jn�1q
PIn�1
pk1,...,kpq

δn�1
j1,...,jn�1

f 1xi
(3.15)

(põhjendada, miks siit järeldub soovitud võrdus (3.14)!) .
Olgu p P t1, . . . , n � 1u ja olgu pk1, . . . , kpq P Jp. Siis mis tahes pi1, . . . , inq P

Inpk1,...,kpq korral (arvestades, et punktis P0 n korda diferentseeruva funktsiooni f n - NB! Siin on süm-
bolite P0 ja n kõr-
vutiolek halb; sa-
muti on halb süm-
bolite f ja n kõrvu-
tiolek.

järku osatuletised selles punktis ei sõltu diferentseerimise järjekorrast)

δni1,...,inf � f
pnq
xn�p
i xk1

...xkp

pP0qhn�p
i hk1 � � �hkp ,
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seega
B δni1,...,inf

Bhi � pn� pq f pnq
xn�p
i xk1

...xkp

pP0qhn�p�1
i hk1 � � �hkp

niisiis, arvestades, et hulgas Inpk1,...,kpq on C
n�p
n � n!

pn�pq! p! elementi,

¸
pi1,...,inq
PIn
pk1,...,kpq

B δni1,...,inf
Bhi � n!

pn� p� 1q! p! f
pnq
xn�p
i xk1

...xkp

pP0qhn�p�1
i hk1 � � �hkp .

Teiselt poolt, kuna mis tahes pj1, . . . , jn�1q P In�1
pk1,...,kpq korral

δn�1
j1,...,jn�1

f 1xi
� f

pnq
xn�p
i xk1

...xkp

pP0qhn�1�p
i hk1 � � �hkp

ning hulga In�1
pk1,...,kpq elementide arv on Cn�1�p

n�1 � pn�1q!
pn�1�pq! p! , siis

n
¸

pj1,...,jn�1q
PIn�1
pk1,...,kpq

δn�1
j1,...,jn�1

f 1xi
� n!

pn� 1� pq! p! f
pnq
xn�p
i xk1

...xkp

pP0qhn�1�p
i hk1 � � �hkp .

Võrdus (3.15) kehtib.
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4.1. Taylori valem jääkliikmega Peano kujul

Meenutame ühe muutuja funktsioonide matemaatilise analüüsi kursusest tuttavat
(ühe muutuja funktsiooni) Taylori valemit jääkliikmega Peano kujul.

NB! Siin on süm-
bolite f ja n kõrvu-
tiolek halb.

Teoreem 4.1 ((ühe muutuja funktsiooni) Taylori valem jääkliikmega Peano kujul).
Olgu (ühe muutuja) funktsioon f n korda diferentseeruv punktis a P R. Siis mis
tahes punkti x jaoks funktsiooni f määramispiirkonnast kehtib valem

fpxq � fpaq �
ņ

k�1

f pkqpaq
k!

px� aqk � αnpxq, (4.1)

kus funktsioon αn � αnpxq rahuldab tingimust αnpxq � o
�px�aqn� protsessis xÑ a.

Selles jaotises me üldistame teoreemi 4.1 mitme muutuja funktsioonide juhule. Sel- NB! Siin on süm-
bolite f ja k kõrvu-
tiolek halb.leks, arvestades, et k korda diferentseeruva ühe muutuja funktsiooni f k -ndat jär-

ku diferentsiaal dkfpaq punktis a on de�neeritud valemiga dkfpaq :� f pkqpaq pdxqk,
märgime, et valem (4.1) on esitatav kujul

fpxq � fpaq �
ņ

k�1

dkfpaq
k!

� αn,

kus diferentsiaalide dkfpaq avaldistes dx � x� a.

Teoreem 4.2 (Taylori valem jääkliikmega Peano kujul). Olgu funktsioon

u � fpP q � fpx1, . . . , xmq

n korda diferentseeruv punktis P0 � px01, . . . , x0mq P Rm. Siis mis tahes punkti P �
px1, . . . , xmq jaoks funktsiooni f määramispiirkonnast kehtib valem NB! Kuskil

võiks eksplitsiitselt
öelda, et valemit
4.2 nimetatakse
Taylori valemiks

(sellele valemile
viidatakse hiljem
kui Taylori
valemile!) ning
et liidetavat αn
selles valemis
nimetatakse selle
Taylori valemi
jääkliikmeks.
Samuti võiks
eksplitsiitselt
öelda, et jääkliikme
kuju �αn � opρnq
protsessis ρ Ñ 0�
nimetatakse selle
jääkliikme Peano

kujuks.

fpP q � fpP0q �
ņ

k�1

dkfpP0q
k!

� αn

� fpP0q � dfpP0q � d2fpP0q
2!

� d3fpP0q
3!

� � � � � dnfpP0q
n!

� αn,

(4.2)

kus diferentsiaalide dfpP0q, . . . , dnfpP0q avaldistes

dxi � ∆xi :� xi � x0i , i � 1, . . . ,m,

ning, tähistades

ρ �
b
∆x21 � � � � �∆x2m � dpP, P0q,

funktsioon αn � αnp∆x1, . . . ,∆xmq rahuldab tingimust αn � opρnq protsessis ρÑ 0.

85
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Tõestus. Tõestame teoreemi induktsiooni abil funktsiooni f diferentseeruvuse jär-
gu n järgi. Kui n � 1, siis teoreem kehtib teoreemi 1.4 samaväärsuse (i)ô(iii) põhjal.
Eeldame nüüd, et n ¥ 2 ning et teoreem kehtib, kui seal arv n asendada arvuga n�1.
Näitame, et niisugusel eeldusel kehtib teoreem ka ülaltrükitud kujul. NB! Siin on süm-

bolite f ja n kõrvu-
tiolek halb.Olgu funktsioon f n korda diferentseeruv punktis P0. Siis leiduvad reaalarvud
NB! Siin saaksi-
me tegelikult võtta
δ1 � � � � � δm ja
seega tuleksid vaa-
deldavad risttahu-
kad kuubid.

NB! Tegelikult
me saame siin
selle risttahuka-
kujulise ümbruse
px0

1 � δ1, x
0
1 �

δ1q � � � � � px0
m �

δm, x0
m � δmq

valida nii, et
funktsioon f on
n � 1 korda dife-
rentseeruv selles
ümbruses. Sellisel
juhul eksisteerivad
funktsioonil f
lõplikud pn � 1q-
järku osatuletised
selles ümbruses
ning järelikult
eksisteerivad sellel
funktsioonil ka
lõplikud esimest
järku osatuletised
selles ümbruses.

δ1, . . . , δm ¡ 0 nii, et funktsioonil f eksisteerivad punkti P0 risttahukakujulises ümb-
ruses px01� δ1, x01� δ1q� � � �� px0m� δm, x0m� δmq lõplikud esimest järku osatuletised
kõigi argumentide järgi. De�neerime risttahukas U :� p�δ1, δ1q � � � � � p�δm, δmq
funktsiooni α � αph1, . . . , hmq võrdusega

αph1, . . . , hmq � fpx01 � h1, . . . , x
0
m � hmq � fpP0q �

ņ

k�1

1

k!
dkfpP0q,

kus diferentsiaalide dkfpP0q avaldistes dx1 � h1, . . . , dxm � hm. Teoreemi tõestuseks
piisab näidata, et

αph1, ..., hmq � opρnq protsessis ρÑ 0, (4.3)

kus ρ :�
a
h21 � � � � � h2m. Selleks paneme tähele, etNB! Kas on se-

gav, et siinne ρ po-
le täpselt sama, mis
ρ teoreemi sõnas-
tuses? αph1, ..., hmq � αph1, . . . , hm�1, hmq � αph1, . . . , hm�1, 0q

� αph1, . . . , hm�2, hm�1, 0q � αph1, . . . , hm�2, 0, 0q
� � � �
� αph1, 0, . . . , 0q � αp0, 0, . . . , 0q

�
m̧

i�1

γiph1, ..., hmq,

kus

γiph1, ..., hmq � αph1, . . . , hi�1, hi, 0, . . . , 0q � αph1, . . . , hi�1, 0, 0, . . . , 0q.

Seega piisab tingimuse (4.3) (ning ühtlasi teoreemi) tõestuseks näidata, et iga i P
t1, . . . ,mu korral

γiph1, ..., hmq � opρnq protsessis ρÑ 0. (4.4)

Selleks paneme kõigepealt tähele, et funktsioonil α eksisteerivad risttahukas U lõpli-
kud osatuletised kõigi argumentide järgi, kusjuures iga i P t1, . . . ,mu korral lause 3.6
põhjal

Bα
Bhi ph1, . . . , hmq � f 1xi

px01 � h1, . . . , x
0
m � hmq

� B
Bhi

�
f 1x1
pP0qh1 � � � � � f 1xm

pP0qhm
	
�

m̧

k�2

1

k!

B dkfpP0q
Bhi

� f 1xi
px01 � h1, . . . , x

0
m � hmq � f 1xi

px01, . . . , x0mq �
ņ

k�2

1

k!
k dk�1f 1xi

pP0q
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(siin diferentsiaalide dk�1f 1xi
pP0q avaldistes dx1 � h1, . . . , dxm � hm), millest, arves-NB! Siin on süm-

bolite f ja n kõrvu-
tiolek halb. tades, et funktsiooni f n -kordse diferentseervuse tõttu punktis P0 on osatuletis-

funktsioon f 1xi
selles punktis n� 1 korda diferentseeruv (põhjendada!) , saame teh-

tud eelduse põhjal teoreemi kehtivusest juhul, kui seal arv n on asendatud arvuga
n� 1 (rakendades sellist teoreemi osatuletisfunktsioonile f 1xi

),

Bα
Bhi ph1, . . . , hmq �

n�1̧

k�1

1

k!
dkf 1xi

pP0q � βiph1, . . . , hmq �
ņ

k�2

1

pk � 1q! d
k�1f 1xi

pP0q

� βiph1, . . . , hmq,

kus diferentsiaalide dkf 1xi
pP0q avaldistes dx1 � h1, . . . , dxm � hm ja funktsioon βi

rahuldab tingimust βiph1, . . . , hmq � opρn�1q protsessis ρ Ñ 0 (siin, nagu ka eel-
nevas, ρ �

a
h21 � � � � � h2m). Lagrange'i keskväärtusteoreemi põhjal (ühe muutuja

funktsioonide jaoks) leidub iga i P t1, . . . ,mu korral reaalarv θi P p0, 1q (mis sõltub
argumentide h1, . . . , hm väärtustest) nii, et

γiph1, ..., hmq � Bα
Bhi ph1, . . . , hi�1, θihi, 0, . . . , 0qhi � βiph1, . . . , hi�1, θihi, 0, . . . , 0qhi

(põhjendada!) . Kuna βiph1, . . . , hi�1, θihi, 0, . . . , 0q � opρn�1q protsessis ρ Ñ 0

(põhjendada!) , siis järeldub siit, et iga i P t1, . . . ,mu korral kehtib (4.4) (põhjenda-

da!) .

4.2. Taylori valem jääkliikmega Lagrange'i kujul

Selles jaotises anname jääkliikmele αn Taylori valemis (4.2) konkreetsema kuju (seda
küll veidi tugevamatel eeldustel funktsiooni f jaoks kui teoreemis 4.2). Täpsemalt,
me üldistame ühe muutuja funktsiooni Taylori valemi jääkliikmega Lagrange'i kujul
(millega lugeja tutvus � või vähemalt oleks pidanud tutvuma � ühe muutuja funkt-
sioonide matemaatilise analüüsi kursuses) mitme muutuja funktsioonide juhule.

Teoreem 4.3 ((ühe muutuja funktsiooni) Taylori valem jääkliikmega Lagrange'i
kujul). Eksisteerigu (ühe muutuja) funktsioonil f mingis punkti a P R sisaldavas
vahemikus U lõplik pn � 1q-järku tuletis. Siis iga x P U korral leidub punkt ξ, mis
paikneb punktide a ja x vahel, selliselt, et

fpxq � fpaq �
ņ

k�1

f pkqpaq
k!

px� aqk � f pn�1qpξq
pn� 1q! px� aqn�1.

Üldistamaks teoreemi 4.3 m muutuja funktsioonide juhule, vajame me kumera
hulga mõistet. Selleks meenutame, et ruumi Rm kahte punkti ühendava sirglõigu
mõiste toodi sisse lk. 62 de�nitsioonis 1.6.

De�nitsioon 4.1. Öeldakse, et hulk D � Rm on kumer, kui tema mis tahes kahte
punkti ühendav sirglõik sisaldub selles hulgas.
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A

B
C

D

Joonis 4.1. Vasakpoolne hulk selle joonisel on kumer � tema mis tahes kahte
punkti A ja B ühendav sirglõik sisaldub selles hulgas. Parempoolne hulk ei ole
kumer � tema punkte C ja D ühendav sirglõik ei sisaldu selles hulgas.

Teoreem 4.4 (Taylori valem jääkliikmega Lagrange'i kujul). Olgu funktsioon

u � fpP q � fpx1, . . . , xmq
n� 1 korda diferentseeruv punkti P0 � px01, . . . , x0mq mingis kumeras lahtises ümbru-
ses U . Siis iga punkti P � px1, . . . , xmq P U korral leidub punkt R punkte P0 ja P
ühendaval sirglõigul punktide P0 ja P vahel (s.t. R � px01 � θ∆x1, . . . , x

0
m � θ∆xmq

mingi θ P p0, 1q korral) selliselt, etNB! Võib-olla,
peaks eksplitsiitselt
ütlema, et viimane
liidetav selle valemi
�paremal poolel�
on Taylori valemi
jääkliige Lagrange'i
kujul?

fpP q � fpP0q �
ņ

k�1

dkfpP0q
k!

� dn�1fpRq
pn� 1q!

� fpP0q � dfpP0q � d2fpP0q
2!

� d3fpP0q
3!

� � � � � dnfpP0q
n!

� dn�1fpRq
pn� 1q! ,

kus diferentsiaalide dfpP0q, . . . , dnfpP0q ja dn�1fpRq avaldistes
dxi � ∆xi � xi � x0i , i � 1, . . . ,m. (4.5)

Tõestus. Olgu P � px1, . . . , xmq P U . De�neerime iga t P R korral punkti

Pt :� px01 � t∆x1, . . . , x
0
m � t∆xmq P Rm, (4.6)

kus arvud ∆x1, . . . ,∆xm P R on de�neeritud võrdustega (4.5). Paneme tähele, et
punkt P0 eeskirja (4.6) järgi arvutatuna (s.t. punkt Pt, kus t � 0) on meie esialgne
punkt P0 ja P1 � P ning et leidub reaalarv δ ¡ 0 nii, et Pt P U iga t P p�δ, 1 � δq
korral (põhjendada!) .

Tõepoolest, hulga U kumeruse tõttu mis tahes t P r0, 1s korral Pt P U .
Olgu nüüd δ ¡ 0 suvaline. Kui t P p�δ, 0q, siis

dpPt, P0q �
a
pt∆x1q2 � � � � � pt∆xmq2 � |t|

b
∆x2

1 � � � � �∆x2
m   δ dpP, P0q,
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kui aga t P p1, 1� δq, siis (arvestades, et P � px0
1 �∆x1, . . . , x

0
m �∆xmq)

dpPt, P q �
b�pt� 1q∆x1

�2 � � � � � �pt� 1q∆xm

�2 � |t� 1|
b
∆x2

1 � � � � �∆x2
m   δ dpP, P0q.

Kuna hulga U lahtisuse tõttu on P0 ja P hulga U sisepunktid, siis leiduvad r0, r ¡ 0 nii, et
BpP0, r0q � U ja BpP, rq � U , s.t.

dpQ,P0q   r0 ùñ Q P U ja dpQ,P q   r ùñ Q P U .

Niisiis, valides reaalarvu δ ¡ 0 nii, et δ dpP, P0q   mintr0, ru, kehtib iga t P p�δ, 1� δq korral
Pt P U .

De�neerime funktsiooni

Φptq :� fpPtq � fpx01 � t∆x1, . . . , x
0
m � t∆xmq � f

�
ϕ1ptq . . . , ϕmptq

�
,

t P p�δ, 1� δq,
kus

ϕiptq � x0i � t∆xi, i � 1, . . . ,m,

Funktsioon Φ on liitfunktsiooni diferentseerimise reegli põhjal n� 1 korda diferent-
seeruv vahemikus p�δ, 1� δq, kusjuures iga t P p�δ, 1� δq korral

Φ1ptq �
m̧

i�1

Bf
Bxi

�
ϕ1ptq . . . , ϕmptq

� Bϕi

Bt ptq

�
m̧

i�1

Bf
Bxi

�
ϕ1ptq . . . , ϕmptq

�
∆xi �

m̧

i�1

Bf
Bxi pPtq∆xi,

Φ2ptq �
m̧

i�1

� Bf
Bxi

�
ϕ1ptq . . . , ϕmptq

�
1

t

∆xi

�
m̧

i�1

� m̧

j�1

Bp BfBxi
q

Bxj
�
ϕ1ptq . . . , ϕmptq

� Bϕj

Bt ptq


∆xi

�
m̧

i�1

m̧

j�1

B2f
BxjBxi

�
ϕ1ptq . . . , ϕmptq

�
∆xi∆xj �

m̧

i�1

m̧

j�1

B2f
BxjBxi pPtq∆xi∆xj

ning, üldiselt, iga k P t1, . . . , n� 1u korral

Φpkqptq �
m̧

i1�1

� � �
m̧

ik�1

Bkf
Bxik � � � Bxi1

pPtq∆xi1 � � �∆xik � dkfpPtq,

kus diferentsiaali dkfpPtq avaldises kehtivad võrdused (4.5). Nüüd ühe muutuja
funktsiooni Taylori valemi põhjal jääkliikmega Lagrange'i kujul leidub θ P p0, 1q
nii, et, tähistades R :� Pθ,

fpP q � Φp1q � Φp0q �
ņ

k�1

Φpkqp0q
k!

p1� 0qk � Φpn�1qpθq
pn� 1q! p1� 0qn�1

� fpP0q �
ņ

k�1

dkfpP0q
k!

� dn�1fpRq
pn� 1q! ,

nagu soovitud.



� 5. II peatüki lisa.
Kujutuste U Ñ Rn, kus U � Rm,
diferentseeruvus

Toome kõigepealt sisse selles paragrahvis kasutatavad tähistused.

Kõikjal selles paragrahvis on m ja n �kseeritud naturaalarvud, s.t. m,n P N.
Punkti x P Rm korral me eeldame, et tema koordinaadid on x1, . . . , xm P R, s.t. x �NB! See tähis-

tusviis on väga
ebamugav jadade
märkimise jaoks.
Nii pxnq8n�1 ��
pxn

1 , . . . , xn
mq

�8
n�1

kui ka
�
xpnq

�8
n�1

��
pxn

1 , . . . , xn
mq

�8
n�1

on mingis mõttes
halvad.

px1, . . . , xmq �: pxjqmj�1, ning, teiselt poolt, etteantud arvude x1, . . . , xm P R korral
me kasutame tähistust (ilma seda tähistust eraldi sisse toomata) x :� px1, . . . , xmq P
Rm. (Analoogilisi tähistusi me kasutame ka ruumi Rm või Rn punktide y, z, h, k,
u, v, w, a, b jms. jaoks.) Ruumi Rm elementi a � pa1, . . . , amq P Rm tõlgendame me
sobival juhul ka üheveerulise maatriksina

a �

���a1
...
am

��
 (5.1)

ja, vastupidi, üheveerulist maatriksit (5.1) tõlgendame sobival juhul järjendina a �
pa1, . . . , amq P Rm. Punkti x P Rm ja reaalarvu t � 0 korral me kasutame kirjaviisi

x

t
:� 1

t
x �

�x1
t
, . . . ,

xm
t

	
.

Eukleidilist normi ruumis Rm tähistame sümboliga | � |, s.t.

|x| :�
gffe m̧

j�1

|xj|2, x � px1, . . . , xmq P Rm.

Paneme tähele, et mis tahes x, u P Rm korral

dpx, uq � |x� u|.

Lahtist ja kinnist kera ruumis Rm keskpunktiga a P Rm ja raadiusega r ¡ 0
tähistame me vastavalt sümbolitega Bpa, rq ja Bpa, rq, s.t.NB! Kinnist kera

me tegelikult ei ka-
suta!

Bpa, rq :� tx P Rm : |x� a|   ru ja Bpa, rq :� tx P Rm : |x� a| ¤ ru.

Funktsiooni f : U Ñ Rn, kus U � Rm, korral on f1, . . . , fn : U Ñ R alati funkt-
siooni f määravad nn. koordinaatfunktsioonid, s.t.

fpxq � �
f1pxq, . . . , fnpxq

�
iga x P U korral, (5.2)

ja, vastupidi, etteantud funktsioonide f1, . . . , fn : U Ñ R korral loeme funktsiooni
f : U Ñ Rn de�neerituks võrdusega (5.2).
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5.1. Funktsiooni D Ñ Rn, kus D � Rm, piirväärtus

Olgu D � Rm, olgu f : D Ñ Rn ning olgu x0 P Rm määramispiirkonna D kuhjumis-
punkt. Kasutame funktsiooni f argumendina muutujat x.

De�nitsioon 5.1. Öeldakse, et punkt c P Rn on funktsiooni f piirväärtus punk-
tis x0 (või piirväärtus protsessis x Ñ x0) või et funktsioon f koondub punktiks c
protsessis xÑ x0 (või argumendi väärtuse lähenemisel punktile x0) ja kirjutatakse

lim
xÑx0

fpxq � c või fpxq ÝÝÝÑ
xÑx0

c,

kui iga reaalarvu ε ¡ 0 korral leidub reaalarv δ ¡ 0 nii, et�
x P D, 0   |x� x0|   δ

�
ùñ |fpxq � c|   ε.

Pole raske näha, et funktsiooni f koonduvus on samaväärne tema koordinaat-
funktsioonide koonduvusega:

fpxq ÝÝÝÑ
xÑx0

c ðñ fipxq ÝÝÝÑ
xÑx0

ci, i � 1, . . . , n.

Kirjutades funktsiooni ϕ : D Ñ R korral

fpxq � o
�
ϕpxq� protsessis xÑ x0,

mõistame me selle all, et

fpxq
ϕpxq ÝÝÝÑxÑx0

0 :� p0, . . . , 0loomoon
n arvu 0

q.

5.2. Funktsiooni U Ñ Rn, kus U � Rm, diferentseeruvuse
mõiste

NB! Lugeja ei
pruugi teada, mis-
asi on lineaarne

kujutus!

De�nitsioon 5.2. Olgu U � Rm lahtine hulk, olgu f : U Ñ Rn ning olgu x P U .
Öeldakse, et funktsioon f on diferentseeruv punktis x, kui leidub lineaarne kujutus
A : Rm Ñ Rn nii, et NB! Kas valemi

(5.3) juures tuleks
rõhutada, et
siin tähendavad
need sümbolid 0
teatavaid järjen-
deid p0, . . . , 0q?
(Seejuures ka
h Ñ 0 tähendab
tegelikult, et
h Ñ p0, . . . , 0q.)

fpx� hq � fpxq � Ah

|h| ÝÝÑ
hÑ0

0. (5.3)

Kujutust A nimetatakse seejuures funktsiooni f (Fréchet') tuletiseks punktis x ja
tähistatakse sümboliga f 1pxq (allpool veendume, et operaatori f tuletis punktis x
on üheselt määratud):

f 1pxq :� A.

Tähistades W :�  
h P Rm : x� h P U

(
ja de�neerides funktsiooni α : W Ñ Rn,

αphq � fpx� hq � fpxq � Ah, h PW ,

võime valemi (5.3) kirjutada kujul

fpx� hq � fpxq � Ah� αphq, kus αphq � op|h|q protsessis hÑ 0. (5.4)
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Märkus 5.1. Märgime, et siin hulk W on lahtine. Tõepoolest, W � H, sest hulk U on lahtine ja
seega x on tema sisepunkt. Fikseerime vabalt h PW. Hulga W lahtisuseks piisab näidata, et h on
hulga W sisepunkt, s.t. mingi r ¡ 0 korral Bph, rq � W. Hulga W de�nitsiooni põhjal x� h P U .
Kuna U on lahtine, siis x � h on hulga U sisepunkt, seega leidub r ¡ 0 nii, et B

�
x � h, r

� � U .
Väite tõestuseks jääb nüüd näidata, et Bph, rq �W. Selleks, �kseerides vabalt punkti z P Bph, rq,
piisab näidata, et z P W, s.t. x � z P U , milleks omakorda piisab näidata, et x � z P B

�
x � h, r

�
,

s.t.
��x� z � px� hq��   r. Veendume selles:��x� z � px� hq�� � ��x� z � x� h

�� � |z � h|   r

(sest kuna z P Bph, rq, siis |z � h|   r), nagu soovitud.
Teine võimalus hulga W lahtisuse tõestamiseks on panna tähele, et W � �x� U , ja kasutada

fakti, et lahtise hulga nihe on lahtine.

Järgnev lause 5.1 ütleb, et operaatorA eelnevast de�nitsioonist (s.t. funktsiooni f
tuletis f 1pxq punktis x) on üheselt määratud. (Sellise operaatori ühesus järeldub ka
lausest 5.2 allpool, mille tõestus ei kasuta lauset 5.1.)

Lause 5.1. Olgu U � Rm lahtine hulk, olgu f : U Ñ Rn ning olgu x P U . Siis leidub
ülimalt üks tingimust (5.3) rahuldav lineaarne kujutus A : Rm Ñ Rn.

Tõestus. Rahuldagu lineaarsed kujutused A,B : Rm Ñ Rn vastavalt tingimusi (5.4) ja

fpx� hq � fpxq � Bh� βphq, kus βphq � op|h|q protsessis hÑ 0.

Lause tõestuseks piisab näidata, et A � B, milleks, �kseerides vabalt z P Rmzt0u, piisab näidata,
et Az � Bz. Selleks märgime, et �piisavalt väikeste� t ¡ 0 korral (täpsemalt, selliste t ¡ 0 korral,
mis rahuldavad tingimust x� tz P U)

Aptzq � αptzq � Bptzq � βptzq,

seega ka

Aptzq
|tz| � αptzq

|tz| � Bptzq
|tz| � βptzq

|tz| ,

millest, arvestades, et operaatorite A ja B lineaarsuse tõttu

Aptzq
|tz| � tAz

t|z| �
Az

|z| ja
Bptzq
|tz| � tBz

t|z| �
Bz

|z| ,

saame, et

Az

|z| �
αptzq
|tz| � Bz

|z| �
βptzq
|tz| . (5.5)

Kuna |tz| ÝÝÝÝÑ
tÑ0�

0, siis tehtud eelduste põhjal funktsioonide α ja β kohta

αptzq
|tz| ÝÝÝÝÑ

tÑ0�
0 ja

βptzq
|tz| ÝÝÝÝÑ

tÑ0�
0;

seega järeldub võrdusest (5.5) protsessis tÑ 0�, et Az

|z| �
Bz

|z| , millest Az � Bz, nagu soovitud.
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5.3. Funktsiooni U Ñ Rn, kus U � Rm, diferentseeruvuse
mõiste kooskõla funktsiooni U Ñ R diferentseeruvuse
mõistega

Selles punktis veendume, et ülaltoodud diferentseeruvuse de�nitsioon 5.2 on koos-
kõlas funktsiooni f : U Ñ R (s.t. tavalise m muutuja funktsiooni) diferentseeru-
vuse de�nitsiooniga 1.2, s.t. veendume de�nitsioonide 5.2 ja 1.2 samaväärsuses juhul
n � 1.

Olgu U � Rm lahtine hulk ning olgu x P U .
Ühelt poolt, oletame, et funktsioon f : U Ñ R on diferentseeruv punktis x de�-

nitsiooni 1.2 mõttes. See tähendab, et leiduvad arvud a1, . . . , am P R nii, et

fpx� hq � fpxq � pa1h1 � � � � � amhmq
|h| ÝÝÑ

hÑ0
0. (5.6)

De�neerime kujutuse A : Rm Ñ R,

Ah � a1h1 � � � � � amhm, h � ph1, . . . , hmq P Rm; (5.7)

siis A on lineaarne kujutus, kusjuures kehtib (5.3). Seega f on diferentseeruv punk-
tis x de�nitsiooni 5.2 mõttes.

Teiselt poolt, olgu funktsioon f : U Ñ R diferentseeruv punktis x de�nitsiooni
5.2 mõttes. See tähendab, et leidub lineaarne kujutus A : Rm Ñ R nii, et kehtib (5.3).
Algebra kursusest teame, et leiduvad üheselt määratud arvud a1, . . . , am P R nii, et
kehtib (5.7), niisiis kehtib (5.6). Seega f on diferentseeruv punktis x de�nitsiooni
1.2 mõttes.

5.4. Funktsiooni U Ñ Rn, kus U � Rm, ja teda määravate
funktsioonide U Ñ R diferentseeruvuse vahekord

Lause 5.2. Olgu U � Rm lahtine hulk, olgu f : U Ñ Rn ning olgu x P U . Järgmised
väited on samaväärsed:

(i) funktsioon f on diferentseeruv punktis x;

(ii) funktsiooni f de�neerivad funktsioonid f1, . . . , fn : U Ñ R,

fpxq � �
f1pxq, . . . , fnpxq

�
, x P U ,

on diferentseeruvad punktis x.

Seejuures NB! Siin vist
vajab selgitamist,
kuidas võrdust
(5.8) mõista.

f 1pxq �

������
Bf1
Bx1 pxq . . .

Bf1
Bxm pxq

...
...

...
Bfn
Bx1 pxq . . .

Bfn
Bxm pxq

�����
. (5.8)
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Tõestus. (i)ñ(ii). Olgu funktsioon f diferentseeruv punktis x P U , s.t. (de�nitsiooni 5.2 põhjal)
leidub lineaarne kujutus A : Rm Ñ Rn nii, et kehtib (5.4). Algebra kursusest teame, et lineaarne
kujutus A : Rm Ñ Rn on üheselt määratud (reaal)arvmaatriksiga

A �

���a11 . . . a1m
...

...
...

an1 . . . anm

��
,

kus iga h � ph1, . . . , hmq P Rm korral

Ah �

���a11 . . . a1m
...

...
...

an1 . . . anm

��

���h1

...
hm

��
�

���
°m

j�1 a1jhj

...°m
j�1 anjhj

��
�
�

m̧

j�1

a1jhj , . . . ,
m̧

j�1

anjhj

�
.

Olgu α1, . . . , αn : W :�  
h P Rm : x� h P U

(Ñ R funktsiooni α : W Ñ Rn määravad funktsioonid
(tingimuses (5.4)), s.t.

αphq � �
α1phq, . . . , αnphq

�
, h � ph1, . . . , hmq PW. (5.9)

Tingimus αphq � op|h|q protsessis hÑ 0 tähendab, etNB! Kas lugeja
mõistab, mida siin
need sümbolid 0 tä-
hendavad? αphq

|h| ÝÝÝÑ
hÑ0

0

ehk �
α1phq
|h| , . . . ,

αnphq
|h|



ÝÝÝÑ
hÑ0

0,

s.t. iga i P t1, . . . , nu korral
αiphq
|h| ÝÝÝÑ

hÑ0
0

ehk, teisisõnu,
αiphq � op|h|q protsessis hÑ 0. (5.10)

Kuna iga h PW korral

fpx� hq � fpxq � �
f1px� hq, . . . , fnpx� hq�� �

f1pxq, . . . , fnpxq
�

� �
f1px� hq � f1pxq, . . . , fnpx� hq � fnpxq

�
ja

Ah� αphq �
�

m̧

j�1

a1jhj , . . . ,
m̧

j�1

anjhj

�
� �

α1phq, . . . , αnphq
�

�
� m̧

j�1

a1jhj � α1phq, . . . ,
m̧

j�1

anjhj � αnphq


,

siis tingimus (5.4) tähendab, et iga i P t1, . . . , nu korral
fipx� hq � fipxq � ai1h1 � � � � � aimhm � αiphq, kus αiphq � op|h|q protsessis hÑ 0. (5.11)

Tingimus (5.11) tähendab, et funktsioon fi : U Ñ Rn on diferentseeruv punktis x; seejuures

aij � Bfi
Bxj

pxq iga j P t1, . . . ,mu korral,

s.t. kehtib (5.8).
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(ii)ñ(i). Eeldame, et funktsioonid f1, . . . , fn on diferentseeruvad punktis x, s.t. iga i P t1, . . . , nu
korral leiduvad arvud ai1, . . . aim P R nii, et

fipx� hq � fipxq � ai1h1 � � � � � aimhm � αiphq �
m̧

j�1

aijhj � αiphq,

kus funktsioon αi : W :�  
h P Rm : x � h P U

( Ñ R rahuldab tingimust αiphq � op|h|q protsessis
hÑ 0. Nüüd

fpx� hq � fpxq � �
f1px� hq, . . . , fnpx� hq�� �

f1pxq, . . . , fnpxq
�

� �
f1px� hq � f1pxq, . . . , fnpx� hq � fnpxq

�
�

� m̧

j�1

a1jhj � α1phq, . . . ,
m̧

j�1

anjhj � αnphq



�
� m̧

j�1

a1jhj , . . . ,
m̧

j�1

anjhj



��α1phq, . . . , αnphq

�
� Ah� αphq,

kus NB! Kas lugejale
on selge, kuidas siin
seda võrdust A �
� � � mõista tuleb?A �

���a11 . . . a1m
...

...
...

an1 . . . anm

��

ja funktsioon α : W Ñ Rn on de�neeritud võrdusega (5.9).

Funktsiooni f diferentseeruvuseks punktis x jääb näidata, et

αphq � op|h|q protsessis hÑ 0.

Viimane tingimus on implikatsiooni (i)ñ(ii) tõestuses sisalduva arutelu põhjal samaväärne tingi-
musega (5.10) iga i P t1, . . . ,mu korral, mis kehtib eespool tehtud eelduse põhjal.
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III peatükk.

Ilmutamata funktsioonide teooria

� 1. Jacobi maatriksid ja determinandid

Olgu funktsioonid $'&'%
u1 � u1pP q � u1px1, . . . , xmq,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

un � unpP q � unpx1, . . . , xmq
(1.1)

määratud hulgas D � Rm. Siis süsteem (1.1) määrab kujutuse Φ: D Ñ Rn,

ΦpP q � �
u1pP q, . . . , unpP q

� P Rn, P P D. (1.2)

Teiselt poolt, mis tahes kujutus Φ: D Ñ Rn määrab ühesel viisil funktsioonid (1.1),
mis rahuldavad tingimust (1.2): sellise omadusega funktsioonid (1.1) on de�neeritud
võrdustega

ujpP q � uj, P P D, j � 1, . . . , n, kus ΦpP q � pu1, . . . , unq.

Niisiis, hulgas D � Rm määratud funktsioonide süsteemid (1.1) ja kujutused
D Ñ Rn on üksüheses vastavuses.

Eeldame nüüd, et funktsioonid (1.1) on diferentseeruvad hulgas D � Rm.

De�nitsioon 1.1. Maatriksit����������

Bu1
Bx1

Bu1
Bx2 � � � Bu1

BxmBu2
Bx1

Bu2
Bx2 � � � Bu2

Bxm
...

...
...

...
Bun
Bx1

Bun
Bx2 � � � Bun

Bxm

���������

(1.3)

nimetatakse süsteemi (1.1) (või ka selle süsteemiga määratud kujutuse D Ñ Rn)
Jacobi1 maatriksiks.

1Carl Gustav Jacob Jacobi (1804�1851) � saksa matemaatik

97
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Rõhutame, et Jacobi maatriks pole arvmaatriks � tema elemendid on funktsioo-
nid. Jacobi maatriksi (1.3) väärtus konkreetses punktis P P D on arvmaatriks (mille
elemendid on Jacobi maatriksi (1.3) elementide väärtused punktis P P D)����������

Bu1
Bx1 pP q

Bu1
Bx2 pP q � � � Bu1

Bxm pP qBu2
Bx1 pP q

Bu2
Bx2 pP q � � � Bu2

Bxm pP q
...

...
...

...
Bun
Bx1 pP q

Bun
Bx2 pP q � � � Bun

Bxm pP q

���������

.

Vaatleme nüüd juhtu, kus n � m, s.t. süsteem (1.1) omandab kuju$'&'%
u1 � u1pP q � u1px1, . . . , xmq,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

um � umpP q � umpx1, . . . , xmq.
(1.4)

De�nitsioon 1.2. Süsteemi (1.4) Jacobi maatriksi����������

Bu1
Bx1

Bu1
Bx2 � � � Bu1

BxmBu2
Bx1

Bu2
Bx2 � � � Bu2

Bxm
...

...
. . .

...
Bum
Bx1

Bum
Bx2 � � � Bum

Bxm

���������

determinanti

Dpu1, . . . , umq
Dpx1, . . . , xmq :�

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Bu1
Bx1

Bu1
Bx2 � � � Bu1

BxmBu2
Bx1

Bu2
Bx2 � � � Bu2

Bxm
...

...
. . .

...
Bum
Bx1

Bum
Bx2 � � � Bum

Bxm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

nimetatakse süsteemi (1.4) (või ka selle süsteemiga määratud kujutuse D Ñ Rm)
Jacobi determinandiks ehk jakobiaaniks.

Rõhutame jällegi, et Jacobi determinant pole mitte arv, vaid funktsioon (Jacobi
determinandi väärtus konkreetses punktis on arv).

Tõestame ühe Jacobi maatriksite olulise omaduse: kujutuste korrutise Jacobi
maatriks on nende kujutuste Jacobi maatriksite korrutis.
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Teoreem 1.1. Olgu funktsioonid$'&'%
u1 � u1pP q � u1px1, . . . , xmq,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

un � unpP q � unpx1, . . . , xmq
(1.5)

diferentseeruvad hulgas D � Rm ning olgu funktsioonid NB! Funkt-
sioonide (1.5)
diferentseeruvusest
hulgas D järeldub
implitsiitselt,
et hulk D on
lahtine, ning
funktsioonide (1.6)
diferentseeruvusest
hulgas ∆ järeldub
implitsiitselt, et
hulk ∆ on lahtine.

$'&'%
x1 � x1pQq � x1pt1, . . . , tlq,
. . . . . . . . . . . . . . . . . . . . . . . . . . .

xm � xmpQq � xmpt1, . . . , tlq
(1.6)

diferentseeruvad hulgas ∆ � Rl, kusjuures süsteemiga (1.6) määratud kujutuse ∆Ñ Rm

väärtuste hulk sisaldub funktsioonide (1.5) määramispiirkonnas:!�
x1pQq, . . . , xmpQq

�
: Q P ∆

)
� D.

Siis liitfunktsioonid$'&'%
u1 � F1pQq � F1pt1, . . . , tlq :� u1

�
x1pQq, . . . , xmpQq

�
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

un � FnpQq � Fnpt1, . . . , tlq :� un
�
x1pQq, . . . , xmpQq

� (1.7)

on diferentseeruvad hulgas ∆, kusjuures süsteemi (1.7) Jacobi maatriks on süsteemi-
de (1.5) ja (1.6) Jacobi maatriksite korrutis:����������

BF1

Bt1
BF1

Bt2 � � � BF1

BtlBF2

Bt1
BF2

Bt2 � � � BF2

Btl
...

...
...

...
BFn

Bt1
BFn

Bt2 � � � BFn

Btl

���������

�

����������

Bu1
Bx1

Bu1
Bx2 � � � Bu1

BxmBu2
Bx1

Bu2
Bx2 � � � Bu2

Bxm
...

...
...

...
Bun
Bx1

Bun
Bx2 � � � Bun

Bxm

���������


����������

Bx1
Bt1

Bx1
Bt2 � � � Bx1

BtlBx2
Bt1

Bx2
Bt2 � � � Bx2

Btl
...

...
...

...
Bxm
Bt1

Bxm
Bt2 � � � Bxm

Btl

���������

(1.8)

(siin osatuletised
BFj

Btk ja
Bxi
Btk arvutatakse punktides Q P ∆ ning osatuletised

Buj
Bxi

vastavates punktides
�
x1pQq, . . . , xmpQq

� P D).

Tõestus. Liitfunktsioonide (1.7) diferentseeruvus järeldub vahetult liitfunktsioo-
nide diferentseerimise reeglist (teoreemist II.1.8); seejuures kõikide j P t1, . . . , nu ja
k P t1, . . . , lu korral

BFj

Btk pQq �
m̧

i�1

Buj
Bxi

�
x1pQq, . . . , xmpQq

� Bxi
Btk pQq iga Q P ∆ korral;

niisiis võrdus (1.8) kehtib.
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Kuna (ruut)maatriksite korrutise determinant on nende maatriksite determinan-
tide korrutis, siis järeldub teoreemist 1.1 juhul n � m � l

Järeldus 1.2. Olgu teoreemis 1.1 n � m � l. Siis süsteemi (1.7) jakobiaan on
süsteemide (1.5) ja (1.6) jakobiaanide korrutis:

DpF1, . . . , Fnq
Dpt1, . . . , tnq � Dpu1, . . . , unq

Dpx1, . . . , xnq
Dpx1, . . . , xnq
Dpt1, . . . , tnq

(siin determinantides
DpF1, . . . , Fnq
Dpt1, . . . , tnq ja

Dpx1, . . . , xnq
Dpt1, . . . , tnq osatuletised

BFj

Btk ja
Bxi
Btk arvu-

tatakse punktides Q P ∆ ning determinandis
Dpu1, . . . , unq
Dpx1, . . . , xnq osatuletised

Buj
Bxi vasta-

vates punktides
�
x1pQq, . . . , xmpQq

�
).

Järeldus 1.3. Olgu funktsioonid$'&'%
u1 � u1pP q � u1px1, . . . , xmq,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

um � umpP q � umpx1, . . . , xmq
(1.9)

diferentseeruvad hulgas D � Rm ning olgu funktsioonidNB! Funkt-
sioonide (1.9)
diferentseeruvusest
hulgas D järeldub
implitsiitselt,
et hulk D on
lahtine, ning funkt-
sioonide (1.10)
diferentseeruvusest
hulgas ∆ järeldub
implitsiitselt, et
hulk ∆ on lahtine.

$'&'%
x1 � x1pQq � x1pu1, . . . , umq,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xm � xmpQq � xmpu1, . . . , umq
(1.10)

diferentseeruvad hulgas ∆ � Rm, kusjuures süsteemiga (1.10) määratud kujutuse
∆Ñ Rm väärtuste hulk sisaldub funktsioonide (1.9) määramispiirkonnas:!�

x1pQq, . . . , xmpQq
�
: Q P ∆

)
� D (1.11)

ning�
u1
�
x1pQq, . . . , xmpQq

�
, . . . , um

�
x1pQq, . . . , xmpQq

�	 � Q iga Q P ∆ korral.

(1.12)
Siis nende süsteemide jakobiaanide korrutis on samaselt võrdne arvuga 1:

Dpu1, . . . , umq
Dpx1, . . . , xmq

Dpx1, . . . , xmq
Dpu1, . . . , umq � 1, (1.13)

s.t. ∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Bu1
Bx1

Bu1
Bx2 � � � Bu1

BxmBu2
Bx1

Bu2
Bx2 � � � Bu2

Bxm
...

...
. . .

...
Bum
Bx1

Bum
Bx2 � � � Bum

Bxm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Bx1
Bu1

Bx1
Bu2 � � � Bx1

BumBx2
Bu1

Bx2
Bu2 � � � Bx2

Bum
...

...
. . .

...
Bxm
Bu1

Bxm
Bu2 � � � Bxm

Bum

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

� 1
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(siin osatuletised
Bxi
Buj arvutatakse punktides Q P ∆ ja osatuletised

Buj
Bxi vastavates

punktides
�
x1pQq, . . . , xmpQq

� P D).

Tõestus. De�neerime iga j P t1, . . . ,mu korral funktsiooni Fj : ∆Ñ R,

FjpQq � uj
�
x1pQq, . . . , xmpQq

�
, Q P ∆;

siis järelduse 1.2 põhjal

Dpu1, . . . , umq
Dpx1, . . . , xmq

Dpx1, . . . , xmq
Dpu1, . . . , umq �

DpF1, . . . , Fmq
Dpu1, . . . , umq .

Tingimuse (1.12) põhjal iga j P t1, . . . ,mu korral
Fjpu1, . . . , umq � uj iga pu1, . . . , umq P ∆ korral;

seega

DpF1, . . . , Fmq
Dpu1, . . . , umq �

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

BF1

Bu1
BF1

Bu2 � � � BF1

BumBF2

Bu1
BF2

Bu2 � � � BF2

Bum
...

...
. . .

...
BFm

Bu1
BFm

Bu2 � � � BFm

Bum

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

�

∣∣∣∣∣∣∣∣∣

1 0 � � � 0
0 1 � � � 0
...

...
. . .

...
0 0 � � � 1

∣∣∣∣∣∣∣∣∣
� 1;

niisiis samasus (1.13) kehtib.

Vahetult eelnevast järeldusest 1.3 järeldub, et kujutuse ja tema pöördkujutuse
jakobiaanide korrutis on samaselt võrdne arvuga 1.

Järeldus 1.4. Olgu süsteemide (1.9) ja (1.10) poolt määratud kujutused teineteise
pöördkujutused, s.t. lisaks tingimustele (1.11) ja (1.12) kehtivad ka!�

u1pP q, . . . , umpP q
�
: P P D

)
� ∆

ja �
x1
�
u1pP q, . . . , umpP q

�
, . . . , xm

�
u1pP q, . . . , umpP q

�	 � P iga P P D korral.

Siis kehtib (1.13) (siin vaadeldavates jakobiaanides osatuletised
Bxi
Buj arvutatakse

punktides Q P ∆ ja osatuletised
Buj
Bxi vastavates punktides

�
x1pQq, . . . , xmpQq

� P D

või, sümmeetriliselt, osatuletised
Buj
Bxi arvutatakse punktides P P D ja osatuletised

Bxi
Buj vastavates punktides

�
u1pP q, . . . , umpP q

� P ∆).



� 2. Ühe võrrandiga antud ilmutamata funktsioonid

2.1. Ühe muutuja ilmutamata funktsiooni mõiste

Sisaldagu kahe muutuja funktsiooni u � F px, yq määramispiirkond ristkülikut

I1 � I2 �
 px, yq : x P I1, y P I2(,

kus I1, I2 � R on mingid intervallid. Vaatleme võrrandit

F px, yq � 0. (2.1)

De�nitsioon 2.1. Öeldakse, et võrrand (2.1) määrab ristkülikus I1� I2 muutuja y
muutuja x (ühese) funktsioonina

y � ypxq, (2.2)

kui mis tahes �kseeritud väärtuse x P I1 korral võrrandil (2.1) eksisteerib parajasti
üks lahend y P I2.

Kõnealune funktsioon (2.2)

I1 Q x ÞÑ ypxq P I2
on määratud võrdusega

F
�
x, ypxq� � 0;

see funktsioon seab punktile x P I1 vastavusse võrrandi (2.1) ainsa lahendi y P I2.
Seejuures öeldakse, et funktsioon (2.2) on antud võrrandiga (2.1) ilmutamata

kujul.

x

y

a1

a2

a3 a4b1

b2

b3 b4

c1

c2

c4

d1 = c3

d2

d3

d4

F (x, y) = 0

Joonis 2.1

102
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Näide 2.1. Joonisel 2.1 on võrrandi F px, yq � 0 lahendite hulk kujutatud rohelisega. RistkülikutesNB! Must-
valge televisiooni
vaatajad seda
punktihulka
rohelisena ei näe!

ra1, b1s�rc1, d1s ja ra2, b2s�rc2, d2s määrab see võrrand muutuja y muutuja x ühese funktsioonina:
kui i � 1 või i � 2, siis iga �kseeritud väärtuse x P rai, bis korral leidub võrrandil F px, yq � 0
parajasti üks lahend y P rci, dis. Ristkülikutes ra3, b3s � rc3, d3s ja ra4, b4s � rc4, d4s ei määra
see võrrand muutujat y muutuja x ühese funktsioonina: leidub väärtusi x P ra3, b3s, mille korral
võrrandil F px, yq � 0 on rohkem, kui üks lahend y P rc3, d3s ning leidub väärtusi x P ra4, b4s, mille
korral võrrandil F px, yq � 0 puudub lahend y P rc4, d4s.

Näide 2.2. Vaatleme võrrandit
x2 � y2 � 1. (2.3)

Paneme tähele, et

� võrrand (2.3) määrab ristkülikus r�1, 1s�r0, 1s muutuja y muutuja x (ühese) funktsioonina
y � ypxq, sest iga �kseeritud väärtuse x P r�1, 1s korral leidub võrrandil (2.3) täpselt üks
lahend y lõigust r0, 1s (see lahend on y � ?

1� x2; niisiis ypxq � ?
1� x2); vt. joonise 2.2

vasakpoolset teljestikku;

� võrrand (2.3) ei määra ristkülikus r�1, 1s � r0, 1s muutujat x muutuja y (ühese) funkt-
sioonina, sest mis tahes �kseeritud väärtuse y P r0, 1q korral leidub võrrandil (2.3) kaks
lahendit lõigust r�1, 1s (need lahendid on x �

a
1� y2 ja x � �

a
1� y2); vt. joonise 2.2

vasakpoolset teljestikku;

� võrrand (2.3) määrab ristkülikus r�1, 1s�r�1, 0smuutuja y muutuja x (ühese) funktsioonina
y � ypxq, sest iga �kseeritud väärtuse x P r�1, 1s korral leidub võrrandil (2.3) täpselt üks
lahend y lõigust r�1, 0s (see lahend esitub kujul y � �?1� x2; niisiis ypxq � �?1� x2);
vt. joonise 2.2 parempoolset teljestikku;

x

y

x

y

x2 + y2 = 1

x2 + y2 = 1

[−1, 1]× [0, 1]

[−1, 1]× [−1, 0]

−1 1

−1

1

−1 1

−1

1

Joonis 2.2

� võrrand (2.3) ei määra ristkülikus r�1, 1s � r�1, 1s muutujat y muutuja x (ühese) funkt-
sioonina, sest mis tahes �kseeritud väärtuse x P p�1, 1q korral leidub võrrandil (2.3) kaks
lahendit y lõigust r�1, 1s (need lahendid on y � ?

1� x2 ja y � �?1� x2); vt. joonise 2.3
vasakpoolset teljestikku;

� võrrand (2.3) ei määra ristkülikus p�1, 1q � r0,
?
3
2 s muutujat y muutuja x funktsioonina,

sest mis tahes �kseeritud väärtuse x P p� 1
2 ,

1
2 q korral puudub võrrandil (2.3) lahend y lõigus

r0,
?
3
2 s; vt. joonise 2.3 parempoolset teljestikku;
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x

y

x

y

x2 + y2 = 1

x2 + y2 = 1

[−1, 1]× [1, 1]

[−1, 1]× [0,

√
3

2
]

−1 1

−1

1

−1 1

−1

1

−1

2

1

2

Joonis 2.3

� võrrand (2.3) ei määra ristkülikus r1, 2s�p�8,8q muutujat y muutuja x funktsioonina, sest
mis tahes �kseeritud väärtuse x P p1, 2s korral võrrandil (2.3) puudub lahend; vt. joonise
2.4 vasakpoolset teljestikku;

� võrrand (2.3) määrab ristkülikus r0, 1s � r�1, 1s muutuja x muutuja y (ühese) funktsioo-
nina x � xpyq, sest mis tahes �kseeritud väärtuse y P r�1, 1s korral leidub võrrandil (2.3)
täpselt üks lahend x lõigust r0, 1s (see lahend on x �

a
1� y2; niisiis xpyq �

a
1� y2); vt.

joonise 2.4 parempoolset teljestikku.

x

y

x

y

x2 + y2 = 1 x2 + y2 = 1

(1, 2]× (−∞,∞)
[0, 1]× [−1, 1]

−1 1 2

−1

1

−1 1

−1

1

Joonis 2.4

2.2. Ühe muutuja ilmutamata funktsiooni olemasolu ja
pidevus

Järgnev teoreem annab piisavad tingimused ühe muutuja ilmutamata funktsiooni
olemasoluks ja pidevuseks.
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Teoreem 2.1. Eeldame, et

(1) funktsioon u � F px, yq on määratud ja pidev mingis ristkülikus D keskpunktiga
px0, y0q:

D :� rx0 � α, x0 � αs � ry0 � β, y0 � βs pα, β ¡ 0q;

(2) F px0, y0q � 0;

(3) iga �kseeritud väärtuse x P rx0�α, x0�αs korral on funktsioon hxpyq :� F px, yq
rangelt monotoonne (s.t. see (argumendi y) funktsioon on kas rangelt kasvav
või rangelt kahanev) lõigus ry0 � β, y0 � βs.

Siis

(a) punkti px0, y0q teatavas ristkülikukujulises ümbruses määrab võrrand F px, yq � 0
muutuja y muutuja x (ühese) funktsioonina y � ypxq;

(b) ypx0q � y0;

(c) funktsioon y � ypxq on punkti x0 teatavas ümbruses pidev.
NB! Teoreemi
väide jääb kehtima,
kui eeldus (1)
asendada nõrgema
eeldusega �F on
pidev iga oma
argumendi järgi
(s.t., F on nii
argumendi x kui ka
argumendi y järgi
pidev ristkülikus
D�.

Tõestus. Väidete (a) ja (b) tõestuseks piisab veenduda, et muutuja x iga väärtuse
korral teatavast lõigust rx0�α0, x0�α0s � rx0�α, x0�αs on väärtused F px, y0�βq ja
F px, y0�βq erimärgilised. Niisugusel juhul mis tahes �kseeritud x P rx0�α0, x0�α0s
korral järeldub võrrandi

hxpyq � F px, yq � 0

lahendi (muutuja y suhtes) olemasolu Bolzano�Cauchy esimesest teoreemist (mär-
gime, et funktsioon hx on pidev lõigus ry0�β, y0�βs); selle lahendi ühesus järeldub
funktsiooni hx monotoonsusest.

Oletame konkreetsuse mõttes, et funktsioon hx0pyq � F px0, yq on rangelt kasvav.
(Selle funktsiooni range kahenemise juhtu käsitletakse analoogiliselt.) Siis

F px0, y0 � βq   F px0, y0q   F px0, y0 � βq,
s.t.

F px0, y0 � βq   0   F px0, y0 � βq.
Kuna funktsioon F on pidev ristkülikusD, siis on ta pidev ka punktides px0, y0�βq ja
px0, y0�βq ning järelikult (teoreemi I.4.1 põhjal pideva funktsiooni märgi säilimisest)
leidub reaalarv α0 ¡ 0 nii, et

x P rx0 � α0, x0 � α0s ùñ F px, y0 � βq   0   F px, y0 � βq
(vt. joonist 2.5). Väited (a) ja (b) on tõestatud.

Näitame, et funktsioon y � ypxq on pidev vahemikus px0�α0, x0�α0q. Fikseerime
vabalt punkti rx P px0�α0, x0�α0q ja reaalarvu ε ¡ 0 ning tähistame ry � yprxq. Me
peame leidma reaalarvu δ ¡ 0 nii, et

rx� δ   x   rx� δ ùñ ry � ε   ypxq   ry � ε.
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x

y

y0 − β

y0

y

y0 + β

x0 − α x0 − α0 x0 x x0 + α0 x0 + α

(x0, y0)

(x, y)

(x0, y0 − β)

(x0, y0 + β)

F (x, y) = 0

F (x, y0 + β) > 0

F (x, y0 − β) < 0

Joonis 2.5. Võrrandi F px, yq � 0 lahendite hulk on joonisel värvitud roheli-
seks. Mustvalge televisiooni vaatajad seda punktihulka rohelisena ei näe!

Seejuures võime üldisust kitsendamata eeldada, et rry � ε, ry � εs � ry0 � β, y0 � βs
(põhjendada!) . Sel eeldusel piisab leida reaalarv δ ¡ 0 nii, et mis tahes x P prx �
δ, rx�δq korral on väärtused F px, ry�εq ja F px, ry�εq nullist erinevad ja erimärgilised,
sest niisugusel juhul (muutuja y) funktsiooni hxpyq :� F px, yq range monotoonsuse
ja pidevuse tõttu lõigus rry � ε, ry � εs (Bolzano�Cauchy esimese teoreemi põhjal)
võrrandi F px, yq � 0 lahend y � s.t. väärtus ypxq � paikneb arvude ry � ε ja ry � ε
vahel (vt. joonist 2.6).

Kuna funktsioon upyq � F prx, yq on kasvav, siis

F prx, ry � εq   F prx, ryq   F prx, ry � εq,
s.t.,

F prx, ry � εq   0   F prx, ry � εq,
Kuna funktsioon F on pidev punktides prx, ry � εq ja prx, ry � εq, siis (teoreemi I.4.1
põhjal pideva funktsioon märgi säilimisest) leidub reaalarv δ ¡ 0 nii, etrx� δ   x   rx� δ ùñ F px, ry � εq   0   F px, ry � εq.



� 2. Ühe võrrandiga antud ilmutamata funktsioonid 107

x

y

y0 − β

y0

ỹ − ε

ỹ

ỹ + ε

y0 + β

x0 − α0 x0 x̃ x0 + α0

(x0, y0)

F (x̃, ỹ) = 0

F (x̃, ỹ + ε) > 0

F (x̃, ỹ − ε) < 0

Joonis 2.6. Võrrandi F px, yq � 0 lahendite hulk on joonisel värvitud roheli-
seks. Mustvalge televisiooni vaatajad seda punktihulka rohelisena ei näe!

Teoreem on tõestatud.

2.3. Ühe muutuja ilmutamata funktsiooni diferentseeruvus

Tugevdades teoreemi 2.1 eeldusi, anname piisavad tingimused ilmutamata funkt-
siooni tuletise olemasoluks.

Teoreem 2.2. Eeldame, et

(1) funktsioon u � F px, yq on määratud punkti px0, y0q teatavas ümbruses U ;

(2) F px0, y0q � 0;

(3) osatuletised F 1
x ja F 1

y eksisteerivad ja on pidevad ümbruses U ;

(4) F 1
ypx0, y0q �� 0.

Siis kehtivad teoreemi 2.1 väited (a)�(c). Veelgi enam,
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(d) funktsioonil y � ypxq eksisteerib punkti x0 teatavas ümbruses pidev tuletis,
kusjuures selles ümbruses

y1pxq � �F
1
x

�
x, ypxq�

F 1
y

�
x, ypxq� ; (2.4)

niisiis

y1px0q � �F
1
x

�
x0, ypx0q

�
F 1
y

�
x0, ypx0q

� � �F
1
xpx0, y0q
F 1
ypx0, y0q

� �F
1
xpP0q
F 1
ypP0q .

Tõestus. Konkreetsuse mõttes eeldame, et F 1
ypx0, y0q ¡ 0 (juhtu, kus F 1

ypx0, y0q  
0, käsitletakse analoogiliselt).

Kuna osatuletis F 1
y eksisteerib ümbruses U ning on pidev punktis px0, y0q, siis iga

punkti px, yq korral teatavast ristkülikust

D :� rx0 � α, x0 � αs � ry0 � β, y0 � βs � U pα, β ¡ 0q,

kehtib F 1
ypx, yq ¡ 0. Siit järeldub, et muutuja x iga �kseeritud väärtuse korral lõigust

rx0 � α, x0 � αs on funktsioon hxpyq :� F px, yq rangelt kasvav lõigus ry0 � β, y0 �
βs. Niisiis, funktsioon F rahuldab ristkülikus D teoreemi 2.1 eeldusi p1q�p3q ning
järelikult kehtivad selle teoreemi väited (a)�(c).

Olgu I mingi punkti x0 sisaldav vahemik, milles funktsioon y � ypxq on pidev.
Teoreemi tõestuseks jääb näidata, et funktsioonil y � ypxq eksisteerib lõplik tuletis
vahemikus I, kusjuures vastav tuletisfunktsioon on selles vahemikus pidev.

Fikseerime vabalt punkti x P I ning vaatleme funktsiooni y argumendi muutusid
∆x, mille korral x�∆x P I. Tähistame

y � ypxq ja ∆y � ypx�∆xq � ypxq;

siis y �∆y � ypx�∆xq ning järelikult

F px�∆x, y �∆yq � F px, yq � 0� 0 � 0.

Funktsioon F on diferentseeruv ümbruse U igas punktis (sest sellel funktsioonil
eksisteerivad selles ümbruses pidevad osatuletised), seega

0 � F px�∆x, y�∆yq�F px, yq � F 1
xpx, yq∆x�F 1

ypx, yq∆y�λ∆x�µ∆y, (2.5)

kus funktsioonid λ � λp∆x,∆yq ja µ � µp∆x,∆yq rahuldavad tingimusi

λ ÝÝÝÝÝÝÑ
∆x,∆yÑ0

0 ja µ ÝÝÝÝÝÝÑ
∆x,∆yÑ0

0.

Funktsiooni y � ypxq pidevuse tõttu ∆y ÝÝÝÝÑ
∆xÑ0

0 ning järelikult ka λ, µ ÝÝÝÝÑ
∆xÑ0

0.

Võrdusest (2.5) järeldub nüüd, et

∆y

∆x
� �F

1
xpx, yq � λ

F 1
ypx, yq � µ

ÝÝÝÝÑ
∆xÑ0

�F
1
xpx, yq
F 1
ypx, yq

.
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Siit järeldub, et

y1pxq � �F
1
xpx, yq
F 1
ypx, yq

� �F
1
x

�
x, ypxq�

F 1
y

�
x, ypxq� .

Tuletisfunktsiooni y1 pidevus järeldub funktsioonide F 1
x, F

1
y ja y pidevusest. Teoreem

on tõestatud.

Märkus 2.1. Kui lisaks teoreemi 2.2 eelduste täidetusele funktsioon F on kaks
korda diferentseeruv ristkülikus D, siis liitfunktsiooni diferentseerimise reegli (teo-
reemi II.1.8) põhjal funktsioon y � ypxq on kaks korda diferentseeruv punkti x0
teatavas ümbruses, kusjuures selles ümbruses valemi (2.4) põhjal, märkides üles-
kirjutuste lihtsustamiseks

F :� F
�
x, ypxq�, F 1

x :� F 1
x

�
x, ypxq�, F 1

y :� F 1
y

�
x, ypxq�,

F 2
x2 :� F 2

x2

�
x, ypxq�, F 2

y2 :� F 2
y2

�
x, ypxq�,

F 2
xy � F 2

yx :� F 2
xy

�
x, ypxq� � F 2

yx

�
x, ypxq�

ning y :� ypxq ja y1 :� y1pxq,

y2pxq � �
y1pxqq1 �

�
�F

1
x

�
x, ypxq�

F 1
y

�
x, ypxq�


1

� �

�
F 1
x

�
x, ypxq�	1F 1

y

�
x, ypxq�� F 1

x

�
x, ypxq��F 1

y

�
x, ypxq�	1

F 1
y

�
x, ypxq�2

� �
�
F 2
x2 � F 2

xy y
1�F 1

y � F 1
x

�
F 2
yx � F 2

y2 y
1��

F 1
y

�2
� F 1

x F
2
yx � F 1

y F
2
x2 �

�
F 1
x F

2
y2 � F 1

y F
2
xy

�
y1�

F 1
y

�2
�
F 1
x F

2
yx � F 1

y F
2
x2 �

�
F 1
x F

2
y2 � F 1

y F
2
xy

���F 1
x

F 1
y



�
F 1
y

�2
� F 1

x F
1
y F

2
yx �

�
F 1
y

�2
F 2
x2 �

�
F 1
x

�2
F 2
y2 � F 1

x F
1
y F

2
xy�

F 1
y

�3
� �

�
F 1
x

�2
F 2
y2 � 2F 1

x F
1
y F

2
yx �

�
F 1
y

�2
F 2
x2�

F 1
y

�3 .

Näeme, et kui funktsiooni F teist järku osatuletised on pidevad punkti P0 mingis
ümbruses, siis ka teine tuletis(funktsioon) y2 on pidev punkti x0 teatavas ümbruses.

Funktsiooni y � ypxq kõrgemat järku tuletised saab leida analoogiliselt (eeldusel,
et funktsioon F on punkti P0 mingis ümbruses vastav arv kordi diferentseeruv).
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Näide 2.3. Leiame võrrandiga
x3 � 6x2y � y3 � 31 (2.6)

punkti p2,�1q ümbruses määratud funktsiooni y � ypxq esimest ja teist järku tuletised punktis
x � 2.

Selleks märgime, et võrrand (2.6) on samaväärne võrrandiga F px, yq � 0, kus

F px, yq � x3 � 6x2y � y3 � 31.

Leiame funktsiooni F osatuletised:

F 1
xpx, yq � 3x2 � 12xy, F 1

ypx, yq � �6x2 � 3y2.

Näeme, et funktsiooni F osatuletised on kogu tasandil R2 pidevad, kusjuures

F 1
yp2,�1q � �21 �� 0,

järelikult (arvestades, et F p2,�1q � 0) teoreemi 2.2 põhjal punkti p2,�1q teatavas ümbruses
võrrand (2.6) määrab muutuja y muutuja x diferentseeruva funktsioonina y � ypxq; seejuures,
märkides edasises lihtsuse mõttes y :� ypxq, valemi (2.4) põhjal

y1 � �F 1
xpx, yq

F 1
ypx, yq

� 3x2 � 12xy

6x2 � 3y2
� x2 � 4xy

2x2 � y2
, (2.7)

millest, arvestades, et yp2q � �1, saame

y1p2q � 4� 8

8� 1
� 12

7
.

Kuna punkti x � 2 teatavas ümbruses kehtiva samasuse (2.7) parem pool on diferentseeruv
(sest funktsioon y � ypxq on selles ümbruses diferentseeruv), siis selle samasuse mõlemat poolt
diferentseerides saame

y2 �
�
x2 � 4xy

2x2 � y2


1
� px2 � 4xyq1p2x2 � y2q � px2 � 4xyqp2x2 � y2q1

p2x2 � y2q2

� p2x� 4y � 4xy1qp2x2 � y2q � px2 � 4xyqp4x� 2yy1q
p2x2 � y2q2 ,

millest, arvestades, et yp2q � �1 ja y1p2q � 12
7 ,

y2p2q �
�
4� 4� 96

7

�
7� 12

�
8� 24

7

�
49

� 56� 96� 96� 288
7

49
� �1240

343
.

2.4. Mitme muutuja ilmutamata funktsiooni olemasolu ja
diferentseeruvus

Mitme muutuja ilmutamata funktsioonid de�neeritakse analoogiliselt ühe muutuja
ilmutamata funktsioonide juhuga.

Sisaldagu m � 1 muutuja funktsiooni u � F px1, . . . , xm, yq määramispiirkond
risttahukat

D :� I1 � � � � � Im � I �  px1, . . . , xm, yq : x1 P I1, . . . , xm P Im, y P I
(
,

kus I1, . . . , Im, I � R on mingid intervallid. Vaatleme võrrandit

F px1, . . . , xm, yq � 0. (2.8)
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De�nitsioon 2.2. Öeldakse, et võrrand (2.8) määrab risttahukas D muutuja y
muutujate x1, . . . , xm (ühese) funktsioonina

y � ypx1, . . . , xmq, (2.9)

kui mis tahes �kseeritud väärtuste x1 P I1, . . . , xm P Im korral võrrandil (2.8) eksis-
teerib parajasti üks lahend y P I.

Kõnealune funktsioon (2.9)

I1 � � � � � Im Q px1, . . . , xmq ÞÝÑ ypx1, . . . , xmq P I

on määratud võrdusega

F
�
x1, . . . , xm, ypx1, . . . , xmq

� � 0:

see funktsioon seab punktile px1, . . . , xmq P I1 � � � � � Im vastavusse võrrandi (2.8)
ainsa lahendi y P I.

Seejuures öeldakse, et funktsioon (2.9) on antud võrrandiga (2.8) ilmutamata
kujul.

Teoreem 2.3. Eeldame, et

(1) (m � 1 muutuja) funktsioon u � F px1, . . . , xm, yq on määratud mingis rist-
tahukas D keskpunktiga P0 � px01, . . . , x0m, y0q:

D :� px01 � α1, x
0
1 � α1q � � � � � px0m � αm, x

0
m � αmq � py0 � β, y0 � βq

(siin α1, . . . , αm, β ¡ 0);

(2) F pP0q � 0;

(3) osatuletised F 1
x1
, . . . , F 1

xm
ja F 1

y eksisteerivad ja on pidevad risttahukas D;

(4) F 1
ypP0q �� 0.

Siis

(a) punkti P0 teatavas risttahukakujulises ümbruses määrab võrrand

F px1, . . . , xm, yq � 0

muutuja y muutujate x1, . . . , xm (ühese) funktsioonina y � ypx1, . . . , xmq;

(b) ypx01, . . . , x0mq � y0;

(c) funktsioon y � ypx1, . . . , xmq on punkti px01, . . . , x0mq teatavas ümbruses pidev; NB! Väide (c) jä-
reldub väitest (d).
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(d) funktsioonil y � ypx1, . . . , xmq eksisteerivad punkti px01, . . . , x0mq teatavas ümb-
ruses pidevad osatuletised y1x1

, . . . , y1xm
, kusjuures selles ümbruses

y1xi
px1, . . . , xmq � �F

1
xi

�
x1, . . . , xm, ypx1, . . . , xmq

�
F 1
y

�
x1, . . . , xm, ypx1, . . . , xmq

� ; (2.10)

niisiis

y1xi
px01, . . . , x0mq � �F

1
xi
pP0q

F 1
ypP0q .

Teoreemi 2.3 tõestus on täiesti analoogiline teoreemi 2.2 tõestusega (seejuures
väidete (a)�(c) tõestus kasutab teoreemi 2.1 analoogi mitme muutuja ilmutamata
funktsioonide jaoks � mille tõestus on jällegi täiesti analoogiline teoreemi 2.1 tões-
tusega), seepärast jätame ta siin ära toomata.

Märkus 2.2. Kui lisaks teoreemi 2.3 eelduste täidetusele funktsioon F on kaks kor-
da diferentseeruv ristkülikus D, siis liitfunktsiooni diferentseerimise reegli (teoree-
mi II.1.8) põhjal funktsioon y � ypx1, . . . , xmq on kaks korda diferentseeruv punkti
px01, . . . , x0mq teatavas ümbruses; seejuures tema teist järku osatuletised saab leida
võttes osatuletised (punkti px01, . . . , x0mq teatavas ümbruses kehtivate) samasuste
(2.10) mõlemast poolest.

Näide 2.4. Leiame võrrandiga
x3z2 � yz3 � x � 2 (2.11)

punkti p1, 2,�1q ümbruses määratud funktsiooni z � zpx, yq esimest ja teist järku osatuletised
punktis px, yq � p1, 2q.

Selleks märgime, et võrrand (2.11) on samaväärne võrrandiga F px, y, zq � 0, kus

F px, y, zq � x3z2 � yz3 � x� 2.

Leiame funktsiooni F osatuletised:

F 1
xpx, y, zq � 3x2z2 � 1, F 1

ypx, y, zq � �z3, F 1
zpx, y, zq � 2x3z � 3yz2.

Näeme, et funktsiooni F osatuletised on kogu ruumis R3 pidevad, kusjuures

F 1
zp1, 2,�1q � �8 �� 0,

järelikult (arvestades, et F p1, 2,�1q � 0) teoreemi 2.3 põhjal punkti p1, 2,�1q teatavas ümbruses
võrrand (2.11) määrab muutuja z muutujate x ja y diferentseeruva funktsioonina z � zpx, yq;
seejuures, märkides edasises lihtsuse mõttes z :� zpx, yq, valemi (2.10) põhjal

z1x � �F 1
xpx, y, zq

F 1
zpx, y, zq

� �3x2z2 � 1

2x3z � 3yz2
,

z1y � �F 1
ypx, y, zq

F 1
zpx, y, zq

� z3

2x3z � 3yz2
� z2

2x3 � 3yz
,

(2.12)

millest, arvestades, et zp1, 2q � �1, saame

z1xp1, 2q �
�3� 1

�2� 6
� 1

4
, z1yp1, 2q �

1

2� 6
� 1

8
.
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Kuna punkti px, yq � p1, 2q teatavas ümbruses kehtivate samasuste (2.12) paremad pooled on
diferentseeruvad (sest funktsioon z � zpx, yq on selles ümbruses diferentseeruv), siis neid samasusi
diferentseerides saame

z2x2 �
� �3x2z2 � 1

2x3z � 3yz2


1

x

� p�3x2z2 � 1q1xp2x3z � 3yz2q � p�3x2z2 � 1qp2x3z � 3yz2q1x
p2x3z � 3yz2q2

� p�6xz2 � 6x2zz1xqp2x3z � 3yz2q � p�3x2z2 � 1qp6x2z � 2x3z1x � 6yzz1xq
p2x3z � 3yz2q2 ,

z2xy �
� �3x2z2 � 1

2x3z � 3yz2


1

y

� p�3x2z2 � 1q1yp2x3z � 3yz2q � p�3x2z2 � 1qp2x3z � 3yz2q1y
p2x3z � 3yz2q2

� p�6x2zz1yqp2x3z � 3yz2q � p�3x2z2 � 1qp2x3z1y � 3z2 � 6yzz1yq
p2x3z � 3yz2q2 ,

z2yx �
�

z2

2x3 � 3yz


1

x

� pz2q1xp2x3 � 3yzq � z2p2x3 � 3yzq1x
p2x3 � 3yzq2

� 2zz1xp2x3 � 3yzq � z2p6x2 � 3yz1xq
p2x3 � 3yzq2 ,

z2y2 �
�

z2

2x3 � 3yz


1

y

� pz2q1yp2x3 � 3yzq � z2p2x3 � 3yzq1y
p2x3 � 3yzq2

� 2zz1yp2x3 � 3yzq � z2p�3z � 3yz1yq
p2x3 � 3yzq2 ,

millest, arvestades, et zp1, 2q � �1, z1xp1, 2q � 1
4 , z

1
yp1, 2q � 1

8 ,

z2x2p1, 2q � p�6� 6
4 qp�8q � p�3� 1qp�6� 2

4 � 12
4 q

p�2� 6q2 � 31

64
,

z2xyp1, 2q �
6
8 p�8q � p�3� 1qp 28 � 3� 12

8 q
p�2� 6q2 � � 17

128
,

z2yxp1, 2q �
� 2

4 p2� 6q � p6� 6
4 q

p2� 6q2 � � 17

128
,

z2y2p1, 2q � � 2
8 p2� 6q � p3� 6

8 q
p2� 6q2 � � 17

256
.

Eelnevas võinuksime ühe osatuletistest z2xy ja z2yx rehkendamata jätta � samasustest (2.12) näe-
me, et funktsiooni z osatuletised on punkti px, yq � p1, 2q teatavas ümbruses diferentseeruvad, s.t.
funktsioon z on kaks korda diferentseeruv selles ümbruses ning järelikult selles ümbruses funkt-
siooni z teist järku segaosatuletised ei sõltu diferentseerimise järjekorrast.
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3.1. Võrrandite süsteemiga määratud ilmutamata
funktsioonid

Sisaldagu m� n muutuja funktsioonide

uj � Fjpx1, . . . , xm, y1, . . . , ynq, j � 1, . . . , n, (3.1)

määramispiirkond risttahukat

D :� I1 � � � � � Im � J1 � � � � � Jn,

kus I1, . . . , Im, J1, . . . , Jn � R on mingid intervallid. Vaatleme võrrandisüsteemi$'''&'''%
F1px1, . . . , xm, y1, . . . , ynq � 0,

F2px1, . . . , xm, y1, . . . , ynq � 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fnpx1, . . . , xm, y1, . . . , ynq � 0.

(3.2)

De�nitsioon 3.1. Öeldakse, et süsteem (3.2) määrab risttahukas D muutujad
y1, . . . , yn muutujate x1, . . . , xm (üheste) funktsioonidena

y1 � y1px1, . . . , xmq, . . . . . . , yn � ynpx1, . . . , xmq, (3.3)

kui mis tahes �kseeritud väärtuste x1 P I1, . . . , xm P Im korral süsteemil (3.2) eksis-
teerib parajasti üks lahend py1, . . . , ynq P J1 � � � � � Jn.

Kõnealused funktsioonid (3.3)

I1 � � � � � Im Q px1, . . . , xmq ÞÝÑ yjpx1, . . . , xmq P Jj, j � 1, . . . , n,

on määratud võrdustega

Fj

�
x1, . . . , xm, y1px1, . . . , xmq, . . . , ynpx1, . . . , xmq

� � 0, j � 1, . . . , n,

s.t. iga j P t1, . . . , nu korral funktsioon yj � yjpx1, . . . , xmq seab punktile px1, . . . , xmq
P I1 � � � � � Im vastavusse muutuja yj väärtuse süsteemi (3.2) ainsast lahendist
py1, . . . , ynq P J1 � � � � � Jn.

Seejuures öeldakse, et funktsioonid (3.3) on antud süsteemiga (3.2) ilmutamata
kujul.

Teoreem 3.1. Eeldame, et

(1) (m � n muutuja) funktsioonid (3.1) on määratud mingis risttahukas D kesk-
punktiga P0 � px01, . . . , x0m, y01, . . . , y0nq:
D :� px01 � α1, x

0
1 � α1q � � � � � px0m � αm, x

0
m � αmq

� py01 � β1, y
0
1 � β1q � � � � � py0n � βn, y

0
n � βnq

(siin α1, . . . , αm, β1, . . . βn ¡ 0);

114
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(2) FjpP0q � 0, j � 1, . . . , n;

(3) iga k P t1, . . . , nu korral osatuletised
BFk

Bx1 , . . . ,
BFk

Bxm ja
BFk

By1 , . . . ,
BFk

Byn eksistee-

rivad ning on pidevad risttahukas D;

(4)
DpF1, . . . , Fnq
Dpy1, . . . , ynq pP0q �

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

BF1

By1 pP0q BF1

By2 pP0q � � � BF1

Byn pP0q
BF2

By1 pP0q BF2

By2 pP0q � � � BF2

Byn pP0q
...

...
. . .

...
BFn

By1 pP0q BFn

By2 pP0q � � � BFn

Byn pP0q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

�� 0.

Siis

(a) punkti P0 teatavas risttahukakujulises ümbruses määrab süsteem (3.2) muutu-
jad y1, . . . , yn muutujate x1, . . . , xm (üheste) funktsioonidena (3.3);

(b) yjpx01, . . . , x0mq � y0j , j � 1, . . . , n;

(c) funktsioonid (3.3) on punkti px01, . . . , x0mq teatavas ümbruses pidevad;

(d) funktsioonidel (3.3) eksisteerivad punkti px01, . . . , x0mq teatavas ümbruses pi-
devad osatuletised kõigi argumentide järgi, kusjuures selles ümbruses kõikide
j P t1, . . . , nu ja i P t1, . . . ,mu korral

Byj
Bxi px1, . . . , xmq � �

DpF1, . . . , Fnq
Dpy1, . . . , yj�1, xi, yj�1, . . . , ynq

DpF1, . . . , Fnq
Dpy1, . . . , ynq

(3.4)

(siin võrdusmärgist paremal olevates determinantides arvutatakse osatuletised
BFk

Bxi ja
BFk

Byl punktis px1, . . . , xm, y1px1, . . . , xmq, . . . , ynpx1, . . . , xmq
�
).

Tõestus. Viime tõestuse läbi induktsioonina võrrandite arvu n järgi süsteemis
(3.2). Juhul n � 1 on meil teoreem tõestatud � see on teoreem 2.3. Eeldame nüüd, et
kehtib teoreemi analoog n�1 võrrandist koosnevate süsteemide jaoks ning näitame,
et sel juhul kehtib teoreem ka n võrrandist koosnevate süsteemide jaoks.

Eelduse (4) põhjal erineb vähemalt üks korrutistest

DpF1, . . . , Fn�1q
Dpy1, . . . , yj�1, yj�1, . . . , ynqpP0q BFn

Byj pP0q, j � 1, . . . , n,

nullist (põhjendada!) . Konkreetsuse mõttes oletame, et

DpF1, . . . , Fn�1q
Dpy1, . . . , yn�1q pP0q BFn

Byn pP0q �� 0.
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Siis süsteemi (3.2) viimane võrrand rahuldab teoreemi 2.3 eeldusi (m � n muutuja
funktsiooni jaoks), seega teoreemi 2.3 põhjal punkti P0 teatavas risttahukakujulises
ümbruses

D0 :� px01 � α0
1, x

0
1 � α0

1q � � � � � px0m � α0
m, x

0
m � α0

mq
� py01 � β0

1 , y
0
1 � β0

1q � � � � � py0n � β0
n, y

0
n � β0

nq
määrab süsteemi (3.2) viimane võrrand muutuja yn muutujate x1, . . . , xm, y1, . . . , yn�1

(ühese) funktsioonina

yn � ϕpx1, . . . , xm, y1, . . . , yn�1q, (3.5)

millel eksisteerivad pidevad osatuletised kõigi argumentide järgi (ja mis on seetõttu
ka ise pidev) punkti A0 :� px01, . . . , x0m, y01, . . . , y0n�1q P Rm�n�1 ümbruses

∆0 :� px01 � α0
1, x

0
1 � α0

1q � � � � � px0m � α0
m, x

0
m � α0

mq
� py01 � β0

1 , y
0
1 � β0

1q � � � � � py0n�1 � β0
n�1, y

0
n�1 � β0

n�1q,
kusjuures ϕpA0q � ϕpx01, . . . , x0m, y01, . . . , y0n�1q � y0n; seejuures punkti A0 ümbruses
kehtib samasus

Fn

�
x1, . . . , xm, y1, . . . , yn�1, ϕpx1, . . . , xm, y1, . . . , yn�1q

� � 0. (3.6)

De�neerime iga k P t1, . . . , n� 1u korral funktsiooni
Φkpx1, . . . , xm, y1, . . . , yn�1q :� Fk

�
x1, . . . , xm, y1, . . . , yn�1, ϕpx1, . . . , xm, y1, . . . , yn�1q

�
;

siis süsteem (3.2) on risttahukas D0 samaväärne süsteemiga$'''&'''%
Φ1px1, . . . , xm, y1, . . . , yn�1q � 0,

Φ2px1, . . . , xm, y1, . . . , yn�1q � 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Φn�1px1, . . . , xm, y1, . . . , yn�1q � 0,

(3.7)

millele on lisatud võrrand (3.5) (põhjendada!) . Paneme tähele, et süsteem (3.7)
rahuldab punkti A0 risttahukakujulises ümbruses ∆0 teoreemi analoogi eeldusi n�1
võrrandist koosnevate süsteemide jaoks. Tõepoolest,

(1) funktsioonid Φ1, . . . ,Φn�1 on pidevad risttahukas ∆0;

(2) iga k P t1, . . . , n� 1u korral
ΦkpA0q � Fk

�
x01, . . . , x

0
m, y

0
1, . . . , y

0
n�1, ϕpA0q

�q
� Fkpx01, . . . , x0m, y01, . . . , y0n�1, y

0
nq � FkpP0q � 0;

(3) iga k P t1, . . . , n � 1u korral osatuletised
BΦk

Bx1 , . . . ,
BΦk

Bxm ,
BΦk

By1 , . . . ,
BΦk

Byn�1

eksisteerivad ja on pidevad risttahukas ∆0; seejuures kõikide i P t1, . . . ,mu, j P
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t1, . . . , n� 1u ja A � px1, . . . , xm, y1, . . . , yn�1q P ∆0 korral

BΦk

Bxi pAq �
BFk

Bxi pP q �
BFk

Byn pP q
Bϕ
Bxi pAq,

BΦk

Byj pAq �
BFk

Byj pP q �
BFk

Byn pP q
Bϕ
Byj pAq,

kus P :� �
x1, . . . , xm, y1, . . . , yn�1, ϕpAq

� P D0.

