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Mitme muutuja funktsiooni

plirvaartus ja pidevus

§ 1. Eukleidiline ruum R™

1.1. m-mootmelise eukleidilise ruumi moiste

Olgu m € N. Téahistame
R™ .= {(xl,...,xm): T1yeooy Ty E]R}

(hulga R™ elemendid on niisiis kéikvoimalikud reaalarvuliste komponentidega m-
komponendilised jarjendid). Hulga R™ elemente nimetame punktideks. Me kasutame
tahistust (z;), := (z1,...,%m). Arvusid zq, ..., x, nimetame selle punkti koordi-
naatideks.

Koneldes edaspidi tasandist voi lihtsalt ruumist, mbistame me selle all vastavalt ruumi R?
ja R3: tasandi (ja ruumi) igale punktile vastavad (fikseeritud ristkoordinaadistiku puhul) tema
itheselt méadratud koordinaadid; teiselt poolt, iga tasandi (ja ruumi) punkt on iitheselt mairatud

oma koordinaatidega.

Punktide P = (z1,...,2,) € R™ ja Q@ = (y1,...,Yn) € R™ vaheline kaugus
d(P, Q) defineeritakse vordusega

d(Pa Q) =

i=1

Hulka R™ koos temas valemiga (1.1)) defineeritud kaugusega nimetatakse m-maootme-
liseks eukleidiliseks ruumiks R™.

Valemi ([1.1)) poolt antud kaugus ruumides R! = R, R? ja R? langeb kokku nn. loomuliku kaugu-
sega nendes ruumides: nendes ruumides tuleb punktide P ja @ vaheline valemist (1.1) rehkendatav
kaugus d(P, Q) sama, mis l6igu PQ pikkus (rehkendatuna vélja elementaargeomeetrilistele argu-
mentidele tuginedes).

Toepoolest, juhul m = 1, tihistades P = (z) =: z ja Q = (y) =: v,

d(P,Q) = |y — =;

juhul m = 2, tdhistades P = (z1,y1) ja Q = (x2,¥2),
d(P,Q) = v/|z2 — z1|* + [y2 — 12

(selle vorduse parem pool on Pythagorase teoreemi abil leitud 16igu PQ pikkus); juhul m = 3,
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tahistades P = (z1,y1,21) ja Q = (22, Y2, 22),

d(P,Q) = \/|332 — 212 + |y2 —y1]? + 22 — 21]?
(ka selle vorduse parem pool on Pythagorase teoreemi abil leitud 16igu PQ pikkus).

Loetleme kauguse olulisemad omadused: mis tahes P, (), R € R™ korral
12 d(P.Q) =0 — P=Q:

22 d(P,Q) = d(Q, P);

3° d(P,Q) < d(P,R) + d(R,Q).

Omadusi 1°-3° nimetatakse kauguse aksioomideks. Aksioom 3° viidab sisuliselt, et
kolmnurga iihegi kiilje pikkus ei iileta iilejadnud kahe kiilje pikkuste summat. See-
parast nimetatakse aksioomi 3° kolmnurga vorratuseks. Aksioomid 1° ja 2° jareldu-
vad vahetult kauguse definitsioonist. Kolmnurga vorratust on koige lihtsam jareldada
Minkowski vorratusest (vt. arutelu jargmises punktis teoreemi jarel), kuid see
on toestatav ka vahetult, nagu me seda jargnevalt teeme.

KOLMNURGA VORRATUSE 3° TOESTUS. Olgu P = (x1,...,2Zn), Q@ = (Y1, -+, Ym),
R =(z1,...,2n) € R™ Kolmnurga vorratuse toestuseks peame néitama, et

m m m
Z|yz‘—l‘z‘|2 S Z|yz’_zi|2+ Z|Zi—l‘z‘|2,
i=1 i=1 i=1

m m

milleks, arvestades, et \/Z lys — x4)* < \/Z (lyi — 2| + |2z — :ci|)2, piisab néidata,
i=1 i=1

et

m 9 m m
\/Z(|yz_zz|+|zz_xz|) < Z|yi—zi|2+ Z|ZL—IL|2
i=1 i—1

i=1

ehk, téhistades iga i € {1,...,m} korral a; := |y; — 2| ja b; := |z; — x4,

\/i(ai +b;)? < ia? + 4 /ib?
i1 i=1 i=1

ehk (tostes selle vorratuse mélemad pooled ruutu)

m

Z(ai+bi)2<ia?+2 Za? Zb§+2b§

i=1 =1 i=1 i=1 =1

ehk, arvestades, et Y (a; + b;)> = Y. a? +2 > a; b; + . V7,

i=1 i=1 i=1 i=1
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ehk (tostes jallegi selle vorratuse molemad pooled ruutu)

(San) = (5 (S). -

Kuna
m 2 m m m
(Zalbl) :(Za )(ZCZJ )zZZ&ibiajb]
i=1 i=1 i=1j=1
:mafb2+2alba]b+2albaj Za bQ—i—QZalbajj
i=1 t,j=1 i,j=1 ,j=1
1<] 7<i 1<j
ja
E(E) -GS - £
i=1 i=1 i=1 j= i=1 j=1
=Za b7 + Z ai b + Z a;b? = ia?bf—i— i (a2 b3 + a3 b),
,Zj<]1 ,]]<11 i=1 277:]<:]1

siis vorratus (1.3) on samavéérne vorratusega

2 Z aibiajbj < Z (a?b?—i-a?bf),

7] 1 ,] 1
1<j 1<j
mis kehtib, sest mis tahes 7,5 € {1,..., m} korral

a? b? + CL? bZQ — QCLZ‘ bz (lj bj = (CLZ‘ bj — CLj bZ)Q Z 0
]

Mairkus 1.1. Vorratust (1.2) (mis kehtib mis tahes a,bq,. .., am, by, = 0 korral),
nimetatakse Cauchy vorratuseks.

Ulesanne 1.1. Téestada tagurpidi kolmnurga vérratus: mis tahes P, Q, R € R™ korral
d(P,Q) = |d(P, R) — d(Q, R)|.

Tagurpidi kolmnurga vorratus vididab sisuliselt, et kolmnurga kahe kiilje pikkuste vahe ei {ileta
kolmanda kiilje pikkust.

NAprUNAIDE. Kasutada kauguse aksioome 2° ja 3°.

1.2. Minkowski vorratus

Koige lihtsam moodus kauguse kolmnurga aksioomi toestuseks on jiareldada ta Minkowski vorra-
tusest.
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Teoreem 1.1 (Minkowski vorratus). Olgu ay, b1, ..., am, by = 0 ning olgup > 1 (a1,b1,...,am, by

ja p on reaalarvud). Siis
(Z(ai + bi)P) " < (Z af) T4 (Z bﬁ’) " (1.4)
i=1 i=1 i=1

Minkowski vorratusest jareldub kolmnurga aksioom eukleidilise kauguse jaoks: mis tahes punk-
tide P = (z1,..,Zm), @ = (Y1,---,Ym), R=(21,...,2m) € R™ korral, vottes Minkowski vorratu-
ses p =2, a; = |y; — zi| ja b; = |z; — x;|, saame

d(P,Q) =

s

m
lyi — z4]? < Z(|yz — 2|+ |2 — !Ei|)2
i=1

\

< \ Zl lys — 2|2 + Zl |2 — 2|2 = d(P, R) + d(R, Q).

Minkowski vorratust on mugav jareldada Rogers—Hélderi vorratusest.

Teoreem 1.2 (Rogers—Holderi vorratus). Olgu p, g € (1,00) kaaseksponendid, s.t. % + % = 1. Mis
tahes reaalarvude a1,bq,. .., Qm, by =0 korral

$ st < (z ) (z b) (15)
i=1 i=1

i=1
Maérkus 1.2. Cauchy vorratus (1.2) on erijuht Rogers—Holderi vorratusest (1.5)), kus p = ¢ = 2.

=

Rogers—Hélderi vorratust, omakorda, on mugav jareldada Youngi vorratusest.

Teoreem 1.3 (Youngi vorratus). Olgu p,q € (1,00) kaaseksponendid, s.t. 1% +% = 1. Mis tahes
reaalarvude a,b = 0 korral
a

avbi < 24 2. (1.6)

S
| >

Mirkus 1.3. Youngi vorratus formuleeritakse sageli jargneval (lausega[1.3]samavéérsel) kujul: kui
p,q € (1,00) on kaaseksponendid, siis mis tahes reaalarvude a,b > 0 korral

ap bq
ab < — 4+ —
p q
MINKOWSKI VORRATUSE TOESTUS. Olgu a1,b1,...,am, by = 0. Kuna mis tahes i € {1,...,m}

korral

(ai + bl)p = (ai + bl)((h + bi)p71 = CLZ‘(CLZ‘ + bi)pil + bl(al + bi)p71
siis Rogers—Holderi vorratuse pohjal, valides ¢ € (1,00) selliselt, et % + % = 1 (siis % = ijl ja
a(p—1) =p),

m m

Z(ai +b;)F = Z ai(a; +b;)P~ " + Z bi(a; + b;)P ™"

i=1 i=1 i=1

' (i(al +b;) (P~ ) <Z b”) ' (i a; +bi)(”1)q> q
i=1 i=1

I V/A
=z
< s
N D ER
a8 =
~
L]
+
U
1Pz
=
=7y
N~
S
N
||M~
S
+
O“
\/
Ql
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Kui a; = -+ = a,, = 0, siis vorratuse (1.4) kehtivus on ilmne. Kui mingi ¢ € {1,...,n} korral
a; > 0, siis jireldub eelnevast vorratuste-vordusteahelast, et

(i(m +bi>P> < (i ) + (i bf)p,

mis, arvestades, et 1 — % = %, on samaviirne vorratusega (1.4). O
ROGERS—HOLDERI VORRATUSE Tf)ESTUs. Kuia; =---=a, =0v06i b =--- =b,, =0, siis on
vorratuse (|1.5) kehtivus ilmne. (Oigupoolest kehtib niisugusel juhul selles mitteranges vorratuses
vordus.) Vaatleme niitid juhtu, kus vihemalt {iks arvudest aq,...,a,, ja vihemalt {iks arvudest

b1, ..., by, erinevad nullist. Siis iga i € {1,...,m} korral, vottes Youngi vorratuses ((1.6)

aP b
0= =m—p Jja b=,
P e b
saame
aibi < af n bg
1 1 m m .
(S ad)? (S b PRk ok 42k b
Seega
- i m™oaP mopd
Z a;bl - < Zz;l a”Lp + Zz;l b’Lq — 1 +1 — 17
S A (O b PRk % d2pm b Pod
millest jareldub vorratus (|1.5)). O

YOUNGI VORRATUSE TOESTUS. Olgu a,b = 0. Kui b = 0, siis vorratus ([1.6)) ilmselt kehtib; seega
voime jargnevas eeldada, et b > 0. Tahistades A := %, omandab vorratus (1.6) kuju

b < a4+ (1—-\)b

ehk (jagades selle vorratuse molemad pooled 1abi arvuga b)

(%)Asx%ﬂ—x.

Téhistades ¢ := §, piisab Youngi vorratuse toestuseks niisiis ndidata, et iga t € (0, 00) korral
=M <1- N
Selleks vaatleme funktsiooni ¢(t) = t* — At. Kuna
O'(t) = MM =X =\t = 1),

siis ¢'(t) > 0, kuit € (0,1), ning ¢'(¢t) < 0, kui ¢t € (1, 00). Niisiis, ¢(1) on funktsiooni ¢ maksimaalne
vadrtus intervallis (0, 00); seega iga ¢ € (0, 00) korral

nagu soovitud. O

Ulesanne 1.2. Toestada, et

(a) Rogers—Holderi vorratuses (1.5) kehtib vordus parajasti siis, kui leidub arv £ € R nii, et
bl =¢al igaie {1,...,m} korral voi a? = £b] iga i€ {1,...,m} korral;

(b) Minkowski vorratuses (1.4) kehtib vordus parajasti siis, kui leidub arv n € R nii, et b; = na?
iga i€ {1,...,m} korral voi a; = nb? iga i€ {1,...,m} korral.
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1.3. Kerad ja risttahukad. Punkti iimbrused

Definitsioon 1.1. Olgu Py = (z9,...,2% ) € R™ ning olgu r > 0.
Hulka
B(Py,r):=={PeR™: d(P,R) <r}
(s.t. niisuguste ruumi R™ punktide P hulka, mille kaugus punktist P, on viiksem
kui ) nimetatakse lahtiseks keraks (ruumis R™) keskpunktiga Py ja raadiusega r.
Hulka o
B(Py,r):={PeR™: d(P,Py) <r}
(s.t. niisuguste ruumi R™ punktide P hulka, mille kaugus punktist Fy ei iileta arvu r)
nimetatakse kinniseks keraks (ruumis R™) keskpunktiga Py ja raadiusega r.
Hulka
S(Py,r):={PeR™: d(P,R) =r}
(s.t. niisuguste ruumi R™ punktide P hulka, mis asuvad punktist Py kaugusel r)
nimetatakse sfadriks (ruumis R™) keskpunktiga Py ja raadiusega 7.

Juhul m = 1, s.t. ruumis R! = R, on lahtine kera ja kinnine kera vastavalt vahemik ja 16ik:
tahistades Py = (xo) =: w0,
B(Py,r)={zeR: |z —xo| <r}={zeR: zp—r<z<zg+r}=(xg—7r,20+7),
B(Py,r)={reR: |[x—xo| <r}={reR: ag—r<a<zo+7}=[r0—1,20 + 7]
Juhul m = 2, s.t. ruumis R?, on lahtine kera, kinnine kera ja sfiir vastavalt lahtine ring, kinnine
ring ja ringjoon: tahistades Py = (o, ¥o),
B(Po,r) = {(z,y): |z —zo* + |y —wol* <7},
B(Po,r) = {(z,y): |z —xol” + |y — yol* < r*},
S(Po,r) = {(z,9): |z —xo|* + |y — yo|* = r?}.

Juhul m = 3, s.t. ruumis R3, on lahtine kera, kinnine kera ja sfifir vastavalt lahtine kera, kinnine
kera ja kerapind (ehk sfdir) selles tdhenduses, nagu me neid tunneme analiiiitilisest geomeetriast:
tahistades Py = (x0, Yo, 20),

B(Py,r) ={(z,y,2): |z — zol> +ly —wol* + |2 — 20 < 7“2},

B(Py,r) = {(z,y,2): lx —20l* + |y — yol® + |2 — 20> < r?},

S(Po,r) = {(2,y,2): & —xo|* + ly — yol* + |z — 20]* = 1}
Definitsioon 1.2. Lahtist kera B(P,, £) ruumis R™ nimetatakse punkti Py e-imbru-
seks ja tahistatakse ka siimboliga U.(FPp).

Mis tahes hulka ruumis R, mis sisaldab punkti Fy mingi e-limbruse, nimetatakse
punkti Py dimbruseks.

Definitsioon 1.3. Olgu a;,b; € R, a; < b;, i =1,...,m. Hulka
(a1,01) X -+ X (A, by) = {(xl,...,xm): z; € (a;,b;), i = 1,...,m}

1.7
:{(ml,...,xm):ai<xi<bi,i:1,...,m} (1.7)

nimetatakse lahiiseks koordinaatristtahukaks. Hulka
[a1,b1] % -+ X [@m, bm] = {(a:l,...,xm): x; € [a;, b, i = 1,...,m} (18)

z{(arl,...,xm): ai<xi<bi,i=1,...,m}

nimetatakse kinniseks koordinaatristtahukaks.
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Vahemikke (a1, b1), ..., (am,bn) ja loike [a1,b1], ..., [am, bm] nimetatakse vasta-

valt risttahukate (1.7)) ja (1.8) servadeks.

Edaspidi, koneldes lihtsalt (kinnistest ja lahtistest) risttahukatest, moistame me
nende all (vastavalt kinnisi ja lahtisi) koordinaatristtahukaid. Risttahukat, mille koik
servad on vordse pikkusega, nimetatakse kuubiks.

Risttahukaid ja kuupe ruumis R? nimetatakse vastavalt ristkiilikuteks ja ruutu-
deks. Ristkiilikute (sealhulgas ruutude) puhul koneldakse servade asemel kilgedest.

Punkti Py = (29,...,2%), kus iga i € {1,...,m} korral 2¥ := %3% (s.t. punkti,
mille koordinaadid on risttahukate (1.7) ja (1.8) vastavate servade keskpunktid),
nimetatakse risttahukate (1.7) ja (1.8) keskpunktiks.

Téhistades iga ¢ € {1, ..., m} korral

bi—ai
R _ 0_ ,0
di.— 5 —bl-—a:i—a:i—ai,

esituvad risttahukad (1.7 ja (1.8 vastavalt kujul

(29 —dy, 20+ dy) x - x (2% — dpp, 20, + d,)

z{(xl,...,xm):x?—di<a:i<x?+di,i=1,...,m}
z{(xl,...,xm): |xi—$?|<di,i=1,...,m}
ja
[20 —dy, 20 +dy] x -+ x [20, — dp, 20, + d,]
:{(xlu 7£Em) x?—dZ<$1<$?+dz,Z:1, Jm}
={(21,...,2m): |z, — )| <dj,i=1,...,m}

(vt. ka joonist [L.1)).

Lause 1.4. (a) Iga kera B korral ruumis R™ leiduvad sama keskpunktiga kuubid
C1 ja Cy nai, et
C,c Bc(,.

(b) Iga (koordinaat)risttahuka C korral ruumis R™ leiduvad sama keskpunktiga
kerad By ja By nii, et
B, c C c B,.

Muuhulgas jéreldub lausest (b), et (koordinaat)risttahukas keskpunktiga Py
on punkti Py dimbrus. Lahtiseid ja kinniseid (koordinaat)risttahukaid keskpunkti-
ga Py nimetatakse vastavalt punkti Py lahtisteks ja kinnisteks risttahukakujulisteks
imbrusteks.

Lause toestamiseks on otstarbekas eelnevalt toestada iiks lemma (mida on
mugav kasutada ka niiteks lause [2.1] toestuses).
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>
N N €T
u _a+b u
2

Joonis 1.1. Ristkiilik [a, b] x [¢, d] on joonisel helesiniseks varvitud. Selle rist-

kiiliku keskpunkt on (s, ). Téhistades u := 252 ja v := %, esitub see ristkiilik

vordusega [a,b] x [¢,d] = [s — u, s + u] x [t —v,t + v].

Lemma 1.5. Olgu P = (x1,...,1,,), Py = (29,...,2%) e R™. Siis

max |z; — 20| < d(P, Py) < v/m max |x; — z¥]. (1.9)

1<ig<m I<ism

TOESTUS. Arvestades, et d(P, Py) = z; — 292, sisalduvad vorratused (1.9)

fj

jargnevas vorratusteahelas:

m

. _ 0 . _ 202 4012 o _ A0
s o=l < 4yl —all? < g fm o o = 2D = Vin max o= ol
1=

]

LAUSE [1.4] TOESTUS. Lause viited piisab toestada ainult lahtiste kerade B ja lah-
tiste (koordinaat)risttahukate C' jaoks, sest iga kinnine kera sisaldab mingit sama
keskpunktiga lahtist kera ja sisaldub mingis sama keskpunktiga lahtises keras; sa-
muti, iga kinnine (koordinaat)risttahukas sisaldab mingit sama keskpunktiga lah-
tist (koordinaat)risttahukat ja sisaldub mingis sama keskpunktiga lahtises (koordi-
naat)risttahukas.
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Olgu Py = (29,...,2%) e R™.

(a). Olgu r > 0. Vaatleme lahtist kera B := B(Fy,r). Olgu P = (x1,...,2y) €
R™. Siis, kasutades lemmat tihelt poolt,

PeB < dP,P)<r = max |z;—a)|<r

1<i<m
— Pe@@)—ra¥+r)x-x (@ —r a2 +r)=:Cy,
seega B < (s; teiselt poolt,
PeB <= d(P,P)<r
a0 0 <
— m@i’&'“’ﬁ rnl<r < 1Iélii}fn|xz x2|<m

0—4—\/%%) X eee X (x?n—Lm,xgl—i-\/Lﬁ) =: C,

<~ Pe (33(1) — \/Lrn,a:
niisiis B o (.
(b). Olgu dy, ..., d,, > 0. Tahistame
Ci= (2 —d, 2% +dy) x - x (2% —dp, 2%, +d,p).

Olgu P = (xy,...,x,) € R™ Siis, kasutades lemmat iihelt poolt,

PeC — |z, — 20| < d; igaie{l,...,m} korral
— max |z; — 20| < max d; =: d
1<i<m 1<i<m
- d(P,P0)<\/Ed = PEB(P(),\/ECZ) = BQ,

seega C' C Bs; teiselt poolt,

PeC — lz; — 2V < d; igaie{l,...,m} korral
— max |r; — 2| < min d; =: 7
1<i<m 1<i<m

— d(P,Py) <r — Pe B(Py,r) =: By,
niisiis C' © Bj. [

1.4. Lahtised ja kinnised hulgad ruumis R"
Olgu D < R™.
Definitsioon 1.4. Oeldakse, et punkt P € R™ on hulga D

e sisepunkt, kui leidub £ > 0 nii, et U.(P) < D (s.t. punktil P leidub iimbrus,
mis tervenisti sisaldub hulgas D);

e rajapunkt, kui iga € > 0 korral
U(P)nD+ & ja U(P)n(R™D)+

(s.t. punkti P iga {imbrus sisaldab nii hulga D punkte kui ka hulka D mitte-
kuuluvaid punkte).
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JOONIS 1.2. Punkt A on joonisel sinisega kujutatud hulga sisepunkt (ruu-
mis R? ehk tasandil), sest punktil A leidub iimbrus, mis tervenisti sisaldub
selles hulgas. Punkt B on selle hulga rajapunkt, sest punkti B iga iimbrus
sisaldab nii selle hulga punkte kui ka sellesse hulka mittekuuluvaid punkte.

Definitsioon 1.5. Hulga D koigi sisepunktide hulka nimetatakse hulga D sisemu-
seks ja tahistatakse siimboliga D°.
Hulga D koigi rajapunktide hulka nimetatakse hulga D rajaks ja tdhistatakse
siimboliga 0D.
Hulga D ja tema raja iihendit nimetatakse hulga D sulundiks ja tdhistatakse
siimboliga D:
D:=DudD.

Jargnev lause, mis toob vilja sisemuse, raja ja sulundi lihtsamad omadused,
jéreldub vahetult vastavatest definitsioonidest.

Lause 1.6. (a) D°c D c D;
(b) D°ndD = &;

(¢) hulga D iga punkt on kas hulga D sisepunkt voi selle hulga rajapunkt, s.t.
1ga P € D korral realiseerub tdpselt ks jargmistest teineteist vilistavatest
voimalustest:

PeD° V01 P e 0D,

(d) 0D = AR™\D);

(e) iga P € R™ korral realiseerub tdipselt iks jargmistest iksteist vilistavatest véi-
malustest:

PeD°, PedD V0T P e (R™\D)".
NB! Kas
peaks siin eraldi

ylia seema <t Definitsioon 1.6. Oeldakse, et hulk D on
e lahtine, kui D = D° (s.t. koik hulga D punktid on tema sisepunktid);

e kinnine, kui D D 0D (s.t. hulk D sisaldab oma raja).

Ulesanne 1.3. Toestada, et mis tahes lahtine hulk ruumis R™ on mis tahes selle hulga punkti
imbrus.
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Vahetult definitsioonist jireldub, et hulk D on kinnine parajasti siis, kui D = D.

Toepoolest,

Donkinnine <= D>dD <= D>o>DuUiD < D=DudD <= D=D.
Lause 1.7. (a) Lahtine kera ruumis R™ on lahtine hulk.
(b) Kinnine kera ruumis R™ on kinnine hulk.
Viite (b) toestamiseks on otstarbekas eelnevalt toestada jargnev lihtne lause.
Lause 1.8. Hulk D on lahtine parajasti siis, kui tema tdiend R™\D on kinnine.

TOESTUS:

D on lahtine < D=D° << DndD=¢g < JIDcR™D
<~ OJR™D)cR™D <= R™\D on kinnine.

LAUSE [L.7 TOESTUS. Olgu Py € R™ ning olgu r > 0.

(a). Olgu P € B(Py,r). Veendumaks kera B(F,r) lahtisuses, piisab niidata, et
P on selle kera sisepunkt, s.t. leidub € > 0 nii, et U.(P) < B(FP,r). Selleks paneme
tidhele, et mis tahes € > 0 ja Q € U.(P) korral (kolmnurga vorratuse pohjal)

d(Q, Ry) < d(Q, P) + d(P, Py) <&+ d(P, }y);
niisiis, kui votta ¢ := r — d(P, Py) > 0, siis mis tahes @) € U.(P) korral
d(Q, R) <e+d(P, Fy) =r—d(P, R)+dP,P) =r,

s.t. Q € B(Py,r) ning seega U.(P) < B(P,,r).

(b). Veendumaks kera B(Pp,r) kinnisuses, piisab lause pohjal naidata, et
tidiend R™\B(P,,r) on lahtine, milleks, fikseerides vabalt P € R™\B(P,,r), piisab
niidata, et P on hulga R™\ B(Py,r) sisepunkt, s.t. leidub ¢ > 0 nii, et U.(P) <
R™\B(Py, 7). Selleks paneme téhele, et mis tahes ¢ > 0 ja Q € U.(P) korral (tagur-
pidi kolmnurga vorratuse pohjal, vt. iilesannet

d(Q, Po) = d(P, Py) — d(P,Q) > d(P, Fy) — &;
niisiis, kui votta ¢ := d(P, Py) — r > 0, siis mis tahes @) € U.(P) korral
d(Q, Py) > d(P,Py) —e = d(P, Py) — (d(P,Py) —r) =,
s.t. Q € R™\B(Py,r) ning seega U.(P) < R™ B(Py, 7). O

Mairkus 1.4. Teine voimalus lause toestamiseks on toestada koigepealt jargnev
lause.

NB! Kas peaks
eraldi vilja tooma
jargmise jarelduse
lausest hulk D
on kinnine para-
jasti siis, kui te-
ma tdiend R"\D
on lahtine.
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Lause 1.9. Mis tahes Py € R™ ning r > 0 korral
OB(Py,r) = S(Py,7) ja 0B(Py,r) = S(Py,r).
Teisisonu, kera raja ruumis R™ on sama keskpunkti ja raadiusega sfddr.

Kinnise kera kinnisus jareldub lausest [I.9) vahetult kinnisuse definitsiooni pohjal.
Veendumaks lahtise kera lahtisuses, piisab lause pohjal niidata, et tema tdiend
on kinnine, mis, arvestades, et hulga ja tema tédiendi rajad on vordsed, jareldub
jallegi lausest vahetult hulga kinnisuse definitsiooni pohjal.

Veel iihte voimalust lause [1.7] toestuseks on kirjeldatud iilesandes

LAUSE [1.9 TOESTUS.

Ulesanne 1.4. Téestada lause
]

Mérkus 1.5. Ruumi R™ hulkade korral voivad esineda koik jérgnevad (iiksteist
vélistavad) olukorrad:

1) hulk on lahtine, kuid mitte kinnine;

2) hulk on kinnine, kuid mitte lahtine;

3) hulk pole ei kinnine ega lahtine;

(1)
(2)
(3)
(4) hulk on samaaegselt nii kinnine kui ka lahtine.

Seejuures hulk on samaaegselt nii kinnine kui ka lahtine (s.t. realiseerub olukord (4))
parajasti siis, kui tema raja on tithi hulk. Ainsad niisuguse omadusega hulgad
ruumis R on tiihi hulk ¢J ja kogu hulk R™ ise.

Ulesanne 1.5. Toestada, et ainsad hulgad ruumis R, mille raja on tiihi hulk, on hulk R™ ja
tiihi hulk .

NAPUNAIDE. Olgu D < R™ ning olgu P = (x1,...,Zm) € D ja Q = (Y1,--.,ym) € R™\D.
Toestada, et leidub hulga D rajapunkt, mis asub punkte P ja @ iihendaval sirgloigul

{(a:l +t(yr — 1), -, T + t(ym —xm)): te [0,1]}.

1.5. Hulga tokestatus ruumis R™

Definitsioon 1.7. Oeldakse, et hulk D c R™ on tékestatud, kui ta sisaldub mingis
keras, s.t. leiduvad punkt @ € R™ ja reaalarv r > 0 nii, et D < B(Q,r).

Ulesanne 1.6. Téestada, et hulk ruumis R™ on tokestatud parajasti siis, kui ta sisaldub mingis
keras keskpunktiga (0,...,0).

;_v__/
m arvu null

Jargnev lause jireldub vahetult iilesandest [1.6] arvestades, et lause pohjal

sisaldub iga kera ruumis R™ mingis sama keskpunktiga kuubis ning, vastupidi, iga

kuup ruumis R™ sisaldub mingis sama keskpunktiga keras.
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Lause 1.10. Hulk D < R™ on tokestatud parajasti siis, kui leidub arv M = 0 nii,
et
Dc|-M,M|x--x[-M,M].

.

~
m tequrit

Teisisonu, hulk D on tokestatud parajasti siis, kui ta sisaldub mingis kuubis kesk-
punktiga (0,...,0).

Lause[I.10] véime iimber sonastada ka jargmiselt: hulk D ruumis R™ on tokestatud
parajasti sis, kui tema punktide kotkvoimalike koordinaatide hulk on tokestatud, s.t.
levdub arv M = 0 nii, et

|z;| < M iga P = (x1,...,2,) €D jaigaic{l,...,m} korral.

1.6. Hulga sidusus ruumis R

Hulga sidususe definitsioon ruumis R toetub Jordani joone moistele, mis omakorda
toetub funktsiooni T — R™, kus T' < R, pidevuse moistele. Neile kahele moistele
ongi piihendatud kdesoleva jaotise kolm esimest alajaotist.

1.6.1. Funktsiooni 7" — R™, kus T' — R, pidevus

Definitsioon 1.8. Olgu 7' — R. Oeldakse, et funktsioon ®: T — R™ on pidev
punktis ¢ty € T', kui iga reaalarvu € > 0 korral leidub reaalarv ¢ > 0 nii, et

[t eT, |t —to] < 5} —  d(D(t), Dlty)) <.

Oeldakse, et funktsioon ®: T'— R™ on pidev, kui ta on oma méiramispiirkonna 7T
igas punktis pidev.

Paneme téhele, et juhul m = 1 langeb dsjadefineeritud funktsiooni ®: T — R™
pidevuse maiste kokku kursusest “Uhe muutuja matemaatiline analiiiis” tuttava (iihe
muutuja) funktsiooni ®: T — R pidevuse mdistega, sest sel juhul d(®(t), ®(ty)) =
@) = @ (to)].

Margime, et funktsioonide ®: T'— R™ ning funktsioonide siisteemide

x1=¢1(t), ...... . T = Om(1), teT, (1.10)
vahel on iiksiihene vastavus: iihelt poolt, siisteem ([1.10)) méadrab funktsiooni
®:Tst— (¢1(t),...,0m(t)) € R™; (1.11)

teiselt poolt, mis tahes funktsioon ®: T — R™ méérab iihesel viisil funktsioonid
(1.10), mis rahuldavad tingimust (1.11)) — sellise omadusega funktsioonide ([1.10])
vaartused mis tahes punktis ¢ € T on defineeritud vordustega

¢1(t) 2517 """ ) ¢m(t) :gm; kus (P(t) = (517"'75771)'
Seejuures funktsioon ®: T'— R™ on pidev parajasti siis, kui teda (tingimuse (1.11))
abil) médravad funktsioonid (1.10)) on pidevad.

Ulesanne 1.7. Toestada, et funktsioon ®: T — R™ on pidev parajasti siis, kui teda (tingi-

muse ([1.11)) abil) médravad funktsioonid ([1.10)) on pidevad.
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1.6.2. Pideva joone moiste ruumis R™

Definitsioon 1.9. Olgu T' < R intervall. Pidevat funktsiooni ®: 7" — R nimeta-
takse pidevaks jooneks ehk Jordani jooneks ehk lihtsalt jooneks ruumis R™. Hulka
{®(t): t € T} ruumis R™ (s.t. funktsiooni ® vidrtuste hulka) nimetatakse seejuures
joone @ jiljeks. Funktsiooni ® argumendile viidatakse kui parameetrile.

Kuidas on pideva joone definitsioon kooskolas meie eelmatemaatilise arusaa-
maga joontest? Joont ®: T — R™ on koige lihtsam ette kujutada kui ruumis R™
eeskirja u = ®(t) jérgi lilkuva punkti trajektoori: ajahetkel ¢t € T" asub liikkuv punkt
ruumi R™ punktis ®(¢) (vt. joonist kus m = 2).

JooNis 1.3. Siin ®(t) = (¢1(t), ¢2(t)), s.t. ¢1(t) ja ¢2(t) on punkti P(t)
(rist)koordinaadid.

Sageli, koneldes joonest, peetakse tegelikult silmas hoopis teatava joone jilge.
Niiteks Oeldes, et teatav joon ruumis R sisaldub ruumi R™ teatavas alamhulgas,
peetakse tegelikult silmas, et konealuse joone jilg sisaldub konealuses hulgas; 6eldes,
et teatav joon ruumis R™ ldbib teatavat punkti (ruumis R™), peetakse tegelikult
silmas, et konealuse joone jilg sisaldab konealust punkti. Sedalaadi terminoloogilist
ebatdpsust, mis iildjuhul sisulist kaksipidimoistmist ei tekita, lubame endale kdes-
olevas konspektis ka meie.

Kui intervall T" on 16ik, s.t. T = [«, 5] mingite o, 5 € R, o < 3, korral, siis
nimetatakse joont ® kaareks. Ruumi R™ punkte ®(«) ja ®(5) nimetatakse seejuures
vastavalt kaare ® alguspunktiks ja kaare ® lopp-punktiks. Kaare algus- ja lopp-punkti
nimetatakse selle kaare otspunktideks. Oeldes, et kaar ruumis R” ithendab ruumi R™
punkte A ja B, peetakse silmas, et A ja B on selle kaare otspunktid.
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1.6.3. Joone esitusviise

Kuigi kisiloleva punkti pohiméiste — ruumi R™ alamhulga sidususe — defineerimiseks
vajaminev matemaatiline aparatuur sai meil eelnevates punktides sisse toodud, liik-
kame sidususe moiste defineerimise edasi jargmisse jaotisse: kéisilolev jaotis on parim
voimalik koht tutvumaks monede sagedaminikasutatavate joone esitusviisidega.

Koikjal selles jaotises on 7' < R mingi intervall.

1.6.3.1. Joone esitus parameetriliste vorranditega

Olgu
xy=¢(t), ...... y T = Op(1), teT, (1.12)

pidevad funktsioonid. Siis ka funktsioon
O:Tot— (¢1(t),...,¢n(t)) eR™

on pidev (vt. iilesannet , s.t. see funktsioon on joon (selle joone jéilge juhul, kus
m = 2, on kujutatud joonisel . Selle joone kohta Geldakse, et ta on esitatud
parameetrilisel kujul vorranditega (1.12)) (v6i et see joon on esitatud parameetriliste
vorranditega (1.12]).

Margime, et iga pidev joon ruumis R™ on dhesel viisil esitatav parameetrilise
vorrandite abil (vt. jaotise 16iku, mis algab sonadega “Mérgime, et”).

1.6.3.2. Tasandilise joone esitus vorrandiga y = f(x)

Jooni ruumis R? nimetatakse tasandilisteks joonteks. Selles ja jirgmises alajao-
tises tutvustame kaht sagedastikasutatavat tasandiliste joonte esitusviisi.

Olgu funktsioon
y=f(z), zeT, (1.13)
pidev funktsioon. Siis ka funktsioon
Tst— (t, f(t)) e R?

on pidev (sest “koordinaatfunktsioonid” 7" st — t € Rja T 3t — f(t) € R on
pidevad; vt. iilesannet , s.t. see funktsioon on joon. Selle joone kohta Geldakse, et
ta on esitatud vorrandiga (1.13). Méargime, et vorrandiga ((1.13)) esitatud tasandilise

joone esitus parameetrilisel kujul on

r=t, y=[f(t), teT.

1.6.3.3. Tasandilise joone esitus polaarkoordinaatides

Koikjal jirgnevas, koneldes polaarkoordinaatidest “zy-tasandil” R2, loeme poolu-
seks koordinaatide alguspunkti ja polaarteljeks x-telje positiivse osa. Sel juhul ta-
sandi mis tahes punkti ristkoordinaadid z ja y ning polaarkoordinaadid ¢ ja r (siin
¢ tahistab polaarnurka ja r polaarraadiust) on seotud vordustega

x =rcos¢, Yy =rsing; (1.14)
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vt. joonist

reing+-----------------

JOONIs 1.4. Punkti P ristkoordinaadid z ja y ning polaarkoordinaadid r ja ¢
on seotud vordustega ((1.14)).

Olgu funktsioon
r=r(¢p), ¢eT, (1.15)

pidev. Siis ka funktsioon ®: 7" — R2, mis seab parameetri vidrtusele ¢ hulgast T
vastavusse tasandi R? punkti, mille polaarnurk ja polaarraadius on vastavalt ¢ ja
r(¢), on pidev (sest vorduste (L.14) pohjal ®: T 5 ¢ > (r(¢) cos ¢, 7(¢) sin¢) € R?
ning “koordinaatfunktsioonid” 7' 3 ¢ — r(¢)cosp e R ja T 3 ¢ — r(¢)singp € R on
pidevad; vt. iilesannet . Selle joone kohta deldakse, et ta on esitatud polaarkoor-
dinaatides vorrandiga . Margime, et polaarkoordinaatides vorrandiga (|1.15))
esitatud tasandilise joone esitus parameetrilisel kujul on

v =r(p)cos¢, y=r(¢)sing, ST
NBl  mustaige (Selle joone jdlge on rohelisega kujutatud joonisel.

televisiooni
vaatajad seda jélge
rohelisena ei née!

1.6.4. Hulga sidusus ruumis R™

Definitsioon 1.10. Oeldakse, et hulk D < R™ on sidus, kui tema mis tahes ka-
he punkti korral leidub neid punkte iihendav pidev kaar, mis tervikuna sisaldub
hulgas D.

1.7. Taiendavaid iilesandeid

Ulesanne 1.8. Olgu n € N, olgu hulk U < R punkti Py = (29, ..., 2% ) € R™ timbrus ruumis R™
ning olgu hulk V < R” punkti Qo = (v, ...,y") € R" {imbrus ruumis R". Tolgendame otsekorru-
tist U x V ruumi R™*" alamhulgana, samastades iga punkti ((:171, ces @),y (Y1, - - ,yn)) eUxV
punktiga (z1,..., Tm,Y1,-.-,Yn) € R™HT™. Tdestada, et niisuguse tolgenduse korral on hulk U x V

punkti Ry := (29,...,2%,49,...,4%) e R™*" iimbrus ruumis R™*".
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(@) sin - - - oo

rP)cosd  p

JOONIS 1.5

Ulesanne 1.9. Téestada, et

(a) 1°
20

30

20

30

R™ ja & on lahtised hulgad ruumis R™;

kui I on mis tahes indeksite hulk ning U;, ¢ € I, on lahtised hulgad ruumis R™, siis ka
nende hulkade {ihend | J,.; U; on lahtine (s.t. mis tahes kogumi lahtiste hulkade iihend
ruumis R™ on lahtine hulk);

kui n € Nning Uy, ..., U, on lahtised hulgad ruumis R™, siis ka nende hulkade iihisosa
(i, U; on lahtine (s.t. 16pliku arvu lahtiste hulkade iihisosa ruumis R™ on lahtine
hulk);

R™ ja ¢ on kinnised hulgad ruumis R™;

kui I on mis tahes indeksite hulk ning F;, ¢ € I, on kinnised hulgad ruumis R™, siis
ka nende hulkade iihisosa (),.; F; on kinnine (s.t. mis tahes kogumi kinniste hulkade
iihisosa ruumis R™ on kinnine hulk);

kui n € N ning F1, ..., F, on kinnised hulgad ruumis R™, siis ka nende hulkade {thend
Ui~ F; on kinnine (s.t. 1opliku arvu kinniste hulkade iihend ruumis R™ on kinnine
hulk).

NAPUNAIDE. Ulesande (b)-osa tdestuses on mugav kasutada (a)-osa koos lausega
Ulesanne 1.10. Olgu D c R™. Téestada, et

(a) D° =

R™\(R™\D) (teisisonu, hulga sisemus on tema téiendi sulundi taiend);

(b) D =R"™\((R™\D)°) (teisisonu, hulga sulund on tema téiendi sisemuse téiend).
NAPUNAIDE. Kasutada lauset (e) ja (d).
Ulesanne 1.11. Olgu D c R™. Téestada, et

(a) sisemus D° on lahtine hulk;

(b

d

) sulund D on kinnine hulk;
(¢) raja 0D on kinnine hulk;
) 9(¢D) c dD.



18 I. Mitme muutuja funktsiooni piirvdartus ja pidevus

NAPUNAIDE. Viite (a) toestamisel on mugav kasutada lauset (a), mille kohaselt lahtine kera
on lahtine, ja tilesannet [T.3] mis iitleb, et mis tahes lahtine hulk ruumis R™ on mis tahes selle hulga
punkti imbrus.

Viide (b) jéreldub iilesandest (b), viitest (a) ja lausest

Viited (c) ja (d) on hulga kinnisuse definitsiooni pohjal samavisrsed. Uks moodus nende
viidete tOestamiseks on toestada vdide (d), ldhtudes vahetult rajapunkti definitsioonist (siin on
mugav kasutada lauset (a), ja iilesannet [1.3). Teine moodus on toestada viide (c), pannes
koigepealt tihele, et 0D = R™\(D° u (R™\D)°) (vt. lauset [1.6, (e)) ning rakendades seejirel
viidet (a), iilesannet (a), 2°, ja lausest (mis teisisénu iitleb, et hulk on kinnine parajasti
siis, kui tema téiend on lahtine). Veel iiks moodus véite (c) toestamiseks on veenduda kodigepealt,
et 0D = D n R™\D, ning rakendada seejirel viidet (b) ja iilesannet (b), 2°.

Ulesanne 1.12. Olgu hulgad D, £ ¢ R™ sellised, et D < £. Toestada, et siis ka D° < £°jaD c €.
(Selles iilesandes toestatavatele sisemuse ja sulundi omadustele viidatakse vastavalt kui sisernuse
monotoonsusele ja sulundi monotoonsusele.)

NAPUNAIDE. Sisalduvuse D © & tdestamisel kasutada iilesannet [1.10, (b), ja sisemuse mono-
toonsust. Teine moodus selle sisalduvuse toestamiseks on ldhtuda vahetult sulundi definitsioonist.
Kolmas moodus selle sisalduvuse toestamiseks on kasutada jirgmise paragrahvi lauset

Ulesanne 1.13. Tdestada, et tokestatud hulga D < R” sulund D on tokestatud hulk.
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2.1. Jada koonduvus ruumis R™

Definitsioon 2.1. Kui igale arvule n € N on vastavalt mingile eeskirjale seatud
vastavusse mingi (itheselt médratud) punkt P, € R™, siis 6eldakse, et on antud jada

P\, Py....P,.... (2.1)

Jada (2.1) téhistatakse ka siimboliga (P,)¥_, voi lihtsalt (P,). Koneldes ruumi R™

n=1
punktide jadast, iitleme me edaspidi lihtsalt jada ruumis R™.

Definitsioon 2.2. Oeldakse, et jada (P,) ruumis R™ koondub punktiks P € R™,
kui
d(P,, P) —— 0,

n—ae0

s.t. iga reaalarvu € > 0 korral leidub indeks /N € N nii, et
[neN, n > N] —  d(P,, P) <e.

Punkti P nimetatakse seejuures jada (P,) piirvddrtuseks ja kirjutatakse

lim P, =P voi P, — P.

n—00 n—00

Ulesanne 2.1. Olgu jadad (P,) ja (Q,) ruumis R” ning punktid P, Q € R™ sellised, et P, —— P

n—xL

ja @, —— @ ruumis R™. Toestada, et

n—o

() d(P., Q) —— d(P,Q);
(b) d(Po.Qn) —— d(P.Q).
NAPUNAIDE. Kasutada tagurpidi kolmnurga vorratust (vt. ilesannet .
Jargnev lause kirjeldab koonduvust ruumis R™.

Lause 2.1. Olgu P, = (a%,...,21), P = (21,...,2y) e R, n=1,2,.... Jdirgmised
vdited on samavddrsed:

(i) P, —— P ruumis R™;
n—o0

(i) =P — igai€{l,...,m} korral.

Teisisonu, lause [2.1] itleb, et jada (P,)*_; ruumis R™ koondub punktiks P € R™
parajasti siis, kui selle jada punktide vastavate koordinaatide jadad koonduvad punk-
ti P vastavateks koordinaatideks (niisugusel juhul 6eldakse, et jada (P,)>_, koondub
koordinaaditi punktiks P). Niisiis, koonduvus ruumis R™ on samavddrne koordinaa-
diti koonduvusega.

19



20 I. Mitme muutuja funktsiooni piirvdartus ja pidevus

LAUSE TOESTUS. Lemma [L.5] pohjal iga n € N korral

0 < max |z} — x;] < d(P,, P) < v/m max |z} — ],
1<i<m 1<i<m

jarelikult arvjada piirvaédrtuse sandvitSteoreemi pohjal

d(P,,P)— 0 <= max |z} —x; — 0.
n—ao0

1<ism n—ao
Seega
P, —— P ruumis R" «<— d(P,,P)— 0 <— max |z} —z;] —0
n—o0 n—w 1<i<m n—0
— |2} — x| —— 0 igaie {l,...,m} korral
n—0o0
— a ——ux; igaie{l,...,m} korral.
n—aco

2.2. Sulundi punkti ja kinnisuse kirjeldus jadade keeles

Lause 2.2. Olgu D < R™ ning olgu P € R™. Jdrgmised vdited on samavddrsed:

(i) PeD (s.t. punkt P kuulub hulga D sulundisse);
(ii) iga e > 0 korral U.(P) n'D £ & (s.t. punkti P iga imbrus loikab hulka D);
(iii) leiduwvad punktid P, € D, n =1,2,..., nii, et P, —— P (s.t. leidub hulga D

n—o0

punktide jada, mis koondub punktiks P).

ToesTUs. (i)=(ii). Olgu P € D. Siis kehtib vihemalt iiks tingimustest P € D ja
P e 0D. Kui P € D, siis punkti P iga timbrus sisaldab hulka D kuuluva punkti P.
Kui P € 0D, siis rajapunkti definitsiooni pohjal loikab punkti P iga timbrus hulka D.
Niisiis igal juhul tingimus (ii) kehtib.

(ii)=(i). Kehtigu (ii). Peame niitama, et P € D. Kui P € D, siis see sisalduvus
ilmselt kehtib (sest D < D). Vaatleme niiiid juhtu, kus P ¢ D. Siis punkti P iga
timbrus sisaldab hulka D mittekuuluva punkti P. Kuna tingimuse (ii) pohjal sisaldab
punkti P iga iimbrus ka hulga D punkte, siis P € 0D, seega P € D (sest 0D < D),
nagu soovitud.

(ii)=>(iii). Kehtigu (ii). Siis iga n € N korral leidub punkt P, € U.(P) n D.
Punktid P, rahuldavad tingimusi "

1
0<d(P,P)<———0,

n mn—x0

seega jada piirvadrtuse sindvit§teoreemi pohjal ka d(P,, P) — 0, s.t. P, —— P.

Kuna P, € D iga n € N korral, siis tingimus (iii) kehtib.
(iii)=(ii). Kehtigu (iii) ning olgu ¢ > 0. Kuna P, —— P ehk, teisisonu,
n—0o0

d(P,, P) —— 0, siis leidub n € N nii, et d(P,, P) < ¢. Aga niiiid P, € U.(P) n D;
n—aoo
jarelikult (ii) kehtib. O
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Lause 2.3. Hulk D < R™ on kinnine parajasti siis, kui ta sisaldab koik oma ele-
mentide koonduvate jadade purvddrtused, s.t. parajasti sus, kut kehtib implikatsioon

[PneD,nzl,Q,..., Pn—>P] — PeD, (2.2)

n—0

TOEsTUS. Tarvilikkus. Olgu hulk D kinnine ning olgu punktid P, e D,n =1,2,...,
ja P € R™ sellised, et P, —— P. Peame nditama, et P € D. Kuna hulk D on

n—00
kinnine, siis D = D, seega piisab néidata, et P € D. See sisalduvus jéreldub lause
samavadrsusest (i)<(iii).

Piisavus. Kehtigu implikatsioon ([2.2)) ning olgu P € JD. Hulga D kinnisuseks
piisab niidata, et P € D. Kuna P € 0D < D, siis lause samavaarsuse (i)=>(iii)
pohjal leiduvad punktid P, € D, n = 1,2,..., nii, et P, —— P. Implikatsiooni

n—0o0

(2.2) pohjal jireldub siit, et P € D, nagu soovitud. O
Ulesanne 2.2. Jireldada lause (kinnise kera kinnisus ja lahtise kera lahtisus) lausest

NAPUNAIDE. Kasutada iilesannet Lahtise kera lahtisuse toestuseks ndidata, et tema téiend on
kinnine ja rakendada lauset

2.3. Hulga kuhjumispunkt

Definitsioon 2.3. Punkti P € R™ nimetatakse hulga D < R™ kuhjumispunktiks,
kui iga e > 0 korral U.(P)n (D\{P}) + & (s.t. punkti P iga {imbrus sisaldab temast
erinevaid hulga D punkte).

Mirkus 2.1. Rohutame, et ruumis R™ iildjuhul
e hulgal voib kuhjumispunkte leiduda, aga voib ka mitte leiduda;

e hulga kuhjumispunkt voib kuuluda sellesse hulka, aga voib ka mitte kuuluda.

Ulesanne 2.3. Téestada, et

(a) ruumi R™ 16plikul alamhulgal ei ole kuhjumispunkte;

(b) kuir >0, Py = («,29,...,2),) e R™, Py := («f +r,29,...,2), ) € R™, siis P, on nii lahtise
kera B(Pp,r) kui ka kinnise kera B(Py,r) kuhjumispunkt, kusjuures P; € B(FPy,r), kuid
Pl ¢ B(Po, 7").

Lause 2.4. Olgu D < R™ ning olgu P € R™. Jdrgmised vdited on samavddrsed:
(i) P on hulga D kuhjumispunkt;
(i) P e D\{P} (s.t. punkt P kuulub hulga D\{P} sulundisse);
(iii) leiduvad punktid P, € D\{P}, n = 1,2,..., nii, et P, — P (s.t. leidub
punktist P erinevate hulga D punktide jada, mis koondub punktiks P).

TOESTUS. (i)« (ii) jdreldub vahetult kuhjumispunkti definitsioonist ja lause
samavaarsusest (ii)<(i).

(ii)<>(iii) jareldub vahetult lause 2.2 samaviirsusest (i)<>(iii). O
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2.4. Bolzano—Weierstrassi teoreem

Definitsioon 2.4. Oeldakse, et jada (P,)*_, ruumis R™ on tokestatud, kui tema
elementide hulk {P,: n € N} on tokestatud.

Ulesanne 2.4. Toestada, et koonduv jada ruumis R™ on tdkestatud.

Teoreem 2.5 (Bolzano-Weierstrassi teoreem). Igal tokestatud jadal ruumis R™ lei-
dub koonduv osajada.

TOEsTUS. Olgu (P,)r, = ((x?,...,x”m))le tokestatud jada ruumis R™. Lau-
se [1.10| pohjal on ka selle jada punktide vastavate koordinaatide jadad

@)z, (@) e SN G

tokestatud. Seega Bolzano—Weierstrassi teoreemi pohjal (arvjadade jaoks) leidub ja-

0

da (P,)*_, punktide esimeste koordinaatide jadal (x7)*_; koonduv osajada (xlf’l’)n:l,

teiste koordinaatide (osa)jadal (x];’ll);‘le leidub koonduv osajada (z5")® | jne. Kir-
jeldatud protseduuri tulemusena me saame (kasvavad) indeksite jadad
(9 T () KT St i

nii, et

e jada (k1) | on jada (k?)* , osajada iga i€ {1,...,m — 1} korral;

e jada (xf)le koondub iga i € {1,...,m} korral.
Aga niiiid koik vastavate koordinaatide (osa)jadad (z")® i =1, ..., m, koondu-
vad (sest iga i € {1,...,m} korral on (z/" )%, koonduva jada (z")%_, osajada),
seega osajada (Pym)o_; koondub (sest ta koondub koordinaaditi). O

2.5. Cauchy kriteerium jada koonduvuseks

Definitsioon 2.5. Oeldakse, et jada (P,) ruumis R™ on Cauchy jada ehk funda-
mentaaljada, kui iga reaalarvu € > 0 korral leidub indeks N € N nii, et

[k:,neN, k,n>N] —  d(P,P) <e.

Teoreem 2.6 (Cauchy kriteerium jada koonduvuseks). Jada ruumis R™ koondub
parajasti sius, kui ta on Cauchy jada.

TOEsTUS. Tarvilikkus. Koondugu jada (P,) ruumis R™ punktiks P € R™ ning olgu
e > 0. Veendumaks, et (P,) on Cauchy jada, peame leidma indeksi N € N nii, et

[k,neN, k,n>N] —  d(P,P) <e.
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Mis tahes k,n € N korral kolmnurga vorratuse pohjal
Niisiis, kui valida indeks N € N nii, et

[reNazN] = ar.p)<s
siis koikide k£, n = N korral
d(P,, P,) < d(Py, P) + d(P, B,) < g + % —c.
Piisavusele esitame kaks erinevat toestust. Neist esimene toetub jada koonduvuse
kirjeldusele ruumis R™ (lausele ja Cauchy kriteeriumile arvjadade koonduvu-
seks, teine aga Bolzano-Weierstrassi teoreemile

Piisavuse esimene toestus. Olgu (P,)%, = ((a7,... ,xfn))le Cauchy jada ruu-
mis R™. Siis ka selle jada elementide vastavate koordinaatide jadad
@ )nzs (@5)pors e ()i (2.3)

on Cauchy jadad, sest mis tahes i € {1,...,m} korral lemma [1.5| pohjal
2% — 27| < d(Py, P,) koikide k,n € N korral;

seega Cauchy kriteeriumi pohjal arvjada koonduvuseks jadad (2.3]) koonduvad, s.t.
jada (P,)_; koondub koordinaaditi; jarelikult lause pohjal jada (P,)*_; koon-
dub.

Piisavuse teine toestus. Olgu (P,) Cauchy jada ruumis R™. Jada (P,) koondu-
vuseks piisab néidata, et

(1) iga Cauchy jada ruumis R™ on tokestatud;
(2) kui Cauchy jadal ruumis R™ on olemas koonduv osajada, siis see jada koondub
samaks piirvaartuseks, milleks see osajadagi.

Toepoolest, kui vidited (1) ja (2) kehtivad, siis viite (1) ja Bolzano—Weierstrassi
teoreemi pohjal leidub jadal (P,) koonduv osajada, seega viite (2) pohjal jada
(P,) koondub.

Ulesanne 2.5. Téestada viited (1) ja (2).

O
2.6. Taiendavaid tilesandeid
NB! Ulesannet
Ulesanne 2.6. Olgu &/  R™ lahtine hulk ja X — R™ kinnine tokestatud hulk, kusjuures K c U. kasutatakse

~e e p s . . N . . . eoreemi (ITHT.
Nagu koikjal eelnevas, tdhistame lahtise ja kinnise kera keskpunktiga P € R™ ja raadiusega o > 0 tBestuses. =

vastavalt siimbolitega B(P, ) ja B(P,a), s.t. B(P,a) := {Q € R™: d(P,Q) < a} ja B(P,a) :=
{Q eR™: d(P,Q) < a}.
(a) Toestada, et leidub reaalarv o > 0 nii, et B(P, ) € U iga P € K korral.

(b) Viéitest (a) jéreldub niisuguse reaalarvu > 0 olemasolu, et B(P,y) c U iga P € K korral.
Toestada, et ithend | Jp e B(P,v) € U on (ruumis R™) kinnine tokestatud hulk.



§ 3. Mitme muutuja funktsiooni piirvaartus ja
pidevus

3.1. Mitme muutuja funktsiooni moiste

Definitsioon 3.1. Kujutusi
f: D— R, kusDcR", (3.1)

nimetatakse m muutuja funktsioonideks.
Koikvoimalikke m muutuja funktsioone, kus m > 2, nimetatakse mitme muutuja
funktsioonideks.

Funktsiooni (3.1) madramispiirkonna D iga punkt P = (xy,...,2,,) € D on iihe-
selt madratud oma koordinaatidega w1, ..., x,,; teiselt poolt, punktiga P € D on
iiheselt maaratud tema koordinaadid xzq,...,x,,. Termin “m muutuja funktsioon”
on niisiis pohjendatud asjaoluga, et sellise funktsiooni viaartused on méadratud méa-
ramispiirkonna D punktide koordinaate tdhistavate m muutuja xq,...,x,, vidrtus-
tega. Neid muutujaid (nagu ka mé#dramispiirkonna punkte tdhistavat muutujat P)
nimetatakse funktsiooni argumentideks ning, kui selle funktsiooni viartuste
mérkimiseks kasutada muutujat u, siis selle funktsiooni mérkimiseks kasutatakse ka
tahistust

w=f(xy,...,2y) voi u=f(P) voi u=u(zr,...,2y) vOi u=u(P).

3.2. Mitme muutuja funktsiooni piirvaartus

Olgu funktsioon v = f(P) = f(z1,...,%,) méiiratud hulgas D < R™ ning olgu
Py = (29,...,2%) € R™ méiramispiirkonna D kuhjumispunkt.

Definitsioon 3.2. Oeldakse, et funktsiooni f piirvédrtus punktis Py (voi piirviidrtus
protsessis P — Py) on arv ¢ (voi et funktsioon f koondub arvuks ¢ protsessis P — P,
(voi argumendi vadrtuse lahenemisel punktile Py)) ja kirjutatakse

lim f(P)=c voi f(P)——c,

P—Py P—Py
VOl
lim f(z1,...,2pm)=c voi f(x1,...,25) — ¢,
1T a:lﬁz(f
Tm—al, el

kui iga reaalarvu € > 0 korral leidub reaalarv 6 > 0 nii, et

[Pep,0<d(P,P0)<5] —  |f(P)—¢| <e.

Ruumis R™ kasutame piirprotsessi (z1,...,7m,m) — (29,...,29) méirkimisel ka tdhistust
0

T,y Ty — 29, ..., 20 ; niiteks tdhistame funktsiooni u = f(x,y) piirviértust punktis (zo,yo)

simboliga  lim  f(z,y); kui seejuures xg = yo =: a, siis kirjutame lim asemel lihtsalt lim .
T,Y—T0,Yo T,y—a,a z,y—a

24
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Definitsioon 3.3. Kui f(P) - 0, siis deldakse, et funktsioon f on punktis P,
—10
lopmata vdike (voi protsessis P — Py lopmata véike voi ka, et funktsioon f hddbub

protsessis P — Fp).

Definitsioon 3.4. Oeldakse, et funktsiooni f piirviiirtus punktis Py (véi piirviidrtus
protsessis P — Py) on o (loetakse: 16pmatus) ja kirjutatakse

g f(P) = voi f(P)—— o,

kui iga reaalarvu E > 0 korral leidub realarv ¢ > 0 nii, et
[P €D, 0<d(P,P) < 5] —  f(P)> E.

Definitsioon 3.5. Oeldakse, et funktsiooni f piirviirtus punktis Py (voi piirviidrtus
protsessis P — Fy) on —o (loetakse: miinus l6pmatus) ja kirjutatakse

Jim f(P)=—c0 voi f(P) > —o,

kui iga reaalarvu E > 0 korral leidub realarv § > 0 nii, et
[P eD,0<d(P,P) < 5] —  f(P)<—E.

Definitsioon 3.6. Kui |f(P)| —= % siis 6eldakse, et funktsioon f on punktis Fy
—10

lopmata suur (voi protsessis P — Py l6pmata suur).

Teoreem 3.1 (mitme muutuja funktsiooni piirvddrtuse Heine kriteerium). Olgu Py
funktsiooni [ mdadramispiirkonna D kuhjumispunkt ning olgu ¢ € R U {—o0, 0}.
Jargmised vdited on samavddrsed:

(i) f(P) ——¢;

P*)PO

(ii) [P.e D\{Po},n=1,2,..., P, — P = [fP)—c

n—oo

Teisisonu, funktsiooni f piirvddrtus punktis Py on ¢ parajasti siis, kui tga punktiks Py
koonduva punktist Py erinevate madramispiirkonna D punktide jada (P,)*_, korral
on vastava funktsiooni vddrtuste jada (f(Pn)):):1 purvddrtus c.

TOESTUS. Tdestame teoreemi ainult juhu ¢ € R jaoks. Juhtudel ¢ = o0 ja ¢ = —o0
on toestus analoogiline.

(i)=>(ii). Kehtigu (i) ning olgu punktid P, € D\{Py}, n = 1,2,..., sellised, et
P, —— Py. Fikseerides vabalt ¢ > 0, piisab meil implikatsiooni (i)=(ii) toestuseks
n—0o0
leida indeks N € N nii, et

[neN,nzN] = |f(P) —c| <e.
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Kuna f(P) —— ¢, siis leidub reaalarv ¢ > 0 nii, et
P—)PO

[PeD,O<d(P,P0)<6] —  |f(P)—d] <e.

Kuna P, —— P, siis leidub indeks N € N nii, et
n—o0

[n eN, n> N] — 4P, Py) <4.
Kui niitid n > N, siis P, € D ja 0 < d(P,, Py) < 0 ning jarelikult

lf(P,) —c| <e.

(ii)=(i). Kehtigu (ii). Oletame vastuviiteliselt, et (i) ei kehti. Siis leidub reaalarv
e > 0 nii, et iga n € N korral leidub punkt P, € D\{F}, mille korral

1
d(P,,Py) <=, kuid [f(P,)—c|>e.
n

Aga niitid P, —— Py, kuid mitte f(P,) —— ¢, mis on vastuolus eeldusega (ii). [
n—00 n—a0

Jareldus 3.2. Mitme muutuja funktsioonil saab antud punktis eksisteerida tlimalt
tiks prrrvddrtus.

TOEsTUS. Olgu Py funktsiooni f méaramispiirkonna D < R™ kuhjumispunkt ning
olgu v, f € Ru {00, —o0} sellised, et

f(P)PTPO’Oé ja f(P)PTPo)ﬁ
Teoreemi toestuseks piisab nédidata, et a = (. Selleks valime mingi punktiks Fy
koonduva punktist I erinevate médramispiirkonna D punktide jada (P,);2; (nii-
sugune jada eksisteerib lause pohjal, sest Py on hulga D kuhjumispunkt); siis
funktsiooni piirviidrtuse Heine kriteeriumi (teoreemi pohjal

f(P) ——a ja f(P,)——8

n—ao n—oo

ning jarelikult arvjada piirvidrtuse iihesuse tottu o = 3, nagu soovitud. O]

3.3. Funktsiooni piirviaartuse omadusi

Olgu D < R™ ning olgu f: D — R ja g: D — R. Funktsioonide f ja g summa
f+9:D— R, vahe f —g: D — R, korrutis f-g: D — R ning, kui g(P) % 0 iga
P € D korral, siis ka jagatis g: D — R on defineeritud “punktiviisi”

(f+9)(P)=[f(P)+g(P), (f—9(P)=[f(P)-g(P),
B _ [ _ (P PeD.
(f-9)(P) = f(P)-g(P), g(P) (P)
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Teoreem 3.3. Eksisteerigu funktsioonidel [ ja g loplik piirvddrtus oma mdadramis-
piirkonna D < R™ kuhjumispunktis Py. Siis ka nende funktsioonide summal f + g,
vahel f—g, korrutisel fg ning, kuilimp_,p, g(P) % 0, siis ka jagatisel f/qg eksisteerib
punktis Py loplik piirvddrtus, kusjuures

Jim (f(P)+9(P)) = Jim f(P)+ lim g(P),
Jim (f(P) = g(P)) = lim f(P)— lim g(P),
Jim (F(P)g(P)) = lim f(P) lim g(P),

P

fpy A
g(

el

)
Py

TOESTUS. Tahistame

Am f(P)=:a ja  lim g(P)=:p.

Olgu punktid P, € D\{Py}, n = 1,2,..., sellised, et P, —— Fy. Teoreemi

n—o0
(funktsiooni piirvédrtuse Heine kriteeriumi) pohjal piisab teoreemi toestuseks néi-

data, et

FP)£9lB) kB, JP)gP) o ad T8

(siin viimane koonduvus peab aset leidma eeldusel, et § £ 0), mis kehtib arvjada
piirvidrtuse vastavate omaduste pohjal, sest (jallegi teoreemi pohjal)

n—00 n—0o0

]

Lause 3.4 (mitme muutuja funktsiooni piirvddrtuse monotoonsus). Leidugu funkt-
stoonide f ja g mdadramispiirkonna D < R™ kuhjumispunktil Py imbrus U, mille
korral

f(P)<g(P) iga Pe (U nD\{FPo} korral.

Kui eksisteerivad piirvidrtused lim f(P) ja lim g(P), siis
PPy P—Py

TOEsTUS. Eksisteerigu piirviartused

lim f(P) =« ja lim g(P)=:p0.

P—-Py PPy

Lause toestuseks peame niitama, et o < 3. Selleks valime mingi punktiks F, koon-
duva punktist Py erinevate hulga D punktide jada (P,)%_; (niisugune jada eksisteerib
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lause pohjal, sest Py on hulga D kuhjumispunkt). Kuna P, —— P, siis leidub

n—aco
indeks N € N nii, et
n=N = P,el.

Niitid mis tahes n > N korral P, € (U n D)\{ P}, seega
f(Ba) < g(Pn).

Kuna teoreemi (funktsiooni piirvddrtuse Heine kriteeriumi) pohjal
lim f(P) =a ja limg(P) =5,
n—00 n—oo
siis arvjada piirviirtuse monotoonsuse tottu a < 3, nagu soovitud. O

Lause 3.5 (mitme muutuja funktsiooni piirvaértuse sindvitsteoreem). Leidugu funkt-
stoonide f, g ja h mddaramispiirkonna D < R™ kuhjumaispunktil Py timbrus U, mille

korral
f(P) < g(P)<h(P) iga Pe(UnDN\P} korral

Kui eksisteerivad piirvidrtused PMHIID f(P) ja PlinllD h(P), kusjuures need piirvidrtused
— 10 —10

on vordsed:
Jim f(P) = lim h(P)=:c, (3.2)
siis eksisteerib ka piirvddartus phn}p g(P), kusjuures
— 10
A 9(P) =c.

TOESTUS. Eksisteerigu piirvidrtused th}; f(P) ja PliH]lD h(P) ning kehtigu vordus
—10 —10

(3.2). Olgu (P,)®_, punktiks Py koonduv punktist Py erinevate méaaramispiirkonna D

punktide jada (niisugune jada eksisteerib lause pohjal, sest F on hulga D kuh-

jumispunkt). Veendumaks, et PHHJID g(P) = ¢, piisab teoreemi (funktsiooni piir-
— 10

vadrtuse Heine kriteeriumi) pohjal ndidata, et
lim g(P,) = c. (3.3)

n—oo

Kuna P, —— P, siis leidub indeks N € N nii, et
n—o0

n=N = P,el.
Niitid mis tahes n > N korral P, € (U n D)\{ P}, seega

f(Fn) < g(Pa) < h(Ey).
Kuna (jéllegi teoreemi [3.1] pohjal)

lim f(P,) = lim h(P,) = c,

n—oo n—a0

siis arvjada piirvddrtuse sdndvitsteoreemi pohjal kehtib (3.3). O
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Lause 3.6. Olgu Py funktsioonide [ ja g mddramispiirkonna D < R™ kuhjumis-
punkt, kusjuures

(1) f(P) ——>0;

P*)PO

(2) funktsioon g on punkti Py mingis imbruses tokestatud, s.t leiduvad punkti P
imbrus U ja arv M = 0 nii, et

lg(P)| < M iga PelU nD korral.