(4) Veendume, et

DpΦ1, . . . ,Φn�1q
Dpy1, . . . , yn�1q pA0q �

∣∣∣∣∣∣∣∣∣∣

BF1

By1 �
BF1

Byn
Bϕ
By1 � � � BF1

Byn�1

� BF1

Byn
Bϕ
Byn�1

...
. . .

...
BFn�1

By1 � BFn�1

Byn
Bϕ
By1 � � � BFn�1

Byn�1

� BFn�1

Byn
Bϕ
Byn�1

∣∣∣∣∣∣∣∣∣∣

�� 0

(siin ja edaspidi võetakse kõik osatuletised
BFk

Byj punktis P0 ja kõik osatuletised
Bϕ
Byj

punktis A0). Selleks tähistame

JpP0q : � DpF1, . . . , Fnq
Dpy1, . . . , ynq pP0q �

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

BF1

By1 � � � BF1

Byn�1

BF1

Byn
...

. . .
...

...
BFn�1

By1 � � � BFn�1

Byn�1

BFn�1

BynBFn

By1 � � � BFn

Byn�1

BFn

Byn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Liites viimases determinandis iga j P t1, . . . , n�1u korral j-ndale veerule BϕByj -kordse
viimase veeru, saame

JpP0q �

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

BF1

By1 �
BF1

Byn
Bϕ
By1 � � � BF1

Byn�1

� BF1

Byn
Bϕ
Byn�1

BF1

Byn
...

. . .
...

...
BFn�1

By1 � BFn�1

Byn
Bϕ
By1 � � � BFn�1

Byn�1

� BFn�1

Byn
Bϕ
Byn�1

BFn�1

BynBFn

By1 �
BFn

Byn
Bϕ
By1 � � � BFn

Byn�1

� BFn

Byn
Bϕ
Byn�1

BFn

Byn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Paneme tähele, et viimase determinandi viimase rea n�1 esimest elementi on nullid:
tõepoolest, need elemendid on saadud (punkti A0 ümbruses kehtiva) samasuse (3.6)
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diferentseerimisel vastavalt muutujate y1, . . . , yn�1 järgi. Seega

JpP0q �

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

BF1

By1 �
BF1

Byn
Bϕ
By1 � � � BF1

Byn�1

� BF1

Byn
Bϕ
Byn�1

BF1

Byn
...

. . .
...

...
BFn�1

By1 � BFn�1

Byn
Bϕ
By1 � � � BFn�1

Byn�1

� BFn�1

Byn
Bϕ
Byn�1

BFn�1

Byn
0 � � � 0

BFn

Byn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

� DpΦ1, . . . ,Φn�1q
Dpy1, . . . , yn�1q pA0q BFn

Byn pP0q.

Kuna eelduse põhjal JpP0q �� 0, siis ka
DpΦ1, . . . ,Φn�1q
Dpy1, . . . , yn�1q pA0q �� 0, nagu soovitud.

Tehtud eelduse põhjal teoreemi analoogi kehtivuse kohta n� 1 võrrandist koos-
nevate süsteemide jaoks

(a) punkti A0 teatavas risttahukakujulises ümbruses määrab süsteem (3.7) muutu-
jad y1, . . . , yn�1 muutujate x1, . . . , xm (üheste) funktsioonidena

y1 � y1px1, . . . , xmq, . . . . . . , yn�1 � yn�1px1, . . . , xmq; (3.8)

(b) yjpx01, . . . , x0mq � y0j , j � 1, . . . , n� 1;

(c) funktsioonid (3.8) on punkti px01, . . . , x0mq teatavas ümbruses pidevad;
(d) funktsioonidel (3.8) eksisteerivad punkti px01, . . . , x0mq teatavas ümbruses pide-

vad osatuletised kõigi argumentide järgi, kusjuures selles ümbruses kõikide
j P t1, . . . , n� 1u ja i P t1, . . . ,mu korral

pyjq1xi
px1, . . . , xmq � �

DpΦ1, . . . ,Φn�1q
Dpy1, . . . , yj�1, xi, yj�1, . . . , yn�1q

DpΦ1, . . . ,Φn�1q
Dpy1, . . . , yn�1q

.

De�neerides täiendavalt funktsiooni

ynpx1, . . . , xmq :� ϕ
�
x1, . . . , xm, y1px1, . . . , xmq, . . . , yn�1px1, . . . , xmq

�
,

näeme, et teoreemi väited (a)�(c) ilmselt kehtivad (põhjendada!) ; lisaks eksistee-
rivad funktsioonidel y1, . . . , yn punkti px01, . . . , x0mq teatavas ümbruses pidevad osa-
tuletised kõigi argumentide x1, . . . , xm järgi. Jääb veenduda vaid valemi(te) (3.4)
kehtivuses. Selleks märgime, et punkti px01, . . . , x0mq teatavas ümbruses kehtib iga
k P t1, . . . , nu korral samasus

Fk

�
x1, . . . , xm, y1px1, . . . , xmq, . . . , ynpx1, . . . , xmq

� � 0,
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mida mis tahes i P t1, . . . ,mu korral muutuja xi järgi diferentseerides saame

BFk

Bxi �
BFk

By1
By1
Bxi � � � � � BFk

Byn
Byn
Bxi � 0

(siin osatuletised
Byj
Bxi arvutatakse punktis px1, . . . , xmq ning osatuletised

BFk

Bxi ja

BFk

Byj punktis px1, . . . , xm, y1px1, . . . , xmq, . . . , ynpx1, . . . , xmq
�
). Osatuletised

Byj
Bxi saa-

me seega leida süsteemist$''''&''''%
BF1

By1
By1
Bxi � � � � � BF1

Byn
Byn
Bxi � �BF1

Bxi ,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
BFn

By1
By1
Bxi � � � � � BFn

Byn
Byn
Bxi � �BFn

Bxi ,

millest Crameri reegli järgi saamegi valemi (3.4).

3.2. Kujutuse ∆Ñ Rm, kus ∆ � Rm, lokaalne pööratavus

Teoreem 3.2. Eksisteerigu funktsioonidel$'&'%
x1 � x1pQq � x1pu1, ..., umq,
. . . . . . . . . . . . . . . . . . . . . . . . . . .

xm � xmpQq � xmpu1, ..., umq
(3.9)

pidevad osatuletised punkti Q0 :� pu01, ..., u0mq P Rm mingis ümbruses.
Kui süsteemi (3.9) jakobiaan

Dpx1, . . . , xmq
Dpu1, . . . , umq �

∣∣∣∣∣∣∣∣∣∣

Bx1
Bu1 . . .

Bx1
Bum

...
. . .

...
Bxm
Bu1 . . .

Bxm
Bum

∣∣∣∣∣∣∣∣∣∣

(3.10)

erineb nullist punktis Q0, siis leiduvad punkti Q0 lahtine ümbrus ∆0 � Rm ja punkti
P0 :� px01, . . . , x0mq :�

�
x1pQ0q, . . . , xmpQ0q

� P Rm lahtine ümbrus D0 � Rm nii, et

süsteem (3.9) määrab pööratava kujutuse NB! Kas eelne-
vas on kuskil selgi-
tatud, kuidas seda
mõista?∆0 Q pu1, . . . , umq � Q ÞÝÑ �

x1pQq, . . . , xmpQq
� P D0, (3.11)

kusjuures selle kujutuse pöördkujutust D0 Ñ ∆0 määravatel funktsioonidel$'&'%
u1 � u1px1, ..., xmq,
. . . . . . . . . . . . . . . . . . . . .

um � umpx1, ..., xmq
(3.12)

eksisteerivad hulgas D0 pidevad osatuletised.
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Märkus 3.1. Funktsioonide (3.12) osatuletised võib leida järgmise mõttekäigu abil.
Süsteemi (3.12) poolt määratud kujutus D0 Ñ ∆0 on süsteemi (3.9) poolt määra-
tud kujutuse ∆0 Ñ D0 pöördkujutus, seega nende kujutuste ∆0 Ñ D0 ja D0 Ñ ∆0

korrutis on hulga ∆0 ühikteisendus; järelikult teoreemi 1.1 põhjal nende süsteemide
Jacobi maatriksite korrutis on hulga ∆0 ühikteisenduse Jacobi maatriks, s.t. ühik-
maatriks: ������

Bu1
Bx1 . . .

Bu1
Bxm

...
. . .

...
Bum
Bx1 . . .

Bum
Bxm

�����

������
Bx1
Bu1 . . .

Bx1
Bum

...
. . .

...
Bxm
Bu1 . . .

Bxm
Bum

�����
�

�����
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

����
.
Siin süsteemi (3.9) Jacobi maatriks arvutatakse punktides Q � pu1, . . . , umq P ∆0 ja
süsteemi (3.12) Jacobi maatriks vastavates punktides P � �

x1pQq, . . . , xmpQq
� P D0.

Niisiis süsteemi (3.12) Jacobi maatriks on süsteemi (3.9) Jacobi maatriksi pöörd-
maatriks: ������

Bu1
Bx1 . . .

Bu1
Bxm

...
. . .

...
Bum
Bx1 . . .

Bum
Bxm

�����
�

������
Bx1
Bu1 . . .

Bx1
Bum

...
. . .

...
Bxm
Bu1 . . .

Bxm
Bum

�����

�1

,

s.t. mis tahes i, j P t1, . . . ,mu korral

Buj
Bxi � p�1qj�i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Bx1
Bu1 . . .

Bx1
Buj�1

Bx1
Buj�1

. . .
Bx1
Bum

...
...

...
...

Bxi�1

Bu1 . . .
Bxi�1

Buj�1

Bxi�1

Buj�1

. . .
Bxi�1

BumBxi�1

Bu1 . . .
Bxi�1

Buj�1

Bxi�1

Buj�1

. . .
Bxi�1

Bum
...

...
...

...
Bxm
Bum . . .

Bxm
Buj�1

Bxm
Buj�1

. . .
Bxm
Bum

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

Bx1
Bu1 . . .

Bx1
Bum

...
. . .

...
Bxm
Bu1 . . .

Bxm
Bum

∣∣∣∣∣∣∣∣∣∣

.

Siin, arvutades osatuletisi
Buj
Bxi punktis P � �

x1pQq, . . . , xmpQq
� P D0, kus Q P ∆0,

tuleb osatuletised
Bxk
Bul arvutada punktis Q ehk, sümmeetriliselt, arvutades osa-

tuletisi
Buj
Bxi punktis P P D0, tuleb osatuletised

Bxk
Bul arvutada vastavas punktis

Q � �
u1pP q, . . . , umpP q

� P ∆0.
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Märkus 3.2. On selge, et teoreemis 3.2 (ning seega ka tema erijuhus teoreemis 3.4)
saame me ümbruse ∆0 valida sidusa. Sel juhul on ka ümbrus D0 sidus.

Ülesanne 3.1. Olgu funktsioonid$'&'%
u1 � u1pP q � u1px1, . . . , xmq,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

un � unpP q � unpx1, . . . , xmq
(3.13)

pidevad sidusas hulgas D � Rm. Tõestada, et süsteemi (3.13) poolt määratud kujutuse D Ñ Rn

kujutishulk !�
u1pP q, . . . , unpP q

�
: P P D

)
� Rn

on sidus.

Teoreemi 3.2 tõestus kasutab järgnevat lemmat (mille loomulik kodu (nagu ka
teoreemil 3.2) on vektorfunktsioonide � kujutuste ∆Ñ Rn, kus ∆ � Rm, teoorias).

Lemma 3.3. Olgu punkti P0 :� px01, . . . , x0mq P Rm mingis ümbruses määratud
funktsioonid $'&'%

u1 � u1pP q � u1px1, . . . , xmq,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

un � unpP q � unpx1, . . . , xmq
(3.14)

pidevad punktis P0. Siis punkti Q0 :� pu01, . . . , u0nq :�
�
u1pP0q, . . . , unpP0q

� P Rn iga
ümbruse V � Rn korral leidub punkti P0 ümbrus U � Rm, mille süsteemi (3.14)
poolt määratud kujutus kujutab ümbrusesse V:!�

u1pP q, . . . , unpP q
�
: P P U

)
� V .

Tõestus. Olgu V � Rn punkti Q0 ümbrus. Siis ümbrus V sisaldab mingi rist-
tahukakujulise ümbruse

V0 :� pu01 � α1, u
0
1 � α1q � � � � � pu0m � αm, u

0
m � αmq.

Funktsioonide (3.14) pidevuse tõttu punktis P0 iga j P t1, . . . , nu korral leidub
punkti P0 ümbrus Uj nii, et

P P Uj ùñ |ujpP q � ujpP0q| � |ujpP q � u0|   αj.

Niisiis, kui P P
m�
j�1

Uj �: U , siis
�
u1pP q, . . . , umpP q

� P V0 � V ,

nagu soovitud.

Üleskirjutuste lihtsuse mõttes esitame teoreemi 3.2 tõestuse ainult erijuhu m � 2
jaoks (teoreemi 3.2 tõestus üldjuhul on täiesti analoogiline). Kuna me kasutame
edaspidises (ka?) just seda konkreetset erijuhtu, siis parema viidatavuse huvides
sõnastame ta.
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Teoreem 3.4. Eksisteerigu funktsioonidel#
x � xpQq � xpu, vq,
y � ypQq � ypu, vq (3.15)

pidevad osatuletised punkti Q0 :� pu0, v0q P R2 mingis ümbruses.
Kui süsteemi (3.15) jakobiaan

Dpx, yq
Dpu, vq �

∣∣∣∣
x1u x1v
y1u y1v

∣∣∣∣ (3.16)

erineb nullist punktis Q0, siis leiduvad punkti Q0 lahtine ümbrus ∆0 � R2 ja punkti
P0 :� px0, y0q :�

�
xpQ0q, ypQ0q

� P R2 lahtine ümbrus D0 � R2 nii, et süsteem (3.15)
määrab pööratava kujutuse

∆0 Q pu, vq � Q ÞÝÑ �
xpQq, ypQq� P D0,

kusjuures selle kujutuse pöördkujutust D0 Ñ ∆0 määravatel funktsioonidel#
u � upx, yq,
v � vpx, yq (3.17)

eksisteerivad hulgas D0 pidevad osatuletised; seejuures

u1x �
y1v∣∣∣∣

x1u x1v
y1u y1v

∣∣∣∣
, u1y �

�x1v∣∣∣∣
x1u x1v
y1u y1v

∣∣∣∣
, v1x �

�y1u∣∣∣∣
x1u x1v
y1u y1v

∣∣∣∣
, v1y �

x1u∣∣∣∣
x1u x1v
y1u y1v

∣∣∣∣

(siin osatuletiste u1x, u
1
y, v

1
x, v

1
y, arvutamisel punktis P P D0 arvutatakse osatuletised

x1u, x
1
v, y

1
u, y

1
v punktis Q � �

upP q, vpP q� P ∆0).

Tõestus. Olgu jakobiaan (3.16) nullist erinev punktis Q0. Vaatleme süsteemi#
F1px, y, u, vq :� �x� xpu, vq � 0,

F2px, y, u, vq :� �y � ypu, vq � 0.
(3.18)

Funktsioonidel F1 ja F2 eksisteerivad punkti R0 :� px0, y0, u0, v0q P R4 teatavas
ümbruses pidevad osatuletised, kusjuures selle süsteemi Jacobi maatriks on�pF1q1x pF1q1y pF1q1u pF1q1v

pF2q1x pF2q1y pF2q1u pF2q1v



�
��1 0 x1u x1v

0 �1 y1u y1v



;

(siin osatuletised x1u, x
1
v, y

1
u ja y1v arvutatakse punktides pu, vq). Kuna punktis R0

DpF1, F2q
Dpu, vq �

∣∣∣∣
x1u x1v
y1u y1v

∣∣∣∣ �� 0
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(siin osatuletised x1u, x
1
v, y

1
u ja y1v arvutatakse punktis pu0, v0q � Q0), kusjuures

F1pR0q � F2pR0q � 0, siis teoreemi 3.1 põhjal leidub punkti R0 risttahukakujuline
ümbrus D1 � ∆1, kus D1 ja ∆1 on vastavalt punktide P0 ja Q0 ristkülikukujulised
ümbrused, milles süsteem (3.18) määrab muutujad u ja v muutujate x ja y üheste
funktsioonidena (3.17), millel eksisteerivad ristkülikus D1 pidevad osatuletised

u1x � �
DpF1, F2q
Dpx, vq
DpF1, F2q
Dpu, vq

� �

∣∣∣∣
�1 x1v
0 y1v

∣∣∣∣
∣∣∣∣
x1u x1v
y1u y1v

∣∣∣∣
� y1v∣∣∣∣

x1u x1v
y1u y1v

∣∣∣∣
,

u1y � �
DpF1, F2q
Dpy, vq
DpF1, F2q
Dpu, vq

� �

∣∣∣∣
0 x1v
�1 y1v

∣∣∣∣
∣∣∣∣
x1u x1v
y1u y1v

∣∣∣∣
� �x1v∣∣∣∣

x1u x1v
y1u y1v

∣∣∣∣
,

v1x � �
DpF1, F2q
Dpu, xq
DpF1, F2q
Dpu, vq

� �

∣∣∣∣
x1u �1
y1u 0

∣∣∣∣
∣∣∣∣
x1u x1v
y1u y1v

∣∣∣∣
� �y1u∣∣∣∣

x1u x1v
y1u y1v

∣∣∣∣
,

v1y � �
DpF1, F2q
Dpu, yq
DpF1, F2q
Dpu, vq

� �

∣∣∣∣
x1u 0
y1u �1

∣∣∣∣
∣∣∣∣
x1u x1v
y1u y1v

∣∣∣∣
� x1u∣∣∣∣

x1u x1v
y1u y1v

∣∣∣∣

(siin, arvutades osatuletisi u1x, v
1
x, u

1
y ja v1y punktis px, yq, tuleb osatuletised x1u, x

1
v,

y1u ja y1v arvutada punktis pu, vq � �
upx, yq, vpx, yq�).

Märgime, et mis tahes P � px, yq P D1 korral#
x � x

�
upx, yq, vpx, yq�,

y � y
�
upx, yq, vpx, yq�,

seega kui Φ: ∆1 Ñ R2 ja Ψ: D1 Ñ ∆1 on vastavalt süsteemidega (3.15) ja (3.17)
määratud kujutused, s.t.

ΦpQq � �
xpQq, ypQq�, Q P ∆1, ja ΨpP q � �

upP q, vpP q�, P P D1,

siis
P � ΦΨpP q iga P P D1 korral. (3.19)

Nüüd vaatleme süsteemi#
G1px, y, u, vq :� �u� upx, yq � 0,

G2px, y, u, vq :� �v � vpx, yq � 0.
(3.20)

Funktsioonidel G1 ja G2 eksisteerivad punkti R0 teatavas ümbruses pidevad osatule-
tised, kusjuures selle süsteemi Jacobi maatriks on�pG1q1x pG1q1y pG1q1u pG1q1v

pG2q1x pG2q1y pG2q1u pG2q1v



�
�
u1x u1y �1 0
v1x v1y 0 �1



;



124 III. Ilmutamata funktsioonide teooria

(siin osatuletised u1x, u
1
y, v

1
x ja v1y arvutatakse punktides px, yq). Kuna järelduse 1.3

põhjal punktis R0

DpΨ1,Ψ2q
Dpx, yq �

∣∣∣∣
u1x u1y
v1x v1y

∣∣∣∣ �
1∣∣∣∣

x1u x1v
y1u y1v

∣∣∣∣
�� 0

(siin osatuletised u1x, u
1
y, v

1
x ja v

1
y arvutatakse punktis px0, y0q � P0 ning osatuletised

x1u, x
1
v, y

1
u ja y1v vastavas punktis pu0, v0q � Q0), kusjuures Ψ1pR0q � Ψ2pR0q � 0

(põhjendada!) , siis leidub punkti R0 risttahukakujuline ümbrus D2 � ∆2, kus D2

ja ∆2 on vastavalt punktide P0 ja Q0 ristkülikukujulised ümbrused, milles süsteem
(3.20) määrab muutujad x ja y muutujate u ja v üheste funktsioonidena#

x � pxpu, vq,
y � pypu, vq. (3.21)

Seejuures võime üldisust kitsendamata eeldada, et ristkülikud D2 ja ∆2 on lahtised,
kusjuures D2 � D1 ja ∆2 � ∆1 (põhjendada!) . Mis tahes Q � pu, vq P ∆2 korral#

u � u
�pxpu, vq, pypu, vq�,

v � v
�pxpu, vq, pypu, vq�,

seega kui pΦ: ∆2 Ñ D2 on süsteemi (3.21) poolt määratud kujutus, s.t. pΦpQq ��pxpQq, pypQq�, Q P ∆2, siis

Q � ΨpΦpQq iga Q P ∆2 korral. (3.22)

Paneme tähele, et mis tahes Q P ∆2 korral ΦpQq � pΦpQq, sest ühelt poolt (3.22)
põhjal

ΦΨpΦpQq � Φ
�
ΨpΦpQq� � ΦpQq,

teiselt poolt (arvestades, et pΦpQq P D2 � D1) tingimuse (3.19) põhjal

ΦΨpΦpQq � ΦΨ
�pΦpQq� � pΦpQq.

Tähistame ∆0 :� ∆2 ja D0 :� Φp∆0q �
 
ΦpQq : Q P ∆0 � ∆2

( � D2; siis
kujutuse Φ ahend Φ|∆0 : ∆0 Ñ D0 on pealekujutus, kusjuures Φ|∆0 on ka üksühene,
sest kui Q1, Q2 P ∆0 � ∆2 on sellised, et ΦpQ1q � ΦpQ2q, siis
Q1 � ΨpΦpQ1q � Ψ

�pΦpQ1q
� � Ψ

�
ΦpQ1q

� � Ψ
�
ΦpQ2q

� � Ψ
�pΦpQ2q

� � ΨpΦpQ2q � Q2.

Teoreemi tõestuseks jääb näidata, et D0 on lahtine hulk ruumis R2. Olgu P1 P D0,
s.t. P1 � ΦpQ1q mingi Q1 P ∆0 korral. Hulga ∆0 lahtisuse tõttu leidub punkti Q1

ümbrus V � ∆0. Lemma 3.3 põhjal leidub punkti P1 ümbrus U � D2 � D1 nii, etNB! Siin me kasu-
tame eeldust hulga
D2 lahtisust!

ΨpUq �  
ΨpP q : P P Uu � V .

Nüüd mis tahes P P U korral (arvestades, et ΨpP q P V)
P � ΦΨpP q � Φ

�
ΨpP q� P ΦpVq � Φp∆0q � D0,

seega U � D0, järelikult P1 on hulga D0 sisepunkt; niisiis hulk D on lahtine.
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Märkus 3.3. Eelnevas tõestuses võinuksime osatuletised u1x, u
1
y, v

1
x ja v1y välja reh-

kendada ka märkusele 3.1 tuginedes, s.t. arvestades, et süsteemi (3.17) Jacobi maat-
riks on süsteemi (3.15) Jacobi maatriksi pöördmaatriks. Siin, arvutades osatuletisi
u1x, u

1
y, v

1
x ja v1y punktis P � px, yq P D0, tuleb osatuletised x1u, x

1
v, y

1
u ja y1v süsteemi

(3.15) Jacobi maatriksis arvutada vastavas punktis Q � �
upP q, vpP q� P ∆0 ehk,

sümmeetriliselt, arvutades osatuletisi u1x, u
1
y, v

1
x ja v1y punktis P � �

xpQq, ypQq� P
D0, kus Q P ∆0, tuleb osatuletised x1u, x

1
v, y

1
u ja y

1
v süsteemi (3.15) Jacobi maatriksis

arvutada vastavas punktis Q.

Järeldus 3.5. Eksisteerigu funktsioonidel (3.9) pidevad osatuletised lahtises hul-
gas ∆ � Rm, kusjuures hulga ∆ igas punktis jakobiaan (3.10) erineb nullist. Siis
süsteemiga (3.9) määratud kujutuse ∆Ñ Rm kujutishulk

D :�  �
x1pQq, . . . , xmpQq

�
: Q P ∆

)
� Rm

on lahtine.

Tõestus. Järelduse tõestuseks tuleb näidata, et hulga D iga punkt on tema sise-
punkt. Olgu P0 P D, s.t. mingi Q0 P ∆ korral P0 �

�
x1pQ0q, . . . , xmpQ0q

�
. Teo-

reemi 3.2 põhjal leiduvad punkti Q0 lahtine ümbrus ∆0 � ∆ ja punkti P0 lahtine
ümbrus D0 � Rm nii, et süsteem (3.9) määrab pööratava kujutuse (3.11), aga siit
järeldub, et punkti P0 lahtine ümbrus D0 sisaldub kujutishulgas D; niiisis P0 on
hulga D sisepunkt, nagu soovitud.
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IV peatükk.

Mitme muutuja funktsiooni

ekstreemumid

� 1. Mitme muutuja funktsiooni lokaalsed
ekstreemumid

1.1. Lokaalse ekstreemumi mõiste. Tarvilik tingimus lokaalse
ekstreemumi olemasoluks

Olgu funktsioon u � fpP q määratud punkti P0 P Rm mingis ümbruses.
NB! Võib-olla,
tuleks siin eksp-
litsiitselt rõhutada,
et lok. maksimu-
mi ja miinimumi all
mõeldakse funkt-
siooni väärtusi?

De�nitsioon 1.1. Öeldakse, et funktsioonil f on punktis P0

� lokaalne maksimum, kui punktil P0 leidub ümbrus U nii, et

fpP q ¤ fpP0q iga P P U korral;

� lokaalne miinimum, kui punktil P0 leidub ümbrus U nii, et

fpP q ¥ fpP0q iga P P U korral.

Seejuures punkti P0 nimetatakse vastavalt funktsiooni f lokaalseks maksimumpunk-
tiks ja lokaalseks miinimumpunktiks.

Teisisõnu, funktsioonil f on punktis P0 lokaalne maksimum (või, vastavalt, lokaalne
miinimum), kui sellel punktil leidub ümbrus, milles fpP0q on selle funktsiooni suurim
väärtus (või, vastavalt, vähim väärtus).

Lokaalset maksimumi ja lokaalset miinimumi nimetatakse lokaalseteks ekstree-
mumiteks.

De�nitsioon 1.2. Öeldakse, et funktsioonil f on punktis P0

� range lokaalne maksimum, kui punktil P0 leidub ümbrus U nii, et

fpP q   fpP0q iga P P UztP0u korral;

127
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� range lokaalne miinimum, kui punktil P0 leidub ümbrus U nii, et

fpP q ¡ fpP0q iga P P UztP0u korral.

Ranget lokaalset maksimumi ja ranget lokaalset miinimumi nimetatakse range-
teks lokaalseteks ekstreemumiteks.

Teoreem 1.1. Eksisteerigu funktsioonil u � fpP q � fpx1, . . . , xmq punktis P0 �
px01, . . . , x0mq P Rm lõplikud esimest järku osatuletised kõigi argumentide järgi. Kui
funktsioonil f on punktis P0 lokaalne ekstreemum, siis selle funktsiooni kõik esimest
järku osatuletised punktis P0 on võrdsed nulliga, s.t.

f 1xi
pP0q � 0, i � 1, . . . ,m.

Tõestus. Konkreetsuse mõttes eeldame, et funktsioonil f on punktis P0 lokaalne
miinimum (juhtu, kus funktsioonil f on punktis P0 lokaalne maksimum, käsitletakse
analoogiliselt), s.t. leidub reaalarv ε ¡ 0 nii, et

fpP q ¥ fpP0q iga P P UεpP0q korral.

Olgu i P t1, . . . ,mu. Vaatleme funktsiooni

gptq � fpx01, . . . , x0i�1, t, x
0
i�1, . . . , x

0
mq.

Paneme tähele, et

(1) funktsioon g on määratud vahemikus px0i � ε, x0i � εq;
(2) funktsioonil g on punktis t � x0i lokaalne miinimum;

(3) funktsioon g on diferentseeruv punktis t � x0i , kusjuures g
1px0i q � f 1xi

pP0q.
Tõepoolest, tähistame iga t P R korral Qt :� px0

1, . . . , x
0
i�1, t, x

0
i�1, . . . , x

0
mq; siis iga t P

px0
i �ε, x0

i �εq korral dpQt, P0q � |t�x0
i |   ε, s.t. Qt P UεpP0q, seega Qt kuulub funktsiooni f mää-

ramispiirkonda ehk, teisisõnu, funktsioon g on määratud punktis t. Seejuures iga t P px0
i �ε, x0

i �εq
korral

gptq � fpQtq ¥ fpP0q � gpx0
i q;

niisiis, funktsioonil g on punktis x0
i lokaalne miinimum.

Väidetest (3) ja (2) järeldub Fermat' teoreemi põhjal, et f 1xi
pP0q � g1px0i q � 0, nagu

soovitud.
NB! Siinne
kontekst ütleb
implitsiitselt,
et funktsiooni
kriitilised punktid
on tema mää-
ramispiirkonna
sisepunktid.

De�nitsioon 1.3. Öeldakse, et punkt P0 on funktsiooni f

� statsionaarne punkt, kui sellel funktsioonil eksisteerivad selles punktis osa-
tuletised kõikide muutujate järgi, kusjuures kõik need osatuletised on võrdsed
nulliga;

� kriitiline punkt, kui see punkt on kas funktsiooni f statsionaarne punkt või selle
funktsiooni mingi osatuletis selles punktis kas ei eksisteeri või on lõpmatu.
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Teoreemist 1.1 järeldub, et

� mis tahes funktsioonil saab lokaalne ekstreemum esineda vaid selle funktsiooni
kriitilises punktis;

NB! Siin piisaks
vähemastki kui
diferentseeruvusest
(piisaks lõplike
osatuletiste
olemasolust.)

� diferentseeruval funktsioonil saab lokaalne ekstreemum esineda vaid selle funkt-
siooni statsionaarses punktis.

Märkus 1.1. Punkti statsionaarsus ei ole piisav tingimus funktsiooni lokaalse ekst-
reemumi olemasoluks selles punktis (isegi juhul, kui funktsioon on diferentseeruv
selles statsionaarses punktis).

Näide 1.1. Veendume, et funktsioonil z � fpx, yq :� xy ei ole lokaalset ekstreemumit tema
statsionaarses punktis p0, 0q.

Kõigepealt märgime, et punkt p0, 0q on tõepoolest funktsiooni f statsionaarne punkt, sest selle
funktsiooni osatuletised on

f 1xpx, yq � pxyq1x � y ja f 1ypx, yq � pxyq1y � x

ning seega f 1xp0, 0q � 0 ja f 1yp0, 0q � 0. Lisaks, funktsioon f on diferentseeruv kogu tasandil R2,
sest tema osatuletised on pidevad kogu tasandil.

Veendumaks, et funktsioonil f ei ole punktis p0, 0q lokaalset ekstreemumit, märgime, et punkti
p0, 0q mis tahes ümbrus sisaldab punkte px, yq, kus x ja y on nullist erinevad ja samamärgilised
ning seega fpx, yq � xy ¡ 0 � fp0, 0q, samuti punkte px, yq, kus x ja y on nullist erinevad ja
erimärgilised ning seega fpx, yq � xy   0 � fp0, 0q.

1.2. Piisavad tingimused lokaalse ekstreemumi olemasoluks

1.2.1. Ruutvormi mõiste ja määratus

De�nitsioon 1.4. Olgu aij P R, aij � aji, i, j � 1, . . . ,m. Summat

m̧

i,j�1

aijzizj �: Φpz1, . . . , zmq (1.1)

nimetatakse ruutvormiks muutujatest z1, . . . , zm P R. Arvusid aij, i, j � 1, . . . ,m,
nimetatakse selle ruutvormi kordajateks.

De�nitsioon 1.5. Öeldakse, et ruutvorm (1.1) on

� positiivselt määratud, kui

Φpz1, . . . , zmq ¡ 0 kõikide z1, . . . , zm P R, z21 � � � � � z2m �� 0, korral;

� negatiivselt määratud, kui

Φpz1, . . . , zmq   0 kõikide z1, . . . , zm P R, z21 � � � � � z2m �� 0, korral.



130 IV. Mitme muutuja funktsiooni ekstreemumid

Positiivselt määratud ja negatiivselt määratud ruutvorme nimetatakse määratud
ruutvormideks. NB! Rõhutada,

et lisaks määratud
ja määramata
ruutvormidele
on olemas ka
poolmääratud

ruutvormid!

Ruutvormi (1.1) nimetatakse määramata ruutvormiks, kui tal esineb nii positiiv-
seid kui ka negatiivseid väärtusi.

De�nitsioon 1.6. Maatriksit�����
a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
. . .

...
am1 am2 . . . amm

����
�: paijqmi,j�1

nimetatakse ruutvormi (1.1) maatriksiks.
Determinante

A1 :� a11, A2 :�
∣∣∣∣
a11 a12
a21 a22

∣∣∣∣ , . . . , Am :�

∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
. . .

...
am1 am2 . . . amm

∣∣∣∣∣∣∣∣∣

nimetatakse ruutvormi (1.1) peamiinoriteks.NB! �Peamiinor�
või �juhtmiinor�?
[Kurox, str. 181]
ütleb: �glavnyĭ
minor�.

Järgnev algebra kursusest tuttav teoreem võimaldab teha kindlaks ruutvormi
määratuse selle ruutvormi peamiinorite märkide põhjal.

NB! �Sylvesteri
tunnus� või �Syl-
vesteri teoreem�?
Abel&Kaasik
ütleb, et �tunnus�.

Teoreem 1.2 (Sylvesteri1 tunnus). (a) Ruutvorm (1.1) on positiivselt määratud
parajasti siis, kui kõik tema peamiinorid on positiivsed, s.t.

A1 ¡ 0, A2 ¡ 0, . . . . . . , Am ¡ 0.

(b) Ruutvorm (1.1) on negatiivselt määratud parajasti siis, kui tema peamiinorite
märgid vahelduvad, kusjuures A1   0, s.t.

A1   0, A2 ¡ 0, A3   0, A4 ¡ 0, . . . .

1.2.2. Üldine (s.t. m muutuja funktsiooni) juht

Olgu funktsioon u � fpP q � fpx1, . . . , xmq kaks korda diferentseeruv punktis P0 P R.

De�nitsioon 1.7. Ruutvormi
m̧

i,j�1

f2xixj
pP0q zizj (1.2)

nimetatakse funktsiooni f Hesse2 (ruut)vormiks (punktis P0) (muutujatest z1, . . . ,
zm). Selle ruutvormi maatriksit

�
f2xixj

pP0q
�m
i,j�1

nimetatakse funktsiooni f Hesse

maatriksiks (punktis P0).
Nii Hesse ruutvormile kui ka Hesse maatriksile viidatakse terminiga hessiaan.

1James Joseph Sylvester (1814 � 1897) � inglise matemaatik
2Ludwig Otto Hesse (1811�1874) � saksa matemaatik.
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Märkus 1.2. Siinkohal on oluline märkida, et funktsiooni f Hesse maatriks on sümmeetriline,
s.t. mis tahes i, j P t1, . . . ,mu korral f2xixj

pP0q � f2xjxi
pP0q (see järeldub teoreemi II.3.3 põhjal

eeldusest, et funktsioon f on kaks korda diferentseeruv punktis P0.)

Funktsiooni f teist järku täisdiferentsiaali

d2upP0q �
m̧

i,j�1

f2xixj
pP0q dxidxj

võib tõlgendada kui selle funktsiooni hessiaani punktis P0 (muutujatest dx1, . . . , dxm),
mistõttu sobivas kontekstis viidataksegi sellele diferentsiaalile kui hessiaanile.

Järgnev teoreem annab piisavad tingimused lokaalse ekstreemumi olemasoluks
ja mitteolemasoluks kaks korda diferentseeruva funktsiooni statsionaarses punktis.

Teoreem 1.3. Olgu funktsioon u � fpP q � fpx1, . . . , xmq kaks korda diferentseeruv
oma statsionaarses punktis P0 � px01, . . . , x0mq P Rm.

(a) Kui funktsiooni f hessiaan punktis P0 on positiivselt määratud ruutvorm, siis
funktsioonil f on punktis P0 range lokaalne miinimum.

(b) Kui funktsiooni f hessiaan punktis P0 on negatiivselt määratud ruutvorm, siis
funktsioonil f on punktis P0 range lokaalne maksimum.

(c) Kui funktsiooni f hessiaan punktis P0 on määramata ruutvorm, siis funktsioo-
nil f ei ole lokaalset ekstreemumit punktis P0.

Tõestus. Olgu reaalarv δ ¡ 0 selline, et funktsioon f on määratud punkti P0

δ-ümbruses U . Kui P � px01 � ∆x1, . . . , x
0
m � ∆xmq P UztP0u, siis Taylori valemi

põhjal (jääkliikmega Peano kujul; vt. teoreemi II.4.2)

fpP q � fpP0q � dfpP0q � 1

2
d2fpP0q � α � 1

2
d2fpP0q � α

(siin arvestasime, et kuna P0 on funktsiooni f statsionaarne punkt, siis dfpP0q �
n°

i�1

f 1xi
pP0q dxi � 0), kus diferentsiaalide dfpP0q ja d2fpP0q avaldistes dxi � ∆xi,

i � 1, . . . ,m, ning funktsioon α � αp∆x1, . . . ,∆xmq rahuldab tingimust α � opρ2q
protsessis ρÑ 0, kus ρ :�

a
∆x21 � � � � �∆x2m � dpP, P0q. Tähistame

aij :� f2xixj
pP0q, i, j � 1, . . . ,m,

ja hi :� ∆xi
ρ

, i � 1, . . . ,m (märgime, et h21 � � � � � h2m � 1); siis

fpP q � fpP0q � 1

2
d2upP0q � α � 1

2

m̧

i,j�1

f2xixj
pP0q∆xi ∆xj � α

� ρ2

2

�
m̧

i,j�1

aij hihj � 2α

ρ2

�
.

(1.3)
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(a). Eeldame, et funktsiooni f hessiaan punktis P0 (s.t ruutvorm (1.2)) on posi-
tiivselt määratud ruutvorm. Siis

Φph1, . . . , hmq :�
m̧

i,j�1

aij hihj ¡ 0, kui h21 � � � � � h2m �� 0.

Funktsioon Φ � Φph1, . . . , hmq on pidev tõkestatud kinnises hulgas

S :�  ph1, . . . , hmq P Rm : h21 � � � � � h2m � 1
(
,

järelikult Weierstrassi teise teoreemi I.4.8 põhjal leidub punkt ph01, . . . , h0mq P S,NB! Kas Weierst-
rassi teoreemidele
ikka viidatakse
kui �esimesele� ja
�teisele�? Jah, nii
[F] kui ka [IP]
teevad nii!

milles see funktsioon Φ saavutab oma miinimumi hulgas S. Seejuures

µ :� min
ph1,...,hmqPS

Φph1, . . . , hmq � Φph01, . . . , h0mq ¡ 0.

Mis tahes ∆x1, . . . ,∆xm korral (mille puhul 0   ρ   δ)

fpP q � fpP0q � ρ2

2

�
m̧

i,j�1

aij hihj � 2α

ρ2

�
¥ ρ2

2

�
µ� 2|α|

ρ2



.

Seega, valides reaalarvu ε nii, et 0   ε   δ ja

0   ρ   ε ùñ |α|
ρ2

  µ

4
,

saame mis tahes P P UεpP0qztP0u korral (sel juhul ρ � dpP, P0q   ε)

fpP q � fpP0q ¥ ρ2

2

�
µ� 2|α|

ρ2



¡ ρ2

2

�
µ� µ

2

	
� µρ2

4
¡ 0,

järelikult funktsioonil f on punktis P0 range lokaalne miinimum.
NB! Lihtsam on
järeldada väide (b)
väitest (a): kui
funktsiooni f hessi-
aan punktis P0 on
negatiivselt mää-
ratud ruutvorm,
siis funktsiooni �f
hessiaan selles
punktis on posi-
tiivselt määratud
ruutvorm, seega
väite (a) põhjal on
funktsioonil �f
selles punktis range
lokaalne maksimum
ning järelikult
funktsioonil f on
selles punktis range
lokaalne miinimum.

Väite (b) tõestus on analoogiline väite (a) tõestusega.

(c). Eeldame nüüd, et hessiaan (1.2) on määramata ruutvorm, s.t. leiduvad reaal-
arvud h11, . . . , h

1
m ja h21, . . . , h

2
m nii, et

q1 :�
m̧

i,j�1

aij h
1
ih

1
j ¡ 0 ja q2 :�

m̧

i,j�1

aij h
2
ih

2
j   0.

Seejuures võime üldisust kitsendamata eeldada, et h11
2 � � � � � h1m

2 � 1 ja h21
2 � � � �

� h2m
2 � 1 (põhjendada!) . Tähistame iga reaalarvu ρ ¡ 0 korral

P 1
ρ :� px01 � ρh11, . . . , x

0
m � ρh1mq ja P 2

ρ :� px01 � ρh21, . . . , x
0
m � ρh2mq.

Kui ρ   δ, siis P 1
ρ, P

2
ρ P U (sest dpP 1

ρ, P0q � dpP 2
ρ , P0q � ρ) ning valemi (1.3) põhjal
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(võttes tõestuse alguse arutelus vastavalt ∆xi � ρh1i, i � 1, . . . ,m, ja ∆xi � ρh2i ,
i � 1, . . . ,m)

fpP 1
ρq � fpP0q � ρ2

2

�
m̧

i,j�1

aij h
1
i h

1
j �

2α

ρ2

�
� ρ2

2

�
q1 � 2α

ρ2



¥ ρ2

2

�
q1 � 2|α|

ρ2



,

fpP 2
ρ q � fpP0q � ρ2

2

�
m̧

i,j�1

aij h
2
i h

2
j �

2α

ρ2

�
� ρ2

2

�
2α

ρ2
� |q2|



¤ ρ2

2

�
2|α|
ρ2

� |q2|



(põhjendada!) . Valides reaalarvu ε nii, et 0   ε   δ ja (kasutades tähistust ρ :�a
∆x21 � � � � �∆x2m)

0   ρ   ε ùñ |α|
ρ2

  1

4
min

 
q1, |q2|(,

saame mis tahes positiivse reaalarvu ρ   ε korral

fpP 1
ρq � fpP0q ¡ ρ2

2

�
q1 � q1

2



� ρ2q1

4
¡ 0

ja

fpP 2
ρ q � fpP0q   ρ2

2

� |q2|
2
� |q2|



� �ρ

2|q2|
4

  0,

seega funktsioonil f ei ole punktis P0 lokaalset ekstreemumit (põhjendada!) .

Järgnev teoreem on vahetu järeldus teoreemidest 1.2 (s.t. Sylvesteri tunnusest)
ja 1.3.

Teoreem 1.4. Olgu funktsioon u � fpP q � fpx1, . . . , xmq kaks korda diferentseeruv
oma statsionaarses punktis P0 � px01, . . . , x0mq P Rm. Tähistame

aij :� f2xixj
pP0q, i, j � 1, . . . ,m,

ja

A1 :� a11, A2 :�
∣∣∣∣
a11 a12
a21 a22

∣∣∣∣ , . . . , Am :�

∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
. . .

...
am1 am2 . . . amm

∣∣∣∣∣∣∣∣∣
.

(a) Kui kõik miinorid A1, . . . , Am on positiivsed, s.t. kui

A1 ¡ 0, A2 ¡ 0, . . . . . . , Am ¡ 0,

siis funktsioonil f on punktis P0 range lokaalne miinimum.

(b) Kui miinorite A1, . . . , Am märgid vahelduvad, kusjuures A1 on negatiivne, s.t.
kui

A1   0, A2 ¡ 0, A3   0, A4 ¡ 0, . . . ,

siis funktsioonil f on punktis P0 range lokaalne maksimum.
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1.2.3. Kahe muutuja funktsiooni juht

Teoreem 1.5. Olgu funktsioon u � fpP q � fpx, yq kaks korda diferentseeruv oma
statsionaarses punktis P0 � px0, y0q P R2. Tähistame

a11 :� f2x2pP0q, a22 :� f2y2pP0q, a12 :� a21 :� f2xypP0q � f2yxpP0q

ning

A1 :� a11 ja A2 :�
∣∣∣∣
a11 a12
a21 a22

∣∣∣∣ � a11 a22 � a212.

(a) Kui A1 ¡ 0 ja A2 ¡ 0, siis funktsioonil f on punktis P0 range lokaalne miini-
mum.

(b) Kui A1   0 ja A2 ¡ 0, siis funktsioonil f on punktis P0 range lokaalne maksi-
mum.

(c) Kui A2   0, siis funktsioonil f ei ole punktis P0 lokaalset ekstreemumit.

Tõestus. (a) ja (b) järelduvad vahetult teoreemi 1.4 vastavatest väidetest.

(c). Olgu A2   0. Lokaalse ekstreemumi puudumiseks punktis P0 piisab teoree-
mi 1.3, (c), põhjal näidata, et hessiaan

a11 z
2
1 � 2a12 z1 z2 � a22z

2
2 �: Φpz1, z2q

on määramata ruutvorm (muutujate z1 ja z2 suhtes).
Vaatleme kõigepealt juhtu, kus a11 �� 0. Sel juhul, kui võtta z1 � 1 ja z2 � 0, siis

sgnΦpz1, z2q � sgn a11. Teiselt poolt, kui võtta z1 � a12 ja z2 � �a11, siis

Φpz1, z2q � a11 a
2
12 � 2a11 a

2
12 � a211 a22 � a11pa11 a22 � a212q � a11A2

ning seega sgnΦpz1, z2q � � sgn a11. Niisiis, Φpz1, z2q on määramata ruutvorm.

Nüüd eeldame, et a11 � 0. Paneme tähele, et a12 �� 0 (sest vastasel juhul oleks
A2 � a11 a22 � a212 � 0). Kui z2 �� 0, siis

Φpz1, z2q � 2a12 z1 z2 � a22z
2
2 � z22

�
2a12

z1
z2
� a22

	
.

Kui lisaks z1 �� 0, siis �piisavalt väikeste� positiivsete muutuja z2 väärtuste korral
on avaldise Φpz1, z2q väärtusel sama märk, mis korrutisel 2a12 z1 (põhjendada!) ,
järelikult see avaldis omandab nii positiivseid kui ka negatiivseid väärtusi ehk, teisi-
sõnu, hessiaan Φpz1, z2q on määramata ruutvorm.

Näide 1.2. Leiame funktsiooni z � x4 � x3 � 3x� 2x2y � y2 lokaalsed ekstreemumid.

Teoreemi 1.1 põhjal saab funktsioonil lokaalne ekstreemum esineda ainult tema kriitilistes
punktides. Leiame funktsiooni z osatuletised:

z1x � px4 � x3 � 3x� 2x2y � y2q1x � 4x3 � 3x2 � 3� 4xy,

z1y � px4 � x3 � 3x� 2x2y � y2q1y � �2x2 � 2y;
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seega funktsiooni z statsionaarsed punktid on leitavad süsteemist#
4x3 � 3x2 � 3� 4xy � 0,

�2x2 � 2y � 0.

Asendades selle süsteemi teisest võrrandist tundmatu y väärtuse y � x2 esimesse võrrandisse,
saame, et 3x2 � 3 ehk x2 � 1, millest x � �1 või x � 1. Selle süsteemi lahendid (ja ühtlasi funkt-
siooni z statsionaarsed punktid ning funktsiooni z diferentseeruvuse tõttu ainsad selle funktsiooni
kriitilised punktid) on p�1, 1q ja p1, 1q.

Leiame funktsiooni z teist järku osatuletised:

z2x2 � p4x3 � 3x2 � 3� 4xyq1x � 12x2 � 6x� 4y,

z2xy � z2yx � p4x3 � 3x2 � 3� 4xyq1y � �4x,
z2y2 � p�2x2 � 2yq1y � 2

ning tähistame

A1 :� z2x2 � 12x2 � 6x� 4y, A2 :�
∣∣∣∣
z2x2 z2xy
z2yx z2y2

∣∣∣∣ �
∣∣∣∣
12x2 � 6x� 4y �4x

�4x 2

∣∣∣∣ .

Statsionaarses punktis p�1, 1q

A1 � 2 ¡ 0, A2 �
∣∣∣∣
2 4
4 2

∣∣∣∣ � �12   0,

seega (teoreemi 1.5, (c), põhjal) funktsioonil z ei ole punktis p�1, 1q lokaalset ekstreemumit.
Statsionaarses punktis p1, 1q

A1 � 14 ¡ 0, A2 �
∣∣∣∣
14 �4
�4 2

∣∣∣∣ � 12 ¡ 0,

seega (teoreemi 1.5, (a), põhjal) funktsioonil z on punktis p1, 1q range lokaalne miinimum zp1, 1q �
�2.
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ekstreemumid

NB! Kas siin
tuleks hoopis
öelda, et D on
funktsiooni f
määramispiirkonna
alamhulk? (Sest
tegelikult me peam
siin silmas just
nimelt seda.)

Olgu funktsioon f määratud hulgas D � Rm.

De�nitsioon 2.1. Funktsiooni f

� suurimat väärtust hulgas D nimetatakse funktsiooni f globaalseks maksimu-
miks (hulgas D);

� vähimat väärtust hulgas D nimetatakse funktsiooni f globaalseks miinimumiks
(hulgas D).

Teisisõnu, funktsiooni f globaalne maksimum ja globaalne miinimum hulgas D on
vastavalt väärtused max

PPD
fpP q ja min

PPD
fpP q.

Globaalset maksimumi ja globaalset miinimumi nimetatakse ühise nimetusega
globaalsed ekstreemumid.

Pole raske tuua näiteid (isegi pidevate ühe muutuja funktsioonide kohta), kus
funktsioonil puuduvad (tema määramispiirkonna mingis alamhulgas) globaalsed
ekstreemumid. Teiselt poolt, Weierstrassi teisest teoreemist I.4.8 järeldub, et tõkes-
tatud kinnises hulgas pideval funktsioonil eksisteerivad selles hulgas globaalsed ekst-
reemumid.

Kui funktsioonil f eksisteerib tema määramispiirkonna alamhulgas D � Rm min-
gi globaalne ekstreemum, siis see globaalne ekstreemum võib olla hulga D sisepunk-
tis või hulga D rajapunktis; seejuures, kui see globaalne ekstreemum saavutatakse
hulga D sisepunktis, siis selles punktis on funktsioonil f ka vastav lokaalne ekstree-
mum, järelikult see punkt on funktsiooni f kriitiline punkt. Seega, kui me teame, et
funktsioonil f eksisteerivad tema määramispiirkonna alamhulgas D globaalsed ekst-
reemumid, siis nende globaalsete ekstreemumite leidmiseks võime kasutada järgmist
eeskirja:

NB! Eelnevalt
de�neeritu põhjal
on funktsiooni
kriitilised punktid
tema määra-
mispiirkonna
sisepunktid.

(1) leiame funktsiooni f väärtused tema kriitilistes punktides (hulga D sisemuses);

NB! Kas on
arusaadav, mis on
võimalikud ekst-

reemumpunktid?

(2) leiame funktsiooni f väärtused tema võimalikes ekstreemumpunktides hulga D
rajal;

(3) neist leitud väärtustest suurim on funktsiooni f globaalne maksimum hulgas D
ning vähim on funktsiooni f globaalne miinimum hulgas D.

Näide 2.1. Leiame funktsiooni z � x3 � y3 � 3xy suurima ja vähima väärtuse ristkülikus

D :� r0, 2s � r�1, 2s :�  px, yq : x P r0, 2s, y P r�1, 2s(.
Kõigepealt märgime, et kuna funktsioon z on pidev ning hulk D on kinnine ja tõkestatud, siis

Weierstrassi teise teoreemi I.4.8 põhjal eksisteerivad funktsioonil f hulgas D globaalsed ekstree-
mumid.

136
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Leiame funktsiooni z kriitilised punktid hulga D sisemuses D�. Kuna funktsioon z on diferent-
seeruv kogu tasandil R2, siis tema ainsad kriitilised punktid on statsionaarsed punktid. Leiame
funktsiooni z osatuletised:

z1x � 3x2 � 3y, z1y � 3y2 � 3x;

seega funktsiooni z statsionaarsed punktid on leitavad süsteemist#
3x2 � 3y � 0,

3y2 � 3x � 0,
ehk

#
x2 � y � 0,

y2 � x � 0.

Asendades selle süsteemi esimesest võrrandist tundmatu y väärtuse y � x2 teise võrrandisse, saame,
et x4 � x � 0 ehk xpx3 � 1q � 0, millest x � 0 või x � 1. Selle süsteemi lahendid on seega p0, 0q ja
p1, 1q. Kuna p0, 0q R D�, siis funktsiooni z ainus statsionaarne (ning seega ka ainus kriitiline) punkt
hulga D sisemuses D� on p1, 1q; seejuures

zp1, 1q � �1.
NB! Misasi on
rajajoon?Siin me
mõistame selle
rajajoone all
hulga D raja.

Hulga D rajajoon BD esitub ühendina

BD �  p0,�1q, p2,�1q, p2, 2q, p0, 2q(Y L1 Y L2 Y L3 Y L4,

kus

L1 :�  px, yq : x P p0, 2q, y � �1(, L2 :�  px, yq : x � 2, y P p�1, 2q(,
L3 :�  px, yq : x P p0, 2q, y � 2

(
, L4 :�  px, yq : x � 0, y P p�1, 2q(.

Rajajoone osal L1 omandab funktsioon z kuju

z � x3 � 1� 3x �: f1pxq, x P p0, 2q.

Kui funktsioonil z oleks globaalne ekstreemum rajajoone osa L1 punktis px, yq, siis funktsioonil f1
oleks punktis x lokaalne ekstreemum, seega funktsiooni f1 diferentseeruvuse tõttu peaks x olema
funktsiooni f1 statsionaarne punkt, s.t. f 11pxq � 0. Leiame funktsiooni f1 tuletise:

f 11pxq � 3x2 � 3 � 3px2 � 1q.

Näeme, et tuletisel f 11 nullkohti pole, seega rajajoone osal L1 funktsioonil z globaalseid ekstreemu-
meid ei ole.

Rajajoone osal L3 omandab funktsioon z kuju

z � x3 � 8� 6x �: f3pxq, x P p0, 2q.

Leiame funktsiooni f3 tuletise:

f 13pxq � 3x2 � 6 � 3px2 � 2q.

Näeme, et tuletise f 13 nullkohad on x � �?2 ja x � ?
2, kusjuures �?2 R p0, 2q; seega ainus

võimalik ekstreemumpunkt rajajoone osal L3 on p?2, 2q; seejuures

zp
?
2, 2q � 2

?
2� 8� 6

?
2 � 8� 4

?
2.

(Siin jällegi, kui funktsioonil z oleks globaalne ekstreemum rajajoone osa L3 punktis px, yq, siis
funktsioonil f3 oleks punktis x lokaalne ekstreemum, seega funktsiooni f3 diferentseeruvuse tõttu
peaks x olema funktsiooni f3 statsionaarne punkt, s.t. f 13pyq � 0.)

Rajajoone osal L2 omandab funktsioon z kuju

z � 8� y3 � 6y �: f2pyq, y P p�1, 2q.
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Leiame funktsiooni f2 tuletise:

f 12pyq � 3y2 � 6 � 3py2 � 2q.

Näeme, et tuletise f 12 nullkohad on y � �?2 ja y � ?
2, kusjuures �?2 R p�1, 2q; seega ainus

võimalik ekstreemumpunkt rajajoone osal L2 on p2,?2q; seejuures

zp2,
?
2q � 8� 2

?
2� 6

?
2 � 8� 4

?
2.

(Siin jällegi, kui funktsioonil z oleks globaalne ekstreemum rajajoone osa L2 punktis px, yq, siis
funktsioonil f2 oleks punktis y lokaalne ekstreemum, seega funktsiooni f2 diferentseeruvuse tõttu
peaks y olema funktsiooni f2 statsionaarne punkt, s.t. f 12pyq � 0.)

Rajajoone osal L4 omandab funktsioon z kuju

z � y3 �: f4pyq, y P p�1, 2q.

Funktsioon f4 on kasvav vahemikus p�1, 2q, seega rajajoone osal L4 võimalikke ekstreemumpunkte
ei ole. (Siin jällegi, kui funktsioonil z oleks globaalne ekstreemum rajajoone osa L4 punktis px, yq,
siis funktsioonil f4 oleks punktis y P p�1, 2q lokaalne ekstreemum; kuna aga funktsioon f4 on
kasvav vahemikus p�1, 2q, siis tal selles vahemikus lokaalseid ekstreemumeid ei ole, seega rajajoone
osal L4 funktsioonil z globaalseid ekstreemumeid ei ole.)

Leiame funktsiooni z väärtused rajajoone BD ülejäänud võimalikes ekstreemumpunktides:

zp0,�1q � �1, zp2,�1q � 8� 1� 6 � 13, zp2, 2q � 8� 8� 12 � 4, zp0, 2q � 8.

Valides eelnevas leitud võimalikest ekstreemumitest suurima ja vähima, saame

max
PPD

zpP q � zp2,�1q � 13 ja min
PPD

zpP q � zp1, 1q � zp0,�1q � �1.

Mõnikord võib globaalsete ekstreemumite leidmisel olla abi järgnevast teoree-
mist.

Teoreem 2.1. Olgu funktsioon u � fpP q � fpx1, . . . , xmq kaks korda diferentsee-
ruv lahtise kumera hulga D � Rm igas punktis ning olgu P0 � px01, . . . , x0mq P D
funktsiooni f statsionaarne punkt, s.t.

f 1x1
pP0q � � � � � f 1xm

pP0q � 0. (2.1)

(a) Kui iga punkti Q P D korral hessiaan d2fpQq on positiivselt määratud ruut-
vorm, siis funktsioonil f on punktis P0 range globaalne miinimum (s.t. fpP q ¡
fpP0q iga P P DztP0u korral).

(b) Kui iga punkti Q P D korral hessiaan d2fpQq on negatiivselt määratud ruut-
vorm, siis funktsioonil f on punktis P0 range globaalne maksimum (s.t. fpP q  
fpP0q iga P P DztP0u korral).

Teoreemi 2.1 tõestus, mis toetub Taylori valemile. (a). Eeldame, et iga
Q P D korral teist järku täisdiferentsiaal d2fpQq on positiivselt määratud ruutvorm
(argumentide diferentsiaalide dx1, . . . , dxm suhtes). Taylori valemi põhjal jääkliikme-
ga Lagrange'i kujul (s.t. teoreemi II.4.4 põhjal) mis tahes punkti P � px1, . . . , xmq P
DztP0u korral

fpP q � fpP0q � dfpP0q � d2fpQq
2

,
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kus diferentsiaalide dfpP0q ja d2fpQq avaldistes dxi � ∆xi :� xi � x0i , i � 1, . . . ,m,
ning Q on mingi punkt punkte P0 ja P ühendavalt sirglõigult. Kuna P0 on funkt-
siooni f statsionaarne punkt, siis

dfpP0q � f 1x1
pP0q∆x1 � � � � � f 1xm

pP0q∆xm � 0∆x1 � � � � � 0∆xm � 0;

kuna tehtud eelduse põhjal on d2fpQq positiivselt määratud ruutvorm, siis d2fpQq ¡
0; seega fpP q � fpP0q � d2fpQq

2
¡ 0, järelikult fpP q ¡ fpP0q; niisiis funktsioonil f

on punktis P0 range globaalne miinimum. Teoreemi väide (a) on tõestatud.

Väide (b) tõestatakse analoogiliselt.



� 3. Tinglikud ekstreemumid

Kõikjal selles paragrahvis eeldame, et m,n P N, m ¡ n, ning et funktsioonid

u � fpP q � fpx1, . . . , xmq (3.1)

ja

uj � FjpP q � Fjpx1, . . . , xmq, j � 1, . . . , n, (3.2)

on määratud hulgas D � Rm.

3.1. Tingliku lokaalse ekstreemumi mõiste

Olgu P0 � px01, . . . , x0mq P D hulga D sisepunkt.

De�nitsioon 3.1. (a) Öeldakse, et funktsioonil (3.1) on punktis P0 tinglik lokaalne
maksimum lisatingimus(t)el

F1pP q � F1px1, . . . , xmq � 0, . . . . . . , FnpP q � Fnpx1, . . . , xmq � 0, (3.3)

kui

F1pP0q � 0, . . . . . . , FnpP0q � 0 (3.4)

ning punktil P0 leidub ümbrus U � D nii, et iga punkti P � px1, . . . , xmq P U korral,
mis rahuldab tingimust (3.3), kehtib võrratus

fpP0q ¥ fpP q.

Punkti P0 nimetatakse seejuures (funktsiooni f) tinglikuks lokaalseks maksimum-
punktiks (lisatingimus(t)el (3.3)).

(b) Öeldakse, et funktsioonil (3.1) on punktis P0 tinglik lokaalne miinimum lisa-
tingimus(t)el (3.3), kui punkt P0 rahuldab tingimust (3.4) ning punktil P0 leidub
ümbrus U � D nii, et iga punkti P � px1, . . . , xmq P U korral, mis rahuldab tingi-
must (3.3), kehtib võrratus

fpP0q ¤ fpP q.
Punkti P0 nimetatakse seejuures (funktsiooni f) tinglikuks lokaalseks miinimum-
punktiks (lisatingimus(t)el (3.3)).

Tinglikku lokaalset maksimumi ja tinglikku lokaalset miinimumi nimetatakse
tinglikeks lokaalseteks ekstreemumiteks.

Järgnevas kahes jaotises uurime, kuidas leida funktsiooni f tinglikke lokaalseid
ekstreemume.

140
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3.2. Taandamine harilikule ekstreemumile

Kõikjal selles jaotises eeldame, et leidub lahtine risttahukas

R :� I1 � � � � � Im � D

(siin I1, . . . , Im � R on mingid lahtised intervallid), milles võrrandid (3.3) määravad
mingid n muutujat muutujatest x1, . . . , xm ülejäänud m�n muutuja (üheste) pide-
vate funktsioonidena. Konkreetsuse mõttes eeldame, et need n muutujat on xm�n�1,
. . . , xm. Niisiis, risttahukas R esitavad võrrandid (3.3) muutujad xm�n�1, . . . , xm
muutujate x1, . . . , xm�n (üheste) pidevate funktsioonidena:

xj � xjpx1, . . . , xm�nq, j � m� n� 1, . . . ,m. (3.5)

Rõhutame, et funktsioonide (3.5) määramispiirkond on risttahukas

W :� I1 � � � � � Im�n. (3.6)

De�neerime (m� n muutuja) funktsiooni h : W Ñ R võrdusega

hpx1, . . . , xm�nq � f
�
x1, . . . , xm�n, xm�n�1px1, . . . , xm�nq, . . . , xmpx1, . . . , xm�nq

�
.

(3.7)
Paneme tähele, et nende punktide P � px1, . . . , xmq P R korral, mis rahuldavad

tingimust (3.3), kehtivad võrdused (3.5) (põhjendada!) ning seega, tähistades A :�
px1, . . . , xm�nq,

fpP q � fpx1, . . . , xmq
� f

�
x1, . . . , xm�n, xm�n�1px1, . . . , xm�nq, . . . , xmpx1, . . . , xm�nq

�
� hpx1, . . . , xm�nq � hpAq.

Lause 3.1. Rahuldagu punkt P0 � px01, . . . , x0mq P R tingimust (3.4). Siis funkt-
sioonil f on punktis P0 tinglik lokaalne ekstreemum lisatingimus(t)el (3.3) parajasti
siis, kui funktsioonil h on punktis A0 :� px01, . . . , x0m�nq vastav �harilik� lokaalne
ekstreemum.

Tõestus. Tõestame lause ainult lokaalse maksimumi juhtude jaoks. Lokaalse mii-
nimumi juhtudel on tõestus analoogiline.

Tarvilikkus. Olgu funktsioonil f punktis P0 tinglik lokaalne maksimum lisatingi-
mus(t)el (3.3). Siis leidub punkti P0 kuubikujuline ümbrus C nii, et C � R ning iga
punkti P P C korral, mis rahuldab tingimust (3.3), kehtib võrratus fpP q ¤ fpP0q
(põhjendada, miks selline kuubikujuline ümbrus leidub!) . Olgu positiivne reaalarv δ
selline, et

C � px01 � δ, x01 � δq � � � � � px0m � δ, x0m � δq.
Kuna funktsioonid (3.5) on pidevad punktis A0, siis leidub selle punkti ümbrus W0

(ruumis Rm�n) nii, et W0 � px01 � δ, x01 � δq � � � � � px0m�n � δ, x0m�n � δq ning iga
j P tm� n� 1, . . . ,mu korral

xjpAq P px0j � δ, x0j � δq iga A PW0 korral
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(siin me arvestasime, et iga j P tm � n � 1, . . . ,mu korral xjpA0q � x0j (Põhjen-

dada!) ) (põhjendada, miks punktil A0 leidub selline ümbrus W0!) . Nüüd mis tahes
punkti A � px1, . . . , xm�nq PW0 korral

P :� �
x1, . . . , xm�n, xm�n�1px1, . . . , xm�nq, . . . , xmpx1, . . . , xm�nq

� P C

(põhjendada!) , niisiis (arvestades, et selline punkt P rahuldab tingimust (3.3))

hpAq � fpP q ¤ fpP0q � hpA0q (põhjendada!) .

Kuna W0 on punkti A0 ümbrus, siis järeldub siit, et funktsioonil h on punktis A0

lokaalne maksimum.

Piisavus. Olgu funktsioonil h punktis A0 lokaalne maksimum. Siis leidub punk-
ti A0 kuubikujuline ümbrus W0 nii, et W0 � W ning iga punkti A P W0 korral
hpAq ¤ hpA0q (põhjendada, miks selline kuubikujuline ümbrus leidub!) . Olgu posi-
tiivne reaalarv δ selline, et

W0 � px01 � δ, x01 � δq � � � � � px0m�n � δ, x0m�n � δq.

Tähistame

C :� px01 � δ, x01 � δq � � � � � px0m�n � δ, x0m�n � δq � Im�n�1 � � � � � Im;

siis C on punkti P0 ümbrus, kusjuures iga punkti P � px1, . . . , xmq P C korral, mis
rahuldab tingimust (3.3), kehtivad võrdused (3.5) (vt. lausele 3.1 eelnevat lõiku)
ning seega, tähistades A :� px1, . . . , xm�nq,

fpP q � hpAq ¤ hpA0q � fpP0q (põhjendada!) .

Eelnevast järeldub, et funktsioonil f on punktis P0 tinglik lokaalne maksimum lisa-
tingimus(t)el (3.3) (põhjendada!) .

BLA-BLA-BLA. . .

Kirjeldatud �harilikule lokaalsele ekstreemumile taandamise meetodil� tingliku
ekstreemumi leidmiseks on üks oluline puudus: muutujate x1, . . . , xm seast n muu-
tuja avaldamine ülejäänud m � n muutuja kaudu võrranditest (3.3) (seda on vaja
funktsiooni (3.7) esitamiseks) võib konkreetsetel juhtudel osutuda ülejõu käivaks
ülesandeks. Lisaks juhime tähelepanu ühele veealusele karile: BLA-BLA-BLA. . .
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3.3. Lagrange'i meetod

Kõikjal selles jaotises (välja arvatud märkuses 3.1) eeldame, et

p7q igal tingimust (3.3) rahuldaval punktil P P D leidub ümbrus, milles funktsioo-
nidel (3.1) ja (3.2) eksisteerivad pidevad osatuletised, kusjuures vähemalt üks
maatriksi ����������

BF1

Bx1 pP q
BF1

Bx2 pP q � � � BF1

Bxm pP qBF2

Bx1 pP q
BF2

Bx2 pP q � � � BF2

Bxm pP q
...

...
...

...
BFn

Bx1 pP q
BFn

Bx2 pP q � � � BFn

Bxm pP q

���������

(3.8)

n-ndat järku miinoritest erineb nullist.

De�neerime nn. Lagrange'i funktsiooni

Φpx1, . . . , xm, λ1, . . . , λnq
:� fpx1, . . . , xmq � λ1F1px1, . . . , xmq � � � � � λnFnpx1, . . . , xmq

(3.9)

(märgime, et Lagrange'i funktsioon Φ onm�nmuutuja x1, . . . , xm, λ1, . . . , λn funkt-
sioon). Vaatleme süsteemi$'&'%

BΦ
Bxi px1, . . . , xm, λ1, . . . , λnq � 0, i � 1, . . . ,m,

BΦ
Bλj px1, . . . , xm, λ1, . . . , λnq � 0, j � 1, . . . , n,

ehk, teisisõnu, süsteemi$'''''''''''&'''''''''''%

Bf
Bx1 px1, . . . , xmq � λ1

BF1

Bx1 px1, . . . , xmq � � � � � λn
BFn

Bx1 px1, . . . , xmq � 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bf
Bxm px1, . . . , xmq � λ1

BF1

Bxm px1, . . . , xmq � � � � � λn
BFn

Bxm px1, . . . , xmq � 0,

F1px1, . . . , xmq � 0,

. . . . . . . . . . . . . . . . . . . . .

Fnpx1, . . . , xmq � 0.

(3.10)

De�nitsioon 3.2. Olgu punkt px01, . . . , x0m, λ01, . . . , λ0nq süsteemi (3.10) lahend. Punk-
ti P0 :� px01, . . . , x0mq nimetatakse funktsiooni (3.1) tinglikuks statsionaarseks punk-
tiks (lisatingimuste (3.3) suhtes). Arvusid λ01, . . . , λ

0
n nimetatakse punktile P0 vasta-

vateks Lagrange'i kordajateks.
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Järgnev teoreem annab tarviliku tingimuse funktsiooni (3.1) tingliku lokaalse
ekstreemumi olemasoluks lisatingimustel (3.3) (seda eeldusel p7q).
Teoreem 3.2. Funktsioonil (3.1) saab tinglik lokaalne ekstreemum (lisatingimus-
tel (3.3)) esineda ainult tema tinglikes statsionaarsetes punktides (lisatingimuste (3.3)
suhtes).

Tõestus. Käesolevas kursuses me seda teoreemi ei tõesta.

Märkus 3.1. Üldiselt, funktsiooni f tinglikke statsionaarseid punkte (lisatingi-
muste (3.3) suhtes) ning tingimust (3.3) rahuldavaid punkte P P D, mille igas
ümbruses funktsioonide (3.1) või (3.2) mingi osatuletis pole pidev või siis maat-
riksi (3.8) kõik n-ndat järku miinorid on nullid, nimetame funktsiooni f tinglikeks
kriitilisteks punktideks (lisatingimuste (3.3) suhtes). (Teisisõnu, funktsiooni f ting-
likud kriitilised punktid on tema tinglikud statsionaarsed punktid ning tingimust
(3.3) rahuldavad punktid P P D, milles vähemalt üks käesoleva jaotise esimes lõigus
toodud eeldustest on rikutud.)

Eelnevast järeldub, et (loobudes käesoleva jaotise esimeses lõigus toodud eel-
dustest) funktsioonil (3.1) saab tinglik lokaalne ekstreemum (lisatingimustel (3.3))
esineda ainult tema tinglikes kriitilisetes punktides (lisatingimuste (3.3) suhtes).

Järgnev teoreem annab piisava tingimuse funktsiooni f tingliku lokaalse ekstree-
mumi olemasoluks tema tinglikus statsionaarses punktis.

Teoreem 3.3. Olgu P0 funktsiooni (3.1) tinglik statsionaarne punkt (lisatingimus-
te (3.3) suhtes) ning olgu λ01, . . . , λ

0
n punktile P0 vastavad Lagrange'i kordajad. Kui

Lagrange'i funktsioonil (3.9) on kordajate λ1, . . . , λn väärtuste

λ1 � λ01, . . . . . . , λn � λ0n (3.11)

korral punktis P0 range lokaalne ekstreemum (siin me tõlgendame Lagrange funkt-
siooni (3.9) kui m muutuja x1, . . . , xm funktsiooni; argumentide λ1, . . . , λn väärtu-
sed (3.11) on �kseeritud), siis funktsioonil (3.1) on punktis P0 vastav tinglik lokaalne
ekstreemum (lisatingimustel (3.3)).

Tõestus. Käesolevas kursuses me seda teoreemi ei tõesta.



V peatükk.

Kordsed integraalid

� 1. Kahekordne integraal üle ristküliku

1.1. Riemanni integraal

Olgu kahe muutuja funktsioon z � fpx, yq � fpP q määratud ristkülikus

D :� ra, bs � rc, ds.
Jaotame lõigud ra, bs ja rc, ds omakorda mingiteks m ja n osalõiguks

rx0, x1s, . . . , rxm�1, xms ja ry0, y1s, . . . , ryn�1, yns, (1.1)

kus m,n P N ning

a � x0   x1   � � �   xm � b ja c � y0   y1   � � �   yn � d. (1.2)

Siis ristkülik D jaotub mn ristkülikuks

Dij :� rxi�1, xis � ryj�1, yjs, i � 1, . . . ,m, j � 1, . . . , n (1.3)

(vt. joonist 1.1). Ristküliku D jaotusviisi ristkülikuteks (1.3) tähistame tähega T .
Punktidele (1.2) viitame järgnevas kui jaotusviisi T määravatele punktidele ning
lõikudele (1.1) kui jaotusviisi T määravatele lõikudele.

Kõikide i P t1, . . . ,mu ja j P t1, . . . , nu korral tähistame

∆xi :� xi � xi�1 ja ∆yj :� yj � yj�1,

s.t. ∆xi ja ∆yj on osaristküliku Dij külgede pikkused, ning

∆pT q :� max
 
∆x1, . . . ,∆xm,∆y1, . . . ,∆yn

(
,

s.t. ∆pT q on selle jaotusviisi osaristkülikute maksimaalne küljepikkus.

Valime mingid punktid

P11 P D11, . . . , P1n P D1n, . . . . . . , Pm1 P Dm1, . . . , Pmn P Dmn, (1.4)

s.t. kõikide i P t1, . . . ,mu ja j P t1, . . . , nu korral valime mingi punkti Pij P Dij (vt.
joonist 1.1).
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x

y

0 a
q
x0

x1 x2 x3 x4 b
q
x5

y0 = c

y1

y2

y3

y4 = d

D11 D21 D31 D41 D51

D12 D22 D32 D42 D52

D13 D23 D33 D43 D53

D14 D24 D34 D44 D54

P11

P21
P31

P41

P51

P12

q
P22 P32

P42=P52

P13
P23=P33

P24=P34
q q

P43

P53

P14

P44
P54

Joonis 1.1. Sellel joonisel m � 5 ja n � 4. Märgime, et üldjuhul ei tarvitse
ristkülik D paikneda koordinaattasandi esimeses veerandis (meie paigutasime
oma joonisel � ja paigutame ka paljudel järgnevatel joonistel � ristküliku D
koordinaattasandi esimesse veerandisse seepärast, et kui mingi koordinaattel-
gedest lõikaks seda ristkülikut, siis muutuks see joonis oluliselt ebaselgemaks).

De�nitsioon 1.1. Summat

σ :� σf :� σf pT ;P11, . . . , P1n, . . . , Pm1, . . . , Pmnq :� σf
�
T, pPijqm,n

i,j�1

�
:�

m̧

i�1

ņ

j�1

fpPijq∆xi∆yj

nimetatakse funktsiooni f integraalsummaks ehk Riemanni summaks, mis vastab
ristküliku D jaotusviisile T ja punktide valikule (1.4).

Juhime tähelepanu, et korrutis ∆xi ∆yj Riemanni summa de�nitsioonis on rist-
küliku Dij pindala.

De�nitsioon 1.2. Arvu I P R nimetatakse funktsiooni f integraalsummade piir-
väärtuseks (ristkülikus D) ja kirjutatakse

lim
∆pT qÑ0

σf � I või lim
∆pT qÑ0

σ � I või lihtsalt limσf � I või limσ � I,

kui iga reaalarvu ε ¡ 0 korral leidub reaalarv δ ¡ 0 nii, et (ristküliku D mis tahes
jaotusviisi T ja mis tahes sellele jaotusviisile vastava funktsiooni f integraalsumma σ
korral)

∆pT q   δ ùñ ��σ � I
��   ε,
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s.t. ristküliku D mis tahes jaotusviisi T korral, mille osaristkülikute maksimaalne
küljepikkus on väiksem kui δ, erinevad kõik sellele jaotusviisile vastavad funktsioo-
ni f integraalsummad arvust I vähem kui ε (sõltumata punktide valikust (1.4) selle
jaotusviisi osaristkülikutest).

De�nitsioon 1.3. Kui funktsiooni f integraalsummadel on olemas piirväärtus rist-
külikusD, siis öeldakse, et funktsioon f on Riemanni mõttes integreeruv (ehk lihtsalt
integreeruv) ristkülikus D, kusjuures tema integraalsummade piirväärtust

lim
∆pT qÑ0

σ �: R-
¼
D

fpx, yq dx dy �:
¼
D

fpx, yq dx dy

nimetatakse (kahekordseks) Riemanni integraaliks (ehk lihtsalt (kahekordseks) integ-
raaliks) funktsioonist f üle ristküliku D.

Märkus 1.1. Sageli esitatakse integraalsummade piirväärtuse de�nitsioon (ehk siis sisuliselt Rie-
manni integraali de�nitsioon ) de�nitsioonist 1.2 mõnevõrra erineval, kuid sellega siiski samaväärsel
moel. See �erinev� de�nitsioon kasutab hulga diameetri mõistet.

De�nitsioon 1.4. Olgu m P N ning olgu D � Rm tõkestatud hulk. Hulga D diameetriks nimeta-
takse selle hulga punktide vaheliste kauguste hulga ülemist raja.

Hulga D diameetrit tähistatakse sümboliga diamD; niisiis vastavalt de�nitsioonile

diamD � sup
P,QPD

dpP,Qq.

Esitame nüüd selle �de�nitsioonist 1.2 mõnevõrra erineva� integraalsummade piirväärtuse de-
�nitsiooni. Jaotusviisi T ristkülikute maksimaalse diameetri tähistame sümboliga dpT q.

De�nitsioon 1.5. Arvu I P R nimetatakse funktsiooni f integraalsummade piirväärtuseks (rist-
külikus D), kui iga reaalarvu ε ¡ 0 korral leidub reaalarv δ ¡ 0 nii, et (ristküliku D mis tahes
jaotusviisi T ja mis tahes sellele jaotusviisile vastava funktsiooni f integraalsumma σ korral)

dpT q   δ ùñ ��σ � I
��   ε,

s.t. ristküliku D mis tahes jaotusviisi T korral, mille osaristkülikute maksimaalne diameeter on
väiksem kui δ, erinevad kõik sellele jaotusviisile vastavad funktsiooni f integraalsummad arvust I
vähem kui ε (sõltumata punktide valikust (1.4) selle jaotusviisi osaristkülikutest).

Pole raske näha, et de�nitsioonid 1.2 ja 1.5 on samaväärsed (s.t. arv I on funktsiooni f integ-
raalsummade piirväärtus neist de�nitsioonidest ühe järgi parajasti siis, kui ta on seda teise de�-
nitsiooni järgi).

Ülesanne 1.1. Tõestada, et de�nitsioonid 1.2 ja 1.5 on samaväärsed.

Näpunäide. Panna tähele, et ristküliku diameeter on selle ristküliku diagonaali pikkus.

Näide 1.1. Ristkülikus D määratud konstantne kahe muutuja funktsioon fpx, yq � α (α P R) on
integreeruv selles ristkülikus, kusjuures¼

D

αdx dy � α pb� aq pd� cq � αSD (1.5)

(sümbol SD tähistab ristküliku D pindala).
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Tõepoolest, konstantse funktsiooni fpx, yq � α mis tahes integraalsumma

σ �
m̧

i�1

ņ

j�1

fpPijq∆xi ∆yj �
m̧

i�1

ņ

j�1

α∆xi ∆yj � α
m̧

i�1

∆xi

ņ

j�1

∆yj

� α
m̧

i�1

∆xi pd� cq � α pd� cq
m̧

i�1

∆xi � α pd� cq pb� aq � αSD,

seega ka nende integraalsummade piirväärtus on αSD, s.t. kehtib (1.5).

Järgnev teoreem ütleb, et antud ristkülikus Riemanni mõttes integreeruv funkt-
sioon on tõkestatud selles ristkülikus.

Teoreem 1.1. Ristkülikus D tõkestamata funktsioon ei ole Riemanni mõttes integ-
reeruv selles ristkülikus.

Tõestus. Olgu funktsioon f tõkestamata ristkülikus D ning olgu selle ristküliku
jaotusviis T määratud punktidega (1.2). Tähistame kõikide i P t1, . . . ,mu ja j P
t1, . . . , nu korral ∆ij :� ∆xi ∆yj. Veendumaks, et funktsioon f pole integreeruv
ristkülikus D, piisab näidata, et

p�q iga reaalarvu M ¥ 0 korral leiduvad punktid (1.4) selliselt, et�����
m,ņ

i,j�1

fpPijq∆ij

����� ¡M.

Tõepoolest, kehtigu väide p�q. Oletame vastuväiteliselt, et funktsioon f on Riemanni mõttes
integreeruv ristkülikus D. Tähistame I :� R-

´
D fpx, yq dx dy. Siis funktsiooni f mis tahes integ-

raalsumma σ korral, mis vastab ristküliku D mingile piisavalt �peenele� jaotusviisile,

|σ � I|   1 ehk, teisisõnu, I � 1   σ   I � 1

ning seega
|σ|   max

 |I � 1|, |I � 1|(.
Oleme saanud vastuolu väitega p�q.

Jääb veel tõestada väide p�q. Fikseerime vabalt reaalarvu M ¥ 0. Kuna funkt-
sioon f on tõkestamata ristkülikus D, siis ta on tõkestamata mingis osaristküli-

kus Dkl. Valime iga pi, jq P
�
t1, . . . ,mu � t1, . . . , nu

	
z pk, lq( korral mingi punkti

Pij P Dij ja tähistame

α :�
�����
m,ņ

i,j�1
pi,jq��pk,lq

fpPijq∆ij

�����.
Siis mis tahes P P Dkl korral�����fpP q∆kl �

m,ņ

i,j�1
pi,jq��pk,lq

fpPijq∆ij

����� ¥ |fpP q∆kl| �
�����
m,ņ

i,j�1
pi,jq��pk,lq

fpPijq∆ij

����� � |fpP q|∆kl � α.
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Järelikult, kui valida punkt Pkl P Dkl nii, et

|fpPklq| ¡ M � α

∆kl

(niisugune valik on võimalik, sest funktsioon f on tõkestamata osaristkülikus Dkl),
siis �����

m,ņ

i,j�1

fpPijq∆ij

����� ¥ |fpPklq|∆kl � α ¡ M � α

∆kl

∆kl � α �M.

1.2. Darboux' summad. Darboux' integraal

Olgu kahe muutuja funktsioon z � fpx, yq � fpP q tõkestatud ristkülikus

D :� ra, bs � rc, ds.
Järgides jaotise 1.1 tähistusi, tähistame tähega T ristküliku D jaotusviisi osarist-
külikuteks

Dij :� rxi�1, xis � ryj�1, yjs, i � 1, . . . ,m, j � 1, . . . , n,

kus m,n P N ning

a � x0   x1   � � �   xm � b ja c � y0   y1   � � �   yn � d. (1.6)

Tähistame kõikide i P t1, . . . ,mu ja j P t1, . . . , nu korral
∆xi :� xi � xi�1, ∆yj :� yj � yj�1, Mij :� sup

PPDij

fpP q, mij :� inf
PPDij

fpP q.

De�nitsioon 1.6. Summasid

SpT q :� Sf pT q :�
m̧

i�1

ņ

j�1

Mij ∆xi∆yj ja spT q :� sf pT q �
m̧

i�1

ņ

j�1

mij ∆xi∆yj

nimetatakse funktsiooni f Darboux' ülemsummaks ja Darboux' alamsummaks, mis
vastavad ristküliku D jaotusviisile T .

Kõneldes järgnevas Darboux' ülem- ja alamsummadest, mõistame me selle all
funktsiooni f Darboux' summasid, mis vastavad ristküliku D jaotusviisidele.

Vahetult vastavatest de�nitsioonidest järeldub

Lause 1.2. Olgu funktsioon f tõkestatud ristkülikus D. Siis ristküliku D jaotus-
viisile T vastavad funktsiooni f Darboux' ülemsumma SpT q ja alamsumma spT q on
sellele jaotusviisile vastavate funktsiooni f integraalsummade ülemine ja alumine
raja:

SpT q � supσ ja spT q � inf σ,

kus supreemum ja in�imum võetakse üle kõikvõimalike jaotusviisile T vastavate
integraalsummade σ, s.t. üle kõikvõimalike punktide valikute (1.4).
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Tõestame mõned lihtsad Darboux' summade omadused.

Ülesanne 1.2. Olgu g : D Ñ R tõkestatud funktsioon ning olgu α P R. Tõestada, et

(a) Sp�fqpT q � �sf pT q ja sp�fqpT q � �Sf pT q;
(b) sαf pT q � αsf pT q ja Sαf pT q � αSf pT q, kui α ¥ 0, ning sαf pT q � αSf pT q ja Sαf pT q �

αsf pT q, kui α   0;

(c) sf pT q � sgpT q ¤ sf�gpT q ja Sf�gpT q ¤ Sf pT q � SgpT q;
(d) kui fpP q ¤ gpP q iga P P D korral, siis sf pT q ¤ sgpT q ja Sf pT q ¤ SgpT q.

Lause 1.3. (a) Kui ristküliku D jaotusviis T 1 on saadud jaotusviisi T määravate
lõikude (1.1) edasisel jaotamisel uuteks osalõikudeks, siis

SpT 1q ¤ SpT q ja spT 1q ¥ spT q,
s.t. jaotusviisi peenendamisel Darboux' ülemsummad ei kasva ning Darboux'
alamsummad ei kahane.

(b) Ristküliku D mis tahes jaotusviiside T ja T 1 korral

SpT q ¥ spT 1q,
s.t. ükski Darboux' ülemsumma pole väiksem mitte ühestki Darboux' alamsum-
mast.

(c) Funktsiooni f kõikvõimalike Darboux' ülemsummade hulk on alt tõkestatud
ning Darboux' alamsummade hulk on ülalt tõkestatud.

Tõestus. (a). Väite tõestuseks üldisel juhul piisab tõestada väide juhu jaoks, kus
jaotusviis T 1 on saadud jaotusviisi T määravatele punktidele (1.6) ühe uue punkti
u P ra, bs või v P rc, ds lisamise teel. Oletame konkreetsuse mõttes, et jaotusviis T 1

on saadud jaotusviisi T määravatele punktidele (1.6) uue punkti u P ra, bs lisamisel,
kusjuures see uus punkt kuulub lõigu ra, bs k-ndasse osalõiku: u P rxk�1, xks, kus
k P t1, . . . ,mu, s.t. jaotusviis T 1 on saadud jaotusviisist T ristkülikute

Dkj � rxk�1, xks � ryj�1, yjs, j � 1, . . . , n,

asendamisel uute ristkülikutegaNB! Joonis??

D1
kj � rxk�1, us � ryj�1, yjs ja D2

kj � ru, xks � ryj�1, yjs, j � 1, . . . , n.

Jaotusviisile T 1 vastav Darboux' ülemsumma on

SpT 1q �
m̧

i�1
i ��k

ņ

j�1

Mij ∆xi ∆yj �
ņ

j�1

�
M 1

kj ∆x
1
k ∆yj �M2

kj ∆x
2
k ∆yj

�
, (1.7)

kus ∆x1k :� u� xk�1 ja ∆x2k :� xk � u ning ning iga j P t1, . . . , nu korral
M 1

kj � sup
PPD1

kj

fpP q ja M2
kj � sup

PPD2
kj

fpP q.
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Iga j P t1, . . . , nu korral, arvestades, etM 1
kj ¤Mkj jaM2

kj ¤Mkj (sest D1
kj � Dkj

ja D2
kj � Dkj),

M 1
kj ∆x

1
k ∆yj �M2

kj ∆x
2
k ∆yj ¤Mkj ∆x

1
k ∆yj �Mkj ∆x

2
k ∆yj

�Mkjp∆x1k �∆x2kq∆yj �Mkj ∆xk ∆yj.
(1.8)

Valemitest (1.8) ja (1.7) saame, et

SpT 1q ¤
m̧

i�1
i ��k

ņ

j�1

Mij ∆xi∆yj �
ņ

j�1

Mkj ∆xk ∆yj �
m̧

i�1

ņ

j�1

Mij ∆xi ∆yj � SpT q.

Ülesandest 1.2, (a), järeldub nüüd, et

spT 1q � �Sp�fqpT 1q ¥ �Sp�fqpT q � spT q.
(b). Tähistame sümboliga T 2 ristküliku D jaotusviisi, mis on saadud jaotusviisi T

määravate osalõikude (1.1) edasisel jaotamisel uuteks osalõikudeks jaotusviisi T 1

määravate punktidega; siis väite (a) põhjal SpT q ¥ SpT 2q. Jaotusviis T 2 on tõl-
gendatav jaotusviisina, mis on saadud jaotusviisi T 1 määravate osalõikude edasisel
jaotamisel uuteks osalõikudeks jaotusviisi T määravate punktidega (1.6); järelikult
väite (a) põhjal spT 2q ¥ spT 1q. Seega

SpT q ¥ SpT 2q ¥ spT 2q ¥ spT 1q.
(c). Väite (b) põhjal

� funktsiooni f mis tahes Darboux' alamsumma on selle funktsiooni Darboux'
ülemsummade hulga alumine tõke;

� funktsiooni f mis tahes Darboux' ülemsumma on selle funktsiooni Darboux'
alamsummade hulga ülemine tõke.

De�nitsioon 1.7. Funktsiooni f (ristküliku D jaotusviisidele vastavate) Darboux'
ülemsummade alumist raja nimetatakse Darboux' ülemiseks integraaliks funktsioo-
nist f (üle ristküliku D) ja tähistatakse sümboliga IDf :

IDf :� inf
 
SpT q : T on ristküliku D jaotusviis

(
.

Funktsiooni f (ristküliku D jaotusviisidele vastavate) Darboux' alamsummade üle-
mist raja nimetatakse Darboux' alumiseks integraaliks funktsioonist f (üle rist-
küliku D) ja tähistatakse sümboliga IDf :

IDf :� sup
 
spT q : T on ristküliku D jaotusviis

(
.

Darboux' integraalide olemasolu järeldub lausest 1.3, (c), pidevuse aksioomi põh-
jal; seejuures lausest 1.3, (b), järeldub, et

IDf ¥ IDf.
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Ülesanne 1.3. Olgu g : D Ñ R tõkestatud funktsioon ning olgu α P R. Tõestada, et

(a) IDp�fq � �IDf ja IDp�fq � �IDf ;
(b) IDpαfq � αIDf ja IDpαfq � αIDf , kui α ¥ 0, ning IDpαfq � αIDf ja IDpαfq � αIDf ,

kui α   0;

(c) IDf � IDg ¤ IDpf � gq ja IDpf � gq ¤ IDf � IDg;

(d) kui fpP q ¤ gpP q iga P P D korral, siis IDf ¤ IDg ja IDf ¤ IDg.

De�nitsioon 1.8. Kui Darboux' ülemine ja alumine integraal funktsioonist f üle
ristküliku D on võrdsed, siis öeldakse, et funktsioon f on ristkülikus D Darboux'
mõttes integreeruv. Seejuures funktsiooni f Darboux' ülemise ja alumise integraalide
ühist väärtust

IDf :� IDf � IDf

nimetatakse Darboux' integraaliks funktsioonist f üle ristküliku D.

1.3. Darboux' summade piirväärtus. Darboux' lemma

Eeldame endiselt, et kahe muutuja funktsioon z � fpx, yq � fpP q on tõkestatud
ristkülikus D :� ra, bs � rc, ds.

Ristküliku D jaotusviisi T puhul osaristkülikuteks, mis on määratud punktidega

a � x0   x1   � � �   xm � b ja c � y0   y1   � � �   yn � d, (1.9)

tähistame ∆xi :� xi � xi�1, i � 1, . . . ,m, ja ∆yj :� yj � yj�1, j � 1, . . . , n, ning

∆pT q :� max
 
∆x1, . . . ,∆xm,∆y1, . . . ,∆yn

(
,

s.t. ∆pT q on selle jaotusviisi osaristkülikute maksimaalne küljepikkus.

De�nitsioon 1.9. Arvu I P R nimetatakse funktsiooni f

� Darboux' ülemsummade piirväärtuseks (ristkülikus D) ja kirjutatakse

I � lim
∆pT qÑ0

SpT q või lihtsalt I � limSpT q,

kui iga reaalarvu ε ¡ 0 korral leidub reaalarv δ ¡ 0 nii, et

∆pT q   δ ùñ ��SpT q � I
��   ε

(s.t. ristküliku D mis tahes jaotusviisi T korral, mille osaristkülikute maksi-
maalne küljepikkus on väiksem kui δ, erineb vastav Darboux' ülemsumma
arvust I vähem kui ε);

� Darboux' alamsummade piirväärtuseks (ristkülikus D) ja kirjutatakse

I � lim
∆pT qÑ0

spT q või lihtsalt I � lim spT q,
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kui iga reaalarvu ε ¡ 0 korral leidub reaalarv δ ¡ 0 nii, et

∆pT q   δ ùñ ��spT q � I
��   ε

(s.t. ristküliku D mis tahes jaotusviisi T korral, mille osaristkülikute maksi-
maalne küljepikkus on väiksem kui δ, erineb vastav Darboux' ülemsumma
arvust I vähem kui ε).

Järgnevast teoreemist järeldub, et Darboux' summadel eksisteerib alati piir-
väärtus.

Teoreem 1.4 (Darboux' lemma). (a) Darboux' ülemine integraal funktsioonist f
üle ristküliku D on funktsiooni f Darboux' ülemsummade piirväärtus (ristküli-
kus D):

IDf � lim
∆pT qÑ0

SpT q.

(b) Darboux' alumine integraal funktsioonist f üle ristküliku D on funktsiooni f
Darboux' alamsummade piirväärtus (ristkülikus D):

IDf � lim
∆pT qÑ0

spT q.

Darboux' lemma tõestus toetub järgmisele abitulemusele.

Lemma 1.5. Olgu ristküliku D jaotusviis T 1 saadud selle ristküliku jaotusviisi T
määravatele punktidele (1.9) p uue punkti lisamise teel (p P N). Tähistame

β :� sup
PPD

fpP q, α :� inf
PPD

fpP q ja λ :� max
 
b� a, d� c

(
.

Siis

0 ¤ SpT q � SpT 1q ¤ p pβ � αqλ∆pT q.
Ülesanne 1.4. Järeldada lemmast 1.5, et selle lemma eeldustel 0 ¤ spT 1q�spT q ¤ p pβ�αqλ∆pT q.

Lemma 1.5 tõestus. Lemma tõestuseks piisab näidata, et

p�q kui ristküliku D jaotusviis T 2 on saadud jaotusviisi T määravatele punkti-
dele (1.9) ühe uue punkti lisamise teel, siis

0 ¤ SpT q � SpT 2q ¤ pβ � αqλ∆pT q.

Tõepoolest, kehtigu väide p�q ning olgu jaotusviis T 1 saadud jaotusviisi T määrava-
tele punktidele (1.9) uute punktide u1, . . . , up lisamise teel (siin iga r P t1, . . . , pu
korral punkt ur lisatakse punktidele x0, . . . , xm või punktidele y0, . . . , yn). Tähista-
me T0 :� T ning, edasi, iga r P t1, . . . , pu korral tähistame sümboliga Tr jaotusviisi,
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mis on saadud jaotusviisi Tr�1 määravatele punktidele punkti ur lisamise teel. Siis
jaotusviis Tp langeb kokku jaotusviisiga T 1 ning seega väite p�q põhjal

0 ¤ SpT q � SpT 1q � SpT0q � SpTpq �
p̧

r�1

�
SpTr�1q � SpTrq

�
¤

p̧

r�1

pβ � αqλ∆pTr�1q ¤
p̧

r�1

pβ � αqλ∆pT q � p pβ � αqλ∆pT q.

Jääb veel tõestada väide p�q. Olgu ristküliku D jaotusviis T 2 saadud jaotus-
viisi T määravatele punktidele (1.9) ühe uue punkti u lisamise teel, kusjuures oletame
konkreetsuse mõttes, et see uus punkt on lisatud lõigu ra, bs k-ndasse osalõiku: u P
rxk�1, xks, kus k P t1, . . . ,mu. Tähistame ∆x1k :� u � xk�1 ja ∆x2k :� xk � u ning
iga j P t1, . . . , nu korral

D1
kj :� rxk�1, us � ryj�1, yjs ja D2

kj :� ru, xks � ryj�1, yjs
(vt. joonist ??? ) jaNB! Siin võiks ol-

la viide lause 1.3,
(a), tõestuse (prae-
guse seisuga puu-
duolevale) joonise-
le.

M 1
kj � sup

PPD1
kj

fpP q ja M2
kj � sup

PPD2
kj

fpP q.

Siis

SpT q � SpT 1q �
m̧

i�1

ņ

j�1

Mij ∆xi ∆yj

�
m̧

i�1
i ��k

ņ

j�1

Mij ∆xi∆yj �
ņ

j�1

M 1
kj ∆x

1
k ∆yj �

ņ

j�1

M2
kj ∆x

2
k ∆yj

�
ņ

j�1

Mkj ∆xk ∆yj �
ņ

j�1

M 1
kj ∆x

1
k ∆yj �

ņ

j�1

M2
kj ∆x

2
k ∆yj

�
ņ

j�1

�
Mkj ∆xk �M 1

kj ∆x
1
k �M2

kj ∆x
2
k

�
∆yj.

Iga j P t1, . . . , nu korral
Mkj ∆xk �M 1

kj ∆x
1
k �M2

kj ∆x
2
k �Mkj p∆x1k �∆x2kq �M 1

kj ∆x
1
k �M2

kj ∆x
2
k

� pMkj �M 1
kjq∆x1k � pMkj �M2

kjq∆x2k
¤ pβ � αq∆x1k � pβ � αq∆x2k
� pβ � αq p∆x1k �∆x2kq � pβ � αq∆xk
¤ pβ � αq∆pT q;

seega

SpT q � SpT 1q ¤
ņ

j�1

pβ � αq∆pT q∆yj � pβ � αq∆pT q
ņ

j�1

∆yj

� pβ � αq∆pT q pd� cq ¤ pβ � αqλ∆pT q.
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Teoreemi 1.4 tõestus. (a). Tähistame I :� IDf . Väite tõestuseks peame näita-
ma, et iga reaalarvu ε ¡ 0 korral leidub reaalarv δ ¡ 0 nii, et

∆pT q   δ ùñ I � ε   SpT q   I � ε.

Fikseerime vabalt reaalarvu ε ¡ 0. Kuna ristküliku D iga jaotusviisi T korral I ¤
SpT q (sest I on ristküliku D jaotusviisidele T vastavate Darboux' ülemsummade
SpT q alumine raja), siis piisab väite tõestuseks leida reaalarv δ ¡ 0 nii, et

∆pT q   δ ùñ SpT q   I � ε. (1.10)

Valime ristküliku D jaotusviisi T 2 selliselt, et

SpT 2q   I � ε

2
.

Olgu nüüd T ristküliku D suvaline jaotusviis. Olgu T 1 ristküliku D jaotusviis, mis on
saadud jaotusviisi T määravatele punktidele (1.9) jaotusviisi T 2 määravate punktide
juurdelisamise teel. Nende juurdelisatavate punktide arv on ülimalt p :� p1�p2�2,
kus p1 ja p2 vastavalt jaotusviisi T 2 määravate lõigu ra, bs osalõikude ja lõigu rc, ds
osalõikude arv; niisiis lemma 1.5 põhjal

SpT q ¤ SpT 1q � p pβ � αqλ∆pT q.
Jaotusviis T 1 on tõlgendatav jaotusviisina, mis on saadud jaotusviisi T 2 määravatele
punktidele teatavate uute (jaotusviisi T määravate) punktide juurdelisamise teel (või
äärmisel juhul jaotusviisid T 1 ja T 2 ühtivad), seega SpT 1q ¤ SpT 2q ning järelikult

SpT q ¤ SpT 2q � p pβ � αqλ∆pT q   I � ε

2
� p pβ � αqλ∆pT q.

Näeme, et kui ristküliku D jaotusviis T rahuldab tingimust p pβ � αqλ∆pT q   ε

2
,

siis SpT q   I � ε. Seega, tähistades δ :� ε

2p pβ � αqλ , kehtib (1.10).

(b). Kuna ristküliku D mis tahes jaotusviisi T korral ülesannete 1.2, (a), ja
1.3, (a), põhjal��sf pT q � IDf

�� � ���Sp�fqpT q � IDp�fq
�� � ��Sp�fqpT q � IDp�fq

��,
siis piisab väite tõestuseks veenduda, et IDp�fq � lim

∆pT qÑ0
Sp�fqpT q, mis kehtib juba

tõestatud väite (a) põhjal.

1.4. Riemanni ja Darboux' mõttes integreeruvuse
samaväärsus. Tarvilikke ja piisavaid tingimusi
integreeruvuseks

Darboux' lemma võimaldab tõestada Riemanni ja Darboux' mõttes integreeruvuse
samaväärsuse ning nende integraalide võrdsuse ning ühtlasi anda mitu kasulikku
tarvilikku ja piisavat tingimust funktsiooni integreeruvuseks.
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Teoreem 1.6. Olgu kahe muutuja funktsioon z � fpx, yq � fpP q tõkestatud rist-
külikus D :� ra, bs � rc, ds. Järgmised väited on samaväärsed:

(i) funktsioon f on Riemanni mõttes integreeruv ristkülikus D;

(ii) funktsioon f on Darboux' mõttes integreeruv ristkülikus D;

(iii) funktsiooni f Darboux' ülemsummade piirväärtus ja Darboux' alamsummade
piirväärtus ristkülikus D on võrdsed, s.t

lim
∆pT qÑ0

SpT q � lim
∆pT qÑ0

spT q �: J ; (1.11)

(iv) iga reaalarvu ε ¡ 0 korral leidub reaalarv δ ¡ 0 selliselt, et

∆pT q   δ ùñ SpT q � spT q   ε (1.12)

(s.t. ristküliku D mis tahes jaotusviisi T korral, mis rahuldab tingimust ∆pT q   δ,
erinevad sellele jaotusviisile vastavad Darboux' summad teineteisest vähem
kui ε); teisisõnu,

lim
∆pT qÑ0

�
SpT q � spT q

	
� 0;

(v) iga reaalarvu ε ¡ 0 korral leidub ristküliku D jaotusviis T , mille korral

SpT q � spT q   ε; (1.13)

teisisõnu, inf
!
SpT q � spT q : T on ristküliku D jaotusviis

)
� 0.

Seejuures, kui kehtib ükskõik milline väidetest (i)�(v) (sel juhul eelneva põhjal keh-
tivad kõik need väited), siis¼

D

fpx, yq dx dy p1q� lim
∆pT qÑ0

Sf pT q p2q� lim
∆pT qÑ0

sf pT q p3q� IDf
p4q� IDf

p5q� IDf ; (1.14)

muuhulgas Riemanni integraal ja Darboux' integraal funktsioonist f (üle ristküliku D)
on võrdsed:

´
D fpx, yq dx dy � IDf .

Märkus 1.2. Kuna (jaotise 1.2 alguses tutvustatud tähistusi kasutades)

SpT q � spT q �
m̧

i�1

ņ

j�1

Mij ∆xi ∆yj �
m̧

i�1

ņ

j�1

mij ∆xi ∆yj �
m̧

i�1

ņ

j�1

pMij �mijq∆xi ∆yj

�
m̧

i�1

ņ

j�1

ωij ∆xi∆yj,

kus kõikide i P t1, . . . ,mu ja j P t1, . . . , nu korral
ωij :�Mij �mij � sup

PPDij

fpP q � inf
PPDij

fpP q

� sup
P,QPDij

�
fpP q � fpQq� � sup

P,QPDij

��fpP q � fpQq��
(arvu ωij nimetatakse funktsiooni f võnkumiseks osaristkülikus Dij), siis võib teo-
reemi 1.6 väited (iv) ja (v) formuleerida ka järgmisel (sagedasti kasutataval) kujul:
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(iv') lim
∆pT qÑ0

m̧

i�1

ņ

j�1

ωij ∆xi ∆yj � 0;

(v') inf

" m̧

i�1

ņ

j�1

ωij ∆xi ∆yj : T on ristküliku D jaotusviis

*
� 0.

Teoreemi 1.6 tõestus. (ii)ñ �
(iii)&(1.14)p2q�p5q

�
. Kui kehtib (ii), siis vastavalt

de�nitsioonile kehtivad (1.14)p4q�p5q, järelikult Darboux' lemma põhjal kehtivad ka
(1.14)p2q�p3q; muuhulgas kehtib ka (iii).

(iii)ñ �
(i)&(1.14)p1q�p2q

�
. Kehtigu (iii) ning olgu ε ¡ 0. Implikatsiooni tõestuseks

piisab leida reaalarv δ ¡ 0 nii, et ristküliku D mis tahes jaotusviisi T ja mis tahes
sellele jaotusviisile vastava Riemanni summa σ korral

∆pT q   δ ùñ J � ε   σ   J � ε. (1.15)

Võrduste (1.11) tõttu leiduvad reaalarvud δ1, δ2 ¡ 0 nii, et

∆pT q   δ1 ùñ spT q ¡ J � ε ja ∆pT q   δ2 ùñ SpT q   J � ε.

Kuna iga jaotusviisile T vastava Riemanni summa σ korral spT q ¤ σ ¤ SpT q, siis,
tähistades δ :� mintδ1, δ2u, kehtib (1.15).

(i)ñ(iv). Kehtigu (i); tähistame I :� ´
D fpx, yq dx dy. Olgu ε ¡ 0. Siis leidub

reaalarv δ ¡ 0 nii, et ristküliku D mis tahes jaotusviisi T ja mis tahes sellele jaotus-
viisile vastava Riemanni summa σ korral

∆pT q   δ ùñ I � ε

4
  σ   I � ε

4
;

seega lause 1.2 põhjal (märgime, et teoreemi 1.1 põhjal on funktsioon f tõkestatud
ristkülikus D)

∆pT q   δ ùñ I � ε

4
¤ spT q ¤ SpT q ¤ I � ε

4
.

Kuna eelneva implikatsiooni paremast poolest järeldub, et SpT q�spT q ¤ ε
2
  ε, siis

kehtib implikatsioon (1.12).

(iv)ñ(v) on ilmne.

(v)ñ(ii). Kehtigu (v) ning olgu ε ¡ 0. Eelduse (v) põhjal leidub ristküliku D
jaotusviis T , mis rahuldab tingimust (1.13). Arvestades, et

spT q ¤ IDf ¤ IDf ¤ SpT q,
järeldub tingimusest (1.13), et��IDf � IDf

�� ¤ SpT q � spT q   ε,

millest arvu ε ¡ 0 suvalisuse tõttu järeldub, et IDf � IDf , s.t. funktsioon f on
Darboux' mõttes integreeruv.
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1.5. Täiendavaid ülesandeid
NB! Ülesannet
1.5 kasutatakse
jaotises 2.1 integ-
raali (üle mis
tahes tõkestatud
hulga) de�nit-
siooni korrektsuse
põhjendamisel.

Ülesanne 1.5. Olgu a, b, c, d P R, kusjuures a   b ja c   d. Tähistame D :� ra, bs � rc, ds (vt.
joonise 1.2 ülemist vasakpoolset teljestikku). Olgu f : D Ñ R.

(a) Olgu a ¤ a1   b1 ¤ b ja c ¤ c1   d1 ¤ d. Tähistame D1 :� ra1, b1s�rc1, d1s (vt. joonise 1.2 üle-
mist parempoolset teljestikku). Tõestada, et kui funktsioon f on integreeruv ristkülikus D,
siis f on integreeruv ka ristkülikus D1.

(b) Olgu a   a1   b. Tähistame D1 :� ra, a1s � rc, ds ja D2 :� ra1, bs � rc, ds (vt. joonise 1.2
alumist vasakpoolset teljestikku). Tõestada, et kui funktsioon f on integreeruv ristkülikutes
D1 ja D2, siis f on integreeruv ka ristkülikus D, kusjuures¼

D

fpx, yq dx dy �
¼
D1

fpx, yq dx dy �
¼
D2

fpx, yq dx dy. (1.16)

(c) Olgu c   c1   d. Tähistame D1 :� ra, bs�rc, c1s ja D2 :� ra, bs�rc1, ds (vt. joonise 1.2 alumist
parempoolset teljestikku). Tõestada, et kui funktsioon f on integreeruv ristkülikutes D1

ja D2, siis f on integreeruv ka ristkülikus D, kusjuures kehtib võrdus (1.16).

(d) Tõestada, et kui funktsioon f on tõkestatud, kusjuures tema väärtused ristküliku D sise-
muses on nullid (s.t. fpx, yq � 0 iga px, yq P pa, bq � pc, dq korral), siis f on integreeruv
ristkülikus D, kusjuures

´
D fpx, yq dx dy � 0.

x

y

0 a b

c

d

D

x

y

0 a b

c

d

a′ b′

c′

d′

D′

x

y

0 a ba′

c

d

D1 D2

x

y

0 a b

c

d

c′

D1

D2

Joonis 1.2
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hulga

2.1. Integraali de�nitsioon

Olgu kahe muutuja funktsioon z � fpx, yq � fpP q määratud tõkestatud hulgas
A � R2.

De�nitsioon 2.1. Sisaldagu ristkülik D � R2 hulka A, s.t. D � A (vt. joonist 2.1).

x

y

0

A

D

Joonis 2.1. Hulk A on joonisel värvitud heleroheliseks, ristkülik D on ääris-
tatud tumesinise joonega.

Öeldakse, et funktsioon f on (Riemanni mõttes) integreeruv hulgas A, kui kahe
muutuja funktsioon z � pfpx, yq � pfpP q, kus

pfpP q � #
fpP q, kui P P A;

0, kui P P DzA,
(2.1)

on integreeruv ristkülikus D. Seejuures integraali¼
A

fpx, yq dx dy :�
¼
D

pfpx, yq dx dy
nimetatakse (kahekordseks) (Riemanni) integraaliks funktsioonist f üle hulga A.

Siinkohal kerkib loomulik küsimus eelneva de�nitsiooni korrektsusest, nimelt: kas
funktsiooni f integreeruvus hulgas A ja integraali

´
A fpx, yq dx dy väärtus on sõltu-

matu (hulka A sisaldava) ristküliku D � R2 valikust? Vastus sellele küsimusele on:
jah, on küll sõltumatu; seega on eelnev de�nitsioon korrektne. Veendumaks selles,
piisab, eeldades, et D1,D2 � R2 on hulka A sisaldavad ristkülikud ning funktsioonidpf1 : D1 Ñ R ja pf2 : D2 Ñ R on de�neeritud võrdustega

pf1pP q � #
fpP q, kui P P A;

0, kui P P D1zA,
ja pf2pP q � #

fpP q, kui P P A;

0, kui P P D2zA,

159



160 V. Kordsed integraalid

näidata, et

(1) funktsioon pf1 on integreeruv ristkülikus D1 parajasti siis, kui funktsioon pf2 on
integreeruv ristkülikus D2;

(2) kehtib võrdus ¼
D1

pf1px, yq dx dy �¼
D2

pf2px, yq dx dy (2.2)

(seda muidugi funktsioonide pf1 ja pf2 integreeruvuse korral).
Seejuures võime üldisust kitsendamata eeldada, et funktsioon f on tõkestatud (sest
vastasel juhul on ka funktsioonid pf1 ja pf2 tõkestamata ning seega teoreemi 1.1 põhjal
pole kumbki neist funktsioonidest integreeruv) ning et D1 � D�

2 (s.t. ristkülik D1

sisaldub ristküliku D2 sisemuses (põhjendada!) .

See põhjendus on järgmine. Eeldame, et väited (1) ja (2) kehtivad lisaeeldusel D1 � D�
2 ning

et D1 ja D2 on suvalised hulka A sisaldavad ristkülikud tasandil R2. Valime ristküliku D � R2

selliselt, et D1 � D� ja D2 � D� (s.t. ristkülikud D1 ja D2 sisalduvad ristküliku D sisemuses;
vt. joonist 2.2), ning de�neerime funktsiooni pf : D Ñ R võrdusega (2.1).

Kui funktsioon pf1 on integreeruv ristkülikus D1, siis tehtud eelduse põhjal on funktsioon pf
integreeruv ristkülikus D, kusjuures

´
D1

pf1px, yq dx dy � ´
D
pfpx, yq dx dy; seega, jällegi teh-

tud eelduse põhjal on funktsioon pf2 integreeruv ristkülikus D2, kusjuures
´

D
pfpx, yq dx dy �´

D2

pf2px, yq dx dy; niisiis kehtib ka võrdus (2.2).

Sümmeetria põhjal saame, et kui funktsioon pf2 on integreeruv ristkülikus D2, siis funkt-
sioon pf1 on integreeruv ristkülikus D1, kusjuures kehtib võrdus (2.2).

Oleme näidanud, et väidete (1) ja (2) kehtivusest lisaeeldusel D1 � D�
2 järeldub nende

väidete kehtivus üldjuhul.

x

y

0 aa′ a′′ b b′b′′

c

c′

c′′

d

d′

d′′

A
DD1

D2

Joonis 2.2. Ristkülikud D1 :� ra, bs � rc, ds, D2 :� ra2, b2s � rc2, d2s ja
D :� ra1, b1s � rc1, d1s on joonisel ääristatud vastavalt tumesinise, punase ja
tumerohelise joonega.
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Niisiis, eeldame, et funktsioon f on tõkestatud ning et D1 � D�
2. Olgu a, b, c, d,

a1, b1, c1, d1 P R, kus a1   a   b   b1 ja c1   c   d   d1, sellised, et D1 � ra, bs � rc, ds
ja D2 � ra1, b1s � rc1, d1s. De�neerime ristkülikud

D3 :� ra1, as � rc1, d1s, D4 :� ra, bs � rc1, cs, D5 :� ra, bs � rd, d1s,
D6 :� rb, b1s � rc1, d1s

(vt. joonist 2.3) ning iga i P t3, 4, 5, 6u korral de�neerime funktsiooni pfi : Di Ñ R
võrdusega

pfipP q � #
fpP q, kui P P Di XA;

0, kui P P DizA;

siis funktsioon pfi on tõkestatud (sest tehtud eelduse põhjal on funktsioon f tõkes-
tatud), kusjuures tema väärtused ristküliku Di sisemuses on nullid, seega üles-
ande 1.5, (d), põhjal on funktsioon pfi integreeruv ristkülikus Di, kusjuures¼

Di

pfipx, yq dx dy � 0.

x

y

0 a′ a b b′

c′

c

d

d′

A

D1

D3

D4

D5

D6

Joonis 2.3. Hulk A on joonisel kujutatud helerohelisega, ristkülik D2 on värvi-
tud helesiniseks, ristkülikud D1, D3, D4, D5 ja D6 on ääristatud tumesinisega.

Oletame nüüd, et funktsioon pf1 on integreeruv ristkülikus D1. Kuna ka iga i P
t3, 4, 5, 6u korral on funktsioon pfi integreeruv ristkülikus Di, siis, arvestades, et iga
i P t1, . . . , 6u korral pf2|Di

� pfi, on funktsioon pf2 integreeruv ristkülikutes D3, D4,
D1, D5 ja D6, seega ülesande 1.5, (b) ja (c), põhjal on funktsioon pf2 integreeruv
ka ristkülikus D2 (põhjendada!) , kusjuures, märkides üleskirjutuste lihtsustamiseks
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iga i P t1, . . . , 6u korral Ii :�
´

Di

pfipx, yq dx dy � ´
Di

pf2px, yq dx dy ning arvestades,
et iga i P t3, 4, 5, 6u korral Ii � 0,¼

D2

pf2px, yq dx dy � I2 � I3 � I4 � I1 � I5 � I6 � I1 �
¼
D1

pf1px, yq dx dy (2.3)

(põhjendada!) .

Teiselt poolt, oletame, et funktsioon pf2 on integreeruv ristkülikus D2. Siis üles-
ande 1.5, (a), põhjal on funktsioon pf2 integreeruv ka ristkülikutes D3, D4, D1, D5

ja D6, kusjuures (ülesande 1.5, (b) ja (c) põhjal) kehtivad võrdused (2.3).
Väited (1) ja (2) on tõestatud ning ühes sellega on põhjendatud de�nitsiooni 2.1

korrektsus.

Jaotise lõpetuseks tõestame ühe olulise tarviliku tingimuse funktsiooni integree-
ruvuseks.

Lause 2.1. Hulgas A � R2 integreeruv kahe muutuja funktsioon z � fpx, yq � fpP q
on tõkestatud selles hulgas.

Tõestus. Olgu ristkülik D � R2 selline, et D � A. Funktsiooni f integreeru-
vus hulgas A tähendab võrdusega (2.1) de�neeritud funktsiooni pf integreeruvust
ristkülikus D. Funktsiooni pf integreeruvusest ristkülikus D järeldub teoreemi 1.1
põhjal tema tõkestatus selles ristkülikus, millest omakorda järeldub funktsiooni f
tõkestatus hulgas A.

2.2. Hulga mõõtuvus Jordani mõttes

Olgu A � R2.

De�nitsioon 2.2. Funktsiooni χA : R2 Ñ R, kus

χApP q �
#
1, kui P P A;

0, kui P P pR2qzA,

nimetatakse hulga A karakteristlikuks funktsiooniks või ka (eriti tõenäosusteoorias)
hulga A indikaatorfunktsiooniks.

Eeldame nüüd, et hulk A � R2 on tõkestatud.

De�nitsioon 2.3. Öeldakse, et hulk A on Jordani mõttes mõõtuv, kui tema ka-
rakteristlik funktsioon χA on integreeruv hulgas A, s.t., valides ristküliku D � R2

nii, et D � A, karakteristlik funktsioon χA on integreeruv ristkülikus D. Seejuures
integraali

µpAq :� SA :�
¼
A

χApx, yq dx dy �
¼
A

dx dy �
¼
D

χApx, yq dx dy

nimetatakse hulga A Jordani mõõduks ehk pindalaks.
Kõneldes selle peatüki paragrahvides 2�6 edaspidi lihtsalt mõõtuvatest hulkadest,

mõistame me selle all Jordani mõttes mõõtuvaid hulki tasandil R2.



� 2. Kahekordne integraal üle mis tahes tõkestatud hulga 163

Rõhutame, et eelnevas punktis tõestatu põhjal ei sõltu karakteristliku funktsioo-
ni χA integreeruvus ja integraal

´
D χApx, yq dx dy ning seega ka hulga A Jordani

mõttes mõõtuvus ja Jordani mõõt hulka A sisaldava ristküliku D valikust de�nit-
sioonis 2.3. Rõhutame samuti, et hulgaA Jordani mõõdust (ehk, teisisõnu, pindalast)
saame kõnelda vaid Jordani mõttes mõõtuva hulga A puhul.

Märkus 2.1. Eelnev Jordani mõõdu de�nitsioon ei lähtu vahetult meie eelmate-
maatilisest arusaamast pindalast. Seosed nimetatud de�nitsiooni ja arusaama vahel
hakkavad selginema, kui analüüsida hulga karakteristliku funktsiooni integreeruvust
Darboux' summade terminites. On mõistlik lükata see analüüs edasi paragrahvi 4,
kus meie käsutuses on oluliselt rohkem teadmisi integraalist ja Jordani mõõdust. Pa-
ragrahvis 4 tõestame hulga Jordani mõttes mõõtuvuse jaoks ühe tarviliku ja piisava
tingimuse (teoreemi 4.2), mis selgitab (vt. märkust 4.1), et eelnev Jordani mõõdu
de�nitsioon 2.3 on igati kooskõlas meie eelmatemaatilise arusaamaga pindalast.

Näide 2.1. Ristkülik D :� ra, bs � rc, ds � R2 on Jordani mõttes mõõtuv hulk, kusjuures tema
Jordani mõõt

µpDq � pb� aqpd� cq,
s.t. ristküliku Jordani mõõt on võrdne tema elementaargeomeetrilistest kaalutlustest lähtudes arvu-
tatud pindalaga.

Tõepoolest, ristküliku D Jordani mõttes mõõtuvuse tõestuseks piisab (võttes de�nitsioonis 2.3
nii hulga A kui ka teda sisaldava ristküliku D rolli meie vaadeldava ristküliku D enda), veenduda,
et selle ristküliku karakteristlik funktsioon χD on integreeruv ristkülikus D, aga see järeldub näi-
test 1.1 (sest karakteristilik funktsioon χD on selles ristkülikus konstantne: pχDq|D � 1); seejuures
(jällegi näites 1.1 leitu põhjal)

µpDq �
¼
D

χDpx, yq dx dy �
¼
D

1 dx dy � pb� aqpd� cq.

Järgnevad näide 2.2 ja lause 2.4 annavad näiteid nullmõõduga hulkadest tasandil,
s.t. niisugustest Jordani mõttes mõõtuvatest hulkadest (tasandil R2), mille Jordani
mõõt on null. Eelnevalt on otstarbekas tõestada järgnevad kaks tulemust, millest
lemma 2.2 annab tarvilikke ja piisavaid tingimusi hulga nullmõõdulisuseks (mida
nende lihtsuse tõttu kasutame edaspidi sageli ilma sellele lemmale viitamata) ning
lause 2.3 ütleb, et nullmõõduga hulkade lõplik ühend on nullmõõduga hulk.

Lemma 2.2. Olgu (tõkestatud) hulk A � R2 ja ristkülik D � R2 sellised, et D � A.
Järgmised väited on samaväärsed:

(i) A on nullmõõduga hulk;

(ii) IDχA � 0; NB! Kas vaja
selgitada tähistust
IDχA? See on
Darboux' ülemine
integraal hulga A
karakteristlikust
funktsioonist χA
üle ristküliku D.

(iii) IDχA ¤ 0;

(iv) iga reaalarvu ε ¡ 0 korral leidub ristküliku D jaotusviis T nii, et SχApT q   ε
(sümbol SχApT q tähistab karakteristliku funktsiooni χA Darboux' ülemsummat
(ristkülikus D), mis vastab jaotusviisile T );
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(v) iga reaalarvu ε ¡ 0 korral leidub ristküliku D jaotusviis T , mille korral hulka A
lõikavate osaristkülikute pindalade summa on väiksem kui ε, s.t., tähistadespΓ :� tpi, jq P Γ: Dij XA �� Hu, kehtib võrratus¸

pi,jqPpΓ
µpDijq �

¸
pi,jqPpΓ

∆xi∆yj   ε.

Tõestus. (i)ñ(ii). Hulga A nullmõõdulisus tähendab, et tema karakteristlik funkt-
sioon χA on integreeruv ristkülikus D, kusjuures integraal temast üle selle ristküliku
on null, aga sellisel juhul IDχA � IDχA � ´

D χApx, yq dx dy � 0.

(ii)ñ(iii) on ilmne.

(iii)ñ(i). Kehtigu (iii). Siis 0 ¤ IDχA ¤ IDχA ¤ 0 (selle ahela esimene võr-
ratus järeldub karakteristliku funktsiooni χA mittenegatiivsusest), seega IDχA �
IDχA � 0. See tähendab, et karakteristlik funktsioon χA on integreeruv ristkülikusD,
kusjuures integraal temast üle selle ristküliku on null; see omakorda aga tähendab,
et hulk A on Jordani mõttes mõõtuv, kusjuures tema Jordani mõõt on null.

(iii)ô(iv) on ilmne.

(iv)ô(v) on ilmne, sest ristküliku D mis tahes jaotusviisile T vastav karakte-
ristliku funktsiooni χA Darboux' ülemsumma SχApT q on selle jaotusviisi selliste
osaristkülikute pindalade summa, mis lõikavad hulka A.

Järgnevat lauset vajame me näites 2.2 tõestamaks, et lõplik hulk (tasandil) on
nullmõõduline, aga samuti jaotises 2.3 (koos teoreemiga 2.5 ja lausega 2.4) lause 2.7
� pidevate funktsioonidega määratud kõvertrapetsi mõõtuvuse � tõestamisel.

Lause 2.3. Nullmõõduga hulkade lõplik ühend (tasandil) on nullmõõduga hulk.

Lause 2.3 tõestus. OlguA,B � R2 nullmõõduga hulgad. Lause tõestuseks piisab
näidata, et ühend A Y B on nullmõõduga hulk. Selleks, valides ristküliku D � R2

nii, et D � AY B, piisab veenduda, et IDχAYB ¤ 0.
Kuna χAYB ¤ χA � χB, siis ülesande 1.3, (d) ja (c), põhjal

IDχAYB ¤ IDpχA � χBq ¤ IDχA � IDχB � 0,

sest hulkade A ja B nullmõõdulisuse tõttu IDχA � IDχB � 0.

Lause 2.3 tõestus lihtsustuks veelgi, kui selles kasutada lauset 3.7. Niisugune
tõestus on esitatud jaotises 3.4 lk. 181 lause 3.7 tõestuse järel.

Näide 2.2. Lõplik hulk tasandil R2 on nullmõõduga hulk. Kuna iga mittetühi lõplik hulk on ühe-
punktiliste hulkade lõplik ühend, siis lause 2.3 põhjal piisab lõpliku hulga nullmõõdulisuseks veen-
duda, et ühepunktiline hulk tasandil R2 on nullmõõduga hulk. Olgu P P R2 ja olgu ristkülik
D � R2 selline, et D � tP u (ehk teisisõnu P P D), ning olgu ε ¡ 0. Lemma 2.2 põhjal piisab
hulga tP u nullmõõõdulisuseks leida ristküliku D jaotusviis T , mille korral punkti P sisaldavate
osaristkülikute pindalade summa on väiksem kui ε. Sellise jaotusviisi olemasolu on ilmne.
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Lause 2.4. (a) Lõigus ra, bs pideva funktsiooni y � fpxq graa�k

L :�  px, yq P R2 : x P ra, bs, y � fpxq(
on nullmõõduga hulk ruumis R2.

(b) Lõigus rc, ds pideva funktsiooni x � gpyq graa�k px, yq P R2 : y P rc, ds, x � gpyq(
on nullmõõduga hulk ruumis R2.

Lause 2.4 (mis on ka eraldi vaadelduna huvipakkuv) leiab rakendust jaotise 2.3
lõpus lause 2.7 � pidevate funktsioonidega määratud kõvertrapetsi mõõtuvuse �
tõestamisel.

Järgnevas tõestuses, kõneldes ristküliku D jaotusviisist T , toetume me kons-
pektis läbivalt kasutatavatele kokkulepetele/tähistustele, mida on tutvustatud näi-
teks jaotise 1.2 alguses lk. 149. Lisaks tähistame Γ :�  

1, . . . ,mu � t1, . . . , nu japΓL :� tpi, jq P Γ: Dij X L �� Hu.

Lause 2.4 tõestus. (a). Weierstrassi teoreemi ?? põhjal leiduvad arvud c, d P R,
c   d, nii, et c ¤ fpxq ¤ d iga x P ra, bs korral. Tähistame D :� ra, bs �
rc, ds; siis D � L. Fikseerime vabalt reaalarvu ε ¡ 0. Lemma 2.2 põhjal piisab
graa�ku L nullmõõdulisuse tõestuseks leida ristküliku D jaotusviis T , mille korral°

pi,jqPpΓL
∆xi∆yj   ε.

Jaotame lõigu rc, ds punktidega c � y0   y1   � � �   yn � d, kus n P N, võrdse
pikkusega osalõikudeks ryj�1, yjs, mille pikkused δ0 on väiksemad kui ε

2pb�aq , s.t.

δ0 :� ∆y1 � � � � � ∆yn   ε
2pb�aq . Cantori teoreemi ?? põhjal leidub reaalarv δ ¡ 0

nii, et
x, x1 P ra, bs, |x� x1|   δ ùñ |fpxq � fpx1q|   δ0.

Jaotame lõigu ra, bs punktidega a � x0   x1   � � �   xm � b, kus m P N, osalõiku-
deks rxi�1, xis, mille pikkused on väiksemad kui δ. Iga i P t1, . . . ,mu korral tähistame
Γi :�

 
j P t1, . . . , nu : LXDij �� H(

(s.t. Γi on nende indeksite j P t1, . . . , nu hulk,
mille korral graa�k L lõikab osaristkülikut Dij) ning sümboliga |Γi| tähistame hul-
ga Γi elementide arvu; siis |Γi| ¤ 2 (s.t. lõigus rxi�1, xis lõikab graa�k L ülimalt
kahte ristkülikut Dij) (põhjendada!) . NB! JOONIS!

(Kuhu täpselt?)

Tõepoolest, oletame vastuväiteliselt, et mingi i P t1, . . . ,mu korral |Γi| ¥ 3. Siis mingite j, k P
Γi korral j�1   k. Olgu x, x1 P rxi�1, xis sellised, et

�
x, fpxq� P Dij � rxi�1, xis�ryj�1, yjs ja�

x1, fpx1q� P Dik � rxi�1, xis�ryk�1, yks; siis x�x1 ¤ ∆xi   δ, kuid fpxq ¤ yj   yk�1 ¤ fpx1q
ning seega

|fpxq � fpx1q| ¥ fpx1q � fpxq ¥ yk�1 � yj ¥ yj�1 � yj � δ0.

Jõudsime vastuoluni.
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Aga nüüd (tähistades tähega T ristküliku D jaotusviisi, mis on määratud punktidega
x0, x1, . . . , xm ja y0, y1, . . . , yn)¸
pi,jqPpΓL

∆xi∆yj �
m̧

i�1

¸
jPΓi

∆xi∆yj �
m̧

i�1

∆xi
¸
jPΓi

∆yj �
m̧

i�1

∆xi|Γi|δ0

¤
m̧

i�1

∆xi2δ0 � 2δ0

m̧

i�1

∆xi � 2pb� aqδ0   2pb� aq � ε

2pb� aq � ε.

(b). Väite tõestus on sümmeetriline väite (a) tõestusega.

2.3. Tarvilik ja piisav tingimus hulga Jordani mõttes
mõõtuvuseks tema raja nullmõõdulisuse kaudu

Teoreem 2.5. Olgu A � R2 tõkestatud hulk. Järgmised väited on samaväärsed:

(i) A on Jordani mõttes mõõtuv;

(ii) µpBAq � 0, s.t. hulga A raja BA Jordani mõõt on null.

Teoreemi 2.5 tõestuses on mugav toetuda järgnevale abitulemusele.

Lemma 2.6. Olgu hulk A � R2 ja ristkülik D :� ra, bs � rc, ds � R2 sellised, et
A � D. Tähistame tähega T ristküliku D jaotusviisi osaristkülikuteks

Dij :� rxi�1, xis � ryj�1, yjs, i � 1, . . . ,m, j � 1, . . . , n,

kus m,n P N ning a � x0   x1   � � �   xm � b ja c � y0   y1   � � �   yn � d.
Tähistame Γ :� t1, . . . ,mu � t1, . . . , nu ning

pΓ :� tpi, jq P Γ: Dij XA �� Hu, qΓ :� tpi, jq P Γ: Dij � Au,sΓ :� pΓzqΓ, rΓ :� tpi, jq P Γ: Dij X BA �� Hu.

Siis

(a) SχApT q �
°

pi,jqPpΓ∆xi∆yj, sχApT q �
°

pi,jqPqΓ∆xi∆yj;

(b) SχApT q � sχApT q �
°

pi,jqPsΓ∆xi∆yj;

(c) SχBApT q �
°

pi,jqPrΓ∆xi∆yj;

(d) sΓ � rΓ.
Kui A � D� (s.t. hulga A sulund sisaldub ristküliku D sisemuses), siis ka

(e) BA � �
pi,jqPsΓDij;
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(f) |rΓ| ¤ 9|sΓ|, kus sümbolid |rΓ| ja |sΓ| tähistavad vastavalt hulkade rΓ ja sΓ elemen-
tide arvu.

Tõestus. (a). Mis tahes pi, jq P Γ korral

MijpχAq �
#
1, kui Dij XA �� H, s.t. pi, jq P pΓ;
0, kui Dij XA � H, s.t. pi, jq P ΓzpΓ,

mijpχAq �
#
1, kui Dij � A, s.t. pi, jq P qΓ;
0, kui Dij X pDzAq �� H, s.t. pi, jq P ΓzqΓ.

Tõestatavad võrdused on nüüd ilmsed.

(b). Tõestatav võrdus järeldub vahetult väitest (a).

(c). Tõestatav võrdus järeldub väite (a) esimesest võrdusest.

(d). Olgu pi, jq P sΓ. Siis Dij XA �� H, seega leidub P P Dij nii, et P P A. Teiselt
poolt, kuna pi, jq R qΓ, siis Dij � A, seega leidub Q P Dij nii, et Q R A. Nüüd punkte
P ja Q ühendaval sirglõigul leidub punkt R P BA (vt. ülesande I.1.5 näpunäidet;
siin me eeldame üldisust kitsendamata, et A �� H). Kuna punkte P ja Q ühendav
sirglõik sisaldub ristkülikus Dij, siis R P Dij X BA ning seega Dij X BA �� H, s.t
pi, jq P rΓ. Oleme näidanud, et sΓ � rΓ.

Eeldame järgnevas täiendavalt, et A � D�.

(e). Olgu P P BA. Tähistame ΓP :� tpi, jq P Γ: P P Diju. Siis hulk U :��
pi,jqPΓP

Dij on punkti P ümbrus (põhjendada!) (siin me kasutasime eeldust, et

A � D�), järelikult, arvestades, et P on hulga A rajapunkt, leiduvad pk, lq, pr, sq P
ΓP nii, et Dkl XA �� H ja Drs X pDzAq �� H (põhjendada!) . Nüüd, kui P P A, siis

pr, sq P sΓ, kui aga P P DzA, siis pk, lq P sΓ (põhjendada!) . Siit näeme, et igal juhul

P P �pi,jqPsΓDij (põhjendada!) .

(f). Kõikjal väite tõestuses kasutame järgnevaid tähistusi. Kui Γ0 � Γ, siis
sümbol |Γ0| tähistab hulga Γ0 elementide arvu. Iga pi, jq P Γ korral tähistame
Γij :� tpk, lq P Γ: Dkl XDij �� Hu; siis ilmselt |Γij| ¤ 9.

Väite tõestuseks piisab näidata, et rΓ � �
pi,jqPsΓ Γij, sest selle sisalduvuse kehtides

|rΓ| ¤ ���� ¤
pi,jqPsΓ

Γij

���� ¤ ¸
pi,jqPsΓ

|Γij| ¤ 9|sΓ|
(põhjendada!) . Tõestame sisalduvuse rΓ � �

pi,jqPsΓ Γij. Olgu pk, lq P rΓ; siis leidub
P P Dkl X BA. Väite (e) põhjal leidub pi, jq P sΓ nii, et P P Dij; niisiis P P Dkl XDij

ja seega pk, lq P Γij.

Teoreemi 2.5 tõestus. Olgu ristkülik D :� ra, bs� rc, ds � R2 selline, et A � D.

(ii)ñ(i). Olgu µpBAq � 0 ning olgu ε ¡ 0. Hulga A Jordani mõttes mõõtuvuseks
piisab leida ristküliku D jaotusviis T selliselt, et SχApT q � sχApT q   ε.



168 V. Kordsed integraalid

Kuna µpBAq � 0, siis saame jaotusviisi T valida selliselt, et SχBApT q   ε
(põhjendada!) . Lemma 2.6, (b), (d) ja (c), põhjal

SχApT q � sχApT q �
¸

pi,jqPsΓ
∆xi∆yj ¤

¸
pi,jqPrΓ

∆xi∆yj � SχBApT q   ε.

(i)ñ(ii). Olgu hulk A Jordani mõttes mõõtuv ning olgu ε ¡ 0. Implikatsiooni
tõestuseks (s.t. võrduseks µpBAq � 0) piisab leida ristküliku D jaotusviis T selliselt,
et SχBApT q   ε (põhjendada!) . Seejuures võime üldisust kitsendamata eeldada, et

ristkülik D on ruut, kusjuures A � D� (põhjendada!) .
Olgu T ruudu D niisugune jaotusviis, mille kõik osaristkülikud on võrdse külje-

pikkusega ruudud; olgu nende osaruutude küljepikkus κ. Siis lemma 2.6, (c), (f)
ja (b), põhjal

SχBApT q �
¸

pi,jqPrΓ
∆xi∆yj � |rΓ|κ2 ¤ 9|sΓ|κ2 � 9

¸
pi,jqPsΓ

∆xi∆yj � 9
�
SχApT q � sχApT q

�
.

Kuna hulk A on Jordani mõttes mõõtuv, siis saame ruudu D jaotusviisi T võrdse
küljepikkusega osaruutudeks valida nii, et SχApT q�sχApT q   ε

9
(põhjendada!) , aga

niisuguse jaotusviisi T korral SχBApT q   ε, nagu soovitud.

Jaotise lõpetuseks tõestame järeldusena teoreemist 2.5 (ning lausetest 2.3 ja 2.4),
et pidevate funktsioonidega määratud kõvertrapets on Jordani mõttes mõõtuv hulk.

Lause 2.7. (a) Olgu y � αpxq ja y � βpxq lõigus ra, bs pidevad funktsioonid,
kusjuures αpxq ¤ βpxq iga x P ra, bs korral. Siis kõvertrapets

A :�  px, yq P R2 : x P ra, bs, αpxq ¤ y ¤ βpxq(
on Jordani mõttes mõõtuv hulk (tasandil R2).

(b) Olgu x � γpyq ja x � δpyq lõigus rc, ds pidevad funktsioonid, kusjuures γpyq ¤
δpyq iga y P rc, ds korral. Siis kõvertrapets px, yq P R2 : y P rc, ds, γpyq ¤ x ¤ δpyq(
on Jordani mõttes mõõtuv hulk (tasandil R2).

Lause 2.7 tõestus. (a). Teoreemi 2.5 põhjal piisab kõvertrapetsi A mõõtuvuseks
näidata, et tema rajajoon BA on nullmõõduline. Rajajoon BA esitub ühendina BA �NB! Joonis?

L1 Y L2 Y L3 Y L4, kus

L1 :�
 px, yq P R2 : x P ra, bs, y � αpxq(, L3 :�

 px, yq P R2 : x � a, αpaq ¤ y ¤ βpaq(,
L2 :�

 px, yq P R2 : x P ra, bs, y � βpxq(, L4 :�
 px, yq P R2 : x � b, αpbq ¤ y ¤ βpbq(,

seega lause 2.3 põhjal piisab tema nullmõõdulisuseks näidata, et hulgad L1, L2, L3

ja L4 on nullmõõdulised. Hulkade L1 ja L2 ning L3 ja L4 nullmõõdulisus järeldub
vastavalt lausest 2.4, (a) ning (b) (on võimalik ka juht, kus üks või mõlemad hulka-
dest L3 ja L4 on ühepunktilised, aga ühepunktiline hulk on nullmõõduline näite 2.2
põhjal).

(b). Väite tõestus on sümmeetriline väite (a) tõestusega.
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2.4. Mõõtuvas kinnises hulgas pideva kahe muutuja
funktsiooni integreeruvus

Kõiki selles jaotises kasutatavaid tähistusi (nt. Γ, pΓ, qΓ, sΓ, rΓ) on selgitatud lem-
mas 2.6.

Teoreem 2.8. Jordani mõttes mõõtuvas kinnises hulgas A � R2 pidev kahe muutuja
funktsioon on integreeruv selles hulgas.

Tõestus. Olgu A � R2 Jordani mõttes mõõtuv kinnine hulk ning olgu f : AÑ R
pidev funktsioon. Kuna Jordani mõttes mõõtuv hulk on tõkestatud, siis leidub rist-
külik D :� ra, bs � rc, ds � R2 nii, et D � A. Funktsiooni f integreeruvus hulgas A
tähendab lk. 159 valemiga (2.1) de�neeritud funktsiooni pf : D Ñ R integreeruvust
ristkülikus D. Seega, �kseerides vabalt reaalarvu ε ¡ 0, piisab teoreemi tõestuseks
leida ristküliku D jaotusviis T nii, et, tähistades ωij :� supPPDij

pfpP q�infPPDij
pfpP q,

S
pf pT q � s

pf pT q �
¸

pi,jqPΓ
ωij∆xi∆yj   ε.

Olgu T ristküliku D suvaline jaotusviis. Weierstrassi teoreemi I.4.7 põhjal on
funktsioon f tõkestatud hulgas A, seega funktsioon pf on tõkestatud, s.t. leidub
reaalarv M ¡ 0 nii, et | pfpP q| ¤M iga P P D korral. Arvestades, et iga pi, jq P ΓzpΓ
korral ωij � 0 ning et iga pi, jq P Γ korral ωij ¤ 2M (põhjendada!) , NB! Kas lugeja

mäletab, mis on
µpDq?

S
pf pT q � s

pf pT q �
¸

pi,jqPpΓ
ωij∆xi∆yj �

¸
pi,jqPsΓ

ωij∆xi∆yj �
¸

pi,jqPqΓ
ωij∆xi∆yj

¤ 2M
¸

pi,jqPsΓ
∆xi∆yj � max

pi,jqPqΓ
ωij

¸
pi,jqPqΓ

∆xi∆yj

¤ 2M
¸

pi,jqPrΓ
∆xi∆yj � max

pi,jqPqΓ
ωij µpDq

� 2M SχBApT q � max
pi,jqPqΓ

ωij µpDq.

Hulga A Jordani mõttes mõõtuvuse tõttu on tema raja nullmõõduga hulk (vt. teo-
reemi 2.5), seega leidub reaalarv δ1 ¡ 0 nii, et

∆pT q   δ1 ùñ SχBApT q  
ε

4M
.

Cantori teoreemi I.4.9 põhjal kinnises tõkestatud hulgas pideva funktsiooni ühtlasest
pidevusest leidub reaalarv δ2 ¡ 0 nii, et

P, P 1 P A, dpP, P 1q   δ2 ùñ |fpP q � fpP 1q|   ε

2µpDq .

Kui nüüd ∆pT q   δ2?
2
, siis mis tahes pi, jq P qΓ ja mis tahes P, P 1 P Dij korral

dpP, P 1q   δ2 (põhjendada!) ning seega ωij ¤ ε
2µpDq . Niisiis, kui∆pT q   min

 
δ1,

δ2?
2

(
,

siis
S
pf pT q � s

pf pT q   2M
ε

4M
� ε

2µpDq µpDq � ε,

nagu soovitud.
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2.5. Integraal üle nullmõõduga hulga
NB! Kus on selle
jaotise parim koht?
Teoreemi 2.9 tões-
tus ei vaja jaotise
2.3 teoreemi 2.5.

Teoreem 2.9. Olgu A � R2 Jordani mõttes nullmõõduga hulk ning olgu f : AÑ R
tõkestatud funktsioon. Siis funktsioon f on integreeruv hulgas A, kusjuures¼

A

fpx, yq dx dy � 0.

NB! Kuskil öelda,
et kui me räägime
hulgas A integree-
ruvast funktsiooni-
st, siis me mõista-
me implitsiitselt, et
hulk A on tõkesta-
tud.

Tõestus. Olgu ristkülik D :� ra, bs � rc, ds � R2 selline, et D � A. Me kasutame
standardseid tähistusi: kõneldes ristküliku D jaotusviisist T , mõistame me selle all
jaotusviisi, mis on määratud punktidega a � x0   x1   � � �   xm � b ja c �
y0   y1   � � �   yn � d (m,n P N); kõikide i P t1, . . . ,mu ja j P t1, . . . , nu korral
tähistame ∆xi :� xi � xi�1, ∆yj :� yj � yj�1 ja Dij :� rxi�1, xis � ryj�1, yjs. Lisaks
tähistame Γ :� t1, . . . ,mu � t1, . . . , nu ja pΓ :� tpi, jq P Γ: Dij XA �� Hu.

Olgu funktsioon pf : D Ñ R de�neeritud valemiga (2.1) ning olgu ε ¡ 0. Teoreemi
tõestuseks piisab leida reaalarv δ ¡ 0 nii, et kui ristküliku D jaotusviis T rahuldab
tingimust ∆pT q   δ (meenutame, et ∆pT q tähistab jaotusviisi T osaristkülikute
maksimaalset küljepikkust), siis mis tahes sellele jaotusviisile vastav funktsiooni pf
Riemanni summa σ rahuldab tingimust |σ|   ε.

Olgu T ristküliku D suvaline jaotusviis ning olgu

Pij P Dij, i � 1, . . . ,m, j � 1, . . . , n. (2.4)

Tähistame σ :� °
pi,jqPΓ pfpPijq∆xi∆yj. Funktsiooni f tõkestatuse tõttu on ka funkt-

sioon pf tõkestatud, s.t. leidub reaalarv M ¡ 0 nii, et | pfpP q| ¤M iga P P D korral.
Seega, arvestades, et pfpPijq � 0 iga pi, jq P ΓzpΓ korral,

|σ| �
���� ¸
pi,jqPpΓ

pfpPijq∆xi∆yj
���� ¤ ¸

pi,jqPpΓ
| pfpPijq|∆xi∆yj ¤M

¸
pi,jqPpΓ

∆xi∆yj �MSχApT q.

Kuna A on nullmõõduga hulk, s.t.
´

D χApx, yq dx dy � 0, siis leidub reaalarv δ ¡ 0
nii, et

∆pT q   δ ùñ SχApT q  
ε

M
.

Eelnevast näeme, et kui jaotusviis T rahuldab tingimust ∆pT q   δ, siis mis tahes
punktide valiku (2.4) korral integraalsumma σ rahuldab tingimust |σ|   ε, nagu
soovitud.

Siinkohal on sobilik juhtida tähelepanu jaotise 3.1 lõpus tõestatavale järeldu-
sele 3.3 (teoreemidest 2.9 ja 3.1, (b)), mis ütleb, et kui muuta integreeruva funkt-
siooni väärtusi nullmõõduga hulgal, jääb see �muudetud� funktsioon endiselt integ-
reeruvaks ning selle �muudetud� funktsiooni integraali väärtus jääb samaks, mis
esialgsel.
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Olgu kahe muutuja funktsioon u � fpx, yq � fpP q määratud ristkülikus

D :� ra, bs � rc, ds � R2.

Järgides eelmiste paragrahvide tähistusi, tähistame tähega T ristküliku D jaotusviisi
osaristkülikuteks

Dij :� rxi�1, xis � ryj�1, yjs, i � 1, . . . ,m, j � 1, . . . , n,

kus m,n P N ning

a � x0   x1   � � �   xm � b ja c � y0   y1   � � �   yn � d.

Kõikide i P t1, . . . ,mu ja j P t1, . . . , nu korral tähistame

∆xi :� xi � xi�1 ja ∆yj :� yj � yj�1,

s.t. ∆xi ja ∆yj on osaristküliku Dij külgede pikkused, ning

∆pT q :� max
 
∆x1, . . . ,∆xm,∆y1, . . . ,∆yn

(
,

s.t. ∆pT q on selle jaotusviisi osaristkülikute maksimaalne küljepikkus.

Valime mingid punktid

P11 P D11, . . . , P1n P D1n, . . . . . . , Pm1 P Dm1, . . . , Pmn P Dmn (3.1)

(s.t. kõikide i P t1, . . . ,mu ja j P t1, . . . , nu korral valime mingi punkti Pij P Dij).
Me tähistame

σ :� σf :� σf pT ;P11, . . . , P1n, . . . , Pm1, . . . , Pmnq :�
m̧

i�1

ņ

j�1

fpPijq∆xi ∆yj,

s.t. σ � σf on funktsiooni f integraalsumma (ehk Riemanni summa), mis vastab
ristküliku D jaotusviisile T ja punktide valikule (3.1).

Kui funktsioon u � fpx, yq � fpP q on tõkestatud ristkülikus D, siis tähistame
kõikide i P t1, . . . ,mu ja j P t1, . . . , nu korral

Mij :�Mijpfq :� sup
PPDij

fpP q, mij :� mijpfq :� inf
PPDij

fpP q

ja

ωij :� ωijpfq :�Mij �mij � sup
PPDij

fpP q � inf
PPDij

fpP q

� sup
P,QPDij

�
fpP q � fpQq� � sup

P,QPDij

|fpP q � fpQq|

171
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ning

SpT q :� Sf pT q :�
m̧

i�1

ņ

j�1

Mij ∆xi ∆yj ja spT q :� sf pT q �
m̧

i�1

ņ

j�1

mij ∆xi ∆yj,

s.t. SpT q � Sf pT q ja spT q � sf pT q on vastavalt funktsiooni f Darboux' ülemsumma
ja Darboux' alamsumma, mis vastavad ristküliku D jaotusviisile T .

Hulgas A � D määratud kahe muutuja funktsiooni z � fpx, yq � fpP q korral
de�neerime funktsiooni pf : D Ñ R võrdustega

pfpP q � #
fpP q, kui P P A,

0, kui P P DzA.
(3.2)

3.1. Kahekordse integraali omadused, mis on seotud
aritmeetiliste tehetega

Teoreem 3.1. Olgu kahe muutuja funktsioonid u � fpx, yq � fpP q ja v � gpx, yq �
gpP q integreeruvad hulgas A � R2 ning olgu α, β P R. Siis

(a) korrutis αf on integreeruv hulgas A, kusjuures¼
A

αfpx, yq dx dy � α

¼
A

fpx, yq dx dy;

(b) funktsioonide f ja g summa f � g ja vahe f � g on integreeruvad hulgas A,
kusjuures¼

A

�
fpx, yq � gpx, yq� dx dy �¼

A

fpx, yq dx dy �
¼
A

gpx, yq dx dy;

(c) funktsioon αf � βg on integreeruv hulgas A, kusjuures¼
A

�
αfpx, yq � βgpx, yq� dx dy � α

¼
A

fpx, yq dx dy � β

¼
A

gpx, yq dx dy;

(d) funktsioonide f ja g korrutis fg on integreeruv hulgas A.

Omadustele (a), (b) (summa kohta) ja (c) teoreemist 3.1 viidatakse vastavalt kui
kahekordse integraali homogeensusele, aditiivsusele ja lineaarsusele.

Enne teoreemi 3.1 tõestamist toome ära ühe olulise järelduse tema väitest (a).

Järeldus 3.2. Mõõtuvas hulgas A � R2 määratud konstantne kahe muutuja funkt-
sioon fpx, yq � α (α P R) on integreeruv selles hulgas, kusjuures¼

A

α dx dy � αµpAq

(sümbol µpAq tähistab hulga A Jordani mõõtu ehk pindala).
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Tõestus. Olgu ristkülik D � R2 selline, et D � A. Antud juhul pf � αχA ristküli-
kus D. Hulga A mõõtuvuse tõttu tema karakteristlik funktsioon χA on integreeruv
ristkülikus D, seega teoreemi 3.1 väite (a) põhjal ka funktsioon αχA � pf on integ-
reeruv selles ristkülikus, s.t. funktsioon f on integreeruv hulgas A; seejuures¼

A

α dx dy �
¼
A

fpx, yq dx dy �
¼
D

pfpx, yq dx dy
�
¼
D

αχApx, yq dx dy � α

¼
D

χApx, yq dx dy � αµpAq.

Teoreemi 3.1 tõestus. Olgu ristkülik D � R2 selline, et D � A. Tähistame

I :� If :�
¼
A

fpx, yq dx dy ja Ig :�
¼
A

gpx, yq dx dy.

(a). Vaatleme alguses juhtu, kus A � D � ra, bs�rc, ds (s.t. A � D on ristkülik).
Sel juhul, �kseerides vabalt reaalarvu ε ¡ 0, piisab väite tõestuseks leida reaalarv
δ ¡ 0 nii, et (ristküliku D mis tahes jaotusviisi T ning mis tahes sellele jaotusviisile
vastava funktsiooni αf integraalsumma σαf korral)

∆pT q   δ ùñ ��σαf � αI
��   ε.

Selleks märgime kõigepealt, et

��σαf � αI
�� � ���� m̧

i�1

ņ

j�1

αfpPijq∆xi ∆yj � αI

���� � |α|
���� m̧
i�1

ņ

j�1

fpPijq∆xi∆yj � I

����
� |α| ��σf � I

��.
Juhul, kui α � 0, on järelduse väite kehtivus ilmne. Eeldame järgnevas, et α �� 0.
Siis funktsiooni f integreeruvuse tõttu leidub reaalarv δ ¡ 0 nii, et

∆pT q   δ ùñ ��σf � I
��   ε

|α| ,

aga nüüd võrratuse ∆pT q   δ kehtides
��σαf � αI

��   |α| ε|α| � ε, nagu soovitud.

Vaatleme nüüd üldist juhtu (s.t. me ei eelda enam, et A � D). Sel juhul, arvesta-
des, et funktsiooni f integreeruvus hulgas A tähendab funktsiooni pf integreeruvust
ristkülikus D, ülaltõestatu põhjal funktsioon α pf � xαf on integreeruv ristkülikus D,
aga see tähendab, et funktsioon αf on integreeruv hulgas A; seejuures¼

A

αfpx, yq dx dy �
¼
D

α pfpx, yq dx dy � α

¼
D

pfpx, yq dx dy � α

¼
A

fpx, yq dx dy.
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(b). Vaatleme alguses juhtu, kus A � D � ra, bs�rc, ds (s.t. A � D on ristkülik).
Sel juhul, �kseerides vabalt reaalarvu ε ¡ 0, piisab väite tõestuseks leida reaalarv
δ ¡ 0 nii, et (ristküliku D mis tahes jaotusviisi T ning mis tahes sellele jaotusviisile
vastava funktsiooni f � g integraalsumma σf�g korral)

∆pT q   δ ùñ ��σf�g � pIf � Igq
��   ε.

Selleks märgime kõigepealt, et

��σf�g � pIf � Igq
�� � ���� m̧

i�1

ņ

j�1

�
fpPijq � gpPijq

�
∆xi ∆yj � pIf � Igq

����
�
�����
� m̧

i�1

ņ

j�1

fpPijq∆xi ∆yj � If



�
� m̧

i�1

ņ

j�1

gpPijq∆xi ∆yj � Ig


�����
¤
���� m̧
i�1

ņ

j�1

fpPijq∆xi ∆yj � If

����� ���� m̧
i�1

ņ

j�1

gpPijq∆xi ∆yj � Ig

����
� |σf � If

��� |σg � Ig
��.

Funktsioonide f ja g integreeruvuse tõttu leiduvad reaalarvud δ1, δ2 ¡ 0 nii, et

∆pT q   δ1 ùñ ��σf � If
��   ε

2
ja ∆pT q   δ2 ùñ ��σg � Ig

��   ε

2
;

niisiis võrratuse ∆pT q   mintδ1, δ2u �: δ kehtides
��σf�g � pIf � Igq

��   ε
2
� ε

2
� ε,

nagu soovitud.

Vaatleme nüüd üldist juhtu (s.t. me ei eelda enam, et A � D). Sel juhul, arves-
tades, et funktsioonide f ja g integreeruvus hulgas A tähendab vastavalt funktsioo-
nide pf ja pg integreeruvust ristkülikus D, ülaltõestatu põhjal funktsioon pf�pg � zf � g
on integreeruv ristkülikus D, aga see tähendab, et funktsioon f � g on integreeruv
hulgas A; seejuures

¼
A

�
fpx, yq � gpx, yq� dx dy �¼

D

� pfpx, yq � pgpx, yq� dx dy
�
¼
D

pfpx, yq dx dy �¼
D

pgpx, yq dx dy
�
¼
A

fpx, yq dx dy �
¼
A

gpx, yq dx dy,

nagu soovitud.

(c). Väite (a) põhjal on funktsioonid αf ja βg integreeruvad hulgas A, seega



� 3. Kahekordse integraali omadusi 175

väite (b) põhjal on ka summa αf � βg integreeruv hulgas A; seejures¼
A

�
αfpx, yq � βgpx, yq� dx dy �¼

A

αfpx, yq dx dy �
¼
A

βgpx, yq dx dy

� α

¼
A

fpx, yq dx dy � β

¼
A

gpx, yq dx dy.

(d). Vaatleme alguses juhtu, kus A � D � ra, bs � rc, ds (s.t. A � D on rist-
külik). Sel juhul, �kseerides vabalt reaalarvu ε ¡ 0, piisab teoreemi 1.6 põhjal (vt.
märkust 1.2) väite tõestuseks leida reaalarv δ ¡ 0 nii, et (ristküliku D mis tahes
jaotusviisi T korral)

∆pT q   δ ùñ
m̧

i�1

ņ

j�1

ωijpfgq∆xi∆yj   ε.

Selleks märgime, et et ristküliku D mis tahes jaotusviisi T , mis tahes i P t1, . . . ,mu
ja j P t1, . . . , nu ning mis tahes P,Q P Dij korral

fpP q gpP q � fpQq gpQq � fpP q �gpP q � gpQq�� gpQq �fpP q � fpQq�
¤ |fpP q| ��gpP q � gpQq��� |gpQq| ��fpP q � fpQq��
¤ Lf ωijpgq � Lg ωijpfq,

kus Lf :� supPPD |fpP q| ja Lg :� supPPD |gpP q| (märgime, et funktsioonid f ja g on
teoreemi 1.1 põhjal tõkestatud), järelikult ωijpfgq ¤ Lf ωijpgq � Lg ωijpfq. Seega

m̧

i�1

ņ

j�1

ωijpfgq∆xi ∆yj ¤ Lf

m̧

i�1

ņ

j�1

ωijpgq∆xi ∆yj � Lg

m̧

i�1

ņ

j�1

ωijpfq∆xi∆yj.

Eeldades üldisust kitsendamata, et Lf , Lg �� 0 (vastasel korral oleks f või g null-
funktsioon ning seega ka nende korrutis oleks nullfunktsioon), leiduvad funktsioo-
nide f ja g integreeruvuse tõttu teoreemi 1.6 põhjal (vt. märkust 1.2) reaalarvud
δ1, δ2 ¡ 0 nii, et

∆pT q   δ1 ùñ
m̧

i�1

ņ

j�1

ωijpfq∆xi ∆yj   ε

2Lg

ja

∆pT q   δ2 ùñ
m̧

i�1

ņ

j�1

ωijpgq∆xi∆yj   ε

2Lf

.

Niisiis, kui ∆pT q   mintδ1, δ2u �: δ, siis
m̧

i�1

ņ

j�1

ωijpfgq∆xi ∆yj   Lf
ε

2Lf

� Lg
ε

2Lg

� ε.
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Vaatleme nüüd üldist juhtu (s.t. me ei eelda enam, et A � D). Sel juhul, arves-
tades, et funktsioonide f ja g integreeruvus hulgas A tähendab vastavalt funktsioo-
nide pf ja pg integreeruvust ristkülikus D, ülaltõestatu põhjal funktsioon pfpg � xfg
on integreeruv ristkülikus D, aga see tähendab, et funktsioon fg on integreeruv
hulgas A.

Märkus 3.1. Teoreemi 3.1 väidete (a), (b) ja (d) tõestusi saanuks lühendada juhtude, kus A � D
ning kus see võrdus ei tarvitse kehtida, eraldi vaatlemise arvelt. Nimelt, nende väidete tõestusteks
võinuksime järgida tõestust juhul A � D, kuid võtta funktsioonide αf , f � g ja fg rolli vastavalt
funktsioonid xαf � α pf , zf � g � pf � pg ja xfg � pfpg.

Selle punkti lõpetuseks tõestame jaotise 2.5 lõpus väljareklaamitud järelduse 3.3
(teoreemidest 2.9 ja 3.1, (b)), mis ütleb, et kui muuta integreeruva funktsiooni väär-
tusi nullmõõduga hulgal, jääb see �muudetud� funktsioon endiselt integreeruvaks
ning selle �muudetud� funktsiooni integraali väärtus jääb samaks, mis esialgsel.

Järeldus 3.3. Olgu A � R2 tõkestatud hulk, olgu f : AÑ R integreeruv funktsioon
ning olgu A0 � A (Jordani mõttes) nullmõõduga hulk ja g : A Ñ R tõkestatud
funktsioon, kusjuures gpP q � fpP q iga P P AzA0 korral. Siis ka funktsioon g on
integreeruv, kusjuures

³
A gpx, yq dx dy �

³
A fpx, yq dx dy.

Tõestus. Olgu ristkülik D � R2 selline, et D � A. De�neerime funktsiooni h0 :�
pg � fq|A0 ning funktsioonid pf, pg,ph : D Ñ R vastavalt võrdustega (2.1) ja

pgpP q � #
gpP q, kui P P A,

0, kui P P DzA,
ja phpP q � #

hpP q, kui P P A0,

0, kui P P DzA0.

Teoreemi 2.9 põhjal on funktsioon h0 integreeruv hulgas A0, s.t. funktsioon ph on
integreeruv ristkülikus D, kusjuures

´
D
phpx, yq dx dy � ´

A0
h0px, yq dx dy � 0. Ku-

na ka funktsioon pf on integreeruv ristkülikus D, siis teoreemi 3.1, (b), põhjal on
funktsioon pg � pf � ph integreeruv ristkülikus D, s.t. funktsioon g on integreeruv
hulgas A, kusjuures¼

A

gpx, yq dx dy �
¼
D

pgpx, yq dx dy �¼
D

pfpx, yq dx dy �¼
D

phpx, yq dx dy
�
¼
D

pfpx, yq dx dy �¼
A

fpx, yq dx dy.

3.2. Kahekordse integraali omadused, mis on seotud
järjestusega

Teoreem 3.4. Olgu kahe muutuja funktsioonid u � fpx, yq � fpP q ja v � gpx, yq �
gpP q integreeruvad hulgas A � R2.
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(a) Kui fpP q ¥ 0 iga P P A korral, siis¼
A

fpx, yq dx dy ¥ 0.

(b) Kui fpP q ¥ gpP q iga P P A korral, siis¼
A

fpx, yq dx dy ¥
¼
A

gpx, yq dx dy. (3.3)

(c) Funktsiooni f absoluutväärtus |f | (s.t. funktsioon w � |fpx, yq| � |fpP q|) on
integreeruv hulgas A, kusjuures����¼

A

fpx, yq dx dy
���� ¤¼

A

��fpx, yq�� dx dy. (3.4)

(d) (Kahekordse integraali keskväärtusteoreem.) Olgu hulk A Jordani mõttes mõõ-
tuv. Siis leidub arv γ P R nii, et

inf
PPA

fpP q �: α ¤ γ ¤ β :� sup
PPA

fpP q (3.5)

ja ¼
A

fpx, yq dx dy � γ µpAq (3.6)

(µpAq tähistab hulga A Jordani mõõtu); kui hulk A on kinnine ja sidus ning
funktsioon f on pidev hulgas A, siis leidub punkt C P A nii, et¼

A

fpx, yq dx dy � fpCqµpAq. (3.7)

Omadustele (a) ja (b) teoreemist 3.4 viidatakse kui kahekordse integraali mono-
toonsusele.