Siis ka
f(P)g(P) ——0.

P*)PO

Teisisonu, lause [3.6] {itleb, et antud piirprotsessis hddbuva funktsiooni ja tokesta-
tud funktsiooni korrutis on selles piirprotsessis hdadbuv.

LAUSE B.6l TOESTUS. Olgu (P,)¥_, punktiks P, koonduv punktist P, erinevate

médramispiirkonna D punktide jada (niisugune jada eksisteerib lause pohjal,

sest Py on hulga D kuhjumispunkt). Veendumaks, et f(P) g(P) - 0, piisab
e 1]

teoreemi (funktsiooni piirvddrtuse Heine kriteeriumi) pohjal niidata, et

Selleks mérgime, et

e f(P,) —— 0 (see jireldub eeldusest (1) teoreemi [3.1] pohjal);

n—o0

e jada (g(Pn))oo_1 on tokestatud, sest kuna P, —— P, siis leidub indeks N € N
n= n—o0

nii, et
n=N = PFP,el,
seega
lg(P,)| < M igan > N korral,
jarelikult

lg(P,)| < max{|g(P1)|, o lg(Pa)), M} iga n € N korral.

Kuna hddbuva arvjada ja tokestatud arvjada korrutis on hadbuv arvjada, siis ((3.4))
kehtib. O
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3.4. Mitme muutuja funktsiooni pidevus
Olgu funktsioon v = f(P) = f(x1,...,%,) miiratud hulgas D < R™ ning olgu
Py=(2,...,2%) e D.

Definitsioon 3.7. Oeldakse, et funktsioon f on pidev punktis Py, kui iga reaalarvu
e > 0 korral leidub reaalarv 6 > 0 nii, et

[P e D, d(P,P) < 5] —  |f(P)— f(P)] <e.

Paneme tihele, et

e funktsioon f on pidev igas tema maaramispiirkonna D isoleeritud punktis (s.t.
igas niisuguses hulga D punktis, millel leidub iimbrus, mis ei sisalda {ihtegi
sellest punktist erinevat hulga D punkti);

e kui Fy on madramispiirkonna D kuhjumispunkt, siis funktsiooni f pidevus
selles punktis tdhendab, et
lim f(P) = f(F).

P*)PO

Olgu Azy,..., Az, € R sellised, et P := (2% + Azy, ..., 20 + Az,,) € D. Vahet
Au = Au(P) := f(P) — f(P) = f(a) + Azy, ..., 20 + Axy,) — f(2),...,20)

m

nimetatakse funktsiooni f (tdis)muuduks punktis Py, mis vastab argumentide x1, . .., x,,
muutudele Az, ..., Az,,. Funktsiooni f pidevuse tingimuse selle funktsiooni maa-
ramispiirkonna kuhjumispunkti jaoks voime kirja panna ka jargneval nn. diferents-
kujul: kui Py € D on funktsiooni uw = f(P) mddramispiirkonna kuhjumispunkt, siis
see funktsioon on pidev punktis Py parajasti siis, kui

Au 0.

Az;—0,i=1,...m

Jirgnev teoreem on kiire jireldus teoreemist (mitme muutuja funktsiooni
piirvidrtuse Heine kriteeriumist).
Teoreem 3.7 (mitme muutuja funktsiooni pidevuse Heine kriteerium). Olgu funkt-
sioon f mddratud hulgas D < R™ ning olgu Py = (29, ...,2%) € D. Jirgmised viited
on samavddarsed:

(i) funktsioon f on pidev punktis Py;
(i) [P,eD,n=1,2,..., Pb,—> P| = [f(P.,)— f(P).
n—0

n—ao
Teisisonu, funktsioon f on pidev punktis Py parajasti siis, kui iga punktiks Py koon-
duva mddramispiirkonna D punktide jada (P,)*_, korral koondub vastav funktsiooni
vadrtuste jada (f(Pn)):j:1 funktsiooni vidrtuseks f(Py) punktis Py.

Definitsioon 3.8. Oeldakse, et funktsioon f on pidev, kui ta on pidev igas oma
méadramispiirkonna punktis.

Olgu & # Dy < D. Oeldakse, et funktsioon f on pidev hulgas Dy, kui ahend f|p,
on pidev funktsioon.
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3.5. Piirviirtus protsessis |P| — ©

Definitsioon 3.9. Olgu P € R™. Arvu

—

IP = d(P.(0....0))

m arvu null

(s.t. punkti P kaugust punktist ( 0,...,0)) nimetatakse punkti P normiks.
¥VJ
m arvu null

Definitsioon 3.10. Olgu funktsiooni f madramispiirkond D tokestamata.
Me iitleme, et funktsiooni f piirvéértus protsessis |P| — < on

e arv c € R, kui iga reaalarvu € > 0 korral leidub reaalarv D > 0 nii, et

|PeD |P|>D| — |f(P)-dl <=

e o (loetakse: 16pmatus), kui iga reaalarvu E > 0 korral leidub reaalarv D > 0
nii, et

PeD, |P|>D| = f(P)>E;
| ]

e — (loetakse: miinus 1opmatus), kui iga reaalarvu £ > 0 korral leidub reaalarv
D > 0 nii, et

[P eD, |P| > D] —  [(P)<—E.

Kui funktsiooni f piirvaértus protsessis |P|| — oo on ¢ (c € R U {00, —o0}), siis me
kirjutame

lim f(P)=c voi f(P)

|P|—c0 1P| —c0

Kehtib teoreemi [3.1] (mitme muutuja funktsiooni piirvisirtuse Heine kriteeriumi) jirgnev ana-
loog.

Teoreem 3.8. Olgu funktsiooni f mddramispiirkond ilalt tokestamata ning olgu ¢ € Ru {—o0, c0}.
Jargmised vdited on samavddrsed:

(i) f(P)

12—

(@) [PoeDn=12 0, |P| —> x| — [(P)—e
n—oc n—oL
Toetudes teoreemile [3.8] on lihtne téestada jarelduse [3.2] analoog mitme muutuja funktsiooni piir-
vidrtuse lihesusest protsessis |P| — oo ning samuti teoreemi ja lausete analoogid
piirprotsessi |P| — oo jaoks eeldusel, et funktsioonide f ja g (ning lauses ka funktsiooni h)

ithine mairamispiirkond D on iilalt tokestamata.
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3.6. Piirvairtus mooda pidevat joont

Olgu funktsioon f madratud hulgas D < R™, olgu Py méiramispiirkonna D kuh-
jumispunkt ning olgu ®: 7" — R™ (siin 77 < R on mingi intervall) pidev joon
ruumis R™, mis ldbib punkti F) ning mis sisaldub m&aaramispiirkonnas D, vilja
arvatud, voib-olla, punkt Fy, millelt me ei eelda kuulumist méairamispiirkonda D.
Seejuures me eeldame, et leidub parajasti iiks to € T nii, et Py = ®(tp).

Definitsioon 3.11. Kui eksisteerib (16plik voi lopmatu) piirvéirtus

lim f((ID(t)),

t—to

siis seda piirvidrtust nimetame funktsiooni f piirviértuseks punktis Py (voi argu-
mendi vadrtuse lihenemisel punktile Py) mddda joont ®,

Lause 3.9. Kui funktsioonil f eksisteerib oma mddaramispiirkonna D < R™ kuhju-
mispunktis Py (loplik voi lopmatu) piirvadartus

lim f(P)=:c¢, (3.5)

P—)PQ

siis ¢ on ka funktsiooni f piirvadrtus punktis Py mdéoda mis tahes pidevat joont (mis
labib punktt Py ning mus sisaldub madramispiirkonnas D, vilja arvatud, voib-olla,
punkt P, ).

TOESTUS. Eksisteerigu funktsioonil f punktis Py (16plik voi lopmatu) piirvddrtus
(3.5), olgu punkti P, sisaldav ning médramispiirkonnas D sisalduv (vélja arvatud,
voib-olla, punkt Fy) pidev joon antud parameetriliste vorranditega

xy=¢1(t), ...... y T = Om(1), teT,

kus 7' < R on mingi intervall, ning olgu ¢y € T' (ainus) selline punkt, et

Py = (¢1(to), - - dm(to)).

Peame niitama, et

lim f(61(8), -, dm(t)) = c. (3.6)
Olgu (t,)®_; mingi punktist ¢, erinevate intervalli 7' punktide jada, mille korral
lim ¢,, = ty. Funktsiooni piirvadrtuse Heine kriteeriumi pohjal piisab vorduseks

n—o0

(3.6) ndidata, et
T f(61(tn). - Om(ta) = ¢

ehk, tdhistades iga n € N korral
Pn = (¢1(tn)7 vevy (bm(tn))’
piisab ndidata, et

lim f(P,) =c. (3.7)

n—aco
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Funktsioonide ¢, ..., ¢,, pidevuse tottu funktsiooni pidevuse Heine kriteeriumi poh-
jal
Tim ¢u(t,) = dalte), oo -1 G(ta) = Gm(to);

s.t. jada (P,)®_; koondub punktiks Py koordinaaditi, seega lause[2.1{pohjal 7%1_1}30 P, =

P, ning jérelikult lause (mitme muutuja funktsiooni piirviirtuse Heine kritee-
riumi) pohjal kehtib (3.7) (sest Plin}) f(P) =c). O
— 10

Ulesanne 3.1. Tdestada lause toetudes punkti Py labiva joone esitusele kujul ®: T" — R™,
kus T c R on mingi intervall (ja mitte selle joone esitusele parameetrilisel kujul nagu eelnevas
toestuses), ning vahetult piirvairtuse definitsioonile (ja mitte piirvidrtuse Heine kriteeriumile nagu
eelnevas toestuses).

NAPUNAIDE. Vaadelda eraldi juhtusid, kus c € R, ¢ = o0 ja ¢ = —oo0.
NB! Naitele
Niide 3.1. Veendume, et kahe muutuja funktsiooni (z,y) — 129:74?3/2 piirvéértus punktis (0, 0) Ziidgglkse nEi-
ry

A o
ei eksisteeri. Vaadeldava kahe muutuja funktsiooni piirvddrtus punktis (0,0) médda joont y = x
(parameetri rollis on siin muutuja x) on

Ty . T-T 1

lim ——— = lim ——— =
ey—022 +y2  eo0x? +22 2
y=z

piirvéértus punktis (0,0) modda joont y = 2z (parameetri rollis on siin muutuja x) on

I I xT-2x 2
1m = 11m = =
I,y;O 2 + y2 -0 22 + (217)2 5’
y=2x

need piirviirtused on erinevad; jirelikult lause [3.9] pohjal piirviidrtus (3.8) ei eksisteeri.

3.7. Korduvad piirvaartused

Olgu kahe muutuja funktsioon v = f(z,y) madratud punkti (zg,y0) € R? mingis
imbruses, vilja arvatud, voib-olla, punktis (o, yo) endas. Eksisteerigu iga punkti
korral koordinaadi =y mingist timbrusest (vilja arvatud, voib-olla, punkti zy enda
korral) 16plik piirvddrtus

lim f(z,y) =: g(z).

Y—Yo

Kui eksisteerib piirvadrtus

lim g(z) =: lim lim f(z,y), (3.9)

Tr—>T0 T—>T0 Y—Yo

siis seda piirviartust nimetatakse korduvaks piirvadrtuseks.
Analoogiliselt defineeritakse korduv piirvadrtus

lim lim f(z,y) (3.10)

Y—Yo T—To0

(ning samuti ka korduvad piirvé#irtused rohkem kui kahe muutuja funktsioonide
jaoks).



NB! See on Rei-
mersi iil.-kogu, II,

1k. 57, ndide 2.3.8

NB! See on Rei-
mersi iil.-kogu, II,

lk. 57, ndide 2.3.9
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Uldiselt ei jireldu korduvate piirviirtuste (3.9) ja (3.10]) olemasolust piirviisirtuse

lim f(x,y). (3.11)
ZT,Y—T0,Y0
olemasolu.
Naide 3.2. Piirvaartus
. Yy
lim

z,y—0 2 + y2

ei eksisteeri (vt. naidet [3.1)); samas vastavad korduvad piirvidrtused eksisteerivad: mis tahes = # 0
korral

I xy 0

im —2— = — =

y—0 22 + 92 2

ning seega lim lim -2 = 0. Analoogiliselt saame, et ka lim lim 24 = 0.
& & 20 y—0 T2 +Y? & ’ y—0 z—0 T2 +Y*

Samuti ei jareldu piirviédrtuse (3.11)) olemasolust korduvate piirvddrtuste (3.9)) ja
(3.10) olemasolu.

Naiide 3.3. Piirvairtus )

lim ysin —

z,y—0 xT
on olemas, kuid iiks vastavatest korduvatest piirvadrtustest ei eksisteeri. Toepoolest, minnes iile
polaarkoordinaatidele: z = rcos¢, y = rsin¢, on piirprotsess x,y — 0 sama, mis piirprotsess
r — 0; seega

1
lim ysin — = lim 7 sin ¢ sin =0,
z,y—0 r ro0 7 COS ¢

sest hddbuva ja tokestatud funktsiooni korrutis on h#ibuv (méirgime, et funktsioon (¢,r) —

sin ¢ sin Tcéw on tokestatud). Samuti mis tahes = 4 0 korral Z}i_r)r(l)ysin% = 0, seega

1
lim lim ysin — = 0.
z—0y—0 X

Samas mitte ithegi y & 0 korral piirviirtus ili% ysin% ei eksisteeri, seega ei eksisteeri ka korduv
1

"

piirvidrtus lim lim y sin

y—0z—0
Lause 3.10. Olgu kahe muutuja funktsioon u = f(xz,y) mddratud punkti (xq, yo) € R?
mingis imbruses, vilja arvatud, voib-olla, punktis (xo,yo) endas, kusjuures eksistee-
rib (loplik voi lopmatu) piirvidrtus

lim f(z,y) =:c.

x7y_)x0 7y0

(a) Kui iga punkti x korral punkti xo mingist imbrusest (vilja arvatud, voib-olla,
punkti xo enda korral) eksisteerib loplik piirvddrtus

lim f(x,y) =: g(x), (3.12)

Y—Yo

siis eksisteerib ka korduv piirvddrtus lim lim f(z,y), kusjuures
T—>T0 Y—Yo

lim lim f(z,y) = lim f(z,y) =c.

T—X0 Y—Yo z,Y—T0,Y0
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(b) Kui iga punkti y korral punkti yo mingist imbrusest (vilja arvatud, voib-olla,
punkti yo enda korral) eksisteerib loplik piirvddrtus

lim f(z,y),

Tr—T0

siis eksisteerib ka korduv piirvddrtus lim lim f(x,y), kusjuures
Y—>Yo T—>X0

lim lim f(z,y) = lim f(z,y) =c.

Y—Yo T—2T0 Z,Y—T0,Y0

TOEsTUS. Toestame ainult véite (a). (Viide (b) toestatakse siimmeetriliselt.)
Olgu reaalarv 6 > 0 selline, et iga (punktist o erineva) punkti x € (xg— 9, 29+ 9)
korral eksisteerib 16plik piirvddrtus (8.12), ning olgu (z,)%_, punktiks zq koonduv
punktist z( erinevate vahemiku (zg — d, g + ) punktide jada. Funktsiooni piirvir-
tuse Heine kriteeriumi pohjal piisab véite (a) toestuseks niidata, et g(z,) —— c.

n—o0
Iga n € N korral, arvestades, et f(z,,y) —— ¢(z,), saame valida punkti y,, nii,
y—Yo
et
ol < a7 ) — oo <
Yn Yo n J ny Yn g\Tn n-

Kuna =, —— ¢ ja y, —— %o, siis lause pohjal (z,,y,) —— (z0,¥0)
n—o0 n—00 n—ao
ruumis R?, seega funktsiooni piirvéirtuse Heine kriteeriumi pohjal f(z,,y,) — ¢
n—oo
ning jarelikult

g(zn) = (g(xn) — f(@n, yn)) + f(Tn,Yn) —

n—aeo

(Siin g(xn) - f(xna yn) — Oa sest |g(xn) - f(xm yn)| < % - 0)7 nagu soovitud.
n—ao0 n—00
O



§ 4. Pidevate mitme muutuja funktsioonide
pohiomadused

4.1. Pideva funktsiooni margi siilivus
Teoreem 4.1. Olgu D < R™ ning olgu funktsioon f: D — R pidev punktis Py € D.
Kui f(Py) £ 0, siis leidub 6 > 0 nii, et
iga P € Us(Po) n D korral f(P) % 0 ja sgn f(P) = sgn f(Fp)
(s.t. leidub punkti Py imbrus, milles selle funktsiooni vdidrtusted erinevad nullist

ning on sama mdrgiga, mis f(F)).

TOEsTUS. Téhistame « := f(P) # 0. Funktsiooni f pidevuse tottu punktis Py
leidub ¢ > 0 nii, et

a
[P €D, d(P,R) < 5] —  |f(P) - f(P)| < %
s.t. iga P € Us(Fy) n D korral

| |

f(Po)—7<f(P)<f(Po)+7-

Niisiis, kui f(Py) > 0, siis iga P € Us(FPy) n D korral

[(Py)  f(P)
2 2

> 0;
kui aga f(FPy) <0, siis iga P € Us(Py) n D korral

f(P) < f(P) + % — f(P) + _f;PO) = f(;DO) <0.

4.2. Aritmeetilised tehted pidevate funktsioonidega

Jargnev teoreem on kiire jareldus funktsiooni pidevuse definitsioonist ja teoree-

mist 3.3

Teoreem 4.2. Olgu D < R™ ning olgu funktsioonid f: D — R ja g: D — R pidevad
punktis Py € D. Suis ka nende funktsioonide summa f + g, vahe f — g, korrutis fg
ning, kui g(Py) % 0, siis ka jagatis f/g on pidevad punktis P,.

Jareldus 4.3. Olgu f ja g pidevad funktsioonid, millel on tihine madramispiirkond.
Siis ka nende funktsioonide summa f + g, vahe f — g, korrutis fg ming, kui funkt-
sioon g pole iheski mddramispiirkonna punktis 0, siis ka jagatis f/g on pidevad
funktsioonid.

36
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4.3. Pidevate funktsioonide liitfunktsiooni pidevus

Olgu [ € N ning olgu hulgas A ¢ R! méiiratud funktsioonid

1= ¢1(Q) = ¢1lts,..., 1),
To = ¢2(Q) = ¢2(t17 o 7tl)’

Olgu hulk D < R™ selline, et

>{(@(Q). . 6n(@): Qe A},

ning olgu hulgas D méiiratud funktsioon

u= f(P)= f(z1,...,2Tm).

Siis on hulgas A méaratud funktsioon

= f(01(Q),...,0m(Q)) = f(d1(t1, .., ), Im(tr, ..., 1)) (4.1)

Ulaltoodud moel saadud (tipsemalt, kahe vdi enama funktsiooni jirjest rakendamise
teel saadud) funktsioone nimetatakse liitfunktsioonideks.

Teoreem 4.4. Olgu funktsioonid ¢, . .., ¢n, pidevad punktis Qg € A ning olgu funkt-
stoon f pidev punktis

Py = (61(Q0), - - -, m(Q0))-
Siis ka liitfunktsioon on pidev punktis Q.

TOESTUS. Olgu (Q,)x_, selline hulga A punktide jada, et @, —— Q. Teoree-

mi (pidevuse Heine kriteeriumi) pohjal piisab lntfunktswom . pidevuseks
punktis Qo niidata, et

ehk, tdhistades iga n € N korral
P, = (gbl(Qn)a SRR ¢m(Qn))a

piisab néiidata, et

f(Py) —— f(R). (4.2)
Funktsioonide ¢1, ..., ¢,, pidevuse tottu punktis (g teoreemi pohjal
¢1 (Qn) E} le (QO)a ------ ) ¢m(Qn) m ¢m(QO)7

s.t. jada (P,)®_, koondub punktiks P koordinaaditi, seega lausep()hjal P,—— P,
n—o0
ning jarelikult (jéllegi teoreemi pohjal) funktsiooni f pidevuse tottu punktis Py

kehtib (.2). 0
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4.4. Mitme muutuja elementaarfunktsioonid

Definitsioon 4.1. Olgu D < R™. Funktsioone D — R, mis on saadud (hulga D
punktide koordinaate t&histavatest) m soltumatust muutujast 16pliku arvu aritmee-
tiliste tehete, iihe muutuja elementaarfunktsioonide ja liifunktsiooni moodustamise
operatsioonide rakendamise teel, nimetatakse m muutuja elementaarfunktsiooni-
deks.

Kui m > 2, siis m muutuja elementaarfunktsioone nimetatakse mitme muutuja
elementaarfunktsioonideks.

Jérgneva teoreemi votame kiesolevas kursuses teadmiseks ilma seda toestamata.
Teoreem 4.5. Koik mitme muutuja elementaarfunktsioonid on pidevad.

Teoreemi [4.5 saab rakendada elementaarfunktsiooni piirviadrtuse leidmisel: kui
f on mitme muutuja elementaarfunktsioon ning F, on selle funktsiooni méairamis-
piirkonna punkt, mis on iihtlasi selle madramispiirkonna kuhjumispunkt, siis teoree-

mi [4.5] pohjal
lim f(P) :f(Po)-

P-P

4.5. Sidusas hulgas pideva funktsiooni vahepealsed vaartused

Teoreem 4.6 (Bolzano—Cauchy teoreem). Olgu funktsioon f pidev sidusas hulgas
D < R™, olgu A, B € D ning rahuldagu reaalarv ¢ tingimust

fA)<e< f(B)  (voi f(B) < c< f(A), kui f(B) < f(A)).

Siis mis tahes punkte A ja B iihendaval pideval kaarel, mis sisaldub tervikuna hul-
gas D, leidub punkt C nii, et f(C) = c.

TOESTUS. Olgu tervikuna hulgas D sisalduv punkte A ja B iihendav kaar antud
parameetriliste vorranditega

T :¢1(t)7"'7xm:¢m(t)v le [0‘75]7

kus ¢1, ..., ¢, on 16igus [a, 8] pidevad funktsioonid ning

A= (¢u(@),...,0m(@)) ja B=(61(B),....0m(B)).

Siis u: [a,8] 3t — f(¢1(t),...,¢n(t)) € R on Idigus [, 8] pidev funktsioon (sest
ta on pidevate funktsioonide liitfunktsioon), kusjuures u(a) = f(A) ja u(f) =
f(B); jérelikult Bolzano—Cauchy teoreemi pdohjal 16igus pideva funktsiooni vahe-
pealsetest vidrtustest leidub ¢y € |, 5] nii, et u(tg) = c ehk, teisisonu, tdhistades

C = (¢ilto), -, dm(t0)),
F(C) = f(61(t0)s - - -, dmlto)) = ulty) = c.
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4.6. Kinnises tokestatud hulgas pideva funktsiooni tokestatus

Definitsioon 4.2. Olgu D < R™ ning olgu f: D — R. Oeldakse, et funktsioon f
on tokestatud, kui tema vaartuste hulk {f(P): P € D} on tokestatud, s.t. leiduvad
arvud «, f € R nii, et a < f(P) < iga P € D korral.

Teoreem 4.7 (Weierstrassi esimene teoreem). Tokestatud kinnises hulgas pidev
funktsioon on tokestatud selles hulgas.

TOEsTUS. Olgu funktsiooon f pidev tokestatud kinnises hulgas D < R™. Oletame
vastuviiteliselt, et funktsioon f ei ole tokestatud hulgas D. Siis iga n € N korral
leidub punkt P, € D nii, et

[f(Pu)] > n.

Jada (P,)>_, on tokestatud (sest tema elemendid asuvad tokestatud hulgas D), jére-
likult Bolzano—Weierstrassi teoreemi 2.5 pdhjal leidub tal koonduv osajada (P, )72,
T#histame P, := hm Py ; siis hulga D kinnisuse tottu lause [2.3| pohjal Py € D. Ku-

na funktsioon D 3 P — |f(P)| € R on pidev (sest ta on pidevate funktsioonide

D3P f(P)eRjaR > uw |ul €R liitfunktsioon), siis teoreemi (funkt-

siooni pidevuse Heine kriteeriumi) pohjal |f (B, )| —— [f(F)]. Teiselt poolt, kuna
n—00

punktid Py, rahuldavad tingimust

| f(Pr,)

> k, —— o0,
n—0o0

siis | f(Py, )| —— 0. Saadud vastuolu téestab teoreemi. O
n—o0

4.7. Kinnises tokestatud hulgas pideva funktsiooni rajad

Teoreem 4.8 (Weierstrassi teine teoreem). Tokestatud kinnises hulgas pidev funkt-
stoon saavutab selles hulgas oma vddrtuste hulga rajad. Teisisonu, kui funktsiooon f
on pidev tokestatud kinnises hulgas D < R™, siis leiduvad punktid Py, Qo € D nii, et

f(Py) =sup f(P) ja f(Qo) = inf f(P).
PeD PeD
Esitame Weierstrassi teisele teoreemile kaks toestust, millest esimene toetub
Bolzano—Weierstrassi teoreemile ning teine Weierstrassi esimesele teoreemile

WEIERSTRASSI TEISE TEOREEMI ESIMENE TOESTUS. Olgu funktsiooon f pi-
dev tokestatud kinnises hulgas D < R™. Téhistame

M= sup f(P) ja m:= inf f(P)

ning valime iga n € N korral punkti P, € D nii, et

1

NB! Kas Weierst-

rassi teoreemidele
ikka viidatakse
kui “esimesele” ja
“teisele”? Jah, nii
[®] kui ka [WUII]
teevad nii!
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Siis jada (P,)_; on tokestatud (sest tema elemendid asuvad tokestatud hulgas D),
jirelikult Bolzano-Weierstrassi teoreemi[2.5 pohjal leidub tal koonduv osajada (P, )% ;.
Tahistame Fy := lim Py, ; siis hulga D kinnisuse tottu lause pohjal Py € D. Teo-
n—ao
reemi [3.7] (funktsiooni pidevuse Heine kriteeriumi) pohjal f(FP,) —— f(P). Kuna
n—o0
punktid Py, rahuldavad tingimusi
1
M>f(Pkn>>M_k_—’M7

n n—aeo

siis arvjada piirvaartuse sdndvitSteoreemi pohjal
f(Ro) = lim f(P,) = M.

Toestame niiiid sellise punkti Qg € D olemasolu, mille korral f(Qo) = Iijnlf) f(P).
€
Selleks margime, et ka funktsioon — f on pidev hulgas D, jarelikult eelnevalt toestatu
pohjal leidub punkt )y € D nii, et
—f(Qo) =sup(—f(P)) = — inf f(P),
PeD

PeD

aga niiiid

f(Qo) = Inf F(P).

PeD

]

WEIERSTRASSI TEISE TEOREEMI TEINE TOESTUS. Olgu funktsiooon f pidev

tokestatud kinnises hulgas D < R™. Téhistame M := sup f(P) (see supreemum on
PeD

Weierstrassi esimese teoreemi pohjal 16plik) ja oletame vastuviiteliselt, et
f(P)< M iga P e D korral. (4.3)

Siis funktsioon ]

g: D3P +—> M= (P) eR
on pidev (sest ta on saadud pidevatest funktsioonidest aritmeetiliste tehete abil;
juhime veel tihelepanu, et eelduse pohjal M — f(P) + 0 hulgas D); seega
Weierstrassi esimese teoreemi pohjal on funktsioon g tokestatud. Teiselt poolt,
valides hulga D punktide jada (P,)_,, mille korral f(P,) — M, saame, et

n=13

M — f(P,) —— 0+ ning seega g(P,) —— o0, mis on vastuolus funktsiooni ¢
n—o n—oo

tokestatusega.
Sellise punkti @y € D olemasolu, mille korral f(Qo) = 1i>n1f> f(P), saab niidata
(S
tapselt samamoodi nagu eelmises toestuses. O]

Mairkus 4.1. Tingimust f(Qo) = Iijnfo(P) =: m rahuldava punkti QQy € D olemas-
S

olu teoreemi toestuses voib ndidata ka analoogiliselt punkti /) olemasolu toes-

tusele, valides analoogiliselt esimese tGestusega punktid @,, € D nii, et f(Q,) < m—i—%

(punktiks Qg sobib sellisel juhul jada (@,,) mis tahes koonduva osajada piirvdértus),

voi, analoogiliselt teise toestusega, oletades vastuviiteliselt, et f(P) > m iga P € D
1

korral ja vaadeldes sel juhul funktsiooni h: D3 P +—> FP)=m € R.
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4.8. Kinnises tokestatud hulgas pideva funktsiooni iihtlane
pidevus
Definitsioon 4.3. Olgu funktsioon f méaédratud hulgas D < R™.

Oeldakse, et funktsioon f on hulgas D dihtlaselt pidev, kui iga reaalarvu ¢ > 0
korral leidub reaalarv ¢ > 0 nii, et

[PQeD dPQ) <d| = If(P)-FQ] <=

Vahetult definitsioonist on ilmne, et hulgas D iihtlaselt pidev funktsioon on pidev
selles hulgas. Vastupidine viide iildjuhul ei kehti. Vastavasisulisi kontranaiteid on
lihtne leida juba vahemikus médratud pidevate ithe muutuja funktsioonide kohta —
naiteks funktsioon y = % on vahemikus z € (0, 1) pidev, kuid mitte {ihtlaselt pidev.

Teoreem 4.9 (Cantori teoreem). Tokestatud kinnises hulgas pidev funktsioon on
selles hulgas tihtlaselt pidev.

TOEsTUS. Olgu funktsioon f pidev tokestatud kinnises hulgas D < R™. Oletame
vastuvéiteliselt, et f ei ole {ihtlaselt pidev selles hulgas. Siis leidub reaalarv ¢ > 0
selliselt, et iga indeksi n € N korral leiduvad punktid P,, @, € D, mille korral

d(Pn, Q”) < %, kuid ‘f(Pn) - f(Qn)‘ =€

Jada (P,)>_, on tokestatud (sest tema elemendid asuvad tokestatud hulgas D), jére-
likult Bolzano—Weierstrassi teoreemi 2.5 pohjal leidub tal koonduv osajada (P, )7,

Téahistame Fy := hm Py, ; siis ka lim Qy, = P, sest
n—o0

1
< d(Qk, Po) < d(Qx,,, Pr,) + d(Py,, Po) < . + d(Py,, Py) — 0

n—o

ning arvjada piirvadrtuse sindvit§teoreemi pohjal seega ka d(Qy,,, Py) —— 0. Hul-

ga D kinnisuse tottu lause 2.3 pohjal Py € D. Kuna funktsioon f on pldev hulgas D,
siis teoreemi |3.7] (funktsiooni pidevuse Heine kriteeriumi) pohjal f (P, ) —— f (Po)
n—ao0

ja f(Qr,) — f(Fp). Niiiid iihel poolt

Tim |£(PL) = f(Qu)] = [ (P) = £(@Qo)| = 0, (4.4)

teiselt poolt
|f(Pe,) — f(Qr,)| =€ iganeN korral,

mis on vastuolus tingimusega (4.4)). O
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II peatiikk.
Mitme muutuja funktsioonide
diferentsiaalarvutus

§ 1. Mitme muutuja funktsiooni osatuletised ja
diferentseeruvus

1.1. Mitme muutuja funktsiooni osatuletised

Olgu funktsioon u = f(P) = f(z1,...,,,) midratud punkti Py = (z9,...,2%) e R™
mingis iimbruses.
Definitsioon 1.1. Olgu i € {1,...,m}. Kui eksisteerib (16plik voi lopmatu) piir-
vaartus

lim f(‘r(l)7 Cee ,$?71, JI? + A.Z‘i, 13?+1, cee 7'r9)1) - f(x(fa cee 7'T?71)

)

siis seda piirvddrtust nimetatakse funktsiooni f (esimest jarku ehk lihtsalt esime-
seks) osatuletiseks argumendi x; jirgi punktis P, ja tdhistatakse simbolitega

0 ou , ,
65-(]30)’ ax‘(PO)v [, (o), g, (FPo),  fu(Bo) a,(Fo) (1.1)
VOl
of ou , ,
axi(x?""7x’(f)n)’ awi(x(l)j...’x%)’ f(Ez( (1)""7‘r9n)7 umi(x?7"'7x9fl)7
fo (@, 22, g (2, ..., 20).

Kui mingi hulga D = R™ igas punktis P eksisteerib 1oplik osatuletis f, (P), siis
hulgas D on méaaratud (esimest jarku) osatuletisfunktsioon (argumendi z; jirgi)

fl:DsP fl(P)eR,

mida nimetatakse ka lihtsalt funktsiooni f (esimest jarku ehk lihtsalt esimeseks)
osatuletiseks argumendi x; jdrgi. Seda osatuletist (s.t. osatuletisfunktsiooni) tdhis-
tatakse siimbolitega

of  odu , ,
5%’ 5377;, f;piu umi7 fl’i) Ug, - (12)
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Tahistused (L.1) on tdhistustega (1.2)) histi kooskolas: (10plik) osatuletis antud punk-
tis on osatuletisfunktsiooni vadrtus selles punktis.

Maérkus 1.1. Markimaks funktsiooni v = f(P) = f(x1,...,x,,) esimest jarku osa-
tuletisfunktsiooni muutuja x; jirgi, kasutatakse tdhistuste (|1.2]) korval sageli ka té-
histusi

0 ) 0
a u.
Markus 1.2. Vahetult osatuletise definitsioonist ndeme, et iihe muutuja funktsiooni
d
y = f(z) osatuletis muutuja z jargi on sama, mis selle funktsiooni tuletis: Pl d—f
x x

(ehk, alternatiivsetes tdhistustes, fI = f').

Mairkus 1.3. Vahetult osatuletise definitsioonist jareldub, et m muutuja funktsiooni
u= f(P)= f(xy,...,7,) osatuletis punktis Py = (2%, ..., 2%) muutuja z; jirgi on
iithe muutuja funktsiooni

g(x) = f(x(l), . ,x?fl,x,xgﬂ, . ,x?n)

tuletis punktis z9:
fr(Po) = g (7).

See tdhelepanek on kasulik mitme muutuja funktsiooni osatuletiste arvutamisel: lei-
des funktsiooni u = f(x1,...,2,,) osatuletist muutuja z; jargi, loeme iilejaanud
muutujad x1,...,2; 1,%;41,...,2T, fikseeritud konstantideks ning leiame osatule-
tise u/, nagu iihe muutuja x; funktsiooni tuletise.

Niide 1.1. Leiame funktsiooni u = z*sin®(27y + 5y*!) osatuletised.

Tolgendades muutujat y fikseeritud konstandina ja leides tuletise funktsioonist w kui iihe
muutuja z funktsioonist, saame

ul, = (.234); sin® (ac7y + 5y11) + a4 (sin3 (Jc7y + 5y11));
= 423 sin3 (a:7y + 5y11) + 2% - 3sin? (a:7y + 5y11) cos(.r7y + 5y11) 728y
= 2% sin? (x7y + 5y11) . (4 sin(x7y + 5y11) +21z7y cos(:n7y + 5y11)>.

Tolegendades muutujat = fikseeritud konstandina ja leides tuletise funktsioonist w kui ithe muu-
tuja y funktsioonist, saame

uy, = 2t 3sin®(z7y + 5y'') cos(zy + 5y't) - (27 + 55y™°)
= 3zt (x7 + 553/10) sin? (:(:7y + 5y11) cos(x7y + 5y11).

Mirkus 1.4. Uhe muutuja funktsiooni puhul jireldub I&pliku tuletise olemasolust
mingis punktis selle funktsiooni pidevus selles punktis. Mitme muutuja funktsiooni
puhul analoogiline viide ei kehti: m muutuja funktsiooni u = f(P) = f(x1,...,2m)
puhul ei jireldu esimest jirku osatuletiste f, (Fy), ..., [, (Fy) olemasolust ja lop-
likkusest funktsiooni [ pidevus punktis Fy.
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Naiide 1.2. Ndites I veendusime, et piirvadrtus lim ei eksisteeri; seega funktsioon

z,y—0 12 + 72
ry S
—_ kui x° + 0
fla,y) = { @ +y? o
0, kui 22 + 4% =0,

ei ole pidev punktis (0,0). Samas leiduvad sellel funktsiooni punktis (0, 0) 16plikud osatuletised:

hO

ox h—0 h h—0 h =0

ning, siimmeetriliselt, Z—f(O, 0) =0.
Y

1.2. Mitme muutuja funktsiooni diferentseeruvus

Olgu funktsioon u = f(P) = f(z1,...,T,) méiiratud punkti Py = (29,...,2%) e R™
mingis limbruses . Koneldes funktsiooni f argumentide xi,...,z, muutudest
Axq, ..., Ax,, punktis P, eeldame edaspidi alati, kasutades tdhistusi

AP = (Azy,...,Axy,) ja P+ AP := (2 + Azy,...,2) + Azy,)

(juhime téhelepanu, et viimane téhistus on kooskolas ruumi R vektorruumistruk-
tuuriga), et P:= Py + AP e lU.

Téahistame
p = \/Ax% + -+ Az2 = d(P, R).
Vahet NB!  Tahistust
Au kasutatakse
Au:: f(P)_f(PO) :f(P0+AP)_f(PO) (1 3) :gce);:lelrsr()eis.
= f(a + Awy,..., 20 + Azy) — f(2,.. . 20), '
nimetatakse funktsiooni f muuduks punktis Py, mis vastab argumentide x1,..., T,
muutudele Axq, ..., Ax,,.
Definitsioon 1.2. Oeldakse, et funktsioon u = f(P) = f(z1,...,%,,) on diferent-
seeruv punktis Py = (29,...,22), kui leiduvad arvud Ay,..., A, € R selliselt, et
selle funktsiooni muut punktis F,, mis vastab argumentide z1,...,x,, muutudele

Axy, ..., Ax,,, rahuldab tingimust
f(Po+AP)— f(Py) — (A1 Azy +- -+ Ay Azy,) = 0(p) protsessis p — 0, (1.4)

S.t.
lim f(Po+ AP) — f(Py) — (A1 Azy + -+ + Ay Azyy)

p—0 1%

= 0.

Allpool mérkuses veendume, et m muutuja funktsiooni diferentseeruvuse
definitsiooni juht m = 1 on kooskolas kursuses “Uhe muutuja matemaatiline
analiiiis” antud iihe muutuja funktsiooni diferentseeruvuse definitsiooniga. Eelnevalt
on aga otstarbekas m muutuja funktsiooni diferentseeruvuse moistet veidi uurida.

Jargnev teoreem annab kaks funktsiooni diferentseeruvusega samaviirset tingi-
must, mida sageli kasutatakse ka diferentseeruvuse definitsioonina.
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Teoreem 1.1. Olgu funktsioon uw = f(P) = f(x1,...,x,) mddratud punkti Py =

(29,...,22) € R™ mingis imbruses. Jirgmised viited on samavidrsed:

(i) funktsioon f on diferentseeruv punktis Py,

(ii) leiduvad arvud Ay, ..., A, € R selliselt, et funktsiooni f muut (1.3)) esitub
kujul
f(Po+ AP) — f(Py) = AjAzy + - + ApAzy, + (1.5)

kus funktsioon a = a(AP) = a(Axy, ..., Ax,,) rahuldab tingimust o = o(p)
protsessis p — 0;

(iii) leiduvad arvud A, ..., A, € R selliselt, et funktsiooni f muut (1.3) esitub
kujul

f(Po+AP)—f(R) = A1 Az +- -+ Ay Az +0q Ay + - -+ g, Az, (1.6)

kus funktsioonid o; = o;(AP) = «;(Axy,...,Ax,,) rehuldavad tingimust

Cki—>0, 1= 1,...,m.

p—0

Teoreem on vahetu jareldus jargnevast lemmast, mida me kasutame ka all-
pool teoreemide [I.3]ja[l.4 toestamisel. See lemma iitleb, et definitsiooni [I.2]tingimusi
rahuldavad arvukomplektid Ay, ..., A,,, teoreemi véite (ii) tingimusi rahuldavad
arvukomplektid Ay, ..., A,, ning teoreemi véite (iii) tingimusi rahuldavad arvu-
komplektid Ay, ..., A,, on tépselt ihed ja samad. Veelgi enam, teoreemis [1.3]toesta-

me, et kui funktsioon u = f(P) = f(x1,...,z,) on diferentseeruv punktis P, € R™,
siis tal eksisteerivad selles punktis loplikud esimest jéarku osatuletised koigi argumen-
tide x1, ..., x,, jargi, kusjuures ainus iilalloetletud tingimusi rahuldav arvukomplekt
Ay, A, on
of of
A= —(F), ...... A, = ——(F).
1 (9I1( 0)7 ) 6.Tm( 0)
Lemma 1.2. Olgu funktsioon u = f(P) = f(x1,...,2y) mddratud punkti Py =
(2%, ...,2% ) € R™ mingis iimbruses ning olgu Ay, ..., A, € R. Jirgmised viited on
samavddrsed:

(i) funktsiooni f muut (L.3) rahuldab tingimust (1.4));

(ii) funktsiooni f muut (L1.3)) esitub kujul (L.5), kus funktsioon o = a(AP) =
a(Azxy, ..., Az,,) rehuldab tingimust o = o(p) protsessis p — 0;

(iii) funktsiooni f muut (1.3)) esitub kujul (1.6), kus funktsioonid a; = a;(AP) =
ai(Azy, ..., Azy,) rehuldavad tingimust o — 0,i=1,...,m.
p—

TOESTUS. (i)=(ii) on ilmne, kui defineerida
a:= f(Py+ AP) — f(Fy) — (A1 Axy + - -+ A, Axy,).

(ii)=(i) on samuti ilmne.
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(ii)=>(iii). Kehtigu (ii). Siis

f(Po+ AP) — f(Py) — (A1Azy + -+ + ApAzy,)

Az? + -+ Ax? A Az,
— Ty + 2+ L, :2 Ile1+...+g t Az,
p p P pop
=1 Ay + -+ Ay,
T
kus a; = — ,i=1,...,m. Kuna
p
lo;| < g—»O, i=1,...,m,
p| 0
siis a; — 0,7=1,...,m. Seega kehtib (iii).
p—
(iii)=>(ii). Kehtigu (iii). Siis kehtib valem (1.5)), kus
a=a; Az + -+ ay Az,
seejuures a = o(p) protsessis p — 0, sest
a Axy Az, | Az | AL,
—|=la— -ty < |y + et [
p P P p
< |ag| + -+ + |am| — 0.
p—0
Seega (ii) kehtib. O

Jargnev teoreem iitleb, et funktsiooni diferentseeruvusest antud punktis jareldub
selle funktsiooni koikvoimalike esimest jarku osatuletiste olemasolu ja loplikkus selles
punktis.

Teoreem 1.3. Olgu funktsioon v = f(P) = f(x1,...,zy) diferentseeruv punk-
tis Py = (29,...,2%) € R™. Siis funktsioonil f eksisteerivad punktis Py lopli-

kud esimest jirku osatuletised koikide argumentide jdargi. Seejuures ainus reaalar-
vukomplekt Ay, ..., Ay, mis rahuldab (m muutuja funktsiooni diferentseeruvuse) de-
finitstooni tingimusi (ning lemma pohjal seega ka ainus reaalarvukomplekt
Aq, ..., A, mis rahuldab teoreemi vdite (ii) tingimusi, ning ainus reaalarvu-
komplekt Ay, ..., A,,, mis rahuldab teoreemi vdite (iii) tingimusi), on
of of
A= —(FR), ...... ., A, =—(F).
L= 2(R), (R
TOESTUS. Teoreemi|l.1|samavidrsuse (i)<(iil) pohjal leiduvad arvud A,,..., A, €
R nii, et funktsiooni f muut Au punktis F,, mis vastab argumentide xzq,...,x,,

muutudele Az, ... Az, esitub kujul

Au= A1 Axy1+ -+ A, Ax,, + a1 Axy + -+ - + ay Ay, (1.7)
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kus funktsioonid «; = a;(Axy,. .., Ax,,) rahuldavad tingimust

a;i(Azy, ..., Axy,) N

Fikseerime vabalt j € {1,...,m}. Tahistades

Aguc=f@), . a) 2+ Awjaf g a) — f(2, .,

piisab teoreemi toestuseks nédidata, et

(sest osatuletis a—f(Po) on defineeritud kui selles valemis esinev piirvidrtus ning
x.

lemma [1.2] pohjal rahuldavad definitsiooni tingimusi, teoreemi [1.1] véite (ii) tin-
gimusi ning teoreemi [1.1| viiite (iii) tingimusi tépselt iihed ja samad arvukomplektid
A, AL,

Kui Azy = -+ = Az; 1 = Azjy = -+ = Az, = 0, siis Ay, u = Au, seega

valemi (1.7 pohjal
Agu=Au=A; Az; + a;(0,...,0,Ax;,0,...,0) Az;

ning jarelikult

B A 4 ay(0,. 0,020, A

Aaj‘]_ j‘i‘aj(,, , Jlj, sy )m j
nagu soovitud. L
Teoreem 1.4. Olgu funktsioon u = f(P) = f(z1,...,%y) mddratud punkti Py =
(29,...,22) € R™ mingis imbruses. Jirgmised viited on samavdidirsed:

(i) funktsioon f on diferentseeruv punktis Py;

(i) funktsioonil f eksisteerivad punktis Py koik loplikud esimest jarku osatuletised

g_xfl(Po)a cee ;x_fm(PO)’ kusjuures selle funktsiooni muut punktis Py rahul-
dab tingimust
f(Py+ AP) — f(P) — (ﬁ(Po) Axy+ -+ ﬁ(po) A$m> = o(p)
o O (1.8)

protsessis p — 0;

(ili) funktsioonil f eksisteerivad punktis Py koik loplikud esimest jarku osatuletised

j—f(Po), ey ;—f(Po), kusjuures selle funktsiooni muut (1.3) esitub kujul
T Tm,
of of
f(Po+ AP) = f(F) = or (Po) Awy + -+ o (o) Az + av, (1.9)
1 m

kus funktsioon a = a(AP) = a(Axy, ..., Ax,,) rahuldab tingimust o = o(p)
protsessis p — 0;
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(iv) funktsioonil f eksisteerivad punktis Py koik loplikud esimest jirku osatuletised

ﬁ F),..., ﬁ Ry), kusjuures selle funktsiooni muut (1.3) punktis Py esitub
0 0
x Tm
kujlul
f(Po+ AP) — f(FR)
0 0 1.10
:%(PO)Axl—i----—i-%(PO)Axm—i-ozlel—i—---—l—ozmAxm, (1.10)
1 m

kus funktsioonid o; = o;(AP) = «;(Axy,...,Ax,,) rehuldavad tingimust

a—0,2=1,...,m.
p—0

TOESTUS. (i)=(ii) jireldub (m muutuja funktsiooni diferentseeruvuse) definitsioo-

nist [[.2] ja teoreemist [I.3]

(ii)=(i) jéreldub definitsioonist [1.2]

(i)« (iil) < (iv) jéreldub lemmast [1.2] O
Mirkus 1.5. Kursuses “Uhe muutuja matemaatiline analiiiis” defineeriti ithe muu-
tuja funktsiooni y = f(x) diferentseeruvus punktis zo kui lopliku tuletise f’(xq)
olemasolu. See definitsioon on kooskolas m muutuja funktsiooni diferentseeruvuse

definitsiooniga [1.2] juhul m = 1.
Toepoolest, kui eksisteerib loplik tuletis

['(xo) = Alirilo f (@ + Ag; — f(@o)

f(xo + Ax) = flao) _ f'(x0), kehtib

tingimus « s 0, kusjuures funktsiooni f muut punktis xy esitub kujul
T—

Y

siis, defineerides funktsiooni o = «a(Azx) :=

fxo + Az) — flzo) = f'(20) Az + o Az

niisiis teoreemi samavédrsuse (i)<(iii) pohjal funktsioon f on diferentseeruv
definitsiooni [1.2] (juhu m = 1) jirgi.

Teiselt poolt, kui funktsioon y = f(z) on diferentseeruv definitsiooni [L.2| méttes
(juhul m = 1), siis teoreemi [1.3| pohjal eksisteerib tal punktis xq 16plik (osa)tuletis
(muutuja z jérgi) f1(xo) = f'(zo) (vt. mérkust[L.2), niisiis see funktsioon on diferent-
seeruv kursuses “Uhe muutuja matemaatiline analiiiis” antud definitsiooni méttes.

Niites veendusime, et m muutuja funktsiooni 16plike (esimest jirku) osatu-
letiste olemasolust (koigi muutujate jéargi) antud punktis ei jareldu tildjuhul selle
funktsiooni pidevust selles punktis. Jérgnev lause iitleb, et m muutuja funktsiooni
diferentseeruvus antud punktis (millest teoreemi pohjal jareldub koigi loplike
esimest jarku osatuletiste olemasolu selles punktis) toob endaga kaasa selle funkt-
siooni pidevuse selles punktis. Seega loplike esimest jirku osatuletiste olemasolust
antud punktis ei jareldu tldjuhul funktsiooni diferentseeruvust selles punktis. Veelgi



NB! See on Rei-
mersi iil.-kogu, II,
1k. 74, dl. 512

NB! Kas see
“Minnes iile polaar-
koordinaatidele:
Ax = p cos ¢,
Ay = p sin ¢”
on aktsepteeritav
keeleline konstrukt-
sioon? Tagapool
kasutatakse seda
veel kaks korda.

NB! See on Rei-
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enam: naites vaadeldakse kahe muutuja funktsiooni, mis on pidev punktis (0, 0)
ning millel eksisteerivad punktis (0,0) 16plikud esimest jarku osatuletised mdlema
argumendi jargi, kuid mis pole diferentseeruv punktis (0,0). Seega ka antud punktis
pideva funktsiooni puhul er jareldu uldjuhul loplike esimest jarku osatuletiste ole-
masolust selles punktis funktsiooni diferentseeruvust selles punktis.

Lause 1.5. Antud punktis diferentseeruv funktsioon on selles punktis pidev.

TOEsTUS. Funktsioon w = f(P) = f(z1,...,2,) on pidev (oma médramispiirkonna
kuhjumis)punktis Py € R™ parajasti siis, kui

Au = f(P) = f(F) — 0.

p—0

Kui eeldada, et funktsion f on diferentseeruv punktis Fp, siis see koonduvus jareldub

esitusest ((1.5)) (sest kui o = o(p) protsessis p — 0, siis ammugi « — 0). O
p—

Selle punkti lopetuseks toome moned néited konkreetsete funktsioonide diferent-
seeruvuse kindlakstegemisest antud punktis.

Niide 1.3. Veendume, et kahe muutuja funktsioon
2 1 © o2 2

(z + y)? sin ———, kui ¢ + y* £ 0,

f(x, y) = z? + y?
0, kui 22 + 9% =0,

on diferentseeruv punktis (0,0). Selleks leiame esmalt selle funktsiooni esimest jarku osatuletised
punktis (0,0):

1
h? sin
of o J0+R0) = f(0,0) 1
a0 =, h TR =
. , . of . R R Lo
ning, siimmeetriliselt, a—y(()7 0) = 0. Teoreemi|1.4|samavaarsuse (i)<>(ii) pohjal piisab funktsiooni f

diferentseeruvuseks punktis (0,0) (ning on selleks iihtlasi ka tarvilik) niidata, et
f(O+Az,0+ Ay) — £(0,0) —0Ax —0Ay = o(p) protsessis p — 0
(siin p = v/Az2 + Ay?), s.t.

1
(Ax + Ay)? sin ————— = o(p) protsessis p — 0.

VAZ2 + Ay? B

Veendume selles. Minnes iile polaarkoordinaatidele : Ax = p cos ¢, Ay = p sin ¢, saame
(Az + Ay)?sin ——2——  p?(cos ¢ + sin ¢)? sin 1
JAz2+Ay? 1
e p = p(cos ¢ + sin ¢)?sin — —— 0.
14 P p r—o0

Naiide 1.4. Veendume, et kahe muutuja funktsioon

(IQ + y2) sin m7 kui Jj2 + y2 =*: O,

0, kui 22 + 9% =0,

f(x,y) =
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on diferentseeruv punktis (0, 0). Selleks leiame esmalt selle funktsiooni esimest jirku osatuletised
punktis (0, 0):

1
. h?sin —
al(o,o) = lim F0+£,0) = £(0,0) im — 1% — Jim hsinhi =0

ox h—0 h h—0 h h—0 2

ning, siimmeetriliselt, Z—JC(O7 0) =0. Teoreemisamaviiéirsuse (i)<(ii) pohjal piisab funktsiooni f

diferentseeruvuseks punktis (0,0) (ning on selleks iihtlasi ka tarvilik) nididata, et
f(O+ Az, 0+ Ay) — £(0,0) —0Ax —0Ay = o(p) protsessis p — 0

(siin p = v/Az? + Ay?), s.t.

(Az? + Ay?)sin protsessis p — 0.

1
Ax? + Ay? = olp)

Veendume selles:

1
AI2+A2 Sini ZSin
( v) Ax? + Ay? P 2 1
= = psin - — 0.
p p p* =0
NB! See on Rei-
Naide 1.5. Veendume, et kahe muutuja funktSiOOn mersi {il.-kogu, II,
lk. 74, iil. 511
%y kui 22 + 42 4 0
—_ ui x
f(z,y) = { 22 + 42 o
0, kui 22 + y* = 0,

on pidev punktis (0,0) ning tal eksisteerivad selles punktis 16plikud osatuletised, kuid ta ei ole
diferentseeruv selles punktis.
Funktsiooni f pidevuseks punktis (0,0) piisab niidata, et f(x,y) —— f(0,0) = 0. Minnes

z,y—0
iile polaarkoordinaatidele: Ax = p cos ¢, Ay = p sin ¢, saame
. . m2y _ 13 cos? ¢ sin ¢ . 9 .
w)lgl/gof(:c,y) = wl;go o i ———— = 11_1)1(137" cos” ¢ sin ¢ = 0.
Funktsioonil f eksisteerivad punktis (0, 0) 16plikud osatuletised
o
ox h—0 h h—0
ja
0h
2y 00 = iy h sy =0

seega teoreemi [1.4 samavéarsuse (i)<>(ii) pohjal on tema diferentseeruvuseks punktis (0, 0) tarvilik
(ning ka piisav), et

f(O+ Az,0+ Ay) — f(0,0) —0 Az — 0Ay = o(p) protsessis p — 0

(siin p = v/Az? + Ay?), s.t.

Az?Ay .
f(Az, Ay) = AT AR o(p) protsessis p — 0. (1.11)
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Minnes iile polaarkoordinaatidele : Ax = p cos ¢, Ay = p sin ¢, saame

03 cos? ¢ sin ¢
Az, A -
f( a; ) _ Pp = cos? ¢sin .

f(Az, Ay)

Siit ndeme, et piirvadrtus lim ei eksisteeri (sest ta soltub l&henemisteest) ; seega ((1.11])

p—0
ei kehti ning jarelikult funktsioon f pole diferentseeruv punktis (0,0).

1.3. Piisav tingimus mitme muutuja funktsiooni
diferentseeruvuseks

Teoreem 1.6. Eksisteerigu funktsioonil w = f(P) = f(xy,...,Tn) punkti Py =
(2%, ..., 2% ) € R™ mingis iimbruses loplikud (esimest jirku) osatuletised koigi argu-
mentide jdrgi, kusjuures vastavad osatuletisfunktsioonid on pidevad punktis Py. Siis
funktsioon f on diferentseeruv punktis Fy.

TOESTUS. Olgu reaalarv § > 0 selline, et funktsioonil f eksisteerivad 16plikud osa-
tuletised punktis Py kuubikujulises iimbruses

C = {(xl, o Ty) € R™: max |z — Y| < (5}.
1<i<m

Koikjal jargnevas vaatleme vaid selliseid (funktsiooni f) argumentide muutusid
Axy, ..., Az, mille korral |Az;| < §, ¢ = 1,...,m, ehk, teisisonu, Py + AP € C,
kus AP := (Axy,...,Axy) ja Bp+ AP = (29 + Azq, ..., 2% + Azy,).

Teoreemi toestuseks piisab ndidata, et funktsiooni v = f(P) muut Au :=
f(Po+AP)—f(F) (s.t. muut punktis Fy, mis vastab argumentide z, . . ., x,, muutu-
dele Azy,...Axz,,) esitub valemiga (L.6)), kus funktsioonid o; = a;(Azy, ..., Az,,)

rahuldavad tingimust «; — 0,2=1,...,m.
p—
Tihistame iga i € {1,...,m} korral z; := ¥ + Auw;; siis
Au = f(x1, 0, T3, T 1,Tm) — f(@, 25,23, .. 20 | 2%)
:f(.flfl,.TQ, x3, ... >xmflyxm) - f(x?7 X2, T3,y Tm—1, xm)

+ f(x(l)a L2, L35 - - - 7xm—17xm) - f(l'?,l‘g,l’:;, sy Tm—1, Im)
+ f(@), 25, 23, ) — (202,20, T 1, )

0.0 .0 0 0.0 .0 0 0
+ f(al, x5, g, .. X1, Tm) — [(27, T5, T3y oo Ty Tp)

= g1(x1) = g1(2}) + ga(w2) = g2(25) + -+ + gun(wm) — gin(@,),
kus funktsioonid g; on defineeritud vordustega
gi(x) = f(@%, ..., 2% | wwi, . ), 1=1,...,m.

Tga i€ {1,...,m} korral funktsioon g; rahuldab ligus [9, x;] (voi 16igus [z;, 27], kui
x; < 2Y) koiki Lagrange’i keskviirtusteoreemi eeldusi; seega leidub arv 6; € (0, 1)
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(mis soltub argumentide x1, ..., 2, muutudest Axy, ..., Ax,,) nii, et
gi(x:) = gi(x7) = gi(af + 0; Az;) A
ou
= %(1’[1), Ce ,l’?_l,[l?? + 91 Al‘i,l’i+1, Ce ,[Em) A[El
1

(mérgime, et kui z; = 2%, s.t. Ax; = 0, siis sobib 6; rolli mis tahes arv vahemikust
(0,1)). Niisiis,

m

Au = Z(Qz( i) — Z 5_u 2, w1 0 Axy i, ag) Ay

Z 6% (Ry) Ax; + Z a;(Azy, ..., Axy,) Az,

i=1
kus iga i € {1,..., m} korral

ou ou

a;(Azy, ..., Axy,) = %(1’?, o) ) 0 Az i, ) — %(x?, B
(2 7

. ) ) ) U ou ) ]
Kuna osatuletised (s.t. osatuletisfunktsioonid) A A on pidevad punktis Fp,
T X
siis funktsioonid ay, . . ., a,, rahuldavad tingimust o; 7 0772' =1,...,m, ning seega
p—>
funktsioon f on diferentseeruv punktis F. m

Mairkus 1.6. Mitme muutuja funktsiooni f diferentseeruvusest punktis Py ei jareldu
tildjuhul tema osatuletiste (s.t. osatuletisfunktsioonide) pidevus t punktis F.

Niide 1.6. Niites [I.4] veendusime, et kahe muutuja funktsioon

1 .
(CUQ =+ y2) sin m7 kui x2 =+ y2 :*: 0,

fla,y) =
0, kui 22 + 9% =0,
on diferentseeruv punktis (0,0). Niitame, et kogu tasandil R? eksisteerivad 16plikud osatuletised
ﬁ(:Jz,y) ja ﬁ(x,y), kuid osatuletisfunktsioonid i ja o ei ole pidevad punktis (0, 0).
ox 0 ox ° 0y
0 0
Néites veendusime, et 6f (0,0) = 6f (0,0) = 0. Kaikjal hulgas R?\{(0,0)}
of 5 o . oy . 1 5 a1 2
%(az,y) = <(;1: +y )Smm ) =2x blnm + (z° +y~) cos T\ 21
2x 1

= 2z sin — cos .
$2 +y2 .T2 +y2 .’172 +y2

0 0
Siit ndeme, et piirvddrtus lim 6f (z,y) ei eksisteeri (ning, lisaks, osatuletis a—f on punkti (0,0)
z,y—0 x

of . . .
igas imbruses tokestamata); niisiis osatuletis a—f ei ole punktis (0,0) pidev.
x
1 1
Toepoolest, valides iga n € N korral r,, > 0 nii, et — = 2n7 (s.t. r, = ——), ning tahistades
p g n T,rQL ( n \/%) g
P, := (rp,0) ja Qn := (—7y,0), saame, arvestades, et r,, —— 0,
n—xLX

PrL —1’ (O O) ja‘ Qn —70) (070)

n—9o
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Samal ajal
0 1 2r 1 2 2
f( P,) = 2r, sin — — —* cos — = 2r, sin2nm — — cos 2T = —— —— —©
ox r2  r2 rZ Tn Tp o0
: . f
ning, analoogiliselt, (Qn) - 0.
n—
. - N . Of . . Lo . . Of
Stimmeetriliselt saame, et piirvifirtus lim ——(x,y) ei eksisteeri (ning, lisaks, osatuletis ——
z,y—0 Oy 0y

0
on punkti (0,0) igas iimbruses tokestamata); niisiis osatuletis o ei ole punktis (0,0) pidev.

9y
Néide 1.7. Niites [1.3] veendusime, et kahe muutuja funktsioon

. kuiz?+9? +0,

(z + y)?sin =

flz,y) = z?+y
0, kui 22 4+ 4% =0,

on diferentseeruv punktis (0,0). Niitame, et kogu tasandil R? eksisteerivad 16plikud osatuletised

Zf( Y) Ja of —(z,y), kuid osatuletisfunktsioonid e ja Z—f ei ole pidevad punktis (0, 0).
Naites veendusime, et Zf (0,0) = Zf (0,0) = 0. Kaikjal hulgas R?\{(0,0)}

of 5 . 1 )’
633(36 v = ((x—i—y) Sm\/x2+y2 @

=2(x +v) sin*—i—(m—i—y)zcos ! (— 2 3>
x2 492 Ve +y2 222 +92)2
1 z(zr+1y)? 1
VEry @ty g

0
Siit ndeme, et piirvddrtus lim (9f (z,y) el eksisteeri; niisiis osatuletis a—f ei ole punktis (0, 0) pidev.
z,y—0 x

Toepoolest, minnes iile polaarkoordinaatidele : x = 7 cos ¢, y = rsin ¢, saame

= 2(x +y) sin

0 1 2 ing)? 1
of ——(z,y) = 2r(cos ¢ + sin ¢) sin — — reosgr (CO,S(b + sin¢) cos —
ox r 73
1
= 0(1) — cos ¢ (cos ¢ + sin $)? cos — protsessis r — 0.
r
Valides iga n € N korral r, > 0 nii, et — = 2n7 (s.t. r, = 2—), ning tahistades P, :=
T nm
(rn €08 0,7y, 8In0) = (7, 0) ja Qy := (rncos §,rpsin §) = (0,7,), saame, arvestades, et r,, — 0,
n—oo

P, —’(0 0) ja Qnm(oao)'

n—

Samal ajal

1
(P,) = o(1) — cos 0 (cos 0 + sin 0)% cos — = o(1) — cos 2nm = o(1) — 1 —— —1,

% rn n—o0
af ™ (cos ™ +sin ™) cos —
(Qn) = ( ) — cos 3 (cos 3 + sin 5) cos E = 0(1) -0 n—o0 0;

jarelikult funktsiooni piirvdartuse Heine kriteeriumi pohjal piirvadrtus hmO a—f(a:, y) ei eksisteeri.
z,y—0 0T

Stimmeetriliselt saame, et piirviirtus hm0 a—(x,y) ei eksisteeri; niisiis osatuletis E ei ole
z,y—0 Oy Y

punktis (0,0) pidev.
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1.4. Kahe muutuja funktsiooni diferentseeruvuse
geomeetriline tolgendus (kahe muutuja funktsiooni
graafiku puutujatasand)

Definitsioon 1.3. Olgu kahe muutuja funktsiooni z = f(z,y) méaaramispiirkond

D < R2. Hulka
{(x,y,f(x,y)): (x,y) € D} cR?

nimetatakse funktsiooni f graafikuks.

Definitsioon 1.4. Olgu kahe muutuja funktsioon z = f(z,y) pidev punkti (xg, yo) €
R? mingis iimbruses. Tahistame M, := (xo,yo,f(xo,yo)) (mérgime, et punkt M,
asub funktsiooni f graafikul).

Tasandit m nimetatakse funktsiooni f graafiku puutujatasandiks punktis My, kui
graafiku punkte M := (z,y, f(z,y)) ja Mo iihendava sirge ning selle tasandi vaheline
nurk ldheneb protsessis (z,y) — (2o, yo) nullile.

Paneme téhele, et funktsiooni f pidevuse tottu punktis (xg, yo) on punkti (z,y)
ldhenemine punktile (xg,yo) (s.t. koonduvus (x,y) — (2o, o)) samavidrne graafiku
punkti M = (z,y, f(z,y)) lihenemisega punktile M, (mddda seda graafikut) . Sce-
tottu sonastatakse graafiku puutujatasandi definitsioon sageli ka jargmiselt: tasan-
dit m nimetatakse funktsiooni f graafiku puutujatasandiks punktis My, kui graafiku
punkti M lihenemisel punktile M, (mo6oda seda graafikut) ldheneb neid punkte

ithendava sirge ja selle tasandi vaheline nurk nullile (vt. joonist [L.1).

Jérgnev teoreem iitleb, et kahe muutuja funktsiooni diferentseeruvus antud punk-
tis tahendab geomeetriliselt selle funktsiooni graafiku (z-teljega mitteparalleelse) puu-
tujatasandi olemasolu vastavas graafiku punktis.

Teoreem 1.7. Olgu funktsioon z = f(P) = f(z,y) pidev punkti Py := (xq,0) € R?
mingis dmbruses. Kui funktsioon f on diferentseeruv punktis Py, siis tema graa-
fikul eksisteerib puutujatasand punktis My = (xo,yo,f(Po)). Selle puutujatasandi
vorrand on 5 5
of Lo
or oy
Teiselt poolt, kui funktsiooni f graafikul eksisteerib punktis My puutujatasand, kus-

Juures see puutujatasand pole paralleelne z-teljega, siis funktsioon f on diferentseeruv
punktis Fy.

z— f(P) = (Fo) (z — x0) (Po) (¥ — vo)- (1.12)

TOESTUS. Olgu funktsioon z = f(z,y) diferentseeruv punktis P,. Veendumaks,
et tasand on tema graafiku puutujatasand punktis M, piisab ndidata, et
graafiku punkti M := (z,y, f(z,y)) lihenemisel punktile M, (mddda graafikut)
laheneb neid punkte ldbiva sirge ja selle tasandi vaheline nurk nullile ehk, teisisonu,
tahistades P := (x,y), vektori
—
0

MoM = (x — zo,y — o, f(P) — [(Po))

NB!

ci
punktid Mgy ja
M olema “kausi”
“serval”, vaid “kiilje
peal”. Hea oleks,
kui zy-tasandil
oleksid  kujutatud
punkte Py ja P
ning punktidest
Mgy ja M oleks
tommatud Ty
tasandile ristsirged
(vastavalt  punkti
Py ja P).

Joonisel
peaks

NB! Kas miarkida,

et punkt My asub
tasandil (L.12)7

NB! | Joonis?
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Joonis 1.1

ja tasandi (1.12)) normaalvektori

i = <%(PO),%(PO),—1>

vaheline nurk L(MOM , ﬁ) ldheneb taisnurgale 7 protsessis P — [4. Tahistame

p:=d(P,Py) =/(x —x0)® + (y — 10)2.

Kuna piirprotsess P — F, tdhendab, et p — 0, ning
—_— m —_—
L(MOM,n) —3 — cosL(MoM,n) — 0,

siis jadb meil naidata, et cos L(MOM, ﬁ) —— 0. Selleks mérgime, et

p—0
— MyM -7
COSL(MOM,ﬁ) = m

(siimbolid |MyM|, |7i| ning MM -7 téhistavad vastavalt vektorite My M ja 7 pikkusi
ning nende skalaarkorrutist). Kuna funktsiooni f diferentseeruvuse tottu punktis P,

., of of

MoM-ni = %(Po) (x—xo)JF@(Po) (y=y0)—(f(P)=f(Fo)) = o(p) protsessis p — 0,
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siis
cos 2 (MyM, i) = 1o 1 _p o)
|n| ‘MOM‘ |n| ‘M()M‘ P p—0
(sest

=

‘Mo—)M‘=\/|$—$0|2+|y—yo|2+‘f(P)—f(Po)‘2=\/PZ"“f(P)—f(Po)

ning seega 0 < L < 1), nagu soovitud.
g seeg W ) g

Teiselt poolt, eksisteerigu funktsiooni z = f(z,y) graafikul z-teljega mitteparal-

leelne puutujatasand punktis My; olgu selle puutujatasandi vorrand NBIl Kas see on
hea — muutujad z j

;ejn kinni 7J35i pgi
inni??

&= f(PO) = A (m - xo) + B (y - yo) (113) l(eesli(alglﬂ) 111-;?!5 adb

Mérgime, et m := (A, B, —1) on selle puutujatasandi normaalvektor.

Mirkides, nagu eelnevaski P := (z,y), p := d(P, Py) = /(v — 30)* + (y — yo)?
jaM = (z,y, f(z,y)) = (z,y, f(P)), piisab funktsiooni f diferentseeruvuseks punk-
tis Py naidata, et

Az —z0) + By —yo) — (f(P) — f(R))

0
p p—0
ehk, teisisonu, MM __, 0. Kuna
p p—0
-m -m |MqgM — MoM
WM _ gy ML PO ) o 2,y
P |MoM| |mi| P p

kusjuures cos Z(MyM,m) —> 0 (sest tasand (L.13) on funktsiooni f graafiku

" Mo M -
puutujatasand), siis, veendumaks, et 4% — 0, piisab néidata, et
p—

[MoM] _

O(1) protsessis p — 0.
p

Selleks, arvestades, et

M| _ e+ 1) - 1) \/1 NEGE
p p

piisab néiidata, et

f(P) - f(R)

= O(1) protsessis p — 0.
p
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Selleks méargime, et

|f(P) = f(P)]
< ‘f(P)—f(PO)—A(m—xo)—B(y—yU)‘+|A||x—x0|+|B||y—yO|
= [ML| + |Al |z — x| + Bl ly — wol,

kus punkt L := (z,y, A(z — 20) + B (y — yo) + f(P)) on punkti M libiva z-teljega
paralleelse sirge ja puutujatasandi 16ikepunkt.

Téahistades tdhega N punkti M ristprojektsiooni puutujatasandile (1.13), pane-
me tahele, et koik (tdisnurksed) kolmnurgad AM LN on sarnased (sest koik hiipote-
nuusid M L on paralleelsed — nad on paralleelsed z-teljega — ning koik kaatetid M N
on paralleelsed — nad on risti puutujatasandiga ({1.13)), seega leidub konstant x > 0
nii, et alati ‘M_)L‘ = /{‘W\f‘ Tahistades tdhega 1 punkte M ja M, ldbiva sirge ja
puutujatasandi (1.13) vahelise nurga, saame niiiid, et

ML |MN|
= K s = K siny —— 0.
| Mo M |MoM | p—0

Siit jareldub, et “piisavalt viikeste” p vidrtuste korral

. p+\f(P)2—f(Po)\’

1 — 1
32| < S [MM| = /6 + [ £(P) ~ £(P)
seega

|[F(P) = f(R)]
2

p
‘f(P)—f(Po)‘ < |A||5U—1150|JF|B||Z/—Z/0|+§Jr
ning jarelikult

|[f(P) — f(1)]
p

| |z — x|

<2/4 Co Bl Ly oo 41
p

1.5. Mitme muutuja funktsiooni esimest jarku
taisdiferentsiaal

Olgu funktsioon u = f(P) = f(z1,...,x,) diferentseeruv punktis Py = (2?,...,2%) €

R™.

Definitsioon 1.5. Avaldist

ou ou
du(Py) :=df (Fy) .= —(Fy) A oo+ —(Fy) Axyy,
u(Fy) If (Fo) 8331( 0) Ary + +8xm( 0) Ax
nimetatakse funktsiooni f (esimest jirku ehk lihtsalt esimeseks) tdisdiferentsiaaliks
punktis Fy, mis vastab argumentide x4, ..., x,, muutudele Az, ..., Az,,.
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Kui funktsioon u = f(P) = f(x1,...,z,) on diferentseeruv hulga D < R™ igas

punktis P, siis, fikseerides argumentide x1, . .., z,, muutude vairtused Axy, ..., Ax,,
(s.t. lugedes need muudud fikseeritud konstantideks), voime selle funktsiooni esi-
mest jarku téisdiferentsiaali tolgendada muutuja P (ehk siis m muutuja x4, ..., z,,)

funktsioonina du = du(P) (ehk, teisiti téhistades, df = df (P)):

Py Ary e+ 2 (P) A,
5!131

0T

du = du(P)

ehk (jittes eelnevas esituses argumendi P kirjutamata)

0 0
du = — Azy + + + e A2,
011 0x,
Iga i€ {1,...,m} korral nimetame argumendi x; diferentsiaaliks dzr; tema muu-

tu Az;, s.t.
de; ;= Az;, i=1,...,m.

See tdhistus on motiveeritud jargneva aruteluga: kui tolgendada argumendi z; diferentsiaali
dz; (m muutuja) funktsiooni v = z; diferentsiaalina, siis

dr; =dv =, Axy+--+v, Az, +v, Az;+ U;HI Azigy + -+ v, Az,
=0Ax1+ - +0Az; 1 +1Ax2; +0Ax; 1 +---+0Az,
= A(L’Z

Vastavalt sellele tahistusele

ou ou
du = —d e ——dxy,.
U . xr1 + +6xm x

Mirkus 1.7. Vahetult on kontrollitav, et kui funktsioonid v = f(P) = f(x1,...,2m) ja v =
g(P) = g(x1,...,x,) on diferentseeruvad punktis Py € R™, siis mis tahes arvude a, 8 € R korral
ka funktsioon « f + 8 g on diferentseeruv selles punktis, kusjuures

(e f + B g)(Po) = adf(Po) + Bdg(Fo).

1.6. Mitme muutuja liitfunktsioonide diferentseerimine

Olgu funktsioon
u:f(P) :f(xla"wxm)

miiratud hulgas D < R™ ning olgu hulgas A ¢ R! miiratud funktsioonid

sellised, et
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Sel juhul saame vaadelda liitfunktsiooni

u=g(Q) =g(tr,....t:) == f(6:1(Q); ..., 6m(Q))
= f(gbl(tl,. .. ,tl),. .. ,¢m(t17 .. 7tl))7 Q= (tlv s ’tl) €A, (114)

Teoreem 1.8. Olgu funktsioonid ¢, ..., ¢, diferentseeruvad punktis
Qo=(@,...,.theA
ning olgu funktsioon f diferentseeruv punktis
Py=(2%,...,2%) = (gbl(Qo), ey gbm(Qo)) eD.

Siis ka liitfunktsioon (1.14) on diferentseeruv punktis Qo. Seejuures iga j € {1,...,1}
korral
J9i

oty

i=1 0

ou
%(Qo) = (o) =~ (Qo)

TOESTUS. Teoreemi toestuseks piisab veenduda, et funktsiooni u = ¢(Q) muut
punktis )y, mis vastab argumentide %1, ..., ¢ muutudele Atq, ..., At

Au=g(t) + Aty,... . 1)+ At) — g(@, ..., )

g
= (o1 (t) + Aty, . 8] + AL, O () + Al .. 1) + AY))
— f(en (8], 1), om(8), 1))

esitub kujul
Au = ClAtl+"'+ClAtl+’}/1At1+"'+’}/lAtl,

kus iga j € {1,...,[} korral

o 0 0p;
Cy= 3 5 () 5@

ning, tihistades r := \/A#? + - - + At?, funktsioon 7; = v;(Aty, ..., At;) rahuldab
tingimust v; — 0.

r—0
Funktsiooni f diferentseeruvuse tottu punktis Fp esitub argumentide x4, ..., x,,
muutudele Az, ..., Az, vastav funktsiooni f muut punktis F, valemiga
of af
f(P) = [(Po) = 5= (Po) Amy + -+ =—(Po) Ay + o1 Ay + -+ + iy A,
51‘1 é‘xm
kus P = (2 + Azy,...,2% + Az,,) ning iga ¢ € {1,...,m} korral funktsioon
a; = oi(Axy,...,Azx,,) rahuldab tingimust «; — 0 (siin, nagu koikjal, p =
p—

\/Az? + - + Az2). Tihistame edaspidises

Az; = ¢i(t2 + Aty, ... 1) + At) — (1, ..., 1)), i=1,...,m.
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Kuna funktsioonid ¢y, . .., ¢y, on diferentseeruvad punktis Q, siis iga i € {1,...,m}
korral

0
oty

kus iga j € {1,...,{} korral funktsioon 5; = ﬁ;(Atl, ..., At;) rahuldab tingimust
o5 — 0 (siin, nagu ennegi, 7 = y/At? + --- + At?). Niisiis,

izl(?i“% ro) (25
<i 53]; 5@ )) At;

B3

= 1 At -+ Cl Atl + 7 Atl + -+ Y Atl,

¢z

A[I)i = (QO) Atl + 61 Atl + -+ /817' Atl,

(Qo) Aty + -

o))

< a.‘f 7 a(bl .

’VJ':Z(<ax(P0)+Oél)ﬁ +CY1 (QQ)) jZl,...,l.
i=1 v

Teoreemi toestuseks jaab veenduda, et funktsioonid 7, ..., rahuldavad tingimust

ot R— 0,7 =1,...,1. Selleks piisab niidata, et iga i € {1,..., m} korral o — 0,

milleks arvestades, et a; —— 0, piisab néidata, et p — 0. Kuna funktsiooni-

p—0
de ¢1, ..., ¢, diferentseeruvusest punktis (g jareldub nende funktsioonide pidevus

selles punktis, siis iga ¢ € {1,...,m} korral Ax; — 0, jarelikult p — 0, nagu

soovitud. O
NB! Kas see juht,
kus m = 3 ja l =

Konkreetsuse mottes sonastame teoreemi eraldi juhu jaoks, kus m = 3 ja 2, ika vejab eraldi
l _ 2 viljatoomist?

Olgu funktsioon
w=f(P) = f(z,y,2)
médratud hulgas D < R? ning olgu hulgas A < R? miiratud funktsioonid
v =2(Q) =z(u,v), y=y@Q) =yuv), z=2z20Q)=z(uv) (1.15)
sellised, et

D = {(#(Q).4(Q).2(Q)): Qe A},

Sel juhul saame vaadelda liitfunktsiooni

w = Q(Q) = g(”?”) = f(x(Q)ay(Q)’z(Q)) = f(l‘(u7v)7y(u7v)vz(u7v)>7
Q = (u,v) e A. (1.16)
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Teoreem 1.9. Olgu funktsioonid (1.15) diferentseeruvad punktis Qo = (ug, vo) € A
ning olgu funktsioon f diferentseeruv punktis

Py = (0,90, 20) = ($(Q0)79(Q0)a2(Q0)) €D

Siis ka listfunktsioon (1.16) on diferentseeruv punktis QQq. Seejuures

of of of

Yiu = Lim) iy + y() Yiu+ Lir) Q.
9 Q) = 2L r) Q) + §<> Y Qo+ Lim) Ziaw.

Jargneva jarelduse — Lagrange’i keskvairtusteoreemi mitme muutuja funktsioo-
nide jaoks — sonastamiseks toome koigepealt sisse ruumi R™ kahte punkti ihendava
sirgloigu moiste.

Definitsioon 1.6. Punkte Py = (29,...,2%) € R™ ja P = (xy,...,7,,) € R™

tihendavaks sirgloiguks nimetatakse (ruumi R™) punktihulka

PP = {(2) + tAxy,..., 20, + tAz,) e R™: te[0,1]}

kus Ax; =2, — 2%, i=1,...,m.

77

Jéreldus 1.10 (Lagrange’i keskvidrtusteoreem mitme muutuja funktsioonide jaoks).
Olgu funktsioon u = f(P) = f(x1,...,Tm) pidev punktides Py = (29,...,20) e R™
ja P = (294 Axy,..., 20 +Ax,) € ]Rm, kus P % Py, ning diferentseeruv neid punkte
tihendava sirgloigu igas punktis, vilja arvatud, voib-olla, punktides Py ja P endis.
Siis leidub punkt R punkte Py ja P ihendaval sirgloigul punktide Py ja P vahel (s.t.
R = (29 + 0Azy, ..., 2% + 0Ax,,) mingi 0 € (0,1) korral) selliselt, et

1P = 1(R) = 3 2L () A

TOESTUS. Vaatleme funktsiooni

O(t) = f(a) +tAxy, ..., 20 +tAx,) = f(gbl(t),...,qﬁm(t)), t € [0,1],

kus ¢;(t) = 2+t Az, i = 1,...,m;siis f(P)— f(P) = ®(1) — ®(0). Funktsioon ®
rahuldab 16igus [0, 1] koiki Lagrange’i keskvadrtusteoreemi eeldusi — ta on selles
l1oigus pidev ning, vastavalt teoreemile , vahemikus (0, 1) diferentseeruv, sest mis
tahes t € (0,1) korral funktsioonid ¢1,..., ¢, on diferentseeruvad punktis ¢ ning
funktsioon f on diferentseeruv punktis

seejuures

) = SR 0+ L) 00 = Y S




§ 1. MITME MUUTUJA FUNKTSIOONI OSATULETISED JA DIFERENTSEERUVUS 63

Lagrange’i keskvaartusteoreemi kohaselt leidub arv 6 € (0,1) nii, et (1) — ®(0) =
®’(0) ning jéarelikult, tihistades R := Py = (29 + 0 Axy,..., 20 + 0 Ax,,),

I () Au; i 9 (R Az

FP) = () = 0(1) ~ 0(0) = #0) = 3 2

Jaotise (ja tihtlasi paragrahvi) 16petuseks toestame jareldusena Lagrange’i keskvadrtusteoree-
mist mitme muutuja funktsioonide jaoks (s.t. jireldusest jirgneva teoreemi millel on
(1&bi lause (cc)) oluline roll muutuja vahetuse valemi (teoreemi toestuses kordse
integraali jaoks.

Teoreem iitleb (muuhulgas), et kui m muutuja funktsioon f on diferentseeruv punktis
P = (x1,...,2y), siis, tdhistades AP := (Az1,...,Axy) ja P+ AP = (x1+Ax1, ..., Ty +ALy,),
vahe

(P)Axy +-- +ai—];( )Axm>

of

a(P,AP) = f(P + AP) — f(P) — Qm

rahuldab tingimust @ — 0, kus p := \/Az? + -+ + Ax2,. Jiirgnev teoreem [1.11|iitleb, et
p—

kui funktsioonil f eksisteerivad pidevad osatuletised lahtises hulgas & < R™, siis mis tahes (ruumis
R™) kinnise tokestatud alamhulga K < U korral on see koonduvus iihtlane punktide P € K suhtes.

Teoreem 1.11. Eksisteerigu funktsioonil u = f(P) = f(x1,..., %) lahtises hulgas U < R™ pide-
vad osatuletised (s.t. osatuletisfunktsioonid) kéigi argumentide jargi ning olgu tokestatud alamhulk
K c U kinnine ruumis R™. Tdhistame punktide P = (x1,...,2ym) € R™ ja AP = (Axy,...,Axy) €
R™ korral P+ AP := (x1 + Axq, ..., Ty + Axy) € R™ ja p:= \/Am% + -+ Az2 . Siis

’\\

T

P+ AP) — () = (H P vt o4 (D))

P p—0
thtlaselt punktide P € KC suhtes.

TOESTUS. Olgu € > 0. Teoreemi toestuseks piisab leida reaalarv § > 0 nii, et mis tahes punkti
AP = (Azy,...,Az,,) € R™ korral, mis rahuldab tingimust p = \/A2? + --- + Az2, < §, kehtib

tingimus

m
Z |Az;|? iga P e K korral. (1.17)

i=1

P)Azx; <e¢

f(P+AP)— i

Selleks valime reaalarvu v > 0 nii, et B(P,v) € U iga P € K korral (meenutame, et siirnbol F( v)
tahistab kinnist kera ruumis R™ keskpunktlga P € R™ ja raadiusega v > 0, s.t. B(P = {Q €
R™: d(P,Q) < v}); siis iihend D := |Jpe,c B(P,7) € U on (ruumis R™) kinnine tokestatud hulk
(nii sellise reaalarvu v > 0 olemasolu kui ka iithendi D kinnisus ja tokestatus on toestatud iilesandes
2.6).

Olgu AP = (Axy,...,Ax,,) € R™ selline, et p = y/Az? +---+ Az2, < v ning olgu P =
(z1,...,2m) € K suvaline. Siis Lagrange’i keskviartusteoreemi pohjal mitme muutuja funktsioonide
jaoks (s.t. jérelduse [1.10] pohjal) leidub reaalarv 6 € (0,1) nii, et

f(P+AP) — i ) Az,

NB! Tuua sisse
maiste “funktsioo-
ni muudu lineaarne
peaosa“?

NB! Kas  siin
see “(ruumis R")
kinnise tokestatud
alamhulga” on
Oigesti moistetav?
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kus P 4+ AP := (1 + 0Axyq, ...,z + 0Ax,,) € R™. Seega Rogers—Holderi vorratuse pohjal (vt.

teoreemi
- Of _xa[of of
f(P+AP) — f(P) — ; Ao (P)Az; = )] < P (P +0AP) — A (P)> Ax;

i=1
2 m
<\ \IZ | A2

Cantori teoreemi pohjal leidub reaalarv do > 0 nii, et

f_ (P +0AP) — %(P)

9 9
[Q,RED, d(Q,R)<5O] — 6£(Q)—a£(R)‘<6 i=1,...,m.

Arvestades, et d(P, P+ 0AP) = 6p < p, jireldub eelnevast, et kui punkt AP = (Axy,...,Ax,y,) €
R™ rahuldab tingimust p = \/Ax? + .-+ + Az2, < min{y,dy} =: J. siis kehtib tingimus (T-17)
[

(POHJENDADA!) .



§ 2. Tuletis etteantud suunas. Gradient

Olgu funktsioon u = f(P) = f(x1,...,T,) méiiratud punkti Py = (29,...,2%) e R™
mingis {imbruses ning libigu punkti Py suunatud telg [, mille suund on méiratud
vektoriga § = (a1,...,ay). Olgu $) = (c1,...,¢y) vektori § suunaline iihikvektor,

s

- ’
51
NB! Rohutame,

Miérkus 2.1. Kui m = 2 v6i m = 3, siis vektori § suunalise (ja iihtlasi telje [ suunalise) tihikvektori et meie kisitluses
on x1-telg, xo-telg

s.t. 8o : kus siimbol |3] tdhistab vektori § pikkust.

50 = (c1,...,¢m) koordinaadid on vastavalt vektori § ja xi-telje, vektori § ja xo-telje jne vaheliste 3, 4, tels omavahel
nurkade koosinused: paarikaupa risti!
ci=cosq;, 1=1,...,m,

kus «; on nurk vektori § ja x;-telje vahel (ehk, teisisonu, nurk telje | ja x;-telje vahel ehk nurk
vektori Sy ja x; telje vahel).

Veendume selles. Vaatleme ainult juhtu, kus m = 3 (juhtu, kus m = 2, kiisitletakse analoogi-
liselt). Tahistades stimbolitega &1, ¥5 ja @3 vastavalt x1-, x2- ja z3-telje suunalised iihikvektorid,
s.t. &1 := (1,0,0), &5 := (0,1,0) ja &3 := (0,0, 1), saame {iihelt poolt

501 =c11+c20+¢30=cy,

teiselt poolt aga
§Q . f1 = |§0| |fl| COS (x1 = COS (x7;

niisiis ¢; = cos ;. Vordused co = cos g ja c3 = cos ag toestatakse analoogiliselt.
Definitsioon 2.1. Kui eksisteerib piirviartus

limf(P0+t§0)_f(P0)

t—0 t ’

siis seda piirvaartust nimetatakse funktsiooni f tuletiseks punktis Py telje | suunas
(vOi vektori § suunas) ja tdhistatakse siimbolitega

of ou of ou
o), ), (), ()
Vol
of ou of ou
E(Q;?,...,xgn), E(m?,...,m%), %(x?,...,mgl), g,(x?,...,x?n).

Toome vilja moned (vahetult definitsioonist jarelduvad) edasises kasulikuks

osutuda voivad valemid tuletise ?(Po) arvutamiseks: kui see tuletis eksisteerib, siis
§

a—]:(Po) = lim SR +150) = J(F) _ lim fad +ter, .. ap, +tem) — f(af, ... ah)
0s 0 t £50 ;
i J@ TSl o, + TlSlen) — (o], )
e oE
~lim f@Y +tay, ..., 2% + tay) — f(29,...,20) . F(Py+15) — f(P)
t—0 t|§| t—0 t|§|

65
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Mairkus 2.2. Vahetult definitsioonist jareldub, et funktsiooni v = f(P) = f(x1,...,2m,) osa-
tuletised punktis Py vastavalt muutujate x1, ..., x,, jirgi on funktsiooni f tuletised punktis Py
vastavalt xi-telje, zo-telje jne suunas. (Eriti selgelt on see niha eelneva vorratusteahela teisest
vordusest.)

Definitsioon 2.2. Vektorit
gradf(Pg) = Vf(P()) = (f;l (Po), ey f;m(P()))

nimetatakse funktsiooni f gradiendiks punktis F,.

Siimbolit V loetakse: “nabla” voi “atled”. Nimetus “nabla” tuleb heebreakeelsest sonast vana-
aegse harfisarnase muusikariista kohta — elava fantaasiaga lugeja suudab kindlasti leida teatava
sarnasuse selle siimboli ja harfi vahel; “atled” on “delta” loetuna tagant ettepoole, siimbol V on

tagurpidi siimbol A!

Teoreem 2.1. Olgu funktsioon u = f(P) = f(x1,...,%y) diferentseeruv punktis
Py = (29,...,2%) € R™. Siis funktsioonil [ eksisteerib punktis Py tuletis mis tahes

vektori §+ 0 := (0,...,0) suunas, kusjuures see tuletis on vérdne gradiendi V f(Py)
N—. —

—
m arvy 0

ja vektori § suunalise tihikvektori skalaarkorrutisega:

o o ' Vf(R)F

Esitame teoreemile [2.1] kaks toestust, millest esimene toetub vahetult funktsiooni
diferentseeruvuse definitsioonile ning teine liitfunktsiooni diferentseerimise reeglile

teoreemile [L.8]

TEOREEMI 2.1 TOESTUS, MIS TOETUB FUNKTSIOONI DIFERENTSEERUVUSE DEFI-
s

Bl

(2.1)

NITSIOONILE. Olgu 5y = (cq, ..., ¢y) vektori § & 0 suunaline iihikvektor, s.t. 5y =

Teoreemi toestuseks tuleb néidata, et

f(Po +t50) — f(F)
t t—0

f!cl (Pg) cp+---+ f:z,cm (P()) Cm- (22)

Funktsiooni f diferentseeruvuse tottu punktis Fy esitub selle funktsiooni muut punk-
tis Py, mis vastab argumentide muutudele Az, ..., Az,,, kasutades tahistust AP :=
(Azy,...,Azxy,,), valemiga

f(Po+AP) = f(Po) = fi,(Po) Azy + -+ + f, (Po) Az + a(AP), (2.3)
kus funktsioon o = a(AP) = a(Axy,. .., Ax,,) rahuldab tingimust
a(Azy, ..., Azy,)
p p—0

(siin, nagu kéikjal, p := A/Ax? +--- + Az2)). Valemi ([2.3) pohjal, arvestades, et
t§0 = (tCl, P ,tCm),

f(P() + tgo) - f(P()) . fa,cl(PO) tCl + -+ f;m(Po) tCm + CY(tCl, c. ,tcm)

t t
:f;I(PO)Cl—i_—I_fg/;m(PO)Cm—i_

0 (2.4)

altey, ... tey)
; :
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altey, ... tey)

Kuna p— 0 (see jareldub koonduvusest (2.4]) (poHIENDADA!) ), siis

t
[2.2) kehtib. O

TEOREEMI 2.1 TOESTUS, MIS TOETUB LIITFUNKTSIOONI DIFERENTSEERIMISE
g

Bl

REEGLILE. Olgu Sy = (¢y, ..., ¢y) vektori § 0 suunaline iihikvektor, s.t. 5, =

Defineerime funktsiooni
g(t) := f(Py +t5) = f(af +ter, ..., 20 + ten).

Kuna funktsioon f on mé&dratud punkti F, mingis {imbruses, siis funktsioon g

on médratud punkti ¢ = 0 teatavas imbruses. Kuna ¢(0) = f(F), siis tuletis
0 Py + t3) — f(F
—{(PO) = lim (R +150) = F(Fy) eksisteerib parajasti siis, kui eksisteerib tuletis
05 -0 0 t
Jg'(0) = Pn(l) 9(t) ;g( ); seejuures need kaks tuletist on vordsed. Seega piisab teo-
reemi toestuseks niidata, et eksisteerib tuletis ¢’(0), kusjuures ¢'(0) = V() - |§
Funktsioon g on tolgendatav liitfunktsioonina
kus ¢;(t) = 29 + te;, i =1,...,m. Kuna
e funktsioonid ¢y, ..., ¢, on diferentseeruvad punktis 0, kusjuures ¢;(0) = ¢,

1=1,...,m;
e funktsioon f on diferentseeruv punktis Py = (29,...,2%) =(¢1(0),...,$n(0)),

siis liitfunktsiooni diferentseerimise reegli (teoreemi|1.8]) pohjal funktsioon g on dife-
rentseeruv punktis 0, kusjuures

m m

g(0) = fr.(Po) §3(0) = > fr(Po) c; = Vf(Po) - 5o = V() -

i=1 i=1 |

| o

9

il

nagu soovitud. O]

Maérkus 2.3. Kui teoreemis loobuda eeldusest funktsiooni f diferentseeruvuse
kohta punktis Fp, siis valem (2.1 iildjuhul ei kehti.

Niide 2.1. Vaatleme kolme muutuja funktsiooni

u:f(x,y,z) = W

Sellel funktsioonil on punktis (0,0,0) olemas 16plik tuletis mis tahes suunas: kui § = (a, b, c) on
vektor pikkusega 1, siis

— Jtatbt t</ab 5 —
Z{(0,0,0)=%ir% f(0+ta,0+tb,(3t+tc) £(0,0,0) =}irr(1) at c:}h% ta C _ §ape
S — — —
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Eelnevast ndhtub ka, et funktsioonil f eksisteerivad punktis (0, 0, 0) 16plikud osatuletised muutujate
x, y ja z jargi (sest need osatuletised on tuletised vastavalt z-, y- ja z-telje suunas), kusjuures

£2(0,0,0) = £;(0,0,0) = £2(0,0,0) = 0;
niisiis V £(0,0,0) = (0,0,0). Seega mis tahes tihikvektori § = (a, b, ¢) korral
V£(0,0,0) - 5= 0a + 0b + 0c = 0,

Z{(0,0,0) = Jabc + 0, kui a,b,c + 0.

Niide 2.2. Vaatleme kahe muutuja funktsiooni

2 = fla,y) = /a2y

Sellel funktsioonil on punktis (0,0) olemas 16plik tuletis mis tahes suunas: kui § = (a, b) on vektor
pikkusega 1, siis
of
2
Eelnevast ndhtub ka, et funktsioonil f eksisteerivad punktis (0,0) lophkud esimest jarku osatule-

tised muutujate x ja y jirgi (sest need osatuletised on tuletised vastavalt vektorite (1,0) ja (0,1)
suunas), kusjuures

kuid

f(0+ta,0+tb) — £(0,0) lim N i t\/ Y2
t T 50 t T 50

25 -0 =

f2(0,0) = f,(0,0) = 0;

niisiis V f(0,0) = (0,0). Seega mis tahes tihikvektori § = (a,b) korral
V£(0,0)- 5= 0a+0b=0,
of
EE
Teoreem 2.2. Olgu funktsioon u = f(P) = f(x1,...,%y) diferentseeruv punktis
Py = (29,...,2%) € R™. Siis funktsiooni [ tuletis punktis Py mis tahes suunas
ei tleta tema tuletist selles punktis gradiendi V f(Fy) suunas (ehk, teisisonu, tuletis
gradiendi suunas on koikvoimalikes suundades voetud tuletiste maksimaalne vddr-
tus). Funktsiooni f tuletis punktis Py gradiendi V f(Py) suunas on vordne gradiendi
V f(Po) pikkusega |V f(Py)|.

TOESTUS. Funktsiooni f tuletis punktis Py gradiendi V f(Fy) suunas on teoree-

mi [2.1] pohjal

kuid —%(0,0) = V/a2b # 0, kui a,b # 0.

2
of VI(F)- V(R V()
a—(PO): ( 0) ( 0):‘ ‘ Z‘Vf(P),
VI (F) VIR VF(P)
s.t. see tuletis on vordne gradiendi V f(P,) pikkusega.
Mis tahes §€ R™, § = 0, korral, defineerides 5, = (1. Cm) = ﬁ (s.t. 5 on
5

vektori § suunaline ithikvektor), on funktsiooni f tuletis punktis Py vektori §suunas
teoreemi [2.1] ja Rogers—Holderi vorratuse (vt. teoreemi [[[1.2) pohjal

of
pE

m

= Vf(R) §=Z Z (Po)l el

Iw

==(R) = Vf(R)- |

Z|féz Fy)? Z|Cz|2 IV f(Po)| 150] =

)y

(2.5)

s.t. see tuletis ei iileta funktsiooni f tuletist punktis Py gradiendi V f () suunas. [
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Markus 2.4. Vorratusteahelast ja tilesandest jireldub, et teoreemis (s.t. punktis P
diferentseeruva funktsiooni f korral) punktis Py kdikvoimalikes suundades voetud (funktsiooni f)
tuletiste maksimaalne viidrtus |V f(FP)| (gradiendi V f(Pp) pikkus) saavutatakse parajasti gradi-
endi V f(P,) suunas.

Mirkus 2.5. Kui m = 2 voi m = 3, siis voime teoreemi [2.2] toestuses Rogers—Holderi vorratuse
asemel toetuda trigonomeetria-alastele teadmistele. Esitame niisuguse toestuse.

TEOREEMI TOESTUS JUHTUDE m = 2 JA m = 3 JAOKS, MIS EI KASUTA ROGERS-HOLDERI
VORRATUST. Funktsiooni f tuletis punktis Py vektori § & 0 suunas on teoreemi péhjal, tahis-
tades stimboliga 6 nurga selle vektori ja gradiendi V f(P,) vahel,

of _
g,(PO) =

Vi) -5 _ [V f(Py)|15] cos®
|51 |51

Nieme, et sellel tuletisel on suurim voimalik vidrtus parajasti juhul, kui cosd = 1, s.t. § = 0 ehk,
teisisonu, vektori § ja gradiendi V f(P) suunad iihtivad. Eelnevast vordusteahelast ndeme ka, et
tuletis punktis Py gradiendi V f(Py) suunas on

of

o7y B = VIR0 cos0 = [V(Py).

= |Vf(P)| cosb.




§ 3. Korgemat jarku osatuletised ja diferentsiaalid

3.1. Korgemat jarku osatuletised

Olgu funktsioon u = f(P) = f(x1,...,T,) miiratud punkti Py = (29,...,2%) e R™
mingis {imbruses ning olgu i € {1,...,m}. Kui funktsioonil f eksisteerib igas punk-
tis P punkti Py mingist iimbrusest I/ 16plik osatuletis f; (P), siis selles imbruses on
madratud osatuletisfunktsioon

f;i:UBPHf;i(P)ER.

Definitsioon 3.1. Olgu j € {1,...,m}. Kui osatuletisfunktsioonil f; eksisteerib
punktis F (1oplik voi 1opmatu) osatuletis argumendi x; jirgi (f7,);, (Fo), siis seda
osatuletist nimetatakse funktsiooni f teist jarku (ehk lihtsalt teiseks) osatuletiseks

punktis Py (argumentide x; ja x; jirg:) ning téhistatakse siimbolitega

% f *u
P
al’j 6x, ( 0)’ ﬁxj &‘xz

(P0)7 f;:/i:(:j (P0)7 ugix]- (P0)7 fxiérj (P0)7 Ug;z; (PO) (31)

Vol
I 0 Cu_ o 0 no(0 0 " 0 0
axax($177$m)’ axax(xlyyxm)a fmimj($1,...,$m>, u$ixj($1,...7a?m),
J 1 Ji 3
fmixj(x(f’"'?x?n)’ U/x7x](x?,7l'0,'n)

Seejuures, kui j =+ i, siis seda teist jarku osatuletist nimetatakse segaosatuletiseks
(ehk segatuletiseks).

Kui mingi hulga D < R™ igas punktis P eksisteerib loplik teist jirku osatuletis
2,2, (), siis hulgas D on méédratud (teist jirku) osatuletisfunkisioon (argumentide
z; ja x; jirgi)
f;’ﬁj D3P+ fg’ﬁ’ﬂj(P) e R,
mida nimetatakse ka lihtsalt (funktsiooni f) teist jarku (ehk lihtsalt teiseks) osa-

tuletiseks (argumentide x; ja x; jirgi). Seda osatuletist (s.t. osatuletisfunktsiooni)
tdhistatakse siimbolitega

an azu " n
ox;0x;  OxjOx;’ fIin’ iy Joay Usia: (3.2)

Téhistused (3.1)) on tahistustega (3.2)) histi kooskolas: (16plik) teist jarku osatuletis
antud punktis on vastava osatuletisfunktsiooni viartus selles punktis.

Uldiselt,

& f ‘9(%) oy O (aag)

51‘]‘ 51‘1 a 6xj ’ &L'j &/L’Z a 51’]‘ ’

fi;,ixj = (f:;)gvﬁ ugixj = (u;l)’xj’
fwiwj = (fxi)ij ul‘in = (u:pl):pj
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Me kasutame téahistusi (juhu j = i jaoks)

2 2 2 2
6 f _ a f 5 u —. 6 u fl/ . U” _. u//
fxixi = x?a Ug;x; = uxf

Naiide 3.1. Leiame funktsiooni
2?2 — g2
aj 77
yxZ + y2

0, kui 22 + 9% =0,

kui 22 +y% + 0,
u= f(x,y) =

teist jarku osatuletised. Kui (z,y) £ (0,0), saame vahetult diferentseerides

)

6f( )= 23y — a9’ ! oty + 42y — P
./L. =
oz Y z2+y? ) (22 + y?2)?
millest siimmeetria pohjal

-

seega, jillegi vahetult diferentseerides,

an( ) = (a:4y + 4223 — y5>/ B —4x3y3 + 1229

x® — 4x3y? — J:y4.
(22 +42)2

o2 Y (22 + 12)2 (22 + 42)3
ja
o2 f 1) <x4y + 4oy y5>/ 26 4 9z%y? — 9ayt — b
€, = = )
Oy Ox (22 + y?)? y (22 + y?)3
millest siimmeetria pohjal vastavalt
7f( ) = —12x%y + 43y
0y? (z2 4+ y?)3
ja
o0 f (2.y) = 20 4+ 9xty? — 922yt — o8
ox oy’ (22 +y?)3

Leiame funktsiooni f esimest jarku osatuletised punktis (0,0):

97(0.0) = 1im (0+h0) 10,0 _ 1y, 020 _
ox h—0 h—0
of . (00+h) f(0,0) . 0-0
7y (0 = fimy I = =0
Niiiid saame leida funktsiooni f teist jarku osatuletised punktis (0,0):
0 0
& f y ai( 0 — l(o O L 0=0 .
@(0’ 0) = B0 h s o
—hd
02 Q(QO +h) — ﬁ(0,0) ——0 ho
T (0,0) = 1im 22 0r ~ _jim DL -1
oyox "’ h—0 h h0  h h—0 h® ’
of of
az—f(o 0) = lim 67/(07% Y- @(070) —1im 220 g
02t k0 h h>0 h ’
of of ho
2 7(O+h70) 7(070) — 0 5
0,0) = lim = lim = — =1
"L (0,0) = tim 2 % t "
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NB! Siin on siim-

bolite f ja n korvu-
tiolek halb.
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Uldiselt, (m muutuja) funktsiooni kérgemat jirku osatuletised defineeritakse re-
kursiivselt , sarnaselt teist jirku osatuletistega. Haarame jirgnevas kaasa ka (eelne-
vas juba defineeritud) teist jarku osatuletiste juhu.

Olgu n = 2, kusjuures eeldame, et meil on defineeritud m muutuja funktsiooni
(n — 1)-jarku osatuletisfunktsioonid.

Olgu funktsioon u = f(P) = f(z1,...,z,) midratud punkti Py = (29,...,2%) €

R™ mingis iimbruses ning olgu iy, ..., € {1,...,m}. Eksisteerigu funktsioonil f
igas punktis P punkti Py mingist iimbrusest U 16plik (n — 1)-jirku osatuletis
f;Zﬁ.;inil(P) (argumentide x;,,...,x; _, jargi). Siis selles imbruses on méadratud

(n — 1)-jérku osatuletisfunktsioon

il sUsP— il (P)eR.

TiyLip_q iy Tip_q

Definitsioon 3.2. Kui (n — 1)-jarku osatuletisfunktsioonil féZﬁ,l%in_l eksisteerib
punktis P, (I6plik v6i 16pmatu) osatuletis argumendi x;, jargi (fé’.”‘f” ); (PRy),

iy Tip_q

siis seda osatuletist nimetatakse funktsiooni f m -ndat jarku (ehk lihtsalt n-ndaks;

kirjutatakse ka: n-jarku) osatuletiseks punktis Py (argmentide x;,, ..., x;, jirgi) ja
tdhistatakse siimbolitega
o f o"u
— 2 (R), ————(Py), M) (P, u™ (B,
04, -+ Oy, (F) 0T, -+ 0y (B0): - foloa, (F0) iy (1) (3.4)
vOi
o f 0 0 "u 0 0
— (], ..., 2,,), ——(x1,...,7,,),
ﬁxin tee aZEil ( ! ) afﬂln s &\inl ( L m)
0 0 0 0
féz)xm (xla s vxm)v u(xill)xzn ($1, s 7xm)7
Faiy s, (29,...,22), Uy, i, (29,...,22).
Seejuures, kui moned indeksitest i, . . ., 7, pole omavahel vordsed (s.t. tegemist pole
olukorraga, kus x;,,...,x; on iiks ja sama argument), siis seda n-ndat jarku osa-

tuletist nimetatakse segaosatuletiseks (ehk segatuletiseks).

Kui mingi hulga D < R™ igas punktis P eksisteerib 1oplik n-ndat jarku osa-
tuletis fé?l),.,zin (P), siis hulgas D on médratud (n-ndat jarku) osatuletisfunktsioon
(argumentide x;,, ..., x;, jdrgi)

fim o DasPw— fM (P)eR,

Tiq T, Tiq - Tip,

mida nimetatakse ka lihtsalt (funktsiooni f) n-ndat jirku (ehk lihtsalt n-ndaks; kir-

jutatakse ka: n-jarku) osatuletiseks (argumentide x;,, ..., x;, jirgi). Seda osatuletist
(s.t. osatuletisfunktsiooni) tidhistatakse siimbolitega
o f o"u N "
fa(:71)xm7 u.g,’ll):vwﬂ fwzlxzn’ u$zlx1n (35)

&mn L 63:2-1 ’ 8:1:“1 L &\.Til ’

Tahistused (3.4) on téhistustega (3.5) hésti kooskolas: (l6plik) n-ndat jarku osa-
tuletis antud punktis on vastava osatuletisfunktsiooni vadrtus selles punktis.
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Uldiselt,

an—lf an—lu
anf 6(6w¢,n_1...5x¢1 ) 6nu a(azzn_lale

(n) — (fln=1) ! (n) — (y™D !
f‘ril'“win - (fxil'“minfl )(Ein7 u(til...$in - (uxil-‘ﬂ?in, )xin7

)

fx”...a:m (fﬂ%l---ﬂfzn,l)%,ﬁ Tiq Ty Tiq o Tip g ) Tiy,

Mirkus 3.1. Méarkimaks funktsiooni u = f(P) = f(x1,...,%,) n-ndat jirku osa-
tuletist argumentide x;,, ..., x; jargi, kasutatakse tdhistuste korval sageli ka
tahistusi
677, . 671 .
51’1‘” tet 51’1'1 f 2 51’,‘”’ Tt 6%-1 U,

niisiis (kooskolas mérkuses [1.1] kirjeldatud téhistustega)

o 0 ot
5%” s 6![‘1‘1 f - 5[[‘1‘” <5ZEZ”1 ce 5l’i1 f) )

Mitme muutuja funktsioonide korgemat jarku osatuletiste markimisel kasutatak-
se teist jarku osatuletiste puhul kasutatavate lihtsustavate tihistuste (3.3) analooge:
néiteks kolme muutuja funktsiooni u = f(z,y, z) korral

a3f a3f " "
ordrdr o3 Jaze =1 fa3,
an _. 55f f(5) _. f(5)
0x 0z 0z 0x 0y 01022 0z ay’ yrzzz ° Jyza2a0
56f . 56f

6)  _. (6
fzzxyyy - fz21y3‘

Oy 0y Oy Ox 0z 0z - Oy3 O0x 022

3.2. Korgemat jirku diferentseeruvus

Juhul, kui n = 2, defineeritakse m-muutuja funktsiooni n-kordne diferentseeruvus
antud punktis rekursiivselt : n-kordse diferentseeruvuse definitsioon toetub (n —1)-
kordse diferentseeruvuse moistele.

Definitsioon 3.3. Olgu n > 2. Oeldakse, et m muutuja funktsioon f on n korda
diferentseeruv punktis Py € R™, kui see funktsioon on n — 1 korda diferentseeruv
punkti Py mingis iimbruses (s.t. igas punktis punkti Py mingist iimbrusest on see
funktsioon n — 1 korda diferentseeruv), kusjuures selle funktsiooni (n — 1)-jarku
osatuletisfunktsioonid on diferentseeruvad punktis F,.

Oeldakse, et funktsioon f on n korda diferentseeruv hulgas D < R™, kui see
funktsioon on n korda diferentseeruv hulga D igas punktis.

Vahetult eelnevast definitsioonist nahtub, et antud punktis n korda diferentsee-
ruval funktsioonil eksisteerivad selles punktis koikvoimalikud loplikud n-ndat jdrku
osatuletised, sest funktsiooni f (n — 1) -jarku osatuletisfunktsioonide diferentsee-

NB! Siin on siim-
bolite f ja (n — 1)
kérvutiolek halb.



NB! Siin on siim-
bolite f ja (n — 2)
koérvutiolek halb.

NB! Siin on stim-
bolite f ja (n — 1)
koérvutiolek halb.

NB! Siin on siim-
bolite f ja (n — 1)
koérvutiolek halb.

NB!
bolite f ja n korvu-
tiolek halb.

Siin on siim-

NB! Siin on siim-
bolite f ja (n — 1)
korvutiolek halb.
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ruvusest punktis Py jareldub funktsioonil f koikvoimalike n-ndat jarku osatuletiste
olemasolu ja 16plikkus selles punktis (sest teoreemi pohjal funktsiooni diferentsee-
ruvusest antud punktis jareldub sellel funktsioonil 16plike esimest jarku osatuletiste
olemasolu selles punktis koigi argumentide jérgi ning funktsiooni (n — 1)-jarku osa-
tuletisfunktsioonide esimest jirku osatuletised on parajasti selle funktsiooni n-ndat
jarku osatuletised).

Vastavalt definitsioonile tihendab m muutuja funktsiooni f kahekordne dife-
rentseeruvus punktis Py € R™, et funktsioon f on diferentseeruv punkti Py mingis
tumbruses (ja seega teoreemz’ pohjal eksisteerivad sellel funktsioonil selles dimbru-
ses loplikud esimest jarku osatuletised koigi argumentide jirgi), kusjuures selle funkt-
stooni esimest jarku osatuletisfunktsioonid on diferentseeruvad punktis Py (ning see-
ga teoreemi pohjal sellel funktsioonil eksisteerivad koikvoimalikud loplikud teist
jarku osatuletised selles punktis). Jargnev teoreem kirjeldab m muutuja funktsiooni
n-kordset diferentseeruvust punktis Fy € R™ juhul, kui n > 3.

Teoreem 3.1. Olgu m muutuja funktsioon [ mddratud punkti Py € R™ mingis
tumbruses ning olgu n = 3. Jdargmised vaited on samavddrsed:

(i) funktsioon f on n korda diferentseeruv punktis Py,

(ii) funktsiooni f (n—2) -jarku osatuletisfunktsioonid on diferentseeruvad punk-

ti Py mingis imbruses, kusjuures selle funktsiooni (n—1)-jarku osatuletisfunkt-
stoonid on diferentseeruvad punktis Fp.

Teoreem on jareldus jargnevast teoreemist, mis kirjeldab m muutuja funktsiooni
n-kordset diferentseeruvust lahtises hulgas &/ < R™ juhul, kui n > 2.

Teoreem 3.2. Olgu m muutuja funktsioon f mddratud lahtises hulgas U < R™ ning
olgu n = 2. Jargmised vaited on samavdadrsed:

(i) funktsioon f on n korda diferentseeruv hulgas U;

(ii) funktsiooni f (n— 1)-jdrku osatuletisfunktsioonid on diferentseeruvad hul-
gas U.

TEOREEMI TOESTUS. Samaviérsus (i)<(ii) jireldub teoreemist sest selle
teoreemi pohjal on funktsiooni f (n — 1) -kordne diferentseeruvus punkti Py mingis

lahtises iimbruses samavéérne selle funktsiooni (n — 2)-jarku osatuletisfunktsioonide
diferentseeruvusega selles iimbruses. O]

TEOREEMI [3.2] TOESTUS. (i)=>(ii) on ilmne, sest funktsiooni f n -kordne diferent-
seeruvus hulgas U/ tdhendab selle funktsiooni n-kordset diferentseeruvust selle hulga
igas punktis, millest jareldub selle funktsiooni (n — 1)-jarku osatuletiste diferent-
seeruvus selle hulga igas punktis, mis aga tdhendab funktsiooni f (n— 1) -jarku
osatuletiste diferentseeruvust hulgas U.

(ii)=(i). Vaatleme kdoigepealt juhtu, kus n = 2. Kehtigu (ii), s.t. funktsioo-
ni f esimest jirku osatuletisfunktsioonid on diferentseeruvad hulgas U, s.t. need
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osatuletisfunktsioonid on diferentseeruvad hulga U igas punktis. Siis (lause poh-
jal) funktsiooni f esimest jirku osatuletisfunktsioonid on ka pidevad hulga U igas
punktis, jarelikult teoreemi pohjal on funktsioon f diferentseeruv hulga U igas
punktis, s.t. funktsioon f on diferentseeruv hulgas U. Veendumaks, et kehtib (i), s.t.,
et funktsioon f on kaks korda diferentseeruv hulgas U, jaab vaid (veel kord) mérkida,
et vastavalt tehtud eeldusele on funktsiooni f esimest jarku osatuletisfunktsioonid
diferentseeruvad hulga U igas punktis.

Eeldame niiiid, et naturaalarv k& > 2 on selline, et implikatsioon (ii)=>(i) kehtib,
kui n = k. Toestamaks, et implikatsioon (ii)=(i) kehtib iga naturaalarvu n > 2 kor-
ral, jadb niidata, et sel eeldusel implikatsioon (ii)=>(i) kehtib ka juhul, kui n = k+1.
Selleks eeldame, et m muutuja funktsiooni f k-ndat jirku osatuletisfunktsioonid

on diferentseeruvad hulgas U, s.t. funktsiooni f k-ndat jarku osatuletisfunktsioo-
nid on diferentseeruvad hulga U igas punktis. Veendumaks implikatsiooni (ii)=>(i)
kehtivuses juhul, kui n = k + 1, peame niitama, et funktsioon f on k + 1 korda
diferentseeruv hulga U igas punktis. Selleks piisab niidata, et

(1) funktsioon f on k korda diferentseeruv hulgas U;

(2) funktsiooni f k-ndat jérku osatuletisfunktsioonid on diferentseeruvad hulga U
igas punktis.

Tingimus (2) kehtib tehtud eelduse pohjal; niisiis ji&b néidata, et kehtib tingi-
mus (1). Tehtud eelduse pohjal implikatsiooni (ii)=>(i) kehtivusest juhul, kui n = k,
piisab selleks veenduda, et funktsiooni f (k— 1) -jarku osatuletisfunktsioonid on
diferentseeruvad hulgas U, s.t. need osatuletisfunktsioonid on diferentseeruvad hul-
ga U igas punktis. Teoreemi pohjal piisab selleks mérkida, et nendel (k — 1)-
jarku osatuletisfunktsioonidel eksisteerivad hulga U/ igas punktis loplikud esimest
jarku osatuletised (need esimest jarku osatuletised on funktsiooni f k-ndat jarku
osatuletised), kusjuures vastavad esimest jarku osatuletisfunktsioonid (s.t. funkt-
siooni f k -ndat jarku osatuletisfunktsioonid) on pidevad hulga U igas punktis (sest

lause pohjal jareldub funktsiooni f k-ndat jirku osatuletisfunktsioonide dife-
rentseeruvusest hulga U igas punktis nende osatuletisfunktsioonide pidevus selle
hulga igas punktis). O

Miérkus 3.2. Paljudes allikates (nt. opikutes [WII, I] ja [ICC]) defineeritakse m muutuja funkt-
siooni n-kordne diferentseeruvus antud punktis definitsioonist veidi erineval moel: funktsioon
u= f(P)= f(x1,...,%m) loetakse n korda diferentseeruvaks punktis Py € R, kui sellel funktsioo-
nil eksisteerivad selle punkti mingis timbruses koikvoimalikud 16plikud (n — 1)-jarku osatuletised,
kusjuures vastavad (n — 1)-jarku osatuletisfunktsioonid on diferentseeruvad punktis Pp.

Oun ilmne, et m-muutuja funktsiooni n-kordsest diferentseeruvusest punktis Py (definitsiooni
mottes) jareldub selle funktsiooni n-kordne diferentseeruvus mdrkuses kirjeldatud mottes,
sest funktsiooni (n — 1)-kordsest diferentseeruvusest punkti Py mingis timbruses jireldub sellel
funktsioonil kéikvoimalike (n — 1)-jarku osatuletiste olemasolu ja 16plikkus selles iimbruses.

Teiselt poolt (kui m > 2 ja n > 2), dldjuhul ei jireldu m muutuja funktsiooni n-kordsest
diferentseeruvusest antud punktis markuses [3.9 kirjeldatud méttes selle funktsiooni n-kordset dife-
rentseeruvust selles punktis (definitsiooni mattes).

NB!
bolite f ja k korvu-
tiolek halb.

Siin on siim-

NB! Siin on siim-
bolite f ja k korvu-
tiolek halb.

NB! Siin on siim-
bolite f ja k korvu-
tiolek halb.

NB! Siin on siim-
bolite f ja (k — 1)
kérvutiolek halb.

NB!
bolite f ja k korvu-
tiolek halb.

Siin on siim-

NB! Siin on siim-
bolite f ja k korvu-
tiolek halb.

NB! Siin on siim-
bolite f ja k korvu-
tiolek halb.

NB!
autorile teada-
olevad néited sellise
olukorra kohta on
mittetriviaalsed.

Konspekti



NB! Siin on siim-
bolite f ja (n — 2)
korvutiolek halb.

NB! Siin on siim-
bolite f ja (n — 1)
koérvutiolek halb.

NB! Siin on siim-
bolite f ja (n — 1)
koérvutiolek halb.

NB! Kuidas seda
moista?

NB! Vi “Sellessa-
mas”?
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Samas, m-muutuja funktsioon on n korda diferentseeruv lahtises hulgas U c R™ (definitsioo-
ni mottes) parajasti siis, kui see funktsioon on n korda diferentseeruv selle hulga igas punktis
mérkuses [3.9 kirjeldatud mottes — see samavédrsus jareldub vahetult teoreemist

Miérgime, et koik teoreemid /laused /lemmad /jareldused kiiesolevas konspektis, kus eelduseks on
mingi funktsiooni n-kordne diferentseeruvus (juhul n > 2) iikskoik kas mingis etteantud punktis
voi etteantud hulgas, jddvad kehtima ka juhul, kui n-kordset diferentseeruvust moista méarkuses[3.2]
kirjeldatud mottes, kusjuures ka nende tulemuste toestused sellise juhu jaoks jddvad sona-sonalt
(vOl peaaegu sona-sonalt) samaks. Siin on iiks huvitav niianss seoses jireldusega Nimelt, sel-
le jérelduse toestus toetub viitele, et (juhul, kui n > 2) antud punktis n korda diferentseeruv
funktsioon on selles punktis ka n — 1 korda diferentseeruv. Kui n-kordset diferentseeruvust moista
definitsiooni mottes, on see ilmne; kui aga mn-kordset diferentseeruvust moista mérkuses [3.2
kirjeldatud méttes, pole see iildsegi (nii) ilmne.

Olgu n > 2. Niitame, et antud punktis mérkuses [3.2)kirjeldatud mottes n korda diferentseeruv
funktsioon on nimetatud mattes ka n — 1 korda diferentseeruv selles punktis. Selleks eeldame, et m
muutuja funktsioon f on punktis Py nimetatud mottes n korda diferentseeruv, s.t. funktsioonil f
eksisteerivad punkti Py mingis timbruses U kéikvoimalikud 16plikud (n —1)-jirku osatuletised, kus-
juures vastavad osatuletisfunktsioonid on diferentseeruvad punktis Py. Siis funktsioonil f eksistee-
rivad imbruses U kéikvoimalikud 16plikud (n—2)-jarku osatuletised (sest (n—1)-jarku osatuletised
on (n — 2)-jarku osatuletisfunktsioonide esimest jarku osatuletised), seega, veendumaks, et funkt-
sioon f on n —1 korda diferentseeruv punktis Py mérkuses kirjeldatud mottes, jadb ndidata, et
funktsiooni ' f (n — 2) -jarku osatuletisfunktsioonid on diferentseeruvad punktis P,. Teoreemi
pohjal piisab selleks mérkida, et nimetatud (n — 2)-jarku osatuletisfunktsioonidel eksisteerivad 16p-
likud esimest jarku osatuletised punkti P imbruses U (need esimest jarku osatuletised on funkt-

siooni f (n — 1) -jirku osatuletised), kusjuures vastavad esimest jirku osatuletisfunktsioonid on

pidevad punktis Py (sest lause pohjal jireldub funktsiooni f (n — 1) -jarku osatuletisfunkt-

sioonide diferentseeruvusest punktis Py nende osatuletisfunktsioonide pidevus punktis FPp).

3.3. Piisavaid tingimusi segaosatuletiste soltumatuseks
diferentseerimise jirjekorrast

Lk. [71] niite funktsiooni u = f(z,y) puhul kehtis viljaspool punkti (0,0) vor-
dus f}, = f,., s.t. samade argumentite jérgi voetud segaosatuletis ei soltunud

diferentseerimise jarjekorrast. Samas pole see mitte alati nii: selles samas niites
1y(0,0) £ f7.(0,0).
Selles jaotises anname moned piisavad tingimused segaosatuletiste soltumatuseks
diferentseerimise jarjekorrast.
Teoreem 3.3. Olgu funktsioonu = f(P) = f(x,y) kaks korda diferentseeruv punktis
P = (z,y) € R% Siuis
TOESTUS. Teoreemi eeldustel leidub reaalarv d > 0, mille korral funktsioonil f

eksisteerivad (esimest jirku) osatuletised (s.t. osatuletisfunktsioonid) f; ja f; punkti
P = (z,y) timbruses (zr — d,x + d) x (y — d,y + d). Defineerime funktsiooni

O(h)y= f(x+h,y+h)—f(x+hy) — (f(x,y—i—h) —f(x,y)), he (—d,d). (3.6)
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Teoreemi toestuseks piisab néidata, et, iihelt poolt, KB Joonis?
2 2 .
®(h) = fo,(x,y) h* + o(h*) protsessis h — 0 (3.7)

ning, teiselt poolt,

®(h) = f (z,y) h* + o(h*) protsessis h — 0, (3.8)
sest nende esituste kehtides f (z,y) + 0(,?22) = fo(2,y) + O(h]f) protsessis h — 0,

millest jéreldub, et f (z,y) = f,.(z,y).
Esituse (3.7)) saamiseks fikseerime vabalt h € (—d,d)\{0} ja defineerime funkt-

siooni
&) =f&y+h)—f(&y), felv—da+d) (3.9)
siis
®(h) = ¢z + h) — o(x).
Kuna funktsioon ¢ rahuldab 16igus [z, x + k| (v6i 16igus [z + h, x|, kui h < 0) kéiki
Lagrange’i keskvadrtusteoreemi eeldusi, kusjuures

¢'(&) = ful,y+ h)— fil&y),

siis leidub arv 6 € (0, 1) nii, et NBI Kas on vaja
rohutada, et 6 sol-
tub arvust h?

®(h) = d(x+h)—p(x) = ¢ (x+6h) h = (fg’c(x+6’h,y+h)—f;(x+9h,y)) h. (3.10)

Kuna osatuletis(funktsioon) f. on diferentseeruv punktis P = (x,y), siis tema muut
punktis P esitub kujul

fi(z + Az, y + Ay) — fi(z,y)
= foe(x,y) Az + f (2,y) Ay + a1 (Az, Ay) Az + ax(Ax, Ay) Ay,

kus funktsioonid oy ja as rahuldavad tingimust o;(Az, Ay)

0,7 =1,2.
Az,Ay—0

Seega
fo(@ +0hy +h) — f.(x + 0h,y)
file +0h,y +h) — fi(z,y) — (filz + Oh,y) — filz,y))
fre (2, y) Oh + fr(x,y) h + ay(0h, h) Oh + a(0h, h) h
— (f%(z,y) Oh + a1 (0h, 0) Oh)

T

= fr (xz,y) h + a1 (0h, h) Oh + as(Oh, h) h — a1(6h,0) Oh.

Ty

Niisiis, arvestades, et ay(6h,h)0h + as(6h,h)h — a1(0h,0)0h = o(h) protsessis
h— 0,

®(h) = (fo,(x,y) b+ o(h))h = fr,(x,y) h* + o(h) h = f7,(x,y) h* + o(h?)
protsessis h — 0.

Esitus (3.8)) saadakse siimmeetria pohjal. ]
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Jargnev teoreem iitleb, et teoreemi vaide jaab kehtima ka veidi teistsuguste
eelduste korral.

Teoreem 3.4. FEksisteerigu funktsioonil u = f(P) = f(z,y) punkti P = (x,y) € R?
mingis imbruses segaosatuletised f;, ja f,., kusjuures need osatuletised (s.t. osa-

tuletisfunktsioonid) on pidevad punktis P. Siis

fry(P) = [y (P).

TOESTUS. Teoreemi toestus on oma iildideelt sarnane teoreemi [3.3| toestusega. Teh-
tud eeldustel leidub reaalarv d > 0, mille korral funktsioonil f eksisteerivad punkti
P = (z,y) iimbruses D := (r — d,z + d) x (y — d,y + d) teist jarku osatuletised
(s.t. osatuletisfunktsioonid) f;, ja f,, (ning seega iihtlasi ka esimest jirku osatu-

letised (s.t. osatuletisfunktsioonid) f. ja f}). Defineerides funktsiooni (B.6), piisab
(analoogiliselt teoreemi [3.3| toestusele) saada esitused ja (3-8).

Téapselt nagu ka teoreemi |3.3| toestuses, defineeritakse esituse saamiseks
koigepealt funktsioon (3.9) ning seejirel saadakse (iithe muutuja funktsiooni) Lagran-
ge’i keskvaartusteoreemile toetudes esitus . Kuna funktsioonil f eksisteerib

ristkiilikus D loplik segaosatuletis f7 | siis funktsioon

zy?
v(n) = fi(x+0h,n), ne(y—dy+d),

rahuldab 16igus [y, y + h] (voi 16igus [y + h, y], kui h < 0) koiki Lagrange’i keskvéir-
tusteoreemi eeldusi, kusjuures

v'(n) = fo,(x +0h,n),

NBI ks on waie jarelikult leidub arv 6 € (0,1) nii, et

rohutada, et 0 sal-
tub arvust h?

NB! Siin
on stimbolite
flz1, .., zm)

ja n  korvutiolek
halb; samuti on
stimbolite f ja n
koérvutiolek halb.

fil@+0h,y +h) — fi(x +0h,y) = v(y + h) — v(y) = v'(y + Oh) h
= f" (x+ 0h,y + Oh) h.

Osatuletise f;, pidevuse tGttu punktis (z,y)

foy(x 4+ 0h,y + @h) = f (z,y) + o(1) protsessis h — 0,

Ty

seega

®(h) = (f1,(x,y) + o(1)) h* = oy (T,Y) h* + o(h?) protsessis h — 0.

zy
Esitus (3.8)) saadakse siimmeetria pohjal. H
Selle punkti lopetuseks toestame iihe olulise jérelduse teoreemist

Jareldus 3.5. Olgu funktsioon u = f(P) = f(x1,...,x,) n korda diferentsee-
ruv punktis P = (x1,...,2,) € R™. Siis funktsiooni f n -ndat jirku osatuletised
punktis P ei soltu diferentseerimise jdarjekorrast.
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TOESTUS. Piisab vaadelda juhtu, kus n > 2. Olgu iy,...,4, € {1,...,m} ning
olgu ki, ..., k, indeksite 1,...,n mingi iimberjirjestus. Jarelduse toestuseks piisab
niidata, et

£ (P) = 10 L (P, (3.11)

Selleks omakorda, arvestades, et

e indeksite 1,...,n mis tahes iimberjérjestus on saadav jarjendist 1, ..., n nii, et
selles jarjendis muudetakse mingite kahe korvuti olevate indeksite jérjekorda,
saadud jarjendis muudetakse omakorda mingite kahe korvuti olevate indeksite
jarjekorda jne., kusjuures niisugust korvuti olevate indeksite jarjekorra muut-
mist teostatakse loplik arv kordi,

piisab néidata, et indeksite 1,...,n mis tahes iimberjarjestuse 71, ..., j, ja mis tahes
le{2,...,n} korral

— £n)
f:ﬂ“ $jl—2$jl—1zjlmjl+1'“wjn( ) - fmh"~le,21jl$jlflzjl+1"'wjn( ) (312)
(POHIENDADA, MIKS STIT JARELDUB VORDUS (B.11)!) . Olgu ji, ..., j, mingiindeksite 1,...,n
timberjérjestus ning olgu [ € {2,...,n}. Vorduse (3.12)) toestuseks piisab niidata, et
0,
ijl x-}[ QIJ] 1 ( ) f$_}1 le_2l’jlle_1 (P)

(POHJENDADA, MIKS SELLEST VORDUSEST JARELDUB VORDUS (3.12)!) . See vordus kehtib teo-
reemi pohjal. Toepoolest, kuna funktsioon f on n korda diferentseeruv punk-
tis P, siis funktsmon f on ka [ korda diferentseeruv punktis P, jarelikult osatuletis-

funktsmon f;,;J1 z;,_, on kaks korda diferentseeruv punktis P (ponienNpaDA!) (kui

[ = 2, siis osatuletisfunktsiooni f% all moistetakse funktsiooni f ennast), see-

Tji—2
ga teoreemi [3.3] pohjal
0 (1-2)
ijl"'xj172xj171 ( ) (ijl Ijl 2)$]l 1 Z(P)
(1-2) " — £
(fol Ty Q)lele 1(P) - ijl...le_QJ:jlle_l (P)
(POHJENDADA!) . O

3.4. Korgemat jarku diferentsiaalid
Olgu funktsioon u = f(P) = f(x1,..., 2, ) diferentseeruv hulga D < R™ igas punk-

tis P. Fikseerides argumentide x4,...,z,, diferentsiaalide viartused dzq,...,dz,,
(s.t. lugedes need diferentsiaalid fikseeritud konstantideks), voime selle funktsiooni
esimest jirku téisdiferentsiaali tolgendada muutuja P (ehk siis m muutuja xq, ..., )

funktsioonina du = du(P):

o
ﬁl’l

(P)dxy + -+ ﬁ(P) dx,.

0T,

du = du(P) =
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Eeldame niiiid, et funktsioon f on fikseeritud punktis P € D kaks korda diferent-
0 0
seeruv (siis osatuletisfunktsioonid —— 3 f 6_f on diferentseeruvad punktis P). Siis
iL’l Tm
(vt. mérkust ka selle funktsiooni esimest jarku téisdiferentsiaal du (tolgendatu-

na eespool kirjeldatud viisil m muutuja funktsioonina) on diferentseeruv punktis P,
kusjuures tema (s.t. selle tédisdiferentsiaali) téisdiferentsiaal selles punktis avaldub

kujul
of of
ddP()Pd-()dm d()di.
@) = d(ZE) P+ v a( ) Py as, = S a( ) Py o
of of
Tahistades selles vorduses osatuletisfunktsioonide 6_ 6_ taisdiferentsiaali-
T T
de avaldistes argumentide z, ..., x,, diferentsiaalid (selguse huv1des) siimbolitega
dxy,...,0x, (eristamaks neid fikseeritud vdartustest dxy, ..., dx,,), s.t.
of % f f
P) = P)é Tt P)o ms = 17 s 110,
(5@)( ) oxy &Ei( )Tyt &rmﬁxl( )ox ’ mn
saame

d(du)(P) :Z(Z 52 gxl( )&Uj)d:m ZZ 5 gxl( ) 0x; d;.

Selle diferentsiaali vddrtust (s.t. funktsiooni f esimest jérku téisdiferentsiaali du
taisdiferentsiaali d(du) vadrtust punktis P), kui dx; = dz;, ¢ = 1, ..., m, nimetatak-
se funktsiooni f teist jarku (ehk lihtsalt teiseks) tdisdiferentsiaaliks punktis P ja
tihistatakse siimboliga d*u(P) voi d?f(P):

dPu(P) = 22 ax 5$ P) dz; dz;. (3.13)
7 7

Kui funktsioon u = f(P) = f(xy,...,2,,) on hulga D c R™ igas punktis kaks
korda diferentseeruv, siis analoogiliselt esimest jarku taisdiferentsiaali juhuga voi-
me argumentide 1, ..., z,, diferentsiaalide dx1, ..., dz,, fikseeritud viirtuste korral
funktsiooni f teist jarku tdisdiferentsiaali tolgendada muutuja P (ehk siis m muu-
tuja z1,...,7,) funktsioonina d?u = d*u(P); seejuures esitusest (jittes seal
argumendi P kirjutamata) saame, et

m m 62
Pu = Z;Z; 7 o, dz; dz,
1=19=

Bl Kas ks Juhime tdhelepanu, et funktsiooni f kaks korda diferentseeruvuse tottu hulgas D
rommser 0 (jéirelduse [3.5) pohjal)

aktsepteeritav
keelend?

2 2
ajj gxl - 52’ é;j koikide ¢, 7 € {1,...,m} korral.
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Nii naiteks kahe muutuja funktsiooni z = f(x,y) teist jarku téisdiferentsiaal esitub

kujul
2f >f 0?
drd
ayor YT 52

kolme muutuja funktsiooni u = f(x, y, z) teist jarku taisdiferentsiaal esitub kujul

dz=df = =3 5 da? + 2 dy?,

> f O f O f
dUde_aiL'de any2+@dz2
O f O f O f
+25y5wdxdy+25zﬁydydz+2525xdxdz
jne.

Funktsiooni kolmandat ja korgemat jarku téisdiferentsiaalid defineeritakse ana-

loogiliselt. Uldiselt, kui n > 2, siis n korda diferentseeruva funktsiooni u = f(P) = s Siin
flxy, ..., xy) n-ndat jirku tazsdzferentsmal d™u defineeritakse rekursiivselt vor- $e,... Vo
dusega d"u = d(d"'u), kus (n — 1)-jarku tiisdiferentsiaali d” 'u avaldises argu- """
mentide x4, ..., x,, diferentsiaalid dxq, ..., dx,, loetakse fikseeritud konstantideks
ja seda téisdiferentsiaali tolgendatakse m muutuja zq,...,x, funktsioonina ning
selle funktsiooni tiisdiferentsiaalis d(d"'u) voetakse argumentide zy, ..., z,, dife-
rentsiaalid dx1, ..., dx,, vordseks vastavalt diferentsiaalidega dz1, ..., dx,,.