Teoreemi 3.4 tõestus. Olgu ristkülik D � R2 selline, et D � A.

(a). Kui fpP q ¥ 0 iga P P A korral, siis funktsiooni pf kõik Darboux' summad
on mittenegatiivsed, järelikult¼

A

fpx, yq dx dy �
¼
D

pfpx, yq dx dy � inf
T
S
pf pT q ¥ 0,

kus in�imum on võetud üle ristküliku D kõikvõimalike jaotusviiside T osaristküliku-
teks ja S

pf pT q tähistab jaotusviisile T vastavat funktsiooni pf Darboux' ülemsummat.
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(b). Kui fpP q ¥ gpP q iga P P A korral, siis fpP q � gpP q ¥ 0 iga P P A korral,
seega teoreemi 3.1, (b), ja väite (a) põhjal¼

A

fpx, yq dx dy �
¼
A

gpx, yq dx dy �
¼
A

�
fpx, yq � gpx, yq� dx dy ¥ 0,

millest järeldub (3.3).

(c). Veendume kõigepealt, et funktsioon |f | on integreeruv hulgas A.
Vaatleme alguses juhtu, kus A � D � ra, bs� rc, ds (s.t. A � D on ristkülik). Sel

juhul, �kseerides vabalt reaalarvu ε ¡ 0, piisab teoreemi 1.6 põhjal (vt. märkust 1.2)
funktsiooni |f | integreeruvuseks hulgas A leida ristküliku D jaotusviis T nii, et

m̧

i�1

ņ

j�1

ωij

�|f |�∆xi ∆yj   ε. (3.8)

Selleks märgime, et ristküliku D mis tahes jaotusviisi T ning mis tahes i P t1, . . . ,mu
ja j P t1, . . . , nu korral

ωij

�|f |� � sup
P,QPDij

���fpP q��� ��fpQq��	 ¤ sup
P,QPDij

��fpP q � fpQq�� � ωijpfq. (3.9)

Funktsiooni f integreeruvuse tõttu saame teoreemi 1.6 põhjal (vt. märkust 1.2) leida
ristküliku D jaotusviisi T nii, et

m̧

i�1

ņ

j�1

ωijpfq∆xi ∆yj   ε,

aga võrratuse (3.9) põhjal rahuldab selline jaotusviis T ka tingimust (3.8).
Vaatleme nüüd üldist juhtu (s.t. me ei eelda enam, et A � D). Sel juhul, arvesta-

des, et funktsiooni f integreeruvus hulgas A tähendab funktsiooni pf integreeruvust
ristkülikus D, ülaltõestatu põhjal funktsioon

�� pf �� � x|f | on integreeruv ristkülikus D,
aga see tähendab, et funktsioon |f | on integreeruv hulgas A.

Võrratus (3.4) on samaväärne võrratusteahelaga

�
¼
A

��fpx, yq�� dx dy ¤¼
A

fpx, yq dx dy ¤
¼
A

��fpx, yq�� dx dy. (3.10)

Selle ahela esimene võrratus on samaväärne võrratusega

�
¼
A

fpx, yq dx dy �
¼
A

��fpx, yq� dx dy ¤¼
A

��fpx, yq�� dx dy,
mis, samuti nagu ka võrratusteahela (3.10) teine võrratus, järeldub väitest (b), sest

�fpx, yq ¤ ��fpx, yq�� ja fpx, yq ¤ ��fpx, yq�� iga px, yq P A korral.
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(d). Väite tõestus sarnaneb ühe muutuja funktsiooni Riemanni integraali kesk-
väärtusteoreemi tõestusega. Järelduse 3.2 ja väite (b) põhjal

αµpAq �
¼
A

α dx dy ¤
¼
A

fpx, yq dx dy ¤
¼
A

β dx dy � β µpAq.

Siit näeme, et kui µpAq � 0, siis ka
´

A fpx, yq dx dy � 0 ning seega sobib arvu γ
rolli mis tahes arv arvude α ja β vahelt; kui aga µpAq �� 0, siis tähistades

γ :�
´

A fpx, yq dx dy
µpAq ,

kehtivad (3.5) ja (3.6).

Eeldame nüüd lisaks, et hulk A on kinnine ja sidus ning et funktsioon f on pidev
hulgas A. Rahuldagu arv γ P R tingimusi (3.5) ja (3.6) (sellise arvu γ olemasolu
oleme juba tõestanud). Kuna hulk A on kinnine, siis Weierstrassi teoreeemi I.4.8
põhjal leiduvad punktid A,B P A nii, et

fpAq � inf
PPA

fpP q � α ja fpBq � sup
PPA

fpP q � β.

Kuna hulk A on sidus, siis Bolzano�Cauchy teoreemi I.4.6 põhjal, arvestades, et
fpAq ¤ γ ¤ fpBq, leidub punkt C P A nii, et fpCq � γ, aga nüüd kehtib (3.7).

3.3. Kahekordse integraali aditiivsus piirkonna järgi

Teoreem 3.5. Olgu A � R2 tõkestatud hulk, olgu funktsioon f : AÑ R integreeruv
(hulgas A) ning olgu C � A Jordani mõttes mõõtuv alamhulk. Siis funktsioon f on
integreeruv ka hulgas C (s.t. ahend f |C on integreeruv (hulgas C)).
Tõestus. Olgu ristkülik D � R2 selline, et D � A. De�neerime funktsioonidpf, pfC : D Ñ R võrdustega

pfpP q � #
fpP q, kui P P A,

0, kui P P DzA,
ja pfCpP q � #

fpP q, kui P P C,
0, kui P P DzC.

Siis funktsiooni f integreeruvus hulgas C tähendab funktsiooni pfC integreeruvust
ristkülikus D. Kuna funktsioon f on integreeruv hulgas A, siis funktsioon pf on
integreeruv ristkülikus D; kuna hulk C on Jordani mõttes mõõtuv, siis tema karak-
teristlik funktsioon χC on integreeruv ristkülikus D; seega teoreemi 3.1, (d), põhjal
on korrutis pfχC integreeruv ristkülikus D. Teoreemi tõestuseks jääb nüüd vaid mär-
kida, et pfC � pfχC.

Teoreem 3.6 (kahekordse integraali aditiivsus piirkonna järgi). Olgu A,B � R2

tõkestatud hulgad, kusjuures nende ühisosa A X B Jordani mõõt on null, ning olgu
funktsioon f : A Y B Ñ R integreeruv hulkades A ja B. Siis funktsioon f on integ-
reeruv ka ühendis AY B, kusjuures¼

AYB

fpx, yq dx dy �
¼
A

fpx, yq dx dy �
¼
B

fpx, yq dx dy.
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Tõestus. Kuna hulgad A ja B on tõkestatud, siis ka ühend AY B on tõkestatud,
seega leidub ristkülikD � R2 nii, etAYB � D. Kõikjal tõestuses kasutame järgnevat
tähistust: kui C � AY B, siis funktsioon pfC : D Ñ R on de�neeritud võrdusega

pfCpx, yq � #
fpx, yq, kui px, yq P C,
0, kui px, yq P DzC.

Kõneldes funktsiooni pfC integreeruvusest, peame me silmas tema integreeruvust rist-
külikus D. Funktsiooni f integreeruvus ühendis AY B tähendab selle tähistuse ko-
haselt funktsiooni pfAYB integreeruvust (ristkülikus D).

Paneme tähele, et pfAYB � pfA� pfB� pfAXB. Kuna funktsioonid pfA, pfB ning pfAXB on
integreeruvad (sest funktsiooni f integreeruvus hulkades A ja B tähendab vastavalt
funktsioonide pfA ja pfB integreeruvust ning funktsioon pfAXB on integreeruv teoree-
mi 2.9 põhjal), siis funktsioon pfAYB on integreeruv (sest teoreemi 3.1, (b), põhjal
on integreeruvate funktsioonide summa ja vahe integreeruvad), s.t. funktsioon f on
integreeruv hulgas AY B. Seejuures (jällegi teoreemi 3.1, (b), põhjal)¼
AYB

fpx, yq dx dy �
¼
D

pfAYBpx, yq dx dy �
¼
D

� pfApx, yq � pfBpx, yq � pfAXBpx, yq
�
dx dy

�
¼
D

pfApx, yq dx dy �¼
D

pfBpx, yq dx dy �¼
D

pfAXBpx, yq dx dy

�
¼
A

fpx, yq dx dy �
¼
B

fpx, yq dx dy �
¼
AXB

fpx, yq dx dy

�
¼
A

fpx, yq dx dy �
¼
B

fpx, yq dx dy,

sest teoreemi 2.9 põhjal
´

AXB fpx, yq dx dy � 0.

3.4. Jordani mõttes mõõtuvate hulkade põhiomadused

3.4.1. Jordani mõttes mõõtuvate hulkade omadused, mis on seotud
hulgateoreetiliste tehetega

Lause 3.7. Olgu A,B � R2 Jordani mõttes mõõtuvad hulgad. Siis ka nende hulka-
de ühend A Y B, ühisosa A X B ja hulgateoreetiline vahe AzB on Jordani mõttes
mõõtuvad. Seejuures

(a) kui AX B � H, siis µpAY Bq � µpAq � µpBq;
(b) kui A � B, siis µpAq ¤ µpBq;
(c) kui A � B, siis µpBzAq � µpBq � µpAq;
(d) µpAY Bq ¤ µpAq � µpBq.
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Omadustele (a)�(d) viidatakse vastavalt kui Jordani mõõdu aditiivsusele, monotoon-
susele, subtraktiivsusele ja subaditiivsusele.

Lause 3.7 tõestus. Olgu ristkülik D � R2 selline, et A Y B � D. Kuna χAXB �
χA χB, siis funktsioon χAXB on integreeruv ristkülikus D (sest hulkade A ja B mõõ-
tuvus tähendab vastavalt karakteristlike funktsioonide χA ja χB integreeruvust ning
teoreemi 3.1, (d), põhjal on integreeruvate funktsioonide korrutis integreeruv); see
aga tähendab, et hulk AX B on Jordani mõttes mõõtuv.

Edasi, kuna χDzA � χD � χA, siis funktsioon χDzA on integreeruv (sest teo-
reemi 3.1, (b), põhjal on integreeruvate funktsioonide vahe integreeruv), see aga
tähendab, et hulk DzA on mõõtuv. Siit järeldub, et ka hulk DzB on mõõtuv.

Kuna AzB � AXpDzBq, siis eelneva põhjal on hulk AzB mõõtuv (sest vahe DzB
on mõõtuv ning mõõtuvate hulkade A ja DzB ühisosa on mõõtuv).

Lõpuks, De Morgani valemite põhjal

AY B � �
DzpDzAq�Y �

DzpDzBq� � Dz�pDzAq X pDzBq�,
seega eelneva põhjal on hulk AY B mõõtuv.

Tõestame nüüd väited (a)�(d).

(a). Olgu AX B � H. Siis χAYB � χA � χB ning seega teoreemi 3.1, (b), põhjal

µpAY Bq �
¼
D

χAYBpx, yq dx dy �
¼
D

�
χApx, yq � χBpx, yq

�
dx dy

�
¼
D

χApx, yq dx dy �
¼
D

χBpx, yq dx dy � µpAq � µpBq.

(b) ja (c). Olgu A � B. Kuna B � A Y pBzAq, kusjuures A X pBzAq � H, siis
väite (a) põhjal

µpBq � µ
�
AY pBzAq� � µpAq � µpBzAq ¥ µpAq.

Eelnevast näeme ka, et µpBzAq � µpBq � µpAq.
(d). Kuna A Y B � A Y pBzAq, kusjuures A X pBzAq � H, ja BzA � B, siis

väidete (a) ja (b) põhjal

µpAY Bq � µ
�
AY pBzAq� � µpAq � µpBzAq ¤ µpAq � µpBq.

Ülesanne 3.1. Olgu A,B � R2 Jordani mõttes mõõtuvad hulgad. Tõestada, et ka hulkade A ja B
sümmeetriline vahe A△B :� pAzBqYpBzAq on Jordani mõttes mõõtuv, kusjuures |µpAq�µpBq| ¤
µpA△Bq.

Lause 2.3 tõestus, mis toetub lausele 3.7. Olgu A1, . . . ,An � R2 (n P N)
nullmõõduga hulgad, (s.t. Jordani mõttes mõõtuvad hulgad, mille Jordani mõõt on
null). Lause 3.7 põhjal on ka ühend A :� �n

k�1Ak Jordani mõttes mõõtuv, kusjuures
Jordani mõõdu subaditiivsuse (lause 3.7, (d)) põhjal µpAq ¤ °n

k�1 µpAkq � 0. Kuna
hulga Jordani mõõt ei saa olla negatiivne, siis järeldub siit, et µpAq � 0.
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3.4.2. Jordani mõõdu invariantsus nihke suhtes

Meenutame, et ruum Rm on vektorruum (üle korpuse R): kui P � px1, . . . , xmq P Rm,
Q � py1, . . . , ymq P Rm ja α P R, siis summa P � Q P Rm ja kordne αP P Rm on
de�neeritud võrdustega

P �Q :� px1 � y1, . . . , xm � ymq ja αP :� pαx1, . . . , αxmq.

Kui A � Rm ning Q P Rm ja α P R, siis hulga A nihe A � Q ja kordne αA on
de�neeritud võrdustega

A�Q :� tP �Q : P P Au ja αA :� tαP : P P Au.

Teoreem 3.8. Olgu A � R2. Kui hulk A on Jordani mõttes mõõtuv, siis

(a) mis tahes punkti Q P R2 korral on ka nihe A � Q Jordani mõttes mõõtuv,
kusjuures

µpA�Qq � µpAq;

(b) mis tahes arvu α P R korral on ka kordne αA Jordani mõttes mõõtuv, kusjuures

µpαAq � |α|µpAq.

Jordani mõttes mõõtuvate hulkade A � R2 omadusele (a) teoreemist 3.8 viidatakse
kui Jordani mõõdu invariantsusele nihke suhtes.

Teoreemi 3.8 me käesolevas kursuses ei tõesta .
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4.1. Jordani mõõdu alternatiivne (samaväärne) de�nitsioon

Tähistame iga n P t0u Y N korral

Cn :�
!
I � J � R2 : I � �

i�1
2n
, i
2n

�
ja J � �

j�1
2n
, j
2n

�
mingite i, j P Z korral

)
.

Kogumi Cn hulkadele viitame kui diaadilistele ruutudele küljepikkusega 1
2n
.

x

y

− 4
2n

− 3
2n

− 2
2n

− 1
2n

1
2n

2
2n

3
2n

4
2n

5
2n

− 3
2n

− 2
2n

− 1
2n

1
2n

2
2n

3
2n

4
2n

0

Joonis 4.1. Joonisel kujutatud ruudustik koosneb diaadilistest ruutudest
küljepikkusega 1

2n .

Olgu A � R2 tõkestatud hulk. Tähistame iga n P t0u Y N korral

pCnpAq :� tC P Cn : C XA �� Hu ja qCnpAq :� tC P Cn : C � Au,

ning pAn :�
¤

CPpCnpAq
C ja qAn :�

¤
CPqCnpAq

C.

(vt. joonist 4.2). Sümbolitega Sp pAnq ja Sp qAnq tähistame vastavalt hulkade pAn ja qAn

pindalad: need hulgad esituvad paarikaupa lõikumatute sisemustega (diaadiliste)
ruutude ühenditena; nende hulkade pindalad de�neerime kui vastavate ruutude pind-
alade summad; ruudu pindala de�neerime kui tema küljepikkuse ruudu. Arvestades,
et hulgad pAn ja qAn on vastavalt kogumite pCnpAq ja qCnpAq ruutude ühendid, kus-
juures nimetatud kogumite ruutude sisemused on paarikaupa lõikumatud ning nende

183
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x

y

x

y

x

y

x

y

Joonis 4.2. Kahes ülemises teljestikus kujutatud ruudustikud koosne-
vad diaadilistest ruutudest küljepikkusega 1

2n (teatava n P N korral);
kahes alumises teljestikus kujutatud ruudustikud koosnevad diaadilis-
test ruutudest küljepikkusega 1

2n�1 . Rohelisega kujutatud neerukuju-
line hulk igas teljestikus on meie hulk A. Kahes vasakpoolses teljes-
tikus heleroheliseks värvitud ruudud (koos hulgaga A) moodustavad
vastavalt hulgad pAn ja pAn�1; kahes parempoolses teljestikus tumero-
heliseks värvitud ruudud moodustavad vastavalt hulgad qAn ja qAn�1.

Must-valge televisiooni vaatajad siin neid hulki (hele/tume)rohelisena ei näe!

ruutude küljepikkused on 1
2n

ja pindalad seega 1
22n

, saame, et

Sp pAnq � 1

22n
� ruutude arv kogumis pCnpAq,

Sp qAnq � 1

22n
� ruutude arv kogumis qCnpAq.

Paneme tähele, etpA0 � pA1 � pA2 � � � � ja qA0 � qA1 � qA2 � � � � (4.1)

(intuitiivselt on see aimatav jooniselt 4.2) ning järelikult

Sp pA0q ¥ Sp pA1q ¥ Sp pA2q ¥ � � � ja Sp qA0q ¤ Sp qA1q ¤ Sp qA2q ¤ � � � . (4.2)
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Ülesanne 4.1. Tõestada sisalduvused (4.1) ja võrratused (4.2).

Seega eksisteerivad piirväärtused

lim
nÑ8

Sp pAnq � inf
nPN

Sp pAnq �: µ�pAq ja lim
nÑ8

Sp qAnq � sup
nPN

Sp qAnq �: µ�pAq;

seejuures
µ�pAq ¥ µ�pAq.

Neid piirväärtusi (ehk, teisisõnu, rajasid) µ�pAq ja µ�pAq nimetatakse vastavalt
hulga A Jordani välismõõduks ja hulga A Jordani sisemõõduks.

Teoreem 4.1. Olgu A � R2 tõkestatud hulk ning olgu ristkülik D � R2 selline, et
D � A. Siis

(a) µ�pAq � IDχA, s.t. hulga A Jordani välismõõt µ�pAq on võrdne Darboux' üle-
mise integraaliga IDχA tema karakteristlikust funktsioonist χA üle ristküliku D;

(b) µ�pAq � IDχA, s.t. hulga A Jordani sisemõõt µ�pAq on võrdne Darboux' alu-
mise integraaliga IDχA tema karakteristlikust funktsioonist χA üle ristküliku D.

Teoreemi 4.1 me käesolevas kursuses ei tõesta .

Järgnev teoreem on vahetu järeldus Jordani mõttes mõõtuvuse de�nitsioonist 2.3
ja teoreemist 4.1.

Teoreem 4.2. Olgu A � R2 tõkestatud hulk. Järgmised väited on samaväärsed:

(i) hulk A on Jordani mõttes mõõtuv;

(ii) hulk A on kvadreeruv, s.t. tema Jordani sisemõõt µ�pAq ja Jordani välis-
mõõt µ�pAq on võrdsed: µ�pAq � µ�pAq.

Seejuures (s.t. hulga A Jordani mõttes mõõtuvuse juhul) hulga A Jordani mõõt µpAq
(ehk, teisisõnu, pindala SA) on võrdne tema Jordani sisemõõdu µ�pAq ja Jordani
välismõõdu µ�pAq ühise väärtusega:

SA � µpAq � µ�pAq � µ�pAq. (4.3)

Jaotise lõpetuseks demonstreerime veel üht võimalust Jordani välis- ja sisemõõdu
de�neerimiseks (loomulikult eelnevaga samaväärsel moel). Selleks toome kõigepealt
sisse ristküliksumma ja selle pindala mõisted.

Ristküliksumma all mõistame me järgnevas (koordinaat)ristkülikute lõplikku ühen-
dit. Teisisõnu, ristküliksumma on hulk Q ruumis R2, mis esitub kujul

Q �
n¤

j�1

raj, bjs � rcj, djs,

kus n P N ning a1, . . . , an, b1, . . . , bn, c1, . . . , cn, d1, . . . , dn, P R, kusjuures aj   bj ja
cj   dj iga j P t1, . . . , nu korral.
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Iga ristküliksumma Q esitub paarikaupa lõikumatute sisemustega ristkülikute
lõpliku ühendina. Ristküliksumma Q pindala SpQq de�neeritakse kui niisuguste
(paarikaupa lõikumatute sisemustega) ristkülikute pindalade summa. (Ristküliku
R :� ra, bs � rc, ds pindala SpRq de�neeritakse kui tema külgede pikkuste korrutis:
SpRq � pb� aq pd� cq.)
Teoreem 4.3. Olgu A � R2 tõkestatud hulk.

(a) Hulga A Jordani välismõõt on seda hulka sisaldavate ristküliksummade pind-
alade hulga alumine raja:

µ�pAq � inf
!
SpQq : Q � R2 on ristküliksumma, Q � A

)
. (4.4)

(b) Hulga A Jordani sisemõõt on selles hulgas sisalduvate ristküliksummade pind-
alade hulga ülemine raja; seejuures, kui hulk A ei sisalda ühtegi ristküliksum-
mat (niisugune olukord leiab aset parajasti siis, kui hulga A sisemus A� on
tühi hulk), on hulga A Jordani sisemõõt võrdne nulliga:

µ�pAq �
#
0, kui A� � H;

sup
!
SpQq : Q � R2 on ristküliksumma, Q � A

)
, kui A� �� H.

(4.5)

Teoreem 4.3 esitab veel ühe viisi Jordani välis- ja sisemõõdu de�neerimiseks
(eelnevaga samaväärsel moel): tõkestatud hulga A � R2 Jordani välis- ja sisemõõt
de�neeritakse kirjanduses sageli kui vastavalt võrduste (4.4) ja (4.4) parem pool.

Teoreemi 4.3 me käesolevas kursuses ei tõesta .

Märkus 4.1. Kui me hakkaksime de�neerima tõkestatud hulga A � R2 pindala SA
lähtudes oma eelmatemaatilistest arusaamadest, siis oleks loomulik nõuda, et iga
hulgas A sisalduva ristküliksumma qQ ja iga hulka A sisaldava ristküliksumma pQ
korral S

qQ ¤ SA ¤ S
pQ (sümbolid S

qQ ja S
pQ tähistavad vastavalt ristküliksumma-

de qQ ja pQ pindalasid � ristküliksumma pindala on meil �loomulikul viisil� de�-
neeritud). Arvuhulga rajade de�nitsiooni põhjal peaksid seega kehtima võrratused
µ�pAq ¤ SA ¤ µ�pAq, s.t. hulga A pindala SA peaks olema mingi arv hulga A
Jordani sisemõõdu µ�pAq ja välismõõdu µ�pAq vahel. Jääb lahtiseks küsimus: milli-
se arvu väärtuste µ�pAq ja µ�pAq vahelt me ikkagi peaksime pindalaks SA valima?
Igati loomulik on �to play it safe� ning de�neerida pindala SA ainult selliste hul-
kade A jaoks, mille Jordani sisemõõt ja välismõõt on võrdsed, kusjuures niisugusel
juhul de�neerida hulga A pindala kui nende sisemõõdu ja välismõõdu ühine väär-
tus. Teoreem 4.2 ütleb, et just niimoodi (tõsi küll, implitsiitselt) me hulga A pindala
de�neerisimegi.

Kirjanduses tavaliselt de�neeritaksegi tõkestatud hulga A � R2 Jordani mõttes
mõõtuvus kui tema kvadreeruvus (vt. teoreemi 4.2 tingimust (ii)), kusjuures hulga A
Jordani mõõt µpAq (ehk pindala SA) de�neeritakse võrdusega (4.3).
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4.2. Kahekordse integraali alternatiivne (samaväärne)
de�nitsioon

Paljudes allikates de�neeritakse kahe muutuja funktsiooni Riemanni mõttes integ-
reeruvus ja (kahekordne) Riemanni integraal käesolevas konspektis toodust erineval
moel. Selles punktis toome ära ühe niisuguse alternatiivse, kuid käesolevas konspek-
tis tooduga samaväärse de�nitsiooni. Täpsemalt, eeldades, et A � R2 on Jordani
mõttes mõõtuv hulk ning f : AÑ R, de�neerime me funktsiooni f R-integreeruvuse
ja R-integraali temast üle hulga A ning näitame, et need R-integreeruvus ja R-
integraal on täpselt sama, mis käesoleva peatüki paragrahvis 2 de�neeritud Riemanni
mõttes integreeruvus ja Riemanni integraal (üle hulga A). Niisiis, need R-integreeru-
vuse ja R-integraali de�nitsioonid ongi üks võimalik versioon Riemanni mõttes integ-
reeruvuse ja Riemanni integraali alternatiivsetest, kuid käesolevas konspektis too-
duga samaväärsetest de�nitsioonidest.

Niisiis, olgu A � R2 Jordani mõttes mõõtuv hulk ning olgu f : A Ñ R. Jaota-
me hulga A lõplikuks arvuks paarikaupa lõikumatute sisemustega Jordani mõttes
mõõtuvateks hulkadeks A1, . . . ,An (n P N):

A �
n¤

j�1

Aj, kus A�
j XA�

k � H, kui j �� k. (4.6)

Hulga A esitusele (4.6) viitame kui hulga A jaotusviisile (4.6) ((Jordani mõttes mõõ-
tuvateks) hulkadeks A1, . . . ,An). Hulkadele A1, . . . ,An viitame kui selle jaotusviisi
hulkadele. Fikseerime iga j P t1, . . . , nu korral mingi punkti Pj P Aj. Summale

σ :� σpA1, . . . ,An;P1, . . . , Pnq :�
ņ

j�1

fpPjqµpAjq

viitame kui funktsiooni f R-integraalsummale (hulgas A), mis vastab hulga A jao-
tusviisile (4.6) ja punktide valikule Pj P Aj, j � 1, . . . , n.

De�neerimaks R-integreeruvuse ja R-integraali mõistet, on otstarbekas kõige-
pealt eraldi de�neerida R-integraalsummade piirväärtuse mõiste. See de�nitsioon
kasutab hulga diameetri mõistet, mis de�neeriti de�nitsioonis 1.4.

De�nitsioon 4.1. Me ütleme, et arv I P R on funktsiooni f R-integraalsummade
piirväärtus (hulgas A), kui iga reaalarvu ε ¡ 0 korral leidub reaalarv δ ¡ 0 nii, et
hulga A mis tahes jaotusviisi (4.6) korral, mille hulkade diameetrid on kõik väikse-
mad kui δ, s.t.

max
1¤j¤n

diamAj   δ,

erinevad kõik sellele jaotusviisile vastavad funktsiooni f R-integraalsummad arvust I
vähem kui ε, s.t.���� ņ

j�1

fpPjqµpAjq � I

����   ε mis tahes punktide Pj P Aj, j � 1, . . . , n, korral.
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De�nitsioon 4.2. Kui funktsiooni f R-integraalsummadel (hulgas A) eksisteerib
piirväärtus I P R, siis me ütleme, et funktsioon f on R-integreeruv (hulgas A).
Seejuures R-integraalsummade piirväärtust I nimetame me R-integraaliks funkt-
sioonist f üle hulga A ja tähistame sümboliga R-

³
A fpx, yq dx dy:

R-
»
A
fpx, yq dx dy :� I.

Järgnev teoreem ütleb, et R-integreeruvus ja R-integraal on sama, mis Riemanni
mõttes integreeruvus ja (kahekordne) Riemanni integraal; niisiis võinuksime Rieman-
ni mõttes integreeruvuse ja (kahekordne) Riemanni integraali de�nitsioonina kasu-
tada (R-integreeruvus ja R integraali) de�nitsiooni 4.2 (selleks pidanuksime muidugi
eelnevalt de�neerima hulga Jordani mõttes mõõtuvuse, näiteks tema Jordani välis-
ja sisemõõdu võrduse kaudu).

Teoreem 4.4. Olgu A � R2 Jordani mõttes mõõtuv hulk ning olgu f : A Ñ R.
Siis funktsioon f on R-integreeruv hulgas A parajasti siis, kui ta on Riemanni mõt-
tes integreeruv selles hulgas; seejuures (s.t. funktsiooni f R-integreeruvuse juhul)
R-integraal funktsioonist f üle hulga A on võrdne (kahekordse) Riemanni integraa-
liga funktsioonist f üle hulga A:

R-

»
A
fpx, yq dx dy �

¼
A

fpx, yq dx dy.

Teoreemi 4.4 me käesolevas kursuses ei tõesta .
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Kõikjal selles paragrahvis kasutame eelmistes paragrahvides kasutatuga sarnaseid
tähistusi. Muuhulgas, kui

a � x0   x1   � � �   xm � b (5.1)

ja
c � y0   y1   � � �   yn � d, (5.2)

siis tähistame kõikide i P t1, . . . ,mu ja j P t1, . . . , nu korral

∆xi :� xi � xi�1 ja ∆yj :� yj � yj�1.

5.1. Kahekordse integraali arvutamine üle ristküliku

Teoreem 5.1. Olgu kahe muutuja funktsioon z � fpx, yq integreeruv ristkülikus

D :� ra, bs � rc, ds � R2.

(a) Eksisteerigu iga x P ra, bs korral integraal

gpxq :�
» d

c

fpx, yq dy.

Siis ¼
D

fpx, yq dx dy �
» b

a

�» d

c

fpx, yq dy


dx �

» b

a

gpxq dx.

(b) Eksisteerigu iga y P rc, ds korral integraal

hpyq :�
» b

a

fpx, yq dx.

Siis ¼
D

fpx, yq dx dy �
» d

c

�» b

a

fpx, yq dx


dy �

» d

c

hpyq dy.

Tõestus. Tõestame ainult väite (a). Väide (b) tõestatakse analoogiliselt.
Tähistame

I :�
¼
D

fpx, yq dx dy

ja �kseerime vabalt reaalarvu ε ¡ 0. Väite (a) tõestuseks piisab leida reaalarv δ ¡ 0
nii, et alati kui punktid (5.1) rahuldavad tingimust

max
1¤i¤m

∆xi   δ, (5.3)
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siis mis tahes punktide ξi P rxi�1, xis, i � 1, . . . ,m, korral�����I � m̧

i�1

�» d

c

fpξi, yq dy


∆xi

�����   ε.

Selleks paneme tähele, et mis tahes punktide (5.1) ja (5.2) ning ξi P rxi�1, xis,
i � 1, . . . ,m, ja ηj P ryj�1, yjs, j � 1, . . . , n, korral�����I � m̧

i�1

�» d

c

fpξi, yq dy



∆xi

�����
¤
�����I � m̧

i�1

ņ

j�1

fpξi, ηjq∆xi∆yj
������ m̧

i�1

����� ņ

j�1

fpξi, ηjq∆yj �
» d

c

fpξi, yq dy
�����∆xi.

Funktsiooni f integreeruvuse tõttu ristkülikus D leidub reaalarv δ ¡ 0 nii, et

maxt∆x1, . . . ,∆xm,∆y1, . . . ,∆ynu   δ ùñ
�����I � m̧

i�1

ņ

j�1

fpξi, ηjq∆xi ∆yj
�����   ε

2
.

Rahuldagu nüüd punktid (5.1) tingimust (5.3) ning olgu punktid ξi P rxi�1, xis,
i � 1, . . . ,m, suvalised. Kuna funktsioonid ψipyq :� fpξi, yq, i � 1, . . . ,m, on integ-
reeruvad lõigus rc, ds, siis iga i P t1, . . . ,mu korral leidub reaalarv δi ¡ 0 nii, et
kui punktid (5.2) rahuldavad tingimust max

1¤j¤n
∆yj   δi, siis mis tahes ηj P ryj�1, yjs,

j � 1, . . . , n, korral ����� ņ

j�1

fpξi, ηjq∆yj �
» d

c

fpξi, yq dy
�����   ε

2pb� aq .

Niisiis, kui valida punktid (5.2) nii, et max
1¤j¤n

∆yj   mintδ1, . . . , δm, δu, ning valida

vabalt ηj P ryj�1, yjs, j � 1, . . . , n, siis�����I � m̧

i�1

�» d

c

fpξi, yq dy



∆xi

�����   ε

2
�

m̧

i�1

ε

2pb� aq ∆xi �
ε

2
� ε

2pb� aqpb� aq � ε.

5.2. Kahekordse integraali arvutamine üle kõvertrapetsi

Teoreem 5.2. (a) Olgu funktsioonid

α � αpxq ja β � βpxq, x P ra, bs, (5.4)

tõkestatud lõigus ra, bs, kusjuures
αpxq ¤ βpxq iga x P ra, bs korral. (5.5)
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Kui kahe muutuja funktsioon z � fpx, yq on integreeruv kõvertrapetsisNB! Tavaliselt
nimetatakse
hulka (5.6) (ja
hulka (5.11))
kõvertrapetsiks
lisaeeldusel, et
funktsioonid (5.4)
on pidevad
lõigus ra, bs (ja
funktsioonid (5.9)
on pidevad lõigus
rc, ds). Meie siin
kõvertrapetsilt
selle lisaeelduse
täidetust ei nõua.

A :�  px, yq P R2 : x P ra, bs, αpxq ¤ y ¤ βpxq(, (5.6)

kusjuures iga x P ra, bs korral eksisteerib integraal

gpxq :�
» βpxq

αpxq
fpx, yq dy, (5.7)

siis ¼
A

fpx, yq dx dy �
» b

a

�» βpxq

αpxq
fpx, yq dy

�
dx �

» b

a

gpxq dx. (5.8)

(b) Olgu funktsioonid

γ � γpyq ja δ � δpyq, y P rc, ds, (5.9)

tõkestatud lõigus rc, ds, kusjuures
γpyq ¤ δpyq iga y P rc, ds korral. (5.10)

Kui kahe muutuja funktsioon z � fpx, yq on integreeruv kõvertrapetsis

B :�  px, yq P R2 : y P rc, ds, γpyq ¤ x ¤ δpyq(, (5.11)

kusjuures iga y P rc, ds korral eksisteerib integraal

hpyq :�
» δpyq

γpyq
fpx, yq dx, (5.12)

siis ¼
B

fpx, yq dx dy �
» d

c

�» δpyq

γpyq
fpx, yq dx

�
dy �

» d

c

hpyq dy. (5.13)

Enne teoreemi 5.2 tõestamist toome välja järelduse temast juhtude jaoks, kus väi-
tes (a) on funktsioonid α ja β ning f pidevad ning väites (b) on funktsioonid γ ja δ
ning f pidevad.

Järeldus 5.3. (a) Olgu funktsioonid (5.4) pidevad lõigus ra, bs, kusjuures keh-
tib (5.5). Kui kahe muutuja funktsioon z � fpx, yq on pidev kõvertrapetsis (5.6),
siis funktsioon f on integreeruv selles kõvertrapetsis, kusjuures iga x P ra, bs
korral eksisteerib integraal (5.7) ja kehtib (5.8).

(b) Olgu funktsioonid (5.9) pidevad lõigus rc, ds, kusjuures kehtib (5.10). Kui kahe
muutuja funktsioon z � fpx, yq on pidev kõvertrapetsis (5.11), siis funktsioon f
on integreeruv selles kõvertrapetsis, kusjuures iga y P rc, ds korral eksisteerib
integraal (5.12) ja kehtib (5.13).
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Tõestus. Tõestame ainult väite (a) (väide (b) tõestatakse analoogiliselt).
Kõigepealt paneme tähele, et kõvertrapets A on kinnine hulk (tasandil R2)

(põhjendada!) . Edasi, lause 2.7, (a), põhjal on kõvertrapets A mõõtuv hulk (tasan-
dil R2). Eeldame nüüd, et kahe muutuja funktsioon z � fpx, yq on pidev kõver-
trapetsis A. Siis teoreemi 2.8 põhjal on funktsioon f integreeruv selles kõvertra-
petsis. Iga x P ra, bs korral on funktsioon fpx, �q pidev lõigus

�
αpxq, βpxq� ja seega

integraal (5.7) eksisteerib. Nüüd teoreemi 5.2 põhjal kehtib (5.8).

Teoreemi 5.2 tõestus. Tõestame ainult väite (a) (väide (b) tõestatakse analoo-
giliselt).

Funktsioonide α ja β tõkestatuse tõttu leiduvad arvud c, d P R, c   d, nii, et
c ¤ αpxq ¤ βpxq ¤ d iga x P ra, bs korral. Tähistame D :� ra, bs � rc, ds; siis D � A.

Olgu funktsioon f integreeruv kõvertrapetsis A, kusjuures iga x P ra, bs korral
eksisteerib integraal (5.7). Siis (lk. 172 valemiga (3.2) de�neeritud) funktsioon pf on
integreeruv ristkülikus D, kusjuures iga x P ra, bs korral eksisteerib integraal» d

c

pfpx, yq dy � » βpxq

αpxq
fpx, yq dy.

Seega teoreemi 5.1 väite (a) põhjal¼
A

fpx, yq dx dy �
¼
D

pfpx, yq dx dy � » b

a

�» d

c

pfpx, yq dy
 dx
�
» b

a

�» βpxq

αpxq
fpx, yq dy

�
dx,

nagu soovitud.

5.3. Muutujate vahetus kahekordses integraalis

5.3.1. Regulaarsed teisendused ruumis Rm

Kujutusi U Ñ Rm, kus U � Rm, nimetame teisendusteks1 ruumis Rm.

Paragrahvis III.1 veendusime, et teisendused Φ: U Ñ Rm, kus U � Rm, ja
hulgas U määratud funktsioonide süsteemid

xi � xipQq � xipu1, . . . , umq, i � 1, . . . ,m, (5.14)

on üksüheses vastavuses: süsteem (5.14) määrab kujutuse Φ: U Ñ Rm, kus

ΦpQq � �
x1pQq, . . . , xmpQq

� P Rm, Q P U ; (5.15)

1Tavaliselt mõistetakse mingi hulga teisenduste all kujutusi sellest hulgast sellesse samasse hulka.
Meie nimetame teisendusteks ruumis Rm kujutusi ruumi Rm alamhulkadest ruumi Rm.
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teiselt poolt, mis tahes kujutus Φ: U Ñ Rm määrab ühesel viisil funktsioonid (5.14),
mis rahuldavad tingimust (5.15): sellise omadusega funktsioonid (5.14) on de�neeri-
tud võrdustega

xipQq � xi, Q P Rm, i � 1, . . . ,m, kus ΦpQq � px1, . . . , xmq.
Edasises, viidates võrrandite süsteemile (5.14) kui teisendusele (5.14), mõistame

me selle teisenduse all selle süsteemiga määratud teisendust U Ñ Rm.

De�nitsioon 5.1. Olgu U � Rm lahtine hulk. Öeldakse, et süsteemiga (5.14) mää-
ratud teisendus Φ: U Ñ Rm on regulaarne, kui

(1) teisendus Φ on üksühene;

(2) teisendust Φ määravatel funktsioonidel (5.14) eksisteerivad hulgas U pidevad
esimest järku osatuletised;

(3) selle teisenduse jakobiaani väärtus erineb hulgas U nullist, s.t.

detΦ1pQq :� Dpx1, . . . , xmq
Dpu1, . . . , umqpQq �

∣∣∣∣∣∣∣∣∣∣

Bx1
Bu1 pQq . . .

Bx1
Bum pQq

...
. . .

...
Bxm
Bu1 pQq . . .

Bxm
Bum pQq

∣∣∣∣∣∣∣∣∣∣

�� 0 iga Q P U korral.

Seejuures, kui A � U ja D � ΦrAs :� tΦpQq : Q P Au, siis öeldakse, et Φ kujutab
hulga A regulaarselt hulgaks D.

5.3.2. Üldine muutujate vahetuse valem kahekordses integraalis

Olgu U � R2 lahtine hulk ning olgu teisendus Φ: U Ñ R2 määratud süsteemiga

x � xpu, vq, y � ypu, vq. (5.16)

Tähistame

Jpu, vq :� detΦ1pu, vq � Dpx, yq
Dpu, vqpu, vq �

∣∣∣∣
x1upu, vq x1vpu, vq
y1upu, vq y1vpu, vq

∣∣∣∣ ,

s.t. Jpu, vq on selle süsteemi jakobiaan punktis pu, vq.
Järgnev teoreem esitab üldise muutujate vahetuse valemi kahekordse (Riemanni)

integraali jaoks.

Teoreem 5.4. Kui

(1) võrranditega (5.16) määratud teisendus Φ: U Ñ R2 on regulaarne;

(2) A � U on (Jordani mõttes) mõõtuv (tasandil R2) kinnine alamhulk;

(3) kahe muutuja funktsioon z � fpx, yq on pidev kujutishulgas ΦrAs (xy-tasandil),
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NB! Eelduste
(1) ja (2) kehtides
on hulk ΦrAs
lause 5.6, (ab)
ja (bd), põhjal
kinnine ja mõõtuv,
seega valemis
(5.17) vasakul pool
võrdusmärki olev
integraal eksistee-
rib teoreemi 2.8
põhjal.

siis ¼
ΦrAs

fpx, yq dx dy �
¼
A

f
�
xpu, vq, ypu, vq� ��Jpu, vq�� du dv. (5.17)

Lükkame teoreemi 5.4 tõestamise edasi alajaotisse 5.3.5; selle tõestuse mugava-
maks esitamiseks toome vahepealsetes alajaotistes välja regulaarsete teisenduste olu-
lisemad omadused.

Alajaotise lõpetuseks esitame muutujate vahetuse teoreemi 5.4 rakendamiseks
sobivamal kujul ning toome ühe näite selle rakendamisest. Nimelt, tüübilises olu-
korras on meil vaja etteantud mõõtuva kinnise hulga D � R2 ja pideva funktsioo-
ni f : D Ñ R korral leida kahekordne integraal

´
D fpx, yq dx dy. Kui hulk D on

�ebamugava� struktuuriga, nii et teoreemides 5.1 ja 5.2 antud arvutusvalemeid pole
võimalik rakendada (või see on ebamugav), siis on sageli abiks muutujate vahetuse
teoreem 5.4: kui meil õnnestub leida regulaarne teisendus Φ: U Ñ R2, kus U on ruu-
mi R2 lahtine alamhulk, ja �lihtsa struktuuriga� kinnine mõõtuv alamhulk A � U
(näiteks kõvertrapets) nii, et ΦrAs � D, siis integraali

´
D fpx, yq dx dy saame leida

valemist (5.17), kus võrrandid (5.16) on teisendust Φ esitavad võrrandid.

Teoreem 5.5. Kui

(1) kahe muutuja funktsioon z � fpx, yq on pidev (xy-tasandi) mõõtuvas kinnises
hulgas D;

(2) võrrandid (5.16) määravad regulaarse teisenduse, mis kujutab (uv-tasandi)
mõõtuva kinnise hulga A hulgaks D,

siis ¼
D

fpx, yq dx dy �
¼
A

f
�
xpu, vq, ypu, vq� ��Jpu, vq�� du dv. (5.18)

NB! See on Rei-
mersi ül.-kogu, II,
lk. 161, ül. 879;
samuti ülesannete
bro²üüri 2024. a.
sügissemestri versi-
ooni ül. 86, a.

Näide 5.1. Leiame kahekordse integraali¼
D

p3x� 2y � 4q2 dx dy,

kus D �  px, yq P R2 : � 1 ¤ x� y ¤ 3, �2 ¤ 3x� 2y ¤ 8
(
.NB! Siin me

kulutame hulga
aega ja trükiruumi
sellele, et selgitada,
miks me valime
integraali arvuta-
miseks just sellise
strateegia, nagu me
valime. Tudengitel
on mõistlik kodu-
ja kontrolltööde
vormistamisel see
etapp lahendustest
ära jätta ning
asuda kohe �asja
kallale�.

Kõigepealt märgime, et kuigi hulk D on oma struktuurilt kõvertrapets (vt. joonist 5.1), on
küsitud integraali leidmine kasutades valemit teoreemist 5.2, (a) (s.t. valemit kahekordse integraali
leidmiseks üle kõvertrapetsi), tülikas, sest hulka D alt ja ülalt piiravate joonte võrrandid on lõikudes
x P �� 4

5 ,
4
5

�
, x P � 45 , 6

5

�
ja x P � 65 , 14

5

�
paarikaupa erinevad: me peaksime esitama küsitud integraali

kolme integraali summana �¼
D

p3x� 2y � 4q2 dx dy

�
¼
D1

p3x� 2y � 4q2 dx dy �
¼
D2

p3x� 2y � 4q2 dx dy �
¼
D3

p3x� 2y � 4q2 dx dy,

(5.19)
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kus

D1 �
!
px, yq P R2 : x P �� 4

5 ,
4
5

�
, �3x�2

2 ¤ y ¤ x� 1
)
,

D2 �
!
px, yq P R2 : x P � 45 , 6

5

�
, x� 3 ¤ y ¤ x� 1

)
ja D3 �

!
px, yq P R2 : x P � 65 , 14

5

�
, x� 3 ¤ y ¤ �3x�8

2

)
,

� ning leidma iga võrduses (5.19) paremal pool võrdusmärki oleva integraali selle valemi järgi eraldi.
Seepärast on mõistlik püüda leida küsitud integraal sobiva muutujate vahetuse abil (või, täpsemalt,
teostada enne kahekordse integraali arvutusvalemi rakendamist sobiv muutujate vahetus).

x

y

0

y =
−3x− 2

2

y = x− 3

y =
−3x+ 8

2

y = x+ 1

(
− 4

5 ,
1
5

)

(
4
5 ,− 11

5

)

(
14
5 ,− 1

5

)

(
6
5 ,

11
5

)

D1 D2 D3

−1−2 1 2 3 4 5

−1

−2

−3

1

2

3

4

Joonis 5.1. Hulk D on joonisel värvitud helesiniseks.

Teisendus R2 Q px, yq ÞÑ pu, vq P R2, mis on antud võrranditega

u � x� y, v � 3x� 2y, (5.20)

on pööratav, kusjuures tema pöördteisendus R2 Q pu, vq ÞÑ px, yq P R2 on

x � 2u� v

5
, y � �3u� v

5
. (5.21)

Teisendus (5.20) kujutab hulga D uv-tasandi ristkülikuks

D1 :�  pu, vq P R2 : � 1 ¤ u ¤ 3, �2 ¤ v ¤ 8
(
,
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järelikult (pöörd)teisendus (5.21) kujutab uv-tasandi ristkülikuD1 hulgaksD. Veendume, et (pöörd)-
teisendus (5.21) on regulaarne. Selleks leiame tema jakobiaani Jpu, vq:

x1u �
2

5
, x1v �

1

5
,

y1u �
�3
5

, y1v �
1

5
,

seega

Jpu, vq �
∣∣∣∣∣

2
5

1
5

�3
5

1
5

∣∣∣∣∣ �
2

5
� 1
5
� �3

5
� 1
5
� 5

25
� 1

5
;

niisiis (pöörd)teisendus (5.21) on tõepoolest regulaarne. Nüüd (muutujate vahetuse valemi põhjal
kahekordse integraali jaoks teoreemist 5.5; arvestades, et 3x� 2y � v)¼

D

p3x� 2y � 4q2 dx dy �
¼
D1

pv � 4q2 |Jpu, vq| du dv �
¼
D1

pv � 4q2 1

5
du dv

�
» 3

�1

�» 8

�2

pv � 4q2
5

dv



du

p�q�
�» 8

�2

pv � 4q2
5

dv



�
�» 3

�1

du



�

� pv � 4q3
15

����8
�2



� 4 � 4

�
43

15
� p�6q3

15



� 4p64� 216q

15
� 4 � 280

15

� 4 � 56
3

� 224

3
.

Siin võrduse p�q põhjenduseks märgime, et integraal
³8
�2

pv�4q2
5 dv on sõltumatu muutujast u, niisiis

see integraal käitub integraali
³3
�1
� � � du märgi all nagu konstant ja seega me võime integraali³8

�2
pv�4q2

5 dv integraali
³3
�1
� � � du märgi alt välja tuua.

Märkus 5.1. Eelnevas näites 5.1 võinuksime veenduda teisenduse (5.20) pööratavuses ja pöörd-
teisenduse (5.21) regulaarsuses ning leida pöördteisenduse (5.21) jakobiaani Jpu, vq ka ilma seda
pöördteisendust ennast välja rehkendamata. Selleks tuleks kõigepealt meenutada lineaaralgebra
kursuses õpitut.

Olgu m P N. Nagu tavaks, tõlgendame järgnevas järjendeid pu1, . . . , umq ja px1, . . . , xmq ruumis

Rm sobival juhul vastavalt veeruvektoritena (s.t. (m� 1)-maatriksitena)

���u1

...
um

��
 ja

���x1

...
xm

��
.
Olgu Φ: Rm Q pu1, . . . , umq ÞÑ px1, . . . , xmq P Rm lineaarteisendus (ehk, teisisõnu, maatriks-

teisendus), s.t. leidub (reaalarvuliste elementidega) maatriks

A :�

�����
a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
. . .

...
am1 am2 . . . amm

����

nii, et teisendus Φ esitub süsteemiga

xi � xipu1, . . . , umq :�
m̧

j�1

aijuj , i � 1, . . . ,m, (5.22)

s.t. iga pu1, . . . , umq P Rm korral

Φpu1, . . . , umq �
� m°
j�1

a1juj , . . . ,
m°
j�1

amjuj
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ehk, teisisõnu,

Φpu1, . . . , umq �

�����
a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
. . .

...
am1 am2 . . . amm

����

�����

u1

u2

...
um

����
�

�����
a11u1 � a12u2 � � � � � a1mum

a21u1 � a22u2 � � � � � a2mum

...
am1u1 � am2u2 � � � � � ammum

����
,

s.t. kujutis Φpu1, . . . , umq, tõlgendatuna veeruvektorina, saadakse järjendi pu1, . . . , umq, tõlgenda-
tuna veeruvektorina, korrutamisel maatriksiga A (vasakult) . Lineaaralgebra kursusest teame, et

p7q järgmised väited on samaväärsed:

(i) Φ on pööratav;

(ii) Φ on üksühene;

(iii) Φ on pealekujutus;

(iv) detA �� 0 (s.t. maatriksi A determinant erineb nullist).

Süsteemis (5.22)

pxiq1uj
� aij iga i P t1, . . . ,mu ja iga j P t1, . . . ,mu korral,

seega teisenduse Φ Jacobi maatriks on A; niisiis

p5q teisenduse Φ jakobiaan on detA (s.t. maatriksi A determinant) ning teisendus Φ on regu-

laarne parajasti siis, kui detA �� 0 (põhjendada!) .

Kasutame nüüd eelnevas refereeritud tarkust näites 5.1 teisenduse (5.20) pööratavuse põhjen-
damisel ning selle teisenduse pöördteisenduse regulaarsuse põhjendamisel ja selle pöördteisenduse
jakobiaani väljaarvutamisel.

Teisendus (5.20) on lineaarteisendus, mida esitav maatriks on B :�
�
1 �1
3 2



, s.t. see teisendus

kujutab mis tahes punkti px, yq P R2 punktiks pu, vq P R2, kus�
u
v



�

�
1 �1
3 2


�
x
y



.

Kuna

detB �
∣∣∣∣
1 �1
3 2

∣∣∣∣ � 1 � 2� 3 � p�1q � 5,

siis väite p7q samaväärsuse (i)ô(iv) põhjal on teisendus (5.20) pööratav. Teisenduse (5.20) pöördtei-
sendust esitav maatriks on teisendust (5.20) esitava maatriksi B pöördmaatriks B�1, seega väite p5q
põhjal on teisenduse (5.20) pöördteisendus R2 Q pu, vq ÞÑ px, yq P R2 regulaarne, kusjuures selle
pöördteisenduse jakobiaan on

Jpu, vq � detpB�1q � 1

detB
� 1

5
.

5.3.3. Abistavaid tulemusi teoreemi 5.4 tõestuseks I � regulaarse
teisenduse omadusi

Ruumi Rm punktide märkimiseks kasutame kompaktsuse eesmärgil standardset tähis-
tust pujqmj�1 :� pu1, . . . , umq P Rm.
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Lause 5.6. Olgu U � Rm lahtine hulk ning olgu regulaarne teisendus Φ: U Ñ
Rm määratud süsteemiga (5.14). Tähistame V :� ΦrUs � tΦpQq : Q P Uu � Rm.
Siis, tõlgendades teisendust Φ kujutusena U Ñ V, võime vaadelda pöördteisendust
Φ�1 : V Ñ Rm. Olgu A � U ruumis Rm kinnine tõkestatud alamhulk.

(a) (aa) Teisendus Φ kujutab hulga U lahtised alamhulgad hulga V lahtisteks alam-
hulkadeks; muuhulgas ka hulk V ise on lahtine. Pöördteisendus Φ�1 : V Ñ
Rm on regulaarne. Seejuures iga Q P U korral pöördteisenduse Φ�1 Jacobi
maatriks punktis ΦpQq P V on teisenduse Φ Jacobi maatriksi punktis Q
pöördmaatriks.

(ab) Kujutishulk ΦrAs on kinnine ja tõkestatud.NB! Kas me ka-
sutame kuskil ku-
jutishulga ΦrAs tõ-
kestatust? Kasuta-
me tema mõõtuvus-
kriteeriumi raken-
damisel.

(ac) ΦrA�s � pΦrAsq� ja ΦrBAs � BpΦrAsq, s.t. Φ kujutab hulga A sisemuse
kujutishulga ΦrAs sisemuseks ja hulga A raja kujutishulga ΦrAs rajaks.

(b) Olgu m � 2. Tähistame iga n P N korral pCnpAq :� tC P Cn : C XA �� Hu, kus
Cn tähistab kõikvõimalike selliste diaadiliste ruutude kogumit, mille küljepikkus
on 1

2n
(vt. jaotise 4.1 algust lk. 183), ning pAn :� �

CPpCnpAq C.

(ba) Leidub arv N P N nii, et pAN � U .
(bb) Leidub reaalarv κ ¡ 0 nii, et

µ�pΦrBsq ¤ κ µ�pBq iga alamhulga B � pAN korral (5.23)

(siin pAN on hulk väitest (ba) ning µ�pBq ja µ�pΦrBsq tähistavad vastavalt
hulga B ja kujutishulga ΦrBs Jordani välismõõtu).

(bc) Kui hulk A on nullmõõduline, siis ka kujutishulk ΦrAs on nullmõõduline.

(bd) Kui hulk A on Jordani mõttes mõõtuv, siis ka kujutishulk ΦrAs on Jordani
mõttes mõõtuv.

(c) Tähistame iga Q P U korral AQ :� Φ1pQq, s.t. AQ : Rm Ñ Rm on lineaarne
kujutus, mis on esitatud maatriksiga

�Bxi
Buj pQq


m

i,j�1

:�

������
Bx1
Bu1 pQq . . .

Bx1
Bum pQq

...
. . .

...
Bxm
Bu1 pQq . . .

Bxm
Bum pQq

�����
, (5.24)

s.t.

AQpRq �
� m̧

j�1

Bxi
Buj pQq ηj


m

i�1

iga R � pηjqmj�1 P Rm korral.

(ca) Iga Q P U korral on kujutus AQ pööratav. Seejuures pöördkujutust pAQq�1

esitav maatriks on pöördteisenduse Φ�1 Jacobi maatriks punktis ΦpQq.
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(cb) Leiduvad reaalarvud α, β ¡ 0 nii, et iga Q P A korral

α dpQ1, Q2q ¤ d
�
AQpQ1q, AQpQ2q

� ¤ β dpQ1, Q2q mis tahes Q1, Q2 P Rm korral.

(cc) Tähistame punktide Q � pujqmj�1 P Rm ja ∆Q � p∆ujqmj�1 P Rm korral
Q�∆Q :� puj�∆ujqmj�1 P Rm (see tähistus on igati kooskõlas ruumi Rm

vektorruumistruktuuriga) ja ρ :�
a
∆u21 � � � � �∆u2m. Siis

d
�
ΦpQ�∆Qq � ΦpQq, AQp∆Qq

	
ρ

ÝÝÑ
ρÑ0

0 ühtlaselt Q P A suhtes.

Märkus 5.2. Lause 5.6 tõestusest nähtub, et väited (ab) ning (ba), (bb) ja (bc)
jäävad kehtima, kui jätta ära eeldus teisenduse Φ regulaarsuse kohta, nõudes sel-
lelt teisenduselt vaid, et funktsioonidel (5.14) eksisteeriksid hulgas U pidevad osa-
tuletised (seejuures väide (ab) jääb kehtima ka siis, kui nõuda teisenduselt Φ vaid,
et funktsiooonid (5.14) oleksid pidevad). Seda tähelepanekut kasutab teoreemi 5.8
tõestus.

Lause 5.6 tõestus. (aa). Väide on tõestatud järelduses III.3.5, teoreemis III.3.2
ja märkuses III.3.1).

(ab). Kujutishulga ΦrAs kinnisuseks piisab näidata, et ΦrAs � ΦrAs (s.t. selle
kujutishulga sulund ΦrAs sisaldub selles kujutishulgas).

Ülesanne 5.1. Tõestada, et ΦrAs � ΦrAs.
Näpunäide. Kasutada Bolzano�Weierstrassi teoreemi I.2.5 ja fakti, et koonduvus ruumis Rm on
samaväärne koordinaaditi koonduvusega (vt. lauset I.2.1).

Väite tõestuseks jääb näidata, et kujutishulk ΦrAs on tõkestatud.

Ülesanne 5.2. Tõestada, et kujutishulk ΦrAs on tõkestatud.

Näpunäide. Kasutada Weierstrassi teoreemi I.4.7.

(ac). Võrdus ΦrA�s � pΦrAsq� järeldub järgnevast ülesandest.

Ülesanne 5.3. Olgu E � U . Tõestada, et ΦrE�s � pΦrEsq�.
Näpunäide. Kasutada väites (aa) tõestatud fakte, et Φ kujutab hulga U lahtised alamhulgad
hulga V lahtisteks alamhulkadeks, ning et pöördteisendus Φ�1 on samuti regulaarne.

Väite tõestuseks jääb näidata, et ΦrBAs � B�ΦrAs�.
Ülesanne 5.4. Tõestada, et ΦrBAs � B�ΦrAs�.
Näpunäide. Kasutada hulkade A ja ΦrAs kinnisust, teisenduse Φ üksühesust ja võrdust ΦrA�s �
pΦrAsq�.

(ba). Nagu kõikjal eelnevas, tähistame lahtise ringi keskpunktiga Q P R2 ja
raadiusega δ ¡ 0 sümboliga BpQ, δq, s.t. BpQ, δq :�  

R P R2 : dpQ,Rq   δ
(
.

Olgu reaalarv δ ¡ 0 selline, et iga Q P A korral BpQ, δq � U (sellise reaalarvu
γ ¡ 0 olemasolu on tõestatud ülesandes I.2.6). Valime arvu N P N nii, et

?
2

2N
  δ.

Nüüd alati, kui Q P A ja C P CN on sellised, et Q P C, siis C � BpQ, δq � U
(põhjendada!) . Siit järeldub, et pAN � U .
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(bb). Kõikjal selle väite tõestuses kirjutame funktsioonide x1 � x1pu1, u2q ja x2 �
x2pu1, u2q asemel vastavalt x � xpu, vq ja y � ypu, vq, s.t. me loeme, et teisendus Φ
on määratud süsteemiga (5.16).

Väite tõestuseks piisab leida reaalarv κ ¡ 0 nii, et tingimus (5.23) kehtib lisaeel-
dusel, et µ�pBq ¡ 0 ning näidata seejärel, et (sellise κ olemasolu korral) µ�pΦrBsq � 0

alati, kui alamhulga B � pAN Jordani mõõt on null, s.t µ�pBq � 0.
Olgu alamhulk B � pAN selline, et µ�pBq ¡ 0. Siis leiduvad naturaalarv n ¥ N

ja (lõplik) alamhulk F � Cn nii, et B � R :� �
CPF C � pAN ja µpRq ¤ 2µ�pBq

(põhjendada!) . Olgu C P F suvaline ning olgu P P ΦrCs. Siis P � �
xpQq, ypQq�

mingi Q � pu, vq P C korral. Olgu QC � puC, vCq ruudu C keskpunkt; siis C ��
uC� 1

2n�1 , uC� 1
2n�1

�� �
vC� 1

2n�1 , vC� 1
2n�1

�
. Lagrange'i keskväärtusteoreemi põhjal

mitme muutuja funktsioonide jaoks (vt. järeldust II.1.10) leiduvad punkte QC ja Q
ühendaval sirglõigul punktid R1 ja R2 nii, et

xpQq � xpQCq � Bx
BupR1q pu� uCq � Bx

Bv pR1q pv � vCq,

ypQq � ypQCq � By
BupR2q pu� uCq � By

Bv pR2q pv � vCq.

Arvestades, et |u� uC| ¤ 1
2n�1 ja |v � vC| ¤ 1

2n�1 ning et R1, R2 P C � pAN ,

|xpQq � xpQCq| ¤
����BxBupR1q

���� |u� uC| �
����BxBv pR1q

���� |v � vC| ¤ M

2n

ning, analoogiliselt, |ypQq � ypQCq| ¤ M
2n
, kus

M :� max

"
max
RP pAN

����BxBupRq
����, max

RP pAN

����BxBv pRq
����, max

RP pAN

����ByBupRq
����, max

RP pAN

����ByBv pRq
����*

(Põhjendada! Muuhulgas põhjendada, miks need maksimumid eksisteerivad!) . Selle-
ga oleme näidanud, et kujutishulk ΦrCs sisaldub (kinnises) ruudus DC keskpunktiga
ΦpQCq � �

xpQCq, ypQCq
�
ja küljepikkusega M

2n�1 (põhjendada!) . Seega ΦrBs ��
CPF ΦrCs �

�
CPF DC ning järelikultNB! Siin esime-

ne võrdus järeldub
lausest 3.7, (a)!

µ�pΦrBsq ¤ µ

�¤
CPF

DC



�

¸
CPF

µpDCq �
¸
CPF

M2

22pn�1q � 4M2
¸
CPF

µpCq � 4M2µpRq

¤ 8M2 µ�pBq.
Saadud hinnang µ�pΦrBsq ¤ 8M2 µ�pBq kehtib iga alamhulga B � pAN korral, mis
rahuldab tingimust µ�pBq ¡ 0. Niisiis me võime võtta κ � 8M2.

Olgu nüüd alamhulk B � pAN selline, et µ�pBq � 0, ning olgu ε ¡ 0. Siis leidub
ristküliksumma R � pAN nii, et B � R ja µ�pRq � µpRq   ε. Nüüd ka ΦrBs � ΦrRs
ning seega, arvestades, et µ�pRq ¡ 0, eelnevalt tõestatu põhjal

µ�pΦrBsq ¤ µ�pΦrRsq ¤ κ µ�pRq   κ ε.

Kuna arv ε ¡ 0 oli vabalt �kseeritud, siis järeldub siit, et µ�pΦrBsq � 0, nagu
soovitud.
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(bc).

Ülesanne 5.5. Olgu hulk A nullmõõduline. Tõestada, et siis ka kujutishulk ΦrAs on nullmõõdu-
line.

Näpunäide. Kasutada väidet (bb).

(bd).

Ülesanne 5.6. Olgu hulk A Jordani mõttes mõõtuv. Tõestada, et siis ka kujutishulk ΦrAs on
Jordani mõttes mõõtuv.

Näpunäide. Kasutada teoreemi 2.5 ning väiteid (ab), (ac) ja (bc).

(ca). Algebra kursusest teame (või vähemalt peaksime teadma), et etteantud
m�m-maatriksiga esitatud kujutuse Rm Ñ Rm pööratavuseks on tarvilik ja piisav,
et selle maatriksi determinant erineks nullist. Antud juhul iga Q P U korral maatriksi
(5.24) determinant erineb nullist teisenduse Φ regulaarsuse tõttu.

Pöördkujutust pAQq�1 esitav maatriks on kujutust AQ esitava maatriksi pöörd-
maatriks. Väite (aa) põhjal on see pöördmaatriks pöördteisenduse Φ�1 Jacobi maat-
riks punktis ΦpQq.

(cb). Veendume kõigepealt soovitud omadustega arvu β olemasolus. Mis tahes
punktide Q1 � pu1jqmj�1, Q2 � pu2jqmj�1 P Rm korral

AQpQkq �
� m̧

j�1

Bxi
Buj pQqu

k
j


m

i�1

, k � 1, 2,

seega Rogers�Hölderi võrratuse põhjal (vt. teoreemi I.1.2)

d
�
AQpQ1q, AQpQ2q

�
�
gffe m̧

i�1

���� m̧

j�1

Bxi
Buj pQqu

1
j �

m̧

j�1

Bxi
Buj pQqu

2
j

����2 ¤
gffe m̧

i�1

� m̧

j�1

����BxiBuj pQq
���� |u1j � u2j |


2

¤
gffe m̧

i�1

�� m̧

j�1

����BxiBuj pQq
����2
� m̧

j�1

|u1j � u2j |2

�

�
gffe m̧

i�1

m̧

j�1

����BxiBuj pQq
����2 dpQ1, Q2q

¤ β dpQ1, Q2q,

kus β :� sup
QPA

d
m°
j�1

m°
i�1

�� Bxi

Buj
pQq��2. Märgime, et see supreemum on lõplik, sest osa-

tuletisfunktsioonide Bxi

Buj
pidevuse tõttu on funktsioon Q ÞÑ

d
m°
j�1

m°
i�1

�� Bxi

Buj
pQq��2 pidev

hulgas A ning seega Weierstrassi teoreemi I.4.7 põhjal on see funktsioon tõkesta-
tud hulgas A. Seejuures β ¡ 0, sest mis tahes Q P A korral erineb vähemalt üks
osatuletistest Bxi

Buj
pQq nullist � vastasel korral oleks teisenduse Φ jakobiaani väärtus

punktis Q null.
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Kuna iga Q P A korral on kujutus AQ pööratav, siis soovitud omadusega arvu α
olemasoluks piisab leida reaalarv γ ¡ 0 nii, et iga Q P A korral

d
�pAQq�1pP1q, pAQq�1pP2q

� ¤ γ dpP1, P2q mis tahes P1, P2 P Rm korral.

Tähistame iga P P V korral BP � pΦ�1q1pP q, s.t. BP : Rm Ñ Rm on lineaarne
kujutus, mis on esitatad pöördteisenduse Φ�1 Jacobi maatriksiga punktis P . Siis iga
Q P U korral pAQq�1 � BΦpQq (vt. väidet (ca)). Seega jääb väite tõestuseks veenduda
sellise reaalarvu γ ¡ 0 olemasolus, et iga P P ΦrAs korral

d
�
BP pP1q, BP pP2q

� ¤ γ dpP1, P2q mis tahes P1, P2 P Rm korral.

Arvestades, et Φ�1 on regulaarne teisendus ning et (väite (ab) põhjal) hulk ΦrAs on
kinnine ja tõkestatatud, järeldub sellise reaalarvu γ olemasolu ülaltõestatud väitest
eespoolkirjeldatud omadustega reaalarvu β olemasolu kohta.

(cc). Nagu kõikjal eelnevas, tähistame lahtise kera keskpunktiga Q P Rm ja raa-
diusega δ ¡ 0 sümboliga BpQ, δq, s.t. BpQ, δq :�  

R P Rm : dpQ,Rq   δ
(
.

Olgu reaalarv δ ¡ 0 selline, et iga Q P A korral BpQ, δq � U (sellise reaalarvu γ
olemasolu on tõestatud ülesandes I.2.6). Kui punkt ∆Q � p∆ujqmj�1 P Rm rahuldab

tingimust ρ �
d

m°
j�1

|∆uj|2   δ, siis mis tahes punkti Q P A korral Q � ∆Q P U ,

seejuures funktsioonide (5.14) diferentseeruvuse tõttu

ΦpQ�∆Qq � ΦpQq � �
xipQ�∆Qq � xipQq

�m
i�1

�
� m̧

j�1

Bxi
Buj pQq∆uj � αipQ,∆Qq


m

i�1

,

kus teoreemi II.1.11 põhjal funktsioonid αi � αipQ,∆Qq rahuldavad tingimust

αipQ,∆Qq
ρ

ÝÝÑ
ρÑ0

0 ühtlaselt Q P A suhtes.

Teiselt poolt, AQp∆Qq �
� m°
j�1

Bxi

Buj
pQq∆uj

	m

i�1
, seega

d
�
ΦpQ�∆Qq � ΦpQq, AQp∆Qq

	
ρ

�

c
m°
i�1

αipQ,∆Qq2

ρ

�
gffe m̧

i�1

�
αipQ,∆Qq

ρ


2

ÝÝÑ
ρÑ0

0 ühtlaselt Q P A suhtes

(põhjendada!) .
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5.3.4. Abistavaid tulemusi teoreemi 5.4 tõestuseks II �
lineaarteisenduse R2 Ñ R2 �skaleerimistegur�

Olgu Φ: R2 Q pu, vq ÞÑ px, yq P R2 lineaarteisendus, s.t. teisendus, mis esitub mingi
(reaalarvuliste elementidega) maatriksiga

A :�
�
a11 a12
a21 a22



,

s.t. iga pu, vq P R2 korral

Φpu, vq � pa11u� a12v, a21u� a22vq

ehk, teisisõnu, teisendus Φ esitub süsteemiga

x � a11u� a12v, y � a21u� a22v, (5.25)

s.t., samastades järjendid px, yq ja pu, vq vastavalt veeruvektoritega

�
x
y



ja

�
u
v



(s.t. lugedes nad vastavalt üheks ja samaks objektiks), iga pu, vq P R2 korral

Φpu, vq �
�
a11 a12
a21 a22


�
u
v



�
�
a11u� a12v
a21u� a22v



.

Kuna süsteemis (5.25)

x1u � a11, x1v � a12,

y1u � a21, y1v � a22,

siis teisenduse Φ Jacobi maatriks on A; niisiis see teisendus on regulaarne parajasti
siis, kui detA �� 0 (põhjendada!) .

Järgnev teoreem aitab selgitada jakobiaani absoluutväärtuse |Jpu, vq| rolli vale-
mis (5.17) (ja valemis (5.18)).

Teoreem 5.7. Mis tahes mõõtuva alamhulga A � R2 korral on ka kujutishulk
ΦrAs � R2 mõõtuv; seejuures selle kujutishulga Jordani mõõt on

µ
�
ΦrAs� � | detA|µpAq.

Seda teoreemi me käesolevas kursuses ei tõesta .

5.3.5. Teoreemi 5.4 tõestus

Teoreemi 5.4 tõestus. Kehtigu tingimused (1)�(3). First things �rst: mõlemad
võrduses (5.17) esinevad integraalid eksisteerivad (põhjendada!) . Tähistame iga n P
N korral

xCnpAq :� tC P Cn : C XA �� Hu ja qCnpAq :� tC P Cn : C � Au,
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kus Cn tähistab kõikvõimalike selliste diaadiliste ruutude kogumit, mille küljepikkus
on 1

2n
(vt. jaotise 4.1 algust lk. 183), ning

pAn :�
¤

CPpCnpAq
C ja qAn :�

¤
CPqCnpAq

C.

Lause 5.6, (ba), põhjal leidub N0 P N nii, et pAN0 � U . Weierstrassi teoreemi I.4.7
põhjal leiduvad reaalarvud M,L ¥ 0 nii, et |fpP q| ¤ M iga P P ΦrAs korral ning
|Jpu, vq| ¤ L iga pu, vq P A korral (põhjendada!) .

Teoreemi tõestuseks piisab veenduda, et iga naturaalarvu N ¥ N0 korral kehtib
võrdus (5.17), kus hulk A on asendatud hulgaga qAN , sest sellisel juhul, �kseerides
vabalt reaalarvu ε ¡ 0 ja valides naturaalarvu N ¥ N0 nii, et µpAz qANq   ε,�����

¼
ΦrAs

fpx, yq dx dy �
¼
A

f
�
xpu, vq, ypu, vq� ��Jpu, vq�� du dv�����

¤
¼

ΦrAz qAN s

|fpx, yq| dx dy �
¼

Az qAN

��f�xpu, vq, ypu, vq��� ��Jpu, vq�� du dv
¤Mµ

�
ΦrAz qAN s

��MLµpAz qANq ¤Mκ µpAz qANq �MLµpAz qANq
 MpL� κqε

(siin arv κ pärineb lausest 5.6, (bb), kus hulga AN rollis on meie hulk AN0) (põh-

jendada!) , millest arvu ε ¡ 0 suvalisuse tõttu järeldub soovitud võrdus (5.17).
Fikseerime vabalt naturaalarvu N ¥ N0. Nagu veendusime, piisab teoreemi tões-

tuseks tõestada võrdus (5.17) lisaeeldusel, et A � qAN . Eeldamegi järgnevas, et
A � qAN . Võrduse (5.17) tõestuseks tähistame iga n ¥ N ja iga C P qCnpAq korral
sümboliga QC diaadilise ruudu C keskpunkti ning, järgides lause 5.6, (c), tähistusi,NB! Kas lugeja

teab, mis on ruudu
keskpunkt? Ristta-
huka keskpunkt on
de�neeritud lk. 7.

AC :� AQC � Φ1pQCq, kus iga Q P U korral AQ : R2 Ñ R2 on lineaarne kujutus, mis
on esitatud maatriksiga ���Bx

BupQq
Bx
Bv pQqBy

BupQq
By
Bv pQq

��
,
s.t. iga R � pξ, ηq P R2 korral AQpRq �

�Bx
BupQq ξ �

Bx
Bv pQq η,

By
BupQq ξ �

By
Bv pQq η

	
.

Arvestades, et ¸
CPqCnpAq

f
�
ΦpQCq

�
µ
�
ΦrCs� ÝÝÝÑ

nÑ8

¼
ΦrAs

fpx, yq dx dy

ja ¸
CPqCnpAq

f
�
ΦpQCq

� |JpQCq|µpCq ÝÝÝÑ
nÑ8

¼
A

f
�
xpu, vq, ypu, vq� ��Jpu, vq�� du dv
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(põhjendada!) , kusjuures teoreemi 5.7 põhjal |JpQCq|µpCq � | detAC|µpCq � µ
�
ACrCs

�
,

piisab võrduse (5.17) (ja ühtlasi teoreemi) tõestuseks näidata, et¸
CPqCnpAq

f
�
ΦpQCq

�
µ
�
ΦrCs�� ¸

CPqCnpAq
f
�
ΦpQCq

�
µ
�
ACrCs

� ÝÝÝÑ
nÑ8

0

(põhjendada!) , milleks omakorda piisab veenduda, et¸
CPqCnpAq

��µ�ΦrCs�� µ
�
ACrCs

��� ÝÝÝÑ
nÑ8

0 (5.26)

(põhjendada!) . Tähistame iga n ¥ N ja iga C P qCnpAq korral ∆n :� �� 1
2n�1 ,

1
2n�1

���� 1
2n�1 ,

1
2n�1

�
(niisiis ∆n on ruut keskpunktiga p0, 0q ja küljepikkusega 1

2n
) ja DC :�

ΦpQCq�ACr∆ns; märgime, et siis µpDCq � µ
�
ACrCs

�
(põhjendada!) ). Koonduvuseks NB! Siin põhjen-

damise juures tu-
leb mängu Jordani
mõõdu invariantsus
nihke suhtes.

(5.26) piisab nüüd leida arvud θn ¡ 0, n � N,N � 1, . . . , nii, et θn ÝÝÝÑ
nÑ8

0 ning iga

n P N, n ¥ N , ja iga C P qCnpAq korralqDC :� ΦpQCq � ACrp1� θnq∆ns � ΦrCs � ΦpQCq � ACrp1� θnq∆ns �: pDC.

Selgitame hulkade DC , qDC ja pDC struktuuri. Tähistame RC :� A�1
C

�
ΦpQCq

�
; siis ACpRCq �

ΦpQCq ning
DC � ACpRCq �ACr∆ns � ACrRC �∆ns,qDC � ACpRCq �ACrp1� θnq∆ns � ACrRC � p1� θnq∆ns,pDC � ACpRCq �ACrp1� θnq∆ns � ACrRC � p1� θnq∆ns.

Märgime, et hulgad RC �∆n, RC � p1� θnq∆n ja RC � p1� θnq∆n on ruudud keskpunktiga RC ja

küljepikkustega vastavalt 1
2n ,

1�θn
2n ja 1�θn

2n ; hulgad DC , qDC ja pDC on rööpkülikud (vt. joonist ??? ).

Tõepoolest, selliste arvude θn olemasolu juhul iga naturaalarvu n ¥ N ja iga C PqCnpAq korral��µ�ΦrCs�� µ
�
ACrCs

��� � ��µ�ΦrCs�� µpDCq
�� ¤ µp pDCq � µp qDCq

� µ
�
ACrp1� θnq∆ns

�� µ
�
ACrp1� θnq∆ns

�
� | detAC|µ

�p1� θnq∆n

�� | detAC|µ
�p1� θnq∆n

�
¤ L

p1� θnq2 � p1� θnq2
22n

� 4LθnµpCq

ning seega (5.26) kehtib, sest¸
CPqCnpAq

��µ�ΦrCs�� µ
�
ACrCs

��� ¤ 4Lθn
¸

CPCnpAq
µpCq � 4LθnµpAq ÝÝÝÑ

nÑ8
0.

Tähistame iga naturaalarvu n ¥ N korral

θn :� 2

α
sup

pu,vqPA
maxt|∆u|,|∆v|u� 1

2n�1

d
�
Φpu�∆u, v �∆vq,Φpu, vq � Apu,vqp∆u,∆vq

�
1

2n�1
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(siin arv α pärineb lausest 5.6, (cb)); siis lause 5.6, (cc), põhjal θn ÝÝÝÑ
nÑ8

0 (põh-

jendada!) . Paneme tähele, et iga naturaalarvu n ¥ N ja iga C P qCnpAq korral

(1) kujutishulga ΦrCs mis tahes rajapunkti kaugus hulga DC rajast ei ületa ar-
vu α θn

2�2n�1 ;

(2) hulga qDC punktide ja hulka pDC mittekuuluvate punktide kaugused hulga DC
rajast on mitte väiksemad kui α θn

2n�1 .

NB! Kas siia tu-
leb veel üks joonis
teha?

Tõestame väited (1) ja (2). Kirjutame QC � pu, vq.
(1). Olgu P P BpΦrCsq (s.t. P on hulga ΦrCs rajapunkt). Siis lause 5.6, (ac), põhjal P � ΦpQq

mingi Q P BC korral. Me saame kirjutada Q � pu � ∆u, v � ∆vq, kus ∆u ja ∆v rahulda-
vad tingimust maxt|∆u|, |∆v|u � 1

2n�1 . Nüüd p∆u,∆vq P B∆n, seega lause 5.6, (ac), põhjal
ACp∆u,∆vq P B�ACr∆ns

�
ning järelikult P0 :� ΦpQCq�ACp∆u,∆vq P B�ΦpQCq�ACr∆ns

�q � BDC .
Seejuures arvu θn de�nitsiooni põhjalNB! Kas punkti

kaugus hulgast on
üldse kuskil de�-
neeritud?

d
�
P, BDCq ¤ dpP, P0q � d

�
Φpu�∆u, v �∆vq,Φpu, vq �ACp∆u,∆vq� ¤ α θn

2 � 2n�1
.

(2). Olgu P1 P qDC , P2 P R2z pDC ja P0 P BDC . Väite (2) tõestuseks peame näitama, et dpP1, P0q ¥
α θn
2n�1 ja dpP2, P0q ¥ α θn

2n�1 . Selleks märgime, et

P1 � ACpRC �R1q, P2 � ACpRC �R2q, ja P0 � ACpRC �R0q (5.27)

mingite R1 P p1 � θnq∆n, R2 P R2z�p1 � θnq∆n

�
ja R0 P B∆n korral (põhjendada!) . Kuna

dpR1, R0q ¥ θn
2n�1 ja dpR2, R0q ¥ θn

2n�1 (põhjendada!) , siis mõlema i P t1, 2u korral

dpPi, P0q � d
�
ACpRC �Riq, ACpRC �R0q

� ¥ αdpRC �Ri, RC �R0q � αdpRi, R0q ¥ α θn
2n�1

.

Soovitud sisalduvused qDC � ΦrCs � pDC järelduvad väidetest (1) ja (2).

Olgu P1 P qDC ja P2 P R2z pDC . Sisalduvuste qDC � ΦrCs � pDC tõestuseks piisab näidata, et
P1 P ΦrCs ja P2 R ΦrCs. Selleks tähistame PC :� ΦpQCq ja esitame punktid P1 ja P2 valemites (5.27)
antud kujul, kus R1 P p1� θnq∆n ja R2 P R2z�p1� θnq∆n

�
.

Oletame vastuväiteliselt, et P1 R ΦrCs. Kuna PC P ΦrCs, siis punkte PC ja P1 ühendaval
sirglõigul leidub punkt P P BpΦrCsq (vt. ülesande I.1.5 näpunäidet). Väite (1) põhjal d

�
P, BDCq ¤

α θn
2�2n�1 . Teiselt poolt, kuna PC � ACpRCq ja P1 � ACpRC � R1q, siis kujutuse AC lineaarsuse
tõttu leidub punkt R punkte RC ja RC � R1 ühendavalt sirglõigult nii, et P � ACpRq P qDC (siin
viimase kuuluvuse põhjenduseks märgime, et R � RC � tR1 mingi t P r0, 1s korral ning seega
R P RC � p1� θnq∆n). Väite (2) põhjal d

�
P, BDCq ¥ α θn

2n�1 , vastuolu.

Oletame nüüd vastuväiteliselt, et P2 P ΦrCs. Kuna hulk ΦrCs on tõkestatud, siis leidub punkte

PC ja P2 ühendaval sirgel selline punkt P3 P R2zΦrCs, et punkt P2 jääb punktide PC ja P3 vahele.

Punkte P2 ja P3 ühendaval sirglõigul leidub punkt P P BpΦrCsq (vt. ülesande I.1.5 näpunäidet).