Nii néiteks funktsiooni v = f(P) = f(z1,...,%,) kolmandat jarku téisdiferent-
siaal on NB! Kas lugeja

saab aru, kuidas

seda ‘ézlzda;l...

mdoista tuleb?

dgu = d(dzu)‘6x1=dx1,...,5zm=dxm (Z Z 833] 633 dl’z dflf]>
i=17=1 v

dx; dz;
j; ( (a'rj axl) 6xldx1,...,6xmdxm> ’

m
Z dx; dz;
J
-1 5$k 5% 6% 6m1=dx1,..‘,6xm=dxm

dx; dx; dxy,

dx1=dzxy,....0Cm=dxm

I
INgE

Il
—

7

i Ms I Mg

)

z:l ox (93:] ox;

ja, analoogiliselt, neljandat jarku taisdiferentsiaal on

||
i Mg

Z Z Z o 83:k 83:] . dx; dx; dxy dx;

ning, iildiselt, n-ndat jirku tédisdiferentsiaal on

"u = Z Z 5$zn dx“ ceda,

i1=1 in
H_z

n summamarki
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Arvestades, et n korda diferentseeruva funktsiooni n-ndat jarku segaosatuletised ei
soltu diferentseerimise jarjekorrast, saame siit niiteks valemid kahe muutuja funkt-
siooni z = f(z,y) korgemat jarku tdisdiferentsiaalide jaoks:

’f o f ’f ’f
d? da? dz? d dz dy? dy?
z = 23 +36y8$2 T y+3628 xy—i—ag y°,
i af af af f
4 2 72 3
dz = 6x4d +4é‘63d dy+66252d dy +46y35xdxdy +54 dy*

jne. Sarnasuse tottu binoomvalemiga esitatakse iildine valem kahe muutuja funkt-
NB! siinon sim siooni z = f(z,y) ‘m-ndat jarku tdisdiferentsiaali jaoks kujul

bolite f(z,y) ja n
0 0 "
dz=|—d —d :
? (ax "t y) /

korvutiolek halb.
Jargnevat lauset vajame me teoreemi (Taylori valemi jaiklitkmega Peano
kujul) toestuses.

Lause 3.6. Olgu n € N, n > 2, ning olgu funktsioon

u= f(P)= f(z1,...,2m)

n korda diferentseeruv punktis Py = (29,...,2%) € R™. Télgendame diferentsiaali
d"f(Py) muutujate hy,..., hy, funktsioonina, vottes selle diferentsiaali avaldises

dxy = hy, ..., dxy, = hy,. Siis igai€ {1,...,m} korral

odf

2 —(Py) =nd" ' fi (Py), (3.14)

kus diferentsiaali d"_lf;,i (Py) avaldises dxy = hy, ..., dey, = hpy,.

TOESTUS. Fikseerime vabalt i € {1,...,m}. Tahistame I := {1,...,m} ja J :=
{1,...,m}\{i}; siis koikide [, p € N korral

[ tegurit p tegurit
A

A

I'=11, . mbxx {1..om} ja JP =11, omN\} < - x {1, .. omNi} .

Kui [ € {n — 1,n}, siis iga p € {0,1,...,1} korral tihistame siimboliga [Ilg hulga, I
selliste jarjendite (i1,...,%;) alamhulga, mille indeksist i erinevate komponentide
arv on p, ning koikide p € {1,...,1} ja (k1,...,kp) € J? korral tdhistame siimboliga
J(lk1 7777 ) hulga Il selliste jarjendite (i, ...,%;) alamhulga, mille indeksist i erinevad
komponendid loetuna esialgses jirjekorras (s.t. jarjendiga (iy,...,4;) antud jérje-
korras) on ki, ..., k.

Téahistame koikide (44, ..., 14,) € I"™ korral

Oiy..ind = fggnl)xn (FPo) iy =+ iy s

.....
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siis d"f(Fy) = >, 67 ; [ ning seega
(it,min)el™
od"f(Ry) _ 3 55{3, ,znf an 3 005, inf
oh; = - oh;
(31,eestn )EI™ p=0 (i1 ,zn)elg
n—1
oo . f
=n hn by RO LU A
& 2
p=1 (k1,...,k’p)€Jp (Zl,...,’bn)
EI{L’H »»»»» kp)
n indeksit ¢
. . . D : asr . f
(siin me arvestasime, et ainus element hulgas I on (z, coy )y kUSJuures —gs =
nfiﬁ)(Po) h?~! ning et mis tahes (iy, ... ,i,) € I" korral T = 0). Teiselt poolt,
tiahistades koikide (j1,...,75, 1) € I”_l korral
-1 , -1
5]7}1»~~-7jn71 falfl = (falil)i(ﬁ’r;l)m]n_l (PO) h]l e hjn—l = 3(3:'2]'1.‘.1‘]‘”_1 (PO) h]l o hjn—l?

n — 1 indeksit ¢

saame (arvestades, et ainus element hulgas I§ " on  (4,...,7) , kusjuures 6 fl =

£ (Po)y by )

Py = Y oS =Z >

(J1sedn—1)€ln=1 =0 (j1,0rjn—1)elp ™!

S LGRS YD W = A

- (]17~~~7jn—1)61;7171

n—1
(n) n—1 Z Z Z n—1 '
_f h + 5]1 ----- Jn71f$¢‘
p=1 (k1,...kp)eJP (j1,.. 7.771 1)
EI(kl,ka)

Soovitud vorduse (3.14) toestuseks piisab niisiis niidata, et mis tahesp € {1,...,n—1}
ja (k1,...,k,) € JP korral

) n _ n—1 /
: ] oh: =n : ] 6j1:~~~7jn—1f$i (315)
. . 7 . A
(1}; sin) (415edn—1)
€10 kp) €100 k)

(POHJENDADA, MIKS SIIT JARELDUB SOOVITUD VORDUS (3.14)!) .

Olgu p € {1,...,n — 1} ja olgu (ky,...,k,) € JP. Siis mis tahes (i1,...,i,) €
I&lmkp) korral (arvestades, et punktis Py n korda diferentseeruva funktsiooni f n -
jarku osatuletised selles punktis ei soltu diferentseerimise jiarjekorrast)

O ind = Tk, (PO hiy I,

P

NB! Siin on siim-

bolite Py ja n koér-
vutiolek halb; sa-
muti on halb siim-
bolite f ja n korvu-
tiolek.
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seega .
00hin] 51-5.}.Ljnf = (n—p) fi’?_%h”% (Po) B P Vhyy - Dy,
niisiis, arvestades, et hulgas 1&17.‘.’,617) on CI'P = (n_"—p!)!p! elementi,
oor n!
(u;m “&’%:nf T (n—p—1)p! I i;)‘%kl...% (Po) b ™" g, -+
llky )
Teiselt poolt, kuna mis tahes (ji,...,j, 1) € I&:lkp) korral

6n_1 f, = fin) T (PO) h?_l_phkl T hk‘

11 yeeesJr— xT; n—p
J15-In—17 T4 i Thy-Thy P

ning hulga I&;lkp) elementide arv on C7'~} * = %, siis

|
n—1 "o n (n) n—l-py,
n G Z ) 5j17'~~:jn—1f1’i - (n —1— p)'p‘ fm?*pmklmmkp (PO) h”L hk:1 hkp.
WARTEED) Jn—1

In—l
ey, kp)

Vordus (3.15)) kehtib. O



§ 4. Taylori valem mitme muutuja funktsiooni jaoks

4.1. Taylori valem jaikliikmega Peano kujul

Meenutame iithe muutuja funktsioonide matemaatilise analiiiisi kursusest tuttavat
(ithe muutuja funktsiooni) Taylori valemit jadkliikmega Peano kujul.

NB! Siin on siim-
Teoreem 4.1 ((iihe muutuja funktsiooni) Taylori valem jadkliikmega Peano kujul). belite f jan korvu-
Olgu (ihe muutuja) funktsioon f n korda diferentseeruv punktis a € R. Siis mis

tahes punkti x jaoks funktsiooni f mddramispiirkonnast kehtib valem

fl@) = fa)+ ) @ a)* + an(@), (4.1)

kus funktsioon av, = a,(x) rahuldab tingimust oy, (x) = o((x —a)™) protsessis © — a.

Selles jaotises me iildistame teoreemi mitme muutuja funktsioonide juhule. Sel- N8t siin on siim-

. . « . « bolit ja k ko -
leks, arvestades, et k korda diferentseeruva iithe muutuja funktsiooni f k-ndat jir- gowes vam. "

ku diferentsiaal d* f(a) punktis a on defineeritud valemiga d*f(a) := f%*)(a) (dx)*,
mérgime, et valem (4.1)) on esitatav kujul

f@) = s+ D 1,

kus diferentsiaalide d* f(a) avaldistes dz = x — a.

Teoreem 4.2 (Taylori valem jaikliitkmega Peano kujul). Olgu funktsioon

u= f(P)= f(z1,...,%m)

n korda diferentseeruv punktis Py = (29,...,2%) € R™. Siis mis tahes punkti P =

(1, ..., 2m) jaoks funktsiooni f mddramispiirkonnast kehtib valem NB! Kuskil
voiks eksplitsiitselt
oelda, et valemit
2] nimetatakse

- dk P aylort wvalemiks
PPy = f(Ry + ) LU e
k=1 k' viidatakse  hiljem

(42) kui Taylori

d2 P d3 P dn P ;/alemi%llee!)ava nio?f
= j(py) +ap(py + AW DB IR e

Taylori valemi

jadkliikmeks.
. . . n . S i Sik
kus diferentsiaalide df (), ...,d"f(Fy) avaldistes Samut et
6elda, et jadkliikme
A 0 i kuju “an = o(p™)
Jp— L= JR— - — otsessis — 0"
dxl Li - L ml’ t 1’ e M, Eirmetat;ksz selle
jaakliikme Peano

. ey kujuks.
ning, tahistades

p= /At t A22, = d(P, P,

funktsioon a,, = o, (Axq, ..., Axy,) rahuldab tingimust o, = o(p™) protsessis p — 0.
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NB! Kas on se-
gav, et siinne p po-
le tapselt sama, mis
p teoreemi sdnas-
tuses?
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TOESTUS. Toestame teoreemi induktsiooni abil funktsiooni f diferentseeruvuse jér-
gu n jargi. Kuin = 1, siis teoreem kehtib teoreemi|l.4|samavéérsuse (i)<>(iii) pohjal.
Eeldame niiiid, et n = 2 ning et teoreem kehtib, kui seal arv n asendada arvuga n—1.
Niitame, et niisugusel eeldusel kehtib teoreem ka iilaltriikitud kujul. NB!| Siin on siim-

bolite f ja n korvu-

Olgu funktsioon f n korda diferentseeruv punktis Fp. Siis leiduvad reaalarvud iiowex haw.
01,...,0, > 0nii, et funktsioonil f eksisteerivad punkti Py risttahukakujulises iimb- xBt siin saaksi-

me tegelikult votta

ruses (2 — 01,29 +01) X - -+ x (2], — O, 27, + 0rm) 10plikud esimest jarku osatuletised 5 27250
koigi argumentide jirgi. Defineerime risttahukas U = (—01,01) X ==+ X (=0, Opn)  detimad - istann

. . ~ kad kuubid.
funktsiooni a = «a(hy, ..., h,,) vordusega
NB! Tegelikult
me saame siin
selle risttahuka-

n
1
Oé(hla e hm) = f(ﬂf? + h’l) .. ZB + h Z k_ ku&uhf& 61\112?r11s+e

61)><---><(T —

Sms "’J,(,],L + 5'm )
valida nii, et

kus diferentsiaalide d* f(P) avaldistes dz; = hy, ..., dx,, = h,,. Teoreemi toestuseks Mktsicon 7 on

piisab Héidata7 et rentseeruv selles

timbruses.  Sellisel
juhul eksisteerivad
funktsioonil f

= i 1 laplikud (n — 1)-
Oé(hl, R hm) O(p ) prOtseSS]'S p - O’ (43) jdfklu ! osa?uletised
selles timbruses

. i jarelikult
kus p := +/h? + --- 4+ h2.. Selleks paneme tihele, et eksisteerivad sellel
1 m )

funktsioonil ka
16plikud esimest

a(hy, oo hm) = (b1, .o By, hun) — (B, . Bynt, 0) jirku osatuletised
+ b, ... hieo, hine1,0) — a(ha, . .., A, 0, 0)
+a(hy,0,...,0) —a(0,0,...,0)

= Z’)/,(hl, ceey hm),
i=1

kus
%’(hl, 7hfm) = a(hb e 'ahiflahia()? s 70) - Oé(hla . '7hi717070a s 70)

Seega piisab tingimuse (4.3) (ning iihtlasi teoreemi) toestuseks nididata, et iga i €
{1,...,m} korral
Yi(hi, ..oy hin) = 0o(p")  protsessis p — 0. (4.4)

Selleks paneme koigepealt tihele, et funktsioonil a eksisteerivad risttahukas U lopli-
kud osatuletised koigi argumentide jargi, kusjuures iga i € {1,...,m} korral lause
pohjal

oo
3 ——(h, o hi) = fo (@) + B, T+ By
0 , 1 odFf(Py)
~ (f (Po) by + - +fxm(P0)hm)_kZ2Ha—hi
! ! - 1
:fxi(:c(l)—i—hl,...,xgl—i—hm)—fmi(x?,...,x%)—2k' kd U f(By)
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NBi Siin on sim- (siin diferentsiaalide d*~! f7 () avaldistes dzy = hy, ..., d&p, = hy,), millest, arves-
bolite f ja n kérvu- . . . - . .
tiolek halb. tades, et funktsiooni f m-kordse diferentseervuse tottu punktis P, on osatuletis-

funktsioon f; selles punktis n — 1 korda diferentseeruv (POHIENDADA!) , saame teh-
tud eelduse pohjal teoreemi kehtivusest juhul, kui seal arv n on asendatud arvuga
n — 1 (rakendades sellist teoreemi osatuletisfunktsioonile f ),

da Ep C k1
ah(hl,..., Zk'd (Py) + Bi(h, ..y ;2 d 1. (Py)
= Bi(h1, ..., hm),
kus diferentsiaalide d* f2,(Po) avaldistes dxy = hy, ..., dxy = hy, ja funktsioon 5;

rahuldab tingimust S;(hi, ..., hy,) = o(p" ') protsessis p — 0 (siin, nagu ka eel-
nevas, p = 4/h? 4+ --- + h2,). Lagrange’i keskvéartusteoreemi pohjal (ithe muutuja

funktsioonide jaoks) leidub iga i € {1,...,m} korral reaalarv 6; € (0,1) (mis soltub
argumentide hy, ..., h,, vidrtustest) nii, et

oo
/yi(hly ey hm) (hl, RN hi—la thl, 0, R ,0) hz = ﬁi(hla RN h’i—17 thz, 0, ce. ,O) hz

oh;

(ponseNDADA!) . Kuna f;(hy,...,hi 1,0;h;,0,...,0) = o(p"') protsessis p — 0
(POHJENDADA!) , siis jareldub siit, et iga i € {1, ..., m} korral kehtib (4.4) (poHIENDA-
DA!) . O

4.2. Taylori valem jaikliikmega Lagrange’i kujul

Selles jaotises anname jadkliikmele «,, Taylori valemis konkreetsema kuju (seda
kiill veidi tugevamatel eeldustel funktsiooni f jaoks kui teoreemis . Tépsemalt,
me {ildistame {ihe muutuja funktsiooni Taylori valemi jadkliikmega Lagrange’i kujul
(millega lugeja tutvus — voi vihemalt oleks pidanud tutvuma — {ihe muutuja funkt-
sioonide matemaatilise analiiiisi kursuses) mitme muutuja funktsioonide juhule.

Teoreem 4.3 ((ithe muutuja funktsiooni) Taylori valem jadkliikmega Lagrange’i
kujul). Eksisteerigu (iihe muutuja) funktsioonil f mingis punkti a € R sisaldavas
vahemikus U loplik (n + 1)-jarku tuletis. Siis iga x € U korral leidub punkt &, mis
paikneb punktide a ja x vahel, selliselt, et

no p(k)
@) = fa)+ 3L

Uldistamaks teoreemi m muutuja funktsioonide juhule, vajame me kumera
hulga moistet. Selleks meenutame, et ruumi R™ kahte punkti {ihendava sirgloigu
moiste toodi sisse k. [62] definitsioonis

Fo©)
(n+1)!

a)k + )n+1'

(x—a

Definitsioon 4.1. Oeldakse, et hulk D < R™ on kumer, kui tema mis tahes kahte
punkti iihendav sirgloik sisaldub selles hulgas.
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[~

JooNi1s 4.1. Vasakpoolne hulk selle joonisel on kumer — tema mis tahes kahte
punkti A ja B iithendav sirgldik sisaldub selles hulgas. Parempoolne hulk ei ole
kumer — tema punkte C' ja D iihendav sirgloik ei sisaldu selles hulgas.

Teoreem 4.4 (Taylori valem jaikliitkmega Lagrange’i kujul). Olgu funktsioon

u= f(P)= f(z1,...,%m)

n+ 1 korda diferentseeruv punkti Py = (29, ..., 2% ) mingis kumeras lahtises iimbru-

ses U. Siis iga punkti P = (x1,...,xy) € U korral leidub punkt R punkte Py ja P
iihendaval sirgloigul punktide Py ja P vahel (s.t. R = (29 + 0Axy, ..., 2% + 0Ax,,)
NBt  veiboia, ingi 0 € (0,1) korral) selliselt, et

peaks eksplitsiitselt
{itlema, et viimane

liidetav selle valemi n dkf(Po) dn+1f(R)
“paremal 'poolel’j P — P + +
e Ve f(P) = f(R) ;1 K (n+1)!
’f(Py)  df(R) d"f(Py) | d" f(R)
= (R, df (P,
J(Fo) +df(Po) + =5, 3 T T CESN

kus diferentsiaalide df (Py),...,d"f(Py) ja d"™' f(R) avaldistes
dr; = Awy=x; — 2, i=1,...,m. (4.5)
TOEsTUS. Olgu P = (x1,...,x,) € U. Defineerime iga t € R korral punkti
P = (o) + tAwy, ..., 2% + tAr,) e R™, (4.6)

kus arvud Azy,..., Az, € R on defineeritud vordustega (4.5). Paneme téhele, et
punkt P, eeskirja jérgi arvutatuna (s.t. punkt P, kus ¢ = 0) on meie esialgne
punkt Py ja P, = P ning et leidub reaalarv § > 0 nii, et P, € U iga t € (=9,1 + 0)
korral (POHJENDADA!) .

Toepoolest, hulga U kumeruse t&ttu mis tahes ¢ € [0, 1] korral P, € Y.
Olgu niitid ¢ > 0 suvaline. Kui ¢ € (-4, 0), siis

d(Py, Py) = \/(t Ax1)2+ -+ (tAxp)? = |t|\/Al‘% ++ Az2 < 0d(P, Py),
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kui aga t € (1,1 + §), siis (arvestades, et P = (2§ + Azy,..., 20 + Az,,))

d(P;,P) = \/((t— 1)Ax1)2 +-+ (- l)A;vm)2 =|t— 1|\/Aa:% + -+ Ax2 < §d(P,R).

Kuna hulga U lahtisuse tottu on Py ja P hulga U sisepunktid, siis leiduvad r¢,r > 0 nii, et
B(Py,r0) cU ja B(P,r) c U, s.t.

d(Q,P) <rg = QelU ja dQ,P)<r = Qel.

Niisiis, valides reaalarvu § > 0 nii, et 6 d(P, Py) < min{rg,r}, kehtib iga t € (=4, 1 + §) korral
Pt eU.

Defineerime funktsiooni
O(t) := f(P) = fa} + tAzy,. . o, + tAz,) = f(o1(t) -, (1)),
€ (—=4,1+9),
kus
¢i(t) = 2 +tAz;, i=1,...,m,
Funktsioon ® on liitfunktsiooni diferentseerimise reegli pohjal n + 1 korda diferent-
seeruv vahemikus (—4,1 + ¢), kusjuures iga t € (=0, 1 + 0) korral

(1) =3, 2L (01(0) - 0m (1) 1)

i=1 ?

_\of

- 221 61’1 (¢1( ) sz Z 6% Pt AZE“

n - af !
() - Z(ax,ww...,qsm(t))) An

i=1 ¢ t

(A 06,

= ;(;1 oz, (Cbl(t) cee ¢m(t)) ﬁ_t(t)) Ax;

— Z;; 3507, (¢1 (t)...,om(t) AxlA.CEJ ; 2:1 axja% (P,) Az;Ax;

ning, ildiselt, iga k € {1,...,n + 1} korral

m m akf
OW(t) = 3 - Y s (P) Ay, - Awy, = d*f(P),
i121 sz 5.7}% 5% k

kus diferentsiaali d*f(P;) avaldises kehtivad vordused (4.5)). Niiiid iihe muutuja
funktsiooni Taylori valemi pohjal jadkliikmega Lagrange’i kujul leidub 6 € (0, 1)
nii, et, tahistades R := Py,

F(P) = i
I+ 2 fk

nagu soovitud. O]

(I)(n+1)(9)

“O Gy 0

dn+1f( )
(n+ 1)1




§ 5. II peatiiki lisa.
Kujutuste &/ — R", kus U < R,
diferentseeruvus

Toome koigepealt sisse selles paragrahvis kasutatavad tahistused.

Koikjal selles paragrahvis on m ja n fikseeritud naturaalarvud, s.t. m,n € N.

NBl see wihiss Punkti x € R™ korral me eeldame, et tema koordinaadid on zq,...,2,, € R, s.t. x =
ehamgas - jedede (T1, .-, Tm) =t (x;)Ty, ning, teiselt poolt, etteantud arvude 1, ..., 2, € R korral
N amz_ T me kasutame tihistust (ilma seda tahistust eraldi sisse toomata) z := (1, ..., T,) €
A (z(,f):ﬁ::; R™. (Analoogilisi tdhistusi me kasutame ka ruumi R™ voi R™ punktide y, z, h, k,
(o somDiey u, v, W, a, b jms. jaoks.) Ruumi R™ elementi a = (ay, ..., a,) € R™ tolgendame me
halvad. sobival juhul ka {iheveerulise maatriksina
ay
a=| : (5.1)
am

ja, vastupidi, iiheveerulist maatriksit (5.1)) tolgendame sobival juhul jérjendina a =

(a1, ...,am,) € R™ Punkti x € R™ ja reaalarvu ¢ # 0 korral me kasutame kirjaviisi
T 1 (xl a:m)
—i=—x=(—...,—).
t t t t
FEukleidilist normi ruumis R™ téhistame siimboliga | - |, s.t.

Paneme tdhele, et mis tahes x,u € R™ korral
d(x,u) = |z — ul.
Lahtist ja kinnist kera ruumis R keskpunktiga a € R™ ja raadiusega r > 0

NBI Kinnist kera téhistame me vastavalt siimbolitega B(a,r) ja B(a,7), s.t.

me tegelikult ei ka-
suta/!

Bla,r) :={zxeR™: |z —a| <7} ja  Bla,r):={zeR™: |v—a|<r}

Funktsiooni f: U — R", kus Y < R™, korral on f;,..., f,: U — R alati funkt-
siooni f médravad nn. koordinaatfunktsioonid, s.t.

f(@) = (fi(z),..., fa(z)) iga x €U korral, (5.2)

ja, vastupidi, etteantud funktsioonide fi,..., f,: U — R korral loeme funktsiooni
f: U — R™ defineerituks vordusega ([5.2)).

90
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5.1. Funktsiooni D — R", kus D c R, piirvaartus

Olgu D < R™, olgu f: D — R” ning olgu o € R™ méiramispiirkonna D kuhjumis-
punkt. Kasutame funktsiooni f argumendina muutujat x.

Definitsioon 5.1. Oeldakse, et punkt ¢ € R™ on funktsiooni f piirvidrtus punk-
tis xo (vOi piirvddrtus protsessis © — x) voi et funktsioon f koondub punktiks ¢
protsessis  — 1z (voi argumendi vidrtuse ldhenemisel punktile x) ja kirjutatakse

lim f(z) =c voi f(z) —c,

ToT0 T—To

kui iga reaalarvu € > 0 korral leidub reaalarv 6 > 0 nii, et
[:IJED, 0 < |z — x| <(5] =  |f(z)—¢| <e.

Pole raske nédha, et funktsiooni f koonduvus on samavééirne tema koordinaat-
funktsioonide koonduvusega:

flx) — ¢ — filr) — ¢, i=1,...,n.

T—ITo T—T(
Kirjutades funktsiooni ¢: D — R korral

f(z) = o(p(z)) protsessis x — o,
moistame me selle all, et

f@) o
(@) som (0,0

n arvu 0

5.2. Funktsiooni i/ — R", kus 4 < R™, diferentseeruvuse
moiste
NB! Lugeja ei

Definitsioon 5.2. Olgu ¢/ < R™ lahtine hulk, olgu f: U — R" ning olgu = € U. pruugi teada, mis-

asi on lineaarne

Oeldakse, et funktsioon f on diferentseeruv punktis z, kui leidub lineaarne kujutus kujutus:
A: Rm i RTL Illl, et NB! Kas valemi

+ h —_ —_ Ah juures tuleks
f('r ) f(:lj) 0 (53) rohutada, et

h siin téhendavad
| | h—0 need siimbolid 0
teatavaid jérjen-

Kujutust A nimetatakse seejuures funktsiooni f (Fréchet’) tuletiseks punktis z ja deid — ©....,07

(Seejuures ka

tihistatakse siimboliga f'(x) (allpool veendume, et operaatori f tuletis punktis x [ 7, 9 titendad
on iiheselt méadratud):

h > (0,..., 0).)
f(z) = A.
Tahistades W := {h eR™ z+he Z/I} ja defineerides funktsiooni av: WW — R™,

alh) = f(x+h)— f(x)— Ah, heW,
voime valemi kirjutada kujul
f(z+h)— f(x) = Ah + a(h), kus a(h) = o(|h|) protsessis h — 0. (5.4)
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Markus 5.1. Mérgime, et siin hulk WV on lahtine. Toepoolest, W # &, sest hulk U/ on lahtine ja
seega  on tema sisepunkt. Fikseerime vabalt h € WW. Hulga W lahtisuseks piisab néidata, et h on
hulga W sisepunkt, s.t. mingi r > 0 korral B(h,r) € W. Hulga W definitsiooni pdhjal « + h € U.
Kuna U on lahtine, siis « + h on hulga U sisepunkt, seega leidub r > 0 nii, et B(z + h,7) C U.
Viite toestuseks jadb niitid ndidata, et B(h,r) € W. Selleks, fikseerides vabalt punkti z € B(h, ),
piisab néidata, et z € W, s.t. x + z € U, milleks omakorda piisab niidata, et = + z € B(x + h, r),
s.t. |z + 2 — (z + h)| < r. Veendume selles:

lt+z—(z+h)|=|z+z—a—h|=|z-h|<r

(sest kuna z € B(h,r), siis |z — h| < r), nagu soovitud.
Teine voimalus hulga VW lahtisuse toestamiseks on panna tihele, et W = —z + U, ja kasutada
fakti, et lahtise hulga nihe on lahtine.

Jirgnev lause[5.1]iitleb, et operaator A eelnevast definitsioonist (s.t. funktsiooni f
tuletis f'(z) punktis z) on iiheselt maaratud. (Sellise operaatori iihesus jéreldub ka
lausest [5.2] allpool, mille téestus ei kasuta lauset [5.1])

Lause 5.1. Olgu U < R™ lahtine hulk, olgu f: U — R™ ning olgu x € U. Siis leidub
alimalt ks tingimust (5.3)) rahuldav lineaarne kujutus A: R™ — R™.

TOEsTUS. Rahuldagu lineaarsed kujutused A, B: R™ — R™ vastavalt tingimusi (5.4) ja
f(x+h)— f(x) = Bh+ B(h), kus B(h) = o(|h|) protsessis h — 0.

Lause toestuseks piisab n#idata, et A = B, milleks, fikseerides vabalt z € R™\{0}, piisab niidata,
et Az = Bz. Selleks mirgime, et “piisavalt viikeste” ¢ > 0 korral (tdpsemalt, selliste ¢ > 0 korral,
mis rahuldavad tingimust = + tz € U)

A(tz) + a(tz) = B(tz) + p(tz),

seega ka
A(tz) a(tz) B(tz) B(tz)

|tz ltz] |tz [tz| 7

millest, arvestades, et operaatorite A ja B lineaarsuse tottu

Altz) _tAz Az

B(tz) tBz Bz
ltz] -tz ]

R

saame, et

Az a(tz) Bz  B(tz)
m—i— 2] —H—i- ] (5.5)

Kuna [tz] o 0, siis tehtud eelduste pohjal funktsioonide « ja 8 kohta
-

a(tz) 0 o B(tz)

[tz| t—0+ [tz]  t—0+

)

A B
seega jareldub vordusest (5.5)) protsessis t — 0+, et 2z —Z, millest Az = Bz, nagu soovitud. O

EINE
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5.3. Funktsiooni i/ — R", kus U4 < R™, diferentseeruvuse
moiste kooskola funktsiooni &/ — R diferentseeruvuse
moistega

Selles punktis veendume, et iilaltoodud diferentseeruvuse definitsioon on koos-
kolas funktsiooni f: U — R (s.t. tavalise m muutuja funktsiooni) diferentseeru-
vuse definitsiooniga[I.2] s.t. veendume definitsioonide [5.2]ja [I.2] samavéirsuses juhul
n = 1.

Olgu U < R™ lahtine hulk ning olgu x € U.

Uhelt poolt, oletame, et funktsioon f: U — R on diferentseeruv punktis = defi-
nitsiooni mottes. See tdhendab, et leiduvad arvud aq,...,a,, € R nii, et

flz+h)— f(x) = (a1hy + - + anhy)

n — 0. (5.6)

Defineerime kujutuse A: R™ — R,
Ah = athy + -+ aphy, h=(h1,...,hy) € R, (5.7)

siis A on lineaarne kujutus, kusjuures kehtib . Seega f on diferentseeruv punk-
tis = definitsiooni mottes.

Teiselt poolt, olgu funktsioon f: U — R diferentseeruv punktis = definitsiooni
[.2lmottes. See tihendab, et leidub lineaarne kujutus A: R™ — R nii, et kehtib (5.3)).
Algebra kursusest teame, et leiduvad iiheselt méédratud arvud aq,...,a,, € R nii, et

kehtib (5.7), niisiis kehtib (5.6). Seega f on diferentseeruv punktis x definitsiooni
L2 mottes.

5.4. Funktsiooni U/ — R", kus 4 < R™, ja teda miaravate
funktsioonide /4 — R diferentseeruvuse vahekord

Lause 5.2. Olgu U < R™ lahtine hulk, olgu f: U — R™ ning olgu x € U. Jdrgmised
vdited on samavddrsed:

(i) funktsioon [ on diferentseeruv punktis x;

(ii) funktsiooni f defineerivad funktsioonid fi,..., fn: U — R,

flz) = (fl(x),...,fn(x)), relU,

on diferentseeruvad punktis x.

Seejuures

0f1 df1
6_:m(x) E@)

fl(x) = : : S (5.8)
Ofn Ofn

NB! Siin  vist
vajab selgitamist,
kuidas vordust

(5.8) maista.



NB! Kas lugeja
moistab, mida siin
need siimbolid O t&-
hendavad?
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TOESTUS. (i)=(ii). Olgu funktsioon f diferentseeruv punktis z € U, s.t. (definitsiooni [5.2] pohjal)
leidub lineaarne kujutus A: R™ — R™ nii, et kehtib (5.4]). Algebra kursusest teame, et lineaarne
kujutus A: R™ — R"™ on iiheselt méédratud (reaal)arvmaatriksiga

ail .o A1m
A= .
anl Anm
kus iga h = (hq,..., hy) € R™ korral
ayy ... Qim hq Z;nzl a’ljhj m m
Ah = = : = (Z aljhj,...,Zanjhj> .
ani .- Qpm hom Z;":l anjhj Jj=1 j=1

Olgu ayg,...,an: W= {h eR™:. x4+ he L{} — R funktsiooni a: W — R"™ méiravad funktsioonid

(tingimuses (5.4)), s.t.
a(h) = (a1(R)srsscn(R))s h=(hise. . hi) € W, (5.9)

Tingimus a(h) = o(|h|) protsessis h — 0 tdhendab, et

a(h)
|h| h—0
ehk
a1 (h) ap(h) 0
L U S
s.t. iga i € {1,...,n} korral
|h]  h—0
ehk, teisisonu,
a;(h) = o(|h|) protsessis h — 0. (5.10)

Kuna iga h € W korral
fl@+h) = f(z) = (filz + 1), fulz + 1) = (fr(2), ..., ful2))
+

ja
Ah + a(h) = (}m ajhj,. .., Zam ) + ( o an(h)
(Z aljh +Oz1 i

anjhj + an( ))
j=1 j=1
siis tingimus tdhendab, et iga i € {1,...,n} korral
file + h) — fi(z) = ajrh1 + - + @imhm + a;(h), kus a;(h) = o(|h|) protsessis h — 0. (5.11)
Tingimus tahendab, et funktsioon f;: U — R™ on diferentseeruv punktis z; seejuures

0fi
a.l‘j

CLij =

(z) igaje{l,...,m} korral,

s.t. kehtib (5.8).
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(ii)=>(i). Eeldame, et funktsioonid fi, ..., f, on diferentseeruvad punktis x, s.t. igai € {1,...,n}
korral leiduvad arvud a1, ... @y, € R nii, et

fi(x + h) — fZ(I) = ailhl + -+ aimhm + Otz(h) = Z aijh]‘ + Oéq;(h),
j=1

kus funktsioon a;: W := {h € R™: z + h € U} — R rahuldab tingimust o;(h) = o(|h|) protsessis
h — 0. Niid

fa+h) = fla) =

—
=~
n

)a'“afn(x +h)) - (fl(x)v,fn(x))
) - fl(x)7"'vfn($+ h) _fn(x))

(h),...,Z anjhj +an(h)>

j=1

Il
—~
=~
n
—~_
8 8
+ o+
> S

DM
s
=
~
+
°

Il
N
N
o
S
o
>
~
o
S
o
>
.
~_
+
—
o)
S
=
>
Q
s
~
=
N

J=1 Jj=1
= Ah + a(h),
kus NB! Kas lugejale
aill e ay on selge, kuidas siin
m seda vordust A =
A= : : : ... maista tuleb?
anp1 .- Apym

ja funktsioon a: W — R"™ on defineeritud vordusega ([5.9).
Funktsiooni f diferentseeruvuseks punktis x jaidb niidata, et

a(h) = o(|h|) protsessis h — 0.

Viimane tingimus on implikatsiooni (i)=>(ii) toestuses sisalduva arutelu pohjal samavéiirne tingi-
musega ([5.10) iga 7 € {1,..., m} korral, mis kehtib eespool tehtud eelduse pohjal. O
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III peatiikk.
Ilmutamata funktsioonide teooria

§ 1. Jacobi maatriksid ja determinandid

Olgu funktsioonid

Up = un(P) = U/n(xh SR 7xm)

madratud hulgas D < R™. Siis siisteem ((1.1)) madrab kujutuse ®: D — R,
®(P) = (w1 (P),...,u,(P)) eR", PeD. (1.2)

Teiselt poolt, mis tahes kujutus ®: D — R" méérab iihesel viisil funktsioonid (1.1,
mis rahuldavad tingimust (1.2)): sellise omadusega funktsioonid (1.1) on defineeritud
vordustega

uw;(P)=u;, PeD, j=1,...,n, kus ®(P) = (uq,...,upy).

Niisiis, hulgas D < R™ madaratud funktsioonide sisteemid (1.1) ja kujutused
D — R" on tksiiheses vastavuses.

Eeldame niiiid, et funktsioonid ((1.1)) on diferentseeruvad hulgas D < R™.

Definitsioon 1.1. Maatriksit

ﬁul ﬁul 6u1
Ouy  Ous Ouy
0ry Oy 0T (1.3)
ou, Ou, ou,
o T e o

nimetatakse siisteemi (1.1)) (voi ka selle siisteemiga médratud kujutuse D — R™)
Jacobl] maatriksiks.

!Carl Gustav Jacob Jacobi (1804-1851) — saksa matemaatik

97
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Rohutame, et Jacobi maatriks pole arvmaatriks — tema elemendid on funktsioo-
nid. Jacobi maatriksi (1.3)) vaartus konkreetses punktis P € D on arvmaatriks (mille
elemendid on Jacobi maatriksi (1.3 elementide vddrtused punktis P € D)

ouy ouy ouy
?(P) %(P) %:C—m(P)
(5) U9 (%)
a—xl(P> a—mz(P) M(P)
é‘un' 5un' é‘un'
5—1,1(1[’) a—x?(P) P (P)

Vaatleme niiiid juhtu, kus n = m, s.t. siisteem (|1.1) omandab kuju

.............................. (1.4)

Definitsioon 1.2. Siisteemi (|1.4]) Jacobi maatriksi

- Ou Jur

or1 0oy 0%

or1 09 0%y

or1  Os 0%y

determinanti

oxr1 Oxa O m
D us  Cup Jua
M = | 01 Oxo 0T
Dl om0 .
Uy, Ol Oy,
or1 O0T9 0%,

nimetatakse stisteemi (|1.4]) (voi ka selle siisteemiga médratud kujutuse D — R™)
Jacobi determinandiks ehk jakobiaaniks.

Rohutame jillegi, et Jacobi determinant pole mitte arv, vaid funktsioon (Jacobi
determinandi vddrtus konkreetses punktis on arv).

Toestame iihe Jacobi maatriksite olulise omaduse: kujutuste korrutise Jacobi
maatriks on nende kujutuste Jacobi maatriksite korrutis.
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Teoreem 1.1. Olgu funktsioonid

Uy _ul(P) :ul(xla 7$m)7
.............................. (1.5)
Up = un(P) = un(xla 7xm)

diferentseeruvad hulgas D < R™ ning olgu funktsioonid

(1.6)

NB! Funkt-
sioonide (L.5)

diferentseeruvusest
hulgas D jéareldub
implitsiitselt,

et hulk D on
lahtine, ning
funktsioonide
diferentseeruvusest
hulgas A jéreldub
implitsiitselt, et
hulk A on lahtine.

diferentseeruvad hulgas A < R!, kusjuures siisteemiga (1.6) mddratud kujutuse A — R™

vadrtuste hulk sisaldub funktsioonide (1.5)) madramispiirkonnas:

{(ml(Q), (@) Qe A} < D.
Stis listfunktsioonid
(1.7)

on diferentseeruvad hulgas A, kusjuures sisteemi (1.7) Jacobi maatriks on sisteemi-

de (1.5)) ja (1.6) Jacobi maatriksite korrutis:

ot ot ot ory 0Ox 0T, ot ot ot
8t1 5t2 5tl 8171 é‘xg 8xm 8151 6252 6tl
oF, oF, ok, | | oun oua u, || dvm 0w O
é‘t1 5252 5tl 61’1 61‘2 6xm 6t1 6252 5tl
(1.8)
. . 5Fj . Ox; . . . Uj
(siin osatuletised L ja — arvutatakse punktides (Q € A ning osatuletised 3
k L

vastavates punktides (xl(Q), .

7xm(Q)) €D).

TOEsTUS. Liitfunktsioonide ([1.7)) diferentseeruvus jéreldub vahetult liitfunktsioo-
nide diferentseerimise reeglist (teoreemist [[I[1.8); seejuures koikide j € {1,...,n} ja
ke{l,... 1} korral

&xi
Oty

%(Q) = ; ZZZ (21(Q), ..., 2n(Q)) =(Q) iga Q € A korral;

niisiis vordus (L.8)) kehtib. O



NB!
sioonide

Funkt-
diferentseeruvusest
hulgas D jareldub
implitsiitselt,

et hulk D on
lahtine, ning funkt-
sioonide (1.10)
diferentseeruvusest
hulgas A jareldub
implitsiitselt, et
hulk A on lahtine.
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Kuna (ruut)maatriksite korrutise determinant on nende maatriksite determinan-
tide korrutis, siis jareldub teoreemist [I.1] juhul n = m =1

Jareldus 1.2. Olgu teoreemis n = m = l. Siis sisteemi (1.7) jakobiaan on
ststeemide (1.5)) ja (1.6) jakobiaanide korrutis:

D(Fy,...,F,)  D(uy,...,u,) D(w1,...,2,)
D(ty,...,ty)  D(xy,...,2,) D(ty,... 1)
D(Fy,....F,) . D(xy,...,z, . L O0F; | Ox;
(siin determinantides D((tiz — :tn)) D((xti, — 7;)) osatuletised ﬁlj ja afk arvu-
D(uy, ..., uy, . Ouy
tatakse punktides QQ € A ning determinandis M osatuletised Y vasta-
D(zy,...,x,) ox;
vates punktides (z1(Q), ..., zn(Q))).
Jareldus 1.3. Olgu funktsioonid
Uy :ul(‘P) :ul(xla )xm)u
.............................. (1.9)
Uy = um(P) = um(mb 7xm)
diferentseeruvad hulgas D < R™ ning olgu funktsioonid
Ty = xl(Q) = xl(ulv .- 7um)>
.............................. (1.10)
Tm = xm(Q) - xm(ula >Um)

diferentseeruvad hulgas A < R™, kusjuures sisteemiga (1.10) mddratud kujutuse
A — R™ vadartuste hulk sisaldub funktsioonide (1.9) mdadramispiirkonnas:

{(xl(Q),...,:cm(Q)): QEA} cD (1.11)
ning
(1 (0@ 2(@)) - 1w (21(@Q), -, 2n(Q)) ) = Q@ ige Q€ A Forral
(1.12)
Siis nende stisteemide jakobiaanide korrutis on samaselt vordne arvuga 1:
D(uy, ..., up) D(x1,..., %)
=1 1.1
D(x1,... ) D(ui, ..., uy) ’ (1.13)
8.1.
Jur - Ow OQun | |0 Om Ory
or1  Os O | | Our  Qus Oy,
or1 0oy Oy | | Our  Ous Oy, | = 1
Oty Oty Ot | |02 O, Om
or1 0o 0xm | | Our  Ous Oy,
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0 ‘ . . 0uy
(siin osatuletised ot arvutatakse punktides Q € A ja osatuletised 4 vastavates
Uj ZT;
punktides (z1(Q), ..., znm(Q)) € D).
TOESTUS. Defineerime iga j € {1,...,m} korral funktsiooni F;: A — R,
FJ(Q):uj(xl(Q)v"'?xm(Q))> Q€ A;
siis jérelduse [I.2] pohjal
D(uy, ..., up) D(x1,...,20)  D(Fi,...,F,)
D(xy,...,2p) D(ur, ... um) Dy, ... uy)"
Tingimuse (|1.12]) pohjal iga j € {1,...,m} korral
Fi(uy, ..., up) =u; iga (ui,...,u,) € A korral;
seega
oF, 0F, oF,
ou ou ou .
D(F; F, 61% 6]:?; 6#; (1) (1) 8
( L ’ m) == 6u1 6“2 6um == == 17
D(uh ) um) : : . : Do ;
OF,, 0F, oF,| (00 -1
ou;  Ous Oy,
niisiis 'samasus (|1.13]) kehtib. O

Vahetult eelnevast jéreldusest jareldub, et kujutuse ja tema poordkujutuse
jakobiaanide korrutis on samaselt vordne arvuga 1.

Jareldus 1.4. Olgu siisteemide (1.9) ja (1.10) poolt madaratud kujutused teineteise
poordkugutused, s.t. lisaks tingimustele (1.11) ja (1.12)) kehtivad ka

{(ul(P),...,um(P)): Pe D} c A
ja
(:El(ul(P), o (P)), o a (un (P, ,um(P))) =P iga P €D korral.
Siis kehtib (1.13) (siin vaadeldavates jakobiaanides osatuletised ? arvutatakse
»
ﬁuj !
&\Z’Z'

Uj

61‘1‘

? vastavates punktides (u1(P)7 e ,Um(P)) €h).
Uj

vastavates punktides (x1(Q), ..., 2, (Q)) € D

punktides QQ € A ja osatuletised

arvutatakse punktides P € D ja osatuletised

voi, summeetriliselt, osatuletised



§ 2. Uhe vorrandiga antud ilmutamata funktsioonid

2.1. Uhe muutuja ilmutamata funktsiooni mdiste

Sisaldagu kahe muutuja funktsiooni v = F(x,y) madramispiirkond ristkiilikut
I x Iy = {(x,y): xel,ye [2},
kus 17, I, € R on mingid intervallid. Vaatleme vorrandit
F(z,y)=0. (2.1)

Definitsioon 2.1. Oeldakse, et vorrand (2.1]) méirab ristkiilikus [; x I, muutuja y
muutuja z (ithese) funktsioonina

Yy = y(x), (2‘2)

kui mis tahes fikseeritud viéartuse x € I; korral vorrandil (2.1)) eksisteerib parajasti
iiks lahend y € I5.
Konealune funktsioon ((2.2)

L sz —y(x)ely

on madratud vordusega
F(z,y(x)) = 0;
see funktsioon seab punktile = € I; vastavusse vorrandi (2.1) ainsa lahendi y € I,.
Seejuures Geldakse, et funktsioon (2.2) on antud vorrandiga (2.1) ilmutamata

kujul.
\ v A
\ _________ - ds

N——] F(z,y) =

JOONIS 2.1

102
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NB! must- Néide 2.1. Jooniselon vorrandi F'(z,y) = 0 lahendite hulk kujutatud rohelisega. Ristkiilikutes
e ad Voo [ay, bi] x [e1, di] ja [ag, ba] % [c2, do] médrab see vorrand muutuja y muutuja = ithese funktsioonina:
punktihulka kui ¢ = 1 voi ¢ = 2, siis iga fikseeritud védrtuse z € [a;, b;] korral leidub vorrandil F(z,y) = 0

rohelisena ei née!

parajasti iiks lahend y € [¢;,d;]. Ristkiilikutes [as,b3] x [c3,ds] ja [aq,bs] X [c4,ds] €l midra
see vorrand muutujat y muutuja x iihese funktsioonina: leidub véirtusi « € [as, b3], mille korral
vorrandil F(z,y) = 0 on rohkem, kui iiks lahend y € [c3, d3] ning leidub vadrtusi « € [aq, by], mille
korral vorrandil F'(x,y) = 0 puudub lahend y € [c4, d4].

Naiide 2.2. Vaatleme vorrandit
22 +y? = 1. (2.3)

Paneme téhele, et

o vorrand méirab ristkiilikus [—1, 1] x [0, 1] muutuja y muutuja z (iihese) funktsioonina
y = y(z), sest iga fikseeritud viidirtuse x € [—1, 1] korral leidub vorrandil tapselt iiks
lahend y 16igust [0, 1] (see lahend on y = /1 — &?; niisiis y(x) = +/1 — 22); vt. joonise
vasakpoolset teljestikku;

e vorrand ei midra ristkiilikus [—1,1] x [0,1] muutujat  muutuja y (iihese) funkt-
sioonina, sest mis tahes fikseeritud vddrtuse y € [0,1) korral leidub vorrandil (2.3 kaks
lahendit 16igust [—1,1] (need lahendid on = = /1 — y? ja © = —4/1 — y?); vt. joonise
vasakpoolset teljestikku;

o vorrand médrab ristkiilikus [—1, 1]x[~1, 0] muutuja y muutuja z (iihese) funktsioonina
y = y(x), sest iga fikseeritud vadrtuse x € [—1,1] korral leidub vorrandil tépselt iiks
lahend y 16igust [—1,0] (see lahend esitub kujul y = —+/1 — x2; niisiis y(z) = —+/1 — 22);
vt. joonise parempoolset teljestikku;

v A y A

1 [_171] X [07 1] 1
2?4yt =1
|
72 +y2 —1
~1 =1 [=1,1] x [~1,0]
JOONIS 2.2

e vorrand ei miidra ristkiilikus [—1,1] x [—1,1] muutujat y muutuja = (iihese) funkt-
sioonina, sest mis tahes fikseeritud véartuse x € (—1, 1) korral leidub vérrandil (2.3) kaks
lahendit y 16igust [—1,1] (need lahendid on y = v/1 — 22 ja y = —«/1 — 22); vt. joonise
vasakpoolset teljestikku;

e vorrand (2.3) ei médra ristkiilikus (—1,1) x [0, @] muutujat y muutuja = funktsioonina,
sest mis tahes fikseeritud véidrtuse « € (—3, ) korral puudub vorrandil (2.3 lahend y 16igus
[0, @], vt. joonise parempoolset teljestikku;
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v A v A

1 [_171] X [171] 1
o — 11 % [0, Y
Z = / \ AP0,
- 5 5 >
2 2
o'yt =1
-1 -1
JOONIS 2.3

e vorrand (2.3) ei méadra ristkiilikus [1,
mis tahes fikseeritud vadrtuse = € (
vasakpoolset teljestikku;

2] x (—00, 00) muutujat y muutuja = funktsioonina, sest
1,2] korral vorrandil (2.3) puudub lahend; vt. joonise

e vorrand médrab ristkiilikus [0, 1] x [—1, 1] muutuja z muutuja y (ithese) funktsioo-
nina r = x(y), sest mis tahes fikseeritud viiéirtuse y € [—1, 1] korral leidub vérrandil
tépselt iiks lahend x 16igust [0, 1] (see lahend on x = 4/1 — y?; niisiis x(y) = /1 — y?); vt.
joonise [2.4] parempoolset teljestikku.

]
v A 1 (1,2] x (—00,00) v A
oyt =1 : Pyt =1
i
]
-1 —1
Joonis 2.4

2.2. Uhe muutuja ilmutamata funktsiooni olemasolu ja
pidevus

Jérgnev teoreem annab piisavad tingimused {ihe muutuja ilmutamata funktsiooni
olemasoluks ja pidevuseks.
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Teoreem 2.1. FEeldame, et

(1) funktsioon uw = F(x,y) on mddratud ja pidev mingis ristkilikus D keskpunktiga
('rOa yO) :

D :=|xo— a,z0 + a] x [yo — 3,90 + 5] (o, B > 0);

F(x())yO) = 07'

iga fikseeritud vidrtuse v € [xo—a, xo+a] korral on funktsioon h,(y) := F(z,y)
rangelt monotoonne (s.t. see (argumendi y) funktsioon on kas rangelt kasvav
voi rangelt kahanev) loigus [yo — 5, yo + 5]

punkti (xg, yo) teatavas ristkilikukujulises imbruses mddrab vorrand F(x,y) = 0
muutuja y muutuja x (ihese) funktsioonina y = y(x);

?/(Io) = Yos

(c) funktsioon y = y(x) on punkli xq teatavas imbruses pidev.

TOESTUS. Viidete (a) ja (b) toestuseks piisab veenduda, et muutuja x iga viédrtuse
korral teatavast 16igust [zo—ap, zo+ o] < [xo— 0, zo+a] on vadrtused F(x, yo—pf) ja
F(z,y0+ ) erimérgilised. Niisugusel juhul mis tahes fikseeritud = € [z —ap, 2o+ ]
korral jéreldub vorrandi
ho(y) = F(z,y) = 0

lahendi (muutuja y suhtes) olemasolu Bolzano-Cauchy esimesest teoreemist (mér-
gime, et funktsioon h, on pidev 16igus [yo — 3, yo + B]); selle lahendi iihesus jareldub
funktsiooni h, monotoonsusest.

Oletame konkreetsuse mottes, et funktsioon h,,(y) = F(x¢,y) on rangelt kasvav.
(Selle funktsiooni range kahenemise juhtu kisitletakse analoogiliselt.) Siis

F(zo,90 — B) < F(x0,y0) < F(z0,90 + ),

s.t.
F(x(byo_ﬁ) <0< F(x07y0+/6)

Kuna funktsioon F' on pidev ristkiilikus D, siis on ta pidev ka punktides (xq, yo—/f) ja
(x0, Yo+ ) ning jarelikult (teoreemi pohjal pideva funktsiooni mérgi sdilimisest)
leidub reaalarv oy > 0 nii, et

T € [xg— gm0+ ag] = F(z,yo—fF) <0< F(x,y0 + )

(vt. joonist [2.5)). Viited (a) ja (b) on tdestatud.

Néitame, et funktsioon y = y(x) on pidev vahemikus (xo—ay, zo+ ). Fikseerime
vabalt punkti T € (o — ap, o + ) ja reaalarvu € > 0 ning téhistame § = y(Z). Me
peame leidma reaalarvu ¢ > 0 nii, et

T—0<zr<I+0 = gP—e<ylx)<y-+e.

NB!
vaide jadb kehtima,
kui eeldus (1)
asendada norgema

Teoreemi

eeldusega “F on
pidev iga oma,
argumendi jargi
(s.t., F on nmii

argumendi x kui ka
argumendi y jargi
pidev ristkiilikus
D”.
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(zo, 0+ B) Flr,y0+8)>0
Yo+ B---
y- _____ |
o . |
Yo — B+--- ' '
| | (:co,yo—ﬁ); F(z,y0 + ) <i0 |
i i i —— i >
Top— Q To— Qg To T x0+ oy 9+« T

JooNIs 2.5. Vorrandi F(z,y) = 0 lahendite hulk on joonisel vérvitud roheli-
seks. Mustvalge televisiooni vaatajad seda punktihulka rohelisena ei née!

Seejuures voime iildisust kitsendamata eeldada, et [§ — e, + €] < [yo — B, v0 + 5]
(poHIENDADA!) . Sel eeldusel piisab leida reaalarv 6 > 0 nii, et mis tahes x € (T —
0, T+9) korral on véadrtused F'(x,y—e¢) ja F'(x, y+¢) nullist erinevad ja erimérgilised,
sest niisugusel juhul (muutuja y) funktsiooni h,(y) := F(z,y) range monotoonsuse
ja pidevuse tottu 1oigus [y — &,7 + €] (Bolzano—Cauchy esimese teoreemi pdhjal)
vorrandi F(z,y) = 0 lahend y — s.t. vddrtus y(x) — paikneb arvude § —e ja y + ¢

vahel (vt. joonist [2.6)).

Kuna funktsioon u(y) = F(Z,y) on kasvav, siis
F@.§—2) < F®.3) < FE7+2),
s.t.,
F(Z,y—¢) <0< F(Z,y +¢),

Kuna funktsioon F on pidev punktides (Z,7 — ¢) ja (¥,7 + ¢), siis (teoreemi
pohjal pideva funktsioon mérgi sdilimisest) leidub reaalarv ¢ > 0 nii, et

T-d<zr<i+d = F,yj—¢e)<0<F(z,7+¢).
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Yo — B~

Ty — Q To

JOONIs 2.6. Vorrandi F(z,y) = 0 lahendite hulk on joonisel virvitud roheli-
seks. Mustvalge televisiooni vaatajad seda punktihulka rohelisena ei née!

Teoreem on toestatud. O

2.3. Uhe muutuja ilmutamata funktsiooni diferentseeruvus

Tugevdades teoreemi [2.1] eeldusi, anname piisavad tingimused ilmutamata funkt-
siooni tuletise olemasoluks.

Teoreem 2.2. Feldame, el
(1) funktsioon u = F(xz,y) on mddratud punkti (xq,yo) teatavas imbruses U;
(2) F(xo,90) = 0;

(3) osatuletised F, ja F, eksisteerivad ja on pidevad iimbruses U;

4)

(4) F(xo,90) ¥ 0.
Siis kehtivad teoreemi vdited (a)—(c). Veelgi enam,
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(d) funktsioonil y = y(x) eksisteerib punkti xo teatavas timbruses pidev tuletis,
kusjuures selles uimbruses

1 Fa(wy(@)
y'(z) = Fi(zy@) (2.4)

1418118

Fy(zo,y(x0))  Fi(zo,y0)  Fi(Po)

7 CATE) B o) R 0)

TOEsTUS. Konkreetsuse mottes eeldame, et F (o, yo) > 0 (juhtu, kus F} (zo, y0) <
0, késitletakse analoogiliselt).

Kuna osatuletis F; eksisteerib imbruses U ning on pidev punktis (zo, yo), siis iga
punkti (x,y) korral teatavast ristkiilikust

D :=[rg—a,z0+ ] X [yo— B,y + Bl U (o, 8 >0),

kehtib F (z,y) > 0. Siit jéreldub, et muutuja x iga fikseeritud véirtuse korral 16igust
[0 — a, 9 + a] on funktsioon h,(y) := F(x,y) rangelt kasvav 16igus [yo — 5, yo +
(]. Niisiis, funktsioon F' rahuldab ristkiilikus D teoreemi eeldusi (1)—(3) ning
jarelikult kehtivad selle teoreemi viited (a)—(c).

Olgu I mingi punkti zq sisaldav vahemik, milles funktsioon y = y(x) on pidev.
Teoreemi toestuseks jadb ndidata, et funktsioonil y = y(z) eksisteerib 16plik tuletis
vahemikus I, kusjuures vastav tuletisfunktsioon on selles vahemikus pidev.

Fikseerime vabalt punkti x € I ning vaatleme funktsiooni y argumendi muutusid
Ax, mille korral x + Ax € I. Tahistame

y=ylx) ja Ay=y(z+Ar)—y(z);
siis y + Ay = y(x + Az) ning jarelikult
F(r+ Az,y + Ay) — F(z,y) =0—-0=0.

Funktsioon F' on diferentseeruv iimbruse U igas punktis (sest sellel funktsioonil
eksisteerivad selles imbruses pidevad osatuletised), seega

0=F(z+Az,y+Ay)— F(z,y) = F(v,y) Av+ F,(z,y) Ay + A Az + p Ay, (2.5)
kus funktsioonid A = A(Az, Ay) ja u = pu(Az, Ay) rahuldavad tingimusi

A 0

a
Az, Ay—0 ] H Azx,Ay—0

0.

Funktsiooni y = y(x) pidevuse tottu Ay = 0 ning jarelikult ka A, u = 0.
Vordusest (2.5) jéreldub niiiid, et

Ay  Fi(z,y) + A F(z,y)
Az Fl(z,y)+p a0 Fi(z,y)
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Siit jareldub, et
- -Ble) k)
Jry)  F(x,y(n)
Tuletisfunktsiooni ¢’ pidevus jareldub funktsioonide F, F; ja y pidevusest. Teoreem
on toestatud. O]

Mairkus 2.1. Kui lisaks teoreemi eelduste tdidetusele funktsioon F' on kaks
korda diferentseeruv ristkiilikus D, siis liitfunktsiooni diferentseerimise reegli (teo-
reemi pohjal funktsioon y = y(x) on kaks korda diferentseeruv punkti
teatavas limbruses, kusjuures selles iimbruses valemi pohjal, mérkides iiles-
kirjutuste lihtsustamiseks

F:=F(z,y(x), F.:=F.(z,y(x), F,:=F,(z,y(x)),
vy = Fly (:L’, y(x)), F;'Q = F;'Q (x, y(m)),
Fy, = Fy, = Fy, (2. y(2) = Fjo(2,y(2))

ning y := y(z) ja y' == y'(v),

F'iz,y(x))\’
o)

Y

(F2(e.y@)) Fy (@) — Fiey(@) (B (. 0(@) )

F!(z,y(x))”
(F7 + Foy Y ) Fy — Fo(Fyy + Fy)

(F)°
_FF), —FyFh+ (FLF) — F Fl) Y
(F)°
/ " / " ! " ! " Fa/C
FF), — F Fl, + (FLF), — F, ) — 5
— Y
(F)’
B EE) - () FlL - (F) F + FLF) FY,
(F)’
(B R 2B F B+ (F)FL
(£)’

Néaeme, et kui funktsiooni F' teist jarku osatuletised on pidevad punkti F, mingis
timbruses, siis ka teine tuletis(funktsioon) 3" on pidev punkti z, teatavas iimbruses.

Funktsiooni y = y(z) korgemat jérku tuletised saab leida analoogiliselt (eeldusel,
et funktsioon F' on punkti P mingis timbruses vastav arv kordi diferentseeruv).
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Niide 2.3. Leiame vorrandiga
23— 62%y +y° =31 (2.6)

punkti (2, —1) iimbruses méiratud funktsiooni y = y(z) esimest ja teist jarku tuletised punktis
T =2.
Selleks mérgime, et vorrand (2.6) on samavéirne vorrandiga F(x,y) = 0, kus

F(z,y) = 23 — 622y + > — 31.
Leiame funktsiooni F' osatuletised:
Fi(z,y) = 32® — 12zy, F,(z,y) = —62° + 3y°.
Nieme, et funktsiooni I’ osatuletised on kogu tasandil R? pidevad, kusjuures
F/(2,-1) = —21 40,

jarelikult (arvestades, et F(2,—1) = 0) teoreemi pohjal punkti (2,—1) teatavas {imbruses
vorrand (2.6) m#irab muutuja y muutuja z diferentseeruva funktsioonina y = y(z); seejuures,
mérkides edasises lihtsuse méttes y := y(z), valemi (2.4)) pohjal

, Fl(x,y) 32®—12zy a? —day

Y = — - : (2.7)
Fi(z,y) 622 — 3y? 222 — y?
millest, arvestades, et y(2) = —1, saame
4+8 12
2)=-1°2 =%
Y@ =g7=~

Kuna punkti z = 2 teatavas iimbruses kehtiva samasuse ([2.7) parem pool on diferentseeruv
(sest funktsioon y = y(x) on selles timbruses diferentseeruv), siis selle samasuse molemat poolt
diferentseerides saame

o (27 —dzy\ (2 —day) (227 — y?) — (27 — day)(22® — y?)
y = 272 — yz - (21‘2 _ y2)2
(20 — 4y — 4ay) (222 — y?) — (2® — day) (4o — 2yy)
(21‘2 _ y2)2 ’

millest, arvestades, et y(2) = —1 ja y/(2) = 1727

4+4-P)7-12(8- %) 56-96-96— % 1240
49 49 343

y'(2) = (

2.4. Mitme muutuja ilmutamata funktsiooni olemasolu ja
diferentseeruvus

Mitme muutuja ilmutamata funktsioonid defineeritakse analoogiliselt iihe muutuja
ilmutamata funktsioonide juhuga.

Sisaldagu m + 1 muutuja funktsiooni u = F(z1,..., %y, y) midramispiirkond
risttahukat

D=1 x - xLnxI={(1,....%m,y): t1€L1,...,0m €Ly, yel},
kus I,...,L,,I € R on mingid intervallid. Vaatleme vorrandit

F(zy,...,2m,y) = 0. (2.8)
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Definitsioon 2.2. Oeldakse, et vorrand (2.8) miirab risttahukas D muutuja y
muutujate 1, ..., x,, (iihese) funktsioonina

y=y(x1,...,Tn), (2.9)

kui mis tahes fikseeritud vddrtuste zy € I4,. ..,z € I, korral vorrandil (2.8)) eksis-
teerib parajasti iiks lahend y € I.
Konealune funktsioon ([2.9)

L x oo xTpo(xy,...,xn) — y(x1,...,xp) €T
on méidratud vordusega
F(xl,...,xm,y(xl,...,xm)) =0:

see funktsioon seab punktile (z1,...,2,,) € I x -+ x I, vastavusse vorrandi ([2.8))
ainsa lahendi y € 1.

Seejuures deldakse, et funktsioon (2.9) on antud vorrandiga ((2.8) ilmutamata
kujul.

Teoreem 2.3. FEeldame, et

(1) (m + 1 muutuja) funktsioon v = F(x1,...,Tm,y) on mddratud mingis rist-
tahukas D keskpunktiga Py = (29,...,2° yo):

D= (2] — a1, @) + o) X -+ X (T = Quny Ty + ) X (Y0 = B, 30 + B)
(stin oy, ..., Qp, 5> 0);
(2) F(R) =0;
(3) osatuletised F ..., F, ja F, eksisteerivad ja on pidevad risttahukas D;

(4) F,(Fo) + 0.

(a) punkti Py teatavas risttahukakujulises imbruses madrab vorrand
F(zy,...,2m,y) =0
muutuja y muutujate T, ..., T, (Ghese) funktsioonina y = y(x1,...,2m);
(b) y(ad, ... 25,) = yo;

(c) funktsioon y = y(xy,...,x,) on punkti (z9,...,2°) teatavas iimbruses pidev;

NB! Viide (c) ja-
reldub véitest (d).
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(d) funktsioonil y = y(x1,...,z,) eksisteerivad punkti (29, ...,20) teatavas imb-
ruses pidevad osatuletised v, ,...,v, , kusjuures selles iimbruses

Fél (x17 tee 7xm7y(x17 s 7:Cm))

!
Yp (X1, T) = — ; 2.10
i ) sz(:lrl,...,mm,y(:vl,...,mm)) ( )
N8I F (P
! 0 0 T 0
Yo (T], .. x) = ——= ==
! F/(Ry)

Teoreemi toestus on téiesti analoogiline teoreemi toestusega (seejuures
viidete (a)—(c) toestus kasutab teoreemi analoogi mitme muutuja ilmutamata
funktsioonide jaoks — mille toestus on jillegi téiesti analoogiline teoreemi toes-
tusega), seepérast jitame ta siin dra toomata.

Mairkus 2.2. Kui lisaks teoreemi[2.3] eelduste téidetusele funktsioon F' on kaks kor-
da diferentseeruv ristkiilikus D, siis liitfunktsiooni diferentseerimise reegli (teoree-
mi pohjal funktsioon y = y(z1,...,x,,) on kaks korda diferentseeruv punkti
(29,...,2%) teatavas iimbruses; seejuures tema teist jirku osatuletised saab leida
vottes osatuletised (punkti (z9,...,2%) teatavas iimbruses kehtivate) samasuste

(2.10) molemast poolest.

Naiide 2.4. Leiame vorrandiga
w3~y —x =2 (2.11)

punkti (1,2, —1) timbruses méadratud funktsiooni z = z(x,y) esimest ja teist jirku osatuletised
punktis (z,y) = (1,2).
Selleks mirgime, et vorrand (2.11)) on samavéirne vorrandiga F(x,y, z) = 0, kus

F(z,y,2) = 2%2% —y2® —x — 2.
Leiame funktsiooni F' osatuletised:
F!(z,y,2) = 32%2% — 1, Fy(x,y,2) = —23, Fl(z,y,2) = 22°2 — 3y2°.
N#eme, et funktsiooni F' osatuletised on kogu ruumis R3 pidevad, kusjuures

Fz/(1727 _1) =8 :*: 07

jarelikult (arvestades, et F'(1,2,—1) = 0) teoreemi pohjal punkti (1,2, —1) teatavas imbruses
vorrand (2.11) madrab muutuja z muutujate x ja y diferentseeruva funktsioonina z = z(z,y);
seejuures, mérkides edasises lihtsuse mottes z := z(x,y), valemi (2.10) pohjal

o _Fi(z,y,2) _ —32222 +1
”” Fi(z,y,2) 2x%2 —3yz?’ (2.12)
L N ‘
Y Fl(x,y,2) 2232 —3yz?2 223 — 3yz’
millest, arvestades, et z(1,2) = —1, saame
-3+1 1 1 1
! _ — / — = =
w2 =557 w2 =53573
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Kuna punkti (z,y) = (1,2) teatavas iimbruses kehtivate samasuste (2.12) paremad pooled on

diferentseeruvad (sest funktsioon z = z(z, y) on selles imbruses diferentseeruv), siis neid samasusi
diferentseerides saame

v ( —32%22 +1 )I _(=3222% + 1), (2232 — 3y2?) — (—3x22% 4+ 1)(22°2 — 3y2?)),
203z —3yz2 ), (223z — 3y=z?)?

(—6x22 — 62%22)) (2232 — 3yz?) — (=32%2% + 1)(62°%2 + 2232, — 6yz2))

(2232 — 3y22?)? ’
" (—32%2% + 1);(2:63,2 —3y2?) — (=322 +1)(2232 — 3yz2);

oy = <2x3z — 3yz2 > y - (2232 — 3yz?)?

( 62%22])) (202 — 3yz?) — (=3222% + 1)(22%2], — 32% — 6yz2])

(2232 — 3y22)? ’

, ( 22 )' ()(20® = 3yz) — 22(20° — 3y2),

yx m (21‘3 _ 3yz)2
_ 2220(22° — 3yz) — 2%(62% — 3y2))
= (2$3 _ 3y2)2 )
- Z72 ! _ (2;2);(23;3 _ 3yz) _ 22(2.273 _ 3yz);
v 223 — 3yz (227 — 3yz)2
_ 222! (21’ — 3yz) —22(-32 — 3yz,)
(223 — 3yz)? ’

millest, arvestades, et z(1,2) = —1, z/.(1,2) = i z,(1,2) = %,

(=6 +39)(—=8) = (=3+1)(-6+2+12) 31

z(1.2) = (—2-6) s
" $(-8)—(=3+1)(2-3+1) 17
zﬁy(l,Q) = — =——,
(—2-6) 128

; —12+6)-(6-%) 17
e U u R T

" _%(2"‘6)—(3—%) 17

Ze(1,2) = 2+ 6)2 = 72567

Eelnevas voinuksime iihe osatuletistest 2, ja 2, rehkendamata jitta — samasustest (2.12) nie-
me, et funktsiooni z osatuletised on punkti (z,y) = (1,2) teatavas timbruses diferentseeruvad, s.t.
funktsioon z on kaks korda diferentseeruv selles iimbruses ning jirelikult selles iimbruses funkt-
siooni z teist jirku segaosatuletised ei soltu diferentseerimise jirjekorrast.



§ 3. Vorrandite siisteemiga maaratud ilmutamata
funktsioonid

3.1. Vorrandite siisteemiga mairatud ilmutamata
funktsioonid

Sisaldagu m + n muutuja funktsioonide
uj = Fj(x1, .., T Y1y Yn), G =1,...,n, (3.1)
méadramispiirkond risttahukat
D=1 x - x Iy xJ x- - xJy,
kus I1,..., L, J1,...,J, € R on mingid intervallid. Vaatleme vorrandisiisteemi

Fl(xla-'wmmaylw"ayn) :Oa

Fol2, o oy YY) = O,

Fo(xy, o Ty Y1y -+ Yn) = 0.

Definitsioon 3.1. Oecldakse, et siisteem (3.2) miirab risttahukas D muutujad
Y1, ..., Y, muutujate 1, ..., x,, (iiheste) funktsioonidena

y1 =y1(T1, . Tm), e v Yn =Yn(T1, . T), (3.3)

kui mis tahes fikseeritud véartuste x; € Iy, ..., z,, € I,, korral siisteemil (3.2)) eksis-
teerib parajasti tiks lahend (y1,...,y,) € J1 X -+ X J,.
Konealused funktsioonid ({3.3))

I <o x Ly (x,. o, xm) — y(T1, . o) €J;, j=1,...,n,
on méidratud vordustega

Fj(zl,...,xm,yl(xl,...,xm),...,yn(xl,...,ycm)) =0, j=1,...,n,

s.t.iga j € {1,...,n} korral funktsioon y; = y;(x1,..., ) seab punktile (xq, ..., )
€ I x --- x I, vastavusse muutuja y,; vddrtuse slisteemi (3.2) ainsast lahendist

W1, yn) € Ty X o x .
Seejuures Geldakse, et funktsioonid (3.3) on antud siisteemiga (3.2)) ilmutamata

kujul.
Teoreem 3.1. Eeldame, et

(1) (m + n muutuja) funktsioonid (3.1) on mddratud mingis risttahukas D kesk-
punktiga Py = (x9,...,2° 4% ... y2):

0 JE—

X (Y = Buyyl + B) X - X (Yp = By Yo + Bn)

(siin oy, ..., Qpm, B, ... 0y >0);

D= (20 —ap, 20+ ay) x - x (2% — a, 20+ a)

114
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(2) Fj(Py)=0,j=1,...,n;
oFy, oF, . 0F,

] 1,... ] - - b stee-
(3) iga k € {1,...,n} korral osatuletised 2o B ja " eksistee
rivad ning on pidevad risttahukas D;
oF oF, OF'
Try Tpy - Sy
%1 %2 7
D(Fi,...,F,) ALY S o )
4 DT () = ayl 52/2 5yn ’ + 0.
() D(y17 7yn)( O) : :
j2 By - P
53/1( b) 5242( b) aZ/n( b)

Siis

(a) punkti Py teatavas risttahukakujulises imbruses mddrab sisteem (3.2) muutu-
jad yyi, ..., y, muutujate xy,...,x,, (tGheste) funktsioonidena (3.3));

(b) yi(ah,....ah) =95, 5 =1,....n;
(c) funktsioonid (3.3)) on punkti (z9,...,2°) teatavas iimbruses pidevad;

UNKISIo0oNntae . ersisieerivaa punskit (ry,...,T earavas umoruses pi-
d ktsioonidel (3.3)) eksisteerivad kti (9 0) teat imb '

r¥'m

devad osatuletised koigi arqumentide jirgi, kusjuures selles timbruses koikide
jel{l,...,n}jaie {l,...,m} korral

D(Fy,..., F,)
ay D(ylv"wy'—lwriay' 17"‘7yn)
6x]-(x1""’xm) = D(]F1 }J;) (34)
Dy, .-, yn)
(siin vordusmdrgist paremal olevates determinantides arvutatakse osatuletised
oFy, . 0F
—_— kti ey T, v )y Yn(X, o Tm)) ).
o, ja o punktis (x1, ..., Tm, y1(21 Tm) Yn (21 Tim)))

TOESTUS. Viime toestuse lébi induktsioonina vorrandite arvu n jargi siisteemis
(3-2). Juhul n = 1 on meil teoreem toestatud — see on teoreem [2.3] Eeldame niiiid, et
kehtib teoreemi analoog n — 1 vorrandist koosnevate siisteemide jaoks ning néditame,
et sel juhul kehtib teoreem ka n vorrandist koosnevate siisteemide jaoks.

Eelduse (4) pohjal erineb vihemalt iiks korrutistest

D(Fl, . ,Fn,l)
D(yi,- - Yj=1,Yj41 - - Un)

nullist (poHJENDADA!) . Konkreetsuse mottes oletame, et

D(F\,...,F, 1), . 0F,

Dlor ) 10 5y, (P £0.
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Siis siisteemi ([3.2)) viimane vorrand rahuldab teoreemi [2.3] eeldusi (m + n muutuja
funktsiooni jaoks), seega teoreemi pohjal punkti P, teatavas risttahukakujulises
iimbruses

Dy i= () — b +af) x -+ x (2, — ol o, + al)

< () = B+ BY) X X (yn = Bt + )

médrab siisteemi (3.2)) viimane vorrand muutuja y,, muutujate 1, ..., Ty, Y1, -+ Yn_1
(ithese) funktsioonina

YUn = O(T1, o Ty Y1y e oy Yn1),s (3.5)
millel eksisteerivad pidevad osatuletised koigi argumentide jirgi (ja mis on seetottu
ka ise pidev) punkti Ag:= (20,...,2% 9, ... 9% |) € R™*! {imbruses

AO = (:L’? - O'/(l)?‘r(l) + 04(1)) X X (xgz o Of?n,Ign + a?n)
0 0,0 0 0 0 0 0
x (yl - Blayl + Bl) Koo X (ynfl —Pp15Yp1 T Bn71)7
kusjuures ¢(A4g) = o(x,...,2%,4% ..., 98 ) = 9°; seejuures punkti A, iimbruses

kehtib samasus

Fo(@1, e T Yy ooy Y1, OB 15 oo Ty Y1, Y1) = 0. (3.6)

Defineerime iga k € {1,...,n — 1} korral funktsiooni

q’k(ith ey Ty Y1y - 7yn71) = Fk(fﬁh s Tmy Yty - ,yn71,¢>($17 ey Ty Y1y - - ,ynq));

siis siisteem (3.2]) on risttahukas Dy samavéirne siisteemiga

®1(‘/’K17"' 7xm7y17"'7yn71) == O
Do (L1, o Ty Y1y -5 Yne1) = 0, (3.7)

millele on lisatud vorrand (3.5) (pomsenpapA!) . Paneme téhele, et siisteem ([3.7))
rahuldab punkti A risttahukakujulises timbruses A teoreemi analoogi eeldusi n — 1
vorrandist koosnevate siisteemide jaoks. Toepoolest,

(1) funktsioonid @4, ..., ®, 1 on pidevad risttahukas Ag;
(2) iga ke {1,...,n — 1} korral

q)k(AO) = Fk(x(l]u s 7x9n7y?7 s 7y2717 ¢(A0)))
= Fk(x?w"7x?n>y?7"'ay2717y2) = Fk(PO) = O;

Ory’ " 0xy Oy1’ T OYn
eksisteerivad ja on pidevad risttahukas Ag; seejuures kéikide i € {1,...,m}, j €

(3) iga k € {l1,...,n — 1} korral osatuletised
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{1,....,n—1}ja A = (24, ..

0Py
61’1‘
o,
y;

kus P :=
(4) Veendume, et

Ty Y1y - -
0, OF,
0Fy, oFy,
A) = ZEpy+ &E
W=, 4

([L’l,...,l'm,yl,...

s Yn—1, ¢(A)) € Do.

oFy  O0Fy 09

(P)

(P)

117

- Yn—1) € Ag korral

20

o, (A),
0
0Y;

(A)7

oF, OF, 8¢

D(®y, ...

>®n71)

D(ys, ...

>ynfl)

(Ao) =

P _l’_ P
oy1  Oyn O

+
aynf 1 ayn aynf 1

OF, 0
(siin ja edaspidi voetakse koik osatuletised =k punktis Py ja koik osatuletised —¢

aF;@—l + aFn—l a_¢

o

OYn

oY1

6]'771—1 + a-Fn—l a¢

aynfl

OYn

aynfl

+0

Yj Yj
punktis Ag). Selleks tihistame
oh R OB
oYy OYn—1  OYn
D(Fy,...,F, ; ; :
spy= 2 B gy _op 7 om, om|
D(yh ) yn)
5y1 OYn—1 ayn
or, F, oF,
6y1 aynfl ayn
L : L . ¢
Liites viimases determinandis iga j € {1,...,n—1} korral j-ndale veerule ™ -kordse
Y,
viimase veeru, saame ’
oy | OF 0 oF; N oF, 0¢ oF;
1 Oy Oy OYn-1 OYn OYn—1  OYn
J(P)) = |oF,  0F, | 06 oF, . OF, . 06 OF, .|
Gy g ow dyey | dw e Oy
1 n n— n n— n
@ N oF, % oF, oF, 0¢ oF,
dyi - OYn I OYn-1  OYp OYn—1  OYn

Paneme téhele, et viimase determinandi viimase rea n—1 esimest elementi on nullid:
toepoolest, need elemendid on saadud (punkti A, iimbruses kehtiva) samasuse (3.6))
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diferentseerimisel vastavalt muutujate yy, ..., y,—1 jirgi. Seega
oF, N oFy d¢ oF, N oF, 0¢ oF,
Y1 OYyn Oy Wn-1 OYn OYn—1 Oy
J(Po) = |y OF, 1 06 0Fu oF, . 06 OF, 4
Oy Y Oy On-1  OYn OYn- g%n
0 o 0 n
Yn
D(®q,...,P, 1) oF,
= A R).
D(y1,- -, Yn1) (4o) 5yn( b)
D(®q,..., P, 1)

Kuna eelduse pohjal J(Fy) # 0, siis ka

Ap) # 0, nagu soovitud.
D(yla"'vynfl) ( O) &

Tehtud eelduse pohjal teoreemi analoogi kehtivuse kohta n — 1 vorrandist koos-
nevate siisteemide jaoks

(a) punkti Ay teatavas risttahukakujulises timbruses méérab siisteem (3.7]) muutu-
jad y1,. .., yp—1 muutujate 1, ..., x,, (iheste) funktsioonidena

y1 =1 (1, )y e v Yne1 = Yn1(T1,- -, Tm); (3.8)

(b) y;(ay,....a5) =95 j=1,....n—1
(¢) funktsioonid (3.8)) on punkti (29, ...,20) teatavas iimbruses pidevad;

(d) funktsioonidel (3.8)) eksisteerivad punkti (z9,...,2%) teatavas iimbruses pide-

rYm

vad osatuletised koigi argumentide jargi, kusjuures selles iimbruses koikide
je{l,...,n—1}jaie {1,...,m} korral

D(®y,..., D, 1)
D(?Jl e Yi 1, Ti Yj 41y - ?/nq)
Y _ _ 9 s J7 ) y S ) )
W)z, (@1, ) D(®y,...,d, 1) '
Dy, Yn1)

Defineerides taiendavalt funktsiooni

Yn(T1, .o Ty 1= gb(xl, e Ty Y1 (T )y Y1 (T, ,xm)),

ndeme, et teoreemi viited (a)—(c) ilmselt kehtivad (pomIENDADA!) ; lisaks eksistee-

rivad funktsioonidel yy, ..., y, punkti (2?,...,2%) teatavas iimbruses pidevad osa-
tuletised koigi argumentide xy,...,x,, jirgl. Jidb veenduda vaid valemi(te) (3.4)
kehtivuses. Selleks mirgime, et punkti (2?,... 2% ) teatavas iimbruses kehtib iga
ke {l,...,n} korral samasus

Fk(l’l,...7Im,y1(.f1,’1,...7Im),...,yn(l’1,...,SUm)) = 0,
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mida mis tahes i € {1,...,m} korral muutuja z; jirgi diferentseerides saame
0F, O0Fy 0 0Fy 0y,
k_|__k y1_|_..._|__k Y —
or; 0y oOx; 0Yn 0x;
.. . 5yj . . . k .
(siin osatuletised arvutatakse punktis (xy,...,2,) ning osatuletised ja
ZT; T
O
6_k punktis (z1, ..., To, Y1 (X1, - s ),y o s YnlT1, - ,xm))) Osatuletised 22 saa-
j T
me seega leida siisteemist
OF oy | ROy, __OF,
oy 0x; Oyn Ox;  Ox;
oF,, oy oF, Oyn _5Fn
Oy1 0x; oy, 0r;  Ox;
millest Crameri reegli jargi saamegi valemi (3.4)). 0
3.2. Kujutuse A —» R™, kus A c R, lokaalne pooratavus
Teoreem 3.2. Eksisteerigu funktsioonidel
T, = CEl(Q) = xl(ula ,Um),
........................... (3.9)
Ty = xm(@) = xm(uly 7um)
pidevad osatuletised punkti Qo := (u?,...,ul) € R™ mingis imbruses.
Kui stisteemi (3.9) jakobiaan
6:61 69{:1
D('Ilv axm) aU1 6um
D =1 . : (3.10)
(- tm) 0T, 0T,
8u1 o &um

erineb nullist punktis Qq, siis leiduvad punkti Qg lahtine dimbrus Ay < R™ ja punkti
Pyi= (29,...,2%) = (21(Qo), ..., 2m(Q0)) € R™ lahtine dimbrus Dy = R™ nii, et

ststeem (3.9) mddrab pédratava kujutuse
AQ 2 (Ul, Ce ,um) = Q — (.’1}’1(@), R ,l’m(Q)) € Do, (311)

kusjuures selle kujutuse péordkujutust Dy — Ag mddravatel funktsioonidel

uy = Ul(l'l, ...,l’m),
..................... (3.12)

eksisteerivad hulgas Dy pidevad osatuletised.

NB! Kas eelne-
vas on kuskil selgi-
tatud, kuidas seda
moista?
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Mirkus 3.1. Funktsioonide osatuletised voib leida jirgmise mottekiigu abil.
Stisteemi poolt méadratud kujutus Dy — Aq on siisteemi poolt méara-
tud kujutuse Ay — Dy poérdkujutus, seega nende kujutuste Ag — Dy ja Dy — Ay
korrutis on hulga A iihikteisendus; jarelikult teoreemi pohjal nende siisteemide
Jacobi maatriksite korrutis on hulga A iihikteisenduse Jacobi maatriks, s.t. iihik-
maatriks:

uy ur\ [0 DN 100
ory, Oz, ou,  Oup 01 0
Dttm o | | 02 Oz ; 5 E i
ory, Oz, ouy  Oup, o

Siin siisteemi (3.9)) Jacobi maatriks arvutatakse punktides @ = (uy,...,un) € Ag ja
stisteemi ([3.12)) Jacobi maatriks vastavates punktides P = (xl(Q), .. ,xm(Q)) € Dy.
Niisiis siisteemi (3.12)) Jacobi maatriks on siisteemi (3.9) Jacobi maatriksi poord-
maatriks:

5U1 5U1 51‘1 5m1 -t
or:, Oy, ouw,  Oup,
Ot Dt O O
ory Oz, ouy Oy,
s.t. mis tahes i,j € {1,...,m} korral
5x1 51’1 51’1 51‘1
5U1 o 5Uj_1 5Uj+1 o 5Um
595;‘—1 5510;‘—1 5@'—1 5@—1
5U1 o 5Uj_1 5Uj+1 o 5um
0wt OTiy1  0Tip1 041
5U1 o 5Uj_1 5Uj+1 o 5um
. Ot Ot O
duj _ (_qp Oy,  Ouj_r Oujpn  Oup
&xi 51’1 5x1
6U1 o 5um
O O
ou,  Oup,
oy
Siin, arvutades osatuletisi au] punktis P = (21(Q),...,2m(Q)) € Do, kus Q € Ay,
T
oxy,
tuleb osatuletised E arvutada punktis @) ehk, stimmeetriliselt, arvutades osa-
Uy
or
tuletisi (;L punktis P € Dy, tuleb osatuletised B_k arvutada vastavas punktis
z; Uy

= ((P),... un(P)) € Ay,
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Mirkus 3.2. On selge, et teoreemis [3.2] (ning seega ka tema erijuhus teoreemis
saame me iimbruse A valida sidusa. Sel juhul on ka iimbrus Dy sidus.

Ulesanne 3.1. Olgu funktsioonid
.............................. (3.13)

pidevad sidusas hulgas D < R™. Tdestada, et siisteemi (3.13]) poolt madratud kujutuse D — R”
kujutishulk

{(ul(P),...,un(P)): Pe D} c R"

on sidus.

Teoreemi toestus kasutab jargnevat lemmat (mille loomulik kodu (nagu ka
teoreemil on vektorfunktsioonide — kujutuste A — R", kus A < R™, teoorias).

Lemma 3.3. Olgu punkti Py := (29,...,2%) € R™ mingis imbruses mddiratud
funktsioonid
uy = u(P) = ui(x1,. .., Tm),
.............................. (3.14)
Up = Up(P) = up(T1,..., )

pidevad punktis Py. Siis punkti Qo := (uf, ..., u) := (u1(R), ..., u.(PR)) € R iga
tmbruse V < R" korral leidub punkti Py dmbrus U < R™, mille sisteemi (3.14)

poolt mddratud kujutus kujutab imbrusesse V:

e

{(ul(P), . un(P)): Pe u} c V.
TOEsTUS. Olgu V < R"™ punkti @)y timbrus. Siis iimbrus V sisaldab mingi rist-
tahukakujulise iimbruse

0

VO = (u(l)—Oél,U?‘i‘CKl) X X (um_am7u9n+am)-

Funktsioonide (3.14)) pidevuse tottu punktis Py iga j € {1,...,n} korral leidub
punkti P timbrus U nii, et

Pely = |u(P)—u;(F)] = [u;(P) = uo| < ay.
Niisiis, kui P € (U; =: U, siis
j=1

(ul(P), . ,um(P)) eEVoV,
nagu soovitud. O]

Uleskirjutuste lihtsuse méttes esitame teoreemi toestuse ainult erijuhu m = 2
jaoks (teoreemi toestus tildjuhul on téiesti analoogiline). Kuna me kasutame
edaspidises (ka?) just seda konkreetset erijuhtu, siis parema viidatavuse huvides
sonastame ta.
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Teoreem 3.4. Eksisteerigu funktsioonidel

v =2(Q) = a(u,v), 51s)
y=y(Q) = yl(u,v)
pidevad osatuletised punkti Qo := (ug, vo) € R? mingis iimbruses.
Kui siisteemi (3.15)) jakobiaan
D(z,y) A
=" 3.16
D(u,v) uy ( )

erineb nullist punktis Qo, siis leiduvad punkti Qg lahtine imbrus Ag < R? ja punkti
Py = (0, 90) := (2(Q0),y(Qo)) € R? lahtine iimbrus Dy < R? nii, et siisteem (3.15)
mddrab péoratava kujuluse

A0 3 (U,U) = Q — (I'(Q),X/(Q)) € Dy,

kusjuures selle kujutuse poordkujutust Do — Ag mddravatel funktsioonidel

{Z - “(x’y))’ (3.17)

/ !/ / !/
! Yy / — Ly / —Yu / Ty
Uy = ! 1| uy = / 1| Uy = / 1|7 Uy = ! !
xu I’U xu LEU I’U, x’l} xu xU
! / !/ ! ! / / !
y’u y’U yu y’U qu y'U yu yU
(siin osatuletiste ui,, u,, vy, v, arvutamisel punktis P € Dy arvutatakse osatuletised

xl,xh .y punktis Q = (u(P),v(P)) € Ay).

TOEsTUS. Olgu jakobiaan (3.16]) nullist erinev punktis Qy. Vaatleme siisteemi

F y Yy Wy = —x+ ) = 07
1z, y, u,v) x + x(u,v) (3.18)
FQ(Ivyauav) =Yy + y(“a”) = 0.
Funktsioonidel Fy ja F, eksisteerivad punkti Ry := (zo,yo,u0,v0) € R? teatavas

iimbruses pidevad osatuletised, kusjuures selle siisteemi Jacobi maatriks on

(£, (F), (F), (F),) _ (-1 0 =i, a3\
(e )-( )

0 -1 y’:L Yy
(siin osatuletised x,, «!, v, ja y, arvutatakse punktides (u,v)). Kuna punktis Ry

! !/

Ly Ty

/

Yo Yo

D(Fy, Fy)

D) T
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(siin osatuletised z!, !, y! ja y, arvutatakse punktis (ug,v9) = @), kusjuures
Fi(Ry) = F3(Roy) = 0, siis teoreemi pohjal leidub punkti Ry risttahukakujuline
iimbrus D; x A1, kus Dy ja Ay on vastavalt punktide Py ja )y ristkiilikukujulised
timbrused, milles siisteem (3.18) médrab muutujad u ja v muutujate x ja y iiheste
funktsioonidena (3.17)), millel eksisteerivad ristkiilikus D; pidevad osatuletised

D(Fy, F) 14

v D o

‘ D(F, F3) z, 2|
“D(u,v) v, %' Yo Yy
D(Fy, Fy) 0

D) :_‘—1 yz': 2,

Y D(Fy, F3) xl, o |
“D(u,v) Ve %' Yo Yo
D(Fy, F) o 1

Y Duww) i 0’: —y,

’ D(FY, ) z o 2l|
D(u,v) Yo Yol Y Vi
D(Fy, Fy) 0

o - Dy :_yL—J: Ty

v D(FY, Fy) xl, xh xl x
D(u,v) Yo Yol |V Y

(siin, arvutades osatuletisi u},, vy, u; ja v, punktis (z,y), tuleb osatuletised =, 7,
y., ja y,, arvutada punktis (u,v) = (u(z,y),v(z,y))).
Mérgime, et mis tahes P = (x,y) € D; korral

{QE = x(u(m,y),v(:ﬁ,y)),
y = y(u(z,y),v(z,y)),

seega kui @: Ay — R? ja U: D; — A, on vastavalt siisteemidega (3.15) ja (3.17)
médratud kujutused, s.t.

Q) = (2(Q).y(@), QeAy, ja  U(P)=(u(P)v(P), PeDi,

siis

P =®V(P) iga Pe D korral. (3.19)
Niilid vaatleme siisteemi
Gl(x7y7u7v) = —U+U($,y) = 07 (320)
Golz,y,u,v) := —v +v(z,y) = 0.

Funktsioonidel GG; ja G5 eksisteerivad punkti R, teatavas iimbruses pidevad osatule-
tised, kusjuures selle siisteemi Jacobi maatriks on
C@h(Qh(Qh(@h>:cQ%-% 0)
(Ga)', (Ga), (Ga), (G2), v, v, 0 —1)7

/
x



NB! Siin me kasu-
tame eeldust hulga
Do lahtisust!

124 111 Ilmutamata funktsioonide teooria

(siin osatuletised u, u;, v/, ja v} arvutatakse punktides (z,y)). Kuna jirelduse
pohjal punktis R,

/ /
D) | L
D(x,y) Uy U, xl, x
Yu Yo
(siin osatuletised ul, u,, v}, ja v, arvutatakse punktis (2o, o) = o ning osatuletised

/

zl,, =l yl ja y. vastavas punktis (ug,v9) = Qo), kusjuures Uy (Ry) = Ua(Ry) = 0
(POHJENDADA!) , siis leidub punkti Ry risttahukakujuline timbrus Dy x Ag, kus Do
ja Ay on vastavalt punktide P, ja (g ristkiilikukujulised iimbrused, milles siisteem
méadrab muutujad x ja y muutujate u ja v iiheste funktsioonidena

x = Z(u,v),
{y  puo) (3.21)

Seejuures voime iildisust kitsendamata eeldada, et ristkiilikud Dy ja A, on lahtised,
kusjuures Dy < Dy ja Ay < Ay (POHIENDADA!) . Mis tahes @ = (u,v) € Ay korral

{u = u(i(u,v),@(u,v)),
V= U((’IJ\(U, U),{y\(u7v))7

seega kui ®: Ay — D, on siisteemi (3.21) poolt madratud kujutus, s.t. @(Q) =
(2(@),9(Q)), Q € Ay, siis

Q= \IIEI\)(Q) iga () € Ay korral. (3.22)

Paneme téhele, et mis tahes Q € A, korral ®(Q) = ®(Q), sest iihelt poolt (3.22)
pohjal A A
PUPR(Q) = 2(VP(Q)) = ¢(Q),
teiselt poolt (arvestades, et ®(Q) € Dy « Dy) tingimuse (3.19) pohjal
PUPD(Q) = 2U(2(Q)) = ¢(Q).

Tahistame Ay 1= Ay ja Dy 1= ®(Ag) = {P(Q): Q € Ay = Ay} < Dy; siis
kujutuse ® ahend ®|r,: Ag — Dy on pealekujutus, kusjuures |5, on ka iiksiihene,
sest kui @1, Q2 € Ag = Ay on sellised, et (@) = P(Q2), siis

Q1 = TB(Q)) = U(D(Q1)) = T(P(Q1)) = T(V(Q2)) = T(D(Q2)) = TB(Q:) = Qa.

Teoreemi toestuseks jiaib niidata, et Dy on lahtine hulk ruumis R?. Olgu P, € Dy,
s.t. P = ®(Q4) mingi Q1 € A korral. Hulga A( lahtisuse tottu leidub punkti ¢4
{imbrus V < 4A,. Lemma pohjal leidub punkti P; iimbrus U < Dy, < Dy nii, et

U(U) ={¥(P): PeU}c V.
Niitid mis tahes P € U korral (arvestades, et W(P) € V)
P =®U(P)=®(V(P)) e ®(V) = ®(Ag) = Dy,
seega U < Dy, jarelikult P, on hulga Dy sisepunkt; niisiis hulk D on lahtine. O]
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Mairkus 3.3. Eelnevas toestuses voinuksime osatuletised uj,, u;, v, ja v, vélja reh-
kendada ka mérkusele tuginedes, s.t. arvestades, et siisteemi (3.17)) Jacobi maat-
riks on siisteemi (3.15)) Jacobi maatriksi poordmaatriks. Siin, arvutades osatuletisi
u,, Uy, U, ja v, punktis P = (x,y) € Dy, tuleb osatuletised z/,, x7,, ¥, ja v, slisteemi
(3.15) Jacobi maatriksis arvutada vastavas punktis ) = (u(P),v(P)) € Ay ehk,
siimmeetriliselt, arvutades osatuletisi u,, u;, v, ja v, punktis P = (x(QLy(Q)) €

Dy, kus Q € Ay, tuleb osatuletised z!, 2!, y! ja y. siisteemi (3.15)) Jacobi maatriksis
arvutada vastavas punktis Q).

Jareldus 3.5. Eksisteerigu funktsioonidel (3.9) pidevad osatuletised lahtises hul-
gas A < R™, kusjuures hulga A igas punktis jakobiaan (3.10) erineb nullist. Siis
ststeemiga (3.9) madratud kujutuse A — R™ kujutishulk

D= {(21(Q),...,2m(Q)): Qe A}c R™
on lahtine.

TOEsTUS. Jérelduse toestuseks tuleb ndidata, et hulga D iga punkt on tema sise-
punkt. Olgu Py € D, s.t. mingi Qo € A korral Py, = (l’l(Qg),...,l’m(Qo)). Teo-
reemi pohjal leiduvad punkti Q)¢ lahtine iimbrus Ay < A ja punkti P, lahtine
timbrus Dy < R™ nii, et siisteem (3.9) médrab pooratava kujutuse , aga siit
jareldub, et punkti F, lahtine iimbrus D, sisaldub kujutishulgas D; niiisis Py on
hulga D sisepunkt, nagu soovitud. [
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IV peatiikk.
Mitme muutuja funktsiooni
ekstreemumid

§ 1. Mitme muutuja funktsiooni lokaalsed
ekstreemumid

1.1. Lokaalse ekstreemumi moiste. Tarvilik tingimus lokaalse
ekstreemumi olemasoluks

Olgu funktsioon v = f(P) médratud punkti Py € R™ mingis imbruses.
Definitsioon 1.1. Oeldakse, et funktsioonil f on punktis P,

e lokaalne maksimum, kui punktil Fy leidub iimbrus U/ nii, et

f(P) < f(Py) iga P €U korral;

e [okaalne minimum, kui punktil Fy leidub timbrus U nii, et

f(P)= f(P) iga P €U korral.

Seejuures punkti Py nimetatakse vastavalt funktsiooni f lokaalseks maksimumpunk-
tiks ja lokaalseks miinimumpunktiks.

Teisisonu, funktsioonil f on punktis P lokaalne maksimum (vo6i, vastavalt, lokaalne
miinimum), kui sellel punktil leidub iimbrus, milles f(Fy) on selle funktsiooni suurim
vadrtus (voi, vastavalt, vihim vidrtus).

Lokaalset maksimumi ja lokaalset miinimumi nimetatakse lokaalseteks ekstree-
mumiteks.

Definitsioon 1.2. Oeldakse, et funktsioonil f on punktis P,

e range lokaalne maksimum, kui punktil Py leidub {imbrus U nii, et
f(P) < f(Ry) iga PeU\{Py} korral;
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NB! Vaib-olla,
tuleks siin  eksp-
litsiitselt rohutada,
et lok. maksimu-
mi ja miinimumi all
moeldakse  funkt-
siooni vddrtusi?
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e range lokaalne miinimum, kui punktil Py leidub {imbrus ¢/ nii, et

f(P)> f(PRy) iga PeU\{Py} korral.

Ranget lokaalset maksimumi ja ranget lokaalset miinimumi nimetatakse range-
teks lokaalseteks ekstreemumiteks.

Teoreem 1.1. FEksisteerigu funktsioonil w = f(P) = f(xy,...,2,) punktis Py =

(2%, ...,2%) € R™ loplikud esimest jirku osatuletised koigi argumentide jirgi. Kui

funktsioonil f on punktis Py lokaalne ekstreemum, siis selle funktsiooni koik esimest
jarku osatuletised punktis Py on vordsed nulliga, s.t.

f;i(Po)ZO, 1=1,...,m.

TOEsTUS. Konkreetsuse mottes eeldame, et funktsioonil f on punktis Py lokaalne
miinimum (juhtu, kus funktsioonil f on punktis P, lokaalne maksimum, késitletakse
analoogiliselt), s.t. leidub reaalarv e > 0 nii, et

f(P) = f(PR) iga P e U(Fy) korral.
Olgu i € {1,...,m}. Vaatleme funktsiooni

g(t) = f(af,...,a)  t,ad 4, a2)).
Paneme tdhele, et
(1) funktsioon g on médratud vahemikus (z? — ¢, 29 + ¢);
(2) funktsioonil g on punktis ¢ = 2 lokaalne miinimum;

(3) funktsioon g on diferentseeruv punktis ¢t = 9, kusjuures ¢'(z?) = f. (P).
Toepoolest, tihistame iga ¢ € R korral Q¢ := (a9,...,29_,,¢,29,,,...,2%); siis iga t €
(29—, 29 +¢) korral d(Qy, Py) = [t—a¥| < ¢, s.t. Q; € U-(Py), seega Q4 kuulub funktsiooni f mii-
ramispiirkonda ehk, teisisonu, funktsioon g on méiratud punktis ¢. Seejuures iga t € (2 —e, 29 +¢)
korral

9(t) = f(Q0) = f(Py) = g(?);
niisiis, funktsioonil g on punktis z{ lokaalne miinimum.

Viidetest (3) ja (2) jareldub Fermat’ teoreemi pohjal, et f, (F) = ¢'(z}) = 0, nagu

soovitud. O]
NB! Siinne
kontekst itleb . . > . .
mmpiteicsers, . Definitsioon 1.3. Oeldakse, et punkt P, on funktsiooni f
et funktsiooni
kriitilised punktid i . . A . . .
O bema i e statstonaarne punkt, kui sellel funktsioonil eksisteerivad selles punktis osa-
sisepunlktid. tuletised koikide muutujate jargi, kusjuures koik need osatuletised on vordsed
nulliga;

e kriitiline punkt, kui see punkt on kas funktsiooni f statsionaarne punkt voi selle
funktsiooni mingi osatuletis selles punktis kas ei eksisteeri v6i on 16pmatu.



NB! Siin piisaks

vihemastki

kui

diferentseeruvusest

(piisaks
osatuletiste
olemasolust.)

16plike
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Teoreemist [L.1] jareldub, et

e mis tahes funktsioonil saab lokaalne ekstreemum esineda vaid selle funktsiooni
kriitilises punktis;

o diferentseeruval funktsioonil saab lokaalne ekstreemum esineda vaid selle funkt-
stooni statsionaarses punktis.

Markus 1.1. Punkti statsionaarsus ei ole piisav tingimus funktsiooni lokaalse ekst-
reemumi olemasoluks selles punktis (isegi juhul, kui funktsioon on diferentseeruv
selles statsionaarses punktis).

Niide 1.1. Veendume, et funktsioonil z = f(z,y) := zy ei ole lokaalset ekstreemumit tema
statsionaarses punktis (0, 0).

Koigepealt mérgime, et punkt (0,0) on toepoolest funktsiooni f statsionaarne punkt, sest selle
funktsiooni osatuletised on

fo(wy) = (xy), =y ja fy(z,y) = (zy), ==z

ning seega f7,(0,0) = 0 ja f;(0,0) = 0. Lisaks, funktsioon f on diferentseeruv kogu tasandil R,
sest tema osatuletised on pidevad kogu tasandil.

Veendumaks, et funktsioonil f ei ole punktis (0, 0) lokaalset ekstreemumit, mérgime, et punkti
(0,0) mis tahes timbrus sisaldab punkte (x,y), kus x ja y on nullist erinevad ja samamérgilised
ning seega f(z,y) = zy > 0 = f(0,0), samuti punkte (z,y), kus = ja y on nullist erinevad ja
erimérgilised ning seega f(z,y) = zy < 0 = f(0,0).

1.2. Piisavad tingimused lokaalse ekstreemumi olemasoluks

1.2.1. Ruutvormi moiste ja maidratus

Definitsioon 1.4. Olgu a;; € R, a;; = a;;, ¢, = 1,...,m. Summat
m
Z Q5225 =: @(zl,...,zm) (11)
ij=1
nimetatakse ruutvormiks muutujatest zi,..., 2, € R. Arvusid a;;, 3,7 = 1,...,m,

nimetatakse selle ruutvormi kordajateks.
Definitsioon 1.5. Oeldakse, et ruutvorm (T.1]) on
e positiivsell mdadaratud, kui

®(21,...,2m) >0 koikide zy,..., 2, € R, 22 + - + 22 £ 0, korral;

e negativselt mdadratud, kui

O(21,...,2m) <0 koikide zy,..., 2, € R, 27 + -+ + 22 £ 0, korral.



NB! “Peamiinor”
voi “juhtmiinor”?
[Kypom, crp. 181]
iitleb: “rIIaBHLIN
MuHOpP”.

NB! “Sylvesteri
tunnus” vo6i “Syl-
vesteri  teoreem”?
Abel&Kaasik
{itleb, et “tunnus”.
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Positiivselt méiaratud ja negatiivselt midratud ruutvorme nimetatakse madratud
ruutvormideks. NB!  Rohutada,

. . oo oo . . . .o o, e t lisak aaratud
Ruutvormi (1.1)) nimetatakse mdadramata ruutvormiks, kui tal esineb nii positiiv- jo — misramata
seid kui ka negatiivseid vadrtusi.

ruutvormidele
on olemas

poolmddaratud
ruutvormid!

ka,

Definitsioon 1.6. Maatriksit

ajlr a2 A1m,
G21 Q22 a2m m
= (aij)i,jzl
Am1  Am2 Amm
nimetatakse ruutvormi (1.1) maatriksiks.
Determinante
ay; a2 A1m
Al = aiq, AQ = s ey Am =
21 a22

Am1  Am2 Amm

nimetatakse ruutvormi (1.1 peamiinoriteks.

Jargnev algebra kursusest tuttav teoreem voimaldab teha kindlaks ruutvormi
méadratuse selle ruutvormi peamiinorite méarkide pohjal.

Teoreem 1.2 (Sylvesteri'| tunnus). (a) Ruutvorm (L.1) on positiivselt mddiratud
parajasti siis, kui koik tema peamiinorid on posititvsed, s.t.

Ay >0, Ay>0, A, > 0.

(b) Ruutvorm (L.1)) on negatiivselt madratud parajasti siis, kui tema peamiinorite
mdargid vahelduvad, kusjuures Ay < 0, s.t.

A1<O, A2>0, A3<O, A4>O,

1.2.2. Uldine (s.t. m muutuja funktsiooni) juht
Olgu funktsioon u = f(P) = f(x1,...,zn,) kaks korda diferentseeruv punktis P, € R.

Definitsioon 1.7. Ruutvormi

ij=1

nimetatakse funktsiooni f Hessd| (ruut)vormiks (punktis Py) (muutujatest 21, ...,
Zp). Selle ruutvormi maatriksit ( fgifﬁj(PO))Zzl nimetatakse funktsiooni f Hesse
maatriksiks (punktis Py). 7

Nii Hesse ruutvormile kui ka Hesse maatriksile viidatakse terminiga hessiaan.

! James Joseph Sylvester (1814 — 1897) — inglise matemaatik
2Ludwig Otto Hesse (1811-1874) — saksa matemaatik.
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Mairkus 1.2. Siinkohal on oluline mérkida, et funktsiooni f Hesse maatriks on siimmeetriline,
s.t. mis tahes 4,5 € {1,...,m} korral fj, (Fo) = fi,.,(Fo) (see jéreldub teoreemi pohjal
eeldusest, et funktsioon f on kaks korda dlferentseeruv punktls Py.)

Funktsiooni f teist jarku téisdiferentsiaali

Pu(Po) = Y fr,.(Py) dudz;
ij=1
voib tolgendada kui selle funktsiooni hessiaani punktis Py (muutujatest dzy, . . ., dz,,),

mistottu sobivas kontekstis viidataksegi sellele diferentsiaalile kui hessiaanile.

Jérgnev teoreem annab piisavad tingimused lokaalse ekstreemumi olemasoluks
ja mitteolemasoluks kaks korda diferentseeruva funktsiooni statsionaarses punktis.

Teoreem 1.3. Olgu funktsioon u = f(P) = f(x1,...,%n) kaks korda diferentseeruv

oma statsionaarses punktis Py = (29,...,20) e R™.

(a) Kui funktsiooni f hessiaan punktis Py on positiivsell mdadratud ruutvorm, siis
funktsioonil f on punktis Py range lokaalne miinimum.

(b) Kui funktsiooni [ hessiaan punktis Py on negatiivselt mdadratud ruutvorm, siis
funktsioonil f on punktis Py range lokaalne maksimum.

(¢) Kui funktsiooni f hessiaan punktis Py on mdadramata ruutvorm, siis funktsioo-
nil f et ole lokaalset ekstreemumit punktis Py.

TOESTUS. Olgu reaalarv 6 > 0 selline, et funktsioon f on méadratud punkti Py
S-iimbruses U. Kui P = (29 + Azy, ..., 2% + Azx,,) € U\{ P}, siis Taylori valemi
pohjal (jaikliikmega Peano kujul; vt. teoreemi

1 1
f(P) = [(F) :df(P0)+§d2f(P0)+Oé: §d2f(P0)+04
(siin arvestasime, et kuna Py on funktsiooni f statsionaarne punkt, siis df(Fy) =
> fi.(Po)dxz; = 0), kus diferentsiaalide df (Py) ja d*f(P) avaldistes dz; = Az,
=1

i = 1,...,m, ning funktsioon a = a(Axy, ..., Ax,,) rahuldab tingimust a = o(p?)
protsessis p — 0, kus p := \/Az? + -+ + Az2, = d(P, P,)). Téhistame

ai]’ = fxli(Po) i,jzl,...,m,

A.CEZ‘

ja h; = ,1=1,...,m (mirgime, et h? +---+ h2, = 1); siis

F(P) = f(R) = 5 L u(Py) + Z o, (Po) Az; Az + o

1,j=1

2 m
p 2
:? ( E aijhihj—i-?) .

4,j=1



NB! Kas Weierst-

rassi teoreemidele
ikka viidatakse
kui “esimesele” ja
“teisele”? Jah, nii
[®] kui ka [WMII]
teevad nii!

NB! Lihtsam on
jireldada véaide (b)
vaitest  (a): kui
funktsiooni f hessi-
aan punktis Py on
negatiivselt — méé-
ratud ruutvorm,
siis funktsiooni —f
hessiaan selles
punktis on posi-
tiivselt méédratud
ruutvorm, seega
viite (a) pdhjal on
funktsioonil —f
selles punktis range
lokaalne maksimum
ning jérelikult
funktsioonil f on
selles punktis range
lokaalne miinimum.
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(a). Eeldame, et funktsiooni f hessiaan punktis Py (s.t ruutvorm (1.2])) on posi-
tiivselt médratud ruutvorm. Siis

O(hy, ... h) == Y, ayhih; >0,  kui Bf+---+h2, £ 0.

ij=1

Funktsioon ® = ®(hy, ..., h,,) on pidev tokestatud kinnises hulgas

Si={(h1,... hy) ER™: hi+---+h2 =1},

jarelikult Weierstrassi teise teoreemi pohjal leidub punkt (AY,..
milles see funktsioon ® saavutab oma miinimumi hulgas S. Seejuures

Lh2) e S,

) = @A, ... ) > 0.

min

DO(hy, ...
(i, him )ES (ha,

fr =

Mis tahes Axq, ..., Az, korral (mille puhul 0 < p < 9)

2IOéI)
p* )

Seega, valides reaalarvu ¢ nii, et 0 <& < ¢ ja

|

O<p<e = ?

< Y
4

saame mis tahes P € U.(Py)\{Fo} korral (sel juhul p = d(P, ) < ¢)

2 2 2
p 2|al p( u) 1P
—lp——>=(p—=)=—7—>0
2<“ p2) o 7o) T T

jarelikult funktsioonil f on punktis P, range lokaalne miinimum.

f(P) = f(R) =

Viite (b) toestus on analoogiline viite (a) toestusega.

(c). Eeldame niiiid, et hessiaan (1.2)) on midramata ruutvorm, s.t. leiduvad reaal-
arvad by, ... hl ja hY,... k! nii, et

q = Z ag hil; >0 ja ¢":= Z ag; hih < 0.

i,j=1 3,j=1

Seejuures voime iildisust kitsendamata eeldada, et h\* + -+ h! > = 1ja B> + -
+ hﬁf =1 (pomieNDADA!) . Tdhistame iga reaalarvu p > 0 korral

P! =

p

P = (x] + phy, ..., a5, + ph,) ja (2 + phlf, ... 20 + ph!").

Kui p < 4, siis P), P/ e U (sest d(P), Py) = d(P,, y) = p) ning valemi (L.3) pohjal
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(vottes toestuse alguse arutelus vastavalt Ax; = phl, i = 1,...,m, ja Ax; = ph!,
i=1,...,m)
2 [ m 2 2
P 20 0 20 p 2|«
PI_ P i Zh/hl - - = ! - 2_ I__ ,
f( p) f( O) 9 (i’jzzllaj T ]+ p2> 2) (C] + p2> 2 (q p2
I p2 . nn 20[ p2 2(]{ " p2 2|C]{| "
f(Pp)_f(PO):§ Zaijhihj—i_? =3 ?—|Q| S5 7—|Q|
ij=1

(poHIENDADA!) . Valides reaalarvu e nii, et 0 < ¢ < § ja (kasutades tdhistust p :=

A/ AT+ -+ A2)

1
l<p<e = % <3 min{q’, |¢"[},

saame mis tahes positiivse reaalarvu p < € korral

2 ! 2 1
f(P,i)—f(Po)>’0—(q’—q—) _Pd

2 2 4
ja
2 I 21 1
P/l _ P p_ m _ " — _p |q |
e - 1y < 5 (11— 11) = - <o,
seega funktsioonil f ei ole punktis P lokaalset ekstreemumit (POHJENDADA!) . m

Jargnev teoreem on vahetu jareldus teoreemidest (s.t. Sylvesteri tunnusest)
jalL3

Teoreem 1.4. Olgu funktsioon u = f(P) = f(x1,...,%,) kaks korda diferentseeruv

oma statsionaarses punktis Py = (29,...,2% ) e R™. Tdihistame
[J— /I y y p—
Qi5 1= mimj(P0)7 1,7 —1,...,771,
ja
a1 a12 e A1,
ai; Q1o Q21 A22 ... Q2m
Al = dai, AQI: s ey Am =
Q21 G22
Am1 Am2 ... Qmm
(a) Kui koik miinorid Ay, ..., A, on positiivsed, s.t. kui
A >0, Ay>0, ...... , A, >0,
stis funktsioonil f on punktis Py range lokaalne miinimum.
(b) Kui miinorite Ay, ..., A, mdrgid vahelduvad, kusjuures Ay on negatiivne, s.t.

kui
A <0, Ay >0, A3<0, Ay;>0, ...,

stis funktsioonil f on punktis Py range lokaalne maksimum.
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1.2.3. Kahe muutuja funktsiooni juht

Teoreem 1.5. Olgu funktsioon v = f(P) = f(x,y) kaks korda diferentseeruv oma
statsionaarses punktis Py = (xo,y0) € R%. Téihistame

aip = ;IQ(P()), Q99 = f;l2(P0); Q12 = Q21 = fg/cly(PO) = f;lm(PO)

ning
@11 a2

2
= a11 A2 — CL12.
(21 A2

Al = ai ja A2 =

(a) Kui Ay > 0 ja Ay > 0, siis funktsioonil f on punktis Py range lokaalne miini-
mum.

(b) Kui A; <0 ja Ay > 0, siis funktsioonil f on punktis Py range lokaalne maksi-
mum.

(¢) Kui Ay <0, siis funktsioonil f ei ole punktis Py lokaalset ekstreemumit.

TOESTUS. (a) ja (b) jirelduvad vahetult teoreemi |1.4] vastavatest vdidetest.

(c). Olgu Ay < 0. Lokaalse ekstreemumi puudumiseks punktis Py piisab teoree-
mi (¢), pohjal niidata, et hessiaan

2 2 .
a2y + 2019 21 29 + A9225 =: (I)(Zl, 22)

on méidramata ruutvorm (muutujate z; ja zp suhtes).
Vaatleme koigepealt juhtu, kus a;; #+ 0. Sel juhul, kui votta z; = 1 ja 2o = 0, siis
sgn ®(z1, z9) = sgnayy. Teiselt poolt, kui votta z; = ajs ja 29 = —ayy, siis

2 2 2 2
@(217 22) = a11 Q19 — 2a11 ajs +aj; a2 = Gn(@n Q22 — a12) = a1 Az

ning seega sgn ®(zy, z0) = —sgnayy. Niisiis, P(z1, z2) on midramata ruutvorm.
Niiiid eeldame, et a;; = 0. Paneme téhele, et a;2 + 0 (sest vastasel juhul oleks
A2 = Q11 A22 — CL%Q = 0) Kui z9 :+: 07 siis

z
2 2 1
(I)(Zl, 22) = 2&12 21 22 + A2229 = Zo (2&12 Z_ + a22) .

2
Kui lisaks z; # 0, siis “piisavalt viikeste” positiivsete muutuja zo vaidrtuste korral
on avaldise ®(z1,z9) vidrtusel sama mérk, mis korrutisel 2ai52; (POHIENDADA!) ,
jarelikult see avaldis omandab nii positiivseid kui ka negatiivseid vdartusi ehk, teisi-
sonu, hessiaan ®(z1, z3) on midramata ruutvorm. O

Niide 1.2. Leiame funktsiooni z = z* + 23 — 32 — 222y + 32 lokaalsed ekstreemumid.

Teoreemi pohjal saab funktsioonil lokaalne ekstreemum esineda ainult tema kriitilistes
punktides. Leiame funktsiooni z osatuletised:

2 = (x* +2° = 3x — 227y + ¢y?)), = 4a® + 327 — 3 — 4y,
/
y

= (z* +2° = 3z — 22%y + *), = —22° + 2y;
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seega funktsiooni z statsionaarsed punktid on leitavad siisteemist

423 + 322 — 3 — 42y = 0,
—22% + 2y = 0.

Asendades selle siisteemi teisest vorrandist tundmatu y viértuse y = 2 esimesse vorrandisse,

saame, et 322 = 3 ehk 22 = 1, millest z = —1 v&i x = 1. Selle siisteemi lahendid (ja iihtlasi funkt-
siooni z statsionaarsed punktid ning funktsiooni z diferentseeruvuse tottu ainsad selle funktsiooni
kriitilised punktid) on (—1,1) ja (1,1).
Leiame funktsiooni z teist jirku osatuletised:
2l = (42 4 322 — 3 — day)! = 122% + 62 — 4y,
2y = 2y, = (42® 4+ 307 — 3 — day)), = —4a,

zye = (=22 +2y);, = 2

ning tdhistame

" n" 2
o 2 _ |Re2 gyl |122° 4+ 6z —4y —4x
Al =22 = 1227 + 6 4y, A2 = Zlylx ZZQ = ' 4y 9 |-
Statsionaarses punktis (—1,1)
2 4
A1=2>0, A2=’4 2'=—12<0,

seega (teoreemi (c), pohjal) funktsioonil z ei ole punktis (—1, 1) lokaalset ekstreemumit.
Statsionaarses punktis (1,1)

14 -4

A41=14>07 AQZ‘_4 9

‘=12>0,

seega (teoreemi|1.5] (a), pohjal) funktsioonil z on punktis (1, 1) range lokaalne miinimum z(1,1) =
—2.



NB! Kas siin
tuleks hoopis
oelda, et D on
funktsiooni f
médramispiirkonna
alamhulk? (Sest
tegelikult me peam
siin  silmas  just
nimelt seda.)

NB! Eelnevalt
defineeritu  pdhjal
on funktsiooni
kriitilised punktid
tema médra-
mispiirkonna
sisepunktid.

NB! Kas on
arusaadav, mis on
véimalikud  ekst-
reemumpunktid?

§ 2. Mitme muutuja funktsiooni globaalsed
ekstreemumid

Olgu funktsioon f mé#ratud hulgas D < R™.
Definitsioon 2.1. Funktsiooni f

e suurimat viartust hulgas D nimetatakse funktsiooni f globaalseks maksimu-
miks (hulgas D);

e vihimat vadrtust hulgas D nimetatakse funktsiooni f globaalseks miinimumiks
(hulgas D).

Teisisonu, funktsiooni f globaalne maksimum ja globaalne miinimum hulgas D on
vastavalt vidrtused max f(P) ja rl_gilrjl f(P).
€ €

Globaalset maksimumi ja globaalset miinimumi nimetatakse iihise nimetusega
globaalsed ekstreemumid.

Pole raske tuua néiiteid (isegi pidevate iihe muutuja funktsioonide kohta), kus
funktsioonil puuduvad (tema mé#dramispiirkonna mingis alamhulgas) globaalsed
ekstreemumid. Teiselt poolt, Weierstrassi teisest teoreemist [I4.8] jareldub, et tokes-
tatud kinnises hulgas pideval funktsioonil eksisteerivad selles hulgas globaalsed ekst-
reemumid.

Kui funktsioonil f eksisteerib tema méadramispiirkonna alamhulgas D < R™ min-
gi globaalne ekstreemum, siis see globaalne ekstreemum voib olla hulga D sisepunk-
tis voi hulga D rajapunktis; seejuures, kui see globaalne ekstreemum saavutatakse
hulga D sisepunktis, siis selles punktis on funktsioonil f ka vastav lokaalne ekstree-
mum, jarelikult see punkt on funktsiooni f kriitiline punkt. Seega, kui me teame, et
funktsioonil f eksisteerivad tema mairamispiirkonna alamhulgas D globaalsed ekst-
reemumid, siis nende globaalsete ekstreemumite leidmiseks voime kasutada jargmist
eeskirja:

(1) leiame funktsiooni f vddrtused tema kriitilistes punktides (hulga D sisemuses);

(2) leiame funktsiooni f vddrtused tema voimalikes ekstreemumpunktides hulga D
rajal;

(3) neist leitud vdartustest suurim on funktsiooni f globaalne maksimum hulgas D
ning vihim on funktsiooni f globaalne miinimum hulgas D.

Niide 2.1. Leiame funktsiooni z = 2% + 3% — 3zy suurima ja vihima véirtuse ristkiilikus
D :=1[0,2] x [-1,2] := {(x,y): x€[0,2],y€ [—1,2]}.
Koigepealt méargime, et kuna funktsioon z on pidev ning hulk D on kinnine ja tokestatud, siis

Weierstrassi teise teoreemi pohjal eksisteerivad funktsioonil f hulgas D globaalsed ekstree-
mumid.
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Leiame funktsiooni z kriitilised punktid hulga D sisemuses D°. Kuna funktsioon z on diferent-
seeruv kogu tasandil R?, siis tema ainsad kriitilised punktid on statsionaarsed punktid. Leiame
funktsiooni z osatuletised:

Z, = 32> =3y, =z, =3y* —3u;

seega funktsiooni z statsionaarsed punktid on leitavad siisteemist

2 o _ 2 _ =
3x 3y =0, ohk - —y =0,
3y — 32 =0, y2—x=0.

Asendades selle siisteemi esimesest vorrandist tundmatu y védrtuse y = x2 teise vorrandisse, saame,
et 2* —x = 0 ehk x(2% — 1) = 0, millest = 0 vo6i 2 = 1. Selle siisteemi lahendid on seega (0,0) ja
(1,1). Kuna (0,0) ¢ D°, siis funktsiooni z ainus statsionaarne (ning seega ka ainus kriitiline) punkt
hulga D sisemuses D° on (1, 1); seejuures

2(1,1) = —1.
NB! Misasi
Hulga D rajajoon ¢D esitub iihendina ngjtoon?san
rajajoone
oD = {(0,-1),(2,-1),(2,2),(0,2)} U L1 U Ly U L3 U Ly, hulga D raja.
kus
Ly :={(z,y): z€(0,2), y = —1}, Ly :={(z,y): x=2,y€(-1,2)},
Lj:= {(m,y): z€(0,2),y = 2}, L, := {(x,y): r=0,y€ (—1,2)}.

Rajajoone osal L; omandab funktsioon z kuju
z=x3—143z=: fi(z), z€(0,2).

Kui funktsioonil z oleks globaalne ekstreemum rajajoone osa L; punktis (z,y), siis funktsioonil f;
oleks punktis x lokaalne ekstreemum, seega funktsiooni f; diferentseeruvuse tottu peaks x olema
funktsiooni f; statsionaarne punkt, s.t. fi(z) = 0. Leiame funktsiooni f; tuletise:

fi(z) =322 +3 =3(z2 +1).

Né&eme, et tuletisel fi nullkohti pole, seega rajajoone osal L; funktsioonil z globaalseid ekstreemu-
meid ei ole.
Rajajoone osal Lz omandab funktsioon z kuju

z=134+8—6x=: f3(z), x¢€(0,2).
Leiame funktsiooni f3 tuletise:
fi(z) =322 — 6 = 3(2? — 2).

Néeme, et tuletise f; nullkohad on x = —/2 ja 2 = /2, kusjuures —/2 ¢ (0,2); seega ainus
voimalik ekstreemumpunkt rajajoone osal L3 on (v/2,2); seejuures

2(V2,2) = 2v2 + 8 — 63/2 = 8 — 4V/2.

(Siin jallegi, kui funktsioonil z oleks globaalne ekstreemum rajajoone osa L3 punktis (z,y), siis
funktsioonil f3 oleks punktis x lokaalne ekstreemum, seega funktsiooni f3 diferentseeruvuse tottu
peaks x olema funktsiooni f5 statsionaarne punkt, s.t. f4(y) =0.)

Rajajoone osal Lo omandab funktsioon z kuju

z=8+y’—6y=:foly), ye(-1,2).

on

me
selle

all
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Leiame funktsiooni f5 tuletise:
f2(y) = 3y* =6 = 3(y* — 2).

Nieme, et tuletise fj nullkohad on y = —/2 ja y = /2, kusjuures —\/2 ¢ (—1,2); seega ainus
voimalik ekstreemumpunkt rajajoone osal Ly on (2,+/2); seejuures

2(2,V/2) = 8 +2v/2 — 6v/2 = 8 — 4V/2.

(Siin jillegi, kui funktsioonil z oleks globaalne ekstreemum rajajoone osa Lo punktis (x,y), siis
funktsioonil f, oleks punktis y lokaalne ekstreemum, seega funktsiooni f, diferentseeruvuse tottu
peaks y olema funktsiooni fo statsionaarne punkt, s.t. f5(y) = 0.)

Rajajoone osal Ly omandab funktsioon z kuju

2=y = fuly), ye(-1,2).

Funktsioon f; on kasvav vahemikus (—1,2), seega rajajoone osal L, voimalikke ekstreemumpunkte
ei ole. (Siin jillegi, kui funktsioonil z oleks globaalne ekstreemum rajajoone osa L, punktis (z,y),
siis funktsioonil f; oleks punktis y € (—1,2) lokaalne ekstreemum; kuna aga funktsioon f4 on
kasvav vahemikus (—1, 2), siis tal selles vahemikus lokaalseid ekstreemumeid ei ole, seega rajajoone
osal L, funktsioonil z globaalseid ekstreemumeid ei ole.)

Leiame funktsiooni z vaartused rajajoone 0D iilejaanud voimalikes ekstreemumpunktides:

2(0,—1)=—-1, 2(2,-1)=8-1+6=13, 2(2,2)=8+8—-12=4, 2(0,2)=8.
Valides eelnevas leitud voimalikest ekstreemumitest suurima ja vdhima, saame

r}gleagz(P) =2(2,-1) =13 ja I}glel%Z(P) =z(1,1) = 2(0,-1) = —1.

Monikord voib globaalsete ekstreemumite leidmisel olla abi jargnevast teoree-
mist.

Teoreem 2.1. Olgu funktsioon v = f(P) = f(x1,...,2,) kaks korda diferentsee-

ruv lahtise kumera hulga D < R™ igas punktis ning olgu Py = (29,...,2%) € D
funktsiooni [ statsionaarne punkt, s.t.
for(Po) = -+ = f,,(Py) = 0. (2.1)

(a) Kui iga punkti Q € D korral hessiaan d*f(Q) on positiwselt mdidratud ruut-
vorm, siis funktsioonil f on punktis Py range globaalne miinimum (s.t. f(P) >
f(Py) iga P € D\{Po} korral).

(b) Kui iga punkti Q € D korral hessiaan d*f(Q) on negatiivselt mddratud ruut-
vorm, siis funktsioonil f on punktis Py range globaalne maksimum (s.t. f(P) <

f(Py) iga P e D\{Fo} korral).

TEOREEMI [2.1] TOESTUS, MIS TOETUB TAYLORI VALEMILE. (a). Eeldame, et iga
Q € D korral teist jirku téisdiferentsiaal d?f(Q) on positiivselt méidratud ruutvorm
(argumentide diferentsiaalide dx, .. ., dz,, suhtes). Taylori valemi pohjal jadkliikme-
ga Lagrange’i kujul (s.t. teoreemi [[J}4.4] pchjal) mis tahes punkti P = (z1,...,zm,) €
D\{Py} korral

& f(Q)

f(P) = f(Ry) = df (Fo) + 5
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kus diferentsiaalide df (P) ja d?f(Q) avaldistes dz; = Ax; == x; — 20, i=1,...,m,
ning () on mingi punkt punkte P, ja P iihendavalt sirgloigult. Kuna F, on funkt-
siooni f statsionaarne punkt, siis

df (Po) = fy,(Po) Axy + -+ fo (Po) Azyp, = 0Azy + -+ + 0 Az, = 0;

kuna tehtud eelduse pohjal on d? f(Q) positiivselt méidratud ruutvorm, siis d? f(Q) >
d2
0; seega f(P) — f(Fy) = J;(Q) > 0, jarelikult f(P) > f(P); niisiis funktsioonil f

on punktis Py range globaalne miinimum. Teoreemi véide (a) on toestatud.

Viide (b) toestatakse analoogiliselt. O



§ 3. Tinglikud ekstreemumid

Koikjal selles paragrahvis eeldame, et m,n € N, m > n, ning et funktsioonid

u= f(P)= f(z1,...,%m) (3.1)
ja
u; = Fj(P) = Fj(x1,...,%m), j=1,...,n, (3.2)

on madratud hulgas D < R™.

3.1. Tingliku lokaalse ekstreemumi moiste

Olgu Py = (29,...,2%) € D hulga D sisepunkt.

Definitsioon 3.1. (a) Oeldakse, et funktsioonil (3.1I)) on punktis Py tinglik lokaalne

maksimum lisatingimus(t)el
Fl(P) :Fl(l'l,...,l’m) :0, ...... y Fn(P) :Fn(l’l,...,l’m) :0, (33)

kui
Fi(R) =0, ...... , F.(Py) =0 (3.4)

ning punktil Py leidub iimbrus ¢4 < D nii, et iga punkti P = (21, ..., x,,) € U korral,
mis rahuldab tingimust (3.3)), kehtib vorratus

f(R) = f(P).

Punkti Py nimetatakse seejuures (funktsiooni f) tinglikuks lokaalseks maksimum-
punktiks (lisatingimus(t)el (3.3))).

(b) Oeldakse, et funktsioonil on punktis Py tinglik lokaalne miznimum lisa-
tingimus(t)el (3.3)), kui punkt Py rahuldab tingimust ning punktil Py leidub
timbrus U < D nii, et iga punkti P = (z1,...,%,,) € U korral, mis rahuldab tingi-
must , kehtib vorratus

f(FPo) < f(P).

Punkti P, nimetatakse seejuures (funktsiooni f) tinglikuks lokaalseks miinimum-
punktiks (lisatingimus(t)el (3.3))).

Tinglikku lokaalset maksimumi ja tinglikku lokaalset miinimumi nimetatakse
tinglikeks lokaalseteks ekstreemumiteks.

Jargnevas kahes jaotises uurime, kuidas leida funktsiooni f tinglikke lokaalseid
ekstreemume.
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3.2. Taandamine harilikule ekstreemumile

Koikjal selles jaotises eeldame, et leidub lahtine risttahukas
Ri=Ix---x1I,cD

(siin I1,..., I, < R on mingid lahtised intervallid), milles vorrandid méairavad
mingid n muutujat muutujatest xy, ..., x,, ilejidnud m —n muutuja (itheste) pide-
vate funktsioonidena. Konkreetsuse mottes eeldame, et need n muutujat on x,, 1,
..., T,. Niisiis, risttahukas R esitavad vorrandid muutujad T, ni1,-.., Tm
muutujate 1, ..., Z,_, (lheste) pidevate funktsioonidena:

rj=x;(T1,.. ., Tmp), j=m—n+1...,m (3.5)
Rohutame, et funktsioonide (3.5) madramispiirkond on risttahukas
Wi=1 x - x 1, ,. (3.6)

Defineerime (m — n muutuja) funktsiooni h: W — R vordusega

M, ) = [(@1, - Ty Tt (T1, o ) o T (1, Ta)).
(3.7)
Paneme tihele, et nende punktide P = (z1,...,,,) € R korral, mis rahuldavad

tingimust (3.3)), kehtivad vordused (3.5) (PoHIENDADA!) ning seega, tihistades A :=
(xla cee 7xm—n)7
f(P) :f(xla'-'vxm)
= f(xlu < Tm—ny xmfnJrl(xly s 7xmfn)7 e 7xm(x17 v 7xmfn))

= h(x1,. .., Tmn) = h(A).

Lause 3.1. Rahuldagu punkt Py = (29,...,2%) € R tingimust (3.4). Siis funkt-

rYm

sioonil f on punktis Py tinglik lokaalne ekstreemum lisatingimus(t)el (3.3) parajasti
siis, kui funktsioonil h on punktis Ay := (29,...,2% ) wvastav “harilik” lokaalne
ekstreemum.

TOESTUS. Toestame lause ainult lokaalse maksimumi juhtude jaoks. Lokaalse mii-
nimumi juhtudel on toestus analoogiline.

Tarvilikkus. Olgu funktsioonil f punktis F tinglik lokaalne maksimum lisatingi-
mus(t)el (3.3). Siis leidub punkti Py kuubikujuline iimbrus C nii, et C < R ning iga
punkti P € C korral, mis rahuldab tingimust (3.3)), kehtib vorratus f(P) < f(F)
(POHJENDADA, MIKS SELLINE KUUBIKUJULINE UMBRUS LEIDUB!) . Olgu positiivne reaalarv ¢
selline, et

C=(2)—0,20 +6) x - x (22 — 06,20 +6).

Kuna funktsioonid (3.5 on pidevad punktis Ay, siis leidub selle punkti imbrus Wy
(ruumis R™ ") nii, et Wy < (2§ — 6,2 + ) x - x (2 _, — 6,22 _ + J) ning iga
je{m—n+1,...,m} korral

z;(A) € (z) —0,2] +6) iga Ae W, korral
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(siin me arvestasime, et iga j € {m —n +1,...,m} korral z;(4) = 2} (POHIEN-
DADA!) ) (POHJENDADA, MIKS PUNKTIL Ay LEIDUB SELLINE UMBRUS Wp!) . Niiiid mis tahes

punkti A = (x1,...,Zm_n) € W, korral
P .= (xl, e Ty Tt (T - oy Tinen)y + ey T (T, - - ,xm_n)) eC
(POHJENDADA!) , niisiis (arvestades, et selline punkt P rahuldab tingimust (3.3))
h(A) = f(P) < f(Py) = h(Ao) (POHJENDADA!) .

Kuna W, on punkti Ay iimbrus, siis jareldub siit, et funktsioonil h on punktis Ag
lokaalne maksimum.

Piisavus. Olgu funktsioonil h punktis Ay lokaalne maksimum. Siis leidub punk-
ti Ap kuubikujuline timbrus Wy nii, et W, < W ning iga punkti A € W, korral
h(A) < h(Ap) (POHIENDADA, MIKS SELLINE KUUBIKUJULINE UMBRUS LEIDUB!) . Olgu posi-
tiivne reaalarv 0 selline, et

Wo= (20 =629+ 68) x---x (2% _, —6,2° _ +0)
Téahistame
Ci= (20— 8,20 +0) x - x (2% _ —82%  4+6) X Ln_py1 X -+ x Ly;
siis C on punkti Py imbrus, kusjuures iga punkti P = (xy,...,2,,) € C korral, mis
rahuldab tingimust (3.3]), kehtivad vordused (3.5) (vt. lausele eelnevat 16iku)
ning seega, téhistades A := (x1,...,2m n),

f(P)=h(A) <h(Ag) = f(Py) (POHJENDADA!) .

Eelnevast jareldub, et funktsioonil f on punktis F, tinglik lokaalne maksimum lisa-
tingimus(t)el (3.3) (POHIENDADA!) . O

BLA-BLA-BLA. ..