Väite (1) põhjal d
�
P, BDCq ¤ α θn

2�2n�1 . Teiselt poolt, kuna PC � ACpRCq ja P2 � ACpRC � R2q, siis
kujutuse AC lineaarsuse tõttu leidub punkt R punkte RC ja RC � R2 ühendavalt sirgelt nii, et

P � ACpRq R pDC (siin viimase mittekuuluvuse põhjenduseks märgime, et R � RC � tR2 mingi

t ¥ 1 korral ning seega R R RC � p1� θnq∆n). Väite (2) põhjal d
�
P, BDCq ¥ α θn

2n�1 , vastuolu.
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5.3.6. Üks teoreemi 5.4 tugevdus

Teoreem 5.4 jääb kehtima, kui temas teisenduse regulaarsuse eeldust mõnevõrra
nõrgendada, nagu seda on tehtud järgnevas teoreemis.

Teoreem 5.8. Olgu D � R2 ning olgu f : D Ñ R pidev funktsioon. Olgu U � R2

lahtine hulk ning olgu teisendus Φ: U Ñ R2 antud süsteemiga

x � xpu, vq, y � ypu, vq, (5.28)

kus funktsioonidel (5.28) eksisteerivad hulgas U pidevad osatuletised. Olgu A �
U ruumis R2 mõõtuv kinnine alamhulk, mille teisendus Φ kujutab hulgaks D, s.t.
ΦrAs � D. Siis hulk D on kinnine ja tõkestatud. Kui leidub nullmõõduga alamhulk
K � A nii, et

(1) ahend Φ|A�zK on üksühene (sümbol A� tähistab hulga A sisemust);

(2) Jpu, vq :� Dpx, yq
Dpu, vqpu, vq �� 0 iga pu, vq P A�zK korral,

siis hulk D on mõõtuv, kusjuures¼
D

fpx, yq dx dy �
¼
A

f
�
xpu, vq, ypu, vq� ��Jpu, vq�� du dv. (5.29)

Tõestus. Hulk D on kinnine ja tõkestatud lause 5.6, (ab), põhjal (vt. märkust 5.2).
Leidugu nullmõõduga alamhulk K � A, mis rahuldab tingimusi (1) ja (2).

Üldisust kitsendamata võime eeldada, et hulk K on kinnine ruumis R2, kusjuures
K � BA, s.t. hulk K sisaldab hulga A raja (põhjendada!) . Tähistame W :�
AzK; siis W on lahtine hulk (sest AzK � A�zK (põhjendada!) ), kusjuures ahend

Φ|W : W Ñ R on regulaarne teisendus (põhjendada!) . Lause 5.6, (aa), põhjal on

kujutishulk ΦrWs lahtine, seega ΦrWs � pΦrAsq� (põhjendada!) .
Teoreemi 2.5 põhjal piisab hulga D mõõtuvuse tõestuseks näidata, et tema ra-

ja BD on nullmõõduline. Selleks paneme tähele, et

BD � BpΦrAsq p1q� ΦrAszpΦrAsq� p2q� ΦrAszΦrWs � ΦrAzWs � ΦrKs
(siin võrdus (1) kehtib hulga ΦrAs kinnisuse tõttu; sisalduvus (2) järeldub sisal-
duvusest pΦrAsq� � ΦrWs). Kuna hulk K on nullmõõduline, siis lause 5.6, (bc),
põhjal (vt. märkust 5.2) on ka kujutishulk ΦrKs nullmõõduline. Niisiis, raja BD on
nullmõõdulise hulga ΦrKs alamhulk, seega ka see raja ise on nullmõõduline, nagu
soovitud.

Mis tahes mõõtuvate alamhulkade E � D ja B � A korral tähistame NB! Kas vajab
põhjendamist, miks
need integraalid
alati eksisteerivad?
Näiteks teoreemi
3.5 põhjal!

IE �
¼
E

fpx, yq dx dy ja JB �
¼
B

f
�
xpu, vq, ypu, vq� ��Jpu, vq�� du dv.

Teoreemi tõestuseks peame näitama, et ID � JA.
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Funktsiooni f ja funktsioonide (5.28) osatuletisfunktsioonide pidevuse tõttu hul-
gas A leidub Weierstrassi teoreemi I.4.7 põhjal reaalarv M ¥ 0 nii, et

|fpu, vq| ¤M,

����BxBupu, vq
���� ¤M,

����BxBv pu, vq
���� ¤M,����ByBupu, vq

���� ¤M,

����ByBv pu, vq
���� ¤M iga pu, vq P A korral.

Ilmselt |Jpu, vq| ¤ 2M2 iga pu, vq P A korral (põhjendada!) . Lause 5.6, (ba) ja (bb),
põhjal (vt. märkust 5.2) leidub reaalarv κ ¡ 0 nii, et

µ�pΦrBsq ¤ κ µ�pBq iga alamhulga B � A korral.

Olgu ε ¡ 0 suvaline (positiivne) reaalarv. Hulga W mõõtuvuse tõttu leidub
kinnine mõõtuv alamhulk L � W nii, et µpWq � µpLq   ε (sellise kinnise mõõtuva
hulga L rolli sobib näiteks teatav diaadiliste ruutude ühend � vt. teoreemi 4.2).

Kuna teoreemi 5.4 põhjal IΦrLs � JL, siis

|ID � JA| �
��pIΦrAszΦrLs � IΦrLsq � pJL � JAzLq

��
¤ |IΦrAszΦrLs| � |JAzL|
¤Mµ

�
ΦrAszΦrLs��M 2M2µpAzLq.

Kuna µpWq � µpWq � µpKq � µpAq, siis
µpAzLq � µpAq � µpLq � µpWq � µpLq   ε.

Kuna ΦrAszΦrLs � ΦrAzLs, siis
µ
�
ΦrAszΦrLs� � µ�

�
ΦrAszΦrLs� ¤ µ�

�
ΦrAzLs� ¤ κµ�pAzLq   κε.

Seega

|ID � JA| ¤Mκε� 2M3ε � pMκ � 2M3qε.
Kuna arvu ε ¡ 0 võisime eelnevas arutelus valida suvaliselt, siis järeldub siit, et
ID � JA, nagu soovitud.

5.3.7. Üleminek polaarkoordinaatidele kahekordses integraalis

Vaatleme teisendust R2 Q pr, ϕq ÞÑ px, yq P R2, mis on määratud süsteemiga

x � r cosϕ, y � r sinϕ. (5.30)

See teisendus seab igale rϕ-tasandi punktile pr, ϕq, kus r ¥ 0, vastavusse xy-tasandi
punkti, mille polaarraadius on r ja polaarnurk on ϕ, s.t. punkti, mille polaarkoordi-
naadid on r ja ϕ (siin me loeme pooluseks koordinaatide alguspunkti ja polaarteljeks
x-telje positiivse osa). Selle teisenduse puhul

x1r � cosϕ, x1ϕ � �r sinϕ,
y1r � sinϕ, y1ϕ � r cosϕ;



� 5. Kahekordse integraali arvutamine 209

seega tema jakobiaan

Jpr, ϕq :� Dpx, yq
Dpr, ϕq �

∣∣∣∣
cosϕ �r sinϕ
sinϕ r cosϕ

∣∣∣∣ � r cos2 ϕ� r sin2 ϕ � rpcos2 ϕ� sin2 ϕq � r.

Näeme, et teisendus (5.30) kujutab rϕ-tasandi hulga pr, ϕq P R2 : r ¥ 0, ϕ P r0, 2πs( (5.31)

sisemuse  pr, ϕq P R2 : r ¡ 0, ϕ P p0, 2πq( (5.32)

regulaarselt xy-tasandiks, millest on välja lõigatud x-telje positiivne osa (koos punk-
tiga p0, 0q); hulga (5.31) raja (s.t. selle hulga osa, kus r � 0 või ϕ P t0, 2πu) kujutab
see teisendus x-telje positiivseks osaks (koos punktiga p0, 0q). Järgnev teoreem järel-
dub nüüd teoreemist 5.8, kui seal võtta teisenduse (5.28) rolli teisendus (5.30) ning
hulkade A ja K rolli vastavalt hulk ∆ ja tema raja B∆. Teoreemi 5.8 tingimused (1)
ja (2) on sel juhul rahuldatud, sest hulga ∆ sisemus sisaldub hulga (5.31) sisemu-
ses (5.32).

Teoreem 5.9. Kui

(1) kahe muutuja funktsioon z � fpx, yq on pidev xy-tasandi kinnises mõõtuvas
hulgas D;

(2) teisendus (5.30) kujutab hulgas (5.31) sisalduva kinnise mõõtuva hulga ∆ hul-
gaks D,

siis ¼
D

fpx, yq dx dy �
¼
∆

f
�
r cosϕ, r sinϕ

�
r dr dϕ. (5.33)

Märkus 5.3. Teoreem 5.9 jääb kehtima, kui temas asendada hulk (5.31) hulgaga pr, ϕq P R2 : r ¥ 0, ϕ P r�π, πs(, (5.34)

kusjuures ka selle teoreemi tõestus jääb niisugusel juhul peaaegu sõna-sõnalt samaks: ainus erinevus
tõestuses on, et hulga (5.31) ja tema sisemuse (5.32) asemel tuleb kõikjal vaadelda vastavalt hulka
(5.34) ja tema sisemust  pr, ϕq P R2 : r ¡ 0, ϕ P p�π, πq(. (5.35)

Märgime, et teisendus (5.30) kujutab hulga (5.34) sisemuse (5.35) regulaarselt xy-tasandiks, millest
on välja lõigatud x-telje negatiivne osa (koos punktiga p0, 0q); hulga (5.34) raja (s.t. selle hulga
osa, kus r � 0 või ϕ P t�π, πu) kujutab see teisendus x-telje negatiivseks osaks (koos punktiga
p0, 0q).

Analoogiline arutelu näitab, et teoreem 5.9 jääb kehtima ka siis, kui temas asendada hulk
(5.31) mis tahes hulgaga

 pr, ϕq P R2 : r ¥ 0, ϕ P rα, α� 2πs(, kus α P R.

Alajaotise lõpetuseks toome kaks näidet polaarkoordinaatidele ülemineku valemi
(5.33) rakendamisest kahekordse integraali arvutamisel.
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NB! See on
ülesannete bro²üüri
2024. a. sügisse-
mestri versiooni ül.
87, a.

Näide 5.2. Leiame kahekordse integraali¼
D

�
x2 � y2

�
dx dy,

kui D on määratud võrratustega x ¥ 0, y ¤ 0 ja x2 � y2 ¤ R2.
Võrratus x2 � y2 ¤ R2 määrab kinnise ringi keskpunktiga p0, 0q ja raadiusega R, seega D on

selle ringi sektor, kus x ¥ 0 ja y ¤ 0 (vt. joonist 5.2).

x

y

0−R R

−R

R
x2 + y2 = R2

D

Joonis 5.2. Hulk D on joonisel värvitud helesiniseks.

Teisendus
x � r cosϕ, y � r sinϕ

(üleminek polaarkoordinaatidelt ristkoordinaatidele xy-tasandil) kujutab hulgaks D rϕ-tasandi
ristküliku

∆ :�  pr, ϕq P R2 : ϕ P ��π
2 , 0

�
, r P r0, Rs(.

(Teisisõnu, hulga D esitus polaarkoordinaatides on rϕ-tasandi ristkülik ∆.) Seega polaarkoordi-
naatidele ülemineku valemi (5.33) põhjal kahekordses integraalis teoreemist 5.9 (vt. märkust 5.3)¼
D

�
x2 � y2

�
dx dy �

¼
∆

�
r2 cos2 ϕ� r2 sin2 ϕ

�
r dr dϕ �

¼
∆

r3
�
cos2 ϕ� sin2 ϕ

�
dr dϕ

�
¼
∆

r3 cos 2ϕdr dϕ �
» R

0

�» 0

�π
2

r3 cos 2ϕdϕ



dr �

» R

0

r3
�» 0

�π
2

cos 2ϕdϕ



dr

�
�» 0

�π
2

cos 2ϕdϕ



�
�» R

0

r3 dr



�

�
sin 2ϕ

2

����0
�π

2

�
�
�
r4

4

����R
0

�
� 0 � R

4

4
� 0.

NB! See on Rei-
mersi ül.-kogu, II,
lk. 161, ül. 875;
samuti ülesannete
bro²üüri 2024. a.
sügissemestri versi-
ooni ül. 87, d.

Näide 5.3. Leiame kahekordse integraali ¼
D

x dx dy,

kus D �  px, yq P R2 : x2 � py � 1q2 ¤ 1, x ¥ 0
(
.

Võrratus x2 � py � 1q2 ¤ 1 määrab kinnise ringi keskpunktiga p0, 1q ja raadiusega 1, seega
D on selle ringi osa, kus x ¥ 0 (vt. joonist 5.3). Arvestades, et xy-tasandi mis tahes punkti px, yq
ristkoordinaadid x ja y ning polaarkoordinaadid r ja ϕ on seotud võrranditega

x � r cosϕ, y � r sinϕ, (5.36)
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x

y

0−1 1

1

2 x2 + (y − 1)2 = 1
ehk r = 2 sinϕ

DD

Joonis 5.3. Hulk D on joonisel värvitud helesiniseks.

saame, et

x2 � py � 1q2 ¤ 1 ðñ x2 � y2 � 2y � 1 ¤ 1 ðñ x2 � y2 ¤ 2y

ðñ r2 cos2 ϕ� r2 sin2 ϕ ¤ 2r sinϕ ðñ r2 ¤ 2r sinϕ ðñ r ¤ 2 sinϕ

(s.t. ring x2 � py � 1q2 ¤ 1 xy-tasandil esitub polaarkoordinaatides võrratusega r ¤ 2 sinϕ).
Seega teisendus (5.36) (üleminek polaarkoordinaatidelt ristkoordinaatidele xy-tasandil) kujutab
hulgaks D rϕ-tasandi kõvertrapetsi

∆ :�  pr, ϕq P R2 : ϕ P �0, π
2

�
, r P r0, 2 sinϕs(.

Teisisõnu, hulga D esitus polaarkoordinaatides on rϕ-tasandi kõvertrapets ∆. Tõepoolest,
hulga D punktide polaarnurgad omandavad parajasti kõikvõimalikke väärtusi lõigust

�
0, π

2

�
;

iga ϕ P �
0, π

2

�
korral nende hulga D punktide puhul, mille polaarnurk on ϕ, omandavad

polaarraadiused parajasti kõikvõimalikke väärtusi lõigust r0, 2 sinϕs.

Kahekordses integraalis polaarkoordinaatidele ülemineku valemi (5.33) põhjal teoreemist 5.9¼
D

x dx dy �
¼
∆

pr cosϕq r dr dϕ �
¼
∆

r2 cosϕdr dϕ �
» π

2

0

�» 2 sinϕ

0

r2 cosϕdr



dϕ

�
» π

2

0

cosϕ

�» 2 sinϕ

0

r2 dr



dϕ �

» π
2

0

cosϕ

�
r3

3

����2 sinϕ

0

�
dϕ � 8

3

» π
2

0

sin3 ϕ cosϕdϕ

� 8

3

» π
2

0

sin3 ϕdpsinϕq � 8

3
�
�
sin4 ϕ

4

����π2
0

�
� 2

3
.

5.3.8. Üleminek elliptilistele polaarkoordinaatidele kahekordses
integraalis

Olgu a ¡ 0 ja b ¡ 0. Vaatleme teisendust R2 Q pr, ϕq ÞÑ px, yq P R2, mis on määratud
süsteemiga

x � ar cosϕ, y � br sinϕ. (5.37)

Kui punkt pr, ϕq P R2, kus r ¥ 0, kujutub teisendusega (5.37) punktiks px, yq P
R2, siis arvudele r ja ϕ viidatakse kui punkti px, yq elliptilistele polaarkoordinaati-
dele. Seost punkti P � px, yq ristkoordinaatide x ja y ning tema elliptiliste polaar-
koordinaatide r ja ϕ vahel selgitab joonis 5.4 (juhime tähelepanu, et punkti px, yq
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x

y

P

ϕ

{
rb raarcosϕ

rb

ra

brsinϕ

x2

r2a2
+

y2

r2b2
= 1

r

r

Joonis 5.4. Punkti P ristkoordinaadid x ja y ning elliptilised polaarkoordi-
naadid r ja ϕ on seotud võrdustega (5.37).

elliptilised polaarkoordinaadid ei ole üheselt määratud). Nimetus �elliptilised polaar-
koordinaadid� on siin �õigustatud� asjaoluga, et (elliptilistes polaaarkoordinaatides
antud) võrrand r � 1 esitab (xy-tasandi) ellipsi x2

a2
� y2

b2
� 1; võrratus r ¤ 1 esitab

ellipsi x2

a2
� y2

b2
¤ 1. (Meenutame, et nii tasandilist joont x2

a2
� y2

b2
� 1 kui ka selle

joonega piiratud tasandilist kujundit x2

a2
� y2

b2
¤ 1 nimetatakse ellipsiks.)

Tõepoolest, arvestades seost (5.37) xy-tasandi punkti px, yq ristkoordinaatide x ja y ning
elliptiliste polaarkoordinaatide r ja ϕ vahel,

x2

a2
� y2

b2
� 1 ðñ a2r2 cos2 ϕ

a2
� b2r2 sin2 ϕ

b2
� 1 ðñ r2pcos2 ϕ� sin2 ϕq � 1

ðñ r2 � 1 ðñ r � 1

ning, analoogiliselt,
x2

a2
� y2

b2
¤ 1 ðñ r ¤ 1.

Märgime, et teisendus (5.37) kujutab rϕ-tasandi ristküliku
 pr, ϕq P R2 : r P r0, 1s, ϕ P

r0, 2πs( ellipsiks
 px, yq P R2 : x2

a2
� y2

b2
¤ 1

(
xy-tasandil.
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Teisenduse (5.37) puhul

x1r � a cosϕ, x1ϕ � �ar sinϕ,
y1r � b sinϕ, y1ϕ � br cosϕ;

seega tema jakobiaan

Jpr, ϕq :� Dpx, yq
Dpr, ϕq �

∣∣∣∣
a cosϕ �ar sinϕ
b sinϕ br cosϕ

∣∣∣∣ � abr cos2 ϕ� abr sin2 ϕ

� abrpcos2 ϕ� sin2 ϕq � abr.

Näeme, et teisendus (5.37) kujutab rϕ-tasandi hulga (5.31) sisemuse (5.32) regu-
laarselt xy-tasandiks, millest on välja lõigatud x-telje positiivne osa (koos punkti-
ga p0, 0q); hulga (5.31) raja (s.t. selle hulga osa, kus r � 0 või ϕ P t0, 2πu) kujutab
see teisendus x-telje positiivseks osaks (koos punktiga p0, 0q).

Järgneva teoreemi tõestus kordab sõna-sõnalt teoreemi 5.9 tõestust ainsa erine-
vusega, et teisenduse (5.30) asemel vaadeldakse kõikjal teisendust (5.37).

Teoreem 5.10. Kui

(1) kahe muutuja funktsioon z � fpx, yq on pidev xy-tasandi kinnises mõõtuvas
hulgas D;

(2) teisendus (5.37) kujutab hulgas (5.31) sisalduva kinnise mõõtuva hulga ∆ hul-
gaks D,

siis ¼
D

fpx, yq dx dy � ab

¼
∆

f
�
aar cosϕ, br sinϕ

�
r dr dϕ. (5.38)

Alajaotise lõpetuseks toome ühe näite elliptilistele polaarkoordinaatidele üle-
mineku valemi (5.38) rakendamisest kahekordse integraali arvutamisel.

NB! See on Rei-
mersi ül.-kogu, II,
lk. 161, ül. 872;
samuti ülesannete
bro²üüri 2024. a.
sügissemestri versi-
ooni ül. 87, i.

Näide 5.4. Leiame kahekordse integraali¼
D

a
6� 2x2 � 3y2 dx dy,

kui D on määratud võrratusega x2

3 � y2

2 ¤ 1.
Hulk D on ellips pooltelgedega a :� ?

3 ja b :� ?
2. Teisendus

x �
?
3r cosϕ, y �

?
2r sinϕ

(üleminek elliptilistelt polaarkoordinaatidelt ristkoordinaatidele xy-tasandil) kujutab ellipsiks D
rϕ-tasandi ristküliku

∆ :�  pr, ϕq P R2 : ϕ P r0, 2πs, r P r0, 1s(.
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Elliptilistele polaarkoordinaatidele ülemineku valemi (5.38) põhjal kahekordses integraalis teoree-
mist 5.10¼
D

a
6� 2x2 � 3y2 dx dy �

?
3 �
?
2 �

¼
∆

b
6� 2 � 3r2 cos2 ϕ� 3 � 2r2 sin2 ϕ r dr dϕ

�
?
6 �

¼
∆

b
6� 6r2pcos2 ϕ� sin2 ϕq r dr dϕ � 6 �

¼
∆

a
1� r2 r dr dϕ

� 6 �
» 2π

0

�» 1

0

a
1� r2 r dr



dϕ � 6 �

�» 1

0

a
1� r2 r dr



�
�» 2π

0

dϕ




� 6 �
�
�1

2

» 1

0

a
1� r2 d

�
1� r2

�
 � 2π � 6π �
���

1� r2
� 3

2

3
2

����0
1

�
� 4π.



� 6. Kahekordse integraali rakendusi

6.1. Tasandilise kujundi pindala arvutamine

Järgnev teoreem sisaldub Jordani mõõdu de�nitsioonis 2.3.

Teoreem 6.1. Olgu D mõõtuv hulk xy-tasandil. Siis tema pindala SD avaldub vale-
miga

SD �
¼
D

dx dy.

Järeldus 6.2. Olgu y � αpxq ja y � βpxq lõigus ra, bs pidevad funktsioonid, kusjuu-
res αpxq ¤ βpxq iga x P ra, bs korral. Siis kõvertrapets

A :�  px, yq P R2 : x P ra, bs, αpxq ¤ y ¤ βpxq(
on mõõtuv hulk (tasandil R2), kusjuures tema pindala SA avaldub valemiga

SA �
» b

a

�
βpxq � αpxq� dx.

Tõestus. Kõvertrapetsi A mõõtuvus on tõestatud lauses 2.7. Teoreemi 6.1 põhjal
(kasutades kahekordse integraali arvutusvalemit üle kõvertrapetsi teoreemist 5.2, (a))

SA �
¼
A

dx dy �
» b

a

�» βpxq

αpxq
dy



dx �

» b

a

�
βpxq � αpxq� dx.

Järeldus 6.3. Olgu r � rpϕq lõigus rα, βs pidev funktsioon, kus 0 ¤ α   β ¤ 2π.
Siis (polaarkoordinaatides antud) kõversektor pr, ϕq P R2 : ϕ P rα, βs, 0 ¤ r ¤ rpϕq( (6.1)

on mõõtuv hulk (tasandil R2), kusjuures tema pindala S avaldub valemiga

S � 1

2

» β

α

rpϕq2 dϕ.

Tõestus. Tähistame hulga (6.1) tõlgendatuna kõversektorina xy-tasandil tähe-
ga D; hulga (6.1) tõlgendatuna kõvertrapetsina rϕ-tasandil tähistame tähega ∆. Siis
kõversektori D mõõtuvus järeldub teoreemist 5.8, kui seal võtta teisenduse (5.28)
rolli teisendus (5.30) ning hulkade A ja K rolli vastavalt hulk ∆ ja tema raja B∆.

Tõepoolest, teoreemi 5.8 tingimused (1) ja (2) on sel juhul rahuldatud, sest hulga ∆ sisemus
sisaldub hulga (5.31) sisemuses (5.32) (vt. alajaotist 5.3.7).

215
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Teoreemi 6.1 põhjal, kasutades polaarkoordinaatidele ülemineku valemit (5.33) kahe-
kordses integraalis teoreemist 5.9 ja kahekordse integraali arvutusvalemit üle kõver-
trapetsi teoreemist 5.2, (a),

S �
¼
D

dx dy �
¼
∆

r dr dϕ �
» β

α

�» rpϕq

0

r dr



dϕ �

» β

α

�
r2

2

����rpϕq
0



dϕ �

» β

α

rpϕq2
2

dϕ

� 1

2

» β

α

rpϕq2 dϕ.

Märkus 6.1. Järeldus 6.3 jääb kehtima, kui temas eeldus 0 ¤ α   β ¤ 2π asendada eeldusega
�π ¤ α   β ¤ π, kusjuures ka selle järelduse tõestus jääb niisugusel juhul peaaegu sõna-sõnalt
samaks: ainus erinevus tõestuses on, et hulga (5.31) ja tema sisemuse (5.32) asemel tuleb kõikjal
vaadelda vastavalt hulka (5.34) ja tema sisemust (5.35) (vt. märkust 5.3).

6.2. Kõversilindri ruumala arvutamine

Selles punktis anname arvutusvalemi kõversilindri ruumala arvutamiseks. Keha2

ruumala mõistet me käesolevas kursuses ei de�neeri; rõhutame vaid, et ruumala
matemaatiliselt range de�nitsioon on kooskõlas meie eelmatemaatilise arusaama-
ga ruumalast, nii et edasises võime rahulikult toetuda nimetatud eelmatemaatilisele
arusaamale. Täpsemalt, analoogiliselt kahekordse (Riemanni) integraaliga (ruumi R2

alamhulgal määratud funktsioonist) de�neeritakse kolmekordne (Riemanni) integ-
raal (ruumi R3 alamhulgal määratud funktsioonist); analoogiliselt Jordani mõõduga
ruumis R2 de�neeritakse Jordani mõõt ruumis R3 � öeldakse, et ruumi R3 alamhulk
on Jordani mõttes mõõtuv, kui tema karakteristlik funktsioon on (Riemanni mõttes)
integreeruv selles hulgas; seejuures integraali selle hulga karakteristlikust funktsioo-
nist üle selle hulga nimetatakse tema Jordani mõõduks ehk ruumalaks.

NB! Tavaliselt
nimetatakse hul-
ka C teoreemist 6.4
kõversilindriks
eeldustel, et hulk A
on mõõtuv kinnine
piirkond tasandil
R2 ja funktsioonid
α ja β on pidevad
hulgas A. Meie
mõistame käes-
olevas konspektis
kõversilindrit
laiemas tähendus-
es, nõudes siin
hulgalt A ainult
tõkestatust ning
funktsioonidelt α
ja β tõkestatust
ja tingimuse
�αpx, yq ¤ βpx, yq
iga px, yq P A
korral� täidetust.

Teoreem 6.4. Olgu A � R2 mõõtuv kinnine hulk ning olgu funktsioonid

α � αpx, yq ja β � βpx, yq, px, yq P A,

pidevad hulgas A, kusjuures

αpx, yq ¤ βpx, yq iga px, yq P A korral.

Siis kõversilinder

C :�  px, y, zq P R3 : px, yq P A, αpx, yq ¤ z ¤ βpx, yq(
on mõõtuv hulk ruumis R3, kusjuures tema ruumala VC avaldub valemiga

VC �
¼
A

�
βpx, yq � αpx, yq� dx dy.

Teoreemi 6.4 tõestame käesolevas konspektis (järgmises) paragrahvis 7 järelduse 7.11
nime all: teoreem 6.4 ja järeldus 7.11 on sõna-sõnalt samad.

2Keha ehk ruumilise kujundi all mõistame me ruumi R3 alamhulki.
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6.3. Ruumilise pinnatüki pindala arvutamine

Selles punktis anname mõned arvutusvalemid ruumilise pinnatüki pindala arvuta-
miseks. Ruumilise pinnatüki pindala mõistet me käesolevas kursuses ei de�neeri �
see matemaatiselt range de�nitsioon on üsna keeruline � rõhutame vaid, et see de�-
nitsioon on kooskõlas meie eelmatemaatilise arusaamaga pindalast, nii et edasises
võime rahulikult toetuda nimetatud eelmatemaatilisele arusaamale.

Teoreem 6.5. Eksisteerigu funktsioonidel

x � xpu, vq, y � ypu, vq, z � zpu, vq
pidevad osatuletised uv-tasandi mõõtuvas kinnises piirkonnas ∆, kusjuures

A2 �B2 � C2 �� 0 piirkonnas ∆,

kus

A :�
∣∣∣∣
y1u y1v
z1u z1v

∣∣∣∣ , B :�
∣∣∣∣
z1u z1v
x1u x1v

∣∣∣∣ , C :�
∣∣∣∣
x1u x1v
y1u y1v

∣∣∣∣ .

Siis parameetriliste võrranditega

x � xpu, vq, y � ypu, vq, z � zpu, vq, pu, vq P ∆,

antud pinnatüki Σ pindala SΣ esitub valemiga

SΣ �
¼
∆

?
A2 �B2 � C2 du dv.

Seda teoreemi me käesolevas kursuses ei tõesta .

Järeldus 6.6. Eksisteerigu funktsioonil z � fpx, yq pidevad osatuletised mõõtuvas
kinnises piirkonnas D � R2. Siis selle funktsiooni graa�ku osa

Σ :�
!�
x, y, fpx, yq� : px, yq P D

)
pindala SΣ avaldub valemiga

SΣ :�
¼
D

b
pz1xq2 � pz1yq2 � 1 dx dy �

¼
D

b
f 1xpx, yq2 � f 1ypx, yq2 � 1 dx dy.

Tõestus. Graa�ku osa (pinnatükk) Σ esitub parameetriliselt võrranditega

x � u, y � v, z � fpu, vq, pu, vq P D. (6.2)

Seda pinnatükki esitavatel funktsioonidel (6.2) eksisteerivad hulgas D pidevad osa-
tuletised, kusjuures

x1u � 1, x1v � 0,

y1u � 0, y1v � 1,

z1u � f 1x, z1v � f 1y,
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seega teoreemi 6.5 tähistusi kasutades

A �
∣∣∣∣
0 1
f 1x f 1y

∣∣∣∣ � �f 1x, B �
∣∣∣∣
f 1x f 1y
1 0

∣∣∣∣ � �f 1y, C �
∣∣∣∣
1 0
0 1

∣∣∣∣ � 1,

järelikult teoreemi 6.5 põhjal

SΣ �
¼
D

b
f 1xpu, vq2 � f 1ypu, vq2 � 1 du dv,

nagu soovitud.
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7.1. Kolmekordse integraali mõiste

Kolmekordne integraal ½
E

fpx, y, zq dx dy dz

kolme muutuja funktsioonist u � fpx, y, zq üle hulga E � R3 de�neeritakse ana-
loogiliselt kahekordse integraaliga (kahe muutuja funktsioonist üle hulga D � R2).
Kui kahekordse integraali de�neerimisel lähtuti ristküliku jaotusviisist osaristküli-
kuteks, siis kolmekordse integraali puhul lähtutakse risttahuka jaotusviisist osarist-
tahukateks; kõik teooriaarenduseks vajalikud mõisted � Riemanni summad, Rieman-
ni integraal, Darboux' summad, Darboux' integraalid, integreeruvus, Darboux' sum-
made piirväärtus, � de�neeritakse analoogiliselt kahekordse integraali juhuga; see-
juures kolmekordse integraali olemasoluks tarvilikud ja piisavad tingimused ning
kolmekordse integraali omadused on kahekordse integraali vastavate tingimuste ja
omaduste ilmsed analoogid. Seepärast piirdume käesolevas konspektis kolmekordse
integraali osas vaid olulisemate arvutusvalemite äratoomisega.

7.2. Kolmekordse integraali arvutamine

Teoreem 7.1. Olgu kolme muutuja funktsioon u � fpx, y, zq integreeruv risttahukas
E :� ra, bs � rc, ds � re, ls. Tähistame D :� ra, bs � rc, ds.
(a) Kui iga px, yq P D korral eksisteerib integraal

gpx, yq :�
» l

e

fpx, y, zq dz,

siis½
E

fpx, y, zq dx dy dz �
¼
D

�» l

e

fpx, y, zq dz


dx dy �

¼
D

gpx, yq dx dy.

(b) Kui iga z P re, ls korral eksisteerib integraal

hpzq :�
¼
D

fpx, y, zq dx dy,

siis ½
E

fpx, y, zq dx dy dz �
» l

e

��¼
D

fpx, y, zq dx dy
�
dz � » l

e

hpzq dz.

Teoreemi 7.1 me käesolevas kursuses ei tõesta .
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Teoreem 7.2. Olgu A � R2 tõkestatud hulk ning olgu funktsioonid

γ � γpx, yq ja δ � δpx, yq, px, yq P A, (7.1)

tõkestatud hulgas A, kusjuures

γpx, yq ¤ δpx, yq iga px, yq P A korral. (7.2)

Kui kolme muutuja funktsioon u � fpx, y, zq on integreeruv kõversilindris

C :�  px, y, zq P R3 : px, yq P A, γpx, yq ¤ z ¤ δpx, yq(, (7.3)

kusjuures iga px, yq P A korral eksisteerib integraal

gpx, yq :�
» δpx,yq

γpx,yq
fpx, y, zq dz, (7.4)

siis½
C

fpx, y, zq dx dy dz �
¼
A

�» δpx,yq

γpx,yq
fpx, y, zq dz

�
dx dy �

¼
A

gpx, yq dx dy. (7.5)

Teoreemi 7.2 tõestus. Hulga A tõkestatuse tõttu leidub kinnine (koordinaat)ristkülik
D � R2 nii, et A � D. Olgu arvud a, b, c, d P R, kus a   b ja c   d, sellised, et D �
ra, bs � rc, ds. Funktsioonide γ ja δ tõkestatuse tõttu leiduvad arvud e, l P R nii, et e   l ja
e ¤ γpx, yq ¤ δpx, yq ¤ l iga px, yq P A korral. Tähistame E :� ra, bs�rc, ds�re, ls; siis C � E .

Eeldame nüüd, et funktsioon u � fpx, y, zq on integreeruv kõversilindris C, kusjuures iga
px, yq P A korral eksisteerib integraal (7.4). De�neerime funktsiooni pf : E Ñ R võrdusega

pfpx, y, zq � #
fpx, y, zq, kui px, y, zq P C;
0, kui px, y, zq P EzC. (7.6)

Siis (funktsiooni f integreeruvuse tõttu hulgas C) on funktsioon pf integreeruv risttahukas E ,
kusjuures iga px, yq P D korral (eelduse põhjal integraali (7.4) olemasolust) eksisteerib integ-
raal

rgpx, yq :� » l

e

pfpx, y, zq dz � #³δpx,yq
γpx,yq fpx, y, zq dz, kui px, yq P A;

0, kui px, yq P DzA.

Seega teoreemi 7.1, (a), põhjal½
C

fpx, y, zq dx dy dz �
½
E

pfpx, y, zq dx dy dz �¼
D

�» l

e

pfpx, y, zq dz� dx dy �
¼
D

rgpx, yq dx dy.
De�neerime funktsiooni pg : D Ñ R võrdusega

pgpx, yq :� #
gpx, yq, kui px, yq P A;

0, kui px, yq P DzA

(siin funktsioon g on de�neeritud võrdusega (7.4)); siis pg � rg, seega funktsioon pg on integreerv
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ristkülikus D, järelikult funktsioon g on integreeruv hulgas A, kusjuures½
C

fpx, y, zq dx dy dz �
¼
D

rgpx, yq dx dy �¼
D

pgpx, yq dx dy �¼
A

gpx, yq dx dy.

Järeldus 7.3. Olgu A � R2 mõõtuv kinnine hulk ning olgu funktsioonid (7.1) pide-
vad hulgas A, kusjuures kehtib (7.2). Kui kolme muutuja funktsioon u � fpx, y, zq
on pidev kõversilindris (7.3), siis funktsioon f on integreeruv selles kõversilindris,
kusjuures iga px, yq P A korral eksisteerib integraal (7.4) ja kehtib (7.5).

Järeldust 7.3 me käesolevas kursuses ei tõesta .

Esitame järelduse 7.3 tõestuse skeemi. Kehtib lause 2.7 analoog, mille kohaselt meie eeldustel

on kõversilinder C Jordani mõttes mõõtuv hulk ruumis R3. (See lause 2.7 analoog järeldub

teoreemi 2.5 analoogist, mille kohaselt tõkestatud hulk ruumis R3 on Jordani mõttes mõõtuv

parajasti siis, kui tema raja on nullmõõduline, kasutades lause 2.4 analoogi, mille kohaselt

ruumi R2 mõõtuvas kinnises alamhulgas määratud pideva funktsiooni graa�k on nullmõõdu-

line, ja teoreemi 2.5). Eeldame nüüd, et kolme muutuja funktsioon u � fpx, y, zq on pidev

kõversilindris C. Kehtib teoreemi 2.8 analoog, mis ütleb, et ruumi R3 mõõtuvas kinnises

alamhulgas pidev (kolme muutuja) funktsioon on (Riemanni mõttes) integreeruv selles hulgas;

niisiis meie funktsioon f on (Riemanni mõttes) integreeruv kõversilindris C. Iga px, yq P A
korral on funktsioon fpx, y, �q pidev lõigus �αpx, yq, βpx, yq� ja seega integraal (7.4) eksisteerib.
Nüüd teoreemi 7.2 põhjal kehtib (7.5).

Järeldus 7.4. Olgu funktsioonid α � αpxq ja β � βpxq pidevad lõigus ra, bs, kusjuu-
res αpxq ¤ βpxq iga x P ra, bs korral, ning olgu funktsioonid γ � γpx, yq ja δ � δpx, yq
pidevad kõvertrapetsis

A :�  px, yq P R2 : x P ra, bs, αpxq ¤ y ¤ βpxq(,
kusjuures γpx, yq ¤ δpx, yq iga px, yq P A korral.

Kui funktsioon u � fpx, y, zq on pidev kõversilindris

C :�  px, y, zq P R3 : px, yq P A, γpx, yq ¤ z ¤ δpx, yq(
�  px, y, zq P R3 : x P ra, bs, αpxq ¤ y ¤ βpxq, γpx, yq ¤ z ¤ δpx, yq(,

siis funktsioon f on integreeruv selles kõversilindris, kusjuures½
C

fpx, y, zq dx dy dz �
» b

a

�» βpxq

αpxq

�» δpx,yq

γpx,yq
fpx, y, zq dz



dy



dx.
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Järelduse 7.4 tõestus. Kõigepealt paneme tähele, et kõvertrapets A on kinnine hulk
tasandil R2 (põhjendada!) . Lause 2.7 põhjal on A tasandi R2 Jordani mõttes mõõtuv
alamhulk. Eeldame nüüd, et kolme muutuja funktsioon u � fpx, y, zq on pidev kõversilind-
ris C. Järelduse 7.3 põhjal on funktsioon f integreeruv selles kõversilindris, kusjuures iga
px, yq P A korral eksisteerib integraal (7.4) ja kehtib (7.5). Järelduse tõestuseks piisab nüüd
näidata, et

p�q funktsioon g on pidev kõvertrapetsis A,

sest väite p�q kehtides on iga x P ra, bs korral funktsioon gpx, �q pidev lõigus
�
αpxq, βpxq� ja

seega eksisteerib integraal
³βpxq
αpxq gpx, yq dy, niisiis kahekordse integraali arvutusvalemi põhjal

üle kõvertrapetsi teoreemist 5.2, (a),½
C

fpx, y, zq dx dy dz �
¼
A

gpx, yq dx dy �
» b

a

�» βpxq

αpxq
gpx, yq dy



dx

�
» b

a

�» βpxq

αpxq

�» δpx,yq

γpx,yq
fpx, y, zq dz



dy



dx.

Ülesanne 7.1. Tõestada väide p�q.

Teoreem 7.5. Olgu kolme muutuja funktsioon u � fpx, y, zq integreeruv hulgas

C :�  px, y, zq P R3 : z P re, ls, px, yq P Apzq(,
kus iga z P re, ls korral Apzq on mingi hulk xy-tasandil. Kui iga z P re, ls korral
eksisteerib integraal

hpzq :�
¼
Apzq

fpx, y, zq dx dy, (7.7)

siis ½
C

fpx, y, zq dx dy dz �
» l

e

���¼
Apzq

fpx, y, zq dx dy

��
dz � » l

e

hpzq dz.

Teoreemi 7.5 tõestus. Eeldusest funktsiooni f integreeruvuse kohta hulgas C järeldub
implitsiitselt, et hulk C on tõkestatud, järelikult leidub kinnine koordinaatristkülik D � R2

nii, et Apzq � D iga z P re, ls korral. Olgu a, b, c, d P R, kus a   b ja c   d, sellised, et
D � ra, bs � rc, ds. Tähistame E :� ra, bs � rc, ds � re, ls; siis C � E .

De�neerime funktsiooni pf : E Ñ R võrdusega (7.6). Siis (funktsiooni f integreeruvuse
tõttu hulgas C) on funktsioon pf integreeruv risttahukas E , kusjuures iga z P re, ls korral
(eelduse põhjal integraali (7.7) olemasolust) eksisteerib integraal¼

D

pfpx, y, zq dx dy � ¼
Apzq

fpx, y, zq dx dy � hpzq.
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Seega teoreemi 7.1, (b), põhjal

½
C

fpx, y, zq dx dy dz �
½
E

pfpx, y, zq dx dy dz � » l

e

��¼
D

pfpx, y, zq dx dy
�
dz �

» l

e

hpzq dz.

7.3. Muutujate vahetus kolmekordses integraalis

7.3.1. Üldine muutujate vahetuse valem kolmekordse integraali jaoks

Vaatleme teisendust ruumis R3, mis on määratud süsteemiga

x � xpu, v, wq, y � ypu, v, wq, z � zpu, v, wq. (7.8)

Tähistame

Jpu, v, wq :� Dpx, y, zq
Dpu, v, wq �

∣∣∣∣∣∣

x1upu, v, wq x1vpu, v, wq x1wpu, v, wq
y1upu, v, wq y1vpu, v, wq y1wpu, v, wq
z1upu, v, wq z1vpu, v, wq z1wpu, v, wq

∣∣∣∣∣∣
,

s.t. Jpu, v, wq on süsteemi (7.8) jakobiaan punktis pu, v, wq.

Teoreem 7.6. Kui

(1) kolme muutuja funktsioon t � fpx, y, zq on pidev (xyz-ruumi) mõõtuvas kin-
nises hulgas E;

(2) võrrandid (7.8) määravad regulaarse teisenduse, mis kujutab (uvw-ruumi) mõõ-
tuva kinnise hulga ∆ hulgaks E,

siis ½
E

fpx, y, zq dx dy dz

�
½
∆

f
�
xpu, v, wq, ypu, v, wq, zpu, v, wq� ��Jpu, v, wq�� du dv dw. (7.9)

Teoreemi 7.6 me käesolevas kursuses ei tõesta .

7.3.2. Üks teoreemi 7.6 tugevdus

Teoreem 7.6 jääb kehtima, kui temas teisenduse regulaarsuse eeldust mõnevõrra
nõrgendada, nagu seda on tehtud järgnevas teoreemis (mis on teoreemi 5.8 loomulik
analoog).
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Teoreem 7.7. Olgu E � R3 ning olgu f : E Ñ R pidev funktsioon. Olgu U � R3

lahtine hulk ning olgu teisendus Φ: U Ñ R3 antud süsteemiga (7.8), kus funktsiooni-
del (7.8) eksisteerivad hulgas U pidevad osatuletised. Olgu ∆ � U ruumis R3 mõõtuv
kinnine alamhulk, mille teisendus Φ kujutab hulgaks E, s.t. Φr∆s � E. Siis hulk E
on kinnine ja tõkestatud. Kui leidub nullmõõduga alamhulk K � ∆ nii, et

(1) ahend Φ|∆�zK on üksühene (sümbol ∆� tähistab hulga ∆ sisemust);

(2) Jpu, v, wq :� Dpx, y, zq
Dpu, v, wqpu, v, wq �� 0 iga pu, v, wq P ∆�zK korral,

siis hulk E on mõõtuv, kusjuures kehtib valem (7.9).

Teoreemi 7.7 me käesolevas kursuses ei tõesta .

7.3.3. Üleminek silindrilistele koordinaatidele kolmekordses integraalis

Vaatleme teisendust R3 Q pr, ϕ, hq ÞÑ px, y, zq P R3, mis on määratud süsteemiga

x � r cosϕ, y � r sinϕ, z � h. (7.10)

See teisendus seab igale rϕh-ruumi punktile pr, ϕ, hq, kus r ¥ 0, vastavusse xyz-
ruumi punkti, mille silindrilised koordinaadid on r, ϕ ja h (vt. joonist 7.1).

x

y

z

P = (x, y, z)

x y

z = h

r

r

r
ϕ

Joonis 7.1. Punkti P ristkoordinaadid x, y ja z ning silindrilised koordinaadid
r, ϕ ja h on seotud võrdustega (7.10).
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Selle teisenduse puhul

x1r � cosϕ, x1ϕ � �r sinϕ, x1h � 0,

y1r � sinϕ, y1ϕ � r cosϕ, y1h � 0,

z1r � 0, z1ϕ � 0, z1h � 1,

seega tema jakobiaan

Jpr, ϕ, hq : � Dpx, y, zq
Dpr, ϕ, hq �

∣∣∣∣∣∣

cosϕ �r sinϕ 0
sinϕ r cosϕ 0
0 0 1

∣∣∣∣∣∣
� r cos2 ϕ� r sin2 ϕ � rpcos2 ϕ� sin2 ϕq � r.

Näeme, et teisendus (7.10) kujutab rϕh-ruumi hulga pr, ϕ, hq P R3 : r ¥ 0, ϕ P r0, 2πs, h P R
(

(7.11)

sisemuse  pr, ϕ, hq P R3 : r ¡ 0, ϕ P p0, 2πq, h P R
(

regulaarselt xyz-ruumiks, millest on välja lõigatud pooltasand px, y, zq P R3 : y � 0, x ¥ 0
(

(7.12)

(s.t. zx-tasandi osa, kus x ¥ 0); hulga (7.11) raja (s.t. selle hulga osa, kus r � 0 või
ϕ P t0, 2πu) kujutab see teisendus pooltasandiks (7.12). Järgnev teoreem järeldub
nüüd teoreemist 7.7.

Teoreem 7.8. Kui

(1) kolme muutuja funktsioon t � fpx, y, zq on pidev xyz-ruumi mõõtuvas kinnises
hulgas E;

(2) teisendus (7.10) kujutab hulgas (7.11) sisalduva mõõtuva kinnise hulga ∆ hul-
gaks E,

siis ½
E

fpx, y, zq dx dy dz �
½
∆

f
�
r cosϕ, r sinϕ, h

�
r dr dϕ dh.

7.3.4. Üleminek sfäärilistele koordinaatidele kolmekordses integraalis

Vaatleme teisendust R3 Q pr, θ, ϕq ÞÑ px, y, zq P R3, mis on määratud süsteemiga

x � r sin θ cosϕ, y � r sin θ sinϕ, z � r cos θ. (7.13)

See teisendus seab igale rθϕ-ruumi punktile pr, θ, ϕq, kus r ¥ 0 ja θ P r0, πs, vasta-
vusse xyz-ruumi punkti, mille sfäärilised koordinaadid on r, θ ja ϕ (vt. joonist 7.2).
Selle teisenduse puhul
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x

y

z

ϕ

θ

P = (x, y, z)

x y

z

r

r

r

r sin θ

r

Joonis 7.2. Punkti P ristkoordinaadid x, y ja z ning sfäärilised koordinaadid
r, θ ja ϕ on seotud võrdustega (7.13).

x1r � sin θ cosϕ, x1θ � r cos θ cosϕ, x1ϕ � �r sin θ sinϕ,
y1r � sin θ sinϕ, y1θ � r cos θ sinϕ, y1ϕ � r sin θ cosϕ,

z1r � cos θ, z1θ � �r sin θ, z1ϕ � 0,

seega tema jakobiaan

Jpr, θ, ϕq : � Dpx, y, zq
Dpr, θ, ϕq �

∣∣∣∣∣∣

sin θ cosϕ r cos θ cosϕ �r sin θ sinϕ
sin θ sinϕ r cos θ sinϕ r sin θ cosϕ

cos θ �r sin θ 0

∣∣∣∣∣∣
� r2 sin θ cos2 θ cos2 ϕ� r2 sin3 θ sin2 ϕ

r2 sin θ cos2 θ sin2 ϕ� r2 sin3 θ cos2 ϕ

� r2 sin θ cos2 θpcos2 ϕ� sin2 ϕq � r2 sin3 θpsin2 ϕ� cos2 ϕq
� r2 sin θ cos2 θ � r2 sin3 θ � r2 sin θpcos2 θ � sin2 θq
� r2 sin θ.

Näeme, et teisendus (7.13) kujutab rθϕ-ruumi hulga pr, θ, ϕq P R3 : r ¥ 0, θ P r0, πs, ϕ P r0, 2πs( (7.14)

sisemuse  pr, θ, ϕq P R3 : r ¡ 0, θ P p0, πq, ϕ P p0, 2πq(
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regulaarselt xyz-ruumiks, millest on välja lõigatud pooltasand (7.12) (s.t. zx-tasandi
osa, kus x ¥ 0); hulga (7.14) raja (s.t. selle hulga osa, kus r � 0 või θ P t0, πu või
ϕ P t0, 2πu) kujutab see teisendus pooltasandiks (7.12). Järgnev teoreem järeldub
nüüd teoreemist 7.7.

Teoreem 7.9. Kui

(1) kolme muutuja funktsioon t � fpx, y, zq on pidev xyz-ruumi mõõtuvas kinnises
hulgas E;

(2) teisendus (7.13) kujutab hulgas (7.14) sisalduva mõõtuva kinnise hulga ∆ hul-
gaks E,

siis ½
E

fpx, y, zq dx dy dz

�
½
∆

f
�
r sin θ cosϕ, r sin θ sinϕ, r cos θ

�
r2 sin θ dr dθ dϕ.

7.4. Kolmekordse integraali rakendusi

7.4.1. Keha ruumala arvutamine

Järgnev teoreem sisaldub Jordani mõõdu de�nitsioonis ruumis R3. NB! Jordani mõõ-

tu ruumis R3 me
käesolevas konspek-
tis pole de�neeri-
nud; selle de�nit-
siooni kirjeldus on
antud jaotise 6.2
sissejuhatavas lõi-
gus.

Teoreem 7.10. Mõõtuva hulga E � R3 ruumala VE avaldub valemiga

VE �
½
E

dx dy dz.

Järeldus 7.11. Olgu A � R2 mõõtuv kinnine hulk ning olgu funktsioonid

α � αpx, yq ja β � βpx, yq, px, yq P A,

pidevad hulgas A, kusjuures

αpx, yq ¤ βpx, yq iga px, yq P A korral.

Siis kõversilinder

C :�  px, y, zq P R3 : px, yq P A, αpx, yq ¤ z ¤ βpx, yq(
on mõõtuv hulk ruumis R3, kusjuures tema ruumala VC avaldub valemiga

VC �
¼
A

�
βpx, yq � αpx, yq� dx dy.

Tõestus. Kõversilindri C mõõtuvust me käesolevas kursuses ei tõesta.
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Kõversilindri C mõõtuvuse tõestus toetub teoreemi 2.5 analoogile, mille kohaselt tõkestatud

hulk ruumis R3 on Jordani mõttes mõõtuv parajasti siis, kui tema raja on nullmõõduline.

Kõversilindri C mõõtuvuse tõttu eksisteerib kolmekordne integraal
µ

C dx dy dz,
kusjuures teoreemi 7.10 põhjal, kasutades kolmekordse inegraali arvutusvalemit üle
kõversilindri teoreemist 7.2,

VC �
½
C

dx dy dz �
¼
A

�» βpx,yq

αpx,yq
dz



dx dy �

¼
A

�
βpx, yq � αpx, yq� dx dy.



VI peatükk.

Joonintegraalid

� 1. Joone kaare pikkus

1.1. Tasandilise joone mõiste

Meenutame (vt. alajaotist I.1.6.2), et (pidevaks ehk Jordani) jooneks ruumis Rm

nimetatakse pidevat funktsiooni Φ: T Ñ Rm, kus T � R on mingi intervall. Hulka
tΦptq : t P T u ruumis Rm (s.t. funktsiooni Φ väärtuste hulka) nimetatakse seejuures
joone Φ jäljeks. Funktsiooni Φ argumendile (antud juhul muutujale t) viidatakse
kui parameetrile. Jooni ruumis R2 nimetatakse tasandilisteks joonteks. Olulisemaid
joonte esitusviise (esitus parameetriliste võrranditega, tasandilise joone esitus võr-
randiga y � fpxq ning polaarkoordinaatides) on tutvustatud alajaotises I.1.6.3.

Joont Φ: T Ñ Rm on kõige lihtsam ette kujutada kui ruumis Rm eeskirja u �
Φptq järgi liikuva punkti trajektoori: ajahetkel t P T asub liikuv punkt ruumis Rm

punktis Φptq (vt. joonist 1.1, kus m � 2).

x

y

Φ(t)

ϕ1(t)

ϕ2(t)

Joonis 1.1. Siin Φptq �
�
ϕ1ptq, ϕ2ptq

�
, s.t. ϕ1ptq ja ϕ2ptq on punkti Φptq

(rist)koordinaadid.

229
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Sageli, kõneldes joonest, peetakse tegelikult silmas hoopis teatava joone jälge. Näi-
teks viidates mingi joone punktidele, mõistetakse selle all hoopis kõnealuse joone
jälje punkte jne. Sedalaadi terminoloogilist ebatäpsust, mis üldjuhul sisulist kaksi-
pidimõistmist ei tekita, lubame endale käesolevas konspektis ka meie.

Kui intervall T on lõik, s.t. T � rα, βs mingite α, β P R, α   β, korral, siis
nimetatakse joont Φ: T Ñ Rm kaareks. Ruumi Rm punkte Φpαq ja Φpβq nimetatakse
seejuures vastavalt kaare Φ alguspunktiks ja kaare Φ lõpp-punktiks. Kaare algus- ja
lõpp-punkti nimetatakse selle kaare otspunktideks. Kui A,B P Rm, siis kõneldes
kaarest AB peetakse silmas mingit kaart, mille alguspunkti on A ja lõpp-punkt
on B.

Tasandilise joone mõiste hõlmab hulgaliselt funktsioone, mille jälgi meie eel-
matemaatiline arusaam tõrgub joonteks nimetamast. Näiteks tasandi R2 punkti-
hulk r0, 1s � r0, 1s :�  px, yq : x, y P r0, 1s( � ruut � on teatava pideva funktsiooni
Φ: r0, 1s Ñ R2 väärtuste hulk, (s.t. teatava tasandilise joone jälg). Niisuguseid �eba-
joonelikke� jooni ühendab üks ühine omadus � kordsete punktide olemasolu. Kordse
punkti all mõistetakse joone Φ: T Ñ Rm punkti (või, täpsemalt, selle joone jälje
punkti), mis vastab parameetri t erinevatele väärtustele, ehk, tõlgendades joont Φ
tasandil eeskirja u � Φptq järgi liikuva punkti trajektoorina, läbib see liikuv punkt
joone kordse punkti rohkem kui üks kord. Seepärast on otstarbekas sisse tuua selliste
joonte klass, millel kordsed punktid puuduvad.

De�nitsioon 1.1. Öeldakse, et joon Φ: T Ñ Rm on lihtne, kui funktsioon Φ on
injektiivne, s.t. parameetri t erinevatele väärtustele vastavad selle joone erinevad
punktid:

t, t1 P T, t �� t1 ùñ Φptq �� Φpt1q
(ehk, teisisõnu, joonel Φ ei ole kordseid punkte).

De�nitsioon 1.2. Öeldakse, et kaar Φ: rα, βs Ñ Rm on lihtne kinnine kaar, kui

Φpαq � Φpβq
(s.t. tema otspunktid langevad kokku) ja

t P rα, βs, t1 P pα, βq, t �� t1 ùñ Φptq �� Φpt1q
(s.t. peale otspunktide tal rohkem kordseid punkte pole).

Jaotise lõpetuseks lepime kokku järgmises täiendavas terminoloogias.

Vaatleme tasandilist kaart Φ: rα, βs Ñ R2. Kui α ¤ γ   δ ¤ β, siis kaarele
Φ|rγ,δs : rγ, δs Ñ R2 viitame kui kaare Φ osakaarele. Kui α ¤ γ   ξ   δ ¤ β ning
C :� Φpγq, P :� Φpξq, D :� Φpδq, siis me ütleme, et punkt P asub vaadeldaval
kaarel punktide C ja D vahel.

Eeldame nüüd, et kaar Φ: rα, βs Ñ R2 on lihtne. Siis see kaar määrab oma jäljel
L :�  

Φptq : t P rα, βs( loomulikul viisil järjestuse: loomulik on lugeda punkt P1 P L
eelnevaks punktile P2 P L, kui t1   t2, kus t1, t2 P rα, βs on sellised, et Φpt1q � P1 ja
Φpt2q � P2 � tõlgendades kaart Φ kui tasandil liikuva punkti liikumiseeskirja, läbib
see liikuv punkt punkti P1 enne kui punkti P2.
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1.2. Täiendavaid ülesandeid

Selle jaotise ülesandeid 1.1 ja 1.3 kasutatakse mõne selle peatüki tulemuse tõestamisel; ülesanne 1.2
annab abitulemuse ülesande 1.3 lahendamiseks. Materjali omandamise seisukohalt võib ülesannete
1.2 ja 1.3 lahendamise edasi lükata niikauaks, kuni ülesandele 1.3 hilisemas tekstis viidatakse; siis
on rangelt soovitatav need ülesanded ära lahendada.

Kõik selle jaotise ülesanded on sõnastatud tasandiliste joonte jaoks, kuid nende ülesannete

väited kehtivad ka joonte jaoks ruumis Rm mis tahes m P N korral, kusjuures ka nende väidete

tõestused jäävad sisuliselt samaks.

Ülesanne 1.1. Tõestada, et tasandilise kaare Φ: rα, βs Ñ R2 jälg L :�  
Φptq : t P rα, βs( on

kinnine tõkestatud hulk.

Näpunäide. Esitada kaar parameetriliste võrranditega. Jälje tõkestatuse tõestamisel kasutada
Weierstrassi esimest teoreemi; jälje kinnisuse tõestamisel kasutada hulga kinnisuse kriteeriumit
koonduvate jadade piirväärtuste kaudu (lauset I.2.3), Bolzano�Weierstrassi teoreemi (arvjadade
jaoks) ja parameetrilistes võrrandites esinevate funktsioonide pidevust.

Ülesanne 1.2. Olgu Φ: rα, βs Ñ R2 lihtne (tasandiline) kaar. Tähistame L :�  
Φptq : t P rα, βs(,

s.t. L on kaare Φ jälg. Siis me saame vaadelda pöördfunktsiooni Φ�1 : L Ñ rα, βs. Tõestada, et
pöördfunktsioon Φ�1 on pidev.

Näpunäide. Oletada vastuväiteliselt, et pöördfunktsioon Φ�1 pole pidev ning kasutada Bolzano�
Weierstrassi teoreemi (arvjadade jaoks) ja funktsiooni Φ pidevust.

Ülesanne 1.3. Olgu Φ: rα, βs Ñ R2 ja Ψ: rγ, δs Ñ R2 lihtsad (tasandilised) kaared, millel on
sama jälg, s.t. L :�  

Φptq : t P rα, βs( �  
Ψpτq : τ P rγ, δs(. Tähistame A :� Φpαq ja B :� Φpβq,

s.t. A ja B on vastavalt kaare Φ algus- ja lõpp-punkt. Siis

(a) kaare Ψ alguspunkt saab olla ainult kas A või B;

(b) kui kaare Ψ alguspunkt on A, siis funktsiooni Ψ poolt määratud jälje L punktide järjes-
tus ühtib funktsiooni Φ poolt määratud järjestusega; kui kaare Ψ alguspunkt on B, siis
funktsiooni Ψ poolt määratud jälje L punktide järjestus on vastupidine funktsiooni Φ poolt
määratud järjestusele;

(c) kui kaare Ψ alguspunkt on A, siis tema lõpp-punkt on B; kui kaare Ψ alguspunkt on B, siis
tema lõpp-punkt on A.

Näpunäide. Tõlgendades funktsiooni Φ funktsioonina rα, βs Ñ L, on pöördfunktsioon Φ�1 üles-
ande 1.2 põhjal pidev. Seega, tõlgendades funktsiooni Ψ funktsioonina rγ, δs Ñ L, on kompositsioon

h :� Φ�1Ψ: rγ, δs Ñ rα, βs

pidev bijektsioon. (Märgime, et ka funktsiooni h pöördfunktsioon h�1 � Ψ�1Φ: rα, βs Ñ rγ, δs on
pidev.) Tõestada, et

(A) hpγq � α või hpγq � β;

(B) kui hpγq � α, siis mis tahes τ1, τ2 P rα, βs, τ1   τ2 korral hpτ1q   hpτ2q; kui hpγq � β; siis
mis tahes τ1, τ2 P rα, βs, τ1   τ2 korral hpτ1q   hpτ2q;

(C) kui hpγq � α, siis hpδq � β; kui hpγq � β, siis hpδq � α.

Väidete (A) ja (B) tõestamisel kasutada Bolzano�Cauchy teoreemi lõigus pideva funktsiooni vahe-
pealsetest väärtustest; väide (C) on vahetu järeldus väitest (B). Väited (a)-(c) järelduvad vastavalt
väidetest (A)�(C). (Teiselt poolt, väide (c) on vahetu järeldus väitest (b).)
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1.3. Tasandilise kaare pikkuse mõiste

Vaatleme tasandilist kaart Φ: rα, βs Ñ R2. Jaotame lõigu rα, βs osadeks punktidega
α � t0   t1   � � �   tn � β (n P N) ning vaatleme kaare Φ (või, täpsemalt, kaare Φ
jälje) punkte

A0 :� Φpt0q � Φpαq, A1 :� Φpt1q, . . . . . . , An :� Φptnq � Φpβq.

Ühendades iga j P t1, . . . , nu korral punktid Aj�1 ja Aj sirglõiguga, saamemurdjoone

A0A1 . . . An (1.1)

(vt. joonist 1.2).

x

y

A0

A1

A2

A3

A4

A5

A6

A7 = An

Joonis 1.2. Joonisel on sinisega kujutatud kaart Φ (või, täpsemalt, selle kaare
jälge) ning rohelisega (kõõl)murdjoont (1.1), kus n � 7.

NB! Must-valge
televisiooni vaata-
jad siin neid jooni
sinise ja rohelisena
ei näe!

Sellist murdjoont (1.1) nimetatakse kaare Φ kõõlmurdjooneks. Punkte Aj�1 ja Aj

ühendavatele sirglõikudele Aj�1Aj, j � 1, . . . , n, viidatakse kui kaare Φ kõõludele või
ka kui (kõõl)murdjoone (1.1) lülidele. Kõõlmurdjoone (1.1) pikkuseks nimetatakse
tema lülide pikkuste summat

°n
j�1 |Aj�1Aj|.

Märkus 1.1. Kui kaarel Φ leidub kordseid punkte, siis võib juhtuda et mingi j P t1, . . . , nu
korral punktid Aj�1 ja Aj langevad ühte. Sel juhul kõõl Aj�1Aj on tegelikult ühepunktiline hulk
tAj�1u � tAju; selle �kõõlu� pikkus loetakse võrdseks nulliga.
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De�nitsioon 1.3. Kui kaare Φ kõikvõimalike kõõlmurdjoonte (1.1) pikkuste hulk
on ülalt tõkestatud, siis öeldakse, et kaar Φ on sirgestuv, kusjuures nende kõõlmurd-
joonte pikkuste hulga ülemist raja nimetatakse kaare Φ pikkuseks.

Kui kaar Φ esitub parameetriliste võrranditega

x � xptq, y � yptq, t P rα, βs,
siis iga j P t1, . . . , nu korral kõõlu Aj�1Aj pikkus onb��xptjq � xptj�1q

��2 � ��yptjq � yptj�1q
��2,

seega kõõlmurdjoone (1.1) pikkus on

ņ

j�1

b��xptjq � xptj�1q
��2 � ��yptjq � yptj�1q

��2;
niisiis, juhul, kui kaar Φ on sirgestuv, selle kaare pikkus sΦ on

sΦ :� sup
α�:t0 t1 ��� tn�:β

ņ

j�1

b��xptjq � xptj�1q
��2 � ��yptjq � yptj�1q

��2.
Järgnev lause esitab paar lihtsat kaare pikkuse omadust.

Lause 1.1. Olgu AB tasandiline kaar.

(a) Olgu kaare AB kõõlmurdjoon l1 saadud selle kaare kõõlmurdjoont

l :� A0A1 . . . An pn P Nq
määravatele punktidele A0, A1, . . . , An, kus A0 � A ja An � B, uute punktide
juurdelisamise teel. Siis kõõlmurdjoone l1 pikkus sl1 ei ole väiksem kõõlmurd-
joone l pikkusest sl:

sl1 ¥ sl. (1.2)

(b) Olgu C kaare AB punkt, mis asub punktide A ja B vahel. Siis kaar AB on
sirgestuv parajasti siis, kui osakaared AC ja CA on sirgestuvad; seejuures kaare
AB pikkus sAB on osakaarte AC ja CB pikkuste sAC ja sCB summa:

sAB � sAC � sCB. (1.3)

Tõestus. (a). Väite tõestuseks piisab tõestada võrratus (1.2) juhul, kui kõõlmurd-
joon l1 on saadud punktidele A0, A1, . . . , An ühe uue punkti juurdelisamise teel.
Olgu k P t1, . . . , nu selline, et see uus punkt C asub punktide Ak�1 ja Ak vahel.
Kõõlmurdjooned l ja l1 koosnevad ühtedest ja samadest sirglõikudest ainsa erinevu-
sega, et murdjoone l1 koosseisu kuuluvad sirglõigu Ak�1Ak asemel sirglõigud Ak�1C
ja CAk. Kuna

|Ak�1C| � |CAk| ¥ |Ak�1Ak|
(põhjendada!) , siis kehtib (1.2).
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(b). Eeldame kõigepealt, et kaar AB on sirgestuv. Olgu l1 :� AA1 . . . Ak�1C ja
l2 :� CB1 . . . Bm�1B vastavalt osakaarte AC ja CB mingid kõõlmurdjooned. Tä-
histame kaare AB vastava kõõlmurdjoone AA1 . . . Ak�1CB1 . . . Bm�1B sümboliga l
ning nende kolme murdjoone pikkused vastavalt sümbolitega sl1 , sl2 ning sl; siis

sl1 � sl2 � sl ¤ sAB,

seega
sup sl1 � sup sl2 ¤ sAB,

kus võrratuse vasakul pool olevates liidetavates on supreemum võetud vastavalt üle
kaare AC kõikvõimalike kõõlmurdjoonte l1 ja üle kaare CB kõikvõimalike kõõlmurd-
joonte l2; järelikult kaared AC ja CB on sirgestuvad, kusjuures

sAC � sCB ¤ sAB. (1.4)

Teiselt poolt, eeldame, et kaared AC ja CB on sirgestuvad. Olgu Φ: rα, βs Ñ R2

kaart AB de�neeriv kujutus ning olgu τ P pα, βq selline, et C � Φpτq. Olgu l :�
AA1 . . . An�1B (n P N) mingi kaare AB kõõlmurdjoon ja olgu α   t1   � � �   tn�1  
β seda kõõlmurdjoont määravad punktid, s.t. Aj � Φptjq iga j P t1, . . . , n � 1u
korral.

On kaks teineteist välistavat võimalust:

(1) mingi k P t1, . . . , n� 1u korral τ � tk (ning seega C � Ak);

(2) mingi k P t1, . . . , nu korral tk�1   τ   tk (s.t. C asub punktide Ak�1 ja Ak

vahel).

Juhul (1) tähistame sümboliga l1 kaare AC kõõlmurdjoone AA1 . . . Ak�1C ja
sümboliga l2 kaare CB kõõlmurdjoone CAk�1 . . . An�1B; siis

sl � sl1 � sl2 ¤ sAC � sCB.

Juhul (2) tähistame sümboliga l1 kaare AC kõõlmurdjoone AA1 . . . Ak�1C, süm-
boliga l2 kaare CB kõõlmurdjoone CAk . . . An�1B ja sümboliga l1 kaare AB kõõl-
murdjoone AA1 . . . Ak�1CAk . . . An�1B; siis, arvestades, et kõõlmurdjoon l1 on saa-
dud kõõlmurdjoont l määravatele punktidele uue punkti C juurdelisamise teel, väi-
te (a) põhjal

sl ¤ sl1 � sl1 � sl2 ¤ sAC � sCB.

Niisiis igal juhul sl ¤ sAC � sCB; seega

sup sl ¤ sAC � sCB,

kus võrratuse vasakul pool on supreemum võetud üle kaare AB kõikvõimalike kõõl-
murdjoonte l; järelikult kaar AB on sirgestuv, kusjuures

sAB ¤ sAC � sCB. (1.5)

Soovitud võrdus (1.3) järeldub võrratustest (1.4) ja (1.5).
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Märkus 1.2. Saab näidata, et kui tasandiline kaar Φ on lihtne, siis mis tahes lihtsa tasandilise
kaare Ψ korral, mille jälg on võrdne kaare Φ jäljega, on kaar Ψ sirgestuv parajasti siis, kui kaar Φ
on sirgestuv, kusjuures nende kaarte sirgestuvuse juhul on nende pikkused võrdsed.

Lausest 1.1, (b), järeldub, et eelnev väide jääb kehtima, kui seal vaadelda lihtsate kaarte asemel
kaari, millel on ülimalt lõplik arv kordseid punkte.

Sellega on õigustatud järgnev ülesannetekogudes sagedasti esinev ülesandepüstitus: etteantud
(tasandilise) punktihulga korral � millele selles ülesandes viidatakse kui kaarele � leida selle punkti-
hulga � kaare � pikkus. Selles ülesandes peetakse �kaare� all silmas mingit kaart, millel on ülimalt
lõplik arv kordseid punkte ning mille jälg see punktihulk on; eelneva väite põhjal on kõigi niisuguste
(ülimalt lõpliku arvu kordsete punktidega) kaarte pikkused võrdsed ning seega ei sõltu vaadeldava
�kaare� pikkus sellise (ülimalt lõpliku arvu kordsete punktidega) kaare valikust.

Lause 1.2. Olgu Φ: rα, βs Ñ R2 sirgestuv (tasandiline) kaar. Iga t P rα, βs korral
tähistame sümboliga sptq selle kaare osakaare ACt pikkuse, kus A :� Φpαq (s.t. A on
selle kaare alguspunkt) ja Ct :� Φptq; seejuures de�neerime spαq � 0. Siis funktsioon
rα, βs Q t ÞÑ sptq P R on pidev.

Tõestus. Kõigepealt näitame, et funktsioon t ÞÑ sptq on vasakult pidev igas punk-
tis τ P pα, βs. Selleks, �kseerides vabalt punkti τ P pα, βs ja realaarvu ε ¡ 0, piisab
leida punkt τε P rα, τq nii, et

τε   t   τ ùñ sptq ¡ spτq � 2ε

(põhjendada.!) Selleks omakorda piisab valida punkt τε P rα, τq nii, et spτεq ¡
spτq � 2ε (põhjendada!) .

Valime punktid α � t0   t1   � � �   tn � τ (n P N) nii, et, tähistades
Aj :� Φptjq, j � 0, 1, . . . , n, murdjoone ℓ0 :� A0A1 . . . An pikkus sℓ0 ¡ spτq � ε
(põhjendada, miks selline valik on võimalik!) . Fikseerime (esialgu) suvaliselt punk-
ti τε P ptn�1, τq, tähistame C :� Φpτεq, murdjoone A0A1 . . . An�1CAn ja selle murd-
joone osamurdjoone A0A1 . . . An�1C tähistame vastavalt sümbolitega ℓ ja ℓ1, nende
murdjoonte pikkused tähistame sümbolitega sℓ ja sℓ1 ning sirglõigu CAn pikkuse
sümboliga |CAn|. Siis

spτq � ε   sℓ0 ¤ sℓ � sℓ1 � |CAn| ¤ spτεq � |CAn| � spτεq � d
�
Φpτεq,Φpτq

�
.

Funktsiooni Φ pidevuse tõttu punktis τ saanuksime me punkti τε P ptn�1, τq valida
algusest peale nii, et d

�
Φpτεq,Φpτq

�   ε. Niisuguse punkti τε jaoks kehtib võrratus
spτεq ¡ spτq � 2ε, nagu soovitud.

Lause tõestuseks jääb näidata, et funktsioon t ÞÑ sptq on paremalt pidev igas
punktis τ P rα, βq. Selleks, �kseerides vabalt punkti τ P rα, βq ja jada pτnq8n�1 pool-
lõigus pτ, βs nii, et τn ÝÝÝÑ

nÑ8
τ , piisab näidata, et spτnq ÝÝÝÑ

nÑ8
spτq.

Vaatleme kaart Ψ: r0, β � αs Q v ÞÑ Φpβ � vq P R2. Selle kaare alguspunkt
on esialgse kaare lõpp-punkt B :� Φpβq ja lõpp-punkt on esialgse kaare alguspunkt
A � Φpαq. (Piltlikult öeldes, see uus kaar on �esialgne kaar AB läbituna vastupidises
suunas�.) Iga punkti v P r0, β � αs korral olgu σpvq selle kaare punkte B ja Dv :�
Ψpvq � Φpβ�vq ühendava osakaare BDv pikkus; seejuures loeme σp0q � 0. Eelnevalt
tõestatu põhjal on funktsioon v ÞÑ σpvq vasakult pidev igas punktis v P p0, β � αs.
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Paneme tähele, et iga t P rα, βs korral sptq � σpβ � tq � s, kus s on kaare AB
pikkus (põhjendada!) . Iga n P N korral β � τn P r0, β � τq, kusjuures β � τn ÝÝÝÑ

nÑ8
β � τ , seega, arvestades, et funktsioon v ÞÑ σpvq on vasakult pidev punktis β � τ ,

spτnq � s� σpβ � τnq ÝÝÝÑ
nÑ8

s� σpβ � τq � spτq,

nagu soovitud.

1.4. Kõõlmurdjoonte pikkuste piirväärtus

Vaatleme (tasandilist) kaart Φ: rα, βs Ñ R2. Kui α � t0   t1   � � �   tn � β
(n P N), siis tähega l tähistame kaare Φ kõõlmurdjoont A0A1 . . . An, kus Aj � Φptjq,
j � 0, 1, . . . , n, sümboliga sl tähistame murdjoone l pikkust ning

∆tj :� tj � tj�1, j � 1, . . . , n.

De�nitsioon 1.4. Arvu I P R nimetatakse kaare Φ kõõlmurdjoonte pikkuste piir-
väärtuseks, kui iga reaalarvu ε ¡ 0 korral leidub reaalarv δ ¡ 0 nii, et (kaare Φ mis
tahes kõõlmurdjoone l korral)

max
1¤j¤n

∆tj   δ ùñ |sl � I|   ε. (1.6)

Märkus 1.3. Olgu (tasandiline) kaar antud parameetriliste võrranditega

x � xptq, y � yptq, t P rα, βs. (1.7)

Lõigu rα, βs jaotusviisi korral punktidega

α �: t0   t1   � � �   tn :� β pn P Nq (1.8)

tähistame xj :� xptjq, yj :� yptjq, Aj :� pxj , yjq, j � 0, 1, . . . , n, ning iga j P t1, . . . , nu korral
tähistame ∆tj :� tj � tj�1, ∆xj :� xj � xj�1, ∆yj :� yj � yj�1.

Osutub, et kui kaar (1.7) on lihtne, siis tema jaoks jääb kõõlmurdjoonte pikkuste piirväärtuse
mõiste samaks, kui de�nitsiooni 1.4 implikatsioonis (1.6) asendada tingimus

max
1¤j¤n

∆tj   δ (1.9)

tingimusega

max
 |∆x1|, |∆y1|, . . . , |∆xn|, |∆yn|

(   δ (1.10)

või tingimusega

max
1¤j¤n

dpAj�1, Ajq   δ. (1.11)

Tõepoolest, olgu kaar (1.7) lihtne. Tõestame kõigepealt, et selle kaare jaoks jääb kõõlmurd-
joonte pikkuste piirväärtuse mõiste samaks, kui de�nitsiooni 1.4 implikatsioonis (1.6) asendada
tingimus (1.9) tingimusega (1.10). Selleks, �kseerides vabalt reaalarvu γ ¡ 0, piisab veenduda, et

(1) leidub reaalarv δ1 ¡ 0 nii, et (lõigu rα, βs mis tahes jaotusviisi korral punktidega (1.8))

max
1¤j¤n

∆tj   δ1 ùñ max
 |∆x1|, |∆y1|, . . . , |∆xn|, |∆yn|

(   γ; (1.12)
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(2) leidub reaalarv δ2 ¡ 0 nii, et (lõigu rα, βs mis tahes jaotusviisi korral punktidega (1.8))

max
 |∆x1|, |∆y1|, . . . , |∆xn|, |∆yn|

(   δ2 ùñ max
1¤j¤n

∆tj   γ

(põhjendada!)

(1). Kuna funktsioonid (1.7) on pidevad, siis Cantori teoreemi ?? põhjal on nad ühtlaselt
pidevad lõigus rα, βs, seega leidub reaalarv δ1 ¡ 0 nii, et

t1, t2 P rα, βs, |t1 � t2|   δ ùñ |xpt1q � xpt2q|   γ ja |ypt1q � ypt2q|   γ.

Kui nüüd lõigu rα, βs jaotusviis punktidega (1.8) rahuldab tingimust max1¤j¤n ∆tj   δ1, siis iga
j P t1, . . . , nu korral |tj � tj�1|   δ1, järelikult

|xptjq � xptj�1q|   γ ja |yptjq � yptj�1q|   γ

ning seega kehtib implikatsiooni (1.12) paremal poolel oleva võrratus.

(2). Oletame vastuväiteliselt, et sellist reaalarvu γ2 ¡ 0 ei leidu. Siis iga n P N korral leiduvad
t1n, t

2
n P rα, βs nii, et |t1n � t2n| ¥ γ, kuid

|xpt1nq � xpt2nq|  
1

n
ja |xpt1nq � xpt2nq|  

1

n

(põhjendada!) . Bolzano�Weierstrassi teoreemi põhjal leiduvad jadadel pt1nq8n�1 ja pt2nq8n�1 koon-

duvad osajadad pt1kn
q8n�1 ja pt2kn

q8n�1 (Põhjendada, miks me saame nende koonduvate osa-

jadade elemendid valida ühtede ja samade indeksitega!) . Olgu t1, t2 P rα, βs nende osa-
jadade piirväärtused, s.t. t1kn

ÝÝÝÑ
nÑ8 t1 ja t2kn

ÝÝÝÑ
nÑ8 t2; siis t1 �� t2 (põhjendada!) , kuid xpt1q �

xpt2q ja ypt1q � ypt2q (põhjendada!) , mis on vastuolus kaare (1.7) lihtsusega (põhjendada!) .

Jääb tõestada, et kaare (1.7) jaoks jääb kõõlmurdjoonte pikkuste piirväärtuse mõiste samaks,
kui de�nitsiooni 1.4 implikatsioonis (1.6) asendada tingimus (1.9) tingimusega (1.11) (siin me
eeldame endiselt, et vaadeldav kaar on lihtne). Selleks märgime, et kui lõik rα, βs on jaotatud
osalõikudeks punktidega (1.8), siis iga j P t1, . . . , nu korral

max
 |∆xj |, |∆yj |

( ¤b
|∆xj |2 � |∆yj |2 � dpAj�1, Ajq ¤

?
2max

 |∆xj |, |∆yj |
(

ning seega

1?
2

max
1¤j¤n

dpAj�1, Ajq ¤ max
 |∆x1|, |∆y1|, . . . , |∆xn|, |∆yn|

( ¤ max
1¤j¤n

dpAj�1, Ajq.

Tõestatav väide järeldub eelnevast võrratusteahelast (põhjendada!) .

Teoreem 1.3. Tasandiline kaar on sirgestuv parajasti siis, kui tema kõõlmurdjoonte
pikkustel on olemas piirväärtus; seejuures selle kaare pikkus on võrdne tema kõõl-
murdjoonte pikkuste piirväärtusega.

Tõestus. Olgu tasandiline kaar Φ esitatud parameetriliste võrranditega

x � xptq, y � yptq, t P rα, βs. (1.13)

Piisavus. Eksisteerigu kaare Φ kõõlmurdjoonte pikkustel piirväärtus I. Veendu-
maks, et see kaar on sirgestuv, kusjuures tema pikkus sΦ ¤ I, piisab näidata, et selle
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kaare mis tahes kõõlmurdjoone l ja mis tahes reaalarvu ε ¡ 0 korral kõõlmurdjoone l
pikkus sl rahuldab tingimust

sl ¤ I � ε.

Olgu ε ¡ 0. Kõõlmurdjoonte pikkuste piirväärtuse de�nitsiooni 1.4 põhjal leidub
reaalarv δ ¡ 0 nii, et kehtib implikatsioon (1.6). Olgu l kaare Φ kõõlmurdjoon.
Kõõlmurdjoone l punktidele lõpliku arvu uute punktide juurdelisamise teel on või-
malik saada kaare Φ kõõlmurdjoon l1, mis vastab lõigu rα, βs teatavale jaotusviisile,
mille osalõikude suurim pikkus on väiksem kui δ; seega |sl1 � I|   ε. Lause 1.1, (a),
põhjal nüüd sl ¤ sl1   I � ε, nagu soovitud.

Tarvilikkus. Eeldame, et kaar Φ on sirgestuv, ja �kseerime vabalt reaalarvu ε ¡ 0.
Veendumaks, et kaare Φ pikkus sΦ on selle kaare kõõlmurdjoonte pikkuste piirväär-
tus, piisab leida reaalarv δ ¡ 0 nii, et (kaare Φ mis tahes kõõlmurdjoone l korral)
kehtib implikatsioon

max
1¤j¤n

∆tj   δ ùñ sl ¡ sΦ � ε

(põhjendada!) . Selleks valime kaare Φ kõõlmurdjoone l0, mille pikkus sl0 rahuldab
tingimust

sl0 ¡ sΦ � ε

2
.

Olgu m murdjoone l0 lülide arv. Teoreemi tõestuseks piisab nüüd tõestada järgmine
väide:

p�q leidub reaalarv δ ¡ 0 nii, et kui kaare Φ kõõlmurdjoon l1 on saadud mingit
kõõlmurdjoont l määravatele kaare punktidele ühe uue punkti juurdelisamise
teel, siis

max
1¤j¤n

∆tj   δ ùñ sl ¡ sl1 � ε

2m
.