Kirjeldatud “harilikule lokaalsele ekstreemumile taandamise meetodil” tingliku
ekstreemumi leidmiseks on iiks oluline puudus: muutujate x4, ..., z,, seast n muu-
tuja avaldamine ilejaanud m — n muutuja kaudu vorranditest (seda on vaja
funktsiooni esitamiseks) voib konkreetsetel juhtudel osutuda iilejou kiivaks
iilesandeks. Lisaks juhime tdhelepanu iihele veealusele karile: BLA-BLA-BLA...
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3.3. Lagrange’i meetod

Kaikjal selles jaotises (villja arvatud mirkuses eeldame, et

(1) igal tingimust . 3.3) rahuldaval punktil P € D leidub {imbrus, milles funktsioo-
nidel (8.1)) ja eksisteerivad pidevad osatuletised, kusjuures vihemalt iiks

maatriksi
5;@) a;(m - Dp
Fopy L2py ot s py

63:1 63:2 (9a:m (3.8)
aFn' oF, o,
20, D) g () 6j},m(P)

n-ndat jarku miinoritest erineb nullist.
Defineerime nn. Lagrange’i funktsioons

(I)(l’l,...,xm7)\17...,)\n)

3.9
= flxr, .. xm) F ME(2, X)) (3:9)
(mérgime, et Lagrange’i funktsioon ® on m+n muutuja 1, ..., Ty, A1, ..., A, funkt-
sioon). Vaatleme siisteemi
0P
%%(il,...,xm,)\l,...,)\n):O, 1=1,...,m,
6—)\j(x1,...,xm,)\1,...,/\n)=O, j=1,...,n,
ehk, teisisonu, siisteemi
of oF} oF,
S m M= ) y bm )\n ) sy dm) = 07
s (1,0, T o (21 Tm) + . (21 Tm)
a .................... aF ....................... 5Fn .................
4 %(l’la ) Tm) )\1&6—1(351, s Tm) + An%(xh , Tm) =0,
Fl(xla' 7mm)_07
Fn(xlw al'm):O
(3.10)
Definitsioon 3.2. Olgu punkt (29, ..., 22 | )\0 . )\0 stisteemi (3.10)) lahend. Punk-
ti Py := (2Y,...,2%) nimetatakse funktsiooni tmglzkuks statszonaarseks punk-

tiks (lisatingimuste ([3.3) suhtes). Arvusid Ay, ..., )\2 nimetatakse punktile F, vasta-
vateks Lagrange’i kordajateks.
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Jargnev teoreem annab tarviliku tingimuse funktsiooni (3.1)) tingliku lokaalse
ekstreemumi olemasoluks lisatingimustel (3.3) (seda eeldusel (£)).

Teoreem 3.2. Funktsioonil (3.1) saab tinglik lokaalne ekstreemum (lisatingimus-
tel (3.3) ) esineda ainult tema tinglikes statsionaarsetes punktides (lisatingimuste (3.3)
suhtes).

TOEsTUS. KAESOLEVAS KURSUSES ME SEDA TEOREEMI EI TOESTA. ]

Mirkus 3.1. Uldiselt, funktsiooni f tinglikke statsionaarseid punkte (lisatingi-
muste suhtes) ning tingimust rahuldavaid punkte P € D, mille igas
iimbruses funktsioonide vOi mingi osatuletis pole pidev voi siis maat-
riksi koik n-ndat jirku miinorid on nullid, nimetame funktsiooni f tinglikeks
kriitilisteks punktideks (lisatingimuste (3.3)) suhtes). (Teisisonu, funktsiooni f ting-
likud kriitilised punktid on tema tinglikud statsionaarsed punktid ning tingimust
(3.3) rahuldavad punktid P € D, milles vihemalt iiks kdesoleva jaotise esimes 16igus
toodud eeldustest on rikutud.)

Eelnevast jireldub, et (loobudes kiesoleva jaotise esimeses 16igus toodud eel-
dustest) funktsioonil saab tinglik lokaalne ekstreemum (lisatingimustel (3.3))
esineda ainult tema tinglikes kriitilisetes punktides (lisatingimuste (3.3) suhtes).

Jargnev teoreem annab piisava tingimuse funktsiooni f tingliku lokaalse ekstree-
mumi olemasoluks tema tinglikus statsionaarses punktis.

Teoreem 3.3. Olgu Py funktsiooni (3.1)) tinglik statsionaarne punkt (lisatingimus-
te (3.3) suhtes) ning olgu X2, ... A0 punktile Py vastavad Lagrange’i kordajad. Kui
Lagrange’i funktsioonil (3.9) on kordajate Ay, ..., \, vddrtuste

M= ;A=A (3.11)

korral punktis Py range lokaalne ekstreemum (siin me tolgendame Lagrange funkt-
s100M10 kui m muutuja x4, ..., 2, funktsiooni; argumentide Ay, ..., \, vddrtu-
sed on fikseeritud), siis funktsioonil on punktis Py vastav tinglik lokaalne
ekstreemum (lisatingimustel ).

TOEsTUS. KAESOLEVAS KURSUSES ME SEDA TEOREEMI EI TOESTA. ]



V peatiikk.
Kordsed integraalid

§ 1. Kahekordne integraal iile ristkiiliku

1.1. Riemanni integraal
Olgu kahe muutuja funktsioon z = f(z,y) = f(P) méadratud ristkiilikus
D := |a,b] x [c,d].
Jaotame 16igud [a, b] ja [c, d] omakorda mingiteks m ja n osaléiguks
[z0, z1], ..., [Tm—1, T ja [Yo, y11, - - [Yn—1, Ynl,

kus m,n € N ning

a=rg<T1 < <Ty=0 ja c=y <y <---<y,=d.
Siis ristkiilik D jaotub mn ristkiilikuks

Dij = [-,L‘iflal'i] X [yjflaij i=1....mjg=1...,n

(1.1)

(1.2)

(1.3)

(vt. joonist [1.1)). Ristkiiliku D jaotusviisi ristkiilikuteks (1.3)) téhistame tihega 7.
Punktidele (1.2]) viitame jargnevas kui jaotusviisi T mddravalele punktidele ning

16ikudele (1.1)) kui jaotusviisi T mddravatele loikudele.
Koikide i € {1,...,m} ja j € {1,...,n} korral t&histame

Az = — w1 Ja Ayji=y; — yj-1,
s.t. Az; ja Ay; on osaristkiiliku D;; kiilgede pikkused, ning
A(T) := maX{Axl, o Ay, Ay, Ayn},
s.t. A(T) on selle jaotusviisi osaristkiilikute maksimaalne kiiljepikkus.

Valime mingid punktid
Plle,Dll,...,PlnEDln, ...... 7Pmlepm17---;Pmn€Dmn7

(1.4)

s.t. koikide i € {1,...,m} ja j € {1,...,n} korral valime mingi punkti P,; € D;; (vt.

joonist [L.1).
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v
Yg = d+------ ] 7 T T
: : P Psa
Dy | Dy | Dy | Dy | Dy
'P14 : P24#P34 : :
Ys+------fF-----—+ ———— - e i e
-Py3 P3Pz | I
Dz | Do ! Dss | Dys | Dsshss
| | | Pus |
7 A S R (A [ I
Py : i P+ Ps
Dis | Dy | Dy | Dy | Dsy
| Poj Py | |
LA i s fe---=-- oo Fom e
| PQ] _P.:rl |
| | s |
Dy .}JE)H Dy, E D3, E 1;41 EP.51D51
Yo = Copomoon : : _
o e 4 I
I
Zo 1|-|5

JOONIS 1.1. Sellel joonisel m = 5 ja n = 4. Mérgime, et iildjuhul ei tarvitse
ristkiilik D paikneda koordinaattasandi esimeses veerandis (meie paigutasime
oma joonisel — ja paigutame ka paljudel jargnevatel joonistel — ristkiiliku D
koordinaattasandi esimesse veerandisse seepédrast, et kui mingi koordinaattel-
gedest 16ikaks seda ristkiilikut, siis muutuks see joonis oluliselt ebaselgemaks).

Definitsioon 1.1. Summat
og:=0p:=0i(T;P1,..., P, Pra,..., Pon) = 0y (T, (PU)?;ZI)
=2 D f(Py) Az Ay,
i=1j=1

nimetatakse funktsiooni f integraalsummaks ehk Riemanni summaks, mis vastab
ristkiiliku D jaotusviisile 7" ja punktide valikule (1.4).

Juhime tdhelepanu, et korrutis Az; Ay, Riemanni summa definitsioonis on rist-
kiiliku D;; pindala.

Definitsioon 1.2. Arvu [/ € R nimetatakse funktsiooni f integraalsummade piir-
vddrtuseks (ristkiilikus D) ja kirjutatakse

lim of=1 voi lim o =1 wvailihtsalt limoy =1 voi limo =1,
A(T)—0 A(T)—0
kui iga reaalarvu € > 0 korral leidub reaalarv § > 0 nii, et (ristkiiliku D mis tahes
jaotusviisi T ja mis tahes sellele jaotusviisile vastava funktsiooni f integraalsumma o

korral)
A(T)<é = |o—1I|<e,



§ 1. KAHEKORDNE INTEGRAAL ULE RISTKULIKU 147

s.t. ristkiiliku D mis tahes jaotusviisi 17" korral, mille osaristkiilikute maksimaalne
kiiljepikkus on viiksem kui ¢, erinevad koik sellele jaotusviisile vastavad funktsioo-
ni f integraalsummad arvust I vihem kui € (séltumata punktide valikust selle
jaotusviisi osaristkiilikutest).

Definitsioon 1.3. Kui funktsiooni f integraalsummadel on olemas piirvadrtus rist-
kiilikus D, siis 6eldakse, et funktsioon f on Riemanni mottes integreeruv (ehk lihtsalt
integreeruv) ristkiilikus D, kusjuures tema integraalsummade piirvadrtust

A(T)—0

lim o =: R- Jff(x,y) dx dy =: Jff(x,y) dx dy

nimetatakse (kahekordseks) Riemanni integraaliks (ehk lihtsalt (kahekordseks) integ-
raaliks) funktsioonist f iile ristkiiliku D.

Mirkus 1.1. Sageli esitatakse integraalsummade piirvdartuse definitsioon (ehk siis sisuliselt Rie-
manni integraali definitsioon ) definitsioonist m6nev6rra erineval, kuid sellega siiski samavéirsel
moel. See “erinev” definitsioon kasutab hulga diameetri moistet.

Definitsioon 1.4. Olgu m € N ning olgu D < R™ tokestatud hulk. Hulga D diameetriks nimeta-
takse selle hulga punktide vaheliste kauguste hulga iilemist raja.

Hulga D diameetrit t&histatakse simboliga diam D; niisiis vastavalt definitsioonile

diamD = sup d(P,Q).
P,QeD

Esitame niiiid selle “definitsioonist monevorra erineva’ integraalsummade piirviértuse de-
finitsiooni. Jaotusviisi 7" ristkiilikute maksimaalse diameetri téhistame siimboliga d(T").

Definitsioon 1.5. Arvu I € R nimetatakse funktsiooni f integraalsummade piirvidrtuseks (rist-
kiilikus D), kui iga reaalarvu ¢ > 0 korral leidub reaalarv ¢ > 0 nii, et (ristkiiliku D mis tahes
jaotusviisi T' ja mis tahes sellele jaotusviisile vastava funktsiooni f integraalsumma o korral)

dT) <6 = |o—1I|<e¢,

s.t. ristkiiliku D mis tahes jaotusviisi T korral, mille osaristkiilikute maksimaalne diameeter on
véiksem kui ¢, erinevad koik sellele jaotusviisile vastavad funktsiooni f integraalsummad arvust
viahem kui ¢ (soltumata punktide valikust (1.4) selle jaotusviisi osaristkiilikutest).

Pole raske niha, et definitsioonid jaon samavadrsed (s.t. arv I on funktsiooni f integ-
raalsummade piirvadrtus neist definitsioonidest iihe jargi parajasti siis, kui ta on seda teise defi-
nitsiooni jargi).

Ulesanne 1.1. Téestada, et definitsioonid ja on samavidrsed.

NAPUNAIDE. Panna téhele, et ristkiiliku diameeter on selle ristkiiliku diagonaali pikkus.

Niide 1.1. Ristkiilikus D méiratud konstantne kahe muutuja funktsioon f(x,y) = a (o € R) on
integreeruv selles ristkiilikus, kusjuures

Hadzdy:a(b—a)(d—c)zasp (1.5)
D

(simbol Sp tdhistab ristkiiliku D pindala).
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Toepoolest, konstantse funktsiooni f(x,y) = « mis tahes integraalsumma

m n m n

ZZ P;;) Azlij=ZZaniij=aZAmiZij
i—1j=1

i=1j=1 i=1 j=1

Z Az;(d—c)=a(d— )ZAwl—a(d—c)(b—a)=aSp,

seega ka nende integraalsummade piirvédrtus on a Sp, s.t. kehtib ((1.5).

Jargnev teoreem iitleb, et antud ristkilikus Riemanni mottes integreeruv funkt-
stoon on tokestatud selles ristkilikus.

Teoreem 1.1. Ristkiilikus D tokestamata funktsioon ei ole Riemanni mottes integ-
reeruv selles ristkilikus.

TOEsTUS. Olgu funktsioon f tokestamata ristkiilikus D ning olgu selle ristkiiliku
jaotusviis 7" méiratud punktidega (I.2). Téhistame koikide i € {1,...,m} ja j €
{1,...,n} korral A;; := Ax; Ay;. Veendumaks, et funktsioon f pole integreeruv
ristkiilikus D, piisab ndidata, et

(o) iga reaalarvu M > 0 korral leiduvad punktid (1.4)) selliselt, et

"i“ f(Py) A

ij=1

Toepoolest, kehtigu viide (o). Oletame vastuvaiteliselt, et funktsioon f on Riemanni mottes
integreeruv ristkiilikus D. Tahistame I := R- SSD f(x,y) dx dy. Siis funktsiooni f mis tahes integ-
raalsumma o korral, mis vastab ristkiiliku D mingile piisavalt “peenele” jaotusviisile,

|o—1I] <1 ehk,teisisonu, I—1<o<I+1

ning seega
lo] < max{|I — 1|, | + 1|}
Oleme saanud vastuolu viitega (o).

Jaab veel toestada viide (o). Fikseerime vabalt reaalarvu M > 0. Kuna funkt-
sioon f on tokestamata ristkiilikus D, siis ta on tokestamata mingis osaristkiili-

kus Dy;. Valime iga (i,j) € ({1, compx Al ,n})\{(k,l)} korral mingi punkti
P;; € D;; ja tdhistame

{Zf i)

(6,5)+ (k1)

Siis mis tahes P € Dy,; korral

f(P)Akl"'Zf(Pij)Azj > |f(P) Aw| — {Zf
ij=1 -
(i34 k) A D)

Ayl = f(P)] Ap — .
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Jarelikult, kui valida punkt Py, € Dy, nii, et
M + «

kl

| f(Pu)| >

(niisugune valik on voimalik, sest funktsioon f on tokestamata osaristkiilikus Dy),
siis
M + «

Ay —a=M.
A Kl — ¢

Z f(Fij) Ay

ij=1

> | f(Pu)| A — o >

1.2. Darboux’ summad. Darboux’ integraal
Olgu kahe muutuja funktsioon z = f(z,y) = f(P) tokestatud ristkiilikus
D :=[a,b] x ¢, d].
Jargides jaotise tahistusi, tdhistame tdhega T' ristkiiliku D jaotusviisi osarist-
kiilikuteks
Dij = w1, z] % [yj-1,y;], i=1,...,m,j=1,...,n,
kus m,n € N ning
a=rg<T1 < - -<Typ=b ja c=yy <y <--<y,=d. (1.6)
Téhistame koikide i € {1,...,m} ja j € {1,...,n} korral

Az =1z —xim1,  Ayji=y; — yj-1, Mij = sup f(P), my;:= inf f(P).
PEDZ‘j PEDij

Definitsioon 1.6. Summasid

i=1j=1 i=1j=1
nimetatakse funktsiooni f Darbouz’ tilemsummaks ja Darbouz’ alamsummaks, mis
vastavad ristkiiliku D jaotusviisile 7.

Koneldes jargnevas Darboux’ iilem- ja alamsummadest, moistame me selle all
funktsiooni f Darboux’ summasid, mis vastavad ristkiiliku D jaotusviisidele.

Vahetult vastavatest definitsioonidest jareldub

Lause 1.2. Olgu funktsioon f tokestatud ristkilikus D. Sis ristkiliku D jaotus-
viisile T' vastavad funktsiooni f Darbouz’ ilemsumma S(T) ja alamsumma s(T') on
sellele jaotusviisile vastavate funktsiooni f integraalsummade tilemine ja alumine
raja:

S(T)=supo  ja s(T) = inf o,
kus supreemum ja infiimum voetakse dle koikvoimalike jaotusviisile T wvastavate
integraalsummade o, s.t. dle koikvoimalike punktide valikute .
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Toestame moned lihtsad Darboux’ summade omadused.
Ulesanne 1.2. Olgu g: D — R tokestatud funktsioon ning olgu a € R. Téestada, et
(@) Sp)(T) = =s5(T) ja s p)(T) = =S4(T);

(b) saf(T) = as¢(T) ja Sar(T) = aS¢(T), kui o = 0, ning sqf(T) = aS(T) ja Saf(T) =
asp(T), kui a < 0;

(€) s7(T) +54(T) < 5744(T) ja Sp4g(T) < Sp(T) + Sy (T);
(d) kui f(P) < g(P) iga P € D korral, siis s;(T) < s4(T) ja Sy(T) < Sq(T).

Lause 1.3. (a) Kui ristkiliku D jaotusviis T' on saadud jaotusviisi T madravate
loikude (1.1) edasisel jaotamisel uuteks osaldikudeks, siis

S(T") < S(T) ja  s(T") = s(T),

’

s.t. jaotusviisi peenendamisel Darboux’ tdlemsummad ei kasva ning Darboux
alamsummad ei kahane.

(b) Ristkiliku D mis tahes jaotusviiside T' ja T' korral
S(T) z s(T"),

s.t. tikski Darboux’ iilemsumma pole viitksem mitte tihestki Darboux’ alamsum-
mast.

(¢) Funktsiooni [ koikvoimalike Darboux’ dlemsummade hulk on alt tokestatud
ning Darboux’ alamsummade hulk on 4lalt tokestatud.

TOESTUS. (a). Viite toestuseks iildisel juhul piisab toestada viide juhu jaoks, kus
jaotusviis 7" on saadud jaotusviisi 7 miéravatele punktidele iihe uue punkti
u € |a,b] voi v € [c,d] lisamise teel. Oletame konkreetsuse mottes, et jaotusviis 7"
on saadud jaotusviisi 7' méaaravatele punktidele ([1.6)) uue punkti u € [a, b] lisamisel,
kusjuures see uus punkt kuulub 16igu [a,b] k-ndasse osaldiku: u € [zy 1, zx], kus
ke{l,...,m}, s.t. jaotusviis 7" on saadud jaotusviisist T ristkiilikute

Dyj = |ve—v,x] x [y;-1,951, 7=1,...,n,
KB Joonis?? asendamisel uute ristkiilikutega
D;fj = [vh1,u] X [y;1,95] Ja ng = [u, 2] % [y5-1, 9], J=1...,n

Jaotusviisile 7" vastav Darboux’ iilemsumma on

S(T) = D13 My Ay Ay + Y (M Azl Ay; + My, Az Ay;),  (L7)
i=1j=1 j=1
itk
kus Az} :=u — x,_1 ja Az} := x; — u ning ning iga j € {1,...,n} korral

M;; = sup f(P) ja M;; = sup f(P).
PeD;Cj PeD;’j
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Iga j € {1,...,n} korral, arvestades, et M;; < My; ja My, < My; (sest Dy; < Dy
ja DI, < Dyy),
My Axy Ay; + My Axy Ay; < My Axy, Ay + My Ay Ay;
= M (A, + Ax)) Ay; = My Axy, Ay;.
Valemitest (|1.8)) ja (1.7)) saame, et
i=17=1 7=1 i=1j5=1
itk
Ulesandest (a), jareldub niiiid, et
S(T") = —S_p(T") = —8_p(T) = s(T).

(1.8)

(b). Téhistame siimboliga T" ristkiiliku D jaotusviisi, mis on saadud jaotusviisi 7'
médravate osaloikude edasisel jaotamisel uuteks osaldikudeks jaotusviisi 7"
méadravate punktidega; siis véite (a) pohjal S(T)) = S(T"). Jaotusviis 7" on tol-
gendatav jaotusviisina, mis on saadud jaotusviisi 7" médravate osaloikude edasisel
jaotamisel uuteks osaloikudeks jaotusviisi 7' médravate punktidega ; jarelikult
véite (a) pohjal s(T") = s(T"). Seega

S(T) = S(T") = s(T") = s(T").
(c). Viite (b) pohjal

e funktsiooni f mis tahes Darboux’ alamsumma on selle funktsiooni Darboux’
iilemsummade hulga alumine toke;

e funktsiooni f mis tahes Darboux’ iilemsumma on selle funktsiooni Darboux’
alamsummade hulga iilemine toke.

]

Definitsioon 1.7. Funktsiooni f (ristkiiliku D jaotusviisidele vastavate) Darboux’
ilemsummade alumist raja nimetatakse Darbouz’ dlemiseks integraaliks funktsioo-
nist f (iile ristkiiliku D) ja téhistatakse siimboliga Ip f:

Ipf:=inf{S(T): T on ristkiiliku D jaotusviis}.

Funktsiooni f (ristkiiliku D jaotusviisidele vastavate) Darboux’ alamsummade iile-
mist raja nimetatakse Darbouz’ alumiseks integraaliks funktsioonist f (iile rist-
kiiliku D) ja téhistatakse siimboliga I f:

Ipnf :=sup{s(T): T on ristkiiliku D jaotusviis}.

Darboux’ integraalide olemasolu jireldub lausest (c), pidevuse aksioomi poh-
jal; seejuures lausest (b), jareldub, et

Inf=Ipf.
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Ulesanne 1.3. Olgu g: D — R tokestatud funktsioon ning olgu o € R. Toestada, et
(a) In(—f) = —Ipf jalp(—f) = —Ipf;

(b) Ip(af) =alpf jaIp(af) = alpf, kui a > 0, ning Ip(af) = alpf ja Ip(af) = alpf,
kui o < 0;

(¢) Ipf+Ipg <Ip(f+g)jaln(f+g)<Ipf+Ipg;
(d) kui f(P) < g(P)iga P € D korral, siis Ipf < Ipgja Ipf < Ipg.

Definitsioon 1.8. Kui Darboux’ iilemine ja alumine integraal funktsioonist f {ile
ristkiiliku D on vordsed, siis 6eldakse, et funktsioon f on ristkiilikus D Darboux’
mottes integreeruv. Seejuures funktsiooni f Darboux’ iilemise ja alumise integraalide
iihist vadrtust

Inf:=1Ipf=Ipf

nimetatakse Darbouz’ integraaliks funktsioonist f iile ristkiiliku D.

1.3. Darboux’ summade piirvairtus. Darboux’ lemma

Eeldame endiselt, et kahe muutuja funktsioon z = f(z,y) = f(P) on tokestatud
ristkiilikus D := [a, b] x [¢, d].
Ristkiiliku D jaotusviisi 7" puhul osaristkiilikuteks, mis on méiratud punktidega

a=Tg<r1 < - <Typ=0b ja c=y<p <---<y,=d, (1.9)
tahistame Ax; := x; —x;21, 1 =1,...,m, ja Ay; :=y; —y;j—1, j = 1,...,n, ning
A(T) := maX{Axl, o Ay, Ay, Ayn},
s.t. A(T) on selle jaotusviisi osaristkiilikute maksimaalne kiiljepikkus.
Definitsioon 1.9. Arvu [ € R nimetatakse funktsiooni f
e Darbouz’ ilemsummade piirvidrtuseks (ristkiilikus D) ja kirjutatakse

I'= lim S(T) voilihtsalt I =1limS(T),
A(T)—0

kui iga reaalarvu € > 0 korral leidub reaalarv 6 > 0 nii, et
AT)<ds = [S(T)—1I|<e

(s.t. ristkiiliku D mis tahes jaotusviisi 7" korral, mille osaristkiilikute maksi-
maalne kiiljepikkus on viiksem kui ¢, erineb vastav Darboux’ iilemsumma
arvust I vihem kui ¢);

e Darbouz’ alamsummade piirvidrtuseks (ristkiilikus D) ja kirjutatakse

I'= lim s(T) wvoilihtsalt I =1lims(T),
A(T)—0
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kui iga reaalarvu € > 0 korral leidub reaalarv 6 > 0 nii, et
AT)<é = |[s(I)—1I|<e

(s.t. ristkiiliku D mis tahes jaotusviisi 7" korral, mille osaristkiilikute maksi-
maalne kiiljepikkus on viiksem kui §, erineb vastav Darboux’ iilemsumma
arvust / vihem kui ¢).

Jérgnevast teoreemist jireldub, et Darboux’ summadel eksisteerib alati piir-
vaartus.

Teoreem 1.4 (Darboux’ lemma). (a) Darbouz’ ilemine integraal funktsioonist f

tle ristkiliku D on funktsiooni f Darbouz’ dlemsummade piirvadrtus (ristkili-
kus D):
Ipf=1li T).
ol = e

(b) Darbouz’ alumine integraal funktsioonist f dle ristkilliku D on funktsiooni f
Darbouz’ alamsummade piirvaartus (ristkilikus D):

Ipf = lim 5.

Darboux’ lemma toestus toetub jargmisele abitulemusele.

Lemma 1.5. Olgu ristkiiliku D jaotusviis T" saadud selle ristkiiliku jaotusviisi T
mdadravatele punktidele (1.9) p uue punkti lisamise teel (p € N). Tdihistame

f:=sup f(P), «a:= zlnlelfpf(P) ja X:=max{b—a,d—c}.

PeD
Siis
0 < S(T) — S(T") < p(B—a) NA(T).
Ulesanne 1.4. Jireldada lemmast et selle lemma eeldustel 0 < s(T")—s(T) < p(B—a) AA(T).

LEMMA TOESTUS. Lemma toestuseks piisab niidata, et

(o) kui ristkiiliku D jaotusviis 7" on saadud jaotusviisi 7' mééravatele punkti-
dele (|1.9) iihe uue punkti lisamise teel, siis

0

N

S(T) — S(T") < (B — a) AA(T).

Toepoolest, kehtigu véide (o) ning olgu jaotusviis 7" saadud jaotusviisi 7" méaédrava-
tele punktidele uute punktide uq,...,u, lisamise teel (siin iga r € {1,...,p}
korral punkt u, lisatakse punktidele xy,. .., z,, voi punktidele yq,...,y,). Tahista-
me Tp := T ning, edasi, iga r € {1, ..., p} korral tahistame siimboliga T, jaotusviisi,



154 V. Kordsed integraalid

mis on saadud jaotusviisi 7,_; méadravatele punktidele punkti w, lisamise teel. Siis
jaotusviis 7}, langeb kokku jaotusviisiga 7" ning seega viite (o) pohjal

0<S(T) - S(T') = S(To) — S(T;) = > (S(Tr1) — S(T))

p

B=a)AA(T,21) < Y. (B—a) NA(T) = p (B — a) NA(T).

r=1

I M@

Jadab veel toestada viide (o). Olgu ristkiiliku D jaotusviis 7" saadud jaotus-
viisi T médravatele punktidele ((1.9) ithe uue punkti u lisamise teel, kusjuures oletame
konkreetsuse mottes, et see uus punkt on lisatud 16igu [a, b] k-ndasse osaloiku: u €
[Tk—1, 2], kus k € {1,...,m}. Tdhistame Az} := u — x4 ja Az} := zx — u ning
iga j € {1,...,n} korral

D;cj = 21, u] X [yj-1, 9] Ja ng = [u, zk] x [yj-1,9]

Rl sin voiks o= (VE. [JOORISE 777 ) ja
la viide lause

(0 e (e M, = sup f(P) ja M= sup f(P).
iie?olevale) joonise- PGD;C]- PE'D"
Siis
i=1 j*l
- Z Z M;; Ax; Ay; — Z My Az) Ay; — Z My; Axy Ay;
Z#ij 1 j=1 j=1
Z ki Ay Ay, — Z My; Ay Ay; — Z My Az Ay;
Jj=1 j=1

= Z Myj Axy — My; Azl — My Axy) Ay;.

Iga je{l,...,n} korral
My Axy, — M,;j Az — M,Q’] Az = My, (Az), + Axy) — M,’W- Az, — M,Q'J Axy,
= (My; — My;) Axy + (My; — My;) Axy,
(8 —a)Az), + (8 —a) Az,
= (8 —a)(Az), + Az}) = (8 — a) Az
(

N

seega

S(T) () < 20~ 0) A(T) 3y = (3= AT) Y
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TEOREEMI TOESTUS. (a). Tdhistame I := Ipf. Viite toestuseks peame niita-
ma, et iga reaalarvu € > 0 korral leidub reaalarv 6 > 0 nii, et

AT) <6 = T—-e<S(T)<I+e.

Fikseerime vabalt reaalarvu e > 0. Kuna ristkiiliku D iga jaotusviisi 7" korral I <
S(T) (sest I on ristkiiliku D jaotusviisidele T vastavate Darboux’ iilemsummade
S(T') alumine raja), siis piisab viite toestuseks leida reaalarv § > 0 nii, et

A(T) <6 = S(T)<I+e. (1.10)
Valime ristkiiliku D jaotusviisi 77 selliselt, et

S(T") < T+ %.
Olgu niitid T ristkiiliku D suvaline jaotusviis. Olgu 7" ristkiiliku D jaotusviis, mis on
saadud jaotusviisi 7' mésravatele punktidele jaotusviisi T” méisravate punktide
juurdelisamise teel. Nende juurdelisatavate punktide arv on iilimalt p := p; + ps — 2,
kus p; ja po vastavalt jaotusviisi 7" mééravate 16igu |a, b] osaldikude ja 16igu |c, d]
osaloikude arv; niisiis lemma pohjal

S(T) < S(T") + p (B — a) NA(T).

Jaotusviis 7" on tolgendatav jaotusviisina, mis on saadud jaotusviisi 7" méédravatele
punktidele teatavate uute (jaotusviisi 7' méairavate) punktide juurdelisamise teel (voi
ddrmisel juhul jaotusviisid 7" ja T" iihtivad), seega S(7”) < S(1") ning jérelikult

S(T) < S(T") + p (B — a) AA(T) <7+§+p(ﬁ—a)mm.

Néeme, et kui ristkiiliku D jaotusviis T' rahuldab tingimust p (8 — @) AA(T) < g,
— €
siis S(T') < I + €. Seega, tiahistades 6 := ————— kehtib ((1.10)).
(T) TG (.10)

(b). Kuna ristkiiliku D mis tahes jaotusviisi 7' korral iilesannete (a), ja
[L.3 (a), pohjal

|57(T) = Ipf| = |[=S¢ p(T) + In(=f)| =[S p(T) — In(=f)|,

siis piisab viite tdestuseks veenduda, et Ip(—f) = lim S (7T), mis kehtib juba

A(T)—0
toestatud véite (a) pohjal. O

1.4. Riemanni ja Darboux’ mottes integreeruvuse
samavaarsus. Tarvilikke ja piisavaid tingimusi
integreeruvuseks

Darboux’ lemma voimaldab toestada Riemanni ja Darboux’ mottes integreeruvuse

samavaarsuse ning nende integraalide vordsuse ning iihtlasi anda mitu kasulikku
tarvilikku ja piisavat tingimust funktsiooni integreeruvuseks.



156 V. Kordsed integraalid

Teoreem 1.6. Olgu kahe muutuja funktsioon z = f(x,y) = f(P) tokestatud rist-
kiilikus D := |a,b] x |¢,d|. Jdrgmised vdited on samavddrsed:

(i) funktsioon f on Riemanni mottes integreeruv ristkilikus D;
(i) funktsioon f on Darboux’ mdéttes integreeruv ristkilikus D;

(iii) funktsiooni f Darbouz’ ulemsummade piirvidrtus ja Darbouz’ alamsummade
purvddrtus ristkilikus D on vordsed, s.t

A(I%ILO S(T) = A}%I)ILOS(T) =:J; (1.11)

(iv) iga reaalarvu € > 0 korral leidub reaalarv 6 > 0 selliselt, et
AT)<d = S(T)-s(T)<e¢ (1.12)
(s.t. ristkiliku D mis tahes jaotusviisi T korral, mis rahuldab tingimust A(T) < 6,
erinevad sellele jaotusviisile vastavad Darboux’ summad teineleisest vihem
kui €); teisisonu,
(50 0) o
(v) iga reaalarvu € > 0 korral leidub ristkilliku D jaotusviis T, mille korral
S(T) —s(T) < ¢ (1.13)
teisisonu, inf{S(T) —s(T): T on ristkiliku D jaotusm’z’s} = 0.
Seejuures, kui kehtib tkskoik milline viidetest (1)—(v) (sel juhul eelneva pohjal keh-

tiwad koik need vdited), siis

ONS? 2) @y D7 (G
Hf(x,y)drcdy—A(lg)gOSf(T)— g;I;lOSf() Inf=Ipf=1Ipf;  (1.14)

muuhulgas Riemanni integraal ja Darbouz’ integraal funktsioonist f (ile ristkiliku D)
on vordsed: §\, f(x,y)dxdy = Ipf.

Maérkus 1.2. Kuna (jaotise alguses tutvustatud tdhistusi kasutades)

S(T) —s(T) = Z Z M;; Ax; Ay — Z Z mi; Az; Ay; = Z Z —my;) Ax; Ay;
i—1j=1 i=1j=1 i=1j=1
= Z Z wij Az; Ayj,
i=1j=1

kus koikide i € {1,...,m} ja j € {1,...,n} korral
wij == Mj; —my; = sup f(P)— inf f(P)

PeD;; PeDi
= sup (f(P)—f(Q) = sup |f(P)— f(Q)
P,QeDy; P,Q€Di;

(arvu w;; nimetatakse funktsiooni f vonkumiseks osaristkiilikus D;;), siis voib teo-
reemi [1.6| viited (iv) ja (v) formuleerida ka jiargmisel (sagedasti kasutataval) kujul:
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(iV7) A(II}I)ILO Z Z Wij Al’l Ay] = 0,’

i=1j=1

(v") inf{z Z w;j Az; Ay T on ristkiiliku D jaotusviis} = 0.

i=1j=1

TeorEEMI [L.6] TOESTUS. (ii)= [(ii))&([L.14)@®)]. Kui kehtib (ii), siis vastavalt
definitsioonile kehtivad (I.14)™"-0), jarelikult Darboux’ lemma pohjal kehtivad ka
(T.74)®-3); muuhulgas kehtib ka (iii).

(iii)= [ (1) & (1.14) V" *]. Kehtigu (iii) ning olgu ¢ > 0. Implikatsiooni toestuseks
piisab leida reaalarv 0 > 0 nii, et ristkiiliku D mis tahes jaotusviisi 7" ja mis tahes
sellele jaotusviisile vastava Riemanni summa o korral

AT)<d = J—e<o<J+e (1.15)
Vorduste tottu leiduvad reaalarvud d;,d, > 0 nii, et
AT)<y = s(T)>J—-¢c ja A(T)y<d = S(T)<J+e.
Kuna iga jaotusviisile 7" vastava Riemanni summa o korral s(T) < o < S(T), siis,

tahistades 0 := min{dy, do}, kehtib ([1.15).

(i)=(iv). Kehtigu (i); tahistame I := {{ f(z,y) dzdy. Olgu ¢ > 0. Siis leidub
reaalarv 6 > 0 nii, et ristkiiliku D mis tahes jaotusviisi 1" ja mis tahes sellele jaotus-
viisile vastava Riemanni summa o korral

AT) <) = ]—Z<O’<]+Z;

seega lause pohjal (mérgime, et teoreemi pohjal on funktsioon f tokestatud
ristkiilikus D)

AT) <5 = I—Zés(T)éS(T)<I+Z.

Kuna eelneva implikatsiooni paremast poolest jireldub, et S(T') —s(1') < § < ¢, siis
kehtib implikatsioon ((1.12]).

(iv)=(v) on ilmne.

(v)=(ii). Kehtigu (v) ning olgu ¢ > 0. Eelduse (v) pohjal leidub ristkiiliku D
jaotusviis 7', mis rahuldab tingimust ([1.13]). Arvestades, et

s(T) < Ipf <Ipf < S(T),
jareldub tingimusest (|1.13]), et
[Inf —Ipf| <S(T)—s(T) <e,

millest arvu & > 0 suvalisuse tottu jireldub, et Ipf = I,f, s.t. funktsioon f on
Darboux’ mottes integreeruv. O]
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1.5.

V. Kordsed integraalid

Taiendavaid tilesandeid

Ulesanne 1.5. Olgu a,b,¢,d € R, kusjuures a < b ja ¢ < d. Tihistame D := [a,b] x [c,d] (vt.
joonise [1.2] iilemist vasakpoolset teljestikku). Olgu f: D — R.

(a)

(b)

Olgua <a <b <bjac<c <d <d. Téhistame D' := [a’,b'] x [/, d'] (vt. joonise [1.2]iile-
mist parempoolset teljestikku). Toestada, et kui funktsioon f on integreeruv ristkiilikus D,
siis f on integreeruv ka ristkiilikus D’.

Olgu a < @’ < b. Téhistame D; := [a,a’] x [¢,d] ja Dy := [a’,b] x [c,d] (vt. joonise
alumist vasakpoolset teljestikku). Toestada, et kui funktsioon f on integreeruv ristkiilikutes
D; ja D, siis f on integreeruv ka ristkiilikus D, kusjuures

|| e des = [ sy azdy+ [ 1. doan
D D4 Do

Olgu ¢ < ¢ < d. Téhistame Dy := [a,b] x [c, '] ja Dy := [a,b] x[¢/, d] (vt. joonise[1.2]alumist
parempoolset teljestikku). Tdestada, et kui funktsioon f on integreeruv ristkiilikutes D,
ja Do, siis f on integreeruv ka ristkiilikus D, kusjuures kehtib vordus (1.16).

(1.16)

Toestada, et kui funktsioon f on tokestatud, kusjuures tema viartused ristkiiliku D sise-
muses on nullid (s.t. f(z,y) = 0 iga (z,y) € (a,b) x (¢,d) korral), siis f on integreeruv
ristkiilikus D, kusjuures {{, f(z,y) dz dy = 0.

v Yy
dt-- dt--
dt--F--
D D'
C/ I
Ct--| | Cr- E E [
0 ¢ i ol a v b e
YA Y
dt- g1
D,
D, D, JL-
D,
CT- I I Ct--| |
0 a W o o a L o

JOONIS 1.2

NB! Ulesannet
kasutatakse
jaotises integ-
raali (tle mis
tahes tokestatud
hulga) definit-
siooni korrektsuse
pohjendamisel.



§ 2. Kahekordne integraal iile mis tahes tokestatud
hulga

2.1. Integraali definitsioon

Olgu kahe muutuja funktsioon z = f(x,y) = f(P) méidratud tokestatud hulgas
A < R

Definitsioon 2.1. Sisaldagu ristkiilik D < R? hulka A, s.t. D o A (vt. joonist [2.1).
v

o

0

JooNIs 2.1. Hulk A on joonisel varvitud heleroheliseks, ristkiilik D on #éris-
tatud tumesinise joonega.

Oeldakse, et funktsioon f on (Riemanni mdéttes) integreeruv hulgas A, kui kahe

~

muutuja funktsioon z = f(z,y) = f(P), kus

N :{f(P), kui P e A;

J(P) 0, kui P e D\A, 21)

on integreeruv ristkiilikus D. Seejuures integraali

|[ s ey [ Fw.day
A D

nimetatakse (kahekordseks) (Riemanni) integraaliks funktsioonist f ile hulga A.

Siinkohal kerkib loomulik kiisimus eelneva definitsiooni korrektsusest, nimelt: kas
funktsiooni f integreeruvus hulgas A ja integraali {§ , f(z,y) dz dy véirtus on soltu-
matu (hulka A sisaldava) ristkiiliku D < R? valikust? Vastus sellele kiisimusele on:
jah, on kiill soltumatu; seega on eelnev definitsioon korrektne. Veendumaks selles,
piisab, eeldades, et Dy, Dy R? on hulka A sisaldavad ristkiilikud ning funktsioonid
fi: D1 > Rja fo: Dy — R on defineeritud vordustega

~ f(P), kui P € A; , ~ f(P), kui P € A,
P - P —
fi(P) {0, kui Pe DA\A, O f2(P) {0, kui P € Do\ A,

159
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niidata, et

(1) funktsioon fl on integreeruv ristkiilikus D; parajasti siis, kui funktsioon fg on
integreeruv ristkiilikus D;

(2) kehtib vordus
|[ Ay dway = [[ By dway 22)
D1 Do

(seda muidugi funktsioonide fl ja ]?2 integreeruvuse korral).

Seejuures voime iildisust kitsendamata eeldada, et funktsioon f on tokestatud (sest
vastasel juhul on ka funktsioonid fl ja ]?2 tokestamata ning seega teoreemi pohjal
pole kumbki neist funktsioonidest integreeruv) ning et Dy < D5 (s.t. ristkiilik D,
sisaldub ristkiiliku Dy sisemuses (POHJENDADA!) .

See pohjendus on jargmine. Eeldame, et viited (1) ja (2) kehtivad lisaeeldusel D; < D ning
et D ja D5 on suvalised hulka A sisaldavad ristkiilikud tasandil R2. Valime ristkiiliku D < R?
selliselt, et D1 c D° ja Dy © D° (s.t. ristkiilikud D; ja Dj sisalduvad ristkﬁliku D sisemuses;
vt. joonist nlng defineerime funktsiooni f D — R vordusega (2

Kui funkts1oon f1 on integreeruv ristkiilikus Dy, siis tehtud ¢ eelduse pohJal on funktsioon f
integreeruv ristkiilikus D, kusjuures {{,, Fiz,y) dedy = $Sp fx,y) de dy; seega, jallegi teh-
tud eelduse pohjal on funktsioon f2 integreeruv ristkiilikus D5, kusjuures SSD x,y)dedy =
5o, Fo(z, y) dz dy; niisiis kehtib ka vordus (2.2).

Stimmeetria pohjal saame, et kui funktsioon fg on integreeruv ristkiilikus Dy, siis funkt-
sioon f; on integreeruv ristkiilikus Dy, kusjuures kehtib vordus (2.2)).

Oleme nididanud, et vdidete (1) ja (2) kehtivusest lisaeeldusel Dy < D§ jéreldub nende
véidete kehtivus iildjuhul.

v

-

d”‘ 77777777777777777

D,
d< ,,,,,,,,,,,,,,
A
Dy D

C‘ 77777777777777 I I

e ;

e —

o p -
Joonis 2.2. Ristkiilikud Dy := [a,b] x [¢,d], D2 := [a", V"] x [¢",d"] ja
D = [d,V] x [,d'] on joonisel déristatud vastavalt tumesinise, punase ja

tumerohelise joonega.
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Niisiis, eeldame, et funktsioon f on tokestatud ning et D; < Dj. Olgu a,b,c,d,
a, b, d,deR kusad <a<b<bjad <c<d<d,sellised, et D; = [a,b] x |c,d]
ja Dy = |d, b’] x ¢, d']. Defineerime ristkiilikud

Ds:=[d,a] x [d,d], Dy:=][a,b] x[,c], Ds:=][a,b] x[d,d],
Dg := [b, 0] x |, d]

(vt. joonist ning iga i € {3,4,5,6} korral defineerime funktsiooni fi:D; > R
vordusega

~ f(P), kui P e D; n A;
0, kui P € D)\ A;

siis funktsioon ﬁ on tokestatud (sest tehtud eelduse pohjal on funktsioon f tokes-
tatud), kusjuures tema viidrtused ristkiiliku D; sisemuses on nullid, seega iiles-

ande (d), pohjal on funktsioon ﬁ integreeruv ristkiilikus D;, kusjuures

J ﬁ(x,y) dz dy = 0.

yh
d'1------

Ds
d i

A
Dg D6
D,

[oJE A

Dy
C, 7777777 | | | |

0 o a b ¥y T

JOONIs 2.3. Hulk A on joonisel kujutatud helerohelisega, ristkiilik D on vérvi-
tud helesiniseks, ristkiilikud D1, D3, Dy, D5 ja Dg on ddristatud tumesinisega.

Oletame niiiid, et funktsioon fl on integreeruv ristkiilikus D;. Kuna ka iga i €
{3,4,5 6} korral on funktsioon f; integreeruv ristkiilikus D, siis, arvestades, et iga

i€ {l,...,6} korral f2|p = fl, on funktsioon f2 integreeruv ristkiilikutes D3, Dy,
Dy, D5 ja Dg, seega iilesande [1.5) (b) ja (c), pohjal on funktsioon f integreeruv
ka ristkiilikus Dy (POHJENDADA!) , kusjuures, miérkides iileskirjutuste lihtsustamiseks
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igaie{l,...,6} korral [; := {{ fi(z,y) dz dy = s fo(,y) dz dy ning arvestades,
et iga i € {3,4,5,6} korral I; =0,

Hfz(x,y)dxdyZJQ213+14+11+15+16=11 :”ﬁ(x,y)dxdy (2.3)

DQ Dl
(POHJENDADA!) .

Teiselt poolt, oletame, et funktsioon fg on integreeruv ristkiilikus Dy. Siis iiles-
ande , (a), pohjal on funktsioon fy integreeruv ka ristkiilikutes D3, Dy, D;, Ds
ja Dg, kusjuures (iilesande (b) ja (c) pohjal) kehtivad vordused (2.3).

Viited (1) ja (2) on toestatud ning tihes sellega on pohjendatud definitsiooni
korrektsus.

Jaotise 1opetuseks toestame iihe olulise tarviliku tingimuse funktsiooni integree-
ruvuseks.

Lause 2.1. Hulgas A < R? integreeruv kahe muutuja funktsioon z = f(x,y) = f(P)
on tokestatud selles hulgas.

TogesTUs. Olgu ristkiilik D < R? selline, et D > A. Funktsiooni f integreeru-
vus hulgas A tdhendab vordusega ({2.1) defineeritud funktsiooni f integreeruvust

ristkiilikus D. Funktsiooni f integreeruvusest ristkiilikus D jéireldub teoreemi
pohjal tema tokestatus selles ristkiilikus, millest omakorda jireldub funktsiooni f
tokestatus hulgas A. ]

2.2. Hulga mootuvus Jordani mottes

Olgu A c R%
Definitsioon 2.2. Funktsiooni y 4: R? — R, kus

1, kui P € A;

xalP) = {0, kui P e (R2)\A,

nimetatakse hulga A karakteristlikuks funktsiooniks voi ka (eriti toendosusteoorias)
hulga A indikaatorfunktsiooniks.

Eeldame niiiid, et hulk A < R? on tokestatud.

Definitsioon 2.3. Oeldakse, et hulk A on Jordani méttes méotuv, kui tema ka-
rakteristlik funktsioon y 4 on integreeruv hulgas A, s.t., valides ristkiiliku D < R?
nii, et D o A, karakteristlik funktsioon y 4 on integreeruv ristkiilikus D. Seejuures
integraali

() i= S [ atepydedy = [ dedy = { [ xatev)dody
A A D

nimetatakse hulga A Jordani mooduks ehk pindalaks.
Koneldes selle peatiiki paragrahvides 2H6| edaspidi lihtsalt modtuvatest hulkadest,
moistame me selle all Jordani mottes mootuvaid hulki tasandil R2.
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Rohutame, et eelnevas punktis toestatu pohjal ei soltu karakteristliku funktsioo-
ni x4 integreeruvus ja integraal SSD xA(z,y) dr dy ning seega ka hulga A Jordani
mottes mootuvus ja Jordani moot hulka A sisaldava ristkiiliku D valikust definit-
sioonis 2.3} Rohutame samuti, et hulga A Jordani moodust (ehk, teisisonu, pindalast)
saame konelda vaid Jordani mottes mootuva hulga A puhul.

Mairkus 2.1. Eelnev Jordani moodu definitsioon ei lahtu vahetult meie eelmate-
maatilisest arusaamast pindalast. Seosed nimetatud definitsiooni ja arusaama vahel
hakkavad selginema, kui analiiiisida hulga karakteristliku funktsiooni integreeruvust
Darboux’ summade terminites. On moistlik liilkata see analiiiis edasi paragrahvi
kus meie kisutuses on oluliselt rohkem teadmisi integraalist ja Jordani moodust. Pa-
ragrahvis |4] toestame hulga Jordani mottes mootuvuse jaoks iihe tarviliku ja piisava
tingimuse (teoreemi [4.2)), mis selgitab (vt. mérkust [1.1), et eelnev Jordani moodu
definitsioon on igati kooskolas meie eelmatemaatilise arusaamaga pindalast.

Niide 2.1. Ristkiilik D := [a,b] x [c,d] © R? on Jordani mottes mootuv hulk, kusjuures tema
Jordani moot

w(D) = (b—a)(d —c),

s.t. ristkiiliku Jordani m6ot on vordne tema elementaargeomeetrilistest kaalutlustest ldhtudes arvu-
tatud pindalaga.

Toepoolest, ristkiiliku D Jordani méttes mootuvuse toestuseks piisab (vottes definitsioonis
nii hulga A kui ka teda sisaldava ristkiiliku D rolli meie vaadeldava ristkiiliku D enda), veenduda,
et selle ristkiiliku karakteristlik funktsioon xp on integreeruv ristkiilikus D, aga see jireldub nii-
test (sest karakteristilik funktsioon yp on selles ristkiilikus konstantne: (xp)|p = 1); seejuures

(jallegi néites [1.1] leitu pohjal)

u(0) = | xole,) dzdy = [ 1dody = (0 - a)(a- o)
D D

Jiargnevad naide 2.2]ja lause 2.4 annavad néiteid nullmooduga hulkadest tasandil,
s.t. niisugustest Jordani mottes modtuvatest hulkadest (tasandil R?), mille Jordani
moot on null. Eelnevalt on otstarbekas toestada jargnevad kaks tulemust, millest
lemma annab tarvilikke ja piisavaid tingimusi hulga nullmoddulisuseks (mida
nende lihtsuse tottu kasutame edaspidi sageli ilma sellele lemmale viitamata) ning
lause iitleb, et nullmooduga hulkade 1oplik iihend on nullmoéoduga hulk.

Lemma 2.2. Olgu (tokestatud) hulk A = R? ja ristkiilik D = R? sellised, et D > A.
Jargmised vdited on samavddrsed:

(i) A on nullmooduga hulk;
(11) j’DX.A = 07'
(ili) Zpxa < 0;

(iv) tga reaalarvu € > 0 korral leidub ristkiliku D jaotusviis T' nii, et Sy ,(T) < ¢
(siimbol S, ,(T') tihistab karakteristliku funktsiooni x 4 Darbouz’ dlemsummat
(ristkilikus D), mis vastab jaotusviisile T');

NB! Kas vaja
selgitada téhistust
Ipxa? See on
Darboux’ iilemine
integraal hulga A
karakteristlikust

funktsioonist x4
iile ristkiiliku D.
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(v) iga reaalarvu e > 0 korral leidub ristkiliku D jaotusviis T', mille korral hulka A
loikavate osaristkilikute pindalade summa on vdiksem kui €, s.t., tihistades
I':={(i,j) e': Dy n A+ &}, kehtib vorratus

(i,5)el’ (i,5)el’

TOESTUS. (i)=(ii). Hulga A nullm&o6dulisus téhendab, et tema karakteristlik funkt-
sioon x4 on integreeruv ristkiilikus D, kusjuures integraal temast iile selle ristkiiliku
on null, aga sellisel juhul Zpx 4 = Zpxa = §§, xa(z, y) dzdy = 0.

(ii)=>(iii) on ilmne.

(iii)=(i). Kehtigu (iii). Siis 0 < Zpxu < Ipxa < 0 (selle ahela esimene vor-
ratus jireldub karakteristliku funktsiooni x4 mittenegatiivsusest), seega Zpxa =
Ipxa = 0. See tdhendab, et karakteristlik funktsioon y 4 on integreeruv ristkiilikus D,

kusjuures integraal temast iile selle ristkiiliku on null; see omakorda aga tdhendab,
et hulk A on Jordani mottes mootuv, kusjuures tema Jordani méot on null.

(iii)=(iv) on ilmne.

(iv)<(v) on ilmne, sest ristkiiliku D mis tahes jaotusviisile 7" vastav karakte-
ristliku funktsiooni x4 Darboux’ {ilemsumma S, ,(7") on selle jaotusviisi selliste
osaristkiilikute pindalade summa, mis loikavad hulka A. O

Jargnevat lauset vajame me niites toestamaks, et 16plik hulk (tasandil) on

nullmooduline, aga samuti jaotises [2.3] (koos teoreemiga [2.5]ja lausega lause
— pidevate funktsioonidega méiratud kovertrapetsi mootuvuse — toestamisel.

Lause 2.3. Nullmooduga hulkade loplik ihend (tasandil) on nullmdédduga hulk.

LAUSE TOESTUS. Olgu A, B « R? nullmooduga hulgad. Lause toestuseks piisab
néidata, et iihend A U B on nullmooduga hulk. Selleks, valides ristkiiliku D < R?
nii, et D o A U B, piisab veenduda, et Zpx 4.5 < 0.

Kuna x5 < X4 + X5, siis iilesande [1.3} (d) ja (c), pohjal
Ioxaus < Ip(xa+ x8) <ZIpxa+ZIpxs =0,
sest hulkade A ja B nullméddulisuse tottu Zpxa = Zpxs = 0. O

Lause toestus lihtsustuks veelgi, kui selles kasutada lauset [3.7] Niisugune
toestus on esitatud jaotises 1k. lause [3.7] toestuse jarel.

Niide 2.2. Loplik hulk tasandil R% on nullméoduga hulk. Kuna iga mittetiihi 16plik hulk on iihe-
punktiliste hulkade 16plik iihend, siis lause pohjal piisab lopliku hulga nullmoodulisuseks veen-
duda, et ithepunktiline hulk tasandil R? on nullmooduga hulk. Olgu P € R? ja olgu ristkiilik
D < R? selline, et D > {P} (ehk teisisonu P € D), ning olgu ¢ > 0. Lemma pohjal piisab
hulga {P} nullméoodulisuseks leida ristkiiliku D jaotusviis 7', mille korral punkti P sisaldavate
osaristkiilikute pindalade summa on viiksem kui e. Sellise jaotusviisi olemasolu on ilmne.
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Lause 2.4. (a) Loigus [a,b] pideva funktsiooni y = f(x) graafik
L:={(z,y) eR* zeab], y = f(x)}
on nullmooduga hulk ruumis R?.
(b) Loigus [c,d] pideva funktsiooni x = g(y) graafik

{(z,y) e R*: y e [c,d], x = g(y)}

on nullmooduga hulk ruumis R2.

Lause (mis on ka eraldi vaadelduna huvipakkuv) leiab rakendust jaotise
lopus lause — pidevate funktsioonidega médratud kovertrapetsi mootuvuse —
toestamisel.

Jargnevas toestuses, koneldes ristkiiliku D jaotusviisist 7', toetume me kons-
pektis labivalt kasutatavatele kokkulepetele/tiahistustele, mida on tutvustatud néi-

teks jaotise alguses k. . Lisaks tdahistame I' := {1, o,m} x {1,...,n} ja
I'y = {(Z,]) el Dij N L :+: @}

LAUSE 2.4 TOESTUS. (a). Weierstrassi teoreemi 7?7 pohjal leiduvad arvud ¢, d € R,
¢ < d, nii, et ¢ < f(r) < diga x € [a,b] korral. Téhistame D := [a,b] x
[c,d]; siis D o L. Fikseerime vabalt reaalarvu ¢ > 0. Lemma pohjal piisab
graafiku L nullméodulisuse toestuseks leida ristkiiliku D jaotusviis 7', mille korral
i ger, Aridy; <e.

Jaotame 16igu [c, d] punktidega ¢ = yo < y1 < -+ < y, = d, kus n € N, vordse

pikkusega osaloikudeks [y;_1,y;], mille pikkused dy on viiksemad kui 2(%(1)7 s.t.

g :=Ay; =--- = Ay, < ﬁ Cantori teoreemi 7?7 pohjal leidub reaalarv ¢ > 0
nii, et

v, @ €fa,b], |lr—2'|<d = |f(x)— f(2")] < do.

Jaotame 16igu [a, b] punktidega a = xy < 21 < -+ < z,,, = b, kus m € N, osaloiku-
deks [x;_1, z;], mille pikkused on viiksemad kui §. Igai € {1, ..., m} korral tahistame
I = {j e{l,...,n}: LnD;; + @} (s.t. T; on nende indeksite j € {1,...,n} hulk,
mille korral graafik L 16ikab osaristkiilikut D;;) ning siimboliga |I';| tdhistame hul-
ga I'; elementide arvu; siis |I';| < 2 (s.t. 16igus [x; 1, ;] 16ikab graafik L iilimalt
kahte ristkiilikut D;;) (POHJENDADA!) .

Toepoolest, oletame vastuvéiteliselt, et mingi i € {1,...,m} korral |I';| = 3. Siis mingite j, k €
Fi korralj+1 < k. Olgu x, z' e [.’L'Z‘,l, LUZ‘] sellised, et (l‘, f(l‘)) € Dij = [.’L‘i,l, .’171] X [yjflv yj] j&
(a:’,f(:z:')) € Dy = [Ti—1, ] X [Yk—1,Ys]; sils —2’ < Awx; < 6, kuid f(z) <y; <yr—1 < f(2')
ning seega

[f(2) = f@)| = f(a") = f(2) 2 yp—1 — 5 = Y1 — y; = o.

Joudsime vastuoluni.

NB! JOONIS!
(Kuhu tépselt?)
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Aga niiiid (t&histades tdhega T ristkiiliku D jaotusviisi, mis on méadratud punktidega
Lo, L1y, Tm ja yanl7"'7yn)

(,L'J)ef‘L =1 ]EFZ =1 ]EFZ =1
m m c
(b). Viite toestus on stimmeetriline véite (a) toestusega. O

2.3. Tarvilik ja piisav tingimus hulga Jordani mottes
mootuvuseks tema raja nullmoodulisuse kaudu

Teoreem 2.5. Olgu A < R? tokestatud hulk. Jirgmised vdited on samavdidrsed:
(i) A on Jordani mottes mootuv;
(ii) pu(0A) =0, s.t. hulga A raja 0.A Jordani moot on null.
Teoreemi toestuses on mugav toetuda jargnevale abitulemusele.

Lemma 2.6. Olgu hulk A < R? ja ristkilik D := [a,b] x [c,d] = R? sellised, et
A < D. Tihistame tihega T ristkiiliku D jaotusviisi osaristkiilikuteks

Dij = [’Iiflaxi] X [?/j—h?/j], L= 17"'7m7 j = 1,..-,71,

kusmne Nnnga =2y <1 <---<zTp=bjac=y <y <--- <y, =d.
Téhistame T := {1,...,m} x {1,...,n} ning

=

={(i,7) e ': D;; = A},

~

= {(l,j) el Dz‘j nA :+: @},
= f‘\f‘,

=i
= FI¢
|

(a) Sy (T) = Z(i,j)ef‘ AziAy;, s, (T) = Z(i,j)ef Az Ay;;
(b) Syu(T) = 55, (T) = i jyer AriAy;;
(c) Sy (T) = Z(i,j)ef“ Az Ay;;
(d) T <T.
Kui A c D° (s.t. hulga A sulund sisaldub ristkiiliku D sisemuses), siis ka

(e) dA < U(i,j)ef Dij;
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(f) |T| < 9|T|, kus siimbolid || ja |T| tihistavad vastavalt hulkade T' ja T elemen-
tide arvu.

TOESTUS. (a). Mis tahes (i,7) € T korral

Mo () = 1, kuiDynA+, st (i,j)el;
PXATTN0, kiDy A=, st (i) e I\,
1, kui D;; < A, s.t. (4,7) € f;

mij (x4) = {o, kui Dj; n (D\A) # &, s.t. (i,j) e T\,

Toestatavad vordused on niiiid ilmsed.

(b). Toestatav vordus jareldub vahetult véitest (a).

(c). Toestatav vordus jareldub viite (a) esimesest vordusest.

(d). Olgu (4,5) € T. Siis D;; n A + &, seega leidub P € D;; nii, et P € A. Teiselt
poolt, kuna (¢, j) ¢ I, siis D;; ¢ A, seega leidub Q) € D;; nii, et ) ¢ A. Niiiid punkte
P ja @ iihendaval sirgloigul leidub punkt R € 0A (vt. iilesande nipuniidet;
siin me eeldame iildisust kitsendamata, et A £ (). Kuna punkte P ja @ ithendav
sirgloik sisaldub ristkiilikus D;;, siis R € D;; n 0.A ning seega D;; n 0A + F, s.t
(i,7) € I'. Oleme niidanud, et T < I

Eeldame jirgnevas tdiendavalt, et A < D°.

(e). Olgu P € 0A. Tahistame I'p := {(i,j) € I': P € D;;}. Siis hulk U :=
U(m.)erp D;; on punkti P {imbrus (pOHJENDADA!) (siin me kasutasime eeldust, et

A = D), jérelikult, arvestades, et P on hulga A rajapunkt, leiduvad (k,1), (r,s) €
Ip nii, et Dy n A+ & ja D,s n (D\A) £ & (porseNDADA!) . Niiiid, kui P € A, siis
(r,s) € T, kui aga P € D\A, siis (k,l) e T (pomseNpapa!) . Siit nieme, et igal juhul
Pe U(m)ef D;; (POHIENDADA!) .

(f). Koikjal viite toestuses kasutame jargnevaid téhistusi. Kui Iy < T, siis
stimbol |T'y| tdhistab hulga Ty elementide arvu. Iga (i,j) € T korral tidhistame
Iy = {(k,l) e T: Dy N Dy £ &}; siis ilmselt |T';;] < 9.

Viite toestuseks piisab niidata, et I' < U(m)ef I';;, sest selle sisalduvuse kehtides

U,

(i.5)er

| <

< ), Dyl <9

(i,5)er
(POHIENDADA!) . Toestame sisalduvuse ' < U(m)ef I';;. Olgu (k1) € I'; siis leidub
P € Dy n 0A. Viiite (e) pohjal leidub (4, j) € T nii, et P € D;j; niisiis P € Dy n Dy
ja seega (k,1) € T';. O
TEOREEMI TOESTUS. Olgu ristkiilik D := [a, b] x [¢, d] = R? selline, et A < D.

(ii)=(i). Olgu u(6.A) = 0 ning olgu ¢ > 0. Hulga A Jordani méottes méotuvuseks
piisab leida ristkiiliku D jaotusviis 1" selliselt, et S, , (1) — s, ,(T) < €.
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Kuna p(0A) = 0, siis saame jaotusviisi 7' valida selliselt, et S,.,(T) < ¢
(POHJENDADA!) . Lemma (b), (d) ja (c), pohjal

Sy (1) —s,,(T) = Z Ax;Ay; < Z Az;Ay; = S, ,(T) <e.
(i,4)€l (i,5)el’
(i)=(ii). Olgu hulk A Jordani mottes mootuv ning olgu € > 0. Implikatsiooni
toestuseks (s.t. vorduseks p(0.A) = 0) piisab leida ristkiiliku D jaotusviis T selliselt,
et Sy.,(T') < ¢ (pOHIENDADA!) . Seejuures voime iildisust kitsendamata eeldada, et

ristkiilik D on ruut, kusjuures A < D° (POHJENDADA!) .

Olgu T ruudu D niisugune jaotusviis, mille koik osaristkiilikud on vordse kiilje-
pikkusega ruudud; olgu nende osaruutude kiiljepikkus k. Siis lemma (c), ()
ja (b), pohjal
Sunl@) = ) AwAy; = [Fln? <OITIR2 =9 ) Ay, = 9(S, (1) = s, (1))

(ivj)Ef (Z,])Ef
Kuna hulk A on Jordani mottes mootuv, siis saame ruudu D jaotusviisi T vordse

kiiljepikkusega osaruutudeks valida nii, et Sy , (T') — s, ,(T) < § (POHJENDADA!) , aga
niisuguse jaotusviisi 7" korral S, ,(7T") < €, nagu soovitud. O

Jaotise lopetuseks toestame jareldusena teoreemist (ning lausetest ja ,
et pidevate funktsioonidega madratud kovertrapets on Jordani mottes mootuv hulk.

Lause 2.7. (a) Olgu y = a(z) ja y = [(x) loigus |a,b] pidevad funktsioonid,
kusjuures a(x) < (x) iga x € [a,b] korral. Siis kovertrapets

A= {(z,y) eR*: z € [a,b], a(z) <y < B(z)}
on Jordani maottes mootuv hulk (tasandil R?).
(b) Olgu xz = v(y) ja x = 6(y) loigus |c,d] pidevad funktsioonid, kusjuures v(y) <
d(y) iga y € [c,d] korral. Siis kovertrapets
{@y) eR*: yeled] 1(y) <z <y}

on Jordani maottes mootuv hulk (tasandil R?).

LAUSE TOESTUS. (a). Teoreemi 2.5 pohjal piisab kovertrapetsi A mootuvuseks
N8l Joonis? niidata, et tema rajajoon 0.4 on nullmooduline. Rajajoon 0A esitub iihendina 6.4 =
L1 U L2 U L3 (&) L4, kus

Ly:={(z,y) eR*: w € [a,b], y = a(x)}, Ls:={(z,y) eR*: z = a, afa) Bla)},
Ly:={(z,y) eR* we[a,b], y = B(x)}, Li:={(x,y)eR*:z=b, a(b) pO)},

seega lause pohjal piisab tema nullmoodulisuseks ndidata, et hulgad Ly, Lo, L3
ja Ly on nullmoodulised. Hulkade L, ja Lo ning L3 ja L, nullmoodulisus jareldub
vastavalt lausest (a) ning (b) (on voimalik ka juht, kus iiks voi molemad hulka-
dest L3 ja L4 on iihepunktilised, aga {ihepunktiline hulk on nullmooduline néite [2.2
pohjal).

<
<

Sy
Sy

(b). Viite tdestus on siimmeetriline viite (a) toestusega. O
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4. Mootuvas kinnises hulgas pideva kahe muutuja
funktsiooni integreeruvus

Koiki selles jaotises kasutatavaid tdhistusi (nt. T, f’, f, T, IN“) on selgitatud lem-
mas 2.6

Teoreem 2.8. Jordani mottes mootuvas kinnises hulgas A < R? pidev kahe muutuja
funktsioon on integreeruv selles hulgas.

TorsTUS. Olgu A < R? Jordani mottes mootuv kinnine hulk ning olgu f: A — R
pidev funktsioon. Kuna Jordani mottes mootuv hulk on tokestatud, siis leidub rist-
kiilik D := [a,b] x [c,d] = R? nii, et D > A. Funktsiooni f integreeruvus hulgas A
tdhendab lk. m valemiga defineeritud funktsiooni f : D — R integreeruvust
ristkiilikus D. Seega, fikseerides vabalt reaalarvu e > 0, piisab teoreemi toestuseks
leida ristkiiliku D jaotusviis 7" nii, et, tdhistades w;; 1= suppep,, f(P)—infpep,; f(P),

Sf(T) — Sf(T) = Z wijAz; Ay, < e.
(4,5)eT
Olgu T ristkiiliku D suvaline jaotusviis. Weierstrassi teoreemi 1[4.7 pohjal on
funktsioon f tokestatud hulgas A, seega funktsioon f on tokestatud, s.t. leidub
reaalarv M > 0 nii, et |f( )] < M iga P € D korral. Arvestades, et iga (i,7) € F\F
korral w;; = 0 ning et iga (i, j) € I korral w;; < 2M (POHJENDADA!) ,

Sf(T)—S]?(T) = Z wiijiij = Z wiijiij—i- Z wiijiij

(i.5)el (i.j)er (i.5)el
<2M Z Ax;Ay; + max wj; Z Ax;Ay;
(i,5)er (ig)er (i,5)el’
<2M Z Az;Ay; + max w;; (D)
(i)t (b)el
= 2M Sy, (T) + max wi; (D).
(4,5)el’

Hulga A Jordani méttes mootuvuse tottu on tema raja nullmooduga hulk (vt. teo-

reemi [2.5]), seega leidub reaalarv §; > 0 nii, et
€
A(T) < 61 — SXDA(T) < m
Cantori teoreemi [[l[4.9 pohjal kinnises tokestatud hulgas pideva funktsiooni iihtlasest
pidevusest leidub reaalarv d > 0 nii, et

€
P, P d(P,P") <o P)— f(P .
, P e A, (7 )<2 d |f() f( )|<2M(D)
Kui nitid A(T) < f/—%, siis mis tahes (i,j) € I' ja mis tahes P, P’ € D;; korral

d(P, P') < 65 (pOHJENDADA!) ning seega w;; < ﬁD)‘ Niisiis, kui A(T) < min{él, %},
siis
€ £
S 4 (D) =
o1 T aumy MP) = e

nagu soovitud. O]

Sf(T) — Sf(T) < 2M

NB!

miletab,

w(D)?