Tõepoolest, rahuldagu reaalarv δ ¡ 0 väite p�q tingimust ning olgu l kaare Φ kõõl-
murdjoon, mida määravad lõigu rα, βs punktid rahuldavad tingimust max

1¤j¤n
∆tj   δ.

Tähistame sümboliga l1 kaare Φ kõõlmurdjoone, mis on saadud kõõlmurdjoont l
määravatele punktidele neist erinevate kõõlmurdjoont l0 määravate punktide juurde-NB! Maksimaal-

selt on vaja juurde
lisada m � 1 punk-
ti.

lisamise teel; siis väite p�q põhjal

sl ¡ sl1 � ε

2

(põhjendada!) . Kuna kõõlmurdjoon l1 on tõlgendatav kaare Φ kõõlmurdjoonena, mis
on saadud kõõlmurdjoont l0 määravatele punktidele neist erinevate kõõlmurdjoont l
määravate punktide juurdelisamise teel, siis lause 1.1, (a), põhjal sl1 ¥ sl0 ning seega

sl ¡ sl1 � ε

2
¥ sl0 �

ε

2
¡ sΦ � ε

2
� ε

2
� sΦ � ε,

nagu soovitud.
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Jääb tõestada väide p�q. Olgu kaare Φ kõõlmurdjoon l1 saadud mingit kõõlmurd-
joont l määravatele punktidele ühe uue punkti C � �

xpτq, ypτq� juurdelisamise teel.
Asugu see uus punkt punktide Ak�1 ja Ak vahel (k P t1, . . . , nu), s.t. tk�1   τ   tk.
Kõõlmurdjooned l ja l1 koosnevad ühtedest ja samadest sirglõikudest ainsa erinevuse-
ga, et murdjoone l1 koosseisu kuuluvad sirglõigu Ak�1Ak asemel sirglõigud Ak�1C ja
CAk. Seega, tähistades nende sirglõikude pikkused vastavalt sümbolitega |Ak�1Ak|,
|Ak�1C| ja |CAk|,
sl1 � sl � |Ak�1C| � |CAk| � |Ak�1Ak| ¤ |Ak�1C| � |CAk|

�
b��xpτq � xptk�1q

��2 � ��ypτq � yptk�1q
��2 �b��xptkq � xpτq��2 � |yptkq � ypτq��2

¤ 2
?
2max

!��xpτq � xptk�1q
��, ��ypτq � yptk�1q

��, ��xptkq � xpτq��, ��yptkq � ypτq��).
Funktsioonide x � xptq ja y � yptq pidevuse tõttu lõigus rα, βs on need funktsioonid
Cantori teoreemi põhjal ühtlaselt pidevad selles lõigus, seega leidub δ ¡ 0 nii, et

t, t1 P rα, βs, |t� t1|   δ ùñ ��xptq � xpt1q��   ε

4
?
2m

,
��yptq � ypt1q��   ε

4
?
2m

.

Niisiis, kui max
1¤j¤n

∆tj   δ, siis |τ � tk�1|   δ ja |tk � τ |   δ ning seega

sl1 � sl   2
?
2

ε

4
?
2m

� ε

2m
,

nagu soovitud.

1.5. (Tasandilise) kaare pikkuse arvutamine

Teeme mõned käesoleva peatüki lõpuni kehtivad kokkulepped. Öeldes, et funktsi-
oonil ϕ eksisteerib lõigus rα, βs pidev tuletis, mõistame me selle all, et funktsioo-
nil ϕ eksisteerib vahemikus pα, βq pidev tuletis (s.t. pidev tuletisfunktsioon ϕ1),
kusjuures tuletisfunktsioonil ϕ1 eksisteerib punktis α lõplik parempoolne piir-
väärtus ja punktis β lõplik vasakpoolne piirväärtus. (Sellisel juhul öeldakse ka,
et funktsioon ϕ on pidevalt diferentseeruv lõigus rα, βs .) Märgime, et siit järel-
dub funktsioonil ϕ punktides α ja β vastavalt lõpliku parempoolse ja lõpliku
vasakpoolse tuletise olemasolu, kusjuures

ϕ1�pαq � lim
tÑα�

ϕ1ptq ja ϕ1�pβq � lim
tÑβ�

ϕ1ptq.

Öeldes, et funktsioonil ϕ eksisteerib lõigus rα, βs pidev tuletis, välja arvatud,
võib-olla, lõplikus arvus punktides, milles tuletisfunktsioonil ϕ1 eksisteerivad lõp-
likud ühepoolsed piirväärtused, mõistame me selle all, et leiduvad arv n P N ja
punktid α � t0   t1   � � �   tn :� β nii, et igas vahemikus ptj�1, tjq eksisteerib
funktsioonil ϕ pidev tuletis (s.t. pidev tuletisfunktsioon ϕ1), kusjuures tuletis-
funktsioonil ϕ1 eksisteerib punktis tj�1 lõplik parempoolne piirväärtus ja punk-
tis tj lõplik vasakpoolne piirväärtus. (Sellisel juhul öeldakse ka, et funktsioon ϕ
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on tükiti pidevalt diferentseeruv lõigus rα, βs .) Märgime, et siit järeldub funkt-
sioonil ϕ lõplike ühepoolsete tuletiste olemasolu punktides t0, t1, . . . , tm � eran-
diks on muidugi punktid t0 � α ja tn � β, milles funktsiooonil ϕ eksisteerivad
vastavalt lõplik parempoolne ja lõplik vasakpoolne tuletis.

Teoreem 1.4. Esitugu (tasandiline) kaar L parameetriliste võrranditega

x � xptq, y � yptq, t P rα, βs, (1.14)

kus funktsioonidel (1.14) eksisteerib lõigus rα, βs pidev tuletis. Siis kaar L on sirges-
tuv, kusjuures tema pikkus sL avaldub valemiga

sL �
» β

α

a
x1ptq2 � y1ptq2 dt. (1.15)

Tõestus. Tähistame

I :�
» β

α

a
x1ptq2 � y1ptq2 dt (1.16)

(see integraal eksisteerib funktsiooni t ÞÑa
x1ptq2 � y1ptq2 pidevuse tõttu) ja �ksee-

rime vabalt reaalarvu ε ¡ 0. Teoreemi tõestuseks piisab leida reaalarv δ ¡ 0 nii,
et mis tahes punktide α �: t0   t1   � � �   tn :� β (n P N) korral, tähistades
∆tj :� tj � tj�1, j � 1, . . . , n, ja

ℓ :�
ņ

j�1

b��xptjq � xptj�1q
��2 � ��yptjq � yptj�1q

��2
(s.t. ℓ on kaare L sellise kõõlmurdjoone pikkus, mis vastab punktidega t0, t1, . . . , tn
määratud lõigu rα, βs jaotusviisile), kehtib implikatsioon

max
1¤j¤n

∆tj   δ ùñ |ℓ� I|   ε. (1.17)

Olgu α �: t0   t1   � � �   tn �: β (n P N). Iga j P t1, . . . , nu korral, arves-
tades, et funktsioonid x � xptq ja y � yptq rahuldavad lõigus rtj�1, tjs Lagrange'i
keskväärtusteoreemi eeldusi, leiduvad punktid ξj, ηj P ptj�1, tjq nii, et

xptjq � xptj�1q � x1pξjq∆tj ja yptjq � yptj�1q � y1pηjq∆tj,

järelikultb��xptjq � xptj�1q
��2 � ��yptjq � yptj�1q

��2 �b
x1pξjq2 p∆tjq2 � y1pηjq2 p∆tjq2

�
b
x1pξjq2 � y1pηjq2∆tj;

niisiis

ℓ �
ņ

j�1

b
x1pξjq2 � y1pηjq2∆tj.
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Tähistame

σ :�
ņ

j�1

b
x1pξjq2 � y1pξjq2∆tj,

siis

|ℓ� I| ¤ |ℓ� σ| � |σ � I|.

Arvestades, et σ on punktidega t0, t1, . . . , tn määratud lõigu rα, βs jaotusviisile vastav
integraalsumma funktsiooni t ÞÑa

x1ptq2 � y1ptq2 jaoks, saame leida reaalarvu δ1 ¡ 0
nii, et

max
1¤j¤n

∆tj   δ1 ùñ |σ � I|   ε

2
.

Edasi,

|ℓ� σ| ¤
ņ

j�1

����bx1pξjq2 � y1pηjq2 �
b
x1pξjq2 � y1pξjq2

���� ∆tj. (1.18)

Arvestades, et kahe muutuja funktsioon

Φ: rα, βs � rα, βs Q pξ, ηq ÞÝÑ
a
x1pξq2 � y1pηq2

on pidev kinnises tõkestatud hulgas rα, βs � rα, βs � R2, on see funktsioon Cantori
teoreemi põhjal ka ühtlaselt pidev selles hulgas, järelikult leidub δ2 ¡ 0 nii, et

pξ, ηq, pξ1, η1q P rα, βs � rα, βs, d�pξ, ηq, pξ1, η1q� �a
|ξ1 � ξ|2 � |η1 � η|2   δ2

ùñ
���ax1pξq2 � y1pηq2 �

a
x1pξ1q2 � y1pη1q2

���   ε

2pβ � αq .

Seega, kui max
1¤j¤n

∆tj   δ2, siis (arvestades, et sel juhul iga j P t1, . . . , nu korral

d
�pξj, ηjq, pξj, ξjq� � |ηj � ξj|   ∆tj   δ2)

|ℓ� σ|  
ņ

j�1

ε

2pβ � αq ∆tj �
ε

2pβ � αq
ņ

j�1

∆tj � ε

2
.

Niisiis, kui max
1¤j¤n

∆tj   mintδ1, δ2u �: δ, siis

|ℓ� I| ¤ |ℓ� σ| � |σ � I|   ε

2
� ε

2
� ε,

s.t. implikatsioon (1.17) kehtib, nagu soovitud.

Märkus 1.4. Teoreemi 1.4 saab tõestada ka ilma Cantori teoreemi kasutamata. Tõepoolest, Can-
tori teoreemi kasutasime me vaid tingimust

max
1¤j¤n

∆tj   δ2 ùñ |ℓ� σ|   ε

2
(1.19)
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rahuldava reaalarvu δ2 ¡ 0 leidmisel. Samas absoluutväärtust |ℓ� σ| võib ülalt hinnata ka järgmi-
selt: võrratuse (1.18) põhjal

|ℓ� σ| ¤
ņ

j�1

����bx1pξjq2 � y1pηjq2 �
b
x1pξjq2 � y1pξjq2

���� ∆tj

p1q
¤

ņ

j�1

|y1pηjq � y1pξjq|∆tj ¤ SpT q � spT q

(siin võrratus (1) on põhjendatud allpool), kus T on punktidega t0, t1, . . . , tn määratud lõigu rα, βs
jaotusviis ning SpT q ja spT q on sellele jaotusviisile vastavad tuletisfunktsiooni y1 Darboux' ülem-NB! �ülem-� on

halb murdumis-
koht. ja alamsumma. Tuletisfunktsiooni y1 pidevuse tõttu on see tuletisfunktsioon ka integreeruv, seega

leidub reaalarv δ2 ¡ 0 nii, et

max
1¤j¤n

∆tj   δ2 ùñ |ℓ� σ| ¤ SpT q � spT q   ε

2
,

s.t. kehtib implikatsioon (1.19).
Võrratuse (1) tõestuseks märgime, et mis tahes α, β, γ P R, β2 � γ2 �� 0, korral

���aα2 � β2 �
a
α2 � γ2

��� �
����aα2 � β2 �

a
α2 � γ2

��a
α2 � β2 �

a
α2 � γ2

����a
α2 � β2 �

a
α2 � γ2

�
��pα2 � β2q � pα2 � γ2q��a

α2 � β2 �
a
α2 � γ2

�
��β2 � γ2

��a
α2 � β2 �

a
α2 � γ2

¤
��β2 � γ2

��a
β2 �

a
γ2

�
��pβ � γqpβ � γq��

|β| � |γ| � |β � γ| |β � γ|
|β| � |γ|

¤ |β � γ|;
võrratus (1) järeldub saadud võrratusest, kui võtta iga j P t1, . . . , nu korral α � x1pξjq, β � x1pηjq
ja γ � y1pξjq.
Märkus 1.5. Teoreem 1.4 jääb kehtima, kui seal asendada eeldus funktsioonidel (1.14) pideva
tuletise olemasolust lõigus rα, βs nõrgema eeldustega, et funktsioonidel (1.14) eksisteerib lõigus
rα, βs pidev tuletis, välja arvatud, võib-olla, lõplikus arvus punktides, milles tuletisfunktsioonidel
x1 ja y1 eksisteerivad lõplikud ühepoolsed piirväärtused. See järeldub lausest 1.1 (põhjendada!) .

Märkus 1.6. Teoreem 1.4 jääb kehtima, kui seal asendada eeldus funktsioonidel (1.14) pideva
tuletise olemasolust lõigus rα, βs (nõrgema) eeldusega nendel funktsioonidel integreeruva tuletise
olemasolust selles lõigus (see eeldus on nõrgem ka märkuses 1.5 käsitletud teoreemi 1.4 eelduse
nõrgendusest).

Tõepoolest, tuletisfunktsioonide x1 ja y1 pidevust kasutasime me teoreemi 1.4 tõestuses vaid

(A) integraali (1.16) olemasolu põhjendades;

(B) tingimust (1.19) rahuldava reaalarvu δ2 ¡ 0 leidmisel (seda nii vahetult teoreemi sõnastusele
järgnevas tõestuses Cantori teoreemi rakendades kui ka märkuses 1.4 toodud tõestusskeemis
tuletisfunktsiooni y1 integreeruvuse tagamiseks).

Eeldame nüüd, et funktsioonidel (1.14) eksisteerib lõigus rα, βs integreeruv tuletis. Ka niisugusel
juhul integraal (1.16) eksisteerib. Tõepoolest, kuna integreeruvate funktsioonide korrutis on integ-
reeruv, siis funktsioonid t ÞÑ x1ptqx1ptq � x1ptq2 ja t ÞÑ y1ptq y1ptq � y1ptq2 on integreeruvad lõigus
rα, βs; kuna integreeruvate funktsioonide summa on integreeruv, siis funktsioon t ÞÑ x1ptq2� y1ptq2
on integreeruv lõigus rα, βs; kuna integreeruva mittenegatiivse funktsiooni ruutjuur on integree-
ruv, siis integraal (1.16) eksisteerib. Samuti läheb peaaegu sõna-sõnalt läbi märkuses 1.4 toodud
argument tingimust (1.19) rahuldava reaalarvu δ2 ¡ 0 leidmisel (sest tuletisfunktsiooni y1 pidevust
kasutati seal vaid tema integreeruvuse tagamiseks).
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Järgnev järeldus teoreemist 1.4 annab valemid kaare pikkuse arvutamiseks juhul,
kui see kaar on antud võrrandiga y � ypxq, x � xpyq või polaarkoordinaatides.
Järeldus 1.5. (a) Olgu kaar L esitatud võrrandiga

y � ypxq, x P ra, bs, (1.20)

kus funktsioonil (1.20) eksisteerib lõigus ra, bs pidev tuletis, välja arvatud, võib-
olla, lõplikus arvus punktides, milles tuletisfunktsioonil y1 eksisteerivad lõplikud
ühepoolsed piirväärtused. Siis kaar L on sirgestuv, kusjuures tema pikkus sL
avaldub valemiga

sL �
» b

a

a
1� y1pxq2 dx.

(b) Olgu kaar L esitatud võrrandiga

x � xpyq, y P rc, ds, (1.21)

kus funktsioonil (1.21) eksisteerib lõigus rc, ds pidev tuletis, välja arvatud, võib-
olla, lõplikus arvus punktides, milles tuletisfunktsioonil x1 eksisteerivad lõplikud
ühepoolsed piirväärtused. Siis kaar L on sirgestuv, kusjuures tema pikkus sL
avaldub valemiga

sL �
» d

c

a
x1pyq2 � 1 dy.

(c) Olgu kaar L esitatud polaarkoordinaatides võrrandiga

r � rpϕq, ϕ P rα, βs, (1.22)

kus funktsioonil (1.22) eksisteerib lõigus rα, βs pidev tuletis, välja arvatud,
võib-olla, lõplikus arvus punktides, milles tuletisfunktsioonil r1 eksisteerivad
lõplikud ühepoolsed piirväärtused. Siis kaar L on sirgestuv, kusjuures tema
pikkus sL avaldub valemiga

sL �
» β

α

a
r1pϕq2 � rpϕq2 dϕ. (1.23)

Tõestus. (a). Üldisust kitsendamata võime eeldada, et funktsioonil (1.20) eksistee-
rib pidev tuletis kogu lõigus ra, bs (põhjendada!) . Võrrandiga (1.20) esitatud kaar
L esitub parameetriliste võrranditega (võttes sisuliselt parameetri t rolli muutuja x)

x � t, y � yptq, t P ra, bs.
Tuletisfunktsioonid

x1 � ptq1t � 1 ja y1 � y1ptq
rahuldavad teoreemi 1.4 eeldusi, seega valemi (1.15) põhjal

sL �
» b

a

a
1� y1ptq2 dt �

» b

a

a
1� y1pxq2 dx,

nagu soovitud.
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(b). Väite tõestus on analoogiline väite (a) tõestusega, aga siin tuleb kaare L
esitamisel parameetriliste võrranditega võtta parameetri t rolli (sisuliselt) muutuja y.

(c). Üldisust kitsendamata võime eeldada, et funktsioonil (1.22) eksisteerib pidev
tuletis kogu lõigus rα, βs (põhjendada!) . Võrrandiga (1.22) esitatud kaar L esitub
parameetriliste võrranditega (võttes parameetriks muutuja ϕ)

x � rpϕq cosϕ, y � rpϕq sinϕ, ϕ P rα, βs.
Tuletisfunktsioonid

x1 � �
rpϕq cosϕ�1

ϕ
� r1pϕq cosϕ� rpϕq sinϕ,

y1 � �
rpϕq sinϕ�1

ϕ
� r1pϕq sinϕ� rpϕq cosϕ

rahuldavad teoreemi 1.4 eeldusi, seega valemist (1.15) saame valemi (1.23), sest

x1pϕq2 � y1pϕq2 � �
r1pϕq cosϕ� rpϕq sinϕ�2 � �

r1pϕq sinϕ� rpϕq cosϕ�2
� r1pϕq2 cos2 ϕ� 2r1pϕq rpϕq sinϕ cosϕ� rpϕq2 sin2 ϕ

� r1pϕq2 sin2 ϕ� 2r1pϕq rpϕq sinϕ cosϕ� rpϕq2 cos2 ϕ

� r1pϕq2pcos2 ϕ� sin2 ϕq � rpϕq2psin2 ϕ� cos2 ϕq
� r1pϕq2 � rpϕq2.

1.6. Tükiti siledad (tasandilised) kaared

Selles jaotises toome sisse ühe praktikas sagedasti esinevate sirgestuvate kaarte �
tükiti siledate kaarte � klassi.

De�nitsioon 1.5. Me ütleme, et tasandiline kaar on sile, kui teda esitavates para-
meetrilistes võrrandites

x � xptq, y � yptq, t P rα, βs, (1.24)

funktsioonidel (1.24) eksisteerib lõigus rα, βs pidev tuletis, kusjuures

x1ptq2 � y1ptq2 �� 0 iga t P rα, βs korral,
s.t. mitte ühegi t P rα, βs korral pole tuletised x1ptq ja y1ptq korraga nullid (siin tuletis-
te x1pαq ja y1pαq ning x1pβq ja y1pβq all mõistame vastavalt vastavaid parempoolseid
ning vasakpoolseid tuletisi).

Me ütleme, et tasandiline kaar (1.24) on tükiti sile, kui ta on oma järjestikuste
punktidega jaotatav lõplikuks arvuks siledateks osakaarteks, s.t. leiduvad punktid
α �: t0   t1   � � �   tn �: β nii, et iga j P t1, . . . , nu korral parameetriliste
võrranditega

x � xptq, y � yptq, t P rtj�1, tjs,
esitatud osakaar on sile.
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1.7. Tõkestatud variatsiooniga funktsioonid. Tarvilik ja piisav
tingimus kaare sirgestuvuseks

BLA-BLA-BLA. . .

1.8. Sirgestuva tasandilise kaare jälg on nullmõõduga hulk

Selles jaotises tõestame tema pealkirjas sõnastatud tulemuse.

Teoreem 1.6. Sirgestuva tasandilise kaare jälg on nullmõõduga hulk.

Tõestus. Olgu tasandiline kaar AB antud parameetriliste võrranditega

x � xptq, y � yptq, t P rα, βs (1.25)

(siin funktsioonid (1.25) on pidevad lõigus rα, βs ning A � �
xpαq, ypαq� ja B ��

xpβq, ypβq�). Teoreemi tõestuseks piisab näidata, et selle kaare jälje L :�  �
xptq, yptq� : t P

rα, βs( Jordani välismõõt µ�pLq � 0. Selleks omakorda, �kseerides vabalt reaalarvu
ε ¡ 0, piisab näidata, et

p�q leiduvad arv n P N ja punktid α � t1   t2   � � � tn   β nii, et, tähistades iga
i P t1, . . . , nu korral
Pi :� pxi, yiq :�

�
xptiq, yptiq

�
ja Di :� rxi � ε, xi � εs � ryi � ε, yi � εs

(s.t. Di on ruut keskpunktiga Pi ja küljepikkusega 2ε), kehtivad tingimused

(1) kui n ¥ 2, siis iga i P t1, . . . , n� 1u korral
max

 |xi�1 � xi|, |yi�1 � yi|
( � ε (1.26)

(s.t. ruudu Di�1 keskpunkt Pi�1 paikneb ruudu Di rajajoonel) ja �
xptq, yptq� : t P rti, ti�1s

( � Di (1.27)

(s.t. kaare AB osakaar PiPi�1 (või, täpsemalt, selle osakaare jälg) sisaldub
ruudus Di);

(2)
 �
xptq, yptq� : tn ¤ t ¤ β

( � Dn (s.t. kaare AB osakaar PnB (või, täpse-
malt, selle osakaare jälg) sisaldub ruudus Dn)

NB! Joonis?

(vt. joonist ?? ).

Tõepoolest, kehtigu väide p�q. Siis L � �n
i�1Di, seega arvestades, et

� ristküliksumma
�n

i�1Di pindala ei ületa arvu np2εq2,
� kui n ¥ 2, siis iga i P t1, . . . , n� 1u korral lõigu PiPi�1 pikkus σi ¥ ε,

� kui n ¥ 2, siis kõõlmurdjoone P1P2 . . . Pn pikkus
°n�1

i�1 σi ei ületa kaare AB
pikkust s,
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saame

µ�pLq ¤ np2εq2 � 4ε2 � 4εpn� 1qε ¤ 4ε2 � 4ε
n�1̧

i�1

σi � 4ε2 � 4εs

(kui n � 1, siis loeme siin
°n�1

i�1 σi � 0), millest arvu ε suvalisuse tõttu järeldub, et
µ�pLq � 0, nagu soovitud.

Tõestame väite p�q. De�neerime punktid α � t1   t2   � � � järgmise eeskirja jär-
gi. Kõigepealt de�neerime t1 � α ning edasi, kui mingi k P N korral on de�neeritud
punktid t1, . . . , tk, kuid punkt tk�1 on veel de�neerimata, siis toimime järgmiselt:

[A] kui n � k jaoks kehtib (2), siis de�neerimegi n � k ja lõpetame protsessi;

[B] kui n � k jaoks tingimus (2) ei kehti, siis de�neerime

tk�1 :� inf
!
t P rtk, βs : max

 |xptq � xk|, |yptq � yk|
( � ε

)
(1.28)

(märgime, et hulk, millest siin in�imum võetakse, on mittetühi (põhjendada!)

ning seega see in�imum eksisteerib; seejuures see in�imum on rangelt väiksem
arvust β (põhjendada!) ).

Tõepoolest, funktsioon F : rtk, βs Q t ÞÑ max
 |xptq � xk|, |yptq � yk|

( P R on pidev lõigus

rtk, βs, kusjuures F ptkq � 0 ja leidub t2 P rtk, βs nii, et F pt2q ¡ ε (vastasel korral kehtiks

tingimus (2), kus n � k), seega Bolzano�Cauchy teoreemi ?? põhjal leidub t1 P ptk, t2q nii,
et F pt1q � ε, s.t. t1 on selle hulga element, üle mille valemis (1.28) in�imum võetakse. Kuna

t1   t2 ¤ β, siis see in�imum on rangelt väiksem kui β; niisiis tk�1   β.

Paneme tähele, et juhus [B] de�neeritud punkt tk�1 rahuldab tingimusi (1.26) ja
(1.27), kus i � k (põhjendada!) .

Tõepoolest, kuna tk�1 � inftt P rtk, βs : F ptq � εu, siis funktsiooni F pidevuse tõttu ka

F ptk�1q � ε, s.t. kehtib (1.26), kus i � k. Tingimuse (1.27) (kus i � k) kehtivuseks piisab

veenduda, et F ptq ¤ ε iga t P rtk, tk�1s korral. Oletame vastuväiteliselt, et leidub pt P rtk, tk�1s
nii, et F pptq ¡ ε. Kuna F ptkq � 0, siis Bolzano�Cauchy teoreemi ?? põhjal leidub rt P ptk,ptq
nii, et F prtq � ε. Arvestades, et rt   pt ¤ tk�1, on see vastuolus punkti tk�1 valikuga.

Seega jääb teoreemi tõestuseks veenduda, et kirjeldatud protsess t1, t2, . . . leidmiseks
�peatub� lõpliku arvu sammude järel, s.t. mingi k P N jaoks kehtib (2). Selleks
märgime, et kuna lõigus rα, βs pidevad funktsioonid x � xptq ja y � yptq on ühtlaselt
pidevad selles lõigus, siis leidub reaalarv δ ¡ 0 nii, et

t, t1 P rα, βs, |t� t1|   δ ùñ max
 |xptq � xpt1q|, |yptq � ypt1q|(   ε.

Siit järeldub, et iga i � 1, 2, . . . korral ti�1 ¥ ti � δ. Seega, kui valida κ P N nii, et
α�κδ ¡ β, võime öelda, et kirjeldatud protsess peatub hiljemalt siis, kui on leitud
t1, . . . , tκ (põhjendada!) .



� 2. Esimest liiki tasandiline joonintegraal

2.1. Esimest liiki (tasandilise) joonintegraali mõiste

Olgu Φ: rα, βs Ñ R2 sirgestuv (tasandiline) kaar. Tähistame A :� Φpαq ja B :�
Φpβq, s.t. A ja B on vastavalt selle kaare algus- ja lõpp-punkt; kaarele Φ viitame
edasises kui kaarele AB. Olgu kaarel AB (või, täpsemalt, selle kaare jäljel) määratud
kahe muutuja funktsioon z � fpP q � fpx, yq.

Jaotame lõigu rα, βs osalõikudeks punktidega
α �: t0   t1   � � �   tn :� β pn P Nq (2.1)

ja tähistame Aj � Φptjq, j � 0, 1, . . . , n. Iga j P t1, . . . , nu korral tähistame ∆tj :�
tj � tj�1, osakaare Aj�1Aj pikkuse tähistame sümboliga sj ning �kseerime sellel
osakaarel mingi punkti Bj, s.t.

Bj � Φpτjq, kus τj P rtj�1, tjs (2.2)

(vt. joonist 2.1, kus n � 7).

x

y

A0 = A

A1

A2

A3

A4 = B5

A5

A6

A7 = An = B

B1

B2

B3

B4

B6

B7

Joonis 2.1. Joonisel on kujutatud kaart AB (või, täpsemalt, selle kaare jälge)
koos selle kaare osakaartel Aj�1Aj �kseeritud punktidega Bj , j � 1, . . . , n.

Moodustame integraalsumma

ņ

j�1

fpBjq sj. (2.3)

247
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De�nitsioon 2.1. Kui integraalsummadel (2.3) eksisteerib piirväärtus I P R, s.t.
iga reaalarvu ε ¡ 0 korral leidub reaalarv δ ¡ 0 nii, et (lõigu rα, βs mis tahes
jaotusviisi korral punktidega (2.1) ning mis tahes vastavate osakaarte punktide (2.2)
korral)

max
1¤j¤n

∆tj   δ ùñ
���� ņ

j�1

fpBjq sj � I

����   ε, (2.4)

siis seda piirväärtust nimetatakse esimest liiki (tasandiliseks) joonintegraaliks funkt-
sioonist f üle kaare AB ja tähistatakse sümboliga»

AB

fpx, yq ds :� lim
ņ

j�1

fpBjq sj :� I. (2.5)

Märkus 2.1. Olgu (tasandiline) kaar antud parameetriliste võrranditega

x � xptq, y � yptq, t P rα, βs. (2.6)

Lõigu rα, βs jaotusviisi korral punktidega α �: t0   t1   � � �   tn :� β (n P N) tähistame
xj :� xptjq, yj :� yptjq, Aj :� pxj , yjq, j � 0, 1, . . . , n, ning iga j P t1, . . . , nu korral tähistame
∆tj :� tj � tj�1, ∆xj :� xj � xj�1, ∆yj :� yj � yj�1.

Analoogiliselt märkuses 1.3 tõestatuga saab näidata, et kui kaar (2.6) on lihtne, siis tema jaoks
jääb integraalsummade (2.3) piirväärtuse mõiste samaks, kui de�nitsiooni 2.1 implikatsioonis (2.4)
asendada tingimus

max
1¤j¤n

∆tj   δ

tingimusegaNB! Tingimuse
max1¤j¤n ∆tj  
δ võib asendada
ka tingimusega
max1¤j¤n sAj�1Aj

 

δ, kus sAj�1Aj
tähistab osakaare
Aj�1Aj pikkust!

max
 |∆x1|, |∆y1|, . . . , |∆xn|, |∆yn|

(   δ

või tingimusega

max
1¤j¤n

dpAj�1, Ajq   δ.

Märkus 2.2. Saab näidata, et kui tasandiline kaar Φ on lihtne ning sellel kaarel (või täpsemalt,
tema jäljel) on määratud (R-väärtuseline) funktsioon f , siis mis tahes lihtsa tasandilise kaare Ψ
korral, mille jälg on võrdne kaare Φ jäljega, eksisteerib esimest liiki joonintegraal funktsioonist f
üle kaare Ψ parajasti siis, kui eksisteerib vastav integraal üle kaare Φ, kusjuures nende integraalide
eksisteerimise juhul on nad võrdsed.

Järgneva jaotise lausest 2.3, (h), järeldub, et eelnev väide jääb kehtima, kui seal vaadelda
lihtsate kaarte asemel kaari, millel on ülimalt lõplik arv kordseid punkte.

Sellega on õigustatud järgnev ülesannetekogudes sagedasti esinev ülesandepüstitus: etteantud
(tasandilise) punktihulga � millele selles ülesandes viidatakse kui kaarele � ning sellel punktihulgal
määratud (R-väärtuselise) funktsiooni korral leida esimest liiki joonintegraal sellest funktsioonist
üle selle punktihulga � kaare. Selles ülesandes peetakse �kaare� all silmas mingit kaart, millel on
ülimalt lõplik arv kordseid punkte ning mille jälg see punktihulk on; eelneva põhjal on esimest
liiki joonintegraalid vaadeldavast funktsioonist üle kõigi niisuguste (ülimalt lõpliku arvu kordsete
punktidega) kaarte võrdsed ning seega ei sõltu selle integraali väärtus sellise (ülimalt lõpliku arvu
kordsete punktidega) kaare valikust.
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2.2. Integraalsummade piirväärtus integraalsummade jadade
piirväärtuste kaudu

Järgnev lause kirjeldab integraalsummade piirväärtuse (ehk siis, teisisõnu, esimest
liiki joonintegraali) mõistet. Selleks lepime kokku järgnevas terminoloogias: kõikjal
selle paragrahvi ulateses, kõneldes (funktsiooni f) integraalsummade jadast (kaa-
rel AB), mõistame me selle all mingit niisugust arvjada pσmq8m�1, kus

(1) iga m P N korral σm on funktsiooni f integraalsumma tüüpi (2.3), s.t.

σm �
nm̧

j�1

fpBm
j q sm,j, (2.7)

kus nm P N ning lõigu rα, βs mingi jaotusviisi

α � tm0   tm1   � � �   tmnm
� β (2.8)

korral, de�neerides

Am
j :� Φptmj q, j � 0, 1, . . . , nm,

iga j P t1, . . . , nmu korral sümbol smj tähistab (kaare AB) osakaare Am
j�1A

m
j

pikkust ja punkt Bm
j asub sellel osakaarel, s.t.

Bm
j � Φpτmj q mingi τmj P rtmj�1, t

m
j s korral; (2.9)

(2) integraalsummadele (2.7) vastavate lõigu rα, βs jaotusviiside (2.8) pikima osa-
lõigu pikkus läheneb nullile protsessis mÑ 8, s.t.

max
1¤j¤nm

∆tmj ÝÝÝÑ
mÑ8

0, (2.10)

kus ∆tmj :� tmj � tmj�1.

Lause 2.1. Olgu I P R. Järgmised väited on samaväärsed:

(i) funktsiooni f integraalsummade (2.3) piirväärtus on arv I;

(ii) funktsiooni f mis tahes integraalsummade jada (kaarel AB) koondub arvuks I.

Tõestus. (i)ñ(ii). Kehtigu (i), olgu pσmq8m�1 funktsiooni f integraalsummade jada
(kaarel AB) ning olgu ε ¡ 0. Implikatsiooni tõestuseks peame leidma naturaalarvu
N P N nii, et

m P N, m ¥ N ùñ |σm � I|   ε. (2.11)

Eelduse (i) põhjal leidub reaalarv δ ¡ 0 nii, et (lõigu rα, βs mis tahes jaotusviisi
korral punktidega (2.1) ning mis tahes vastavate osakaarte punktide (2.2) korral)
kehtib implikatsioon (2.4). Nüüd, valides naturaalarvu N nii, et

m P N, m ¥ N ùñ max
1¤j¤nm

∆tmj   δ

(selline valik on võimalik koonduvuse (2.10) tõttu), kehtib implikatsioon (2.11), nagu
soovitud.
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(ii)ñ(i). Kehtigu (ii). Oletame vastuväiteliselt, et arv I ei ole funktsiooni f
integraalsummade (2.3) piirväärtus. Siis leidub reaalarv ε ¡ 0 nii, et iga m P N
korral leiduvad lõigu rα, βs jaotusviis (2.8) ning punktid (2.9), j � 1, . . . , nm, nii, et

max
1¤j¤nm

∆tmj   1

m
,

kuid |σm � I| ¥ ε, kus integraalsumma σm on de�neeritud võrdusega (2.7). Nüüd
pσmq8m�1 on funktsiooni f integraalsummade jada (kaarel AB), mis ei koondu ar-
vuks I, vastuolu.

Jaotise lõpetuseks tõestame, et esimest liiki joonintegraal pidevast funktsioonist
üle sirgestuva kaare eksisteerib alati.

Teoreem 2.2. Olgu AB sirgestuv (tasandiline) kaar ning olgu funktsioon f pidev
sellel kaarel (või, täpsemalt, selle kaare jäljel). Siis eksisteerib esimest liiki joon-
integraal

³
AB

fpx, yq ds.
Tõestus. Olgu Φ: rα, βs Ñ R2 kaart AB de�neeriv funktsioon (siin loomulikult
A � Φpαq ja B � Φpβq). Teoreemi tõestuseks piisab leida arv I P R, mille puhul iga
reaalarvu ε ¡ 0 korral leidub reaalarv δ ¡ 0 nii, et, tuginedes paragrahvi alguses
sissetoodud tähistustele ja märkides σ :� °n

j�1 fpBjq sj, kehtib implikatsioon

max
1¤j¤n

∆tj   δ ùñ |σ � I|   ε. (2.12)

Selleks paneme tähele, et leidub koonduv funktsiooni f integraalsummade jada
pσmq8m�1 (põhjendada! � selleks näidata, et funktsiooni f iga integraalsummade

jada on tõkestatud ning rakendada Bolzano�Weierstrassi teoreemi . Tähistame
I :� limmÑ8 σm ja �kseerime vabalt reaalarvu ε ¡ 0. Teoreemi tõestuseks jääb
leida reaalarv δ ¡ 0 nii, et kehtib implikatsioon (2.12).NB! Kui meie

käsutuses oleks
teoreem pidevate
funktsioonide
U Ñ Rm ja V Ñ R
liitfunktsiooni
pidevusest, kus
U � Rl ning
V � Rm, siis po-
leks meil siin kaart
AB parameetriliste
võrranditega esi-
tavaid funktsioone
x ja y sisse tuua.
(Meile piisaks
siin isegi juhust,
kus l � 1 ja
U � rα, βs � R
ning m � 2.)

Esitugu kaar AB parameetriliste võrranditega x � xptq, y � yptq, t P rα, βs, s.t.
Φptq � �

xptq, yptq� iga t P rα, βs korral. Kuna funktsioon rα, βs Q t ÞÑ f
�
xptq, yptq� �

f
�
Φptq� P R on pidev (põhjendada!) , siis Cantori teoreemi põhjal on see funktsioon

ühtlaselt pidev lõigus rα, βs, seega leidub reaalarv δ ¡ 0 nii, et

t, t1 P rα, βs, |t� t1|   2δ ùñ ��f�Φptq�� f
�
Φpt1q���   ε

2s
,

kus s tähistab kaare AB pikkust (siin me võime üldisust kitsendamata eeldada, et
s ¡ 0). Teoreemi tõestuseks jääb näidata, et (tuginedes paragrahvi alguses sisse-
toodud tähistustele ja märkides σ :� °n

j�1 fpBjq sj) kehtib implikatsioon (2.12), s.t.
eeldades, et max1¤j¤n ∆tj   δ, jääb näidata, et |σ � I|   ε.

Kuna σm ÝÝÝÑ
mÑ8

I, siis leidub indeks m P N nii, et |σm � I|   ε
2
. Toetudes käes-

oleva jaotise alguses tingimustes (1) ja (2) sissetoodud tähistustele, esitub integraal-
summa σm kujul σm � °nm

k�1 fpBm
k q sm,k, kus üldisust kitsendamata võime eeldada,

et max1¤k¤nm ∆tmk   δ põhjendada, miks me võime siin üldisust kitsendamata eel-

dada, et max1¤k¤nm
∆tmk   δ! . Kuna

|σ � I| ¤ |σ � σm| � |σm � I|   |σ � σm| � ε

2
,

siis soovitud võrratuseks |σ � I|   ε jääb näidata, et |σ � σm|   ε
2
.
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Olgu N P N ja reaalarvud rt0,rt1, . . . ,rtN P rα, βs sellised, et α � rt0   rt1   � � �  rtN � β ja trt0,rt1, . . . ,rtNu � tt0, t1, . . . , tnu Y ttm0 , tm1 , . . . , tmnm
u. Iga j P t0, 1, . . . , nu

ja iga k P t0, 1, . . . , nmu korral olgu ij, i1k P t0, 1, . . . , Nu sellised (üheselt määratud)
indeksid, et tj � rtij ja tmk � rti1k . Siis iga i P t1, . . . , Nu korral leiduvad sellised üheselt
määratud j P t1, . . . , nu ja k P t1, . . . , nmu, et

tj�1 � rtij�1
  rti ¤ rtij � tj ja tmk�1 � rti1k�1

  rti ¤ rti1k � tmk ;

selliste j ja k korral de�neerime Ci :� Bj � Φpτjq ja Di :� Bm
k � Φpτmk q. Kuna

|τj � τmk | ¤ |τj � rti| � |rti � τmk |   |tj � tj�1| � |tmk � tmk�1|   δ � δ � 2δ,

siis
|fpCiq � fpDiq| � |f�Φpτjq�� f

�
Φpτmk q

�|   ε

2s
.

De�neerime iga i P t0, 1, . . . , Nu korral rAi :� Φprtiq ning tähistame iga i P t1, . . . , Nu
korral sümboliga rsi (kaare AB) osakaare rAi�1

rAi pikkuse. Nüüd

σ �
ņ

j�1

fpBjq sj �
ņ

j�1

fpBjq
ij¸

i�ij�1�1

rsi � ņ

j�1

ij¸
i�ij�1�1

fpCiq rsi � Ņ

i�1

fpCiq rsi
ja

σm �
nm̧

k�1

fpBm
k q smk �

nm̧

k�1

fpBm
k q

i1ķ

i�i1k�1�1

rsi � nm̧

k�1

i1ķ

i�i1k�1�1

fpDiq rsi � Ņ

i�1

fpDiq rsi
ning seega

|σ � σm| �
���� Ņ
i�1

�
fpCiq � fpDiq

� rsi���� ¤ Ņ

i�1

|fpCiq � fpDiq| rsi
 

Ņ

i�1

ε

2s
rsi � ε

2s

Ņ

i�1

rsi � ε

2s
s � ε

2
,

nagu soovitud.

2.3. Esimest liiki joonintegraali omadusi

Järgnev lause võtab kokku esimest liiki joonintegraali olulisemad lihtsamat sorti
omadused.

Lause 2.3. Olgu AB sirgestuv kaar xy-tasandil ning olgu sellel kaarel (või,
täpsemalt, selle kaare jäljel) määratud kahe muutuja funktsioonid u � fpx, yq ja
v � gpx, yq.
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(a) Olgu funktsioon f konstantne kaarel AB, s.t. mingi c P R korral fpx, yq � c
kaarel AB. Siis eksisteerib esimest liiki joonintegraal

³
AB

fpx, yq ds, kusjuures»
AB

c ds � c sAB (2.13)

(sümbol sAB tähistab kaare AB pikkust).

(b) Eksisteerigu esimest liiki joonintegraal»
AB

fpx, yq ds �: I. (2.14)

Siis funktsioon f on tõkestatud kaarel AB (või, täpsemalt, selle kaare jäljel).

(c) Eksisteerigu esimest liiki joonintegraal (2.14) ning olgu a P R. Siis eksisteerib
ka esimest liiki joonintegraal

³
AB

afpx, yq ds, kusjuures»
AB

afpx, yq ds � a

»
AB

fpx, yq ds.

(d) Eksisteerigu esimest liiki joonintegraalid»
AB

fpx, yq ds �: I1 ja

»
AB

gpx, yq ds �: I2. (2.15)

Siis eksisteerivad ka esimest liiki joonintegraalid
³
AB

�
fpx, yq�gpx, yq� ds, kus-

juures »
AB

�
fpx, yq � gpx, yq� ds � »

AB

fpx, yq ds�
»
AB

gpx, yq ds.

(e) Eksisteerigu esimest liiki joonintegraalid (2.15) ning olgu a, b P R. Siis eksis-
teerib ka esimest liiki joonintegraal

³
AB

�
a fpx, yq � b gpx, yq� ds, kusjuures»

AB

�
a fpx, yq � b gpx, yq� ds � a

»
AB

fpx, yq ds� b

»
AB

fpx, yq ds.

(f) Eksisteerigu esimest liiki joonintegraal (2.14) ning olgu fpx, yq ¥ 0 iga punkti
px, yq korral kaarelt AB (või, täpsemalt, selle kaare jäljelt). Siis»

AB

fpx, yq ds ¥ 0.

(g) Eksisteerigu esimest liiki joonintegraalid (2.15) ning olgu fpx, yq ¥ gpx, yq iga
punkti px, yq korral kaarelt AB (või, täpsemalt, selle kaare jäljelt). Siis»

AB

fpx, yq ds ¥
»
AB

gpx, yq ds. (2.16)
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(h) Olgu C kaare AB punkt, mis asub punktide A ja B vahel. Siis esimest lii-
ki joonintegraal (2.14) eksisteerib parajasti siis, kui eksisteerivad esimest liiki
joonintegraalid »

AC

fpx, yq ds �: J1 ja

»
CB

fpx, yq ds �: J2. (2.17)

Seejuures »
AB

fpx, yq ds �
»
AC

fpx, yq ds�
»
CB

fpx, yq ds. (2.18)

(i) (Esimest liiki joonintegraali keskväärtusteoreem.) Eksisteerigu esimest liiki
joonintegraal (2.14). Siis

(i1) leidub reaalarv µ nii, et

m :� inf fpx, yq ¤ µ ¤ sup fpx, yq �:M, (2.19)

kus inf ja sup võetakse üle kõigi punktide px, yq kaarelt AB (või, täpse-
malt, selle kaare jäljelt), ja»

AB

fpx, yq ds � µ sAB, (2.20)

kus sAB on kaare AB pikkus;

(i2) kui funktsioon f on pidev kaarel AB (või, täpsemalt, selle kaare jäljel),
siis leidub punkt C kaarel AB (või, täpsemalt, selle kaare jäljel) nii, et»

AB

fpx, yq ds � fpCq sAB. (2.21)

Märkus 2.3. Väite (h) tõestus toetub lausele 2.1. Selle lause kasutamine võimaldaks lihtsustada
ka väidete (b) ja (c) tõestusi.

Lause 2.3 tõestus. Esitugu kaar AB parameetriliste võrranditega

x � xptq, y � yptq, t P rα, βs,
kus A � �

xpαq, ypαq� ja B � �
xpβq, ypβq�. Lõigu rα, βs jaotusviisi korral punktidega

α �: t0   t1   � � �   tn :� β pn P Nq (2.22)

tähistame Aj �
�
xptjq, yptjq

�
, j � 0, 1, . . . , n; iga j P t1, . . . , nu korral tähistame

∆tj :� tj � tj�1, osakaare Aj�1Aj pikkuse tähistame sümboliga sj ning �kseerime
sellel osakaarel mingi punkti Bj, s.t. Bj �

�
xpτjq, ypτjq

�
, kus τj P rtj�1, tjs.

(a). Konstantse funktsiooni fpx, yq � c mis tahes integraalsumma
ņ

j�1

fpBjq sj �
ņ

j�1

c sj � c
ņ

j�1

sj � c sAB,

seega ka nende integraalsummade piirväärtus on c sAB, s.t. kehtib (2.13).

(b). Väite tõestus sarnaneb Riemanni mõttes integreeruva funktsiooni tõkesta-
tuse tõestusega. Oletame vastuväiteliselt, et funktsioon f on tõkestamata. Väite
tõestuseks piisab näidata, et
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p�q lõigu rα, βs mis tahes jaotusviisi korral punktidega (2.22) ning mis tahes reaal-
arvu M ¥ 0 korral leiduvad punktid (2.2), nii et����� ņ

j�1

fpBjq sj
����� ¡M.

Tõepoolest, kehtigu väide p�q. Sel juhul (võttes integraalsummade (2.3) piirväärtuse de�nit-
sioonis ε � 1) leidub δ ¡ 0 nii, et kui max

1¤j¤n
∆tj   δ, siis mis tahes punktide Bj korral vastavatelt

osakaartelt Aj�1Aj���� ņ

j�1

fpBjq sj � I

����   1 ehk, teisisõnu, I � 1  
ņ

j�1

fpBjq sj   I � 1

ning seega ����� ņ

j�1

fpBjq sj
�����   max

 |I � 1|, |I � 1|(.
Oleme saanud vastuolu väitega p�q.

Jääb veel tõestada väide p�q. Olgu antud punktid (2.22) ja reaalarv M ¥ 0.
Kuna funktsioon f on tõkestamata kaarel AB, siis ta on tõkestamata mingil osa-
kaarel Aj0�1Aj0 . Valime iga j P t1, . . . , nuztj0u korral vabalt punkti Bj kaarel Aj�1Aj

ja tähistame

κ :�
ņ

j�1
j ��j0

fpBjq sj.

Siis mis tahes punkti Bj0 korral osakaarelt Aj0�1Aj0����� ņ

j�1

fpBjq sj
����� � |fpBj0q sj0 � κ| ¥ |fpBj0q| sj0 � |κ|.

Järelikult, kui valida punkt Bj0 osakaarelt Aj0�1Aj0 nii, et

|fpBj0q| ¡
M � |κ|
sj0

(niisugune valik on võimalik, sest funktsioon f on tõkestamata osakaarel Aj0�1Aj0),
siis ����� ņ

j�1

fpBjq sj
����� ¡ M � |κ|

sj0
sj0 � |κ| �M.

(c). Fikseerime vabalt ε ¡ 0. Väite tõestuseks piisab leida reaalarv δ ¡ 0 nii, et
(lõigu rα, βs mis tahes jaotusviisi korral punktidega (2.22) ning mis tahes vastavate
osakaarte punktide B1, . . . , Bn korral)

max
1¤j¤n

∆tj   δ ùñ
���� ņ

j�1

afpBjq sj � aI

���� � |a|
���� ņ

j�1

fpBjq sj � I

����   ε.
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Üldisust kitsendamata võime eeldada, et a �� 0. Integraali (2.14) olemasolu tõttu
leidub reaalarv δ ¡ 0 nii, et

max
1¤j¤n

∆tj   δ ùñ
���� ņ

j�1

fpBjq sj � I

����   ε

|a| .

Niisiis, kui max
1¤j¤n

∆tj   δ, siis���� ņ

j�1

afpBjq sj � aI

����   |a| ε|a| � ε.

(d). Fikseerime vabalt ε ¡ 0. Väite tõestuseks piisab leida reaalarv δ ¡ 0 nii, et
(lõigu rα, βs mis tahes jaotusviisi korral punktidega (2.22) ning mis tahes vastavate
osakaarte punktide B1, . . . , Bn korral)

max
1¤j¤n

∆tj   δ ùñ
���� ņ

j�1

�
fpBjq � gpBjq

�
sj � pI1 � I2q

����   ε.

Selleks märgime, et���� ņ

j�1

�
fpBjq � gpBjq

�
sj � pI1 � I2q

���� � ����� ņ

j�1

fpBjq sj � I1



�
� ņ

j�1

gpBjq sj � I2


����
¤
���� ņ

j�1

fpBjq sj � I1

����� ���� ņ

j�1

gpBjq sj � I2

����.
Integraalide (2.15) olemasolu tõttu leiduvad reaalarvud δ1, δ2 ¡ 0 nii, et

max
1¤j¤n

∆tj   δ1 ùñ
���� ņ

j�1

fpBjq sj � I1

����   ε

2

ja

max
1¤j¤n

∆tj   δ2 ùñ
���� ņ

j�1

gpBjq sj � I2

����   ε

2
.

Niisiis, kui max
1¤j¤n

∆tj   mintδ1, δ2
( �: δ, siis���� ņ

j�1

�
fpBjq � gpBjq

�
sj � pI1 � I2q

����   ε

2
� ε

2
� ε.

(e). Väite (c) põhjal eksisteerivad joonintegraalid
³
AB

a fpx, yq ds ja ³
AB

b gpx, yq ds,
seega väite (d) põhjal eksisteerib ka joonintegraal

³
AB

�
a fpx, yq � b gpx, yq� ds, kus-

juures »
AB

�
a fpx, yq � b gpx, yq� ds � »

AB

a fpx, yq ds�
»
AB

b gpx, yq ds

� a

»
AB

fpx, yq ds� b

»
AB

gpx, yq ds.
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(f). Fikseerides vabalt reaalarvu ε ¡ 0, piisab väite tõestuseks näidata, et

I ¡ �ε. (2.23)

Integraali (2.14) olemasolu tõttu leidub integraalsumma
n°

j�1

fpBjq sj, mis rahuldab

tingimust
��� n°
j�1

fpBjq sj � I
��   ε; niisiis

I � ε ¡
ņ

j�1

fpBjq sj ¥ 0

(siin viimane võrratus kehtib, sest fpx, yq ¥ 0 kaarel AB), millest järeldub (2.23).

(g). Kuna fpx, yq ¥ gpx, yq kaarel AB, siis fpx, yq � gpx, yq ¥ 0 sellel kaarel;
seega väidete (d) ja (f) põhjal»

AB

fpx, yq ds�
»
AB

gpx, yq ds �
»
AB

�
fpx, yq � gpx, yq� ds ¥ 0,

millest järeldub (2.16).

(h). Olgu γ P rα, βs selline, et C � �
xpγq, ypγq�. Siis kaared AC ja CB esituvad

vastavalt parameetriliste võrranditega

x � xptq, y � yptq, t P rα, γs ja x � xptq, y � yptq, t P rγ, βs.

Tarvilikkus. Eksisteerigu esimest liiki joonintegraal (2.14). Tõestame ainult joon-
integraali

³
AC

fpx, yq ds olemasolu (joonintegraali
³
CB

fpx, yq ds olemasolu tõesta-
takse analoogiliselt). Selleks märgime kõigepealt, et väite (b) põhjal on funktsioon f
tõkestatud kaarel AB, seega on funktsioon f tõkestatud ka osakaarel AC, järeli-
kult funktsiooni f kõikvõimalike integraalsummade hulk (mis vastavad kaare AC
jaotusviisidele) on tõkestatud (põhjendada!) , niisiis funktsiooni f mis tahes integ-
raalsummade jada kaarel AC on tõkestatud (integraalsummade jada mõistet on sel-
gitatud eespool jaotises 2.2). Kuna Bolzano�Weierstrassi teoreemi põhjal saab igast
tõkestatud arvjadast välja eraldada koonduva osajada, siis leidub koonduv funkt-
siooni f integraalsummade jada pυmq8m�1 kaarel AC. Tähistame J :� limmÑ8 υm.

Olgu pρmq8m�1 suvaline funktsiooni f integraalsummade jada kaarel AC. Lause
2.1 põhjal piisab joonintegraali

³
AC

fpx, yq ds olemasoluks näidata, et ρm ÝÝÝÑ
mÑ8

J .

Selleks �kseerime vabalt funktsiooni f mingi integraalsummade jada pρ1mq8m�1 kaarel
CB. Kuna pρm�ρ1mq8m�1 ja pυm�ρ1mq8m�1 on funktsiooni f integraalsummade jadad
kaarel AB (põhjendada!) , siis lause 2.1 põhjal

ρm � ρ1m ÝÝÝÑ
mÑ8

I ja υm � ρ1m ÝÝÝÑ
mÑ8

I

ning järelikult

ρm � pρm � ρ1mq � pυm � ρ1mq � υm ÝÝÝÑ
mÑ8

I � I � J � J,

nagu soovitud.
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Piisavus. Eksisteerigu esimest liiki joonintegraalid (2.17). Olgu pσmq8m�1 suvaline
funktsiooni f integraalsummade jada kaarel AB, s.t. kehtivad lausele 2.1 eelnevad
tingimused (1) ja (2). Esimest liiki joonintegraali (2.14) olemasoluks ja valemi (2.18)
kehtivuseks piisab lause 2.1 põhjal näidata, et σm ÝÝÝÑ

mÑ8
J1 � J2. Selleks märgime

kõigepealt, et väite (b) põhjal on funktsioon f tõkestatud osakaartel AC ja CB,
niisiis funktsioon f on tõkestatud ka kaarel AB (põhjendada!) , s.t. leidub reaalarv
M ¥ 0 nii, et

|fpx, yq| ¤M iga punkti px, yq korral kaarelt AB.
Tähistame iga m P N korral

jm :� min
 
j P t1, . . . , nmu : γ ¤ tmj

(
(siis punkt C asub kaarel Ajm�1Ajm) ning, tähistades kaarte Ajm�1C ja CAjm pik-
kused vastavalt sümbolitega sm0 ja psm0 (seejuures, kui C � Ajm , siis loeme psm0 � 0),

ρm :�
jm�1¸
j�1

fpBm
j q smj � fpCq sm0 ja ρ1m :� fpCq psm0 �

nm̧

j�jm�1

fpBm
j q smj .

Siis pρmq8m�1 ja pρ1mq8m�1 on funktsiooni f integraalsummade jadad vastavalt kaartel
AC ja CB (põhjendada!) , seega lause 2.1 põhjal ρm ÝÝÝÑ

mÑ8
J1 ja ρ1m ÝÝÝÑ

mÑ8
J2. Kuna

σm �
nm̧

j�1

fpBm
j q smj �

jm�1¸
j�1

fpBm
j q smj �

nm̧

j�jm�1

fpBm
j q smj � fpBm

jmq smjm

� ρm � ρ1m � fpBm
jmq smjm � fpCq sm0 � fpCq psm0

� ρm � ρ1m � �
fpBm

jmq � fpCq� smjm
(sest sm0 � psm0 � smjm), siis jääb soovitud koonduvuseks σm ÝÝÝÑ

mÑ8
J1 � J2 näidata, et�

fpBm
jmq � fpCq� smjm ÝÝÝÑ

mÑ8
0. (2.24)

Kuna ���fpBm
jmq � fpCq�smjm �� ¤ �|fpBm

jmq| � |fpCq|�smjm ¤ 2M smjm ,

siis piisab koonduvuseks (2.24) näidata, et smjm ÝÝÝÑ
mÑ8

0. See järeldub lausest 1.2

(põhjendada!) .

(i1). Väite tõestus sarnaneb Riemanni integraali keskväärtusteoreemi tõestusega.
Väidete (a) ja (g) põhjal

msAB �
»
AB

mds ¤
»
AB

fpx, yq ds ¤
»
AB

M ds �M sAB;

seega, tähistades

µ :�
³
AB

fpx, yq ds
sAB

,

kehtivad (2.19) ja (2.20).
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(i2). Olgu µ P R arv eelnevast väitest. Kui funktsioon f on pidev kaarel AB, siis
funktsioon

F ptq � f
�
xptq, yptq�, t P rα, βs,

on pidev lõigus rα, βs, kusjuures

inf
tPrα,βs

F ptq � inf
tPrα,βs

f
�
xptq, yptq� � m ¤ µ ¤M � sup

tPrα,βs
f
�
xptq, yptq� � sup

tPrα,βs
F ptq,

seega Bolzano�Cauchy teoreemi põhjal lõigus pideva funktsiooni vahepealsetest väär-
tustest leidub punkt γ P rα, βs nii, et µ � F pγq ehk, tähistades C :� �

xpγq, ypγq�,
µ � F pγq � f

�
xpγq, ypγq� � fpCq,

niisiis kehtib (2.21).

2.4. Esimest liiki joonintegraali arvutamine

Teoreem 2.4. Olgu kahe muutuja funktsioon u � fpP q � fpx, yq pidev (tasandili-
sel) kaarel L (või, täpsemalt, selle kaare jäljel), mis esitub parameetriliste võrrandi-
tega

x � xptq, y � yptq, t P rα, βs, (2.25)

kus funktsioonidel (2.25) eksisteerib lõigus rα, βs pidev tuletis. Siis eksisteerib esimest
liiki joonintegraal funktsioonist f üle kaare L, kusjuures»

L

fpx, yq ds �
» β

α

f
�
xptq, yptq�ax1ptq2 � y1ptq2 dt. (2.26)

Tõestus. Tähistame

I :�
» β

α

f
�
xptq, yptq�ax1ptq2 � y1ptq2 dt. (2.27)

Fikseerides vabalt reaalarvu ε ¡ 0, piisab valemi (2.26) tõestuseks leida reaalarv
δ ¡ 0 nii, et, jaotades lõigu rα, βs suvaliselt osalõikudeks punktidega α �: t0   t1  
� � �   tn :� β (n P N) ning �kseerides iga j P t1, . . . , nu korral suvaliselt punkti
τj P rtj�1, tjs ja tähistades

∆tj :� tj � tj�1, Bj :�
�
xpτjq, ypτjq

�
, sj :�

» tj

tj�1

a
x1ptq2 � y1ptq2 dt

(märgime, et sj on kaare L osakaare Aj�1Aj pikkus, kus Aj�1 �
�
xptj�1q, yptj�1q

�
ja Aj �

�
xptjq, yptjq

�
), kehtib implikatsioon

max
1¤j¤n

∆tj   δ ùñ
���� ņ

j�1

fpBjq sj � I

����   ε.
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Hindame:���� ņ

j�1

fpBjq sj � I

���� � ���� ņ

j�1

fpBjq
» tj

tj�1

a
x1ptq2 � y1ptq2 dt

�
ņ

j�1

» tj

tj�1

f
�
xptq, yptq�ax1ptq2 � y1ptq2 dt

����
�
���� ņ

j�1

» tj

tj�1

f
�
xpτjq, ypτjq

�a
x1ptq2 � y1ptq2 dt

�
ņ

j�1

» tj

tj�1

f
�
xptq, yptq�ax1ptq2 � y1ptq2 dt

����
¤

ņ

j�1

» tj

tj�1

��f�xpτjq, ypτjq�� f
�
xptq, yptq���ax1ptq2 � y1ptq2 dt

�
ņ

j�1

» tj

tj�1

��F pτjq � F ptq��ax1ptq2 � y1ptq2 dt, (2.28)

kus
F ptq :� f

�
xptq, yptq�, t P rα, βs.

Kuna funktsioon F on pidev lõigus rα, βs (sest ta on pidevate funktsioonide liit-
funktsioon), siis Cantori teoreemi põhjal ta on selles lõigus ühtlaselt pidev, seega
leidub reaalarv δ ¡ 0 nii, et

t, t1 P rα, βs, |t� t1|   δ ùñ ��F ptq � F pt1q��   ε

sL
,

kus sL on kaare L pikkus. Niisiis, kui max
1¤j¤n

∆tj   δ, siis mis tahes j P t1, . . . , nu ja
t P rtj�1, tjs korral |τj � t|   δ ning seega

��F pτjq � F ptq��   ε

sL
, järelikult

���� ņ

j�1

fpBjq sj � I

����   ņ

j�1

» tj

tj�1

ε

sL

a
x1ptq2 � y1ptq2 dt � ε

sL

ņ

j�1

» tj

tj�1

a
x1ptq2 � y1ptq2 dt

� ε

sL

» β

α

a
x1ptq2 � y1ptq2 dt � ε

sL
sL � ε.

Märkus 2.4. Teoreemi 2.4 saab tõestada ka ilma Cantori teoreemi kasutamata. Tõepoolest, sum-
mat valemireas (2.28) saab hinnata ka teisiti. Nimelt, kuna funktsioon t ÞÑ a

x1ptq2 � y1ptq2 on
pidev lõigus rα, βs, siis Weierstrassi esimese teoreemi põhjal on ta tõkestatud selles lõigus, s.t.
leidub reaalarv M ¡ 0 nii, eta

x1ptq2 � y1ptq2 ¤M iga t P rα, βs korral.
Seega, tähistades

Mj :� sup
tPrtj�1,tjs

F ptq, mj :� inf
tPrtj�1,tjs

F ptq, j � 1, . . . , n
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(need supreemumid ja in�imumid eksisteerivad, sest lõigus rα, βs pidev funktsioon F on Weier-
strassi teoreemi põhjal tõkestatud selles lõigus ning seega tõkestatud ka igas osalõigus rtj�1, tjs),
kehtib ���� ņ

j�1

fpBjq sj � I

���� ¤ ņ

j�1

» tj

tj�1

pMj �mjqM dt �M
ņ

j�1

pMj �mjq
» tj

tj�1

dt

�M
ņ

j�1

pMj �mjq∆tj .

Kuna lõigus rα, βs pidev funktsioon F on integreeruv selles lõigus, siis leidub reaalarv δ ¡ 0 nii, et

max
1¤j¤n

∆tj   δ ùñ
ņ

j�1

pMj �mjq∆tj   ε

M
.

Niisiis, kui max
1¤j¤n

∆tj   δ, siis ���� ņ

j�1

fpBjq sj � I

����  M
ε

M
� ε.

Märkus 2.5. Teoreem 2.4 jääb kehtima, kui seal asendada eeldus funktsioonidel (2.25) pideva
tuletise olemasolust lõigus rα, βs nõrgema eeldusega, et funktsioonidel (2.25) eksisteerib lõigus rα, βs
pidev tuletis, välja arvatud, võib-olla, lõplikus arvus punktides, milles tuletisfunktsioonidel x1 ja y1

eksisteerivad lõplikud ühepoolsed piirväärtused. See järeldub lausest 2.3, (h) (põhjendada!) .

Märkus 2.6. Teoreem 2.4 jääb kehtima, kui seal asendada eeldus funktsioonidel (2.25) pideva
tuletise olemasolust lõigus rα, βs (nõrgema) eeldusega nendel funktsioonidel integreeruva tuletise
olemasolust selles lõigus (see eeldus on nõrgem ka märkuses 2.5 käsitletud teoreemi 2.4 eelduse
nõrgendusest).

Tõepoolest, märkuse 1.6 põhjal on kaar L ka sel eeldusel sirgestuv, kusjuures tema pikkus
on sL � ³β

α

a
x1ptq2 � y1ptq2 dt ja iga j P t1, . . . , nu korral on osakaare Aj�1Aj pikkus sj �³tj

tj�1

a
x1ptq2 � y1ptq2 dt; samuti eksisteerib integraal (2.27) (sest funktsioon x ÞÑ a

x1ptq2 � y1ptq2
on integreeruv lõigus rα, βs ning antud lõigus integreeruvate funktsioonide korrutis on integreeruv
selles lõigus). Vahetult teoreemi 2.4 sõnastusele järgnevas selle teoreemi tõestuses tuletisfunkt-
sioonide x1 ja y1 pidevust muuks ei kasutata. (Märkuses 2.4 antud tõestusskeemis kasutatakse
tuletisfunktsioonide x1 ja y1 pidevust lisaks veel funktsiooni t ÞÑa

x1ptq2 � y1ptq2 tõkestatuse põh-
jendamiseks lõigus rα, βs, aga ka see järeldub nende tuletisfunktsioonide integreeruvusest selles
lõigus, sest mingis lõigus integreeruv funktsioon on tõkestatud selles lõigus).

Järgnev järeldus teoreemist 2.4 annab valemid esimest liiki (tasandilise) joon-
integraali arvutamiseks juhul, kui kaar, üle mille integreeritakse, on antud võrrandiga
y � ypxq, x � xpyq või polaarkoordinaatides.
Järeldus 2.5. Olgu kahe muutuja funktsioon u � fpx, yq pidev tasandilisel kaarel L
(või, täpsemalt, selle kaare jäljel).

(a) Olgu kaar L esitatud võrrandiga

y � ypxq, x P ra, bs, (2.29)

kus funktsioonil (2.29) eksisteerib lõigus ra, bs pidev tuletis, välja arvatud, võib-
olla, lõplikus arvus punktides, milles tuletisfunktsioonil y1 eksisteerivad lõplikud
ühepoolsed piirväärtused. Siis»

L

fpx, yq ds �
» b

a

f
�
x, ypxq�a1� y1pxq2 dx.
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(b) Olgu kaar L esitatud võrrandiga

x � xpyq, y P rc, ds, (2.30)

kus funktsioonil (2.30) eksisteerib lõigus rc, ds pidev tuletis, välja arvatud, võib-
olla, lõplikus arvus punktides, milles tuletisfunktsioonil x1 eksisteerivad lõplikud
ühepoolsed piirväärtused. Siis

»
L

fpx, yq ds �
» d

c

f
�
xpyq, y�ax1pyq2 � 1 dy.

(c) Olgu kaar L esitatud polaarkoordinaatides võrrandiga

r � rpϕq, ϕ P rα, βs, (2.31)

kus funktsioonil (2.31) eksisteerib lõigus rα, βs pidev tuletis, välja arvatud,
võib-olla, lõplikus arvus punktides, milles tuletisfunktsioonil r1 eksisteerivad
lõplikud ühepoolsed piirväärtused. Siis

»
L

fpx, yq ds �
» β

α

f
�
rpϕq cosϕ, rpϕq sinϕ�ar1pϕq2 � rpϕq2 dϕ.

Tõestus. Järelduse tõestus on sarnane järelduse 1.5 tõestusele (seejuures toetu-
takse teoreemi 1.4 asemel teoreemile 2.4). Seepärast jätame tõestamise lugejale.

2.5. Esimest liiki joonintegraali rakendusi

Teoreem 2.6. Olgu L sile kaar (või, täpsemalt, sileda kaare jälg) xy-tasandil ning
olgu kahe muutuja funktsioon u � fpx, yq pidev kaarel L. Siis silindrilise pinna

Σ :�
!
px, y, zq : px, yq P L, z P �0, fpx, yq�)

(vt. joonist 2.2) pindala on

SΣ �
»
L

fpx, yq ds.

Tõestus. Seda teoreemi me käesolevas kursuses ei tõesta.
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x

y

z

L

z = f(x, y)

Joonis 2.2. Silindriline pind Σ on joonisel viirutatud katkendliku joonega.
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3.1. Teist liiki joonintegraali mõiste

Olgu (tasandiline) kaar antud parameetriliste võrranditega

x � xptq, y � yptq, t P rα, βs. (3.1)

Tähistame A :� �
xpαq, ypαq� ja B :� �

xpβq, ypβq�, s.t. A ja B on vastavalt selle
kaare algus- ja lõpp-punkt; sellele kaarele viitame edasises kui kaarele AB. Olgu
kaarel AB (või, täpsemalt, selle kaare jäljel) määratud kahe muutuja funktsioon
z � fpP q � fpx, yq.

Jaotame lõigu rα, βs osalõikudeks punktidega

α �: t0   t1   � � �   tn :� β pn P Nq (3.2)

ning tähistame xj :� xptjq, yj :� yptjq, Aj :� pxj, yjq, j � 0, 1, . . . , n. Iga j P
t1, . . . , nu korral tähistame

∆tj :� tj � tj�1, ∆xj :� xj � xj�1 ja ∆yj :� yj � yj�1

ning �kseerime osakaarel Aj�1Aj mingi punkti Bj, s.t.

Bj :�
�
xpτjq, ypτjq

�
, kus τj P rtj�1, tjs (3.3)

(vt. joonist 3.1, kus n � 7). Moodustame integraalsumma

ņ

j�1

fpBjq∆xj. (3.4)

De�nitsioon 3.1. Kui integraalsummadel (3.4) eksisteerib piirväärtus I P R, s.t.
iga reaalarvu ε ¡ 0 korral leidub reaalarv δ ¡ 0 nii, et (lõigu rα, βs mis tahes
jaotusviisi korral punktidega (3.2) ning mis tahes vastavate osakaarte punktide (3.3)
korral)

max
1¤j¤n

∆tj   δ ùñ
���� ņ

j�1

fpBjq∆xj � I

����   ε, (3.5)

siis seda piirväärtust nimetatakse teist liiki (tasandiliseks) joonintegraaliks funkt-
sioonist f üle kaare AB projektsioonide järgi x-teljele ja tähistatakse sümboliga»

AB

fpx, yq dx :� lim
ņ

j�1

fpBjq∆xj :� I. (3.6)

Kaarele AB viidatakse seejuures kui integreerimisteele.

263
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x

y

x0

x1 x2 x3 x4 x5 = x6x7

A0 = A

A1

A2

A3

A4 = B5

A5

A6

A7 = An = B

B1

B2

B3

B4

B6

B7

Joonis 3.1. Joonisel on kujutatud kaart AB (või, täpsemalt, selle kaare jälge)
koos selle kaare osakaarte otspunktidega A0, A1, . . . , An ja nende otspunktide
projektsioonidega x0, x1, . . . , xn x-teljele ning osakaartel Aj�1Aj �kseeritud
punktidega Bj , j � 1, . . . , n.

Analoogiliselt de�neeritakse teist liiki (tasandiline) joonintegraal funktsioonist f
üle kaare AB projektsioonide järgi y-teljele»

AB

fpx, yq dy. (3.7)

Kui funktsioonid u � F px, yq ja v � Gpx, yq on määratud kaarel AB (või,
täpsemalt, selle kaare jäljel), siis me tähistame»
AB

F dx�Gdy :�
»
AB

F px, yq dx�Gpx, yq dy :�
»
AB

F px, yq dx�
»
AB

Gpx, yq dy.

Märkus 3.1. Analoogiliselt märkuses 1.3 tõestatuga saab näidata, et kui kaar (3.1) on lihtne,
siis tema jaoks jääb integraalsummade (3.4) piirväärtuse mõiste samaks, kui de�nitsiooni 3.1 imp-
likatsioonis (3.5) asendada tingimus

max
1¤j¤n

∆tj   δ

tingimusegaNB! Tingimuse
max1¤j¤n ∆tj  
δ võib asendada
ka tingimusega
max1¤j¤n sAj�1Aj

 

δ, kus sAj�1Aj
tähistab osakaare
Aj�1Aj pikkust!

max
 |∆x1|, |∆y1|, . . . , |∆xn|, |∆yn|

(   δ

või tingimusega

max
1¤j¤n

dpAj�1, Ajq   δ.
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Märkus 3.2. Osutub, et kui tasandiline kaar Φ on lihtne ning sellel kaarel (või täpsemalt, tema
jäljel) on määratud (R-väärtuseline) funktsioon f , siis mis tahes lihtsa tasandilise kaare Ψ korral,
mille jälg on võrdne kaare Φ jäljega ja mille algupunkt ühtib kaare Φ alguspunktiga, eksisteerib
teist liiki joonintegraal funktsioonist f üle kaare Ψ (ükskõik, kas projektsioonide järgi x-teljele või
y-teljele) parajasti siis, kui eksisteerib vastav integraal üle kaare Φ, kusjuures nende integraalide
eksisteerimise juhul on nad võrdsed.

Tõepoolest, kui Φ ja Ψ on lihtsad kaared, mille alguspunktid ja jäljed ühtivad, siis funktsioo-
nid Φ ja Ψ määravad sellel jäljel ühesuguse punktide järjestuse (vt. ülesannet 1.3). Siit järeldub,
et mis tahes sellel jäljel määratud funktsiooni korral on selle funktsiooni integraalsummade hulk
(nii projektsioonide järgi x-teljele kui ka y-teljele) üle kaare Φ sama, mis vastavate integraalsum-
made hulk üle kaare Ψ (põhjendada!) . Märkusest 3.1 järeldub, et ka nende integraalsumma-
de piirväärtused üle kaarte Φ ja Ψ on võrdsed (või ei eksisteeri kumbki nendest piirväärtustest)
(põhjendada!) ehk, teisisõnu, teist liiki joonintegraalid vaadeldavast funktsioonist üle kaarte Φ

ja Ψ on võrdsed.

Eelnevast arutelust nähtub, et tõestatud väide jääb kehtima, kui seal vaadelda lihtsate kaarte
asemel kaari, mis määravad nende kaarte ühisel jäljel ühesuguse punktide järjestuse (�jälje punktide
läbimise järjekorra�).

Eelnevaga on õigustatud järgnev ülesannetekogudes sagedasti esinev ülesandepüstitus: ettean-
tud (tasandilise) punktihulga � millele selles ülesandes viidatakse kui kaarele ja mille puhul on
ette antud �tema punktide läbimise järjekord� � ning sellel punktihulgal määratud (R-väärtuselise)
funktsiooni korral leida teist liiki joonintegraal sellest funktsioonist üle selle punktihulga � kaare
(kas siis projektsioonide järgi x-teljele või y-teljele). Selles ülesandes peetakse �kaare� all silmas
mingit kaart, mille jälg see punktihulk on ning mille poolt määratud �jälje punktide läbimise järje-
kord� ühtib selle etteantud järjekorraga: eelneva põhjal on teist liiki joonintegraalid vaadeldavast
funktsioonist üle kõigi niisuguste kaarte võrdsed ning seega ei sõltu selle integraali väärtus sellise
kaare valikust.

3.2. Integraalsummade piirväärtus integraalsummade jadade
piirväärtuste kaudu

Järgnev lause kirjeldab integraalsummade (3.4) piirväärtuse (ehk siis, teisisõnu, teist
liiki joonintegraali (projektsioonide järgi x-teljele)) mõistet. Selleks lepime kokku
järgnevas terminoloogias: kõikjal selle paragrahvi ulatuses, kõneldes (funktsiooni f)
integraalsummade jadast (kaarel AB) (projektsioonide järgi x-teljele), mõistame me
selle all mingit niisugust arvjada pσmq8m�1, kus

(1) iga m P N korral σm on funktsiooni f integraalsumma tüüpi (3.4), s.t.

σm �
nm̧

j�1

fpBm
j q∆xmj , (3.8)

kus nm P N ning lõigu rα, βs mingi jaotusviisi

α � tm0   tm1   � � �   tmnm
� β (3.9)

korral ∆xmj :� xptmj q � xptmj�1q ja

Bm
j � �

xpτmj q, ypτmj q
�

mingi τmj P rtmj�1, t
m
j s korral; (3.10)
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(2) integraalsummadele (3.8) vastavate lõigu rα, βs jaotusviiside (3.9) pikima osa-
lõigu pikkus läheneb nullile protsessis mÑ 8, s.t.

max
1¤j¤nm

∆tmj ÝÝÝÑ
mÑ8

0, (3.11)

kus ∆tmj :� tmj � tmj�1.

Lause 3.1. Olgu I P R. Järgmised väited on samaväärsed:

(i) funktsiooni f integraalsummade (3.4) piirväärtus on arv I;

(ii) funktsiooni f mis tahes integraalsummade jada (kaarel AB projektsioonide jär-
gi x-teljele) koondub arvuks I.

Tõestus. (i)ñ(ii). Kehtigu (i), olgu pσmq8m�1 funktsiooni f integraalsummade jada
(kaarel AB projektsioonide järgi x-teljele) ning olgu ε ¡ 0. Implikatsiooni tõestuseks
peame leidma indeksi N P N nii, et

m P N, m ¥ N ùñ |σm � I|   ε. (3.12)

Eelduse (i) põhjal leidub reaalarv δ ¡ 0 nii, et (lõigu rα, βs mis tahes jaotusviisi
korral punktidega (3.2) ning mis tahes vastavate osakaarte punktide (3.3) korral)
kehtib implikatsioon (3.5). Nüüd, valides naturaalarvu N nii, et

m P N, m ¥ N ùñ max
1¤j¤nm

∆tmj   δ

(selline valik on võimalik koonduvuse (3.11) tõttu), kehtib implikatsioon (3.12), nagu
soovitud.

(ii)ñ(i). Kehtigu (ii). Oletame vastuväiteliselt, et arv I ei ole funktsiooni f
integraalsummade (3.4) piirväärtus. Siis leidub reaalarv ε ¡ 0 nii, et iga m P N
korral leiduvad lõigu rα, βs jaotusviis (3.9) ning punktid (3.10), j � 1, . . . , nm, nii,
et

max
1¤j¤nm

∆tmj   1

m
,

kuid |σm � I| ¥ ε, kus integraalsumma σm on de�neeritud võrdusega (3.8) (põh-

jendada!) . Nüüd pσmq8m�1 on funktsiooni f integraalsummade jada (kaarel AB pro-
jektsioonide järgi x-teljele), mis ei koondu arvuks I, vastuolu.

Jaotise lõpetuseks tõestame, et teist liiki joonintegraal pidevast funktsioonist üle
sirgestuva kaare (nii projektsioonide järgi x-teljele kui ka y-teljele) eksisteerib alati.

Teoreem 3.2. Olgu AB sirgestuv (tasandiline) kaar ning olgu funktsioonid F ja G
pidevad sellel kaarel (või, täpsemalt, selle kaare jäljel). Siis eksisteerib teist liiki
joonintegraal

³
AB

F dx�Gdy.
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Tõestus. Tõestame teoreemi väite ainult juhul, kus G � 0. Juhul, kus F � 0,
tõestatakse väide analoogiliselt; väite kehtivusest juhtudel, kus vastavalt G � 0 ja
F � 0, järeldub selle väite kehtivus üldjuhul (põhjendada!) .

Niisiis, eeldame järgnevas, et G � 0. Kõneldes integraalsummadest ja integ-
raalsummade jadadest, mõistame me selle all alati integraalsummasid ja integraal-
summade jadasid kaarel AB projektsioonide järgi x-teljele.

Esitugu kaar AB parameetriliste võrranditega x � xptq, y � yptq, t P rα, βs.
De�neerime Φptq :� �

xptq, yptq� iga t P rα, βs korral (siis A � Φpαq ja B � Φpβq).
Teoreemi tõestuseks piisab leida arv I P R, mille puhul iga reaalarvu ε ¡ 0 korral
leidub reaalarv δ ¡ 0 nii, et, tuginedes paragrahvi alguses sissetoodud tähistustele
ja märkides σ :� °n

j�1 F pBjq∆xj, kehtib implikatsioon

max
1¤j¤n

∆tj   δ ùñ |σ � I|   ε. (3.13)

Selleks paneme tähele, et leidub koonduv funktsiooni f integraalsummade jada
pσmq8m�1 (põhjendada! � selleks näidata, et funktsiooni f iga integraalsummade

jada on tõkestatud ning rakendada Bolzano�Weierstrassi teoreemi . Tähistame
I :� limmÑ8 σm ja �kseerime vabalt reaalarvu ε ¡ 0. Teoreemi tõestuseks jääb
leida reaalarv δ ¡ 0 nii, et kehtib implikatsioon (3.13).

Kuna funktsioon rα, βs Q t ÞÑ F
�
xptq, yptq� � F

�
Φptq� P R on pidev, siis Cantori

teoreemi põhjal on see funktsioon ühtlaselt pidev lõigus rα, βs, seega leidub reaalarv
δ ¡ 0 nii, et

t, t1 P rα, βs, |t� t1|   2δ ùñ ��F�Φptq�� F
�
Φpt1q���   ε

2s
,

kus s tähistab kaare AB pikkust (siin me võime üldisust kitsendamata eeldada, et
s ¡ 0). Teoreemi tõestuseks jääb näidata, et (tuginedes paragrahvi alguses sisse-
toodud tähistustele ja märkides σ :� °n

j�1 F pBjq∆xj) kehtib implikatsioon (3.13),
s.t. eeldades, et max1¤j¤n ∆tj   δ, jääb näidata, et |σ � I|   ε.

Kuna σm ÝÝÝÑ
mÑ8

I, siis leidub indeks m P N nii, et |σm � I|   ε
2
. Tuginedes käes-

oleva jaotise alguses tingimustes (1) ja (2) sissetoodud tähistustele, esitub integraal-
summa σm kujul σm � °nm

k�1 F pBm
k q∆xmj , kus üldisust kitsendamata võime eeldada,

et max1¤k¤nm ∆tmk   δ põhjendada, miks me võime siin üldisust kitsendamata eel-

dada, et max1¤k¤nm ∆tmk   δ! . Kuna NB! Alates sel-
lest �Kuna� kuni
järgmise lõigu vale-
mireani �|F pCiq �
F pDiq| �. . . , kor-
dab teoreemi 3.2
tõestus sõna-sõnalt
teoreemi 2.2 tões-
tuse vastavat juppi.

|σ � I| ¤ |σ � σm| � |σm � I|   |σ � σm| � ε

2
,

siis soovitud võrratuseks |σ � I|   ε jääb näidata, et |σ � σm|   ε
2
.

Olgu N P N ja reaalarvud rt0,rt1, . . . ,rtN P rα, βs sellised, et α � rt0   rt1   � � �  rtN � β ja trt0,rt1, . . . ,rtNu � tt0, t1, . . . , tnu Y ttm0 , tm1 , . . . , tmnm
u. Iga j P t0, 1, . . . , nu

ja iga k P t0, 1, . . . , nmu korral olgu ij, i1k P t0, 1, . . . , Nu sellised (üheselt määratud)
indeksid, et tj � rtij ja tmk � rti1k . Siis iga i P t1, . . . , Nu korral leiduvad sellised üheselt
määratud j P t1, . . . , nu ja k P t1, . . . , nmu, et

tj�1 � rtij�1
  rti ¤ rtij � tj ja tmk�1 � rti1k�1

  rti ¤ rti1k � tmk ;
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selliste j ja k korral de�neerime Ci :� Bj � Φpτjq ja Di :� Bm
k � Φpτmk q. Kuna

|τj � τmk | ¤ |τj � rti| � |rti � τmk |   |tj � tj�1| � |tmk � tmk�1|   δ � δ � 2δ,

siis
|F pCiq � F pDiq| � |F�Φpτjq�� F

�
Φpτmk q

�|   ε

2s
.

De�neerime iga i P t1, . . . , Nu korral ∆rxi :� x
�rti�� x

�rti�1

�
; siis

σ �
ņ

j�1

F pBjq∆xj �
ņ

j�1

F pBjq
ij¸

i�ij�1�1

∆rxi � ņ

j�1

ij¸
i�ij�1�1

F pCiq∆rxi � Ņ

i�1

F pCiq∆rxi
(põhjendada, miks siin ∆xj �

ij°
i�ij�1�1

∆rxi!) ja

σm �
nm̧

k�1

F pBm
k q∆xmk �

nm̧

k�1

F pBm
k q

i1ķ

i�i1k�1�1

∆rxi � nm̧

k�1

i1ķ

i�i1k�1�1

F pDiq∆rxi � Ņ

i�1

F pDiq∆rxi
(põhjendada, miks siin ∆xm

k �
i1k°

i�i1k�1�1

∆rxi!) . Seega, de�neerides iga i P t0, 1, . . . , Nu

korral rAi :� Φprtiq ning tähistades iga i P t1, . . . , Nu korral sümboliga
�� rAi�1

rAi

��
punkte rAi�1 ja rAi ühendava sirglõigu pikkuse,

|σ � σm| �
���� Ņ
i�1

�
F pCiq � F pDiq

�
∆rxi���� ¤ Ņ

i�1

|F pCiq � F pDiq| |∆rxi|
¤

Ņ

i�1

ε

2s

�� rAi�1
rAi

�� � ε

2s

Ņ

i�1

�� rAi�1
rAi

��   ε

2s
s � ε

2

(põhjendada, miks siin |∆rxi| ¤
�� rAi�1

rAi

�� ja °N
i�1

�� rAi�1
rAi

�� ¤ s!) , nagu soovitud.

3.3. Teist liiki joonintegraali omadusi

Järgnev lause võtab kokku teist liiki joonintegraali olulisemad lihtsamat sorti oma-
dused.

Lause 3.3. Olgu AB kaar xy-tasandil ning olgu sellel kaarel (või, täpsemalt, selle
kaare jäljel) määratud kahe muutuja funktsioonid u � F px, yq, u1 � F1px, yq, u2 �
F2px, yq, v � Gpx, yq, v1 � G1px, yq ja v2 � G2px, yq.
(a) Teist liiki joonintegraal sõltub kaare (või, täpsemalt, selle kaare jälje) läbimise

suunast: kaare AB (või täpsemalt, selle kaare jälje) läbimisel vastassuunas
integraali märk muutub:»

BA

F dx�Gdy � �
»
AB

F dx�Gdy



� 3. Teist liiki tasandiline joonintegraal 269

(siin peetakse kaare BA all silmas mingit kaart, mille jälg ühtib kaare AB jäl-
jega ning mille poolt sellel jäljel määratud punktide järjestus (�jälje punktide
läbimise järjekord�) on täpselt vastupidine kaare AB poolt määratud järjes-
tusele (muuhulgas, kaare BA alguspunkt on B ja lõpp-punkt A)).

(b) Kui kaar AB on risti x-teljega, siis»
AB

F dx � 0; (3.14)

kui kaar AB on risti y-teljega, siis»
AB

Gdy � 0.

(c) Olgu c P R.

(c1) Kui eksisteerib teist liiki joonintegraal»
AB

F dx �: I, (3.15)

siis eksisteerib ka joonintegraal
³
AB

c F dx, kusjuures»
AB

c F dx � c

»
AB

F dx.

(c2) Kui eksisteerib teist liiki joonintegraal
³
AB

Gdy, siis eksisteerib ka joon-
integraal

³
AB

cG dy, kusjuures»
AB

cG dy � c

»
AB

Gdy.

(d) (d1) Kui eksisteerivad teist liiki joonintegraalid»
AB

F1 dx �: I1 ja

»
AB

F2 dx �: I2, (3.16)

siis eksisteerivad ka joonintegraalid
³
AB

�
F1 � F2

�
dx, kusjuures»

AB

�
F1 � F2

�
dx �

»
AB

F1 dx�
»
AB

F2 dx.

(d2) Kui eksisteerivad teist liiki joonintegraalid»
AB

G1 dy ja

»
AB

G2 dy, (3.17)

siis eksisteerivad ka joonintegraalid
³
AB

�
G1 �G2

�
dy, kusjuures»

AB

�
G1 �G2

�
dy �

»
AB

G1 dy �
»
AB

G2 dy.
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(e) Eksisteerigu teist liiki joonintegraalid (3.16) ja (3.17). Siis eksisteerib ka joon-
integraal »

AB

�
a1F1 � a2F2

�
dx� �

b1G1 � b2G2

�
dy, (3.18)

kusjuures»
AB

�
a1F1 � a2F2

�
dx� �

b1G1 � b2G2

�
dy

� a1

»
AB

F1 dx� a2

»
AB

F2 dx� b1

»
AB

G1 dy � b2

»
AB

G2 dy.

(f) Olgu C kaare AB punkt, mis asub punktide A ja B vahel.

(f1) Kui eksisteerib teist liiki joonintegraal»
AB

F dx�Gdy, (3.19)

siis eksisteerivad ka teist liiki joonintegraalid»
AC

F dx�Gdy ja

»
CB

F dx�Gdy. (3.20)

(f2) Kui funktsioonid F ja G tõkestatud kaarel AB ning eksisteerivad teist liiki
joonintegraalid (3.20), siis eksisteerib ka teist liiki joonintegraal (3.19),
kusjuures»

AB

F dx�Gdy �
»
AC

F dx�Gdy �
»
CB

F dx�Gdy.

Märkus 3.3. Väite (f) tõestus toetub lausele 3.1. Selle lause kasutamine võimaldaks lihtsustada
ka väidete (c) ja (d) tõestusi.

Lause 3.3 tõestus. Esitugu kaar AB parameetriliste võrranditega

x � xptq, y � yptq, t P rα, βs,
kus A � �

xpαq, ypαq� ja B � �
xpβq, ypβq�. Lõigu rα, βs jaotusviisi korral punktidega

α �: t0   t1   � � �   tn :� β pn P Nq (3.21)

tähistame Aj �
�
xptjq, yptjq

�
, j � 0, 1, . . . , n; iga j P t1, . . . , nu korral tähistame

∆tj :� tj � tj�1, ∆xj :� xj � xj�1, ∆yj :� yj � yj�1

ning, �kseerides osakaarel Aj�1Aj mingi punkti Bj, s.t. Bj �
�
xpτjq, ypτjq

�
, kus

τj P rtj�1, tjs, tähistame

σ :�
ņ

j�1

F pBnq∆xj. (3.22)
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(a). Olgu BA mingi kaar, mille jälg ühtib kaare AB jäljega ning mille poolt sellel
jäljel määratud punktide järjestus (�jälje punktide läbimise järjekord�) on täpselt
vastupidine kaare AB poolt määratud järjestusele (muuhulgas, kaare BA algus-
punkt on B ja lõpp-punkt A). Siis funktsiooni F integraalsummad üle kaare BA
projektsioonide järgi x-teljele on parajasti miinusmärgiga integraalsummad (3.22)
(põhjendada!) . Märkusest 3.1 järeldub nüüd, et funktsiooni F integraalsummadel
üle kaare BA projektsioonide järgi x-teljele eksisteerib piirväärtus parajasti siis, kui
eksisteerib piirväärtus integraalsummadel (3.22), kusjuures need piirväärtused on
vastandmärgilised (põhjendada!) . Niisiis, integraal

³
BA

F dx eksisteerib parajasti
siis, kui eksisteerib

³
AB

F dx, kusjuures
³
BA

F dx � � ³
AB

F dx.
Analoogiliselt arutledes saame, et integraal

³
BA

Gdy eksisteerib parajasti siis,
kui eksisteerib

³
AB

Gdy, kusjuures
³
BA

Gdx � � ³
AB

Gdy.
Eelnevast järeldub, et integraal

³
BA

F dx � Gdy eksisteerib parajasti siis, kui
eksisteerib integraal

³
AB

F dx�Gdy, kusjuures»
BA

F dx�Gdy �
»
BA

F dx�
»
BA

Gdy � �
»
AB

F dx�
»
AB

Gdy

� �
�»

AB

F dx�
»
AB

Gdy



� �

»
AA

F dx�Gdy.

(b). Kui kaar AB on risti x-teljega, siis kõik integraalsummad (3.22) on võrdsed
arvuga 0 (sest iga j P t1, . . . , nu korral ∆xj � 0), seega ka nende integraalsummade
piirväärtus on 0, s.t. kehtib (3.14).

Juhtu, kus kaar AB on risti y-teljega, käsitletakse analoogiliselt.

(c). Tõestame ainult väite (c1). (Väide (c2) tõestatakse analoogiliselt.) Eksis-
teerigu teist liiki joonintegraal (3.15). Fikseerime vabalt reaalarvu ε ¡ 0. Väite (c1)
tõestuseks piisab leida reaalarv δ ¡ 0 nii, et (lõigu rα, βs mis tahes jaotusviisi korral
punktidega (3.21) ning mis tahes vastavate osakaarte punktide B1, . . . , Bn korral)

max
1¤j¤n

∆tj   δ ùñ
���� ņ

j�1

c F pBjq∆xj � c I

���� � |c|
���� ņ

j�1

F pBjq∆xj � I

����   ε.

Üldisust kitsendamata võime eeldada, et c �� 0. Integraali (3.15) olemasolu tõttu
leidub reaalarv δ ¡ 0 nii, et

max
1¤j¤n

∆tj   δ ùñ
���� ņ

j�1

F pBjq∆xj � I

����   ε

|c| .

Niisiis, kui max
1¤j¤n

∆tj   δ, siis���� ņ

j�1

c F pBjq∆xj � c I

����   |c| ε|c| � ε.

(d). Tõestame ainult väite (d1). (Väide (d2) tõestatakse analoogiliselt.) Eksis-
teerigu teist liiki joonintegraalid (3.16). Fikseerime vabalt reaalarvu ε ¡ 0. Väi-
te (d1) tõestuseks piisab leida reaalarv δ ¡ 0 nii, et (lõigu rα, βs mis tahes jaotus-
viisi korral punktidega (3.21) ning mis tahes vastavate osakaarte punktide B1, . . . , Bn
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korral)

max
1¤j¤n

∆tj   δ ùñ
���� ņ

j�1

�
F1pBjq � F2pBjq

�
∆xj � pI1 � I2q

����   ε.

Selleks märgime, et���� ņ

j�1

�
F1pBjq � F2pBjq

�
∆xj � pI1 � I2q

����
�
����� ņ

j�1

F1pBjq∆xj � I1



�
� ņ

j�1

F2pBjq∆xj � I2


����
¤
���� ņ

j�1

F1pBjq∆xj � I1

����� ���� ņ

j�1

F2pBjq∆xj � I2

����.
Integraalide (3.16) olemasolu tõttu leiduvad reaalarvud δ1, δ2 ¡ 0 nii, et

max
1¤j¤n

∆tj   δ1 ùñ
���� ņ

j�1

F1pBjq∆xj � I1

����   ε

2

ja

max
1¤j¤n

∆tj   δ2 ùñ
���� ņ

j�1

F2pBjq∆xj � I2

����   ε

2
.

Niisiis, kui max
1¤j¤n

∆tj   mintδ1, δ2
( �: δ, siis

���� ņ

j�1

�
F1pBjq � F2pBjq

�
∆xj � pI1 � I2q

����   ε

2
� ε

2
� ε.

(e). Joonintegraali (3.18) olemasolu järeldub vahetult väidetest (c) ja (d) (põh-

jendada!) ; seejuures (jällegi väidete (c) ja (d) põhjal)»
AB

�
a1F1 � a2F2

�
dx� �

b1G1 � b2G2

�
dy

�
»
AB

�
a1F1 � a2F2

�
dx�

»
AB

�
b1G1 � b2G2

�
dy

�
»
AB

a1F1 dx�
»
AB

a2F2 dx�
»
AB

b1G1 dy �
»
AB

b2G2 dy

� a1

»
AB

F1 dx� a2

»
AB

F2 dx� b1

»
AB

G1 dy � b2

»
AB

G2 dy.

(f). Olgu γ P rα, βs selline, et C � �
xpγq, ypγq�. Siis kaared AC ja CB esituvad

vastavalt parameetriliste võrranditega

x � xptq, y � yptq, t P rα, γs ja x � xptq, y � yptq, t P rγ, βs.
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Tõestame väite ainult juhul, kus G � 0. Juhul, kus F � 0, tõestatakse väide
analoogiliselt; väite kehtivusest juhtudel, kus vastavalt G � 0 ja F � 0, järeldub
selle väite kehtivus üldjuhul (põhjendada!) .

Niisiis, eeldame järgnevas, et G � 0. Kõneldes integraalsummadest ja integraal-
summade jadadest, mõistame me selle all alati integraalsummasid ja integraalsum-
made jadasid projektsioonide järgi x-teljele (selliste integraalsummade jada mõistet
on selgitatud eespool jaotises 3.2).

(f1). Eksisteerigu teist liiki joonintegraal
³
AB

F dx �: I. Tõestame ainult joon-
integraali

³
AC

F dx olemasolu (joonintegraali
³
CB

F dx olemasolu tõestatakse ana-
loogiliselt).

Kõigepealt näitame, et funktsiooni F mis tahes integraalsummade jada kaa-
rel AC on tõkestatud. Oletame vastuväiteliselt, et funktsiooni F mingi integraal-
summade jada pρmq8m�1 kaarel AC on tõkestamata. Joonintegraali

³
AB

F dx � I
olemasolu tõttu leidub reaalarv δ ¡ 0 nii, et (lõigu rα, βs mis tahes jaotusviisi korral
punktidega (3.21) ning mis tahes sellele jaotusviisile vastava integraalsumma (3.22)
korral)

max
1¤j¤n

∆tj   δ ùñ |σ � I|   1

ning seega

max
1¤j¤n

∆tj   δ ùñ |σ|   maxt|I � 1|, |I � 1|u �: κ. (3.23)

Fikseerime vabalt funktsiooni F mingi niisuguse integraalsumma ρ1 kaarel CB, mis
vastab lõigu rγ, βs mingile jaotusviisile, mille osalõikude maksimaalne pikkus on
väiksem kui δ. Kuna integraalsummade jada pρmq8m�1 on tõkestamata, siis leidub
funktsiooni F integraalsumma ρ kaarel AC, mis vastab lõigu rα, γs mingile jaotus-
viisile, mille osalõikude maksimaalne pikkus on väiksem kui δ, nii, et

|ρ| ¡ κ� |ρ1|
(põhjendada!) . Nüüd σ :� ρ � ρ1 on funktsiooni F integraalsumma kaarel AB,
mis vastab lõigu rα, βs mingile jaotusviisile, mille osalõikude maksimaalne pikkus
on väiksem kui δ (põhjendada!) , seega implikatsiooni (3.23) tõttu |σ|   κ. Teiselt
poolt,

|σ| � |ρ� ρ1| ¥ |ρ| � |ρ1| ¡ κ� |ρ1| � |ρ1| � κ,

vastuolu. Niisiis, funktsiooni F iga integraalsummade jada kaarel AC on tõkestatud.
Kuna Bolzano�Weierstrassi teoreemi põhjal saab igast tõkestatud arvjadast välja

eraldada koonduva osajada, siis leidub koonduv funktsiooni F integraalsummade
jada pυmq8m�1 kaarel AC. Tähistame J :� limmÑ8 υm.

Olgu pρmq8m�1 suvaline funktsiooni F integraalsummade jada kaarel AC. Lau-
se 3.1 põhjal piisab joonintegraali

³
AC

F px, yq dx olemasoluks näidata, et ρm ÝÝÝÑ
mÑ8

J .

Selleks �kseerime vabalt funktsiooni F mingi integraalsummade jada pρ1mq8m�1 kaa-
rel CB. Kuna pρm � ρ1mq8m�1 ja pυm � ρ1mq8m�1 on funktsiooni F integraalsummade
jadad kaarel AB (põhjendada!) , siis lause 3.1 põhjal

ρm � ρ1m ÝÝÝÑ
mÑ8

I ja υm � ρ1m ÝÝÝÑ
mÑ8

I
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ning järelikult

ρm � pρm � ρ1mq � pυm � ρ1mq � υm ÝÝÝÑ
mÑ8

I � I � J � J,

nagu soovitud.

(f2). Olgu funktsioon F tõkestatud kaarel AB, s.t. leidub reaalarv M ¥ 0 nii, et

|F px, yq| ¤M iga punkti px, yq korral kaarelt AB,
ning eksisteerigu teist liiki joonintegraalid

³
AC

F dx �: J1 ja
³
CB

F dx �: J2. Olgu
pσmq8m�1 suvaline funktsiooni F integraalsummade jada kaarel AB, s.t. kehtivad lau-
sele 3.1 eelnevad tingimused (1) ja (2). Teist liiki joonintegraali

³
AB

F dx olemasoluks
ja võrduseks »

AB

F dx �
»
AC

F dx�
»
CB

F dx

piisab lause 3.1 põhjal näidata, et σm ÝÝÝÑ
mÑ8

J1 � J2.

Tähistame iga m P N korral

jm :� min
 
j P t1, . . . , nmu : γ ¤ tmj

(
(siis tjm�1   γ ¤ tjm) ning

∆xm0 :� xpγq � xptjm�1q, ρm :�
jm�1¸
j�1

F pBm
j q∆xmj � F pCq∆xm0 ,

∆pxm0 :� xptjmq � xpγq, ρ1m :� F pCq∆pxm0 �
nm̧

j�jm�1

F pBm
j q∆xmj .

Siis pρmq8m�1 ja pρ1mq8m�1 on funktsiooni F integraalsummade jadad vastavalt kaartel
AC ja CB (põhjendada!) , seega lause 2.1 põhjal ρm ÝÝÝÑ

mÑ8
J1 ja ρ1m ÝÝÝÑ

mÑ8
J2. Kuna

σm �
nm̧

j�1

F pBm
j q∆xmj �

jm�1¸
j�1

F pBm
j q∆xmj �

nm̧

j�jm�1

F pBm
j q∆xmj � F pBm

jmq∆xmjm

� ρm � ρ1m � F pBm
jmq∆xmjm � F pCq∆xm0 � F pCq∆pxm0

� ρm � ρ1m � �
F pBm

jmq � F pCq�∆xmjm
(sest ∆xm0 � ∆pxm0 � ∆xmjm), siis jääb soovitud koonduvuseks σm ÝÝÝÑ

mÑ8
J1 � J2

näidata, et �
F pBm

jmq � F pCq�∆xmjm ÝÝÝÑ
mÑ8

0. (3.24)

Kuna ���F pBm
jmq � F pCq�∆xmjm �� ¤ �|F pBm

jmq| � |F pCq|�∆xmjm ¤ 2M ∆xmjm ,

siis piisab koonduvuseks (3.24) näidata, et ∆xmjm ÝÝÝÑ
mÑ8

0. See järeldub Cantori

teoreemist lõigus pideva funktsiooni ühtlasest pidevusest (põhjendada!) .
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Olgu L mingi sirgestuva lihtsa kinnise (tasandilise) kaare jälg xy-tasandil ning
olgu sellel jäljel L määratud pidevad funktsioonid F ja G. Siis kirjaviisist»

L

F dx�Gdy (3.25)

ei selgu, milline jälje L punkt tuleb teist liiki joonintegraali (3.25) leidmisel valida
kaare alguspunktiks (ja ühtlasi lõpp-punktiks) ning millises suunas tuleb see jälg NB! Joonis?

läbida (s.t. milline on on selle jälje �punktide läbimise järjekord�). Jälje L ühesuguse
läbimise suuna puhul ei sõltu integraal (3.25) kaare alguspunkti valikust (see järeldub
lausest 3.3, (f), ja märkusest 3.2 (põhjendada!) ), küll aga sõltub see integraal jälje
läbimise suunast � jälje läbimisel vastassuunas muutub selle integraali märk (vt.
lauset 3.3, (a)).

Lihtsa kinnise kaare jälje läbimise suunda, milles liikudes selle jäljega piiratud
tasandi osa jääb vasakule, nimetatakse positiivseks suunaks. (Piltlikult väljendudes,
positiivne suund on kellaosuti liikumise vastassuund.)

On tavaks leppida kokku järgmises: kui L on sirgestuva lihtsa kinnise kaare jälg,
siis kirjaviisi (3.25) puhul mõistetakse jälje L läbimise suunana positiivset suunda,
s.t. selle integraali arvutamisel tuleb leida vastav teist liiki joonintegraal üle niisuguse
lihtsa kinnise kaare Φ: rα, βs Ñ R2, mille jälg on L ning mille puhul parameetri
t P rα, βs kasvades liigub kaare punkt Φptq mööda kaart positiivses suunas.

Kui on vaja märkida integraali üle lihtsa kinnise kaare (mille jälg on L) nega-
tiivses suunas (s.t. kellaosuti liikumise vastassuunas), kirjutatakse integraali (3.25)
ette miinusmärk.

3.4. Teist liiki joonintegraali arvutamine

Teoreem 3.4. Olgu kahe muutuja funktsioon u � fpP q � fpx, yq pidev (tasandili-
selt) kaarel AB (või, täpsemalt, selle kaare jäljel), mis esitub antud parameetriliste
võrranditega

x � xptq, y � yptq, t P rα, βs, (3.26)

kus funktsioonidel (3.26) eksisteerib lõigus rα, βs pidev tuletis ning

A � �
xpαq, ypαq� ja B � �

xpβq, ypβq�.
Siis eksisteerivad teist liiki joonintegraalid funktsioonist f üle kaare AB projektsioo-
nide järgi nii x- kui ka y-teljele, kusjuures»

AB

fpx, yq dx �
» β

α

f
�
xptq, yptq�x1ptq dt (3.27)

ja »
AB

fpx, yq dy �
» β

α

f
�
xptq, yptq� y1ptq dt. (3.28)
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Tõestus. Tõestame ainult valemi (3.27) (valem (3.28) tõestatakse analoogiliselt).
Tähistame

I :�
» β

α

f
�
xptq, yptq�x1ptq dt. (3.29)

Fikseerides vabalt reaalarvu ε ¡ 0, piisab valemi (3.27) tõestuseks leida reaalarv
δ ¡ 0 nii, et, jaotades lõigu rα, βs suvaliselt osalõikudeks punktidega α �: t0   t1  
� � �   tn :� β (n P N) ning �kseerides iga j P t1, . . . , nu korral suvaliselt punkti
τj P rtj�1, tjs ja tähistades

∆tj :� tj � tj�1, ∆xj :� xptjq � xptj�1q, Bj :�
�
xpτjq, ypτjq

�
,

kehtib implikatsioon

max
1¤j¤n

∆tj   δ ùñ
���� ņ

j�1

fpBjq∆xj � I

����   ε.

Selleks märgime, et iga j P t1, . . . , nu korral Newton�Leibnizi valemi põhjal

∆xj � xptjq � xptj�1q �
» tj

tj�1

x1ptq dt, (3.30)

seega���� ņ

j�1

fpBjq∆xj � I

���� � ���� ņ

j�1

f
�
xpτjq, ypτjq

� » tj

tj�1

x1ptq dt�
» β

α

f
�
xptq, yptq�x1ptq dt����

�
���� ņ

j�1

» tj

tj�1

f
�
xpτjq, ypτjq

�
x1ptq dt�

ņ

j�1

» tj

tj�1

f
�
xptq, yptq�x1ptq dt����

¤
ņ

j�1

» tj

tj�1

���f�xpτjq, ypτjq�� f
�
xptq, yptq���� |x1ptq| dt. (3.31)

Kuna tuletisfunktsioon x1 on pidev lõigus rα, βs, siis Weierstrassi esimese teoreemi
põhjal ta on ka tõkestatud selles lõigus, s.t. leidub M ¡ 0 nii, et��x1ptq�� ¤M iga t P rα, βs korral.
Lõigus rα, βs pidev funktsioon t ÞÑ f

�
xptq, yptq� on Cantori teoreemi põhjal ühtlaselt

pidev selles lõigus, seega leidub δ ¡ 0 nii, et

t, t1 P rα, βs, |t� t1|   δ ùñ
���f�xptq, yptq�� f

�
xpt1q, ypt1q����   ε

Mpβ � αq .

Kui nüüd max
1®j¤n

∆tj   δ, siis

���� ņ

j�1

fpBjq∆xj � I

����   ņ

j�1

» tj

tj�1

ε

M pβ � αqM dt � ε

β � α

ņ

j�1

∆tj � ε.
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Märkus 3.4. Teoreemi 3.4 saab tõestada ka ilma Cantori teoreemi kasutamata. Tõepoolest, sum-
mat valemireas (3.31) saab hinnata ka teisiti. Nimelt, tähistades

Mj :� sup
tPrtj�1,tjs

f
�
xptq, yptq�, mj :� inf

tPrtj�1,tjs
f
�
xptq, yptq�, j � 1, . . . , n

(need supreemumid ja in�imumid eksisteerivad, sest lõigus rα, βs pidev funktsioon t ÞÑ f
�
xptq, yptq�

on Weierstrassi teoreemi põhjal tõkestatud selles lõigus ning seega tõkestatud ka igas osalõigus
rtj�1, tjs), kehtib���� ņ

j�1

fpBjq∆xj � I

���� ¤ ņ

j�1

» tj

tj�1

pMj �mjqM dt �M
ņ

j�1

pMj �mjq
» tj

tj�1

dt

�M
ņ

j�1

pMj �mjq∆tj .

Kuna lõigus rα, βs pidev funktsioon t ÞÑ f
�
xptq, yptq� on integreeruv selles lõigus, siis leidub reaalarv

δ ¡ 0 nii, et

max
1¤j¤n

∆tj   δ ùñ
ņ

j�1

pMj �mjq∆tj   ε

M
.

Niisiis, kui max
1¤j¤n

∆tj   δ, siis

���� ņ

j�1

fpBjq∆xj � I

����  M
ε

M
� ε.

Märkus 3.5. Teoreem 3.4 jääb kehtima, kui seal asendada eeldus funktsioonidel (3.26) pideva
tuletise olemasolust lõigus rα, βs nõrgema eeldusega, et funktsioonidel (3.26) eksisteerib lõigus rα, βs
pidev tuletis, välja arvatud, võib-olla, lõplikus arvus punktides, milles tuletisfunktsioonidel x1 ja y1

eksisteerivad lõplikud ühepoolsed piirväärtused. See järeldub lausest 3.3, (f) (põhjendada!) .

Märkus 3.6. Teoreem 3.4 jääb kehtima, kui seal asendada eeldus funktsioonidel (3.26) pideva
tuletise olemasolust lõigus rα, βs (nõrgema) eeldusega nendel funktsioonidel integreeruva tuletise
olemasolust selles lõigus (see eeldus on nõrgem ka märkuses 3.5 käsitletud teoreemi 3.4 eelduse
nõrgendusest).

Tõepoolest, tuletisfunktsioonide x1 ja y1 pidevust kasutab märkuses 3.4 antud tõestusskeem
vaid integraalide (3.29) ja

³β
α
f
�
xptq, yptq� y1ptq dt olemasolu ning valemite (3.30) ja yptjq�yptj�1q � NB! Valemi-

tes (3.30) ja
yptjq � yptj�1q �
³tj
tj�1

y1ptq dt

Newton�Leibnizi
valemi raken-
damiseks on
tegelikult vaja
vaid tuletisfunkt-
sioonide x1 ja y1

integreeruvust.

³tj
tj�1

y1ptq dt põhjendamiseks. Need integraalid eksisteerivad ning valemid kehtivad ka eeldusel, et
tuletisfunktsioonid x1 ja y1 on integreeruvad. (Vahetult teoreemi 3.4 sõnastusele järgnev tõestus
kasutab tuletisfunktsioonide x1 ja y1 pidevust lisaks veel nende (tuletis)funktsioonide tõkestatuse
põhjendamiseks, aga ka nende funktsioonide tõkestatus järeldub nende integreeruvusest.)

Järgnev järeldus teoreemist 3.4 annab valemid teist liiki (tasandilise) jooninteg-
raali arvutamiseks juhul, kui kaar, üle mille integreeritakse, on antud võrrandiga
y � ypxq, x � xpyq või polaarkoordinaatides.
Järeldus 3.5. Olgu kahe muutuja funktsioon u � fpx, yq pidev tasandilisel kaa-
rel AB (või, täpsemalt, selle kaare jäljel).

(a) Olgu kaar AB esitatud võrrandiga

y � ypxq, x P ra, bs, (3.32)
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kus
A � �

a, ypaq� ja B � �
b, ypbq�

ning funktsioonil (3.32) eksisteerib lõigus ra, bs pidev tuletis, välja arvatud,
võib-olla, lõplikus arvus punktides, milles tuletisfunktsioonil y1 eksisteerivad
lõplikud ühepoolsed piirväärtused. Siis»
AB

fpx, yq dx �
» b

a

f
�
x, ypxq� dx ja

»
AB

fpx, yq dy �
» b

a

f
�
x, ypxq� y1pxq dx.

(b) Olgu kaar AB esitatud võrrandiga

x � xpyq, y P rc, ds, (3.33)

kus
A � �

xpcq, c� ja B � �
xpdq, d�.

ning funktsioonil (3.33) eksisteerib lõigus rc, ds pidev tuletis, välja arvatud,
võib-olla, lõplikus arvus punktides, milles tuletisfunktsioonil x1 eksisteerivad
lõplikud ühepoolsed piirväärtused. Siis»
AB

fpx, yq dx �
» d

c

f
�
xpyq, y�x1pyq dy ja

»
AB

fpx, yq dy �
» d

c

f
�
xpyq, y� dy.

(c) Olgu kaar AB esitatud polaarkoordinaatides võrrandiga

r � rpϕq, ϕ P rα, βs, (3.34)

kus (ristkoordinaatides)

A � �
rpαq cosα, rpαq sinα� ja B � �

rpβq cos β, rpβq sin β�
(s.t. polaarkoordinaatides A � �

rpαq, α� ja B � �
rpβq, β�) ning funktsioonil

(3.34) eksisteerib lõigus rα, βs pidev tuletis, välja arvatud, võib-olla, lõplikus
arvus punktides, milles tuletisfunktsioonil r1 eksisteerivad lõplikud ühepoolsed
piirväärtused. Siis»

AB

fpx, yq dx �
» β

α

f
�
rpϕq cosϕ, rpϕq sinϕ� �r1pϕq cosϕ� rpϕq sinϕ� dϕ

ja »
AB

fpx, yq dy �
» β

α

f
�
rpϕq cosϕ, rpϕq sinϕ� �r1pϕq sinϕ� rpϕq cosϕ� dϕ.

Tõestus. Järelduse tõestus on sarnane järelduse 1.5 tõestusele (seejuures toetu-
takse teoreemi 1.4 asemel teoreemile 3.4). Seepärast jätame tõestamise lugejale.



� 3. Teist liiki tasandiline joonintegraal 279

3.5. Greeni valem

Meenutame, et piirkonnaks ruumis Rm nimetatakse lahtise sidusa hulga ja selle hulga
raja mingi alamhulga ühendit. Seejuures lahtiseks piirkonnaks nimetatakse lahtist
sidusat hulka (sel juhul �selle hulga raja mingi alamhulk� piirkonna de�nitsioonis on
tühi hulk) ning kinniseks piirkonnaks nimetatakse lahtise sidusa hulga sulundit (sel
juhul �selle hulga raja mingi alamhulk� piirkonna de�nitsioonis on kogu raja).

Teoreem 3.6 (Greeni valem). Eksisteerigu pidevatel kahe muutuja funktsioonidel

u � F px, yq ja v � Gpx, yq pidevad osatuletised
BF
By ja

BG
Bx tõkestatud kinnises

piirkonnas D, mille rajajoon BD on tükiti sile lihtne kinnine kaar (või, täpsemalt,
raja BD on mingi tükiti sileda lihtsa kinnise kaare jälg). Siis¼

D

�BG
Bx � BF

By


dx dy �

»
BD
F dx�Gdy. (3.35)

Märkus 3.7. Paneme tähele, et mõlemad integraalid valemis (3.35) eksisteerivad.
Tõepoolest, hulga D rajajoon on tükiti sile ning funktsioonid F ja G on pide-

vad sellel rajajoonel (või, täpsemalt, selle joone jäljel), seega võrduse (3.35) paremal
poolel olev integraal eksisteerib teoreemi 3.4 põhjal. (Teine võimalus selle integraali
olemasolu põhjendamiseks on märkida, et teoreemi 1.4 põhjal on hulga D rajajoon
sirgestuv ning seega eksisteerib võrduse (3.35) paremal poolel olev integraal teoree-
mi 3.2 põhjal.)

Teiselt poolt, kuna hulga D rajajoon on teoreemi 1.4 põhjal sirgestuv, siis teoree-
mi 1.6 põhjal on hulga D raja nullmõõduga hulk ning seega teoreemi V.2.5 põhjal on
hulk D mõõtuv. Võrduse (3.35) vasakul poolel oleva integraali olemasolu järeldub
nüüd teoreemist V.2.8.

Märkus 3.8. Teoreem 3.6 on tähelepanuväärne järgmises mõttes: funktsioonide F ja G käitumine
piirkonna D rajajoonel annab meile piisavalt informatsiooni funktsiooni BG

Bx � BF
By käitumise kohta

piirkonnas D, et me saaksime leida integraali sellest funktsioonist üle hulga D.
Teoreemile 3.6 (Greeni valemile) toetub kompleksmuutuja funktsioonide teoorias olulist rolli

etendava Cauchy (integraal)valemi tõestus.

Tõestame Greeni valemist ainult järgnevas lauses toodud erijuhud.

Lause 3.7. Kehtigu teoreemi 3.6 eeldused.

(a) Olgu
D :�  px, yq : x P ra, bs, αpxq ¤ y ¤ βpxq(,

(s.t. D on kõvertrapets; vt. joonist 3.2), kus funktsioonidel

α � αpxq ja β � βpxq, x P ra, bs,
eksisteerib lõigus ra, bs pidev tuletis. Siis

�
¼
D

BF
By dx dy �

»
BD
F dx. (3.36)
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x

y

A

B

C
D

D

y = α(x)

y = β(x)

a b

Joonis 3.2. Joonisel on kõvertrapets D värvitud helesiniseks; selle kõver-
trapetsi rajajoon (mis samuti sisaldub selles kõvertrapetsis) on kujutatud
tumesinisega.

(b) Olgu
D :�  px, yq : y P rc, ds, γpyq ¤ x ¤ δpyq(,

kus funktsioonidel

γ � γpyq ja δ � δpyq, y P rc, ds,
eksisteerib lõigus rc, ds pidev tuletis. Siis¼

D

BG
Bx dx dy �

»
BD
Gdy. (3.37)

Tõestus. Tõestame ainult väite (a). (Väide (b) tõestatakse analoogiliselt.)
Tähistame

A :� �
a, αpaq�, B :� �

b, αpbq�, C :� �
b, βpbq�, D :� �

a, βpaq�
(vt. joonist 3.2). Siis¼

D

BF
By dx dy �

¼
D

BF
By px, yq dx dy �

» b

a

�» βpxq

αpxq

BF
By px, yq dy



dx

�
» b

a

�
F
�
x, βpxq�� F

�
x, αpxq�	dx;
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ning järelikult»
BD
F dx �

»
AB

F dx�
»
BC

F dx�
»
CD

F dx�
»
DA

F dx �
»
AB

F dx�
»
CD

F dx

�
»
AB

F dx�
»
DC

F dx �
» b

a

F
�
x, αpxq� dx� » b

a

F
�
x, βpxq� dx

� �
¼
D

BF
By dx dy,

nagu soovitud.

Märkus 3.9. Valem (3.36) jääb kehtima, kui

(1) piirkond D esitub lõpliku ühendina D �
n�

j�1

Dj, kus D1, . . . ,Dn on paarikaupa

lõikumatute sisemustega kõvertrapetsid, mis rahuldavad lause 3.7, (a), eeldusi
kõvertrapetsi D kohta.

Tõepoolest, eelduse (1) kehtides lause 3.7, (a), põhjal

�
¼
D

BF
By dx dy � �

ņ

j�1

¼
Dj

BF
By dx dy �

ņ

j�1

�
¼
Dj

BF
By dx dy �

ņ

j�1

»
BDj

F dx

�
»
BD
F dx.

Siin viimane võrdus kehtib, sest summas
n°

j�1

³
BDj

F dx esinevad integraalid üle raja-

joonte BDj niisuguste osade, mis pole rajajoone BD osad, kaks korda, kusjuures NB! Joonis?

ühel juhul läbitakse selline osa ühes suunas ja teisel juhul vastupidises suunas; see-

ga koonduvad summas
n°

j�1

³
BDj

F dx integraalid üle rajajoonte BDj osade, mis pole

rajajoone BD osad, paarikaupa välja.

Analoogiliselt saab näidata, et valem (3.37) jääb kehtima, kui

(2) piirkond D esitub lõpliku ühendina D �
m�
i�1

D1
i, kus D1

1, . . . ,D1
m on paarikaupa

lõikumatute sisemustega kõvertrapetsid, mis rahuldavad lause 3.7, (b), eeldusi
kõvertrapetsi D kohta.

Eelnevast järeldub, et kui samaaegselt kehtivad eeldused (1) ja (2), siis kehtib
Greeni valem (3.35), sest niisugusel juhul¼

D

�BG
Bx � BF

By


dx dy �

¼
D

BG
Bx dx dy �

¼
D

BF
By dx dy �

»
BD
Gdy �

»
BD
F dx

�
»
BD
F dx�Gdy.
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3.6. Teist liiki joonintegraali sõltumatus integreerimisteest

Olgu funktsioonid F ja G pidevad piirkonnas D � R2. Vaatleme teist liiki joon-
integraali »

AB

F dx�Gdy (3.38)

üle piirkonnas D sisalduva tükiti sileda kaare AB. Kui mis tahes piirkonnas D sisal-
duvate punkte A ja B ühendavate tükiti siledate kaarte L1 ja L2 korral, mille algus-NB! Joonis?

punkt on A ja lõpp-punkt B (vt. joonist ??? ), kehtib võrdus»
L1

F dx�Gdy �
»
L2

F dx�Gdy,

siis öeldakse, et teist liiki joonintegraal (3.38) ei sõltu integreerimisteest piirkonnasD.
Sellisel juhul kasutatakse joonintegraali (3.38) märkimiseks sümbolit» B

A

F dx�Gdy :

see integraal sõltub integereerimistee alguspunktist A ja lõpp-punktist B, kuid mitte
neid punkte ühendavast integreerimisteest.NB! �Integree-

rimistee� mõistet
tutvustatakse lk.
263.

NB! Mis on murd-
joon? Mis on murd-
joone lülid? Eelne-
vas on olnud juttu
kaare kõõlmurdjoo-
nest ja selle lülidest
(vt. jaotise 1.3 al-
gust, lk. 232).

Märkus 3.10. Heine�Boreli lemma (vt. ?? ) abil saab näidata, et kui piirkond D � R2 on
lahtine, siis mis tahes punktide A,B P D korral leidub neid punkte ühendav (lõplikust arvust
lülidest koosnev) lihtne murdjoon, mis tervikuna sisaldub hulgas D. Esitame selle väite tõestuse
skeemi.

Olgu A,B P D, A �� B. Siis hulga D sidususe tõttu leidub punkte A ja B ühendav kaar, mis
tervikuna sisaldub hulgas D. Esitugu mingi selline kaar AB parameetriliste võrranditega

x � xptq, y � yptq, t P rα, βs, (3.39)

kus A � �
xpαq, ypαq� ja B � �

xpβq, ypβq�. Iga t P rα, βs korral tähistame Ct :� �
xptq, yptq�

(s.t. Ct on kaare AB punkt, mis vastab parameetri väärtusele t); siis hulga D lahtisuse tõttu leidub
reaalarv rt ¡ 0 nii, et BpCt, rtq � D (sümbol BpCt, rtq tähistab lahtist kera (ehk siis vaadeldaval
kahedimensionaalsel juhul lahtist ringi) keskpunktiga Ct ja raadiusega rt). Funktsioonide (3.39)
pidevuse tõttu leidub iga t P rα, βs korral reaalarv δt ¡ 0 nii, et

t1 P rα, βs, t1 P pt� δt, t� δtq ùñ Ct1 P BpCt, rtq

(põhjendada!) . Nüüd hulk
 pt� δt, t� δt : t P rα, βs

(
on lõigu rα, βs lahtine kate, seega Heine�

Boreli lemma põhjal leidub tal lõplik alamkate, s.t. leiduvad t0, t1, . . . , tn P rα, βs (n P N) nii, et
rα, βs � �n

j�0 Uj , kus Uj :� ptj � δtj , tj � δtj q. Üldisust kitsendamata võime eeldada, et α � t0  
t1   � � �   tn � β, kusjuures iga j P t1, . . . , nu korral Uj�1 X Uj �� H (põhjendada!) . Siit

järeldub, et iga j P t1, . . . , nu korral BpCtj�1
, rtj�1

qXBpCtj , rtj q �� H (põhjendada!) ning seega

sirglõik Ctj�1
Ctj sisaldub tervikuna hulgas D (põhjendada!) . Niisiis, murdjoon Ct0Ct1 . . . Ctn

sisaldub tervikuna hulgas D. Arvestades, et Ct0 � A ja Ctn � B, jääb väite tõestuseks näidata, et
mis tahes punkte A ja B ühendava (lõplikust arvust lülidest koosneva) murdjoone ℓ korral leidub
neid punkte A ja B ühendav lihtne murdjoon ℓ1, mis punktihulgana on murdjoone ℓ alamhulk:
ℓ1 � ℓ. Selle väite saab lihtsasti tõestada matemaatilise induktsiooni abil murdjoone ℓ lülide arvu n

järgi (teha see induktsioon läbi!) .
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Selles jaotises anname mõned tarvilikud ja piisavad tingimused teist liiki joon-
integraalide sõltumatuseks integreerimisteest. Selleks vajame me ühelisidusa (tasan-
dilise) piirkonna mõistet.

De�nitsioon 3.2. Öeldakse, et hulk D � R2 on ühelisidus, kui ta on sidus ning
mis tahes selles hulgas sisalduva lihtsa kinnise kaarega piiratud tasandi osa sisaldub
selles hulgas.

L

L

Joonis 3.3. Joonisel vasakul helesinisega kujutatud hulk on ühelisidus � see
hulk on sidus ning mis tahes selles hulgas sisalduva lihtsa kinnise kaarega piira-
tud tasandi osa sisaldub selles hulgas. Joonisel paremal helesinisega kujutatud
sidus hulk ei ole ühelisidus � selles hulgas sisalduva lihtsa kinnise kaarega L
piiratud tasandi osa ei sisaldu selles hulgas.

NB! Must-valge
televisiooni vaata-
jad siin neid hulki
helesinisena ei näe!

Märkus 3.11. Eelnev ühelisidususe de�nitsioon ei ole matemaatiliselt range � formaalselt pole
selge, mida mõista �lihtsa kinnise kaarega piiratud tasandi osa� all. Esitame matemaatiliselt range
de�nitsiooni.

De�nitsioon 3.3. Öeldakse, et hulk D � R2 on ühelisidus, kui mis tahes selles hulgas sisalduv
lihtne kinnine kaar on pidevalt deformeeritav mingiks hulga D punktiks, s.t. mis tahes pideva funkt-
siooni Φ: rα, βs Ñ D korral, kus Φpαq � Φpβq, leiduvad pidev funktsioon Γ: r0, 1s � rα, βs Ñ D ja
punkt P P D nii, et

� Γp0, tq � Φptq iga t P rα, βs korral;
� Γps, αq � Γps, βq iga s P r0, 1s korral;
� Γp1, tq � P iga t P rα, βs korral.

Teoreem 3.8. Olgu kahe muutuja funktsioonid u � F px, yq ja v � Gpx, yq pidevad
lahtises piirkonnas D � R2. Järgmised väited on samaväärsed:

(i) mis tahes punktide A,B P D korral integraal (3.38) ei sõltu integreerimisteest
piirkonnas D;

(ii) integraalialune avaldis F dx � Gdy on täpne diferentsiaal, s.t. leidub piir-
konnas D diferentseeruv kahe muutuja funktsioon U � Upx, yq, mille täis-
diferentsiaal on see avaldis:

dU � F dx�Gdy. (3.40)
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Seejuures kehtib �Newton�Leibnizi valem�»
AB

F dx�Gdy � UpBq � UpAq. (3.41)

Kui piirkond D on ühelisidus ning funktsioonidel F ja G eksisteerivad selles

piirkonnas pidevad osatuletised
BF
By ja

BG
Bx , siis tingimused (i) ja (ii) on samaväärsed

tingimusega

(iii) integraalialune avaldis F dx�Gdy on kinnine diferentsiaal, s.t. piirkonnas D

BF
By � BG

Bx . (3.42)

Märkus 3.12. Nagu järgnevast tõestusest näeme, kehtib teoreemi 3.8 implikatsioon
(ii)ñ(iii) (ning seega ka implikatsioon (i)ñ(iii)) ka ilma eelduseta piirkonna D üheli-
sidususe kohta.

Teoreemi 3.8 implikatsiooni (iii)ñ(ii) (või (iii)ñ(i)) tõestus üldjuhul on käesoleva
kursuse jaoks liiga keeruline. Seepärast piirdume me selle implikatsiooni tõestusega
teataval erijuhul � tähekujuliste piirkondade juhul � mis hõlmab olulisemaid prakti-
kas ettetulevaid ühelisidusaid piirkondi � muuhulgas ka näiteks kumeraid piirkondi.

De�nitsioon 3.4. Öeldakse, et hulk D � R2 on tähekujuline, kui leidub punkt
A P D nii, et mis tahes punkti B P D korral punkte A ja B ühendav sirglõik
sisaldub hulgas D.

A

B

C

P

Joonis 3.4. Joonisel vasakul helesinisega kujutatud hulk on tähekujuline �
selle hulga punkti A selle hulga mis tahes punktiga P ühendav sirglõik sisaldub
selles hulgas. Samas see hulk ei ole kumer � selle hulga punkte B ja C ühendav
sirglõik ei sisaldu selles hulgas. Joonisel paremal helesinisega kujutatud hulk ei
ole tähekujuline � selles hulgas ei leidu de�nitsiooni 3.4 tingimust rahuldavat
punkti A.

NB! Must-valge
televisiooni vaata-
jad siin neid hulki
helesinisena ei näe!
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Teoreemi 3.8 tõestus. (i)ñ(ii). Olgu mis tahes punktide A,B P D korral integ-
raal (3.38) sõltumatu integreerimisteest. Fikseerime vabalt punkti A P D ja de�nee-
rime piirkonnas D kahe muutuja funktsiooni u � UpBq � Upx, yq võrdusega

UpBq �
» B

A

F dx�Gdy, B P D

(seejuures me loeme UpAq � 0). Implikatsiooni tõestuseks piisab näidata, et piir-
konnas D BU

Bx � F ja
BU
By � G.

Tõestame neist samasustest vaid esimese (teine tõestatakse analoogiliselt). Fiksee-
rime vabalt punkti B :� px0, y0q P D. Me peame näitama, et

Upx0 � h, y0q � Upx0, y0q
h

ÝÝÑ
hÑ0

F px0, y0q.

Märgime, et piirkonna D lahtisuse tõttu leidub reaalarv δ ¡ 0 nii, et UδpBq � D;
niisiis, kui |h|   δ, siis punkte B � px0, y0q ja C :� px0�h, y0q ühendav sirglõik BC
sisaldub piirkonnas D. Valides integraalis

³C
A
F dx � Gdy integreerimisteeks kaare,

mis on saadud vabalt valitud (punkte A ja B ühendava ja piirkonnas D sisalduva)
tükiti sileda kaare AB ja sirglõigu BC ühendamisel (selliseid tükiti siledaid kaari AB
leidub � vt. märkust 3.10),

Upx0 � h, y0q � Upx0, y0q � UpCq � UpBq �
» C

A

F dx�Gdy �
» B

A

F dx�Gdy

�
» B

A

F dx�Gdy �
» C

B

F dx�Gdy �
» B

A

F dx�Gdy

�
» C

B

F dx�Gdy �
» C

B

F dx �
» x0�h

x0

F px, y0q dx � F pξh, y0qh,

kus punkt ξh paikneb punktide x0 ja x0 � h vahel (sellise punkti ξh olemasolu järel-
dub integraalarvutuse keskväärtusteoreemist); järelikult, arvestades, et ξh ÝÝÑ

hÑ0
x0,

funktsiooni F pidevuse tõttu

Upx0 � h, y0q � Upx0, y0q
h

� F pξh, y0q ÝÝÑ
hÑ0

F px0, y0q,

nagu soovitud.

(ii)ñ(i). Leidugu piirkonnas D diferentseeruv kahe muutuja funktsioon u �
Upx, yq, mis rahuldab tingimust (3.40), s.t.

BU
Bx � F ja

BU
By � G.

Olgu piirkonna D punkte A ja B ühendav (piirkonnas D sisalduv) tükiti sile kaar
antud parameetriliste võrranditega

x � xptq, y � yptq, t P rα, βs,
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kus �
xpαq, ypαq� � A ja

�
xpβq, ypβq� � B.

Implikatsiooni tõestuseks piisab näidata, et kehtib võrdus (3.41). Veendume selles:»
AB

F dx�Gdy �
»
AB

BU
Bx px, yq dx�

BU
By px, yq dy

�
» β

α

�BU
Bx

�
xptq, yptq�x1ptq � BU

By
�
xptq, yptq� y1ptq
 dt

�
» β

α

d

dt
U
�
xptq, yptq� dt

p�q� U
�
xpβq, ypβq�� U

�
xpαq, ypαq�

� UpBq � UpAq,
nagu soovitud (siin võrdus p�q kehtib Newton�Leibnizi valemi põhjal).

Eeldame nüüd täiendavalt, et funktsioonidel F ja G eksisteerivad piirkonnas D
pidevad osatuletised

BF
By ja

BG
Bx .

(ii)ñ(iii). Kehtigu (ii). Siis piirkonnas D

F � BU
Bx ja G � BU

By
ning järelikult

BF
By � B2U

By Bx ja
BG
Bx � B2U

Bx By .

Kuna osatuletised
BF
By ja

BG
Bx on pidevad piirkonnas D, siis teist järku segaosa-

tuletised
B2U
By Bx ja

B2U
Bx By on pidevad piirkonnas D; järelikult teoreemi II.3.4 põhjal

B2U
By Bx �

B2U
Bx By piirkonnas D; niisiis

BF
By � BG

Bx piirkonnas D, nagu soovitud.

NB! �Ülesanne.

Põhjendada, et tä-
hekujuline hulk on
ühelisisus.

Eeldame nüüd täiendavalt, et piirkond D on tähekujuline.

(iii)ñ(ii). Kehtigu (iii). Implikatsiooni tõestuseks piisab leida piirkonnas D dife-
rentseeruv kahe muutuja funktsioon u � Upx, yq, mis rahuldab tingimust (3.40).
Piirkonna D tähekujulisuse tõttu leidub punkt A P D nii, et mis tahes punkti B P D
korral punkte A ja B ühendav sirglõik sisaldub piirkonnas D. De�neerime funkt-
siooni U : D Ñ R võrdusega

UpBq :�
»
AB

F dx�Gdy, B P D,

kus integreerimisteeks on punkte A ja B ühendav sirglõik (seejuures me loeme
UpAq � 0). Tingimuse (3.40) kehtivuseks piisab näidata, et piirkonnas D

BU
Bx � F ja

BU
By � G



� 3. Teist liiki tasandiline joonintegraal 287

(põhjendada , miks siit järeldub funktsiooni U diferentseeruvus ja tingimuse (3.40)

kehtivus! Tõestame neist samasustest vaid esimese (teine tõestatakse analoogili-
selt). Fikseerime vabalt punkti B :� px0, y0q P D. Me peame näitama, et

Upx0 � h, y0q � Upx0, y0q
h

ÝÝÑ
hÑ0

F px0, y0q.

Märgime, et piirkonna D lahtisuse tõttu leidub reaalarv δ ¡ 0 nii, et UδpBq � D;
niisiis, kui |h|   δ, siis punkte B � px0, y0q ja C :� px0�h, y0q ühendav sirglõik BC
sisaldub piirkonnas D. Näeme, et

Upx0 � h, y0q � Upx0, y0q � UpCq � UpBq �
»
AC

F dx�Gdy �
»
AB

F dx�Gdy.

Greeni valemi põhjal, tähistades kolmnurga ABC kontuuri tähega L ja selle kolm-
nurga enda tähega ∆ ning oletades konkreetsuse mõttes, et h ¡ 0 (juhtu, kus h   0,
käsitletakse analoogiliselt), järeldub samasusest (3.42), et (vt. joonist 3.5)»

L

F dx�Gdy �
»
AC

F dx�Gdy �
»
CB

F dx�Gdy �
»
BA

F dx�Gdy

�
¼
∆

�BG
Bx � BF

By


dx dy � 0,

x

y

A

B C

D

x0 + hx0

y0

Joonis 3.5. Kolmnurk ∆ on joonisel värvitud helesiniseks. NB! Must-valge
televisiooni
vaatajad siin
seda kolmnurka
helesinisena ei näe!
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seega

Upx0 � h, y0q � Upx0, y0q �
»
AC

F dx�Gdy �
»
BA

F dx�Gdy

�
»
BC

F dx�Gdy �
»
BC

F dx �
» x0�h

x0

F px, y0q dx

� F pξh, y0qh,
kus punkt ξh paikneb punktide x0 ja x0 � h vahel (sellise punkti ξh olemasolu järel-
dub integraalarvutuse keskväärtusteoreemist); järelikult, arvestades, et ξh ÝÝÑ

hÑ0
x0,

funktsiooni F pidevuse tõttu

Upx0 � h, y0q � Upx0, y0q
h

� F pξh, y0q ÝÝÑ
hÑ0

F px0, y0q,

nagu soovitud.

3.7. Teoreemi 3.8 implikatsiooni (iii)ñ(i) tõestus üldjuhul

Teoreemi 3.8 implikatsiooni (iii)ñ(i) tõestus üldjuhul (s.t. ilma eelduseta piirkonnaD
tähekujulisuse kohta) toetub järgmisele lemmale.

NB! Siin �ℓ�
ei tarvitse olla
eriti hea tähistus;
eespool on sellega
tähistatud miskise
kõõlmurdjoone
pikkust!

Lemma 3.9. Olgu funktsioonid F ja G pidevad lahtises piirkonnas D ning olgu
A,B P D ja ε ¡ 0. Siis iga tervikuna hulgas D sisalduva punkte A ja B ühendava
sirgestuva kaare AB korral leidub tervikuna hulgas D sisalduv (lõplikust arvust lüli-
dest koosnev) kaare AB kõõlmurdjoon ℓ (alguspunktiga A ja lõpp-punktiga B) nii,
et ����»

AB

F dx�Gdy �
»
ℓ

F dx�Gdy

����   ε. (3.43)

Tõestus. Fikseerime vabalt reaalarvu ε ¡ 0. Olgu punkte A ja B ühendav sirges-
tuv kaar, mis tervikuna sisaldub hulgas D, esitatud parameetriliste võrranditega

x � xptq, y � yptq, t P rα, βs, (3.44)

kus A � �
xpαq, ypαq� ja B � �

xpβq, ypβq�. Tähistame selle kaare pikkuse tähega s.
Iga t P rα, βs korral tähistame Ct :�

�
xptq, yptq� (s.t. Ct on kaare AB punkt, mis

vastab parameetri väärtusele t); siis hulga D lahtisuse tõttu leidub reaalarv rt ¡ 0
nii, et BpCt, rtq � D (sümbol BpCt, rtq tähistab lahtist kera � ehk siis vaadeldaval
kahedimensionaalsel juhul lahtist ringi � keskpunktiga Ct ja raadiusega rt); seejuures
funktsioonide F ja G pidevuse tõttu võime arvu rt valida nii, et

|F pP q � F pCtq|   ε

8s
ja |GpP q �GpCtq|   ε

8s
iga P P BpCt, rtq korral.

(3.45)
Joonintegraalide

³
AB

F dx �: I1 ja
³
AB

Gdy �: I2 olemasolu tõttu leidub reaal-
arv δ ¡ 0 nii, et mis tahes punktide α � t0   t1   � � �   tn � β (n P N) ning
funktsioonide F ja G mis tahes integraalsummade σ1 ja σ2 korral (lõigus rα, βs)
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vastavalt projektsioonide järgi x- ja y-teljele, mis vastavad lõigu rα, βs jaotusviisile
punktidega t0, t1, � � � , tn,

max∆tj   2δ ùñ |σ1 � I1|   ε

4
ja |σ2 � I2|   ε

4
(3.46)

(siin, nagu ikka, ∆tj � tj � tj�1). (Liit)funktsioonide

rα, βs Q t ÞÑ F
�
xptq, yptq� �: fptq P R ja rα, βs Q t ÞÑ G

�
xptq, yptq� �: gptq P R

pidevuse tõttu on need funktsioonid (Cantori teoreemi põhjal) ühtlaselt pidevad
lõigus rα, βs, seega leidub reaalarv δ1 ¡ 0 nii, et

t, t1 P rα, βs, |t� t1|   2δ1 ùñ |fptq � fpt1q|   ε

8s
ja |gptq � gpt1q|   ε

8s
.

(3.47)
Funktsioonide (3.44) pidevuse tõttu leidub iga t P rα, βs korral reaalarv δt ¡ 0 nii,
et

t1 P rα, βs, t1 P pt� δt, t� δtq ùñ Ct1 P BpCt, rtq
(põhjendada!) ; seejuures võime üldisust kitsendamata eeldada, et δt   maxtδ, δ1u.
Nüüd hulk

 pt � δt, t � δtq : t P rα, βs( on lõigu rα, βs lahtine kate, seega Heine�
Boreli lemma põhjal leidub tal lõplik alamkate, s.t. leiduvad t0, t1, . . . , tn P rα, βs
(n P N) nii, et rα, βs � �n

j�0 Uj, kus Uj :� ptj � δtj , tj � δtjq. Üldisust kitsenda-
mata võime eeldada, et α � t0   t1   � � �   tn � β, kusjuures iga j P t1, . . . , nu
korral Uj�1 X Uj �� H (põhjendada!) . Siit järeldub, et iga j P t1, . . . , nu korral

BpCtj�1
, rtj�1

qXBpCtj , rtjq �� H (põhjendada!) ning seega sirglõik Ctj�1
Ctj sisaldub

tervikuna hulgasD (põhjendada!) . Nüüd murdjoon Ct0Ct1 . . . Ctn sisaldub tervikuna
hulgas D, kusjuures Ct0 � A ja Ctn � B, seega, tähistades selle murdjoone sümbo-
liga ℓ, jääb tõestada võrratus (3.43). Selleks, tähistades

³
ℓ
F dx �: J1 ja

³
ℓ
Gdy �: J2,

piisab tõestada võrratused |I1�J1|   ε
2
ja |I2�J2|   ε

2
. Tõestame neist võrratustest

ainult esimese (teine võrratus tõestatakse sümmeetriliselt).
Ühelt poolt,

J1 �
»
ℓ

F dx �
ņ

j�1

»
Ctj�1Ctj

F dx,

kus Ctj�1
Ctj on punkte Ctj�1

ja Ctj ühendav sirglõik (alguspunktiga Ctj�1
ja lõpp-

punktiga Ctj). Iga j P t1, . . . , nu korral tähistame

∆xj :� xptjq � xptj�1q ja ∆yj :� yptjq � yptj�1q;
siis sirglõik Ctj�1

Ctj esitub parameetriliste võrranditega

x � xptj�1q � t∆xj �: ϕjptq, y � yptj�1q � t∆yj �: ψjptq, t P r0, 1s,
ning seega, arvestades, et ϕ1jptq � ∆xj,

J1,j :�
»
Ctj�1Ctj

F dx �
» 1

0

F
�
ϕjptq, ψjptq

�
ϕ1jptq dt � ∆xj

» 1

0

F
�
ϕjptq, ψjptq

�
dt.
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Integraalarvutuse keskväärtusteoreemi põhjal leidub λj P r0, 1s nii, et» 1

0

F
�
ϕjptq, ψjptq

�
dt � F

�
ϕjpλjq, ψjpλjq

� � F pPjq,

kus Pj �
�
ϕjpλjq, ψjpλjq

� � �
xptj�1q � λj∆xj, yptj�1q � λj∆yj

�
. Seega

J1 �
ņ

j�1

J1j �
ņ

j�1

F pPjq∆xj.

Teiselt poolt, arvestades, et iga j P t1, . . . , nu korral ∆tj � tj � tj�1   2δ (põh-

jendada!) , järeldub implikatsioonist (3.46), et����I1 � ņ

j�1

F pCtjq∆xj
����   ε

4
.

Nüüd

|I1 � J1| ¤
����I1 � ņ

j�1

F pCtjqq∆xj
����� ���� ņ

j�1

�
F pCtjq � F pPjq

�
∆xj

����
  ε

4
�

ņ

j�1

|F pCtjq � F pPjq| |∆xj|.

Kuna
°n

j�1 |∆xj| ¤ s (põhjendada!) , siis piisab võrratuse |I1 � J1|   ε
2
(ja ühtlasi

lemma) tõestuseks näidata, et iga j P t1, . . . , nu korral

|F pCtjq � F pPjq|   ε

4s
. (3.48)

(põhjendada!) . Fikseerime vabalt j P t1, . . . , nu. Kui Pj P BpCtj , rtjq, siis võrratus
(3.48) kehtib hinnangute (3.45) põhjal. Jääb vaadelda juhtu, kus Pj R BpCtj , rtjq.
Kuna punkt Pj asub punkte Ctj�1

ja Ctj ühendaval sirglõigul, siis sel juhul Pj P
BpCtj�1

, rtj�1
q (põhjendada!) . Nüüd, arvestades, et |tj � tj�1|   2δ1 (põhjendada!) ,

ning seega implikatsiooni (3.47) põhjal

|F pCtjq � F pCtj�1
q| � |F�xptjq, yptjq�� F

�
xptj�1q, yptj�1q

�| � |fptjq � fptj�1q|
  ε

8s
,

saame (jällegi hinnangute (3.45) põhjal)

|F pCtjq � F pPjq| ¤ |F pCtjq � F pCtj�1
q| � |F pCtj�1

� F pPjq|   ε

8s
� ε

8s
� ε

4s
.

Niisiis, võrratus (3.48) kehtib igal juhul.

Nüüd oleme võimelised esitama teoreemi 3.8 implikatsiooni (iii)ñ(i) tõestuse
üldjuhul (s.t. ilma täiendava eelduseta piirkonna D tähekujulisuse kohta).
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Teoreemi 3.8, (iii)ñ(i), tõestus. Olgu piirkond D ühelisidus ning eksisteerigu

funktsioonidel F ja G selles piirkonnas pidevad osatuletised
BF
By ja

BG
Bx . Eeldame, et

kehtib (iii), s.t.
BF
By � BG

Bx piirkonnas D. Olgu A,B P D ning olgu ϕ : ra, bs Ñ R2 ja

ψ : rc, ds Ñ R2 kaared alguspunktiga A ja lõpp-punktiga B (s.t. ϕpaq � ψpcq � A ja
ϕpbq � ψpdq � B), mis tervikuna sisalduvad hulgas D (või, täpsemalt, nende kaarte
jäljed sisalduvad hulgas D), kusjuures funktsioonid ϕ ja ψ on tükiti lineaarsed (s.t.
lõigud ra, bs ja rc, ds saab jaotada lõplikuks arvuks osalõikudeks, millest igaühel on
vastavalt funktsioonid ϕ ja ψ lineaarsed). Kaarte ϕ ja ψ jäljed on lõplikust arvust
lülidest koosnevad murdjooned (mis tervikuna sisalduvad hulgas D). Viidates kaar-
tele ϕ ja ψ vastavalt kui kaartele AB ja yAB, piisab lemma 3.9 põhjal implikatsiooni
tõestuseks näidata, et

³
AB

F dx�Gdy � ³
yAB
F dx�Gdy (põhjendada!) .

Lõigud ra, bs ja rc, ds saab jaotada lõplikuks arvuks osalõikudeks vastavalt punk-
tidega a � t0   t1   � � �   tn � b ja c � T0   T1   � � �   Tn � d, kus n P N ning iga
j P t1, . . . , nu korral osakaartel ϕ|rtj�1,tjs ja ψ|rTj�1,Tjs on ühine alguspunkt ja ühine
lõpp-punkt, s.t. ϕptj�1q � ψpTj�1q �: Aj�1 ja ϕptjq � ψpTjq �: Aj, ning, viidates
edasises neile osakaartele vastavalt kui kaartele Aj�1Aj ja {Aj�1Aj, kas

(1) osakaared Aj�1Aj ja {Aj�1Aj on lihtsad, kusjuures nende jäljed ühtivad,

või

(2) osakaared Aj�1Aj ja {Aj�1Aj (või, täpsemalt, nende osakaarte jäljed) lõikuvad
ainult nende osakaarte alguspunktis Aj�1 ja lõpp-punktis Aj.

Soovitud võrduse
³
AB

F dx�Gdy � ³
yAB
F dx�Gdy tõestuseks piisab veenduda, et

iga j P t1, . . . , nu korral»
Aj�1Aj

F dx�Gdy �
»
{Aj�1Aj

F dx�Gdy. (3.49)

Olgu j P t1, . . . , nu suvaline. Juhul (1) järeldub soovitud võrdus (3.49) märkusest 3.2.
Jääb vaadelda juhtu (2). Soovitud võrduse (3.49) tõestuseks sel juhul paneme kõige-
pealt tähele, et, tänu eeldusele (iii), Greeni valemi (3.35) põhjal

p7q mis tahes tervikuna hulgas D sisalduva lihtsa kinnise kaare L korral»
L

F dx�Gdy � 0

(põhjendada!) . Siit järeldub, et soovitud võrduse (3.49) tõestamisel võime üldisust

kitsendamata eeldada, et kaared Aj�1Aj ja {Aj�1Aj on lihtsad (põhjendada!) . Nüüd
väite p7q põhjal

0 �
»
Aj�1

{AjAj�1

F dx�Gdy �
»
Aj�1Aj

F dx�Gdy �
»
{AjAj�1

F dx�Gdy

�
»
Aj�1Aj

F dx�Gdy �
»
{Aj�1Aj

F dx�Gdy,
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kus {AjAj�1 tähistab kaart {Aj�1Aj läbituna vastupidises suunas ning Aj�1
{AjAj�1

tähistab kaarte Aj�1Aj ja {AjAj�1 konkatenatsiooni, s.t. mingit niisugust lihtsat kin-
nist kaart, kus alguses läbitakse kaar Aj�1Aj ning seejärel kaar {AjAj�1. Soovitud
võrdus (3.49) järeldub eelnevast võrdusteahelast.

3.8. Teist liiki joonintegraali rakendusi

3.8.1. Tasandilise kujundi pindala arvutamine

Olgu xy-tasandi piirkonna D raja BD tükiti sile lihtne kinnine kaar (või, täpsemalt,
raja BD on mingi niisuguse kaare jälg). De�neerime funktsioonid

F px, yq � �y ja Gpx, yq � x;

siis BF
By px, yq � �1 ja

BG
Bx px, yq � 1;

seega Greeni valemi (3.35) põhjal¼
D

dx dy �
¼
D

�
�BFBy px, yq



dx dy �

»
BD
F px, yq dx � �

»
BD
y dx,

¼
D

dx dy �
¼
D

BG
Bx px, yq dx dy �

»
BD
Gpx, yq dy �

»
BD
x dy,

millest, arvestades, et hulga D pindala SD � ´
D dx dy, saame pindala SD arvuta-

miseks valemid

SD � �
»
BD
y dx, SD �

»
BD
x dy

ja

SD � 1

2

�»
BD
�y dx� x dy



.

3.8.2. Jõu töö arvutamine

Liikugu punktmass tasandil mööda sirgestuvat kaart AB punktist A punktini B jõu
F⃗ px, yq � �

P px, yq, Qpx, yq� väljas, kus u � P px, yq ja v � Qpx, yq on kaarel AB (või,
täpsemalt, selle kaare jäljel) pidevad funktsioonid. (Seda liikumist mööda kaart AB
tuleb mõista nii, et vaadeldav punkmass liigub tasandil eeskirja X � Φptq järgi, s.t.
ajahetkel t P rα, βs asub liikuv punkt tasandi R2 punktis Φptq, kus Φ: rα, βs Ñ R2

on kaart AB esitav funktsioon (siin loomulikult Φpαq � A ja Φpβq � B)). Siis jõu F⃗
poolt tehtud töö W esitub valemiga

W �
»
AB

P px, yq dx�Qpx, yq dy.



� 4. Ruumilise kaare sirgestuvus ja pikkus ning
esimest ja teist liiki ruumilised joonintegraalid

Ruumiliste joonte all mõistame me jooni ruumis R3.
Ruumilise kaare sirgestuvus ja pikkus ning esimest ja teist liiki joonintegraalid üle

ruumise kaare (ruumilised joonintegraalid) de�neeritakse analoogiliselt tasandilise
kaare juhuga; seejuures teist liiki joonintegraali puhul lisandub loomulikul viisil teist
liiki joonintegraal projektsioonide järgi z-teljele.

Ruumiliste kaarte ja joonintegraalide jaoks kehtivad kõigi selles peatükis tasan-
diliste kaarte ja joonintegraalide jaoks tõestatud omaduste ja arvutusvalemite loo-
mulikud analoogid; erandiks on teist liiki tasandiliste joonintegraalide jaoks jaotistes
3.5 ja 3.6 tõestatud tulemused, milledele ruumiliste joonintegraalide jaoks vahetud
analoogid puuduvad.

� 5. Cauchy integral formula

Theorem (Cauchy integral formula). Let D be a bounded domain with piecewise
smooth boundary BD. If fpzq is analytic on D, and fpzq extends smoothly to the
boundary BD, then

fpzq � 1

2πi

»
BD

fpwq
w � z

dw for every z P D.
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VII peatükk.

Parameetrist sõltuvad integraalid

� 1. Parameetrist sõltuvad Riemanni integraalid

1.1. Parameetrist sõltuva Riemanni integraali mõiste

Olgu kahe muutuja funktsioon w � fpx, yq määratud hulgas ra, bs � Y , kus Y � R.
Eksisteerigu iga väärtuse y P Y korral Riemanni integraal

³b
a
fpx, yq dx. Sel juhul

on hulgas Y määratud (muutuja y) funktsioon

Ipyq �
» b

a

fpx, yq dx. (1.1)

Eeldame nüüd, et kahe muutuja funktsioon w � fpx, yq on määratud kõver-
trapetsis  px, yq P R2 : y P rc, ds, αpyq ¤ x ¤ βpyq(,
kus α ja β on lõigus rc, ds pidevad (muutuja y) funktsioonid, mis rahuldavad tingi-
must αpyq ¤ βpyq iga y P rc, ds korral. Eksisteerigu iga väärtuse y P rc, ds korral
Riemanni integraal

³βpyq
αpyq fpx, yq dx. Sel juhul on lõigus rc, ds määratud (muutuja y)

funktsioon

Ipyq �
» βpyq

αpyq
fpx, yq dx. (1.2)

Nii funktsioonile (1.1) kui ka funktsioonile (1.2) viidatakse kui parameetrist
sõltuvale Riemanni integraalile. Parameetri rollis on siin muutuja y: valemites (1.1)
ja (1.2) esinevad integraalid sõltuvad parameetri y väärtusest. Märgime, et kui Y �
rc, ds, siis funktsioon (1.1) on erijuht funktsioonist (1.2), kus αpyq � a ja βpyq � b
iga y P rc, ds korral.

Järgnevates kahes jaotises huvitab meid, millised eeldused funktsiooni f jaoks
garanteerivad vastavalt parameetrist sõltuvate integraalide (1.1) ja (1.2) pidevuse,
integreeruvuse (Riemanni mõttes) ja diferentseeruvuse.

295
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1.2. Parameetrist sõltuva Riemanni integraali pidevus,
integreeruvus ja diferentseeruvus

Teoreem 1.1. Olgu kahe muutuja funktsioon w � fpx, yq pidev ristkülikus ra, bs �
rc, ds. Siis parameetrist sõltuv Riemanni integraal (1.1) on pidev lõigus rc, ds.
Tõestus. First things �rst: funktsiooni f pidevuse tõttu ristkülikus ra, bs � rc, ds
on iga väärtuse y P rc, ds korral funktsioon ra, bs Q x ÞÑ fpx, yq P R pidev lõigus
ra, bs, seega see funktsioon on ka integreeruv lõigus ra, bs, s.t. eksisteerib Riemanni
integraal

³b
a
fpx, yq dx; niisiis funktsioon (1.1) on määratud lõigus rc, ds.

Peame näitama, et funktsioon (1.1) on pidev igas lõigu rc, ds punktis. Fikseerime
vabalt punkti y0 P rc, ds. Tõestamaks, et funktsioon (1.1) on pidev punktis y0, piisab
näidata, et iga reaalarvu ε ¡ 0 korral leidub reaalarv δ ¡ 0 selliselt, et kehtib
implikatsioon

y P rc, ds, |y � y0|   δ ùñ |Ipyq � Ipy0q|   ε. (1.3)

Fikseerime vabalt reaalarvu ε ¡ 0. Mis tahes punkti y P rc, ds korral

|Ipyq � Ipy0q| �
����» b

a

fpx, yq dx�
» b

a

fpx, y0q dx
���� � ����» b

a

�
fpx, yq � fpx, y0q

�
dx

����
¤
» b

a

|fpx, yq � fpx, y0q| dx.

Ristkülik ra, bs� rc, ds on kinnine tõkestatud hulk tasandil R2, seega Cantori teoree-
mi põhjal on selles ristkülikus pidev funktsioon f ühtlaselt pidev selles ristkülikus,
järelikult leidub reaalarv δ ¡ 0 selliselt, et kehtib implikatsioon

px, yq, pu, vq P ra, bs � rc, ds, d�px, yq, pu, vq�   δ

ùñ |fpx, yq � fpu, vq|   ε

2pb� aq
(siin d

�px, yq, pu, vq� on punktide px, yq ja pu, vq vaheline kaugus tasandil R2). Nüüd,
kui punkt y P rc, ds rahuldab tingimust |y � y0|   δ, siis mis tahes x P ra, bs korral
|fpx, yq � fpx, y0q|   ε

2pb�aq (sest d
�px, yq, px, y0q� � |y � y0|   δ) ning seegaNB! Funktsiooni

f pidevuse tõttu
on siin võrratus
|Ipyq � Ipy0q| ¤³b
a

ε
2pb�aq

dx tege-

likult range; seega
me võiksime kõikjal
tõestuses kirjutada

ε
2pb�aq

asemele
ε

b�a
ja kustutada

viimases valemireas
fragmendi � ε

2
 �.

|Ipyq � Ipy0q| ¤
» b

a

ε

2pb� aq dx �
ε

2pb� aq � pb� aq � ε

2
  ε.

Implikatsioon (1.3) kehtib.

Teoreem 1.2. Olgu kahe muutuja funktsioon w � fpx, yq pidev ristkülikus ra, bs �
rc, ds. Siis parameetrist sõltuv Riemanni integraal (1.1) on integreeruv lõigus rc, ds,
kusjuures » d

c

Ipyq dy �
» d

c

�» b

a

fpx, yq dx


dy

p�q�
» b

a

�» d

c

fpx, yq dy


dx. (1.4)
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Tõestus. Teoreemi 1.1 põhjal on funktsioon (1.1) pidev lõigus rc, ds, seega see
funktsioon on ka integreeruv selles lõigus, s.t. eksisteerib Riemanni integraal

³d
c
Ipyq dy

ehk, teisisõnu, eksisteerib Riemanni integraal
³d
c

�³b
a
fpx, yq dx

	
dy. Niisiis jääb tões-

tada vaid võrdus p�q võrdusteahelas (1.4). Järelduse V.5.3 põhjal (kui seal võtta
αpxq � c ja βpxq � d iga x P ra, bs korral ning γpyq � a ja δpyq � b iga y P rc, ds
korral) on funktsioon f (Riemanni mõttes) integreeruv ristkülikus ra, bs � rc, ds,
kusjuures» d

c

�» b

a

fpx, yq dx


dy �

¼
ra,bs�rc,ds

fpx, yq dx dy �
» b

a

�» d

c

fpx, yq dy


dx,

nagu soovitud.

Teoreem 1.3. Olgu kahe muutuja funktsioon w � fpx, yq ja tema osatuletisfunkt-
sioon Bf

By pidevad ristkülikus ra, bs � rc, ds. Siis parameetrist sõltuv Riemanni integ-

raal (1.1) on diferentseeruv lõigus rc, ds, kusjuures

I 1pyq �
» b

a

Bf
By px, yq dx igas punktis y P rc, ds.

Tõestus. Olgu y0 P rc, ds. Peame näitama, et

Ipyq � Ipy0q
y � y0

ÝÝÝÑ
yÑy0

» b

a

Bf
By px, y0q dx. (1.5)

Koonduvuse (1.5) tõestuseks tuleb näidata, et iga reaalarvu ε ¡ 0 korral leidub
reaalarv δ ¡ 0 selliselt, et kehtib implikatsioon

y P rc, ds, 0   |y � y0|   δ ùñ
����Ipyq � Ipy0q

y � y0
�
» b

a

Bf
By px, y0q dx

����   ε. (1.6)

Fikseerime vabalt reaalarvu ε ¡ 0. Mis tahes y P rc, dszty0u korral

Ipyq � Ipy0q �
» b

a

fpx, yq dx�
» b

a

fpx, y0q dx �
» b

a

�
fpx, yq � fpx, y0q

�
dx.

Iga x P ra, bs korral rahuldab funktsioon η ÞÑ fpx, ηq lõigus ry0, ys (või lõigus ry, y0s,
kui y   y0) Lagrange'i keskväärtusteoreemi eeldusi (märgime, et selle funktsiooni
tuletisfunktsioon on η ÞÑ Bf

By px, ηq), järelikult (Lagrange'i keskväärtusteoreemi põh-
jal) leidub punkt ηy,x P py0, yq (või ηy,x P py, y0q, kui y   y0) selliselt, et

fpx, yq � fpx, y0q � Bf
By px, ηy,xq py � y0q;

niisiis

Ipyq � Ipy0q �
» b

a

Bf
By px, ηy,xq py � y0q dx � py � y0q

» b

a

Bf
By px, ηy,xq dx
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ja seega����Ipyq � Ipy0q
y � y0

�
» b

a

Bf
By px, y0q dx

���� � ����» b

a

Bf
By px, ηy,xq dx�

» b

a

Bf
By px, y0q dx

����
�
����» b

a

�Bf
By px, ηy,xq �

Bf
By px, y0q



dx

����
¤
» b

a

����BfBy px, ηy,xq � Bf
By px, y0q

���� dx.
Kuna osatuletisfunktsioon Bf

By on pidev kinnises tõkestatud hulgas ra, bs�rc, ds tasan-
dil R2, siis Cantori teoreemi põhjal on see osatuletisfunktsioon selles hulgas ka üht-
laselt pidev, järelikult leidub reaalarv δ ¡ 0 selliselt, et kehtib implikatsioon

px, yq, pu, vq P ra, bs � rc, ds, d�px, yq, pu, vq�   δ

ùñ
����BfBy px, yq � Bf

By pu, vq
����   ε

2pb� aq
(siin d

�px, yq, pu, vq� on punktide px, yq ja pu, vq vaheline kaugus tasandil R2). Niisiis,
kui y P rc, ds rahuldab tingimust 0   |y � y0|   δ, siis mis tahes x P ra, bs korral��Bf
By px, ηy,xq � Bf

By px, y0q
��   ε

2pb�aq (sest d
�px, ηy,xq, px, y0q� � |ηy,x � y0|   |y � y0|   δ)

ning seegaNB! Osatule-
tisfunktsiooni f
pidevuse tõttu
on siin võrratus
¤

³b
a

ε
2pb�aq

dx

tegelikult range;
seega me võiksime
kõikjal tõestuses
kirjutada ε

2pb�aq

asemele ε
b�a

ja kustutada
viimases valemireas
fragmendi � ε

2
 �.

����Ipyq � Ipy0q
y � y0

�
» b

a

Bf
By px, y0q dx

���� ¤ » b

a

ε

2pb� aq dx �
ε

2pb� aq � pb� aq � ε

2
  ε.

Implikatsioon (1.6) kehtib.