Kas lugeja
mis on



NB!
jaotise parim koht?
Teoreemi toes-
tus ei vaja jaotise
B3] teoreemi [2.51

Kus on selle

NB! Kuskil 6elda,
et kui me rédgime
hulgas A integree-
ruvast funktsiooni-
st, siils me moista-
me implitsiitselt, et
hulk A on tokesta-
tud.
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2.5. Integraal iile nullmooduga hulga

Teoreem 2.9. Olgu A < R? Jordani mottes nullmooduga hulk ning olgu f: A — R
tokestatud funktsioon. Siis funktsioon f on integreeruv hulgas A, kusjuures

£Jf(:c,y) dx dy = 0.

TOESTUS. Olgu ristkiilik D := [a,b] x [c,d] = R? selline, et D > A. Me kasutame
standardseid tahistusi: koneldes ristkiiliku D jaotusviisist 7, moistame me selle all
jaotusviisi, mis on médratud punktidega a = zg < 1 < -+ < x,, = bjac
Yo <y < - <y, =d (m,n e N); koikide i € {1,...,m} ja j € {1,...,n} korral
tahistame Ax; := z; — 2,1, Ay; = y; — y;—1 ja Dy = [xi—1, ] x [yj_1,y;]. Lisaks
téhistame T := {1,...,m} x {1,...,n} ja I := {(,5) € T: Dij n A+ g}

Olgu funktsioon f: D — R defineeritud valemiga ([2.1)) ning olgu € > 0. Teoreemi
toestuseks piisab leida reaalarv ¢ > 0 nii, et kui ristkiiliku D jaotusviis 7" rahuldab
tingimust A(T) < ¢ (meenutame, et A(T) téhistab jaotusviisi 1" osaristkiilikute

maksimaalset kiiljepikkust), siis mis tahes sellele jaotusviisile vastav funktsiooni f
Riemanni summa o rahuldab tingimust |o| < e.
Olgu T ristkiiliku D suvaline jaotusviis ning olgu
_PZJ eD

i=1,... (2.4)

(7R
~

Téhistame o := >, o f(F;;)Az;Ay;. Funktsiooni f tokestatuse tottu on ka funkt-

sioon f tokestatud, s.t. leidub reaalarv M > 0 nii, et |f(P)| < M iga P € D korral.
Seega, arvestades, et f(F;;) = 01iga (7,7) € I'\I" korral,

< @) AnAYy; < M D) AziAy; = MS, (T).

(i.5)el (i,5)el

ol =| > F(Py)AzAy,

(i.5)el

Kuna A on nullméoduga hulk, s.t. §§, xa(x, y) dzdy = 0, siis leidub reaalarv § > 0
nii, et

AT) <5 = S (T) < %
Eelnevast ndeme, et kui jaotusviis 7' rahuldab tingimust A(T') < 0, siis mis tahes
punktide valiku korral integraalsumma o rahuldab tingimust |o| < e, nagu
soovitud. O

Siinkohal on sobilik juhtida tdhelepanu jaotise lopus toestatavale jareldu-
sele (teoreemidest 2.9] ja (b)), mis iitleb, et kui muuta integreeruva funkt-
siooni vadrtusi nullmooduga hulgal, jadb see “muudetud” funktsioon endiselt integ-
reeruvaks ning selle “muudetud” funktsiooni integraali vaartus jadb samaks, mis
esialgsel.
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Olgu kahe muutuja funktsioon u = f(x,y) = f(P) méiratud ristkiilikus
D := [a,b] x [c,d] = R%,

Jéargides eelmiste paragrahvide téhistusi, tdhistame tdhega T ristkiiliku D jaotusviisi
osaristkiilikuteks

Dij := w1, z] % [yj-1,y;], i=1,...,m,j=1,...,n,
kus m,n € N ning
a=xg<T1 < <Tp=0b ja c=y<y1 <---<y,=d.
Koikide i € {1,...,m} ja j € {1,...,n} korral tihistame
Ar; =z —ri 1 ja Ay i=y; —yj 1,
s.t. Az; ja Ay; on osaristkiiliku D;; kiilgede pikkused, ning
A(T) := maX{Azl, o AT, Ay, Ayn},

s.t. A(T) on selle jaotusviisi osaristkiilikute maksimaalne kiiljepikkus.
Valime mingid punktid
P11€D117""P1TL6D1TL7 ...... aPmlepmly---aPmnEDmn (31)

(s.t. koikide i € {1,...,m} ja j € {1,...,n} korral valime mingi punkti P;; € D;;).
Me tahistame

m n

0 :=0f = Uf(T;P117~--7P1n7---7Pm17--~7Pmn) :ZZf(PZJ)A:EZAyJ?

i=1j=1

s.t. 0 = oy on funktsiooni f integraalsumma (ehk Riemanni summa), mis vastab
ristkiiliku D jaotusviisile 7" ja punktide valikule (3.1)).

Kui funktsioon v = f(x,y) = f(P) on tokestatud ristkiilikus D, siis tdhistame
koikide i € {1,...,m} ja j € {1,...,n} korral

M;; = M (f) := Supﬂf(P), mg; = my;(f) = inf”f(P)
ja

wij 1= wii(f) := My; —my; = sup f(P)— inf_ﬁf(P)

PeD;; PeDy;
= sup (f(P)—f(@)) = sup [f(P)-f(Q)
P,QeD;; P,QeD;;
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m n

S(T) := Si(T) := i Z M;; Azx; Ay, ja s(T) :=s¢(T) = Z Z mi; Ax; Ayj,

i=1j=1 i=1j=1

s.t. S(T) = S¢(T) ja s(T) = s¢(T) on vastavalt funktsiooni f Darboux’ iilemsumma
ja Darboux’ alamsumma, mis vastavad ristkiiliku D jaotusviisile 7.

Hulgas A < D maédratud kahe muutuja funktsiooni z = f(z,y) = f(P) korral
defineerime funktsiooni f: D — R vordustega

~ o Jf(P),  kuiPeA,
f(F) = {0, kui P € D\A. (3:2)

3.1. Kahekordse integraali omadused, mis on seotud
aritmeetiliste tehetega

Teoreem 3.1. Olgu kahe muutuja funktsioonid uw = f(x,y) = f(P) jav = g(x,y) =
g(P) integreeruvad hulgas A < R? ning olgu «, 3 € R. Siis

(a) korrutis af on integreeruv hulgas A, kusjuures

H of(z,y) dzdy — o ﬂf(g;, y) dz dy;
A A

(b) funktsioonide f ja g summa f + g ja vahe f — g on integreeruvad hulgas A,
kusjuures

|| ¢+ sy dvay = || gy ardy = | [ gty dway,
A A A

(c) funktsioon af + Bg on integreeruv hulgas A, kusjuures

[‘J(af(x,y) + Bg(z,y)) de dy = a[jﬂx’y) dz dy + Bijg(x,y) dody:

(d) funktsioonide f ja g korrutis fg on integreeruv hulgas A.

Omadustele (a), (b) (summa kohta) ja (c) teoreemist |3.1| viidatakse vastavalt kui
kahekordse integraali homogeensusele, aditiivsusele ja lineaarsusele.

Enne teoreemi toestamist toome &ra iihe olulise jirelduse tema viitest (a).

Jareldus 3.2. Mootuvas hulgas A < R? mddratud konstantne kahe muutuja funkt-
sioon f(x,y) = a (€ R) on integreeruv selles hulgas, kusjuures

JAfadxdy = apu(A)

(siimbol p(A) tihistab hulga A Jordani mootu ehk pindala).
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TOESTUS. Olgu ristkiilik D < R? selline, et D > A. Antud juhul f = v x4 ristkiili-
kus D. Hulga A mootuvuse tottu tema karakteristlik funktsioon x4 on integreeruv
ristkiilikus D, seega teoreemi viite (a) pohjal ka funktsioon ax4 = f on integ-
reeruv selles ristkiilikus, s.t. funktsioon f on integreeruv hulgas A; seejuures

Jfadxdy = Jff(:z:,y) dr dy = Jff(m,y) dx dy
A A D

= fJaXA(x,y) dx dy = QJJXA(%ZJ) dz dy = o p(A).

TEOREEMI TOESTUS. Olgu ristkiilik D < R? selline, et D > A. Téhistame
I:=1;:= ij(x,y) dz dy ja I, = Jfg(x,y) dz dy.
A A

(a). Vaatleme alguses juhtu, kus A = D = [a,b] x [¢,d] (s.t. A = D on ristkiilik).
Sel juhul, fikseerides vabalt reaalarvu ¢ > 0, piisab viite toestuseks leida reaalarv
d > 0 nii, et (ristkiiliku D mis tahes jaotusviisi 7' ning mis tahes sellele jaotusviisile
vastava funktsiooni af integraalsumma o,y korral)

A(T) <6 = |oag—al|<e.

Selleks méargime koigepealt, et

|oay —al| = ZZozf(Pij)Axiij —al| =|qf ZZf(lDij)Axiij -1
i=1j=1 i=1j=1
= |Oé| ‘O’f—[‘.

Juhul, kui a = 0, on jarelduse viite kehtivus ilmne. Eeldame jargnevas, et a £ 0.
Siis funktsiooni f integreeruvuse tottu leidub reaalarv ¢ > 0 nii, et

A(T)<é = |oy—1I|< |€—|,
a
aga niiiid vorratuse A(T) < § kehtides |oa; — al| < |q ﬁ = £, nagu soovitud.
‘ a

Vaatleme niiiid {ildist juhtu (s.t. me ei eelda enam, et A = D). Sel juhul, arvesta-

des, et funktsiooni f integreeruvus hulgas A téihendab funktsiooni f integreeruvust
ristkiilikus D, iilaltoestatu pohjal funktsioon af = af on integreeruv ristkiilikus D,
aga see tahendab, et funktsioon af on integreeruv hulgas A; seejuures

H af(z,y)dedy = H af(z,y)dedy = aﬂ Fla,y) dzdy = aﬂf(x,y) dz dy.
A D D A
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(b). Vaatleme alguses juhtu, kus A = D = [a, b] X [¢, d] (s.t. A = D on ristkiilik).
Sel juhul, fikseerides vabalt reaalarvu ¢ > 0, piisab viite toestuseks leida reaalarv
d > 0 nii, et (ristkiiliku D mis tahes jaotusviisi 7' ning mis tahes sellele jaotusviisile
vastava funktsiooni f + ¢ integraalsumma oy, korral)

AT)<é = |opg— (I +1,)|<e

Selleks méargime koigepealt, et

|oprg — (Iy £ I,)| = Z Z Py)) Az; Ay; = (Iy £ 1)
1=1j5=1
= <Z f i Ax; ij - ]f) + (ZZQ z] Amz ij >‘
i=1j=1 i=1j=1
<D APy A@Ay]—[f‘-l‘ D 9(Py) Axy Ay; — 1,
i=1j=1 i=17=1

Funktsioonide f ja g integreeruvuse tottu leiduvad reaalarvud 4y, ds > 0 nii, et
AT <6 = op—If<5 ja AN <& = |o—I|<3;

niisiis vorratuse A(T) < min{dy, 6o} =: 0 kehtides |oppy — ([y £ I)| < £+ £ =,
nagu soovitud.

Vaatleme niitid iildist juhtu (s.t. me ei eelda enam, et A = D). Sel juhul, arves-
tades, et funktsioonide f ja g integreeruvus hulgas A téhendab vastavalt funktsioo-
nide fJa g integreeruvust ristkiilikus D, iilaltdestatu pohjal funktsioon f+g = f +g
on integreeruv ristkiilikus D, aga see tdhendab, et funktsioon f 4+ g on integreeruv
hulgas A; seejuures

~

ff(f(l’,y) tg(z,y))dedy = || (f(z,y) £ §(z,y)) dedy
A

| ) dedy = || 3ley) de dy

D

f(a.g)dedy = || gla.y) dudy,

A

r

[
P I D I D—

nagu soovitud.

(c). Viite (a) pohjal on funktsioonid af ja B¢ integreeruvad hulgas A, seega
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véite (b) pohjal on ka summa o f + B¢ integreeruv hulgas A; seejures

jf(af(x, y) + Bg(x,y)) dvdy = Jj af(z,y)drdy + Jfﬁg(w, y) dx dy
A

A A
=« Hf(fv, y)dv dy + 3 Hg(% y) dx dy.
A A

(d). Vaatleme alguses juhtu, kus A = D = [a,b] x [¢,d] (s.t. A = D on rist-
kiilik). Sel juhul, fikseerides vabalt reaalarvu € > 0, piisab teoreemi pohjal (vt.
markust viite toestuseks leida reaalarv § > 0 nii, et (ristkiiliku D mis tahes
jaotusviisi T korral)

i=1j=1
Selleks margime, et et ristkiiliku D mis tahes jaotusviisi T, mis tahes ¢ € {1, ... ,m}

ja je{l,...,n} ning mis tahes P, Q) € D;; korral

f(P)g(P) = F(Q)g(Q) = f(P) (¢(P) — 9(Q)) + 9(Q) (f(P) — f(Q))
[F(P)]]g(P) = g(@Q)] + [g(@Q)|f(P) = f(Q)]
Lywij(g) + Lywi;(f),

NN

kus Ly := suppep | f(P)] ja Ly := suppep |g(P)| (mérgime, et funktsioonid f ja g on
teoreemi [1.1] pohjal tokestatud), jarelikult w;;(fg) < Ly w;j(g) + Lywi;(f). Seega

Z Z wij(fg) Az Ay; < LfZ Zwij(g) Az; Ay; + LgZ Zwij(f) Az; Ay;.

i=1j=1 i=1j=1 i=1j=1

Eeldades iildisust kitsendamata, et Ly, L, + 0 (vastasel korral oleks f voi g null-
funktsioon ning seega ka nende korrutis oleks nullfunktsioon), leiduvad funktsioo-
nide f ja g integreeruvuse tottu teoreemi pohjal (vt. méarkust reaalarvud
51, 09 >0 nii, et

3

i=1j=1
ja

m n E
Niisiis, kui A(T") < min{dy, 2} =: 0, siis

m n
9

g
D0 wii(fg) Az Ay; <Lf2_Lf+L9ﬁ _ .
g

i=1j=1
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Vaatleme niiiid iildist juhtu (s.t. me ei eelda enam, et A = D). Sel juhul, arves-
tades, et funktsioonide [ ja g integreeruvus hulgas A tihendab vastavalt funktsioo-
nide f ja g integreeruvust ristkiilikus D, iilaltdestatu pohjal funktsioon fg = fg
on integreeruv ristkiilikus D, aga see tdhendab, et funktsioon fg on integreeruv
hulgas A. ]

Miérkus 3.1. Teoreemi [3.1] viiidete (a), (b) ja (d) tdestusi saanuks liihendada juhtude, kus A = D
ning kus see vordus ei tarvitse kehtida, eraldi vaatlemise arvelt. Nimelt, nende viidete toestusteks
voinuksime Jarglda toestust Juhul A=D, ku1d votta funktsioonide af, f + g ja fg rolli vastavalt

funktsioonid af—af f—i—g—f—i—gJ& fg—fg

Selle punkti lopetuseks toestame jaotise lopus valjareklaamitud jarelduse
(teoreemidest [2.9]ja[3.1] (b)), mis iitleb, et kui muuta integreeruva funktsiooni véir-
tusi nullmooduga hulgal, jidb see “muudetud” funktsioon endiselt integreeruvaks
ning selle “muudetud” funktsiooni integraali vadrtus jadb samaks, mis esialgsel.

Jareldus 3.3. Olgu A < R? tokestatud hulk, olgu f: A — R integreeruv funktsioon
ning olgu Ay < A (Jordani mdttes) nullméoduga hulk ja g: A — R tokestatud
funktsioon, kusjuures g(P) = f(P) iga P € A\Ay korral. Siis ka funktsioon g on
integreeruv, kusjuures § , g(x,y) drvdy = § , f(x,y) dx dy.

TOEsTUS. Olgu ristkiilik D < R? selline, et D > A. Defineerime funktsiooni hg :=
(9 — f)|4, ning funktsioonid f g, h: D — R vastavalt vordustega (2.1)) ja

) P), kuiPeA . h(P). kui Pe A,
a(p) = {9 | o hp) = {1 Y
0, kui P € D\A, 0, kui P € D\ Ay.

Teoreemi pohjal on funktsioon hg mtegreeruv hulgas Ay, s.t. funktsioon h on
mtegreeruv ristkiilikus D, kusjuures {{, h(z,y) dvdy = §§ , ho(z,y) dvdy = 0. Ku-

na ka funktsioon f on integreeruv ristkiilikus D, siis teoreemi , (b), pohjal on
funktsioon g = f +h integreeruv ristkiilikus D, s.t. funktsioon g on integreeruv
hulgas A, kusjuures

[[stem vty = [[ 5.y avay - [| F.yady+ | [ Aw) ddy
A D D D

~ || e deay = || s dod.
D A

2. Kahekordse integraali omadused, mis on seotud
jarjestusega

Teoreem 3.4. Olgu kahe muutuja funktsioonid uw = f(x,y) = f(P) jav = g(x,y) =
g(P) integreeruvad hulgas A  R?.
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(a) Kui f(P) >0 iga P € A korral, siis

gf(:p,y) dody > 0.

(b) Kui f(P) = g(P) iga P e A korral, siis

ij(x, y) dx dy = Jfg(x,y) dx dy. (3.3)
A A

(¢) Funktsiooni f absoluutvidrtus |f| (s.t. funktsioon w = |f(z,y)| = |f(P)|) on
integreeruv hulgas A, kusjuures

Ujf(w’y) dxdy‘ < ”\f(wﬂdm dy. (3.4)
A A

(d) (Kahekordse integraali keskvaartusteoreem.) Olgu hulk A Jordani méttes moo-
tuv. Stis leidub arv v € R nii, et

inf f(P)=:a <y <p:=suf(P) (3.5)
€ PcA
ja
Hf(x,y) dx dy = v p(A) (3.6)
A

(u(A) tahistab hulga A Jordani mootu); kui hulk A on kinnine ja sidus ning
funktsioon f on pidev hulgas A, siis leidub punkt C' € A nii, et

f f Fla,y) dedy = £(C) ulA). (3.7)
A

Omadustele (a) ja (b) teoreemist [3.4] viidatakse kui kahekordse integraali mono-
toonsusele.

TEOREEMI TOESTUS. Olgu ristkiilik D < R? selline, et D > A.

(a). Kui f(P) = 0iga P € A korral, siis funktsiooni f koik Darboux’ summad
on mittenegatiivsed, jarelikult

fjf(x,y) dedy = Jf f(:c,y) drx dy = irTlf SHT) =0,
A D

kus infiimum on voetud iile ristkiiliku D koikvoimalike jaotusviiside 7" osaristkiiliku-
teks ja S7(T') tdhistab jaotusviisile T vastavat funktsiooni f Darboux’ iilemsummat.
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(b). Kui f(P) = g(P) iga P € A korral, siis f(P) — g(P) = 0 iga P € A korral,
seega teoreemi [3.1] (b), ja viite (a) pohjal

||t dzas~ || s wdedy = || (1) - gle.) dedy > 0
A A A

millest jareldub (3.3).

(c). Veendume koigepealt, et funktsioon |f| on integreeruv hulgas A.

Vaatleme alguses juhtu, kus A =D = [a,b] x |¢,d] (s.t. A = D on ristkiilik). Sel
juhul, fikseerides vabalt reaalarvu ¢ > 0, piisab teoreemip()hjal (vt. mérkust
funktsiooni | f| integreeruvuseks hulgas A leida ristkiiliku D jaotusviis T nii, et

iiwijﬂﬂ) Aw; Ay; < e. (3.8)

i=1j=1

Selleks mérgime, et ristkiiliku D mis tahes jaotusviisi 7' ning mis tahes i € {1, ..., m}
jaje{l,...,n} korral

wu(lf) = s (17~ Q) < s [£#(P) - FQ)] =wu(P (39)
P,QEDU P,QEDij

Funktsiooni f integreeruvuse tottu saame teoreemi|[l.6) pohjal (vt. mérkust [1.2)) leida

ristkiiliku D jaotusviisi 7' nii, et

m n

Z Z wij(f) AZEZ Ay] <ég,

i=1j=1

aga vorratuse (3.9) pohjal rahuldab selline jaotusviis 7" ka tingimust (3.8]).
Vaatleme niiiid {ildist juhtu (s.t. me ei eelda enam, et A = D). Sel juhul, arvesta-

des, et funktsiooni f integreeruvus hulgas A tdhendab funktsiooni f integreeruvust

ristkiilikus D, tlaltoestatu pohjal funktsioon ‘ﬂ = |f| on integreeruv ristkiilikus D,
aga see tdhendab, et funktsioon |f| on integreeruv hulgas A.
Vorratus (3.4) on samavidrne vorratusteahelaga

_H\f(x,y)\dx dy < Hf(x,y) de dy < H\f(x,y)\ dedy. (3.10)
A A A

Selle ahela esimene vorratus on samavidrne vorratusega

— Jff(x,y) dr dy = Jf(—f(l’,y)) dx dy < Jﬂf(%y)‘ dx dy,
A A A

mis, samuti nagu ka vorratusteahela (3.10]) teine vorratus, jareldub viitest (b), sest

—flx,y) <|f(z,y)| ja flz,y) <|f(z,y)| iga (z,y) € Akorral.
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(d). Viite toestus sarnaneb iithe muutuja funktsiooni Riemanni integraali kesk-
vidrtusteoreemi toestusega. Jirelduse |3.2] Eja véite (b) pohjal

Hadxdy ﬂfxy d dy < f Bdudy = 8 u(A).

Siit néeme, et kui p(A) = 0, siis ka {§, f(z,y) dzdy = 0 ning seega sobib arvu v
rolli mis tahes arv arvude « ja 3 vahelt; kui aga u(A) + 0, siis tihistades
SS A (x,y) dzdy
pA)

kehtivad ja (3.6).

Eeldame niiiid lisaks, et hulk 4 on kinnine ja sidus ning et funktsioon f on pidev
hulgas A. Rahuldagu arv v € R tingimusi ja (sellise arvu v olemasolu
oleme juba toestanud). Kuna hulk A on kinnine, siis Weierstrassi teoreeemi 1[4.§]
pohjal leiduvad punktid A, B € A nii, et

F(4) = f(P)=a ja f(B) =sup f(P) = f.

PeA

Kuna hulk A on sidus, siis Bolzano—Cauchy teoreemi 1[4.6] pohjal, arvestades, et
f(A) < v < f(B), leidub punkt C € A nii, et f(C) = v, aga niiiid kehtib (3.7). O

3.3. Kahekordse integraali aditiivsus piirkonna jargi

Teoreem 3.5. Olgu A c R? tokestatud hulk, olgu funktsioon f: A — R integreeruv
(hulgas A) ning olgu C < A Jordani maéttes mootuv alamhulk. Siis funktsioon f on
integreeruv ka hulgas C (s.t. ahend f|c on integreeruv (hulgas C)).

TOESTUS. Olgu ristkiilik D < R? selline, et D > A. Defineerime funktsioonid
f fc D — R vordustega

#p) - {f(P), kui P A, i B(P) = {f(P), kui PeC,
0, kui P € D\A, 0, kui P e D\C.
Siis funktsiooni f integreeruvus hulgas C tdhendab funktsiooni fc integreeruvust
ristkiilikus D. Kuna funktsioon f on integreeruv hulgas A, siis funktsioon f on
integreeruv ristkiilikus D; kuna hulk C on Jordani mottes mootuv, siis tema karak-
teristlik funktsioon y¢ on integreeruv ristkiilikus D; seega teoreemi [3.1] (d), pohjal
on korrutis fxg integreeruv ristkiilikus D. Teoreemi toestuseks jaab niiiid vaid mér-
kida, et fec = fxc- m

Teoreem 3.6 (kahekordse integraali aditiivsus piirkonna jérgi). Olgu A, B < R?
tokestatud hulgad, kusjuures nende thisosa A N B Jordani maéot on null, ning olgu
funktsioon f: Au B — R integreeruv hulkades A ja B. Siis funktsioon f on integ-
reeruv ka ihendis A U B, kusjuures

foy dxdy_ﬂfxy da:dy+ﬂfmy d dy.

AuB
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TOEsTUS. Kuna hulgad A ja B on tokestatud, siis ka iithend A u B on tokestatud,
seega leidub ristkiilik D < R? nii, et AUB c D. Koikjal toestuses kasutame jirgnevat
tahistust: kui C € A U B, siis funktsioon fz: D — R on defineeritud vordusega

7 _ f($,y)7 kui (x,y)eC,
fe(@y) = {0, kui (z,y) € D\C.

Koneldes funktsiooni fc integreeruvusest, peame me silmas tema integreeruvust rist-
kiilikus D. Funktsiooni f integreeruvus iihendis A U B tihendab selle tihistuse ko-
haselt funktsiooni f AUB mtegreeruvust (rlstkuhkus D).

Paneme téhele, et fAUB = fA—i—fB fAﬁB Kuna funktsioonid fA, fg ning fAmB on
integreeruvad (sest funktsiooni f integreeruvus hulkades A ja B tdhendab vastavalt
funktsioonide ]? YL flg integreeruvust ning funktsioon f A~B ON integreeruv teoree-
mi pohjal), siis funktsioon f4_ 5 on integreeruv (sest teoreemi (b), pohjal
on integreeruvate funktsioonide summa ja vahe integreeruvad), s.t. funktsioon f on
integreeruv hulgas A u B. Seejuures (jéllegi teoreemi (b), pohjal)

ffxyww—fMw@wM@=HQMWHﬂ@w—ﬂw@wﬂmy

AuB
~

f (x, y)dxdy—i—ffflgxy dx dy — J fAmga:y)dxdy

fz,y) dxdy—i—fffxy dxdy—f flz,y) dx dy

AnB
-

[
P —) @h

f@ww@+ﬂ#mwww
B

sest teoreemi [2.9 pohjal §§, . f(z,y)dzdy = 0. O

3.4. Jordani mottes mootuvate hulkade pohiomadused

3.4.1. Jordani mottes mootuvate hulkade omadused, mis on seotud
hulgateoreetiliste tehetega

Lause 3.7. Olgu A, B < R? Jordani mottes mootuvad hulgad. Siis ka nende hulka-
de tihend A L B, ihisosa A n B ja hulgateoreetiline vahe A\B on Jordani mottes
mootuvad. Seejuures

(a) kui An B =, siis u(A o B) = u(A) + u(B);
(b) kui A c B, siis u(A) < u(B);

(¢) kui A B, siis n(B\A) = u(B) — pu(A);

(d) (A v B) < p(A) + u(B).
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Omadustele (a)—(d) viidatakse vastavalt kui Jordani moodu aditiivsusele, monotoon-
susele, subtraktitvsusele ja subaditiivsusele.

LAUSE B.7 TOESTUS. Olgu ristkiilik D < R? selline, et A U B < D. Kuna Y 4~5 =
XA X8, siis funktsioon x 45 on integreeruv ristkiilikus D (sest hulkade A ja B moo-
tuvus tahendab vastavalt karakteristlike funktsioonide y 4 ja xp integreeruvust ning
teoreemi , (d), pohjal on integreeruvate funktsioonide korrutis integreeruv); see
aga tdhendab, et hulk A n B on Jordani mottes mootuv.

Edasi, kuna xp4 = Xp — X, siis funktsioon xp 4 on integreeruv (sest teo-
reemi [3.1] (b), pohjal on integreeruvate funktsioonide vahe integreeruv), see aga
tahendab, et hulk D\A on mootuv. Siit jareldub, et ka hulk D\B on mootuyv.

Kuna A\B = An (D\B), siis eelneva pdhjal on hulk A\B mootuv (sest vahe D\B
on mootuv ning mootuvate hulkade A ja D\B iihisosa on mootuv).

Lopuks, De Morgani valemite pohjal

Au B = (D\(D\A)) u (D\(D\B)) = D\((D\A) n (D\B)),
seega eelneva pohjal on hulk A u B mootuv.
Toestame niiiid véited (a)—(d).
(a). Olgu AN B = . Siis x4u5 = XA + X5 ning seega teoreemi (b), pohjal

n(AvB) = ” Xaus(,y) dz dy = fJ(XA(xv y) + xs(z,y)) dedy

_ ff adedy+ | ;u,y) dudy = p(A) + p(B).

(b) ja (c). Olgu A < B. Kuna B = Au (B\A), kusjuures A n (B\A) = &, siis
véite (a) pohjal

u(B) = p(A U (B\A)) = u(A) + u(B\A) = pu(A).

Eelnevast ndeme ka, et pu(B\A) = u(B) — p(A).
(d). Kuna Au B = Au (B\A), kusjuures A n (B\A) = &, ja B\A c B, siis
vdidete (a) ja (b) pohjal

AU B) = p(Au (B\A)) = u(A) + n(B\A) < u(A) + p(B).
O

Ulesanne 3.1. Olgu A, B c R? Jordani méttes modtuvad hulgad. Toestada, et ka hulkade A ja B
simmeetriline vahe AAB := (A\B) u (B\\A) on Jordani mé&ttes méotuv, kusjuures |u(A) — p(B)| <
u(AAB).

LAUSE [2.3] TOESTUS, MIS TOETUB LAUSELE [3.7] Olgu Ay,..., A, ¢ R? (n € N)
nullméoduga hulgad, (s.t. Jordani mottes mootuvad hulgad, mille Jordani méot on
null). Lause p6hjal on ka ithend A :=  J;_, Ay Jordani mottes mootuv, kusjuures
Jordani m&odu subaditiivsuse (lause [3.7] (d)) pohjal u(A) < >3, u(Ay) = 0. Kuna
hulga Jordani méot ei saa olla negatiivne, siis jareldub siit, et u(A) = 0. O]
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3.4.2. Jordani moodu invariantsus nihke suhtes

Meenutame, et ruum R™ on vektorruum (iile korpuse R): kui P = (x1,...,2,,) € R™,
Q= (y1,---,Ym) € R™ ja a € R, siis summa P + @ € R™ ja kordne aP € R™ on
defineeritud vordustega

P+Q:=(x14+ Y1, Ton + Ym) ja aP = (axy,...,qx,).

Kui A < R™ ning Q € R™ ja « € R, siis hulga A nihe A + ) ja kordne a4 on
defineeritud vordustega

A+Q:={P+Q: Pe A} ja aAd:={aP: Pe A}.
Teoreem 3.8. Olgu A < R?. Kui hulk A on Jordani maéttes mootuv, siis

(a) mis tahes punkti Q € R? korral on ka nihe A + Q Jordani mattes mootuw,
kusjuures

1A+ Q) = pu(A);

(b) mis tahes arvu a € R korral on ka kordne oA Jordani mottes mootuv, kusjuures
plaA) = [afu(A).

Jordani mottes mootuvate hulkade A < R? omadusele (a) teoreemist [3.8| viidatakse
kui Jordani moodu invarianitsusele nihke suhtes.

TEOREEMI ME KAESOLEVAS KURSUSES EI TOESTA . ]



§ 4. Teine vaatenurk Jordani moodule ja
kahekordsele integraalile

4.1. Jordani moodu alternatiivne (samaviirne) definitsioon

Tahistame iga n € {0} U N korral

¢, = {1 x JCR: T =[5 2] ja J = [&), L] mingite i, j € Z korral}.

2n ) on

Kogumi €,, hulkadele viitame kui diaadilistele ruutudele kiiljepikkusega 2%

yA

4
27’1,
3
2TL
2
271,
1
2TL
L
4 (3 |_2 |_1 0| L | 2| 3| 4| 5
on 2n on 2n 2n PR 2n 2n 2n T
1
2TL
)
272,
_3
27L

JOONIS 4.1. Joonisel kujutatud ruudustik koosneb diaadilistest ruutudest
kiiljepikkusega 2%

Olgu A c R? tokestatud hulk. Tihistame iga n € {0} U N korral

C (A):={CeC:CnA+ P} ja €,(A):={CeC,: Cc A}

ning

/Tn:: U C ja ./En:z U C.

CeC,(A) CeC,(A)

(vt. joonist . Siimbolitega S(A,) ja S(A,) tihistame vastavalt hulkade A, ja A,
pindalad: need hulgad esituvad paarikaupa loikumatute sisemustega (diaadiliste)
ruutude iihenditena; nende hulkade pindalad defineerime kui vastavate ruutude pind-
alade summad; ruudu pindala defineerime kui tema kiiljepikkuse ruudu. Arvestades,
et hulgad A, ja A, on vastavalt kogumite €,(A) ja €,(A) ruutude iihendid, kus-
juures nimetatud kogumite ruutude sisemused on paarikaupa loikumatud ning nende
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yTIIII

S

T

JooNis 4.2. Kahes f{ilemises teljestikus kujutatud ruudustikud koosne-
1

vad diaadilistest ruutudest kiiljepikkusega 5 (teatava n € N korral);
kahes alumises teljestikus kujutatud ruudustikud koosnevad diaadilis-
test ruutudest kiiljepikkusega QH% Rohelisega kujutatud neerukuju-
line hulk igas teljestikus on meie hulk 4. Kahes vasakpoolses teljes-
tikus heleroheliseks varvitud ruudud (koos hulgaga A) moodustavad
vastavalt hulgad A, ja .An+1, kahes parempoolses teljestikus tumero-
heliseks vérvitud ruudud moodustavad vastavalt hulgad An ja An+1

Must-valge televisiooni vaatajad siin neid hulki (hele/tume)rohelisena ei née!

ruutude kiiljepikkused on 5 ja pindalad seega 5, saame, et

~ ~

S(A,) = 5 X ruutude arv kogumis €, (A),
~ 1 ~
S(A,) = 5 X ruutude arv kogumis €, (A).

Paneme tihele, et
ﬁoj_,zl\ljflzj--- ja .,évloc./zlc./zl/gc--- (4.1)
(intuitiivselt on see aimatav jooniselt ning jarelikult

S(Ag) = S(A) = S(A) = -+ ja S(A) <SA) <SUA) <. (4.2)
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Ulesanne 4.1. Téestada sisalduvused (@.1)) ja vorratused (£.2).

Seega eksisteerivad piirvidrtused

lim S(A,) = inf S(A,) = p*(A) ja lim S(A,) =sup S(A,) =: p.(A);

n— oo neN n—00 neN

seejuures

pE(A) = pa(A).

Neid piirvaédrtusi (ehk, teisisonu, rajasid) p*(A) ja p.(A) nimetatakse vastavalt
hulga A Jordani vilismooduks ja hulga A Jordani sisemaooduks.

Teoreem 4.1. Olgu A < R? tokestatud hulk ning olgu ristkilik D < R? selline, et
D o A. Siis

(a) u*(A) =ZIpxa, s.t. hulga A Jordani vilismoot p*(A) on vordne Darbouz’ iile-
mise integraaliga Lpx 4 tema karakteristlikust funktsioonist x 4 tle ristkiliku D;

(b) p+(A) = Zpxa, s.t. hulga A Jordani sisemdot pu.(A) on vordne Darboux’ alu-
mise integraaliga Zpx 4 tema karakteristlikust funktsioonist x 4 tle ristkiliku D.

TEOREEMI ME KAESOLEVAS KURSUSES EI TOESTA . O

Jargnev teoreem on vahetu jéreldus Jordani mottes mootuvuse definitsioonist
ja teoreemist [4.1]

Teoreem 4.2. Olgu A < R? tokestatud hulk. Jirgmised véited on samavddrsed:
(i) hulk A on Jordani mottes modtuv;

(ii) hulk A on kvadreeruv, s.t. tema Jordani sisemaot u.(A) ja Jordani vdilis-

maoot p*(A) on vordsed: p.(A) = p*(A).

Seejuures (s.t. hulga A Jordani méttes mootuvuse juhul) hulga A Jordani moot u(A)
(ehk, teisisonu, pindala S4) on vérdne tema Jordani sisemoodu . (A) ja Jordani
valismoodu p*(A) thise vaartusega:

Sa = A) = pu(A) = p*(A). (4.3)

Jaotise lopetuseks demonstreerime veel iht voimalust Jordani vilis- ja sisemoodu
defineerimiseks (loomulikult eelnevaga samavéérsel moel). Selleks toome koigepealt
sisse ristkiiliksumma ja selle pindala méisted.

Ristkiliksumma all moistame me jirgnevas (koordinaat)ristkiilikute 16plikku iihen-
dit. Teisisonu, ristkiiliksumma on hulk Q ruumis R?, mis esitub kujul

Q = Jlay, b1 x [¢;, dj],
j=1

kus n € N ning ay,...,an,b1,...,0n,c1,...,¢Cp,dy, ..., dy, € R, kusjuures a; < b; ja
c; <djiga je{l,...,n} korral.
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Iga ristkiiliksumma Q esitub paarikaupa loikumatute sisemustega ristkiilikute
16pliku tihendina. Ristkiiliksumma Q pindala S(Q) defineeritakse kui niisuguste
(paarikaupa loikumatute sisemustega) ristkiilikute pindalade summa. (Ristkiiliku
R := [a,b] x [¢,d] pindala S(R) defineeritakse kui tema kiilgede pikkuste korrutis:
S(R)=(b—a)(d—rc).)

Teoreem 4.3. Olgu A < R? tokestatud hulk.

(a) Hulga A Jordani vilismaot on seda hulka sisaldavate ristkiliksummade pind-
alade hulga alumine raja:

p(A) = inf{S(Q): Q < R? on ristkiiliksumma, Q > A}. (4.4)

(b) Hulga A Jordani sisemoot on selles hulgas sisalduvate ristkiliksummade pind-
alade hulga tlemine raja; seejuures, kui hulk A ei sisalda tihtegi ristkiliksum-
mat (niisugune olukord leiab asel parajasti siis, kui hulga A sisemus A° on
tihi hulk), on hulga A Jordani sisemoot vordne nulliga:

4 0, kui A° = ;
a(A) = Sup{S(Q): Q < R? on ristkiiliksumma, Q < A}, kui A° + .
(4.5)

Teoreem esitab veel iihe viisi Jordani vilis- ja sisem6odu defineerimiseks
(eelnevaga samaviirsel moel): tokestatud hulga A < R? Jordani vilis- ja sisemoot
defineeritakse kirjanduses sageli kui vastavalt vorduste (4.4) ja (4.4) parem pool.

TEOREEMI ME KAESOLEVAS KURSUSES EI TOESTA . ]

Mairkus 4.1. Kui me hakkaksime defineerima tokestatud hulga A < R? pindala S4
ldhtudes oma eelmatemaatilistest arusaamadest, siis oleks loomulik nouda, et iga
hulgas A sisalduva ristkiiliksumma 0) ja iga hulka A sisaldava ristkiiliksumma 8)
korral S5 < Si < Sg (siimbolid Sy ja S5 téhistavad vastavalt ristkiiliksumma-

de O ja @ pindalasid ~ ristkiiliksumma pindala on meil “loomulikul viisil” defi-
neeritud). Arvuhulga rajade definitsiooni pohjal peaksid seega kehtima vorratused
pa(A) < Sy < p*(A), s.t. hulga A pindala S, peaks olema mingi arv hulga A
Jordani sisemoddu g, (A) ja vilismoodu p*(A) vahel. Jadb lahtiseks kiisimus: milli-
se arvu vaartuste . (A) ja pu*(A) vahelt me ikkagi peaksime pindalaks S, valima?
Igati loomulik on “¢o play it safe” ning defineerida pindala S, ainult selliste hul-
kade A jaoks, mille Jordani sisemo66t ja vilismoot on vordsed, kusjuures niisugusel
juhul defineerida hulga A pindala kui nende sisemoddu ja vilismoddu iihine vadr-
tus. Teoreem [1.2]iitleb, et just niimoodi (t0si kiill, implitsiitselt) me hulga A pindala
defineerisimegi.

Kirjanduses tavaliselt defineeritaksegi tokestatud hulga A < R? Jordani mottes
mootuvus kui tema kvadreeruvus (vt. teoreemifd.2) tingimust (ii)), kusjuures hulga A
Jordani moot u(.A) (ehk pindala S4) defineeritakse vordusega (4.3)).
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4.2. Kahekordse integraali alternatiivne (samaviirne)
definitsioon

Paljudes allikates defineeritakse kahe muutuja funktsiooni Riemanni mottes integ-
reeruvus ja (kahekordne) Riemanni integraal kdesolevas konspektis toodust erineval
moel. Selles punktis toome &ra iihe niisuguse alternatiivse, kuid kiesolevas konspek-
tis tooduga samaviirse definitsiooni. Tépsemalt, eeldades, et A = R? on Jordani
mottes mootuv hulk ning f: A — R, defineerime me funktsiooni f R-integreeruvuse
ja R-integraali temast iile hulga A ning niitame, et need R-integreeruvus ja R-
integraal on tépselt sama, mis kdesoleva peatiiki paragrahvis 2| defineeritud Riemanni
mottes integreeruvus ja Riemanni integraal (iile hulga A). Niisiis, need R-integreeru-
vuse ja R-integraali definitsioonid ongi iiks voimalik versioon Riemanni mottes integ-
reeruvuse ja Riemanni integraali alternatiivsetest, kuid kdesolevas konspektis too-
duga samavairsetest definitsioonidest.

Niisiis, olgu A < R? Jordani mottes mootuv hulk ning olgu f: A — R. Jaota-
me hulga A 16plikuks arvuks paarikaupa loikumatute sisemustega Jordani mottes
mootuvateks hulkadeks Ay, ..., A, (n e N):

A= JA;, kus A;n Ay =, kui j + k. (4.6)

n
j=1

Hulga A esitusele (4.6 viitame kui hulga A jaotusviisile (4.6)) ((Jordani mottes méo-
tuvateks) hulkadeks Ay, ..., .A,). Hulkadele Ay, ..., A, viitame kui selle jaotusviisi
hulkadele. Fikseerime iga j € {1,...,n} korral mingi punkti P; € A;. Summale

og:=0(Ay,....,Ay; P1,....,P,) = Z f(P;) n(Ay)
=1

viitame kui funktsiooni f R-integraalsummale (hulgas A), mis vastab hulga A jao-
tusviisile ja punktide valikule P; e A;, j=1,...,n.

Defineerimaks R-integreeruvuse ja R-integraali moistet, on otstarbekas koige-
pealt eraldi defineerida R-integraalsummade piirvddrtuse moiste. See definitsioon
kasutab hulga diameetri moistet, mis defineeriti definitsioonis

Definitsioon 4.1. Me iitleme, et arv I € R on funktsiooni f R-integraalsummade
piirvadrtus (hulgas A), kui iga reaalarvu ¢ > 0 korral leidub reaalarv ¢ > 0 nii, et
hulga A mis tahes jaotusviisi korral, mille hulkade diameetrid on koik viikse-
mad kui 6, s.t.

max diam A; <6,
1<j<n

erinevad koik sellele jaotusviisile vastavad funktsiooni f R-integraalsummad arvust /
vahem kui €, s.t.

Z f(P) p(A;) — I‘ <& mis tahes punktide P; € A;, j = 1,...,n, korral.
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Definitsioon 4.2. Kui funktsiooni f R-integraalsummadel (hulgas A) eksisteerib
piirvadrtus I € R, siis me iitleme, et funktsioon f on R-integreeruv (hulgas A).
Seejuures R-integraalsummade piirvaartust I nimetame me R-integraaliks funkt-
sioonist f iile hulga A ja téhistame siimboliga R-{ , f(x,y) dx dy:

R—J flz,y)dxdy = 1.
A

Jérgnev teoreem iitleb, et R-integreeruvus ja R-integraal on sama, mis Riemanni
mottes integreeruvus ja (kahekordne) Riemanni integraal; niisiis voinuksime Rieman-
ni mottes integreeruvuse ja (kahekordne) Riemanni integraali definitsioonina kasu-
tada (R-integreeruvus ja R integraali) definitsiooni[4.2] (selleks pidanuksime muidugi
eelnevalt defineerima hulga Jordani mottes mootuvuse, néiteks tema Jordani vélis-
ja sisem6odu vorduse kaudu).

Teoreem 4.4. Olgu A < R? Jordani mottes mootuv hulk ning olgu f: A — R.
Siis funktsioon f on R-integreeruv hulgas A parajasti siis, kui ta on Riemanni mot-
tes integreeruv selles hulgas; seejuures (s.t. funktsiooni f R-integreeruvuse juhul)
R-integraal funktsioonist f ile hulga A on vordne (kahekordse) Riemanni integraa-
liga funktsioonist f iile hulga A:

R- L flag)dedy = [[ fa.)dedy
A

TEOREEMI ME KAESOLEVAS KURSUSES EI TOESTA . ]



§ 5. Kahekordse integraali arvutamine

Koikjal selles paragrahvis kasutame eelmistes paragrahvides kasutatuga sarnaseid
tahistusi. Muuhulgas, kui

a=29g<T] <+ " <Ty=>= (5.1)
ja

c=yo<yr < <ya=d, (5:2)
siis tahistame koikide i € {1,...,m} ja j € {1,...,n} korral

Az, =z, — 2,1 ja ij =Y Y-t

5.1. Kahekordse integraali arvutamine iile ristkiiliku

Teoreem 5.1. Olgu kahe muutuja funktsioon z = f(x,y) integreeruv ristkilikus
D := [a,b] x [c,d] = R%

(a) Eksisteerigu iga x € |a, b] korral integraal

- [rena
f fz,y)dedy = Lb <Ldf(93,y) dy> dr = Lb g(z) dz.

(b) Fksisteerigu iga y € [c, d] korral integraal

= [ s
ffwwmw=f(meMQ@=fmw@

TOEsTUS. Toestame ainult viite (a). Véide (b) toestatakse analoogiliselt.
Téhistame

Siis

Siis

I:= J flz,y)dx dy
ja fikseerime vabalt reaalarvu e > 0. Viite (a) toestuseks piisab leida reaalarv § > 0

nii, et alati kui punktid (5.1]) rahuldavad tingimust

max Az; < 0, (5.3)

1<i<m

189
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siis mis tahes punktide &; € [x;_1,25], i = 1,..., m, korral

—i ( f "rey) dy) Ar,

Selleks paneme téhele, et mis tahes punktide (5.1) ja (5.2) ning & € [x;_1, zi],
i=1,...,m,jan;€lyj_1,y], j =1,...,n, korral

-y (ff(&,y) dy) Az,

i=1

< €.

< ]_sz(f“nﬂ Az; Ay;| + Ax;.

i=1j=1

2

Funktsiooni f integreeruvuse tottu ristkiilikus D leidub reaalarv 6 > 0 nii, et

n d
> 6o Ay~ [ 6 dy
j=1 c

max{Azy,...,Azp, Ay, ..., Ay} <§ =

||M3

= £
Z 51? 77] Axl Ay] 5

Rahuldagu niiiid punktid (5.1) tingimust (5.3)) ning olgu punktid & € [x; 1, z],
i=1,...,m, suvalised. Kuna funktsioonid ¥;(y) := f(&,y), i = 1,...,m, on integ-

reeruvad 16igus [c,d], siis iga i € {1,...,m} korral leidub reaalarv ¢; > 0 nii, et

kui punktid (5.2)) rahuldavad tlnglmust Jnax Ay; < 0;, siis mis tahes n; € [y;_1, y;],
<j<n

J=1,...,n, korral

n d
Z (& mj) Ay — J f(&,y) dy| <

2(b—a)

Niisiis, kui valida punktid (5.2)) nii, et max Ay; < min{dy,...,d0n,d}, ning valida
vabalt n; € [y;_1,y;], 7 =1,...,n, siis

—i ( f "rew) dy) Ar,

E w € £ 5
= —— Ax; = = b—a)=c.
<2+;2(b—a) Ti=g+ (b—a)=c¢

2(b—a)
[
5.2. Kahekordse integraali arvutamine iile kovertrapetsi
Teoreem 5.2. (a) Olgu funktsioonid
a=alx) ja p=p(x), x € [a,b], (5.4)

tokestatud loigus [a,b], kusjuures

a(z) < B(z) iga x € |a,b] korral. (5.5)



NB! Tavaliselt
nimetatakse

hulka (5.6) (ja
hulka )
kovertrapetsiks
lisaeeldusel, et
funktsioonid
on pidevad
16igus  [a,b] (ja
funktsioonid ([5.9)
on pidevad 16igus
[e,d]). Meie siin
kovertrapetsilt
selle lisaeelduse
tdidetust ei ndua.
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Kui kahe muutuja funktsioon z = f(x,y) on integreeruv kovertrapetsis
A= {(z,y) e R%: ze[a,8], ax) <y < Ax)}, (5.6)
kusjuures iga x € |a,b| korral eksisteerib integraal
B(z)
g(x) = o flz,y) dy, (5.7)
§118
b B(x) b
Hf(x,y) dr dy = f J f(z,y)dy | dow = f 9(x) dz. (5.8)
a o(z) a
A
(b) Olgu funktsioonid
T=7W) ja 6=96(y), yelcd] (5.9)
tokestatud loigus [c,d], kusjuures
v(y) < (y) igay € |c,d] korral. (5.10)
Kui kahe muutuja funktsioon z = f(x,y) on integreeruv kovertrapetsis
B:={(z,y) eR*: ye[c,d], y(y) <z <o)}, (5.11)
kusjuures iga y € [c,d] korral eksisteerib integraal
(y)
h(y) := J f(z,y)dz, (5.12)
v(v)
$118
d 5(y) d
JJrevaa= (] sepae)a= [ roa 6w
s c v(y c

Enne teoreemi toestamist toome vilja jarelduse temast juhtude jaoks, kus véi-
tes (a) on funktsioonid « ja 8 ning f pidevad ning viites (b) on funktsioonid v ja §
ning f pidevad.

Jareldus 5.3. (a) Olgu funktsioonid (5.4) pidevad loigus [a,b], kusjuures keh-
tib (5.5). Kui kahe muutuja funktsioon z = f(x,y) on pidev kovertrapetsis (5.6)),
siis funktsioon f on integreeruv selles kovertrapetsis, kusjuures iga x € [a,Db]

korral eksisteerib integraal (5.7)) ja kehtib (5.8)).

Olgu funktsioonid (5.9) pidevad loigus [c, d], kusjuures kehtib (5.10). Kui kahe
muutuja funktsioon z = f(x,y) on pidev kovertrapetsis ((5.11)), siis funktsioon f
on integreeruv selles kovertrapetsis, kusjuures iga y € [c,d] korral eksisteerib

integraal (5.12)) ja kehtib (5.13)).



192 V. Kordsed integraalid

TOESTUS. Toestame ainult viite (a) (vdide (b) toestatakse analoogiliselt).
Koigepealt paneme téhele, et kovertrapets A on kinnine hulk (tasandil R?)
(poHsENDADA!) . Edasi, lause (a), pohjal on kévertrapets A mootuv hulk (tasan-
dil R?). Eeldame niiiid, et kahe muutuja funktsioon z = f(x,y) on pidev kover-
trapetsis 4. Siis teoreemi pohjal on funktsioon f integreeruv selles kovertra-
petsis. Iga = € [a,b] korral on funktsioon f(z,-) pidev 16igus [a(z), B(z)] ja seega
integraal eksisteerib. Niilid teoreemi pohjal kehtib . O

TEOREEMI TOESTUS. Toestame ainult viite (a) (vdide (b) toestatakse analoo-
giliselt).

Funktsioonide « ja 8 tokestatuse tottu leiduvad arvud c,d € R, ¢ < d, nii, et
¢ < afx) < B(r) < diga x € [a,b] korral. Téhistame D := [a, b] X [c, d]; siis D > A.

Olgu funktsioon f integreeruv kovertrapetsis A, kusjuures iga = € [a, b] korral
eksisteerib integraal (5.7)). Siis (1k. valemiga (3.2)) defineeritud) funktsioon f on
integreeruv ristkiilikus D, kusjuures iga x € [a, b] korral eksisteerib integraal

d _ B(z)
J flz,y)dy = J f(x,y)dy.
c ax)

Seega teoreemi [5.1] viiite (a) pohjal

Hﬂx,y)dwdy:ﬂﬂx,y)dasdy:f: (fﬂx,y)dy) da
A D
= Lb (JM f(z,y) dy) de,

a(z)
nagu soovitud. O]

5.3. Muutujate vahetus kahekordses integraalis

5.3.1. Regulaarsed teisendused ruumis R

Kujutusi 4 — R™, kus U < R™, nimetame teisendusteksﬂ ruumis R™.

Paragrahvis veendusime, et teisendused ®: Y — R™, kus U < R™, ja
hulgas U méaédratud funktsioonide siisteemid

v =x;(Q) = xi(ur, ... uy), i=1,...,m, (5.14)
on iiksiiheses vastavuses: siisteem ([5.14) méirab kujutuse ®: U4 — R™, kus

O(Q) = (21(Q)..... 2a(Q)) €R™, Qe (5.15)

! Tavaliselt mdistetakse mingi hulga teisenduste all kujutusi sellest hulgast sellesse samasse hulka.
Meie nimetame teisendusteks ruumis R™ kujutusi ruumi R™ alamhulkadest ruumi R™.
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teiselt poolt, mis tahes kujutus ®: U — R™ médrab iihesel viisil funktsioonid (5.14)),

mis rahuldavad tingimust (5.15)): sellise omadusega funktsioonid (5.14)) on defineeri-
tud vordustega

r(Q)=x, QeR™ i=1...,m, kus ®(Q) = (z1,...,%m).

Edasises, viidates vorrandite siisteemile (5.14]) kui teisendusele (5.14)), méistame
me selle teisenduse all selle siisteemiga médratud teisendust & — R™.

Definitsioon 5.1. Olgu & < R™ lahtine hulk. Oeldakse, et siisteemiga (5.14]) mii-
ratud teisendus ®: U — R™ on regqulaarne, kui

(1) teisendus ® on iiksiihene;

(2) teisendust ® médravatel funktsioonidel (5.14]) eksisteerivad hulgas U pidevad
esimest jarku osatuletised;

(3) selle teisenduse jakobiaani védrtus erineb hulgas U nullist, s.t.

0 0
50 @ 5@
det @'(Q) := D, o) Q) = : : + 0 iga Q€U korral.
Dfui, ..., um) 0%, 0%,
6_1“(@) m(@)

Seejuures, kui A c U ja D = O[A] := {P(Q): Q € A}, siis deldakse, et ® kujutab
hulga A regulaarselt hulgaks D.
5.3.2. Uldine muutujate vahetuse valem kahekordses integraalis

Olgu U < R? lahtine hulk ning olgu teisendus ®: U — R? méiératud siisteemiga
r=z(u,v), y=yuv). (5.16)

Tahistame

D(z,y) zl,(u,v) ol (u,v

J(u,v) := det ' (u,v) = m(uyv) = yZ(uw) :;v

s.t. J(u,v) on selle siisteemi jakobiaan punktis (u,v).
Jargnev teoreem esitab iildise muutujate vahetuse valemi kahekordse (Riemanni)
integraali jaoks.

Teoreem 5.4. Kui
(1) worranditega (5.16) mdadratud teisendus ®: U — R? on regulaarne;
(2) Ac U on (Jordani méttes) mootuv (tasandil R?) kinnine alamhulk;

(3) kahe muutuja funktsioon z = f(x,y) on pidev kujutishulgas ®|A] (ry-tasandil),



NB! See on Rei-

mersi iil.-kogu, II,
lk. 161, iil. 879;
samuti {ilesannete
brogiitiri  2024. a.
siigissemestri versi-
ooni il. 86, a.

NB!
kulutame hulga
aega ja trikiruumi
sellele, et selgitada,
miks me valime
integraali arvuta-
miseks just sellise

Siin me

strateegia, nagu me

valime. Tudengitel
on mdistlik kodu-
ja kontrolltééde

vormistamisel see
etapp lahendustest
dra  jatta ning
asuda kohe “asja
kallale”.
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8118

H Fo.y) o dy — Hf(x(u,v),y(u,v)) 17 (u,0)| dudo. (5.17)

D[A] A

Liikkame teoreemi toestamise edasi alajaotisse [5.3.5} selle toestuse mugava-
maks esitamiseks toome vahepealsetes alajaotistes vilja regulaarsete teisenduste olu-
lisemad omadused.

Alajaotise Iopetuseks esitame muutujate vahetuse teoreemi rakendamiseks
sobivamal kujul ning toome iihe néaite selle rakendamisest. Nimelt, tiiiibilises olu-
korras on meil vaja etteantud mootuva kinnise hulga D < R? ja pideva funktsioo-
ni f: D — R korral leida kahekordne integraal {§, f(x,y)dz dy. Kui hulk D on
“ebamugava’ struktuuriga, nii et teoreemides ja antud arvutusvalemeid pole
voimalik rakendada (voi see on ebamugav), siis on sageli abiks muutujate vahetuse
teoreem [5.4F kui meil 6nnestub leida regulaarne teisendus ®: U — R?, kus I on ruu-
mi R? lahtine alamhulk, ja “lihtsa struktuuriga” kinnine mootuv alamhulk A < U
(nditeks kovertrapets) nii, et ®[A] = D, siis integraali {{ f(x,y) dv dy saame leida
valemist , kus vorrandid on teisendust ® esitavad vorrandid.

Teoreem 5.5. Kuz

(1) kahe muutuja funktsioon z = f(x,y) on pidev (xy-tasandi) madtuvas kinnises
hulgas D;

(2) wvorrandid (5.16) mddravad regulaarse teisenduse, mis kujutab (uv-tasandi)
mootuva kinnise hulga A hulgaks D,

8118

Jff(x,y) dzx dy = Jff(x(u,v),y(u,v)) ‘J(u,v)‘ du dv. (5.18)
D A

Niide 5.1. Leiame kahekordse integraali

Jf (32 4 2y — 4)* da dy,
D

kus D = {(w,y)eRQ: —1<z—y<3, —2<3x+2y<8}.
Koigepealt mérgime, et kuigi hulk D on oma struktuurilt kévertrapets (vt. joonist , on
kiisitud integraali leidmine kasutades valemit teoreemist (a) (s.t. valemit kahekordse integraali

leidmiseks tile kovertrapetsi), tiilikas, sest hulka D alt ja tilalt piiravate joonte vorrandid on l6ikudes
4 4 4 67 6 14

T € [—g’g]axe_ [5.5]iaze 5.5

kolme integraali summana —

] paarikaupa erinevad: me peaksime esitama kiisitud integraali

ff (3 + 2y — 4)° dz dy
D

(5.19)
= ﬂ(:sx+2y—4)2 dxdy+U(3:c+2y—4)2 dxdy+ﬂ(3x+2y—4)2 dz dy,
Dl DS

D->

NB! Eelduste
(1) ja (2) kehtides
on hulk D[A]
lause (ab)
ja  (bd), pohjal
kinnine ja méotuv,
seega valemis
vasakul pool
vordusmérki  olev
integraal eksistee-
rib  teoreemi [2.8]
pohjal.
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kus

—ning leidma iga vorduses ([5.19)) paremal pool vordusmérki oleva integraali selle valemi jérgi eraldi.
Seepérast on méistlik piitida leida kiisitud integraal sobiva muutujate vahetuse abil (v6i, tdpsemalt,
teostada enne kahekordse integraali arvutusvalemi rakendamist sobiv muutujate vahetus).

Joonis 5.1. Hulk D on joonisel varvitud helesiniseks.

Teisendus R? 3 (z,y) — (u,v) € R?, mis on antud vorranditega
u=x-—y, v =3z + 2y, (5.20)

on pooratav, kusjuures tema poordteisendus R? 3 (u,v) — (z,y) € R? on

2u+ v —3u+v
T = = —.

- 5.21
P Yy z (5.21)

Teisendus ((5.20) kujutab hulga D wv-tasandi ristkiilikuks

D = {(u,v) eR*: —1<u<3, —2<v<8},
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jarelikult (p6ord)teisendus (5.21) kujutab uv-tasandi ristkiiliku D" hulgaks D. Veendume, et (p66rd)-
teisendus (5.21) on regulaarne. Selleks leiame tema jakobiaani J(u,v):

9 1
;) _~ r_ 1
l‘u_5a xq} 57
_3 1
r_ r_
yu 57 yy 57
seega
2 1
2 | 1 -3 1 5 1
Juv) = ?l=2.2-2.-=2°2 ==,
(,0) 3 1 5 5 2 5

niisiis (p6ord)teisendus ((5.21) on tdéepoolest regulaarne. Niiiid (muutujate vahetuse valemi pohjal
kahekordse integraali jaoks teoreemist arvestades, et 3z + 2y = v)

,U(gx +2y —4) drdy = ﬁ[(v —4)? | J(u, )| dudv = ff(v —4)? %du dv
D D o
N e (R (D
_ <(“—4)3 ) > _4:4<43 (—6)3> _ 464 +216) _ 4280
5|,

15 15
4-56 224

3 3

2
Siin vorduse () pohjenduseks méirgime, et integraal SS_Q @ dv on soltumatu muutujast u, niisiis
see integraal kiitub integraali Sil -+ du margi all nagu konstant ja seega me voime integraali
2
88_2 @ dv integraali Sil -+ du miérgi alt viilja tuua.
Miirkus 5.1. Eelnevas niites [5.1] voinuksime veenduda teisenduse (5.20) podratavuses ja poord-
teisenduse (5.21)) regulaarsuses ning leida poordteisenduse (5.21) jakobiaani J(u,v) ka ilma seda

poordteisendust ennast vilja rehkendamata. Selleks tuleks koigepealt meenutada lineaaralgebra
kursuses opitut.

Olgu m € N. Nagu tavaks, tolgendame jargnevas jarjendeid (uq, ..., uy) ja (21,. .., 2y, ) ruumis
Ul X1
R™ sobival juhul vastavalt veeruvektoritena (s.t. (m x 1)-maatriksitena) | : |ja
Um, ITm
Olgu ®: R™ 5 (u1,...,Um) — (T1,...,Zm) € R™ lineaarteisendus (ehk, teisisonu, maatriks-

teisendus), s.t. leidub (reaalarvuliste elementidega) maatriks

a1 a2 NN A1m
a1 as2 N a2m
A=
Am1 Am2 ... OGmm
nii, et teisendus P esitub siisteemiga
m
T = xi(Upy oo Upp) 1= Zaijuj7 i=1,...,m, (5.22)
J=1

s.t. iga (u1,...,un,) € R™ korral

m

@(ul,...,um) = (Z A15Ujy .-y Z amjuj)

j=1 j=1
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ehk, teisisonu,

aiy a2 ... Qim U a1y + ajpug + - + A1 Um
ao1 a22 ... Gom U a21U1 + Q22U + -+ + A2 U
(b(uh ) Um) = = ’
aml1 Am2 ... (mm Um, Am1U1 + GmaU2 + - + AmmUm
s.t. kujutis ®(uq,...,un), tolgendatuna veeruvektorina, saadakse jarjendi (uy, ..., un ), tolgenda-

tuna veeruvektorina, korrutamisel maatriksiga A (vasakult) . Lineaaralgebra kursusest teame, et

(8) jargmised vdited on samavddrsed:

(i) @ on pédratav;
(il) ® on iksihene;
(ili) ® on pealekujutus;
(iv) det A £ 0 (s.t. maatriksi A determinant erineb nullist).

Stisteemis ([5.22))
(i), = aij igaie{l,...,m}jaiga j€ {1,...,m} korral,

seega teisenduse ® Jacobi maatriks on A; niisiis

(b) teisenduse @ jakobiaan on det A (s.t. maatriksi A determinant) ning teisendus ® on regu-
laarne parajasti siis, kui det A £ 0 (POHJENDADA!) .

Kasutame niiiid eelnevas refereeritud tarkust néites |5.1| teisenduse ([5.20|) péératavuse pohjen-
damisel ning selle teisenduse poordteisenduse regulaarsuse pohjendamisel ja selle poordteisenduse
jakobiaani véljaarvutamisel.

. . . . . . 1
Teisendus ([5.20) on lineaarteisendus, mida esitav maatriks on B := (

-1 .
3 9 ), s.t. see teisendus

kujutab mis tahes punkti (z,y) € R? punktiks (u,v) € R?, kus
uy (1 -1 x
v)  \3 2 A

1 -1
3 2

Kuna

detB=’ ‘:1-2-3-(-1):5,

siis véite () samavéarsuse (i)<>(iv) pohjal on teisendus (5.20)) pooratav. Teisenduse ((5.20) poordtei-
sendust esitav maatriks on teisendust ([5.20)) esitava maatriksi B podrdmaatriks B!, seega viite (h)
pohjal on teisenduse (5.20) podrdteisendus R? 3 (u,v) — (x,y) € R? regulaarne, kusjuures selle
poordteisenduse jakobiaan on

1 1

"~ detB 5

J(u,v) = det(B™1)

5.3.3. Abistavaid tulemusi teoreemi toestuseks I — regulaarse
teisenduse omadusi

Ruumi R™ punktide méarkimiseks kasutame kompaktsuse eesmérgil standardset tahis-

tust (u;)7Ly = (ug, ..., um) € R™.



NB! Kas me ka-
sutame kuskil ku-
jutishulga ®[A] t5-
kestatust? Kasuta-
me tema m&dtuvus-
kriteeriumi raken-

damisel.
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Lause 5.6. Olgu U < R™ lahtine hulk ning olgu regulaarne teisendus ®: U —
R™ mddratud sisteemiga (5.14). Tdhistame V := ®[U] = {®(Q): Q € U} = R™.
Siis, tolgendades teisendust ® kujutusena U — V), voime vaadelda poordteisendust
1Y - R™. Olgu A< U ruumis R™ kinnine tokestatud alamhulk.

(a) (aa) Teisendus ® kujutab hulga U lahtised alamhulgad hulga V lahtisteks alam-
hulkadeks; muuhulgas ka hulk'V ise on lahtine. Poordteisendus ®1:V —
R™ on requlaarne. Seejuures iga Q € U korral péordteisenduse ®=1 Jacobi
maatriks punktis ®(Q) € V on teisenduse ® Jacobi maatriksi punktis Q
poordmaatriks.

(ab) Kujutishulk ®[A] on kinnine ja tokestatud.

(ac) ®[A°] = (P[A])° ja P[OA] = O(P[A]), s.t. P kujutab hulga A sisemuse
kujutishulga ®|A] sisemuseks ja hulga A raja kujutishulga ®|.A] rajaks.

(b) Olgu m = 2. Téihistame iga n € N korral €,(A) := {C € €,: Cn A+ &}, kus
€, tahistab kotkvoimalike selliste diaadiliste ruutude kogumat, mille kiljepikkus

on 5 (vt. jaotise algust Ik. 185), ning A, := Ueeg, () C-

(ba) Leidub arv N € N nii, et Ay < U.
(bb) Leidub reaalarv s > 0 nii, et
W (@B]) < s p*(B) iga alamhulga B < Ay korral (5.23)
(siin Ay on hulk viitest (ba) ning p*(B) ja p*(®[B]) tihistavad vastavalt
hulga B ja kujutishulga ®|B]| Jordani valismaootu).
(be) Kui hulk A on nullmooduline, siis ka kujutishulk ®[A] on nullmooduline.
(bd) Kui hulk A on Jordani méttes mootuv, siis ka kujutishulk ®[A] on Jordani

mottes mootuv.