1.3. Parameetrist sõltuva Riemanni integraali pidevus,
integreeruvus ja diferentseeruvus � juht, kus integraali
rajad sõltuvad parameetrist

Kõikjal selles jaotises tähistame

A :�  px, yq P R2 : y P rc, ds, αpyq ¤ x ¤ βpyq(,
kus α ja β on lõigus rc, ds pidevad (muutuja y) funktsioonid, mis rahuldavad tingi-
must αpyq ¤ βpyq iga y P rc, ds korral (meenutame, et sellist hulka A nimetatakse
kõvertrapetsiks), ning

D :� ra, bs � rc, ds �  px, yq P R2 : x P ra, bs, y P rc, ds(,
kus reaalarvud a ja b on sellised, et a   b ning

a ¤ αpyq ja βpyq ¤ b iga y P rc, ds korral. (1.7)

Märgime, et Weierstrassi teise teoreemi põhjal on lõigus rc, ds pidevad funktsioonid α
ja β tõkestatud selles lõigus ning järelikult tingimust (1.7) rahuldavaid reaalarvusid
a ja b leidub.
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Teoreem 1.4. Olgu kahe muutuja funktsioon w � fpx, yq pidev ristkülikus D. Siis
parameetrist sõltuv Riemanni integraal (1.2) on pidev lõigus rc, ds.

Tõestus. First things �rst: funktsiooni f pidevuse tõttu ristkülikus ra, bs � rc, ds
on iga väärtuse y P rc, ds korral funktsioon ra, bs Q x ÞÑ fpx, yq P R pidev lõigus
ra, bs, seega see funktsioon on ka integreeruv lõigus ra, bs, järelikult see funktsioon
on integreeruv ka lõigu ra, bs igas osalõigus; muuhulgas see funktsioon on integ-
reeruv lõigus rαpyq, βpyqs, s.t. eksisteerib Riemanni integraal

³βpyq
αpyq fpx, yq dx; niisiis

funktsioon (1.2) on määratud lõigus rc, ds.
Peame näitama, et funktsioon (1.2) on pidev igas lõigu rc, ds punktis. Fikseerime

vabalt punkti y0 P rc, ds. Tõestamaks, et funktsioon (1.2) on pidev punktis y0, piisab
näidata, et iga reaalarvu ε ¡ 0 korral leidub reaalarv δ ¡ 0 selliselt, et kehtib
implikatsioon

y P rc, ds, |y � y0|   δ ùñ |Ipyq � Ipy0q|   ε. (1.8)

Fikseerime vabalt reaalarvu ε ¡ 0. Mis tahes punkti y P rc, ds korral

Ipyq �
» βpyq

αpyq
fpx, yq dx �

» βpy0q

αpy0q
fpx, yq dx�

» βpyq

βpy0q
fpx, yq dx�

» αpyq

αpy0q
fpx, yq dx,

seega, arvestades, et Ipy0q �
³βpy0q
αpy0q fpx, y0q dx,

Ipyq�Ipy0q �
» βpy0q

αpy0q

�
fpx, yq�fpx, y0q

�
dx�

» βpyq

βpy0q
fpx, yq dx�

» αpyq

αpy0q
fpx, yq dx (1.9)

ning järelikult

|Ipyq � Ipy0q| ¤
» βpy0q

αpy0q

��fpx, yq � fpx, y0q
�� dx� ����» βpyq

βpy0q
|fpx, yq| dx

����� ����» αpyq

αpy0q
|fpx, yq| dx

����.
Ristkülik D on kinnine tõkestatud hulk tasandil R2, seega Cantori teoreemi põhjal
on selles ristkülikus pidev funktsioon f ühtlaselt pidev selles ristkülikus, järelikult
leidub reaalarv δ1 ¡ 0 selliselt, et kehtib implikatsioon

px, yq, pu, vq P D, d
�px, yq, pu, vq�   δ1 ùñ |fpx, yq � fpu, vq|   ε

2pb� aq

(siin d
�px, yq, pu, vq� on punktide px, yq ja pu, vq vaheline kaugus tasandil R2). Nüüd,

kui punkt y P rc, ds rahuldab tingimust |y � y0|   δ1, siis mis tahes x P ra, bs korral
|fpx, yq � fpx, y0q|   ε

2pb�aq (sest d
�px, yq, px, y0q� � |y � y0|   δ1) ning seega NB! Funktsiooni

f pidevuse tõttu
on siin võrratus
¤

³βpy0q
αpy0q

ε
2pb�aq

dx

tegelikult range!

» βpy0q

αpy0q

��fpx, yq � fpx, y0q
�� dx ¤ » βpy0q

αpy0q

ε

2pb� aq dx �
ε

2pb� aq �
�
βpy0q � αpy0q

� ¤ ε

2
.
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Weierstrassi teise teoreemi põhjal on funktsioon f tõkestatud ristkülikus D, seega
leidub reaalarv M ¡ 0 selliselt, et |fpx, yq| ¤ M iga px, yq P D korral, järelikult iga
y P rc, ds korral����» βpyq

βpy0q
|fpx, yq| dx

���� ¤M
��βpyq � βpy0q

�� ja

����» αpyq

αpy0q
|fpx, yq| dx

���� ¤M
��αpyq � αpy0q

��.
Funktsioonide β ja α pidevuse tõttu lõigus rc, ds leidub reaalarv δ2 ¡ 0 selliselt, et
kehtib implikatsioon

y P rc, ds, |y�y0|   δ2 ùñ |βpyq�βpy0q|   ε

4M
ja |αpyq�αpy0q|   ε

4M
.

Nüüd, kui punkt y P rc, ds rahuldab tingimust |y � y0|   δ2, siis����» βpyq

βpy0q
|fpx, yq| dx

����� ����» αpyq

αpy0q
|fpx, yq| dx

����  M � ε

4M
�M � ε

4M
� ε

2
.

Eelnevast järeldub, et kui punkt y P rc, ds rahuldab tingimust |y � y0|   δ :�
mintδ1, δ2u, siis

|Ipyq � Ipy0q|   ε

2
� ε

2
� ε.

Implikatsioon (1.8) kehtib.

Teoreem 1.5. Olgu kahe muutuja funktsioon w � fpx, yq pidev ristkülikus D. Siis
parameetrist sõltuv Riemanni integraal (1.2) on integreeruv lõigus rc, ds.
Tõestus. Teoreemi 1.4 põhjal on funktsioon (1.2) pidev lõigus rc, ds, järelikult see
funktsioon on ka integreeruv lõigus rc, ds.
Teoreem 1.6. Olgu kahe muutuja funktsioon w � fpx, yq ja tema osatuletisfunkt-
sioon Bf

By pidevad ristkülikus D ning olgu funktsioonid α ja β diferentseeruvad lõi-

gus rc, ds. Siis parameetrist sõltuv Riemanni integraal (1.2) on diferentseeruv lõi-
gus rc, ds, kusjuures

I 1pyq �
» βpyq

αpyq

Bf
By px, yq dx�β

1pyq f�βpyq, y��α1pyq f�αpyq, y� igas punktis y P rc, ds.

Tõestus. Olgu y0 P rc, ds. Teoreemi tõestuseks peame näitama, et

Ipyq � Ipy0q
y � y0

ÝÝÝÑ
yÑy0

» βpy0q

αpy0q

Bf
By px, y0q dx� β1py0q f

�
βpy0q, y0

�� α1py0q f
�
αpy0q, y0

�
.

Arvestades võrdust (1.9), piisab selleks näidata, et

1

y � y0

» βpy0q

αpy0q

�
fpx, yq � fpx, y0q

�
dx ÝÝÝÑ

yÑy0

» βpy0q

αpy0q

Bf
By px, y0q dx (1.10)
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ning
1

y � y0

» βpyq

βpy0q
fpx, yq dx ÝÝÝÑ

yÑy0
β1py0q f

�
βpy0q, y0

�
(1.11)

ja
1

y � y0

» αpyq

αpy0q
fpx, yq dx ÝÝÝÑ

yÑy0
α1py0q f

�
αpy0q, y0

�
. (1.12)

Tõestame kõigepealt koonduvuse (1.10). Selleks peame näitama, et iga reaalarvu
ε ¡ 0 korral leidub reaalarv δ ¡ 0 selliselt, et kehtib implikatsioon

y P rc, ds, 0   |y � y0|   δ

ùñ
���� 1

y � y0

» βpy0q

αpy0q

�
fpx, yq � fpx, y0q

�
dx�

» βpy0q

αpy0q

Bf
By px, y0q dx

����   ε.
(1.13)

Fikseerime vabalt reaalarvu ε ¡ 0. Kui y P rc, dszty0u, siis iga x P rαpy0q, βpy0qs
korral rahuldab funktsioon η ÞÑ fpx, ηq lõigus ry0, ys (või lõigus ry, y0s, kui y   y0)
Lagrange'i keskväärtusteoreemi eeldusi (märgime, et selle funktsiooni tuletisfunkt-
sioon on η ÞÑ Bf

By px, ηq), järelikult (Lagrange'i keskväärtusteoreemi põhjal) leidub
punkt ηy,x P py0, yq (või ηy,x P py, y0q, kui y   y0) selliselt, et

fpx, yq � fpx, y0q � Bf
By px, ηy,xq py � y0q;

niisiis

1

y � y0

» βpy0q

αpy0q

�
fpx, yq � fpx, y0q

�
dx �

» b

a

Bf
By px, ηy,xq dx

ja seega���� 1

y � y0

» βpy0q

αpy0q

�
fpx, yq � fpx, y0q

�
dx�

» βpy0q

αpy0q

Bf
By px, y0q dx

����
�
����» βpy0q

αpy0q

Bf
By px, ηy,xq dx�

» βpy0q

αpy0q

Bf
By px, y0q dx

����
�
����» βpy0q

αpy0q

�Bf
By px, ηy,xq �

Bf
By px, y0q



dx

����
¤
» βpy0q

αpy0q

����BfBy px, ηy,xq � Bf
By px, y0q

���� dx.
Kuna osatuletisfunktsioon Bf

By on pidev kinnises tõkestatud hulgas D tasandil R2, siis
Cantori teoreemi põhjal on see osatuletisfunktsioon selles hulgas ka ühtlaselt pidev,
järelikult leidub reaalarv δ ¡ 0 selliselt, et kehtib implikatsioon

px, yq, pu, vq P D, d
�px, yq, pu, vq�   δ ùñ

����BfBy px, yq � Bf
By pu, vq

����   ε

2pb� aq
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(siin d
�px, yq, pu, vq� on punktide px, yq ja pu, vq vaheline kaugus tasandil R2). Niisiis,

kui y P rc, ds rahuldab tingimust 0   |y � y0|   δ, siis mis tahes x P ra, bs korral��Bf
By px, ηy,xq � Bf

By px, y0q
��   ε

2pb�aq (sest d
�px, ηy,xq, px, y0q� � |ηy,x � y0|   |y � y0|   δ)

ning seegaNB! Osatuletis-

funktsiooni Bf
By

pidevuse tõttu
on siin võrratus
¤

³βpy0q
αpy0q

ε
2pb�aq

dx

tegelikult range;
seega me võiksime
kõikjal tõestuses
kirjutada ε

2pb�aq

asemele ε
b�a

ja kustutada
viimases valemireas
fragmendi � ε

2
 �.

���� 1

y � y0

» βpy0q

αpy0q

�
fpx, yq � fpx, y0q

�
dx�

» βpy0q

αpy0q

Bf
By px, y0q dx

����
¤
» βpy0q

αpy0q

ε

2pb� aq dx �
ε

2pb� aq �
�
βpy0q � αpy0q

� ¤ ε

2
  ε.

Implikatsioon (1.13) kehtib. Koonduvus (1.10) on tõestatud.
Jääb tõestada koonduvused (1.11) ja (1.12). Integraalarvutuse keskväärtusteo-

reemi põhjal leiduvad iga y P rc, ds korral punktid x1y P rβpy0q, βpyqs ja x2y P
rαpy0q, αpyqs (kui βpyq   βpy0q, siis siin ja edaspidises tõestuses mõistame lõigu
rβpy0q, βpyqs all lõiku rβpyq, βpy0qs; kui αpyq   αpy0q, siis mõistame lõigu rαpy0q, αpyqs
all lõiku rαpyq, αpy0qs) selliselt, et» βpyq

βpy0q
fpx, yq dx � fpx1y, yq

�
βpyq � βpy0q

�
ja » αpyq

αpy0q
fpx, yq dx � fpx2y, yq

�
αpyq � αpy0q

�
ning seega

1

y � y0

» βpyq

βpy0q
fpx, yq dx � βpyq � βpy0q

y � y0
fpx1y, yq ÝÝÝÑ

yÑy0
β1py0q f

�
βpy0q, y0

�
ja

1

y � y0

» αpyq

αpy0q
fpx, yq dx � αpyq � αpy0q

y � y0
fpx2y, yq ÝÝÝÑ

yÑy0
α1py0q f

�
αpy0q, y0

�
,

s.t. (1.11) ja (1.12) kehtivad. Eelnevas arvestasime, et

βpyq � βpy0q
y � y0

ÝÝÝÑ
yÑy0

β1py0q ja
αpyq � αpy0q

y � y0
ÝÝÝÑ
yÑy0

α1py0q

ning et

fpx1y, yq ÝÝÝÑ
yÑy0

f
�
βpy0q, y0

�
ja fpx2y, yq ÝÝÝÑ

yÑy0
f
�
αpy0q, y0

�
. (1.14)

Siin koonduvuste (1.14) tõestuseks märgime, et kuna x1y P rβpy0q, βpyqs ja x2y P
rαpy0q, αpyqs, kusjuures funktsioonide β ja α pidevuse tõttu βpyq ÝÝÝÑ

yÑy0
βpy0q ja

αpyq ÝÝÝÑ
yÑy0

αpy0q, siis x1y ÝÝÝÑ
yÑy0

βpy0q ja x2y ÝÝÝÑ
yÑy0

αpy0q ning järelikult funktsiooni f
pidevuse tõttu kehti b (1.14).
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2.1. Parameetrist sõltuva esimest liiki päratu integraali mõiste

Olgu kahe muutuja funktsioon w � fpx, yq määratud hulgas ra,8q�Y , kus Y � R.
Eeldame, et iga väärtuse y P Y korral päratu integraal

³8
a
fpx, yq dx koondub, s.t. iga

väärtuse y P Y korral see päratu integraal eksisteerib ja on lõplik (sellisel juhul öel-
dakse ka, et päratu integraal

³8
a
fpx, yq dx koondub hulgas Y ). Sel juhul on hulgas Y

määratud (muutuja y) funktsioon

Ipyq �
» 8

a

fpx, yq dx. (2.1)

Funktsioonile (2.1) viidatakse kui parameetrist sõltuvale (esimest liiki) päratule integ-
raalile. Parameetri rollis on siin muutuja y: valemis (2.1) esineva päratu integraali
väärtus sõltub parameetri y väärtusest.

Nagu parameetrist sõltuva Riemanni integraali puhul, huvitavad meid ka para-
meetrist sõltuva päratu integraali (2.1) puhul tingimused, mis garanteerivad selle
funktsiooni pidevuse, integreeruvuse ja diferentseeruvuse. Vastavasisulised teoreemid
� mis on jaotistes 1.2 ja 1.3 parameetrist sõltuvat Riemanni integraali käsitlevate
teoreemide analoogid � tõestame me jaotises 2.4. Neis teoreemides on üheks oluliseks
eelduseks parameetrist sõltuva päratu integraali (2.1) ühtlane koonduvus, millele on
pühendatud selle paragrahvi järgmised kaks jaotist 2.2 ja 2.3.

2.2. Parameetrist sõltuva esimest liiki päratu integraali
ühtlase koonduvuse mõiste ja Cauchy kriteerium

Kõikjal selles jaotises eeldame me, et kahe muutuja funktsioon w � fpx, yq on
määratud hulgas ra,8q � Y , kus Y � R.
De�nitsioon 2.1. Öeldakse, et päratu integraal (2.1) koondub ühtlaselt (para-
meetri y suhtes) hulgas Y , kui see integraal koondub hulgas Y (s.t. iga väärtuse
y P Y korral see päratu integraal eksisteerib ja on lõplik), kusjuures iga reaalarvu
ε ¡ 0 korral leidub reaalarv A ¥ a selliselt, et kehtib implikatsioon

R P R, R ¡ A ùñ
����» 8

R

fpx, yq dx
����   ε iga y P Y korral. (2.2)

Teoreem 2.1 (parameetrist sõltuva esimest liiki päratu integraali ühtlase koondu-
vuse Cauchy kriteerium). Eksisteerigu mis tahes y P Y ja b P pa,8q korral Riemanni

integraal
³b
a
fpx, yq dx. Järgmised väited on samaväärsed:

(i) päratu integraal (2.1) koondub ühtlaselt hulgas Y ;

(ii) iga reaalarvu ε ¡ 0 korral leidub reaalarv A ¥ a selliselt, et kehtib implikatsioon

R,R1 P R, R1 ¡ R ¡ A ùñ
����» R1

R

fpx, yq dx
����   ε iga y P Y korral.

(2.3)

303



304 VII. Parameetrist sõltuvad integraalid

Teoreemi 2.1 (implikatsiooni (ii)ñ(i)) tõestamisel on mugav toetuda järgnevale
lemmale, mis taandab küsimuse parameetrist sõltuva päratu integraali (ühtlase)
koonduvuse kohta küsimusele teatavate parameetrist sõltuvate integraalide funkt-
sionaaljadade (ühtlase) koonduvuse kohta, ning mida kasutavad ka teoreemi 2.4
(parameetrist sõltuva esimest liiki päratu integraali ühtlase koonduvuse Dini tun-
nuse) ning teoreemide 2.6�2.8 tõestus ed . (Teoreemid 2.6�2.8 annavad piisavad tin-
gimused selleks, et parameetrist sõltuv päratu integraal (2.1) oleks vastavalt pidev,
integreeruv ja diferentseeruv lõigus rc, ds.)
Lemma 2.2. Eksisteerigu mis tahes y P Y ja b P pa,8q korral Riemanni integraal³b
a
fpx, yq dx.
(a) Olgu y P Y . Järgmised väited on samaväärsed:

(i) päratu integraal (2.1) koondub punktis y;

(ii) mis tahes arvude bn P pa,8q, n � 1, 2, . . . , korral, mis rahuldavad tingi-
must bn ÝÝÝÑ

nÑ8
8, funktsionaaljada pgnq8n�1, kus

gn : Y Q η ÞÝÑ
» bn

a

fpx, ηq dx P R, (2.4)

koondub punktis y.

Seejuures, kui kehtib üks väidetest (i) ja (ii), siis väites (ii) kirjeldatud funkt-
sionaaljadad pgnq8n�1 koonduvad punktis y piirväärtuseks Ipyq.

(b) Järgmised väited on samaväärsed:

(i) päratu integraal (2.1) koondub ühtlaselt (parameetri y suhtes) hulgas Y ;

(ii) mis tahes arvude bn P pa,8q, n � 1, 2, . . . , korral, mis rahuldavad tingi-
must bn ÝÝÝÑ

nÑ8
8, valemitega (2.4) de�neeritud funktsionaaljada pgnq8n�1

koondub ühtlaselt hulgas Y .

Seejuures, kui kehtib üks väidetest (i) ja (ii), siis väites (ii) kirjeldatud funkt-
sionaaljadade pgnq8n�1 piirfunktsioon hulgas Y on I.

Märkus 2.1. Samaväärsused (i)ô(ii) lemma 2.2 väidetes (a) ja (b) jäävad kehtima, kui neis
kummaski asendada väites (ii) tingimus �mis tahes arvude bn P pa,8q, n � 1, 2, . . . , korral, mis
rahuldavad tingimust bn ÝÝÝÑ

nÑ8 8� tingimusega �mis tahes arvude bn P pa,8q, n � 1, 2, . . . , korral,

mis rahuldavad tingimusi b1   b2   � � � ja bn ÝÝÝÑ
nÑ8 8�. See nähtub nende väidete implikatsioonide

(ii)ñ(i) tõestus t est.

Lemma 2.2 tõestus. (a). Väide (i) tähendab, et eksisteerib lõplik piirväärtus limbÑ8
³b
a
fpx, yq dx.

Funktsiooni piirväärtuse olemasolu Heine kriteeriumi põhjal tähendab see oma-
korda, et mis tahes arvude bn P pa,8q, n � 1, 2, . . . , korral, mis rahuldavad tingimust
bn ÝÝÝÑ

nÑ8
8, eksisteerib lõplik piirväärtus limnÑ8 gnpyq, kus funktsioonid gn, n �

1, 2, . . . , on de�neeritud valemitega (2.4), ehk, teisisõnu, funktsionaaljada pgnq8n�1

koondub punktis y. Samaväärsus (i)ô(ii) on tõestatud.
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Väite �Seejuures, . . . � tõestuseks märgime, et kui päratu integraal (2.1) koondub
punktis y, siis Heine kriteeriumi põhjal mis tahes arvude bn P pa,8q, n � 1, 2, . . . ,
korral, mis rahuldavad tingimust bn ÝÝÝÑ

nÑ8
8, funktsionaaljada pgnq8n�1, mis on de�-

neeritud valemitega (2.4), koondub punktis y piirväärtuseks Ipyq.
(b). (i)ñ(ii). Kehtigu (i), rahuldagu arvud bn P pa,8q, n � 1, 2, . . . , tingimust

bn ÝÝÝÑ
nÑ8

8 ning olgu funktsioonid gn, n � 1, 2, . . . , de�neeritud valemitega (2.4).

Implikatsiooni tõestuseks piisab näidata, et funktsionaaljada pgnq8n�1 koondub ühtla-
selt piirfunktsiooniks I hulgas Y , s.t. iga reaalarvu ε ¡ 0 korral leidub indeks N P N
selliselt, et kehtib implikatsioon

n P N, n ¥ N ùñ
����» 8

bn

fpx, yq dx
����   ε iga y P Y korral (2.5)

(märgime, et siin Ipyq � gnpyq �
³8
a
fpx, yq dx � ³bn

a
fpx, yq dx � ³8

bn
fpx, yq dx).

Fikseerime vabalt reaalarvu ε ¡ 0. Päratu integraali (2.1) ühtlase koonduvuse tõttu
hulgas Y leidub reaalarv A ¥ a selliselt, et kehtib implikatsioon (2.2). Kui nüüd
indeks N P N on selline, et bn ¡ A iga indeksi n ¥ N korral (niisugune indeks N
leidub, sest bn ÝÝÝÑ

nÑ8
8), siis implikatsioon (2.5) kehtib.

(ii)ñ(i). Kehtigu (ii). Siis juba tõestatud väite (a) implikatsiooni (ii)ñ(i) põhjal
päratu integraal (2.1) koondub hulgas Y . Oletame vastuväiteliselt, et see koondu-
vus pole ühtlane. Siis leidub reaalarv ε ¡ 0 selliselt, et iga reaalarvu A ¥ a korral
leiduvad reaalarv R ¡ A ja punkt y P Y selliselt, et

��³8
R
fpx, yq dx�� ¥ ε. Muu-

hulgas iga n P N korral leidub bn ¡ a � n selliselt, et
��³8
bn
fpx, yq dx�� ¥ ε mingi

y P Y korral. Paneme tähele, et bn ÝÝÝÑ
nÑ8

8 ning et iga n P N korral, de�nee-

rides funktsiooni gn valemiga (2.4), |Ipyq � gnpyq| ¥ ε mingi y P Y korral (sest
Ipyq�gnpyq �

³8
a
fpx, yq dx� ³bn

a
fpx, yq dx � ³8

bn
fpx, yq dx); niisiis funktsionaaljada

pgnq8n�1 ei koondu funktsiooniks I ühtlaselt hulgas Y . Arvestades, et väite (a) osa
�Seejuures, . . . � põhjal funktsioon I on funktsionaaljada pgnq8n�1 piirfunktsioon hul-
gas Y , järeldub siit, et funktsionaaljada pgnq8n�1 ei koondu ühtlaselt hulgas Y ; niisiis
(ii) ei kehti. Jõudsime vastuoluni.

Väide �Seejuures, . . . � järeldub implikatsiooni (i)ñ(ii) tõestusest (või väite (a)
osast �Seejuures, . . . �).

Teoreemi 2.1 tõestus. (i)ñ(ii). Kehtigu (i) ning olgu ε ¡ 0. Päratu integraali
(2.1) ühtlase koonduvuse tõttu hulgas Y leidub reaalarv A ¥ a selliselt, et kehtib
implikatsioon (2.2), kus arv ε on asendatud arvuga ε

2
. Kui nüüd arvud R,R1 P R on

sellised, et R1 ¡ R ¡ A, siis iga y P Y korral����» R1

R

fpx, yq dx
���� � ����» 8

R

fpx, yq dx�
» 8

R1

fpx, yq dx
����

¤
����» 8

R

fpx, yq dx
����� ����» 8

R1

fpx, yq dx
����   ε

2
� ε

2
� ε;

niisiis implikatsioon teoreemi väitest (ii) kehtib.



306 VII. Parameetrist sõltuvad integraalid

(ii)ñ(i). Kehtigu (ii) ning rahuldagu arvud bn P pa,8q, n � 1, 2, . . . , tingimust
bn ÝÝÝÑ

nÑ8
8. Lemma 2.2, (b), põhjal piisab implikatsiooni tõestuseks näidata, et

valemitega (2.4) de�neeritud funktsionaaljada pgnq8n�1 koondub ühtlaselt hulgas Y
piirfunktsiooniks I. Funktsionaaljada ühtlase koonduvuse Cauchy kriteeriumi põhjal
piisab selleks näidata, et iga reaalarvu ε ¡ 0 korral leidub indeks N P N selliselt, et
kehtib implikatsioon

m,n P N, m, n ¥ N ùñ
����» bn

bm

fpx, yq dx
����   ε iga y P Y korral (2.6)

(märgime, et siin gnpyq � gmpyq �
³bn
a
fpx, yq dx � ³bm

a
fpx, yq dx � ³bn

bm
fpx, yq dx).

Fikseerime vabalt reaalarvu ε ¡ 0. Tehtud eelduse põhjal väite (ii) kehtivuse kohta
leidub reaalarv A selliselt, et kehtib implikatsioon sellest väitest. Kui nüüd indeks
N P N on selline, et bn ¡ A iga indeksi n ¥ N korral (niisugune indeks N leidub,
sest bn ÝÝÝÑ

nÑ8
8), siis implikatsioon (2.6) kehtib.

2.3. Piisavaid tingimusi parameetrist sõltuva esimest liiki
päratu integraali ühtlaseks koonduvuseks � Weierstrassi
tunnus ja Dini tunnus

Teoreem 2.3 (parameetrist sõltuva esimest liiki päratu integraali ühtlase koon-
duvuse Weierstrassi tunnus). Olgu kahe muutuja funktsioon w � fpx, yq määratud
hulgas ra,8q�Y , kus Y � R, kusjuures mis tahes y P Y ja b P pa,8q korral eksistee-
rib Riemanni integraal

³b
a
fpx, yq dx, ning olgu ühe muutuja funktsioon ϕ määratud

poolsirgel ra,8q. Kui
(1) |fpx, yq| ¤ ϕpxq iga px, yq P ra,8q � Y korral;

(2) päratu integraal
³8
a
ϕpxq dx koondub,

siis päratu integraal (2.1) koondub ühtlaselt ja absoluutselt hulgas Y . (Siin päratu
integraali (2.1) absoluutne koonduvus hulgas Y tähendab, et iga y P Y korral päratu
integraal

³8
a
|fpx, y| dx koondub.)

Tõestus. Kehtigu tingimused (1) ja (2) ning olgu ε ¡ 0. Cauchy kriteeriumi (teo-
reemi 2.1) põhjal piisab päratu integraali (2.1) ühtlase koonduvuse tõestuseks hul-
gas Y leida reaalarv A ¥ a selliselt, et kehtib implikatsioon (2.3). Päratu integraali³8
a
ϕpxq dx koonduvuse tõttu leidub (päratu integraali koonduvuse Cauchy kritee-

riumi põhjal) reaalarv A ¥ a selliselt, et mis tahes reaalarvude R,R1 ¡ A korral��³R1

R
ϕpxq dx��   ε. Kui nüüd reaalarvud R ja R1 on sellised, et R1 ¡ R ¡ A, siis mis

tahes y P Y korral����» R1

R

fpx, yq dx
���� ¤ » R1

R

|fpx, yq| dx ¤
» R1

R

ϕpxq dx   ε.

Implikatsioon (2.3) kehtib.
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Eelnevast arutelust nähtub, et ka parameetrist sõltuv päratu integraal
³8
a
|fpx, yq| dx

koondub Cauchy kriteeriumi (teoreemi 2.1) põhjal ühtlaselt parameetri y suhtes hul-
gas Y .

Teoreem 2.4 (parameetrist sõltuva esimest liiki päratu integraali ühtlase koondu-
vuse Dini1 tunnus). Olgu kahe muutuja funktsioon w � fpx, yq mittenegatiivne ja
pidev �poolribas� ra,8q � rc, ds. Koondugu päratu integraal (2.1) lõigus rc, ds, kus-
juures piirfunktsioon I on pidev lõigus rc, ds. Siis see päratu integraal koondub piir-
funktsiooniks I ühtlaselt lõigus rc, ds.

Teoreemi 2.4 on mugav järeldada lemma 2.2 abil funktsionaaljada ühtlase koon-
duvuse Dini tunnusest.

Parema jälgitavuse huvides sõnastame siinkohal funktsionaaljada ühtlase koonduvuse Dini
tunnuse.

Teoreem 2.5 (funktsionaaljada ühtlase koonduvuse Dini tunnus). Koondugu lõigus rc, ds
määratud funktsionaaljada pgnq8n�1 piirfunktsiooniks g selles lõigus. Kui

(1) funktsioonid gn, n � 1, 2, . . . , ja g on pidevad lõigus rc, ds;
(2) (arv)jada

�
gnpyq

�8
n�1

on monotoonne iga y P rc, ds korral;
siis funktsionaaljada pgnq8n�1 koondub ühtlaselt lõigus rc, ds.

Teoreemi 2.4 tõestus. Olgu arvud bn P pa,8q, n � 1, 2, . . . , sellised, et b1  
b2   � � � ja bn ÝÝÝÑ

nÑ8
8. De�neerime iga n P N korral funktsiooni gn valemiga (2.4),

kus Y � rc, ds. Lemma 2.2, (b), põhjal piisab teoreemi tõestuseks näidata, et funkt-
sionaaljada pgnq8n�1 koondub ühtlaselt lõigus rc, ds (vt. märkust 2.2). See koonduvus
järeldub teoreemist 2.5, sest funktsionaaljada pgnq8n�1 rahuldab selle teoreemi eeldusi,
kus g � I.

Tõepoolest, funktsionaaljada pgnq koondub piirfunktsiooniks I lõigus rc, ds lemma 2.2, (a),
põhjal; funktsioonid gn, n � 1, 2, . . . , on pidevad lõigus rc, ds teoreemi 1.1 põhjal; (arv)jada�
gnpyq

�8
n�1

on monotoonne iga y P rc, ds korral, sest mis tahes y P rc, ds ja n P N korral
funktsiooni f mittenegatiivsuse tõttu (arvestades, et bn ¤ bn�1)

gn�1pyq � gnpyq �
» bn�1

a

fpx, yq dx�
» bn

a

fpx, yq dx �
» bn�1

bn

fpx, yq dx ¥ 0.

2.4. Parameetrist sõltuva esimest liiki päratu integraali
pidevus, integreeruvus ja diferentseeruvus

Järgnevad teoremid 2.6�2.8 annavad piisavad tingimused selleks, et parameetrist
sõltuv päratu integraal (2.1) oleks vastavalt pidev, integreeruv ja diferentseeruv
lõigus rc, ds.

1Ulisse Dini (1845�1918) � itaalia matemaatik
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Teoreem 2.6. Olgu kahe muutuja funktsioon w � fpx, yq pidev �poolribas� ra,8q�
rc, ds, kusjuures päratu integraal (2.1) koondub ühtlaselt lõigus rc, ds. Siis funkt-
sioon (2.1) on pidev lõigus rc, ds.

Teoreem 2.7. Olgu kahe muutuja funktsioon w � fpx, yq pidev �poolribas� ra,8q�
rc, ds, kusjuures päratu integraal (2.1) koondub ühtlaselt lõigus rc, ds. Siis funkt-
sioon (2.1) on integreeruv lõigus rc, ds, kusjuures» d

c

Ipyq dy �
» d

c

�» 8

a

fpx, yq dx


dy �

» 8

a

�» d

c

fpx, yq dy


dx.

Teoreem 2.8. Olgu kahe muutuja funktsioon w � fpx, yq ja tema osatuletisfunkt-
sioon Bf

By pidevad �poolribas� ra,8q� rc, ds, kusjuures päratu integraal (2.1) koondub

lõigus rc, ds ning parameetrist sõltuv päratu integraal
³8
a

Bf
By px, yq dx koondub ühtlaselt

(muutuja y suhtes) lõigus rc, ds. Siis funktsioon (2.1) on diferentseeruv lõigus rc, ds,
kusjuures

I 1pyq �
» 8

a

Bf
By px, yq dx igas punktis y P rc, ds. (2.7)

Teoreeme 2.6�2.8 on mugav järeldada lemma 2.2 abil analoogilistest teoreemidest
funktsionaalrea summa pidevuse, integreeruvuse ja diferentseeruvuse kohta.

Parema jälgitavuse huvides sõnastame siinkohal need teoreemid.

Teoreem 2.9. Kui

(1) funktsioonid gn, n � 1, 2, . . . , on pidevad lõigus rc, ds;
(2) funktsionaaljada pgnq8n�1 koondub piirfunktsiooniks g ühtlaselt lõigus rc, ds,

siis ka funktsioon g on pidev lõigus rc, ds.

Teoreem 2.10. Kui

(1) funktsioonid gn, n � 1, 2, . . . , on integreeruvad lõigus rc, ds;
(2) funktsionaaljada pgnq8n�1 koondub piirfunktsiooniks g ühtlaselt lõigus rc, ds,

siis ka funktsioon g on integreeruv lõigus rc, ds, kusjuures» d

c

gpyq dy � lim
nÑ8

» d

c

gnpyq dy.

Teoreem 2.11. Kui

(1) funktsioonidel gn, n � 1, 2, . . . , eksisteerib lõigus rc, ds pidev tuletis;

(2) funktsionaaljada pgnq8n�1 koondub piirfunktsiooniks g lõigus rc, ds;
(3) tuletisfunktsioonide funktsionaaljada pg1nq8n�1 koondub piirfunktsiooniks h ühtlaselt lõi-

gus rc, ds,
siis ka piirfunktsioon g on diferentseeruv lõigus rc, ds, kusjuures

g1pyq � hpyq igas punktis y P rc, ds.
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Teoreemi 2.6 tõestus. Valime arvud bn P pa,8q, n � 1, 2, . . . , nii, et bn ÝÝÝÑ
nÑ8

8,

ning de�neerime iga n P N korral funktsiooni gn valemiga (2.4), kus Y � rc, ds. Siis
teoreemi 1.1 põhjal funktsioonid gn, n � 1, 2, . . . , on pidevad (sest iga n P N korral on
funktsioon f pidev ristkülikus ra, bns�rc, ds); lemma 2.2, (b), põhjal funktsionaaljada
pgnq8n�1 koondub ühtlaselt lõigus rc, ds piirfunktsiooniks I. Teoreemi 2.9 põhjal on
funktsioon I pidev lõigus rc, ds.
Teoreemi 2.7 tõestus. Teoreemi 2.6 põhjal on funktsioon (2.1) pidev lõigus rc, ds,
seega see funktsioon on ka integreeruv selles lõigus; niisiis eksisteerib Riemanni integ-
raal

³d
c
Ipyq dy. Teoreemi 1.2 põhjal iga reaalarvu b ¡ a korral» d

c

�» b

a

fpx, yq dx


dy �

» b

a

�» d

c

fpx, yq dy


dx,

kus selle võrduse kehtivus tähendab muuhulgas kõigi selles võrduses esinevate integ-
raalide olemasolu (kõik selles võrduses esinevad integraalid on Riemanni integraalid).
Teoreemi tõestuseks jääb näidata, et» b

a

�» d

c

fpx, yq dy


dx ÝÝÝÑ

bÑ8

» d

c

Ipyq dy. (2.8)

Olgu reaalarvud bn ¡ a, n � 1, 2, . . . , sellised, et bn ÝÝÝÑ
nÑ8

8. Heine kriteeriumi

põhjal funktsiooni piirväärtuse jaoks piisab koonduvuse (2.8) tõestuseks veenduda,
et » bn

a

�» d

c

fpx, yq dy


dx ÝÝÝÑ

nÑ8

» d

c

Ipyq dy. (2.9)

Selleks de�neerime iga n P N korral funktsiooni gn valemiga (2.4), kus Y � rc, ds;
siis lemma 2.2, (b), põhjal funktsionaaljada pgnq8n�1 koondub ühtlaselt lõigus rc, ds
piirfunktsiooniks I, seega teoreemi 2.10 põhjal» d

c

gnpyq dy ÝÝÝÑ
nÑ8

» d

c

Ipyq dy.

Koonduvuse (2.9) ja ühtlasi ka teoreemi tõestuseks jääb nüüd vaid märkida, et iga
n P N korral» d

c

gnpyq dy �
» d

c

�» bn

a

fpx, yq dx


dy �

» bn

a

�» d

c

fpx, yq dy


dx.

Teoreemi 2.8 tõestus. Valime arvud bn P pa,8q, n � 1, 2, . . . , nii, et bn ÝÝÝÑ
nÑ8

8,

ning de�neerime iga n P N korral funktsiooni gn valemiga (2.4), kus Y � rc, ds.
Siis lemma 2.2, (a), põhjal funktsionaaljada pgnq8n�1 koondub piirfunktsiooniks I
lõigus rc, ds. Teoreemi 1.3 põhjal on iga n P N korral funktsioon gn diferentseeruv
lõigus rc, ds, kusjuures

g1npyq �
» bn

a

Bf
By px, yq dx igas punktis y P rc, ds;
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seejuures teoreemi 1.1 põhjal on tuletisfunktsioon g1n pidev lõigus rc, ds. Lemma
2.2, (b), põhjal koondub tuletisfunktsioonide funktsionaaljada pg1nq8n�1 parameet-
rist sõltuvaks päratuks integraaliks

³8
a

Bf
By px, yq dx ühtlaselt (muutuja y suhtes) lõi-

gus rc, ds. Teoreemi 2.11 põhjal on piirfunktsioon I diferentseeruv lõigus rc, ds, kus-
juures kehtib (2.7).

Teoreemist 2.8 eksisteerib järgnev tugevam versioon.

Teoreem 2.12. Olgu kahe muutuja funktsioon w � fpx, yq ja tema osatuletisfunktsioon Bf
By

pidevad �poolribas� ra,8q � rc, ds, kusjuures päratu integraal (2.1) koondub vähemalt ühes
lõigu rc, ds punktis (s.t. leidub y0 P rc, ds selliselt, et päratu integraal

³8
a
fpx, y0q dx koondub)

ning parameetrist sõltuv päratu integraal
³8
a

Bf
By px, yq dx koondub ühtlaselt (muutuja y suhtes)

lõigus rc, ds. Siis ka päratu integraal (2.1) koondub ühtlaselt lõigus rc, ds, kusjuures tema
piirfunktsioon I on diferentseeruv selles lõigus. Seejuures

I 1pyq �
» 8

a

Bf
By px, yq dx igas punktis y P rc, ds. (2.10)

Teoreemi 2.12 tõestus on ülesehituselt sarnane teoreemi 2.8 tõestusega, kuid teoreemi 2.11
asemel kasutatakse seal järgnevat tugevamat versiooni teoreemist 2.11.

Teoreem 2.13. Kui

(1) funktsioonid gn, n � 1, 2, . . . , on diferentseeruvad lõigus rc, ds;
(2) funktsionaaljada pgnq8n�1 koondub vähemalt ühes lõigu rc, ds punktis;
(3) tuletisfunktsioonide funktsionaaljada pg1nq8n�1 koondub piirfunktsiooniks h ühtlaselt lõi-

gus rc, ds,
siis ka funktsionaaljada pgnq8n�1 koondub ühtlaselt lõigus rc, ds. Seejuures on funktsionaaljada
pgnq8n�1 piirfunktsioon g diferentseeruv lõigus rc, ds, kusjuures

g1pyq � hpyq igas punktis y P rc, ds.

Teoreemi 2.12 tõestus. Olgu arvud bn P pa,8q, n � 1, 2, . . . , sellised, et bn ÝÝÝÑ
nÑ8 8.

De�neerime iga n P N korral funktsiooni gn valemiga (2.4), kus Y � rc, ds. Siis lemma 2.2, (a),
põhjal funktsionaaljada pgnq8n�1 koondub vähemalt ühes lõigu rc, ds punktis. Teoreemi 1.3
põhjal on iga n P N korral funktsioon gn diferentseeruv lõigus rc, ds, kusjuures

g1npyq �
» bn

a

Bf
By px, yq dx igas punktis y P rc, ds.

Lemma 2.2, (b), põhjal koondub tuletisfunktsioonide funktsionaaljada pg1nq8n�1 parameetrist
sõltuvaks päratuks integraaliks

³8
a

Bf
By px, yq dx ühtlaselt (muutuja y suhtes) lõigus rc, ds. Teo-

reemi 2.13 põhjal koondub ka funktsionaaljada pgnq8n�1 ühtlaselt lõigus rc, ds; seejuures selle
funktsionaaljada pgnq8n�1 piirfunktsioon g diferentseeruv lõigus rc, ds, kusjuures

g1pyq �
» 8

a

Bf
By px, yq dx igas punktis y P rc, ds.

Eelnevast arutelust nähtub, et mis tahes arvude bn P pa,8q, n � 1, 2, . . . , korral, mis rahul-
davad tingimust bn ÝÝÝÑ

nÑ8 8, koondub valemitega (2.4) de�neeritud funktsionaaljada pgnq8n�1
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ühtlaselt lõigus rc, ds. Lemma 2.2, (b), põhjal koondub päratu integraal (2.1) ühtlaselt (para-
meetri y suhtes) lõigus rc, ds, kusjuures kõikide ülalkirjeldatud funktsionaaljadade pgnq8n�1

piirfunktsioonid on I. Nüüd aga järeldub eelnevast, et funktsioon I on diferentseeruv lõigus
rc, ds, kusjuures kehtib (2.10).

2.5. Esimest liiki päratu integraal parameetrist sõltuvast
esimest liiki päratust integraalist

Teoreem 2.14. Olgu a, c P R ning olgu funktsioon w � fpx, yq mittenegatiivne ja
pidev hulgas

 px, yq P R2 : x ¥ a, y ¥ c
(
, kusjuures parameetrist sõltuvad päratud

integraalid

Ipyq :�
» 8

a

fpx, yq dx ja Kpxq :�
» 8

c

fpx, yq dy
(koonduvad ja) on pidevad vastavalt poolsirgetel y P rc,8q ja x P ra,8q. Kui koondub
üks päratutest integraalidest» 8

c

Ipyq dy �
» 8

c

�» 8

a

fpx, yq dx


dy ja

» 8

a

Kpxq dx �
» 8

a

�» 8

c

fpx, yq dy


dx,

siis koondub ka teine nendest integraalidest, kusjuures need kaks päratut integraali
on võrdsed.

Tõestus. Sümmeetria põhjal piisab vaadelda vaid juhtu, kui koondub päratu integ-
raal

³8
a
Kpxq dx. Teoreemi tõestuseks peame näitama, et koondub ka päratu integraal³8

c
Ipyq dy, kusjuures ³8

c
Ipyq dy � ³8

a
Kpxq dx, s.t. iga reaalarvu ε ¡ 0 korral leidub

reaalarv D ¥ c selliselt, et kehtib implikatsioon

d P R, d ¡ D ùñ
����» d

c

Ipyq dy �
» 8

a

Kpxq dx
����   ε. (2.11)

Fikseerime vabalt reaalarvu ε ¡ 0. Iga reaalarvu d ¡ c korral koondub parameetrist
sõltuv päratu integraal

³8
a
fpx, yq dx Dini tunnuse (teoreemi 2.4) põhjal ühtlaselt

muutuja y suhtes lõigus rc, ds, järelikult teoreemi 2.7 põhjal on funktsioon I integ-
reeruv lõigus rc, ds, kusjuures» d

c

Ipyq dy �
» d

c

�» 8

a

fpx, yq dx


dy �

» 8

a

�» d

c

fpx, yq dy


dx.

Seega mis tahes reaalarvude d ¡ c ja b ¡ a korral» 8

a

Kpxq dx�
» d

c

Ipyq dy �
» 8

a

�» 8

c

fpx, yq dy


dx�

» 8

a

�» d

c

fpx, yq dy


dx

�
» 8

a

�» 8

c

fpx, yq dy �
» d

c

fpx, yq dy


dx

�
» 8

a

�» 8

d

fpx, yq dy


dx

�
» 8

b

�» 8

d

fpx, yq dy


dx�

» b

a

�» 8

d

fpx, yq dy


dx.
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Päratu integraali
³8
a
Kpxq dx koonduvuse tõttu leidub reaalarv b ¡ a selliselt, et³8

b
Kpxq dx � ��³8

b
Kpxq dx��   ε

2
(põhjendada, miks selline reaalarv b leidub!) . Nüüd

mis tahes reaalarvu d ¡ c korral funktsiooni f mittenegatiivsuse tõttu iga x P ra,8q
korral

0 ¤
» 8

d

fpx, yq dy ¤
» 8

c

fpx, yq dy � Kpxq

ning järelikult

0 ¤
» 8

b

�» 8

d

fpx, yq dy


dx ¤

» 8

b

Kpxq dx   ε

2
.

Dini tunnuse (teoreemi 2.4) põhjal koondub parameetrist sõltuv päratu integraal³8
c
fpx, yq dy ühtlaselt muutuja x suhtes lõigus ra, bs, seega leidub reaalarv D ¥ c

selliselt, et

d P R, d ¡ D ùñ
» 8

d

fpx, yq dy �
����» 8

d

fpx, yq dy
����   ε

2pb� aq iga x P ra, bs korral.

Nüüd mis tahes reaalarvu d ¡ D korral����» d

c

Ipyq dy �
» 8

a

Kpxq dx
����   ε

2
�
» b

a

ε

2pb� aq dx �
ε

2
� ε

2pb� aq � pb� aq � ε.

Implikatsioon (2.11) kehtib.

2.6. Parameetrist sõltuv teist liiki päratu integraal

Olgu kahe muutuja funktsioon w � fpx, yq määratud hulgas ra, bq � Y , kus Y � R.
Eeldame, et (teist liiki) päratu integraal

³b
a
fpx, yq dx koondub hulgas Y , s.t. iga väär-

tuse y P Y korral (teist liiki) päratu integraal
³b
a
fpx, yq dx koondub (s.t. iga väärtuse

y P Y korral eksisteerib iga t P pa, bq korral Riemanni integraal
³t
a
fpx, yq dx, kusjuu-

res eksisteerib lõplik piirväärtus limtÑb�
³t
a
fpx, yq dx; see piirväärtus ongi (teist liiki)

päratu integraal
³b
a
fpx, yq dx). Nendel eeldustel on hulgas Y määratud (muutuja y)

funktsioon

Ipyq �
» b

a

fpx, yq dx. (2.12)

Funktsioonile (2.12) viidatakse kui parameetrist sõltuvale (teist liiki) päratule integ-
raalile. Parameetri rollis on siin muutuja y: valemis (2.12) esineva päratu integraali
väärtus sõltub parameetri y väärtusest.

Teoreemides, mis annavad piisavad tingimused funktsiooni (2.12) pidevuseks,
integreeruvuseks ja diferentseeruvuseks (sellised teoreemid 2.19�2.21 on vastavate
parameetrist sõltuvat esimest liiki päratut integraali (2.1) käsitlevate teoreemide
2.6�2.8 analoogid), on üheks oluliseks eelduseks parameetrist sõltuva (teist liiki)
päratu integraali (2.12) ühtlane koonduvus.
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Järgnevates de�nitsioonis 2.2, teoreemis 2.15 ja lemmas 2.16 eeldame me, et kahe
muutuja funktsioon w � fpx, yq on määratud hulgas ra, bq � Y , kus Y � R.

De�nitsioon 2.2. Öeldakse, et päratu integraal (2.12) koondub ühtlaselt (para-
meetri y suhtes) hulgas Y , kui see integraal koondub hulgas Y (s.t. iga väärtuse
y P Y korral see päratu integraal eksisteerib ja on lõplik), kusjuures iga reaalarvu
ε ¡ 0 korral leidub arv A P ra, bq selliselt, et kehtib implikatsioon

R P pA, bq ùñ
����» b

R

fpx, yq dx
����   ε iga y P Y korral.

Järgnev teoreem annab tarviliku ja piisava tingimuse parameetrist sõltuva teist
liiki päratu integraali ühtlaseks koonduvuseks.

Teoreem 2.15 (parameetrist sõltuva teist liiki päratu integraali ühtlase koonduvuse
Cauchy kriteerium). Eksisteerigu mis tahes y P Y ja t P pa, bq korral Riemanni
integraal

³t
a
fpx, yq dx. Järgmised väited on samaväärsed:

(i) päratu integraal (2.12) koondub ühtlaselt hulgas Y ;

(ii) iga reaalarvu ε ¡ 0 korral leidub arv A P ra, bq selliselt, et kehtib implikatsioon

R,R1 P R, A   R   R1   b ùñ
����» R1

R

fpx, yq dx
����   ε iga y P Y korral.

Teoreemi 2.15 (implikatsiooni (ii)ñ(i)) tõestamisel on mugav toetuda järgne-
vale lemmale, mis taandab küsimuse parameetrist sõltuva teist liiki päratu integraali
(ühtlase) koonduvuse kohta küsimusele teatavate parameetrist sõltuvate integraalide
funktsionaaljadade (ühtlase) koonduvuse kohta.

Lemma 2.16. Eksisteerigu mis tahes y P Y ja t P pa, bq korral Riemanni integraal³t
a
fpx, yq dx.

(a) Olgu y P Y . Järgmised väited on samaväärsed:

(i) päratu integraal (2.12) koondub punktis y;

(ii) mis tahes arvude bn P pa, bq, n � 1, 2, . . . , korral, mis rahuldavad tingi-
must bn ÝÝÝÑ

nÑ8
b, funktsionaaljada pgnq8n�1, kus

gn : Y Q η ÞÝÑ
» bn

a

fpx, ηq dx P R, (2.13)

koondub punktis y.

Seejuures, kui kehtib üks väidetest (i) ja (ii), siis väites (ii) kirjeldatud funkt-
sionaaljadad pgnq8n�1 koonduvad punktis y piirväärtuseks Ipyq.
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(b) Järgmised väited on samaväärsed:

(i) päratu integraal (2.12) koondub ühtlaselt (parameetri y suhtes) hulgas Y ;

(ii) mis tahes arvude bn P pa, bq, n � 1, 2, . . . , korral, mis rahuldavad tingi-
must bn ÝÝÝÑ

nÑ8
b, valemitega (2.13) de�neeritud funktsionaaljada pgnq8n�1

koondub ühtlaselt hulgas Y .

Seejuures, kui kehtib üks väidetest (i) ja (ii), siis väites (ii) kirjeldatud funkt-
sionaaljadade pgnq8n�1 piirfunktsioon hulgas Y on I.

Märkus 2.2. Samaväärsused (i)ô(ii) lemma 2.16 väidetes (a) ja (b) jäävad kehtima, kui neis
kummaski asendada väites (ii) tingimus �mis tahes arvude bn P pa, bq, n � 1, 2, . . . , korral, mis
rahuldavad tingimust bn ÝÝÝÑ

nÑ8 b � tingimusega �mis tahes arvude bn P pa, bq, n � 1, 2, . . . , korral,

mis rahuldavad tingimusi b1   b2   . . . ja bn ÝÝÝÑ
nÑ8 b �.

Järgnevad kaks teoreemi annavad piisavaid tingimusi parameetrist sõltuva teist
liiki päratu integraali ühtlaseks koonduvuseks. Need teoreemid on vastavate para-
meetrist sõltuvat esimest liiki päratut integraali käsitlevate teoreemide 2.3 ja 2.4 �
Weierstrassi tunnuse ja Dini tunnuse � analoogid.

Teoreem 2.17 (parameetrist sõltuva teist liiki päratu integraali ühtlase koonduvu-
se Weierstrassi tunnus). Olgu kahe muutuja funktsioon w � fpx, yq määratud hulgas
ra, bq � Y , kus Y � R, kusjuures mis tahes y P Y ja t P pa, bq korral eksistee-
rib Riemanni integraal

³t
a
fpx, yq dx, ning olgu ühe muutuja funktsioon ϕ määratud

poollõigus ra, bq. Kui
(1) |fpx, yq| ¤ ϕpxq iga px, yq P ra, bq � Y korral;

(2) päratu integraal
³b
a
ϕpxq dx koondub,

siis päratu integraal (2.12) koondub ühtlaselt ja absoluutselt hulgas Y . (Siin päratu
integraali (2.12) absoluutne koonduvus hulgas Y tähendab, et iga y P Y korral päratu

integraal
³b
a
|fpx, y| dx koondub.)

Teoreem 2.18 (parameetrist sõltuva teist liiki päratu integraali ühtlase koonduvuse
Dini tunnus). Olgu kahe muutuja funktsioon w � fpx, yq mittenegatiivne ja pidev
�poollahtises� ristkülikus ra, bq�rc, ds. Koondugu päratu integraal (2.12) lõigus rc, ds,
kusjuures piirfunktsioon I on pidev lõigus rc, ds. Siis see päratu integraal koondub
piirfunktsiooniks I ühtlaselt lõigus rc, ds.

Teoreemide 2.17 ja 2.18 tõestused on analoogilised vastavalt teoreemide 2.3 ja 2.4
tõestustega: teoeemi 2.17 tõestus toetub (parameetrist sõltuva teist liiki päratu in-
tegraali ühtlase koonduvuse) Cauchy kriteeriumile (teoreemile 2.15), teoreemi 2.18
tõestus toetub funktsionaaljada ühtlase koonduvuse Dini tunnusele (teoreemile 2.5)
ja lemmale 2.16.

Sõnastame nüüd teoreemid, mis annavad piisavad tingimused vastavalt funkt-
siooni (2.12) pidevuseks, integreeruvuseks ja diferentseeruvuseks lõigus rc, ds.
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Teoreem 2.19. Olgu kahe muutuja funktsioon w � fpx, yq pidev �poollahtises� rist-
külikus ra, bq�rc, ds, kusjuures päratu integraal (2.12) koondub ühtlaselt lõigus rc, ds.
Siis funktsioon (2.12) on pidev lõigus rc, ds.
Teoreem 2.20. Olgu kahe muutuja funktsioon w � fpx, yq pidev �poollahtises� rist-
külikus ra, bq�rc, ds, kusjuures päratu integraal (2.12) koondub ühtlaselt lõigus rc, ds.
Siis funktsioon (2.12) on integreeruv lõigus rc, ds, kusjuures» d

c

Ipyq dy �
» d

c

�» b

a

fpx, yq dx


dy �

» b

a

�» d

c

fpx, yq dy


dx.

Teoreem 2.21. Olgu kahe muutuja funktsioon w � fpx, yq ja tema osatuletisfunkt-
sioon Bf

By pidevad �poollahtises� ristkülikus ra, bq � rc, ds, kusjuures päratu integraal

(2.12) koondub lõigus rc, ds ning parameetrist sõltuv päratu integraal
³b
a
Bf
By px, yq dx

koondub ühtlaselt (muutuja y suhtes) lõigus rc, ds. Siis funktsioon (2.12) on diferent-
seeruv lõigus rc, ds, kusjuures

I 1pyq �
» b

a

Bf
By px, yq dx igas punktis y P rc, ds.

Nagu juba öeldud, teoreemid 2.19�2.21 on teoreemide 2.6�2.8 analoogid. Ka teo-
reemide 2.19�2.21 tõestused on analoogilised vastavalt teoreemide 2.6�2.8 tõestus-
tega: teoreemid 2.19�2.21 järelduvad vastavalt teoreemidest 2.9�2.11, kuid seejuures
toetutakse lemma 2.2 asemel lemmale 2.16.
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Selles paragrahvis tutvume me teatavate oluliste mitteelementaarfunktsioonidega,
mis on tuntud Euleri integraalide nime all.

Euleri esimest liiki integraaliks ehk (Euleri) beetafunktsiooniks nimetatakse para-
meetri(te)st sõltuvat integraali

Bpp, qq �
» 1

0

xp�1p1� xqq�1 dx. (3.1)

Selles integraalis on parameetrite rollis p ja q. Paneme tähele, et kui p   1 või q   1,
siis integraal (3.1) on parameetri(te)st sõltuv päratu integraal: kui p   1, siis integ-
raalialune funktsioon on tõkestamata punkti 0 igas parempoolses ümbruses; kui
q   1, siis integraalialune funktsioon on tõkestamata punkti 1 igas vasakpoolses
ümbruses.

Euleri teist liiki integraaliks ehk (Euleri) gammafunktsiooniks nimetatakse para-
meetrist sõltuvat integraali

Γppq �
» 8

0

e�xxp�1 dx. (3.2)

Selles integraalis on parameetri rollis p. Integraal (3.2) on parameetrist sõltuv päratu
integraal. Päratus selles integraalis esineb kahel põhjusel: esiteks, �ülemine integreeri-
misraja on8� ning, teiseks, kui p   1, siis integraalialune funktsioon on tõkestamata
punkti 0 igas parempoolses ümbruses.

3.1. Euleri integraalide koonduvuspiirkond

Lause 3.1. (a) Euleri esimest liiki integraal (3.1) koondub parajasti siis, kui p ¡ 0
ja q ¡ 0.

(b) Euleri teist liiki integraal (3.2) koondub parajasti siis, kui p ¡ 0.

Tõestus. (a). Päratu integraal (3.1) koondub parajasti siis, kui koonduvad päratud
integraalid

I1 �
» 1

2

0

xp�1p1� xqq�1 dx ja I2 �
» 1

1
2

xp�1p1� xqq�1 dx; (3.3)

seejuures integraalide I1 ja I2 puhul piisab vaadelda vaid vastavalt juhtusid, kui p   1
ja q   1 (sest kui p ¥ 1, siis integraali I1 alune funktsioon on pidev lõigus

�
0, 1

2

�
,

kui aga q ¥ 1, siis integraali I2 alune funktsioon on pidev lõigus
�
1
2
, 0
�
; seega need

funktsioonid on Riemanni mõttes integreeruvad vastavalt lõikudes
�
0, 1

2

�
ja

�
1
2
, 0
�
,

järelikult need integraalid eksisteerivad ja on lõplikud � vaadeldavatel juhtudel on
tegemist tavaliste Riemanni integraalidega).

316
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Mis tahes reaalarvu q korral p1 � xqq�1 ÝÝÝÑ
xÑ0�

1, seega integraal I1 koondub

parajasti siis, kui koondub integraal
³ 1

2

0
xp�1 dx (põhjendada!) ; see integraal aga

koondub parajasti siis, kui p ¡ 0 (põhjendada!) .
Mis tahes reaalarvu p korral xp�1 ÝÝÝÑ

xÑ1�
1, seega integraal I2 koondub parajasti

siis, kui koondub integraal
³1
1
2
p1�xqq�1 dx (põhjendada!) ; see integraal aga koondub

parajasti siis, kui q ¡ 0 (põhjendada!) .
Kokkuvõttes oleme saanud, et päratu integraal (3.1) koondub parajasti siis, kui

p ¡ 0 ja q ¡ 0.

(b). Päratu integraal (3.2) koondub parajasti siis, kui koonduvad päratud integ-
raalid

I1 :�
» 1

0

e�xxp�1 dx ja I2 :�
» 8

1

e�xxp�1 dx; (3.4)

seejuures integraali I1 puhul piisab vaadelda vaid juhtu, kui p   1 (sest kui p ¥ 1, siis
integraalialune funktsioon on pidev lõigus r0, 1s, seega see funktsioon on Riemanni
mõttes integreeruv selles lõigus, järelikult see integraal eksisteerib ja on lõplik �
vaadeldaval juhul on tegemist tavalise Riemanni integraaliga).

Paneme tähele, et integraal I2 koondub iga p P R korral. Tõepoolest, olgu p P R.
Integraalis I2 tekib päratus vaid sellest, et �ülemine integreerimisraja� on 8 (integ-
raalialune funktsioon on pidev kogu poolsirgel r1,8q). Mis tahes reaalarvu α kor-
ral e�xxα ÝÝÝÑ

xÑ8
0 (põhjendada!) , seega ka

e�xxp�1

x�2
� e�xxp�1 ÝÝÝÑ

xÑ8
0,

järelikult leidub reaalarv A ¥ 1 selliselt, et

0   e�xxp�1 ¤ x�2 iga x ¥ A korral (põhjendada!) .

Kuna päratu integraal
³8
1
x�2 dx koondub (põhjendada!) , siis koondub ka integ-

raal I2.

Uurime nüüd päratu integraali I1 koonduvust. Kuna e�x ÝÝÝÑ
xÑ0�

1, siis integ-

raal I1 koondub parajasti siis, kui koondub integraal
³1
0
xp�1 dx (põhjendada!) ; see

integraal aga koondub parajasti siis, kui p ¡ 0.

Kokkuvõttes olemegi saanud, et päratu integraal (3.2) koondub parajasti siis,
kui p ¡ 0.

3.2. Euleri funktsioonide pidevus

Lause 3.2. (a) Euleri beetafunktsioon (3.1) on pidev kvadrandis

tpp, qq P R2 : p ¡ 0, q ¡ 0u. (3.5)

(b) Euleri gammafunktsioon (3.2) on pidev poolsirgel tp P R : p ¡ 0u.
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Tõestus. (a). Tõestamaks, et Euleri beetafunktsioon (3.1) on pidev kvadrandis (3.5),
piisab veenduda, et see funktsioon on pidev igas ristkülikus

tpp, qq P R2 : p1 ¤ p ¤ p2, q1 ¤ q ¤ q2u, (3.6)

kus 0   p1   p2 ja 0   q1   q2. Eeldamegi, et 0   p1   p2 ja 0   q1   q2. Veen-
dumaks, et beetafunktsioon on pidev ristkülikus (3.6), piisab veenduda, et (para-
meetritest p ja q sõltuvad) päratud integraalid (3.3) on pidevad selles ristkülikus (sest
Bpp, qq � I1 � I2). Veendumaks, et päratud integraalid (3.3) on pidevad ristkülikus
(3.6), piisab teoreemi 2.19 põhjal näidata, et need päratud integraalid koonduvad
ühtlaselt parameetrite p ja q suhtes selles ristkülikus. (Täpsemalt, integraalide I1
ja I2 pidevus ristkülikus (3.6) järeldub nende integraalide ühtlasest koonduvusest
selles ristkülikus teoreemi 2.19 analoogide põhjal kahest parameetrist sõltuva päratu
integraali jaoks vastavalt funktsioonist, mis on määratud �poollahtises� risttahukas
pa, bs�rp1, p2s�rq1, q2s, ja funktsioonist, mis on määratud �poollahtises� risttahukas
ra, bq � rp1, p2s � rq1, q2s.)

Näitamaks, et päratud integraalid (3.3) koonduvad ühtlaselt parameetrite p ja q
suhtes ristkülikus (3.6), rakendame Weierstrassi tunnust (teoreemi 2.17 analooge
kahest parameetrist sõltuva päratu integraali jaoks). Mis tahes x P p0, 1q, p P rp1, p2s
ja q P rq1, q2s korral

|xp�1p1� xqq�1| � xp�1p1� xqq�1 ¤ xp1�1p1� xqq1�1.

Kuna päratud integraalid
³ 1

2

0
xp1�1p1�xqq1�1 dx ja

³1
1
2
xp1�1p1�xqq1�1 dx koonduvad,

siis Weierstrassi tunnuse põhjal (teoreemi 2.17 analoogide põhjal kahest parameet-
rist sõltuva päratu integraali jaoks vastavalt funktsioonist, mis on määratud hulgas
pa, bs � Y �Z, ja funktsioonist, mis on määratud hulgas ra, bq � Y �Z) koonduvad
päratud integraalid I1 ja I2 ühtlaselt parameetrite p ja q suhtes ristkülikus (3.6).

(b). Tõestamaks, et Euleri gammafunktsioon (3.2) on pidev poolsirgel tp P R : p ¡
0u, piisab veenduda, et see funktsioon on pidev igas lõigus rp1, p2s, kus 0   p1   p2.
Eeldamegi, et 0   p1   p2. Veendumaks, et gammafunktsioon on pidev lõigus rp1, p2s,
piisab veenduda, et (parameetrist p sõltuvad) päratud integraalid (3.4) on pidevad
selles lõigus (sest Γppq � I1� I2). Veendumaks, et päratud integraalid (3.4) on pide-
vad lõigus rp1, p2s, piisab vastavalt teoreemide 2.19 ja 2.6 põhjal näidata, et need
päratud integraalid koonduvad ühtlaselt parameetri p suhtes lõigus rp1, p2s. (Täp-
semalt, integraali I1 puhul toetutakse siin teoreemi 2.19 asemel tema analoogile
�poollahtises� ristkülikus pa, bs � rc, ds määratud funktsiooni jaoks.)

Näitamaks, et päratud integraalid (3.4) koonduvad ühtlaselt parameetri p suhtes
lõigus rp1, p2s, rakendame Weierstrassi tunnust (vastavalt teoreemi 2.17 analoogi
�poollahtises� ristkülikus pa, bs � rc, ds määratud funktsiooni jaoks ja teoreemi 2.3).
Mis tahes x P p0, 1s ja p P rp1, p2s korral

|e�xxp�1| � e�xxp�1 ¤ e�xxp1�1.

Kuna päratu integraal
³1
0
e�xxp1�1 dx koondub, siis Weierstrassi tunnuse põhjal (teo-

reemi 2.17 analoogi põhjal �poollahtises� ristkülikus pa, bs � rc, ds määratud funkt-
siooni jaoks) koondub päratu integraal I1 ühtlaselt parameetri p suhtes lõigus rp1, p2s.
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Mis tahes x P r1,8q ja p P rp1, p2s korral
|e�xxp�1| � e�xxp�1 ¤ e�xxp2�1.

Kuna päratu integraal
³8
1
e�xxp2�1 dx koondub, siis Weierstrassi tunnuse (teoree-

mi 2.3) põhjal koondub päratu integraal I2 ühtlaselt parameetri p suhtes lõigus
rp1, p2s.

3.3. Euleri gammafunktsiooni omadusi

Lause 3.3. Euleri gammafunktsioon (3.2) on poolsirgel tp P R : p ¡ 0u kui tahes
palju kordi diferentseeruv; seejuures me võime seda funktsiooni diferentseerida kui
tahes palju kordi integraali märgi all. Täpsemalt, iga n P N korral igas punktis p ¡ 0

dnΓ

dpn
ppq �

» 8

0

dn

dpn
�
e�xxp�1

�
dx �

» 8

0

e�xxp�1plnxqn dx. (3.7)

Tõestus. Lause tõestuseks piisab veenduda, et mis tahes reaalarvude p2 ¡ p1 ¡ 0
korral kehtib valem (3.7) iga n P N korral igas punktis p P rp1, p2s. Fikseerime vabalt
reaalarvud p2 ¡ p1 ¡ 0. Veendumaks, et valem (3.7) kehtib iga n P N korral igas
punktis p P rp1, p2s, piisab, de�neerides

I1ppq �
» 1

0

e�xxp�1 dx ja I2ppq �
» 8

1

e�xxp�1 dx,

veenduda, et iga n P N korral igas punktis p P rp1, p2s
dnI1
dpn

ppq �
» 1

0

e�xxp�1plnxqn dx ja
dnI2
dpn

ppq �
» 8

1

e�xxp�1plnxqn dx (3.8)

(sest Γppq � I1ppq � I2ppq ning
³8
0
e�xxp�1plnxqn dx � ³1

0
e�xxp�1plnxqn dx �³8

1
e�xxp�1plnxqn dx). Veendumaks, et iga n P N korral igas punktis p P rp1, p2s keh-

tivad võrdused (3.8), piisab vastavalt teoreemide 2.21 ja 2.8 põhjal näidata, et nendes
võrdustes paremal pool võrdusmärki olevad päratud integraalid koonduvad ühtla-
selt parameetri p järgi lõigus rp1, p2s. (Täpsemalt, võrdustest (3.8) esimese kehtivuse
põhjendamisel me toetume siin teoreemi 2.21 asemel tema analoogile �poollahtises�
ristkülikus pa, bs � rc, ds määratud funktsiooni jaoks.)

Näitamaks, et võrdustes (3.8) esinevad päratud integraalid koonduvad ühtlaselt
parameetri p suhtes lõigus rp1, p2s, rakendameWeierstrassi tunnust (vastavalt teoree-
mi 2.17 analoogi hulgas pa, bs � Y määratud funktsiooni jaoks ja teoreemi 2.3). Mis
tahes x P p0, 1s ja p P rp1, p2s korral, valides reaalarvu α ¡ 0 selliselt, et p1 � α ¡ 0,

|e�xxp�1plnxqn| � e�xxp�1|plnxqn| ¤ e�xxp1�1|plnxqn| � e�xxp1�α�1

����plnxqnx�α

����.
Kuna päratu integraal

³1
0
e�xxp1�α�1

�� plnxqn
x�α

�� dx koondub (sest
�� plnxqn

x�α

�� ÝÝÝÑ
xÑ0�

0 (põh-

jendada!) ja päratu integraal
³1
0
e�xxp1�α�1 dx koondub (põhjendada, miks siit jä-
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reldub päratu integraali
³1
0
e�xxp1�α�1

�� pln xqn
x�α

�� dx koonduvus!) ) siis Weierstrassi tun-
nuse põhjal (teoreemi 2.17 analoogi põhjal hulgas pa, bs � Y määratud funktsiooni
jaoks) koondub päratu integraal

³1
0
e�xxp�1plnxqn dx ühtlaselt parameetri p suhtes

lõigus rp1, p2s. Mis tahes x P r1,8q ja p P rp1, p2s korral

|e�xxp�1plnxqn| � e�xxp�1plnxqn ¤ e�xxp2�1plnxqn � e�xxp2
plnxqn
x

.

Kuna päratu integraal
³8
1
e�xxp2 plnxqn

x
dx koondub (sest plnxqn

x
ÝÝÝÑ
xÑ8

0 (põhjendada!)

ja päratu integraal
³8
1
e�xxp2 dx koondub (põhjendada, miks siit järeldub päratu

integraali
³8
1
e�xxp2 pln xqn

x dx koonduvus!) ) siis Weierstrassi tunnuse (teoreemi 2.3)

põhjal koondub päratu integraal
³8
1
e�xxp�1plnxqn dx ühtlaselt parameetri p suhtes

lõigus rp1, p2s.
Lause 3.4. Mis tahes reaalarvu p ¡ 0 korral

Γpp� 1q � pΓppq. (3.9)

Tõestus. Ositi integreerimise valemi põhjalNB! Formaalselt
meil ei ole kasuta-
da ositi integreeri-
mise valemit päratu
integraali jaoks! Γpp� 1q �

» 8

0

e�xxp dx �
» 8

0

xp dp�e�xq � ��e�xxp
���8

0
� p

» 8

0

e�xxp�1 dx

� 0� p

» 8

0

e�xxp�1 dx � pΓppq.

Tõepoolest,

Γpp� 1q �
» 8

0

e�xxp dx �
» 1

0

e�xxp dx�
» 8

1

e�xxp dx

� lim
aÑ0�

» 1

a

e�xxp dx� lim
bÑ8

» b

1

e�xxp dx.

Rakendades integraalidele
³1
a
e�xxp dx ja

³b
1
e�xxp dx, kus 0   a   1 ja b ¡ 1, ositi integree-

rimise valemit, saame» 1

a

e�xxp dx �
» 1

a

xp dp�e�xq � ��e�xxp
���1

a
� p

» 1

a

e�xxp�1 dx

ja » b

1

e�xxp dx �
» b

1

xp dp�e�xq � ��e�xxp
���b

1
� p

» b

1

e�xxp�1 dx,
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seega

Γpp� 1q � lim
aÑ0�

�
e�aap � e�1 � p

» 1

a

e�xxp�1 dx



� lim

bÑ8

�
e�1 � e�bbp � p

» b

1

e�xxp�1 dx



�

�
0� e�1 � p

» 1

0

e�xxp�1 dx



�
�
e�1 � 0� p

» 8

1

e�xxp�1 dx



� p

» 8

1

e�xxp�1 dx � pΓppq.

Mis tahes n P N ja reaalarvu p ¡ n � 1 korral saame valemit (3.9) n korda
rakendades

Γpp� 1q � ppp� 1q � � � pp� n� 1qΓpp� n� 1q. (3.10)

Valemile (3.10) (samuti valemile (3.9)) viidatakse kui (gammafunktsiooni) taanda-
misvalemile: see valem võimaldab esitada gammafunktsiooni väärtused argumendi
väärtuste korral, mis on suuremad ühest, selle funktsiooni väärtuste kaudu argu-
mendi väärtuste korral, mis on nulli ja ühe vahel.

Arvestades, et Γp1q � ³8
0
e�x dx � 1, saame, võttes taandamisvalemis (3.10)

p � n P N,
Γpn� 1q � npn� 1q � � � 2 � 1 � n!.

Lause 3.5. Mis tahes reaalarvu p P p0, 1q korral

ΓppqΓp1� pq � π

sin πp
. (3.11)

Valemile (3.11) viidatakse kui (gammafunktsiooni) täiendusvalemile

Lause 3.5 tõestus. Käesolevas kursuses me seda teoreemi ei tõesta.

3.4. Euleri beetafunktsiooni omadusi

Lause 3.6. Mis tahes reaalarvude p ¡ 0 ja q ¡ 0 korral

(a) Bpp, qq � Bpq, pq;

(b) Bpp, q � 1q � q

p� q
Bpp, qq;

(c) Bpp� 1, qq � p

p� q
Bpp, qq;

(d) kui 0   p   1, siis Bpp, 1� pq � π

sin πp
;

(e) Bpp, qq �
» 8

0

tp�1

p1� tqp�q
dt.
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Valemile (a) lauses 3.6 viidatakse kui beetafunktsiooni sümmeetriaomadusele, vale-
mitele (b) ja (c) kui taandamisvalemitele ning valemile (d) kui täiendusvalemile.
Täiendusvalemi (d) tõestamise lükkame edasi järgmisse jaotisse: me järeldame selle
gammafunktsiooni täiendusvalemist (lausest 3.5) kasutades seost Euleri integraalide
vahel (lauset 3.7).

Lause 3.6 tõestus. Olgu p ¡ 0 ja q ¡ 0.

(a). Valem Bpp, qq � Bpq, pq saadakse, kui teha integraalis
³1
0
xp�1p1 � xqq�1 dx

muutuja vahetus x � 1� t.

Tõepoolest,

Bpp, qq �
» 1

0

xp�1p1� xqq�1 dx �
» 1

2

0

xp�1p1� xqq�1 dx�
» 1

1
2

xp�1p1� xqq�1 dx

� lim
aÑ0�

» 1
2

a

xp�1p1� xqq�1 dx� lim
bÑ1�

» b

1
2

xp�1p1� xqq�1 dx.

Tehes integraalides
³ 1

2

a
xp�1p1�xqq�1 dx ja

³b
1
2
xp�1p1�xqq�1 dx, kus 0   a   1

2 ja 1
2   b   1,

muutuja vahetuse x � 1� t, saame» 1
2

a

xp�1p1� xqq�1 dx �
» 1�a

1
2

tq�1p1� tqp�1 dt

ja » b

1
2

xp�1p1� xqq�1 dx �
» 1

2

1�b

tq�1p1� tqp�1 dt,

seega

Bpp, qq � lim
aÑ0�

» 1�a

1
2

tq�1p1� tqp�1 dt� lim
bÑ1�

» 1
2

1�b

tq�1p1� tqp�1 dt

�
» 1

1
2

tq�1p1� tqp�1 dt�
» 1

2

0

tq�1p1� tqp�1 dt �
» 1

0

tq�1p1� tqp�1 dt � Bpq, pq.

(b). Ositi integreerimise valemi põhjal

Bpp, q � 1q �
» 1

0

xp�1p1� xqq dx � lim
aÑ0�

» 1

a

xp�1p1� xqq dx

� lim
aÑ0�

» 1

a

p1� xqq d
�
xp

p



� lim

aÑ0�

�
xpp1� xqq

p

����1
a

� q

p

» 1

a

xpp1� xqq�1 dx



� lim

aÑ0�

�
0� app1� aqq

p



� q

p
lim
aÑ0�

» 1

a

xpp1� xqq�1 dx

� q

p

» 1

0

xpp1� xqq�1 dx.
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Arvestades, et

xpp1� xqq�1 � xpp1� xqq�1 � xp�1p1� xqq�1 � xp�1p1� xqq�1

� xp�1p1� xqq�1px� 1q � xp�1p1� xqq�1

� �xp�1p1� xqq � xp�1p1� xqq�1,

saame eelnevast võrdusteahelast

Bpp, q � 1q � �q
p

» 1

0

xp�1p1� xqq dx� q

p

» 1

0

xp�1p1� xqq�1 dx

� �q
p
Bpp, q � 1q � q

p
Bpp, qq,

millest järeldub tõestatav võrdus Bpp, q � 1q � q

p� q
Bpp, qq.

(c). Beetafunktsiooni sümmeetriaomaduse (a) ja taandamisvalemi (b) põhjal

Bpp� 1, qq � Bpq, p� 1q � p

p� q
Bpq, pq � p

p� q
Bpp, qq.

(e). Valem saadakse, kui teha integraalis Bpp.qq � ³1
0
xp�1p1� xqq�1 dx muutuja

vahetus x � t
1�t

(põhjendada!) .

3.5. Euleri integraalide vaheline seos

Lause 3.7. Mis tahes reaalarvude p ¡ 0 ja q ¡ 0 korral

Bpp, qq � ΓppqΓpqq
Γpp� qq . (3.12)

Enne lause 3.7 tõestamist tõestame � järeldusena sellest lausest ja lausest 3.5
(gammafunktsiooni täiendusvalemist) � lause 3.6 väite (d) (beetafunktsiooni täien-
dusvalemi).

Lause 3.6, (d), tõestus. Kui 0   p   1, siis lausete 3.7 ja 3.5 (gammafunktsiooni
täiendusvalemi) põhjal

Bpp, 1� pq � ΓppqΓp1� pq
Γp1q � ΓppqΓp1� pq � π

sin πp
.

Lause 3.7 tõestus. Olgu p, q ¡ 0 ning olgu t ¡ 0. Tehes integraalis Γppq �³8
0
e�x xp�1 dx muutuja vahetuse x � tu, saame Γppq � tp

³8
0
e�tu up�1 du (põhjen-

dada!) , millest
Γppq
tp

�
» 8

0

e�tu up�1 du.
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Võttes selles võrduses arvude p ja t rolli vastavalt p � q ja 1 � t ning korrutades
seejärel saadud võrduse mõlemaid pooli arvuga tp�1, saame

Γpp� qq tp�1

p1� tqp�q
�
» 8

0

e�p1�tqu tp�1 up�q�1 du �
» 8

0

fpu, tq du, (3.13)

kus fpu, tq � e�p1�tqu tp�1 up�q�1. Võrdusteahel (3.13) kehtib iga t ¥ 0 korral, seega
lause 3.6, (e), põhjal

Γpp� qqBpp, qq � Γpp� qq
» 8

0

tp�1

p1� tqp�q
dt �

» 8

0

�» 8

0

fpu, tq du


dt. (3.14)

Kui p, q ¡ 1, siis teoreemi 2.14 põhjal» 8

0

�» 8

0

fpu, tq du


dt �

» 8

0

�» 8

0

fpu, tq dt


du, (3.15)

sest juhul, kui p, q ¡ 1, rahuldab funktsioon f teoreemi 2.14 eeldusi, kui seal võtta
a � c � 0 ning muutujate x ja y rolli võtta vastavalt u ja t; nimelt,

� funktsioon f on mittenegatiivne ja pidev kvadrandis tpu, tq : u, t ¥ 0u;
� parameetrist t sõltuv päratu integraal Iptq :� ³8

0
fpu, tq du koondub ja on pidev

poolsirgel t ¥ 0 (võrdus(t)e (3.13) põhjal);

� parameetrist u sõltuv päratu integraal Kpuq :� ³8
0
fpu, tq dt koondub ja on

pidev poolsirgel u ¥ 0:

Kpuq �
» 8

0

fpu, tq dt �
» 8

0

e�p1�tqu tp�1 up�q�1 dt

� e�uuq�1

» 8

0

e�tu ptuqp�1 u dt � e�uuq�1

» 8

0

e�x xp�1 dx � e�uuq�1Γppq;
(3.16)

� päratu integraal
³8
0
Iptq dt � ³8

0

�³8
0
fpu, tq du� dt koondub (võrdus(t)e (3.14)

põhjal).

Võrdustest (3.14), (3.15) ja (3.16) saame nüüd

Γpp� qqBpp, qq �
» 8

0

�» 8

0

fpu, tq dt


du �

» 8

0

Kpuq du � Γppq
» 8

0

e�uuq�1 du

� ΓppqΓpqq,

millega on tõestatud võrduse (3.12) kehtivus juhul, kui p, q ¡ 1.
Olgu nüüd p, q ¡ 0 suvalised. Siis p � 1 ¡ 1 ja q � 1 ¡ 1, seega äsjatõestatu

põhjal

Bpp� 1, q � 1q � Γpp� 1qΓpq � 1q
Γpp� q � 2q . (3.17)
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Beetafunktsiooni taandamisvalemi(te) (lause 3.6, (b) ja (c)) põhjal

Bpp� 1, q � 1q � q

p� q � 1
Bpp� 1, qq � q

p� q � 1
� p

p� q
Bpp, qq; (3.18)

gammafunktsiooni taandamisvalemi (lause 3.4) põhjal

Γpp� 1qΓpq � 1q
Γpp� q � 2q � pΓppq q Γpqq

pp� q � 1q pp� qqΓpp� qq . (3.19)

Võrdus (3.12) järeldub võrdustest (3.17)�(3.19).
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