(c) Tdihistame iga Q) € U korral Ag = ¥'(Q), s.t. Ag: R™ — R™ on lineaarne
kujutus, mis on esitatud maatriksiga

0 Ory

R

(Gr@) = 5 o | e
j ij= T, o

8_u1(Q) m(@)
8.1.
m al m .
Ag(R) = (Z §§<Q) 77j) iga R = (n;)jL, € R™ korral.

j=1 ) =1

(ca) Iga Q € U korral on kujutus Ag pioratav. Seejuures piordkujutust (Ag)™"
esitav maatriks on piordteisenduse @' Jacobi maatriks punktis ®(Q).
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(cb) Leiduvad reaalarvud o, 8 > 0 nii, et iga Q € A korral

ad(Q,Qq) < d(AQ(Ql), AQ(QQ)) < Bd(Qr,Q2) mis tahes Q1, Q2 € R™ korral.

(cc) Tihistame punktide Q = (u;)7, € R™ ja AQ = (Auy)7, € R™ korral
Q+AQ = (uj+Auy)fL, € R™ (see tihistus on igati kooskélas ruumi R™
vektorruumistruktuuriga) ja p := A/Au} + - - - + Au2,. Siis

1(B(Q + AQ) - B(Q), 49(AQ))
p -

Mirkus 5.2. Lause toestusest néhtub, et viited (ab) ning (ba), (bb) ja (bc)
jdavad kehtima, kui jiatta dra eeldus teisenduse ® regulaarsuse kohta, noudes sel-
lelt teisenduselt vaid, et funktsioonidel eksisteeriksid hulgas U pidevad osa-
tuletised (seejuures viide (ab) ja#b kehtima ka siis, kui nouda teisenduselt ¢ vaid,
et funktsiooonid oleksid pidevad). Seda tdhelepanekut kasutab teoreemi
toestus.

LAUSE 5.6l TOESTUS. (aa). Viide on téestatud jérelduses [[II[3.5 teoreemis
ja mirkuses [[TT[3.1).

(ab). Kujutishulga ®[A] kinnisuseks piisab néidata, et ®[A] < P[A] (s.t. selle
kujutishulga sulund ®[.A] sisaldub selles kujutishulgas).
Ulesanne 5.1. Toestada, et ®[A] c O[A].

NAPUNAIDE. Kasutada Bolzano—Weierstrassi teoreemi ja fakti, et koonduvus ruumis R on
samavadrne koordinaaditi koonduvusega (vt. lauset [Il[2.1).

Viite toestuseks jadb néidata, et kujutishulk ®[.4] on tokestatud.
Ulesanne 5.2. Tdestada, et kujutishulk ®[.A] on tokestatud.

; 0 dhtlaselt Q € A suhtes.

NAPUNAIDE. Kasutada Weierstrassi teoreemi

(ac). Vordus ®[A°] = (P[.A])° jéreldub jérgnevast iilesandest.
Ulesanne 5.3. Olgu & c U. Téestada, et ®[£°] = (P[E])°.

NApPUNAIDE. Kasutada viites (aa) toestatud fakte, et ® kujutab hulga U lahtised alamhulgad
hulga V lahtisteks alamhulkadeks, ning et podrdteisendus ®~! on samuti regulaarne.

Viite toestuseks jéib néidata, et ®[0A] = 0(P[A]).
Ulesanne 5.4. Tdestada, et ®[0.A] = 5(@[.,4]).

NApPUNAIDE. Kasutada hulkade A ja ®[.A] kinnisust, teisenduse @ iiksiihesust ja vordust ®[A°] =
(®[A])°.

(ba). Nagu koikjal eelnevas, tidhistame lahtise ringi keskpunktiga Q € R? ja
raadiusega 0 > 0 siimboliga B(Q,4), s.t. B(Q,d) := {R € R?: d(Q, R) < 6}.

Olgu reaalarv 6 > 0 selline, et iga @ € A korral B(Q,d) < U (sellise reaalarva
v > 0 olemasolu on toestatud iilesandes . Valime arvu N € N nii, et %Né < 9.
Niiiid alati, kui @ € A ja C € €y on sellised, et Q € C, siis C € B(Q,0) < U

~

(POHIENDADA!) . Siit jareldub, et Ay < U.
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(bb). Koikjal selle viite toestuses kirjutame funktsioonide zy = x1(uq, uz) ja xo =
xo(u1, ug) asemel vastavalt © = x(u,v) ja y = y(u,v), s.t. me loeme, et teisendus P
on maaratud siisteemiga (5.16)).

Viite toestuseks piisab leida reaalarv s¢ > 0 nii, et tingimus kehtib lisaeel-
dusel, et *(B) > 0 ning néidata seejérel, et (sellise s¢ olemasolu korral) p*(®[B]) = 0
alati, kui alamhulga B < Ay Jordani mot on null, s.t p*(B) = 0.

Olgu alamhulk B ¢ Ay selline, et p*(B) > 0. Siis leiduvad naturaalarv n > N
ja (16plik) alamhulk § = &, nii, et B € R := |Jp;C < Ay ja p(R) < 2u*(B)
(pousENDADA!) . Olgu C € § suvaline ning olgu P € ®[C]. Siis P = (2(Q),y(Q))
mingi @ = (u,v) € C korral. Olgu Q¢ = (uc,vc) ruudu C keskpunkt; siis C =
[uc - 2,1%, Uuc + Qn%] X [vc - Qn%, ve + 2,1%] Lagrange’i keskvaartusteoreemi pohjal
mitme muutuja funktsioonide jaoks (vt. jireldust . leiduvad punkte Q¢ ja @)
iihendaval sirgloigul punktid R, ja R, nii, et

2(@) ~ (@) = () (u = we) + S (R) (0 ve),
9@ ~ (@) = (R (— we) + SUR) (v ).

Arvestades, et |u — uc| < # ja v —wve| < 2,1% ning et Ry, Ry € C < Ay,

ox ox M
(@) ~ (@)l = |50 u = el + |5 ()| o = vel < 51
ning, analoogiliselt, [y(Q) — y(Qc)| < 2%, kus
M := max{max 6_x(R) , max é‘_x(R) , max @(R) , Mmax @(R)‘}
REA\N ou REA\N ov REA\N ou REA\N ov

(POHJENDADA! MUUHULGAS POHJENDADA, MIKS NEED MAKSIMUMID EKSISTEERIVAD!) . Selle-

ga oleme naidanud, et kujutishulk ®[C] sisaldub (kinnises) ruudus D¢ keskpunktiga

®(Qc) = (2(Qc),y(Qc)) ja kiiljepikkusega 25 (pomIENDADA!) . Seega P[B] <
NB! Siin esime- UCES @[C] C UCES" DC IllIlg Jarellkult

ne vordus jareldub

lausest (a)!

@l < u( e ) = L ulPe) = 3 iy = 0082 3 ul€) = WPu(R)

Ceg Ceg Ceg Ceg
< 8M? u*(B).

Saadud hinnang p*(®[B]) < 8M2 y*(B) kehtib iga alamhulga B « Ay korral, mis
rahuldab tingimust p*(B) > 0. Niisiis me voime votta » = 8M2.

Olgu niiiid alamhulk B = Ay selline, et p* (B) = 0, ning olgu ¢ > 0. Siis leidub
ristkiiliksumma R < Ay nii, et B © R ja p*(R) = u(R) < . Niiiid ka ®[B] < ®[R]
ning seega, arvestades, et p*(R) > 0, eelnevalt toestatu pohjal

pH(@B]) < p*(R[R]) < 2 p(R) < e

Kuna arv € > 0 oli vabalt fikseeritud, siis jireldub siit, et p*(®[B]) = 0, nagu
soovitud.
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(bc).
Ulesanne 5.5. Olgu hulk A nullmééduline. Téestada, et siis ka kujutishulk ®[.A] on nullméédu-

line.

NAPUNAIDE. Kasutada véiidet (bb).

(bd).
Ulesanne 5.6. Olgu hulk A Jordani méttes méotuv. Toestada, et siis ka kujutishulk ®[A] on

Jordani mottes mootuv.

NAPUNAIDE. Kasutada teoreemi [2.5| ning viiteid (ab), (ac) ja (bc).

(ca). Algebra kursusest teame (voi vihemalt peaksime teadma), et etteantud
m x m-maatriksiga esitatud kujutuse R™ — R™ péoratavuseks on tarvilik ja piisav,
et selle maatriksi determinant erineks nullist. Antud juhul iga ) € U korral maatriksi
determinant erineb nullist teisenduse ® regulaarsuse tottu.

Poordkujutust (Ag)~" esitav maatriks on kujutust Ag esitava maatriksi poord-
maatriks. Viite (aa) pohjal on see péérdmaatriks poordteisenduse @~ Jacobi maat-
riks punktis ®(Q).

(cb). Veendume koigepealt soovitud omadustega arvu 3 olemasolus. Mis tahes
punktide Q1 = (uj)7,, Q2 = (u3)j-, € R™ korral

10(@) = (Lo @) . k=12
j=1

i=1

seega Rogers—Holderi vorratuse pohjal (vt. teoreemi
d(Ag(Q1), Ag(@2))

iy LI
:\Zziai 2 az-(Q)“?
J

i=1

m m
kus 8 = sup\/z Z‘@(Q)‘Q Miérgime, et see supreemum on loplik, sest osa-
£ h 7

tuletisfunktsioonide azz

pidevuse tottu on funktsioon @ — Z Z ‘ axl ‘ pidev
j=li=

hulgas A ning seega Weierstrassi teoreemi pohjal on see funktsmon tokesta-
tud hulgas A. Seejuures 5 > 0, sest mis tahes ) € A korral erineb vahemalt iiks
osatuletistest ST””’]%(Q) nullist — vastasel korral oleks teisenduse ® jakobiaani vdértus
punktis ) null.
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Kuna iga () € A korral on kujutus Ag pooratav, siis soovitud omadusega arvu o
olemasoluks piisab leida reaalarv v > 0 nii, et iga () € A korral

d((Ag) ' (1), (Ag) ' (P2)) < vd(P1, P) mis tahes P, P, € R™ korral.

Tahistame iga P € V korral Bp = (®71)(P), s.t. Bp: R™ — R™ on lineaarne
kujutus, mis on esitatad poordteisenduse @' Jacobi maatriksiga punktis P. Siis iga
Q € U korral (Ag) ' = Bg(g) (vt. véidet (ca)). Seega jaab viite toestuseks veenduda
sellise reaalarvu v > 0 olemasolus, et iga P € ®[.A] korral

d(Bp(Pl), Bp(Pg)) < vd(Py, P,) mis tahes Py, P, € R™ korral.

Arvestades, et ®~1 on regulaarne teisendus ning et (viite (ab) pohjal) hulk ®[.A] on
kinnine ja tokestatatud, jareldub sellise reaalarvu 7 olemasolu iilaltoestatud véitest
eespoolkirjeldatud omadustega reaalarvu 8 olemasolu kohta.

(cc). Nagu koikjal eelnevas, tihistame lahtise kera keskpunktiga @) € R™ ja raa-
diusega § > 0 siimboliga B(Q,9), s.t. B(Q,d) := {Re R™: d(Q, R) < ¢}.

Olgu reaalarv ¢ > 0 selline, et iga @ € A korral B(Q,0) < U (sellise reaalarvu ~y
olemasolu on toestatud iilesandes . Kui punkt AQ = (Au;)7L; € R™ rahuldab

tingimust p = , [ >, |Au;|? < 0, siis mis tahes punkti ) € A korral @ + AQ € U,
j=1

seejuures funktsioonide ([5.14)) diferentseeruvuse tottu

m

P(Q+ AQ) — Q) = (z:(Q + AQ) — 2:(Q (Z gil Q)Au; + a;(Q, AQ)) -

kus teoreemi pohjal funktsioonid a; = «;(Q, AQ) rahuldavad tingimust

ai(Q? AQ)

P p—0

0 iihtlaselt () € A suhtes.

Teiselt poolt, Ag(AQ) = (Z L(Q )Auj)m , seega
) i=1

Uj

1(@(Q + AQ) — 2(Q), 4(AQ)) \/Z i(Q, AQ)’
p p

m 2
_ Z (Ozz(@, AQ)) - 0 iihtlaselt ) € A suhtes
i=1 P r

(POHJENDADA!) . O
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5.3.4. Abistavaid tulemusi teoreemi toestuseks II —
lineaarteisenduse R? — R? “skaleerimistegur”

Olgu ®: R? 5 (u,v) — (x,y) € R? lineaarteisendus, s.t. teisendus, mis esitub mingi
(reaalarvuliste elementidega) maatriksiga

s.t. iga (u,v) € R? korral
(I)(U, U) = (anu + a120, 21U + GQQU)
ehk, teisisonu, teisendus ® esitub siisteemiga

T = anu + ajpv, Y = AU + A0, (5.25)

s.t., samastades jarjendid (x,y) ja (u,v) vastavalt veeruvektoritega (‘;) ja (g)

(s.t. lugedes nad vastavalt iiheks ja samaks objektiks), iga (u,v) € R? korral

a1 Qa2 u ailu + agu
O (u,v) = = :
g1 Q92 v ao1U + a2V
Kuna siisteemis ([5.25])

/ /
X, = a1, I, = Qi2,

/ !
Yy = Q21, Y, = Q22,

siis teisenduse ® Jacobi maatriks on A; niisiis see teisendus on regulaarne parajasti
siis, kui det A £ 0 (POHIJENDADA!) .

Jargnev teoreem aitab selgitada jakobiaani absoluutvéirtuse |J(u,v)| rolli vale-

mis (5.17) (ja valemis (5.18))).

Teoreem 5.7. Mis tahes mootuva alamhulga A < R? korral on ka kujutishulk
O[A] = R? mootuv; seejuures selle kujutishulga Jordani moot on

u(PLAT) = | det A| u(A).

SEDA TEOREEMI ME KAESOLEVAS KURSUSES EI TOESTA . ]

5.3.5. Teoreemi toestus

TeEOREEMI [B.4] TOESTUS. Kehtigu tingimused (1)-(3). First things first: molemad
vorduses ((5.17) esinevad integraalid eksisteerivad (pPomIENDADA!) . Tdhistame iga n €
N korral

a(.A) ={Ce,:CnA+P} ja €,(A):={Ce¢,:Cc A}
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kus € tdhistab koikvoimalike selliste diaadiliste ruutude kogumit, mille kiiljepikkus

on 5 (vt. Jaotlse algust Ik. [183 ., ning
U C ja .%Tn = U C.

Cel,,(A) Cel,,(A)

Lause [5.6, (ba), pohjal leidub Ny € N nii, et Ay, < U. Weierstrassi teoreemi I.
pohjal le1duvad reaalarvud M, L = 0 nii, et |f(P)| < M iga P € ®[A] korral ning
|J(u,v)| < L iga (u,v) € A korral (POHIENDADA!) .

Teoreerm toestuseks piisab veenduda, et iga naturaalarvu N = Ny korral kehtib
vordus , kus hulk A on asendatud hulgaga .AN, sest sellisel Juhul fikseerides
vabalt reaalarvu e > 0 ja valides naturaalarvu N = N nii, et /L(A\AN) <e,

f(SL’, y) dx dy — fjf(x(u,v),y(u,v)) | J (u, v)| dudv

Jf flz,y)|dxdy + Jj‘f (u,v),y u’u)HJuv‘dudv

S[AVAN] A\Ay
Mp(S[AAN]) + MLp(A\AN) < M pu(A\Ay) + M Lu(A\Ay)
< M(L+ »)e

(siin arv s périneb lausest (bb), kus hulga Ay rollis on meie hulk Ay,) (PoH-

JENDADA!) , millest arvu € > 0 suvalisuse t6ttu jéreldub soovitud vordus (5.17).
Fikseerime vabalt naturaalarvu N = Np. Nagu veendusime, piisab teoreemi toes-
tuseks toestada vordus ) lisaceldusel, et A = Ay. Eeldamegi jérgnevas, et
A = Ay. Vérduse toestuseks téhistame iga n > N ja iga C € €,(A) korral
NB! Kas lugeja Stimboliga Q¢ diaadilise ruudu C keskpunkti ning, jarg1des lause (c), tdhistusi,
fesepitr mise. A = Ag. = ®'(Qc), kus iga Q € U korral Ag: R? — R? on lineaarne kujutus, mis

huka keskpunkt on . . .
defineeritud 1@ ON esitatud maatriksiga

ﬁx ox

gu _Z(Q) |
5, @ 5 (@)
. ) ox ox oy oy
s.t. iga R = (§,n) € R? korral Ag(R) = (a(Q)ﬁ—i— %(Q)n, %(Q)f + %(Q) 77)-

Arvestades, et

S F(®(Q)) n(@le]) — ﬂ f(xy) d dy

n—o0

CEE,L(A) D[A]
ja

Z F(2(Qe)) 17(Qe)| p(C —>Jff z(u,v),y(u,v)) [J(u,v)| dudv

Cel,(A)
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(POHIENDADA!) , kusjuures teoreemip()hjal |J(Qc)| (C) = | det Ac| pu(C) = u(Ac[C]),
piisab vorduse (5.17)) (ja {ihtlasi teoreemi) toestuseks niidata, et

S F@@o) u(@le) — Y F(@(Q0) p(Aclcl) —— 0

- = n—00
CeC,, (A) Cetn(A)
(pOHJENDADA!) , milleks omakorda piisab veenduda, et
2 [(@(C]) = p(AclC])] — 0 (5.26)

Z n—0o0
Celp(A)
(p6HIENDADA!) . Tihistame iga n > N ja iga C € €, (A) korral A,, := | =57 3| %
[—2,,%, Qn%] (niisiis A, on ruut keskpunktiga (0,0) ja kiiljepikkusega 2%1) ja D¢ :=
®(Qc)+Ac[A,]; mirgime, et siis (De) = p(Ac[C]) (PomsENDADAL) ). Koonduvuseks [N81 sia pobjen-
piisab niiiid leida arvud 6, > 0, n = N, N + 1,..., nil, et 6, — 0 ning iga i wia oo

- n—ao mdoddu invariantsus
neN,n>= N, jaigaCe €,(A) korral

nihke suhtes.

De = ®(Qc) + Ac[(1 — 0,)An] = ®[C] = B(Qc) + Ac[(1 + 6,)A,] =: De.
Selgitame hulkade D¢, D¢ ja De struktuuri. Tihistame Re := A (®(Qc)); siis Ac(Re) =
®(Qc) ning
De = Ac(Re) + Ac[An] = Ac[Re + Ay,
Do = Ac(Re) + Ac[(1 = 0,)A,] = Ac[Re + (1 — 6,)A,],
De = Ac(Re) + Ac[(1 + 0,)An] = Ac[Re + (14 6,)A,].

Margime, et hulgad Re + Ay, Re + (1 —0,)A, ja Re + (1 4+ 6,,)A, on ruudud keskpunktiga R¢ ja

kiiljepikkustega vastavalt QL, 1;—? ja 1;‘? ; hulgad D¢, De ja ZA)C on roopkiilikud (vt. |joonist 277 ).

Toepoolest, selliste arvude 6,, olemasolu juhul iga naturaalarvu n > N ja iga C €
¢, (A) korral

(@[C]) = u(AclC])| = |n(®[C]) = n(De)| < w(De) — p(De)

= p(Ac[(1 + 0,)An]) — p(Ac[(1 = 0,)A,])

— | det Aclu((1 + 6,)A,) — | det Aclu((1 — 6,)A,)
(1+6,)*—(1-06,)?

< L 22n

ning seega (5.26)) kehtib, sest

D0 |u(@IC]) — n(AclCl)| < 4L6, > u(C) = 4LO,u(A) — 0.
cel,(A) Cee,,(A)

= 4L6,,u(C)

Téahistame iga naturaalarvu n > N korral

9 2 d(P(u+ Au, v+ Av), D(u, v) + A (Au, Av))
= — sup
a (u,v)eA 277‘%

max{\AuHAv\}:ﬁ
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(siin arv « périneb lausest , (cb)); siis lause , (cc), pohjal 0,, —— 0 (PoH-
n—00

JENDADA!) . Paneme tahele, et iga naturaalarvu n > N ja iga C € én(A) korral

(1) kujutishulga ®[C] mis tahes rajapunkti kaugus hulga D rajast ei iileta ar-

aby, .
vua 2.271117

(2) hulga De punktide ja hulka De mittekuuluvate punktide kaugused hulga D¢

NB!| Kas siia tu-
leb veel iiks joonis Toestame viited (1) ja (2). Kirjutame Q¢ = (u,v).

‘ (1). Olgu P € 0(®[C]) (s.t. P on hulga ®[C] rajapunkt). Siis lause (ac), pohjal P = ®(Q)
mingi Q € JC korral. Me saame kirjutada Q = (u+ Au,v + Av), kus Au ja Av rahulda—
vad tingimust max{|Au|, |Av|} = ZEr. Niid (Au, Av) € A, seega lause |5 , pohjal
Ac(Au, Av) € 6(Ac[ ]) ning jarelikult Py := ®(Q¢)+Ac(Au, Av) € (9( (Qc)+A A ])) = 0D¢.

NB! Kas punkti Seejuures arvu 6, definitsiooni pohjal

kaugus hulgast on
tildse kuskil defi-
neeritud?

ab,
2. 2n+1

d(P,0D¢) < d(P, Py) = d(®(u + Au,v + Av), ®(u,v) + Ac(Au, Av)) <

( ). Olgu P; € 750, Pe RQ\ZA)C ja Py € 0Dc. Viite (2) toestuseks peame niitama, et d( Py, Py) =
2n+1 ja d(Ps, Py) = 27&3. Selleks mérgime, et

= Ac(Re + Ry), Py = Ac(Rec + Ry), ja Py=Ac(Re+ Ro) (5.27)

mingite R; € (1 —0n)Ay, Ro € ]Rz\((l +0,)A,) ja Ry € 0A, korral (POHIENDADA!) . Kuna
d(Ry, Ro) = 2n+1 ja d(Ra, Rp) = 2n+1 (POHJENDADA!) , siis molema i € {1,2} korral

ab,

d(P;, Py) = d(Ac(Re + Ri), Ac(Re + Ro)) > ad(Re + Ri, Re + Ro) = ad(Ri, Ro) > 75

Soovitud sisalduvused De « ®[C] « De jirelduvad viidetest (1) ja (2).

Olgu P € ’50 ja Py € R2\ﬁc. Sisalduvuste 15@ c 9[C] c ZA?C toestuseks piisab néidata, et
Py € D[C] ja Py ¢ ®[C]. Selleks tdhistame Pe := ®(Q¢) ja esitame punktid P; ja P» valemites
antud kujul, kus Ry € (1 —6,,)A, ja Ry € RQ\((l + HH)An).

Oletame vastuvditeliselt, et P; ¢ ®[C]. Kuna P. € ®[C], siis punkte Pc ja P; iihendaval
sirgléigul leidub punkt P € d(®[C]) (vt. iilesande nipundidet). Viite (1) pohjal d(P,dD¢) <

22“1 Teiselt poolt, kuna Pr = Ac¢(Re) ja Pr = Ac(Re + Ry), siis kujutuse Ac lineaarsuse
tottu leidub punkt R punkte Re ja Re + R ithendavalt sirgloigult nii, et P = Ac¢(R) € 256 (siin
viimase kuuluvuse pohjenduseks mérgime, et R = R¢ + tR; mingi t € [0, 1] korral ning seega
Re Re + (1—0,)A,). Viite (2) pohjal d(P,dDc) > 28+, vastuolu.
Oletame niiiid vastuvéiteliselt, et P, € ®[C]. Kuna hulk ®[C] on tdkestatud, siis leidub punkte
P ja P, iihendaval sirgel selline punkt P3 € R?\®[C], et punkt P, jéib punktide Pc ja P3 vahele.
Punkte P, ja P; iihendaval sirgléigul leidub punkt P € 9(®[C]) (vt. lilesande nipunéidet).
Viite (1) pohjal d(P,0D¢) < 3 2n+1 Teiselt poolt, kuna Pe = Ac¢(Re) ja P = AC(RC + Ry), siis
kujutuse Ac lineaarsuse tottu leidub punkt R punkte R¢ ja Re + Ro iithendavalt sirgelt nii, et
P = Ac¢(R) ¢ ﬁc (siin viimase mittekuuluvuse pohjenduseks mérgime, et R = R¢ + tRy mingi
> 1 korral ning seega R ¢ Re + (1 + 6,,)A,). Viite (2) pohjal d(P,dDc) > %, vastuolu. [
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5.3.6. Uks teoreemi tugevdus

Teoreem jadb kehtima, kui temas teisenduse regulaarsuse eeldust monevorra
norgendada, nagu seda on tehtud jirgnevas teoreemis.

Teoreem 5.8. Olgu D < R? ning olgu f: D — R pidev funktsioon. Olgu U < R?
lahtine hulk ning olgu teisendus ®: U — R? antud siisteemiga

xr = x(u,v), y = y(u,v), (5.28)

kus funktsioonidel eksisteerivad hulgas U pidevad osatuletised. Olgu A <
U ruumis R? mootuv kinnine alamhulk, mille teisendus ® kujutab hulgaks D, s.t.
O[A]| = D. Siis hulk D on kinnine ja tokestatud. Kui leidub nullmooduga alamhulk
K c A nii, et

(1) ahend ®| 4o\ on iiksihene (simbol A° tihistab hulga A sisemust);

D(z,y)
D(u,v)

(2) J(u,v) := (u,v) £ 0 iga (u,v) € ANK korral,

st1s hulk D on mootuv, kusjuures

Uf(a;,y) d dy Hf(x(u,v),y(u,v)) 17 (4, )| du do. (5.29)
D A

TOEsTUS. Hulk D on kinnine ja tokestatud lause[5.6] (ab), pohjal (vt. mérkust [5.2)).

Leidugu nullmodduga alamhulk K < A, mis rahuldab tingimusi (1) ja (2).
Uldisust kitsendamata voime eeldada, et hulk K on kinnine ruumis R2, kusjuures
K o 0A, s.t. hulk K sisaldab hulga A raja (pomsENDADA!). Téhistame W :=
ANK; siis W on lahtine hulk (sest A\K = A°\K (ponsenpapal) ), kusjuures ahend
®lyy: W — R on regulaarne teisendus (POHIENDADA!) . Lause , (aa), pohjal on
kujutishulk ®[WV] lahtine, seega ®[W]| < (®[A])° (POHIENDADA!) .

Teoreemi pohjal piisab hulga D mootuvuse toestuseks naidata, et tema ra-
ja 0D on nullmodduline. Selleks paneme téihele, et

oD = (@[ A]) £ B[AN\(@[A])° € S[ANS[W] = D[AW] = D[K]

(siin vordus (1) kehtib hulga ®[.A4] kinnisuse tottu; sisalduvus (2) jareldub sisal-
duvusest (P[A])° > ®[W]). Kuna hulk K on nullméoduline, siis lause (be),
pohjal (vt. méarkust on ka kujutishulk ®[K] nullmooduline. Niisiis, raja 0D on
nullméodulise hulga ®[K] alamhulk, seega ka see raja ise on nullmooduline, nagu
soovitud.

Mis tahes modtuvate alamhulkade £ ¢ D ja B < A korral tdhistame

Ie = fjf(:c,y) dedy ja Jg= Jff(a:(u, v),y(u,v)) |J(u,v)| dudv.

Teoreemi toestuseks peame néditama, et Ip = J4.

NB! Kas vajab
pohjendamist, miks
need integraalid
alati eksisteerivad?
Niiteks teoreemi

[35] pohjal!
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Funktsiooni f ja funktsioonide (5.28)) osatuletisfunktsioonide pidevuse tottu hul-
gas A leidub Weierstrassi teoreemi pohjal reaalarv M > 0 nii, et

oz oz
|f(u,v)| < M, %(u,v) < M, %(u,v) < M,
oy oy .
a—(u,’u) < M, a—(u,v) <M iga (u,v) € A korral.
U v

Hmselt |J(u, v)| < 2M? iga (u,v) € A korral (poHJENDADA!) . Lause , (ba) ja (bb),
pohjal (vt. mérkust leidub reaalarv s > 0 nii, et

p*(P[B]) < sep*(B) iga alamhulga B < A korral.

Olgu ¢ > 0 suvaline (positiivne) reaalarv. Hulga YW mdootuvuse tottu leidub
kinnine mo6o6tuv alamhulk £ < W nii, et u(W) — u(L) < e (sellise kinnise méotuva
hulga £ rolli sobib néiteks teatav diaadiliste ruutude iihend — vt. teoreemi .

Kuna teoreemi [5.4] pohjal Ioz) = Ji, siis

\Ip — Ja| = |(Topapere) + lopeg) — (Jzo + Jac)]
< Uspapareg| + [Jave]
< Mp(@[ANP[L]) + M 2M*pu(A\L).

Kuna p(W) = p(W) + n(K) = pu(A), siis
p(ANL) = p(A) — p(L) = p(W) — (L) <e.
Kuna ®[A\P[L] = P[A\L], siis
p(PLANBLL]) = o (PLAND[L]) < 1" (BLAL]) < seps* (A\L) <
Seega
[Ip — Ja| < Mg +2M%c = (M + 2M?)e.
Kuna arvu € > 0 voisime eelnevas arutelus valida suvaliselt, siis jareldub siit, et
Ip = J 4, nagu soovitud. O
5.3.7. Uleminek polaarkoordinaatidele kahekordses integraalis
Vaatleme teisendust R? 5 (r,¢) — (z,y) € R?, mis on miiratud siisteemiga
T =T COoS 0}, y = rsin ¢. (5.30)

See teisendus seab igale r¢-tasandi punktile (r, ¢), kus r = 0, vastavusse xy-tasandi
punkti, mille polaarraadius on r ja polaarnurk on ¢, s.t. punkti, mille polaarkoordi-
naadid on r ja ¢ (siin me loeme pooluseks koordinaatide alguspunkti ja polaarteljeks
z-telje positiivse osa). Selle teisenduse puhul

xl = cos ¢, Ty = —rsing,

Y, =sin g, Y = T COS B3
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seega tema jakobiaan

J(r,¢) = ggf: z; = Z)jz ;Zf)isnf = rcos® ¢+ rsin® ¢ = r(cos® ¢ +sin’ @) = 7.
Néeme, et teisendus kujutab r¢-tasandi hulga

{(r.9)eR*: r =0, ¢e0,27]} (5.31)
sisemuse

{(r,9) e R*: >0, ¢ €(0,2m)} (5.32)

regulaarselt zy-tasandiks, millest on vélja 16igatud z-telje positiivne osa (koos punk-
tiga (0,0)); hulga (5.31)) raja (s.t. selle hulga osa, kus r = 0 vdi ¢ € {0, 27}) kujutab
see teisendus z-telje positiivseks osaks (koos punktiga (0,0)). Jargnev teoreem jirel-
dub niiiid teoreemist kui seal votta teisenduse rolli teisendus ning
hulkade A ja I rolli vastavalt hulk A ja tema raja dA. Teoreemi tingimused (1)
ja (2) on sel juhul rahuldatud, sest hulga A sisemus sisaldub hulga (5.31) sisemu-

ses (5:32).

Teoreem 5.9. Kuz

(1) kahe muutuja funktsioon z = f(x,y) on pidev xy-tasandi kinnises mootuvas
hulgas D;

(2) teisendus (5.30) kujutab hulgas (5.31)) sisalduva kinnise moctuva hulga A hul-
gaks D,

8118

ﬂ f(x,y) dedy = ﬂ f(rcos¢,rsing)rdrde. (5.33)

Mirkus 5.3. Teoreem [5.9]jddb kehtima, kui temas asendada hulk (5.31) hulgaga
{(r,¢)eR*: r >0, p € [-m, 7]}, (5.34)

kusjuures ka selle teoreemi toestus jadb niisugusel juhul peaaegu sona-sonalt samaks: ainus erinevus
toestuses on, et hulga (5.31) ja tema sisemuse (5.32) asemel tuleb kdikjal vaadelda vastavalt hulka

(5.34) ja tema sisemust
{(rn)eR%: r>0,¢¢€(-mm)}. (5.35)

Mirgime, et teisendus ((5.30) kujutab hulga (5.34) sisemuse (5.35]) regulaarselt xy-tasandiks, millest
on vilja l6igatud z-telje negatiivne osa (koos punktiga (0,0)); hulga (5.34) raja (s.t. selle hulga
osa, kus r = 0 voi ¢ € {—7,7}) kujutab see teisendus z-telje negatiivseks osaks (koos punktiga

(0,0)).
Analoogiline arutelu néitab, et teoreem jadb kehtima ka siis, kui temas asendada hulk
(5.31) mis tahes hulgaga {(r,¢) e R?: 7 >0, ¢ € [0, + 2]}, kus a € R,

Alajaotise 1opetuseks toome kaks néidet polaarkoordinaatidele iilemineku valemi
(5.33) rakendamisest kahekordse integraali arvutamisel.



NB! See on
tilesannete brosiitiri
2024. a. siigisse-
mestri versiooni iil.
87, a.

NB! See on Rei-
mersi iil.-kogu, II,
lk. 161, {iil. 875;
samuti {ilesannete
brogiitiri  2024. a.
siigissemestri versi-
ooni iil. 87, d.
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Niide 5.2. Leiame kahekordse integraali

J] (x2 — y2) dx dy,

kui D on méiiratud vorratustega = 0, y < 0 ja 22 + 32 < R?.
Vorratus z2 + y? < R? méirab kinnise ringi keskpunktiga (0, 0) ja raadiusega R, seega D on
selle ringi sektor, kus > 0 ja y < 0 (vt. joonist .
|

z? +y? = R?

T

Joonis 5.2. Hulk D on joonisel varvitud helesiniseks.

Teisendus
T =Trcos¢, y=rsing

(iileminek polaarkoordinaatidelt ristkoordinaatidele xy-tasandil) kujutab hulgaks D r¢-tasandi
ristkiiliku
A= {(r,¢) e R*: g€ [-Z,0], r € [0, R]}.

(Teisisonu, hulga D esitus polaarkoordinaatides on r¢-tasandi ristkiilik A.) Seega polaarkoordi-
naatidele iilemineku valemi (5.33)) pohjal kahekordses integraalis teoreemist (vt. mérkust

!D J (22 —y?) dody = g (r? cos® ¢ — r?sin® ¢) r dr dp = £ J 1 (cos® ¢ —sin® ¢) dr do

3 cos 2¢ dr do = rdcos2¢0de | dr = rd cos2¢de | dr
[[emsoso= ([ [,
([ o) ([ )= ()

2
JJ zdz dy,

D

NS

Niide 5.3. Leiame kahekordse integraali

kus D = {(z,y) e R*: 22 + (y — 1) < 1, z > 0}.

Vorratus 22 + (y — 1)? < 1 médirab kinnise ringi keskpunktiga (0,1) ja raadiusega 1, seega
D on selle ringi osa, kus > 0 (vt. joonist . Arvestades, et zy-tasandi mis tahes punkti (z,y)
ristkoordinaadid = ja y ning polaarkoordinaadid r ja ¢ on seotud vorranditega

T =rcosp, y=rsing, (5.36)
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|
2+ (y—1)7 =1
ehk r = 2sin ¢

Joonis 5.3. Hulk D on joonisel varvitud helesiniseks.

saame, et

2+ (y—172<1l = 22+ -2+1<1 = 22+y2 <

— rlcos?o+risin?¢p < rsing — r’<2rsing < r < 2sing

(s.t. ring 22 + (y — 1)? < 1 wy-tasandil esitub polaarkoordinaatides vorratusega r < 2sin¢).
Seega teisendus (5.36) (lileminek polaarkoordinaatidelt ristkoordinaatidele zy-tasandil) kujutab
hulgaks D r¢-tasandi kovertrapetsi

A:={(r,9)eR*: ¢ €[0,Z], re[0,2sing]}.

Teisisonu, hulga D esitus polaarkoordinaatides on r¢-tasandi kovertrapets A. Téepoolest,
hulga D punktide polaarnurgad omandavad parajasti koikvoimalikke véirtusi 16igust [0, 5 ];
iga ¢ € [0,%] korral nende hulga D punktide puhul, mille polaarnurk on ¢, omandavad
polaarraadiused parajasti koikvoimalikke vidrtusi 16igust [0, 2 sin ¢].

Kahekordses integraalis polaarkoordinaatidele iilemineku valemi (5.33) pohjal teoreemist

zdrdy = || (rcos¢)rdrdp = || r’cospdrdy = : 2Sin(b'rQ(:osqbclr do
[y

2sin ¢

™

Lg cos ¢ (Jj " r? dr) dop = Jj cos ¢ <T;

8 sin4¢)% _ 2
0 -3

B(% 4 .. . 8
gL sin qﬁd(smgb)—g ( 1
5.3.8. Uleminek elliptilistele polaarkoordinaatidele kahekordses
integraalis

> dop = ; f; sin® ¢ cos ¢ do

0

Olgu a > 0ja b > 0. Vaatleme teisendust R? 5 (r, ¢) — (z,y) € R? mis on miératud

siisteemiga
T = ar cos ¢, y = brsin ¢. (5.37)

Kui punkt (r,¢) € R? kus r > 0, kujutub teisendusega punktiks (x,y) €
R?, siis arvudele r ja ¢ viidatakse kui punkti (z,y) elliptilistele polaarkoordinaati-
dele. Seost punkti P = (x,y) ristkoordinaatide x ja y ning tema elliptiliste polaar-
koordinaatide r ja ¢ vahel selgitab joonis (juhime tahelepanu, et punkti (z,y)
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70
72 y? '
202 | 22
rb 4
1
|
brsin @p----------c-cmmmem AT
P
|
1
|
/ [
\ |
\ |
\ |
{ gf) \ I
} 1 } 1 Ta >
r rb arcos¢ x

JOONIS 5.4. Punkti P ristkoordinaadid z ja y ning elliptilised polaarkoordi-
naadid r ja ¢ on seotud vordustega (5.37)).

elliptilised polaarkoordinaadid ei ole iiheselt madratud). Nimetus “elliptilised polaar-
koordinaadid” on siin “digustatud” asjaoluga, et (elliptilistes polaaarkoordinaatides

antud) vorrand r = 1 esitab (xy-tasandi) ellipsi 2—; + Z—j = 1; vorratus r < 1 esitab
ellipsi 2_2 + Z—j < 1. (Meenutame, et nii tasandilist joont 2—; + g—; = 1 kui ka selle
joonega piiratud tasandilist kujundit “’;—3 + g—j < 1 nimetatakse ellipsiks.)

Toepoolest, arvestades seost (5.37) xy-tasandi punkti (z,y) ristkoordinaatide = ja y ning
elliptiliste polaarkoordinaatide r ja ¢ vahel,

2,2 0.2 2,.2 i 2
a*rcos“¢  b°r‘sin” ¢ .
?—i-b—Q =1 = 2 + 72 =1 < 7r%(cos’p+sin’¢) =1

ning, analoogiliselt,

Mirgime, et teisendus (5.37) kujutab r¢-tasandi ristkiiliku { (r, ¢) € R*: r € [0,1], ¢ €
[0, 27]} ellipsiks {(z,y) € R*: 2—2 + z—z < 1} zy-tasandil.
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Teisenduse ((5.37)) puhul

Tl = acos ¢, Ty = —arsin ¢,

y. = bsin ¢, Yy, = br cos ¢;
seega tema jakobiaan

_ D(z,y) |acos¢ —arsing| 5 .y
J(r,¢) == D(r¢)  |bsing breose = abr cos” ¢ + abrsin” ¢

= abr(cos® ¢ + sin® ¢) = abr.

Nieme, et teisendus kujutab r¢-tasandi hulga sisemuse (5.32)) regu-
laarselt zy-tasandiks, millest on vilja 16igatud z-telje positiivne osa (koos punkti-
ga (0,0)); hulga raja (s.t. selle hulga osa, kus r = 0 voi ¢ € {0, 27}) kujutab
see teisendus z-telje positiivseks osaks (koos punktiga (0,0)).

Jargneva teoreemi toestus kordab sona-sonalt teoreemi toestust ainsa erine-
vusega, et teisenduse ([5.30]) asemel vaadeldakse koikjal teisendust (5.37)).

Teoreem 5.10. Kuz

(1) kahe muutuja funktsioon z = f(x,y) on pidev xy-tasandi kinnises mootuvas
hulgas D;

(2) teisendus (5.37) kujutab hulgas (5.31) sisalduva kinnise mootuva hulga A hul-
gaks D,

8118

Jf f(z,y)dxdy = ab Jff(aar cos ¢, br sin @) r dr do. (5.38)
D A

Alajaotise lopetuseks toome iihe niite elliptilistele polaarkoordinaatidele iile-
mineku valemi (5.38]) rakendamisest kahekordse integraali arvutamisel.

NB! See on Rei-

Niide 5.4. Leiame kahekordse integraali mersi_{il.-kogu, II,
k. 161, wl. 872;
samuti {ilesannete
brogiitiri  2024. a.

JJ‘ \V4 6 - 21’2 - 3y2 dI’ dy, sligissemestri versi-
D

ooni il. 87, i.

kui D on méidratud vorratusega %2 + % <1
Hulk D on ellips pooltelgedega a := \/3 ja b := /2. Teisendus

z = \/3r cos &, yzﬁrsinda

(iileminek elliptilistelt polaarkoordinaatidelt ristkoordinaatidele zy-tasandil) kujutab ellipsiks D
r¢-tasandi ristkiiliku

A= {(7‘7 $) e R?: ¢ € [0,27], r € [0, 1]}
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Elliptilistele polaarkoordinaatidele iilemineku valemi ([5.38) pShjal kahekordses integraalis teoree-
mist [5.10

J’J\/6—2x2—3y2dxdy=\/§-ﬁ-ff\/G—Z-STQCOSng—3-2r281n2¢ rdrdp
D A

=«/6-H\/6—6r2(cos2¢+sm2¢) rdrd¢=6-ﬂmrdrd¢
A A
=6-L27r<£m?"dr>d¢=6-<L1M7wir)-<L27T d¢>>
6- <—;L1Md(1—r2)> .27 = 6m - (W

20
= 4.
1

oo



§ 6. Kahekordse integraali rakendusi

6.1. Tasandilise kujundi pindala arvutamine

Jargnev teoreem sisaldub Jordani moodu definitsioonis [2.3]

Teoreem 6.1. Olgu D mootuv hulk xy-tasandil. Siis tema pindala Sp avaldub vale-

miga
Sp = Jj dx dy.
D

Jéreldus 6.2. Olgu y = a(x) jay = (x) loigus |a,b| pidevad funktsioonid, kusjuu-
res a(x) < B(x) iga x € |a,b] korral. Siis kévertrapets

A= {(z,y) e R*: z € [a,b], a(z) < y < B(z)}

on maootuv hulk (tasandil R?), kusjuures tema pindala S avaldub valemiga

TOESTUS. Kovertrapetsi A mootuvus on toestatud lauses 2.7 Teoreemi [6.1] pohjal
(kasutades kahekordse integraali arvutusvalemit iile kdvertrapetsi teoreemist (a))

= ﬂ dar dy f b(Jﬂ(w) dy> i — f(ﬁ(x) ~a(2)) de.
A

a(x) a
Jareldus 6.3. Olgu r = r(¢) loigus [« B] pidev funktsioon, kus 0 < a < f < 2.
Siis (polaarkoordinaatides antud) koversektor

{(r.0) eR*: g€ [a,f], 0 <r <r(e)} (6.1)

[]

on maootuv hulk (tasandil R?), kusjuures tema pindala S avaldub valemiga

TOEsTUS. Téahistame hulga tolgendatuna koversektorina zy-tasandil téhe-
ga D; hulga tolgendatuna kovertrapetsina r¢-tasandil tihistame tihega A. Siis
koversektori D mootuvus jareldub teoreemist kui seal votta teisenduse (|5.28)
rolli teisendus ning hulkade A ja K rolli vastavalt hulk A ja tema raja 0A.

Toepoolest, teoreemi tingimused (1) ja (2) on sel juhul rahuldatud, sest hulga A sisemus

sisaldub hulga (5.31) sisemuses (5.32)) (vt. alajaotist [5.3.7).

215



NB!
nimetatakse hul-
ka C teoreemist [6.4]
koversilindriks
eeldustel, et hulk A

Tavaliselt

on modtuv kinnine
piirkond  tasandil
R? ja funktsioonid
« ja B on pidevad
hulgas A. Meie
mbistame kées-
olevas  konspektis
koversilindrit
laiemas tdhendus-
es, noudes siin
hulgalt A ainult
tokestatust ning
funktsioonidelt «
ja B tokestatust
ja tingimuse
“a(z,y) < Blz,y)
iga (z,y) € A
korral” tédidetust.
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Teoreemi[6.1] pohjal, kasutades polaarkoordinaatidele iilemineku valemit ((5.33)) kahe-
kordses integraalis teoreemist [5.9| ja kahekordse integraali arvutusvalemit iile kover-

trapetsi teoreemist (a),

S — H dr dy = Hrdr dé = LB UOT(@ rdr) do = Lﬁ(g ;(¢)) i = Lﬂ T(Zﬁ)Q d
o,
-5 | rora
0

Mirkus 6.1. Jareldus [6.3] jadb kehtima, kui temas eeldus 0 < a < 8 < 27 asendada eeldusega
—m < a < B <, kusjuures ka selle jarelduse toestus jddb niisugusel juhul peaaegu sona-sonalt
samaks: ainus erinevus tdestuses on, et hulga (5.31)) ja tema sisemuse (5.32) asemel tuleb koikjal

vaadelda vastavalt hulka (5.34) ja tema sisemust (5.35)) (vt. mérkust [5.3).

6.2. Koversilindri ruumala arvutamine

Selles punktis anname arvutusvalemi koversilindri ruumala arvutamiseks. Kehaﬂ
ruumala moistet me kiiesolevas kursuses ei defineeri; rohutame vaid, et ruumala
matemaatiliselt range definitsioon on kooskolas meie eelmatemaatilise arusaama-
ga ruumalast, nii et edasises voime rahulikult toetuda nimetatud eelmatemaatilisele
arusaamale. Tépsemalt, analoogiliselt kahekordse (Riemanni) integraaliga (ruumi R?
alamhulgal mé&ratud funktsioonist) defineeritakse kolmekordne (Riemanni) integ-
raal (ruumi R3 alamhulgal méiratud funktsioonist); analoogiliselt Jordani mooduga
ruumis R? defineeritakse Jordani moot ruumis R? — deldakse, et ruumi R? alamhulk
on Jordani mottes mootuv, kui tema karakteristlik funktsioon on (Riemanni mottes)
integreeruv selles hulgas; seejuures integraali selle hulga karakteristlikust funktsioo-
nist iile selle hulga nimetatakse tema Jordani mooduks ehk ruumalaks.

Teoreem 6.4. Olgu A = R? mootuv kinnine hulk ning olgu funktsioonid
Bzﬁ(ﬂj,y), (l’,y)EA,

a=a(z,y) ja

pidevad hulgas A, kusjuures
alz,y) < B(x,y) iga (z,y) € A korral.
Siis koversilinder
C:={(z.y.2) eR*: (v,y) € A a(z,y) <z < Bz, y)}

on mootuv hulk ruumis R3, kusjuures tema ruumala Ve avaldub valemiga
Ve = Jf(ﬂ(xa y) - CY(.I', y)) dx dy
A

Teoreemit()estame kdesolevas konspektis (jargmises) paragrahvis|7|jérelduse
nime all: teoreem [6.4] ja jireldus [7.11] on sona-sonalt samad.

?Keha ehk ruumilise kujundi all m&istame me ruumi R? alamhulki.
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6.3. Ruumilise pinnatiiki pindala arvutamine

Selles punktis anname moned arvutusvalemid ruumilise pinnatiiki pindala arvuta-
miseks. Ruumilise pinnatiiki pindala moistet me kéesolevas kursuses ei defineeri —
see matemaatiselt range definitsioon on {isna keeruline — rohutame vaid, et see defi-
nitsioon on kooskolas meie eelmatemaatilise arusaamaga pindalast, nii et edasises
voime rahulikult toetuda nimetatud eelmatemaatilisele arusaamale.

Teoreem 6.5. Eksisteerigu funktsioonidel
r=z(u,v), y=ylu,v), z==z(u,v)
pidevad osatuletised uv-tasandi mootuvas kinnises piirkonnas A, kusjuures

A2+ B2+ C?+0 piirkonnas A,

kus !/ ! ! / / !/

A= ! Z})’ B = 2 937;’ = | }}

u v u v y’ll/ y’U

Siis parameetriliste vorranditega

r=z(u,v), y=yluv), z=z(u,v), (u,v) € A,
antud pinnatiki X pindala Sy, esitub valemiga

Sy, = Jf\/AZ + B? + C?dudv.
A

SEDA TEOREEMI ME KAESOLEVAS KURSUSES EI TOESTA . ]

Jareldus 6.6. Eksisteerigu funktsioonil z = f(x,y) pidevad osatuletised maodtuvas
kinnises piirkonnas D < R2. Siis selle funktsiooni graafiku osa

Y= {(x,y,f(:v,y)): (x,y) € D}

pindala Sy, avaldub valemiga

Ssi= [y + 24 tdedy = ||/ Rie + e+ Ldody.

TOESTUS. Graafiku osa (pinnatiikk) ¥ esitub parameetriliselt vorranditega
r=u, y=v, z=f(uv), (u,v) € D. (6.2)

Seda pinnatiikki esitavatel funktsioonidel (6.2)) eksisteerivad hulgas D pidevad osa-
tuletised, kusjuures

/ !/
T, = 1, z, =0,

y; = 07 yv = 17

Z;:f;7 Z;:fglp
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seega teoreemi [6.5] tahistusi kasutades

10
01

0 1
fe Ty
jarelikult teoreemi [6.5] pohjal

Sy = Jf \/fg’c(u, v)2 + fi(u,v)?* + 1dudo,

_ _ R VA _ _
A_ - fz? B_ 1 0_ fy? C_ _17

nagu soovitud.



§ 7. Kolmekordne integraal

7.1. Kolmekordse integraali moiste

ij flz,y,2)dedydz

kolme muutuja funktsioonist u = f(x,y, z) iile hulga & = R3 defineeritakse ana-
loogiliselt kahekordse integraaliga (kahe muutuja funktsioonist iile hulga D < R?).
Kui kahekordse integraali defineerimisel lahtuti ristkiiliku jaotusviisist osaristkiili-
kuteks, siis kolmekordse integraali puhul ldhtutakse risttahuka jaotusviisist osarist-
tahukateks; koik teooriaarenduseks vajalikud moisted — Riemanni summad, Rieman-
ni integraal, Darboux’ summad, Darboux’ integraalid, integreeruvus, Darboux’ sum-
made piirvadrtus, — defineeritakse analoogiliselt kahekordse integraali juhuga; see-
juures kolmekordse integraali olemasoluks tarvilikud ja piisavad tingimused ning
kolmekordse integraali omadused on kahekordse integraali vastavate tingimuste ja
omaduste ilmsed analoogid. Seepérast piirdume kdesolevas konspektis kolmekordse
integraali osas vaid olulisemate arvutusvalemite dratoomisega.

Kolmekordne integraal

7.2. Kolmekordse integraali arvutamine

Teoreem 7.1. Olgu kolme muutuja funktsioon uw = f(x,y, z) integreeruv risttahukas

E = la,b] x [c,d]| x |e,l]. Téihistame D := [a,b] x [c,d].
(a) Kui iga (x,y) € D korral eksisteerib integraal
I
g9(z,y) = J f(z,y, 2)dz,
8148

fﬂf(x’y’ 2) dwdydz = H (f fx,y,2) dZ) dx dy = ﬂg(:v,y) dz dy.

D

(b) Kui iga z € |e,l] korral eksisteerib integraal

) = || #ev 2 ded,

e
! !
ffff(x, y,z)drdydz = J Jff(x, y,z)dedy |dz = J h(z)dz.
£ “\7p ‘
TEOREEMI ME KAESOLEVAS KURSUSES EI TOESTA . ]
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Teoreem 7.2. Olgu A < R? tokestatud hulk ning olgu funktsioonid
v=7(y) jo d=0(z,y), (z,y)eA (7.1)
tokestatud hulgas A, kusjuures
Y(z,y) < d(z,y) iga (z,y) € A korral. (7.2)
Kui kolme muutuja funktsioon uw = f(x,y,z) on integreeruv koversilindris
C = {(x,y,z) eR?: (m,y)e A, y(z,y) <z < 5(%9)}: (7.3)

kusjuures iga (x,y) € A korral eksisteerib integraal

g(x,y) = Lif;) f(z,y,2)dz, (7.4)
e
Hff(x’ y,z) dvdydz = H (f((;) f(,y,2) dz) dz dy = Hg(x,y) dvdy. (7.5)
c i : s

TEOREEMI [.2] TOESTUS. Hulga A tokestatuse tottu leidub kinnine (koordinaat)ristkiilik
D < R? nii, et A < D. Olgu arvud a,b,c,d € R, kus a < b ja ¢ < d, sellised, et D =
[a,b] % [c,d]. Funktsioonide v ja § tokestatuse tottu leiduvad arvud e, € R nii, et e < ja
e < y(z,y) < 4(z,y) <liga (z,y) € Akorral. Tahistame & := [a,b] x [¢,d] x [e,[]; siis C < E.
Eeldame niiiid, et funktsioon u = f(z,y, z) on integreeruv koversilindris C, kusjuures iga

(z,y) € A korral eksisteerib integraal (7.4)). Defineerime funktsiooni f: & - R vérdusega
f(x,y,z) _ {f(x,y,z), kul (l’,y,Z) EC, (76)

0, kui (z,y,2) € E\C.

Siis (funktsiooni f integreeruvuse tottu hulgas C) on funktsioon fintegreeruv risttahukas &,
kusjuures iga (z,y) € D korral (eelduse pohjal integraali (7.4]) olemasolust) eksisteerib integ-
raal
6 (z,y) : .
@y, 2)dz, ki (z,y) € A

l
N B R
§(z,y) = J flz,y,2)dz = {0? ! kui (z,y) € D\A.

Seega teoreemi (a), pohjal

J,J,Jf(x,y,z)dxdydz=JJ,J,f(x,y,z)dxdydzzjj (Llf(x,y,z)dz> dxdyzﬂg(a:,y)dxdy.
C & D D

Defineerime funktsiooni g: D — R vordusega

R ) g(z,y), kui (z,y) € A;
9lay) = {0, kui (z,y) € D\A

(siin funktsioon g on defineeritud vordusega ([7.4))); siis g = g, seega funktsioon g on integreerv
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ristkiilikus D, jdrelikult funktsioon g on integreeruv hulgas A, kusjuures

Jﬂ f(2,9,2) da dy dz = Ha(x, y) da dy = Hg(x,y) dz dy = ”g(x, y) da dy.
¢ P D A

O

Jireldus 7.3. Olgu A = R? mdotuv kinnine hulk ning olgu funktsioonid (7.1]) pide-
vad hulgas A, kusjuures kehtib (7.2). Kui kolme muutuja funktsioon v = f(x,y,z)
on pidev koversilindris (7.3), siis funktsioon f on integreeruv selles kéversilindris,

kusjuures iga (x,y) € A korral eksisteerib integraal (7.4) ja kehtib (7.5)).

JARELDUST ME KAESOLEVAS KURSUSES EI TOESTA .

Esitame jérelduse [7.3 toestuse skeemi. Kehtib lause 2.7 analoog, mille kohaselt meie eeldustel
on koversilinder C Jordani maéttes mootuv hulk ruumis R®. (See lause analoog jéreldub
teoreemi analoogist, mille kohaselt tokestatud hulk ruumis R® on Jordani mattes mootuv
parajasti siis, kui tema raja on nullmooduline, kasutades lause analoogi, mille kohaselt
ruumi R? méotuvas kinnises alamhulgas méadratud pideva funktsiooni graafik on nullméodu-
line, ja teoreemi [2.5). Eeldame niiiid, et kolme muutuja funktsioon u = f(z,y, z) on pidev
koversilindris C. Kehtib teoreemi analoog, mis {itleb, et ruumi R?® mootuvas kinnises
alamhulgas pidev (kolme muutuja) funktsioon on (Riemanni mdttes) integreeruv selles hulgas;
niisiis meie funktsioon f on (Riemanni mottes) integreeruv koversilindris C. Iga (z,y) € A
korral on funktsioon f(z,y, -) pidev 16igus [a(z,y), B(z, y)] ja seega integraal eksisteerib.
Niiiid teoreemi [7.2] pohjal kehtib (7.5)).

]

Jareldus 7.4. Olgu funktsioonid o = a(x) ja 5 = f(x) pidevad loigus [a,b], kusjuu-
res a(x) < B(x) iga x € [a, b] korral, ning olgu funktsioonid v = ~(x,y) ja 6 = §(x,y)
pidevad kovertrapetsis

A= {(z,y) e R?: z € [a,b], afz) <y < B(x)},

kusjuures vy(z,y) < d(z,y) iga (x,y) € A korral.
Kui funktsioon u = f(x,y,z) on pidev kéversilindris

C:={(r,y,2) eR’: (z,y) € A, ~(z,y

) <2< 8(z,y)}
= {(z,y,2) eR*: z € [a,b], a(z) <y

<
< B(x), v(z,y) < 2 < 0(x,y)},

stis funktsioon f on integreeruv selles koversilindris, kusjuures

fﬂf (2,y, 2) dvdy dz = Lb ( f((: (jm’y) @y, 2) dz) dy) dz.

v(z,y)
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JARELDUSE [Z.4] TOESTUS. Kdigepealt paneme tiihele, et kovertrapets A on kinnine hulk
tasandil R? (POHJENDADA!) . Lause ﬁ pohjal on A tasandi R? Jordani méttes mootuv

alamhulk. Eeldame niiiid, et kolme muutuja funktsioon u = f(x,y, z) on pidev koversilind-
ris C. Jarelduse pohjal on funktsioon f integreeruv selles koversilindris, kusjuures iga
(z,y) € A korral eksisteerib integraal (7.4) ja kehtib (7.5)). Jérelduse toestuseks piisab niitid
néidata, et

(o) funktsioon g on pidev kovertrapetsis A,

sest viite (o) kehtides on iga x € [a, b] korral funktsioon g(z,-) pidev 16igus [a(z), B(z)] ja
seega eksisteerib integraal S%g(m,y) dy, niisiis kahekordse integraali arvutusvalemi pohjal
o2}

(a),

fﬂf(x,y, z)drdydz = Hg(xyy) drdy = Lb <LB(:) 9(z,y) dy) dx
C A
L emre) o)

v(z,y)
Ulesanne 7.1. Téestada viide (o).

iile kovertrapetsi teoreemist,

O

Teoreem 7.5. Olgu kolme muutuja funktsioon u = f(x,y, z) integreeruv hulgas
C:={(z,y,2) eR’: z€lel], (z,y) € A(2)},

kus iga z € le,l] korral A(2) on mingi hulk xy-tasandil. Kui iga z € |e,l]| korral
eksisteerib integraal

h(z) = H .y, =) dz dy, (7.7)
()
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ijf(x,y,z) dxdydz = Ll JJ f(x,y,2)dedy |dz = Ll h(z) dz.
¢ Az)

TEOREEMI [.5] TOESTUS. Eeldusest funktsiooni f integreeruvuse kohta hulgas C jéireldub
implitsiitselt, et hulk C on tokestatud, jdrelikult leidub kinnine koordinaatristkiilik D < R?
nii, et A(z) € D iga z € [e,!] korral. Olgu a,b,c,d € R, kus a < b ja ¢ < d, sellised, et
D = [a,b] % [¢,d]. Téhistame & := [a, b] x [¢,d] x [e,[]; siis C < £.

Defineerime funktsiooni f: & — R vordusega (7.6). Siis (funktsiooni f integreeruvuse
tottu hulgas C) on funktsioon f integreeruv risttahukas £, kusjuures iga z € [e,!] korral
(eelduse pohjal integraali olemasolust) eksisteerib integraal

” Fla,y, 2)dedy = H flx,y, 2)dedy = h(z).
D A(z)
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Seega teoreemi (b), pohjal

Jfff(:c,y, z)dxdydz = “f f(m,y, z)dxdydz = J: (jf f(:L',y, z)dx dy) dz = Ll h(z) dz.
c £ D

O

7.3. Muutujate vahetus kolmekordses integraalis

7.3.1. Uldine muutujate vahetuse valem kolmekordse integraali jaoks

Vaatleme teisendust ruumis R3, mis on méiratud siisteemiga
x = x(u,v,w), y = y(u,v,w), z = z(u,v,w). (7.8)
Téahistame

! (u,v,w) ) (u,v,w) o (u,v,w
J(u,v,w) 1= M = yygu,v,wg Y Eu,v,wi Y gu,v,w; ,
D(u,v,w) B H h

2t (u,v,w) 2l (u,v,w) 2l (u, v, w)

s.t. J(u,v,w) on siisteemi (7.8 jakobiaan punktis (u, v, w).
Teoreem 7.6. Kui

(1) kolme muutuja funktsioon t = f(x,y,z) on pidev (vyz-ruumi) mooctuvas kin-
nises hulgas &;

(2) wvorrandid (7.8)) madravad requlaarse teisenduse, mis kujutab (uvw-ruumsi) moo-
tuva kinnise hulga A hulgaks &,

Jfff(x, y,2z)drdydz

8118

(7.9)
= ij f(x(u, v,w), y(u, v, w), z(u, v, w)) ‘J(u, v, w)‘ du dv dw.
A
TEOREEMI ME KAESOLEVAS KURSUSES EI TOESTA . Il

7.3.2. Uks teoreemi tugevdus

Teoreem jaéb kehtima, kui temas teisenduse regulaarsuse eeldust monevorra
norgendada, nagu seda on tehtud jirgnevas teoreemis (mis on teoreemi loomulik
analoog).
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Teoreem 7.7. Olgu £ < R? ning olgu f: £ — R pidev funktsioon. Olgu U < R3
lahtine hulk ning olgu teisendus ®: U — R? antud siisteemiga , kus funktsiooni-
del eksisteerivad hulgas U pidevad osatuletised. Olgu A = U ruumis R® mootuv
kinnine alamhulk, mille teisendus ® kujutab hulgaks &, s.t. ®[A] = E. Siis hulk €

on kinnine ja tokestatud. Kui leidub nullmooduga alamhulk IC < A nii, et
(1) ahend ®|po\c on dksihene (simbol A° tihistab hulga A sisemust);

D(x,y, 2)

(2) J(u,v,w) = Dlwv,w)

(u,v,w) * 0 iga (u,v,w) e A\ korral,
siis hulk € on mootuv, kusjuures kehtib valem (7.9)).
TEOREEMI ME KAESOLEVAS KURSUSES EI TOESTA . ]

7.3.3. Uleminek silindrilistele koordinaatidele kolmekordses integraalis

Vaatleme teisendust R? 5 (r,¢, h) — (2,9, 2) € R3, mis on miiratud siisteemiga
T = 1cos @, y = rsin @, z = h. (7.10)

See teisendus seab igale r¢h-ruumi punktile (r, ¢, h), kus r = 0, vastavusse zyz-
ruumi punkti, mille silindrilised koordinaadid on 7, ¢ ja h (vt. joonist [7.1]).

&

T

JooNIs 7.1. Punkti P ristkoordinaadid z, y ja 2z ning silindrilised koordinaadid
r, ¢ ja h on seotud vordustega ((7.10]).
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Selle teisenduse puhul

/ / . /

x, = COoS ¢, Ty = —TSing, x, =0,
/ . ’ /

Y, = sin ¢, Yy, = T COS B, Yy, =0,
/ / /

Z’I’ = 07 Z¢ = 0’ Zh = s

seega tema jakobiaan

s 0
D(x,y, 2) Cf)SgZﬁ rsin ¢
J(r,p,h) 1= —————= =|sin¢p rcos¢p 0
D(r, ¢, h) 0 0 1
= rcos® ¢+ rsin® ¢ = r(cos® ¢ + sin® @) = 7.
Néeme, et teisendus (7.10)) kujutab r¢h-ruumi hulga
{(r,g,h) eR’: =20, ¢p€[0,2n], he R} (7.11)

sisemuse

{(T,Gb,h) eR3: r>0, ¢e(0,2m), heR}
regulaarselt xyz-ruumiks, millest on vilja loigatud pooltasand
{(.Z',y,Z)ERS: y=0,x>0} (712)

(s.t. zz-tasandi osa, kus « = 0); hulga (7.11)) raja (s.t. selle hulga osa, kus r = 0 voi

¢ € {0,27}) kujutab see teisendus pooltasandiks (7.12)). Jérgnev teoreem jéreldub
niitid teoreemist [7.7

Teoreem 7.8. Kui

(1) kolme muutuja funktsioont = f(x,y, z) on pidev zyz-ruumi moéotuvas kinnises
hulgas &;

(2) teisendus (7.10) kujutab hulgas (7.11)) sisalduva maotuva kinnise hulga A hul-
gaks &,

Lﬂ f(z,y,2z)dedydz = L” f(rcos ¢, rsing, h)rdrdedh.

7.3.4. Uleminek sfiirilistele koordinaatidele kolmekordses integraalis
Vaatleme teisendust R3 3 (1,0, ¢) — (x,y, z) € R3, mis on méératud siisteemiga
x = rsinf cos ¢, y = rsinfsin ¢, 2 =rcosb. (7.13)

See teisendus seab igale rf¢-ruumi punktile (r, 0, ¢), kus r = 0 ja 6 € [0, ], vasta-
vusse zyz-ruumi punkti, mille sfadrilised koordinaadid on r, € ja ¢ (vt. joonist .
Selle teisenduse puhul
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JOONIS 7.2. Punkti P ristkoordinaadid z, y ja z ning sfaérilised koordinaadid
r, 6 ja ¢ on seotud vordustega (7.13)).

z, =sinfcosp, wp=rcosfcosp, x, = —rsinfsinag,
y, =sinfsing, y, =rcosfsing, yu = rsindcosg,
2l = cosb, 2y = —rsinb, 25 =0,

seega tema jakobiaan

D(z,y,7) sinfcos¢ rcosfcos¢ —rsinfsing
J(r,0,9): = % = |sinfsing rcosfsing rsinfcos o
(r.0,9) cosf —rsind 0
= 72 sin 6 cos? 0 cos? ¢ 4 12 sin® f sin? ¢
2 sin 6 cos® A sin? ¢ + 12 sin® 6 cos? ¢
= 72 8in 0 cos® f(cos® ¢ + sin” @) + 2 sin® O(sin” ¢ + cos® @)
= r%sin  cos® 6 + r?sin® 6 = 7% sin f(cos® § + sin” 0)
= r?siné.
Néeme, et teisendus (7.13)) kujutab rf¢-ruumi hulga
{(r,0,9)eR®: r>0,0€[0,7], ¢€[0,27]} (7.14)

sisemuse

{(r,0,0)eR*: r>0,0€(0,7), ¢ (0,2m)}
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regulaarselt zyz-ruumiks, millest on viilja 16igatud pooltasand (s.t. zz-tasandi
osa, kus & = 0); hulga (7.14) raja (s.t. selle hulga osa, kus r = 0 voi 0 € {0, 7} voi
¢ € {0,27}) kujutab see teisendus pooltasandiks (7.12)). Jirgnev teoreem jireldub
niiiid teoreemist [.7

Teoreem 7.9. Kui

(1) kolme muutuja funktsioont = f(x,y, z) on pidev ryz-ruumi moéotuvas kinnises
hulgas &;

(2) teisendus (7.13) kujutab hulgas (7.14) sisalduva maéotuva kinnise hulga A hul-
gaks &,

mf"(x,y,z) d dy dz

= fjf f (7“ sin 6 cos ¢, r sin 6 sin ¢, r cos 9) r?sin @ dr df de.
A

8118

7.4. Kolmekordse integraali rakendusi

7.4.1. Keha ruumala arvutamine

Jargnev teoreem sisaldub Jordani moodu definitsioonis ruumis R3. NB! Jordani mo5-

tu ruumis R® me

~ . k& 1 k k-
Teoreem 7.10. Mootuva hulga € < R? ruumala Ve avaldub valemiga tie pole. defineer.
nud; selle definit-
siooni kirjeldus on
antud jaotise
Vg = J\JVJ\ dl‘ dy dZ sissejuhatavas 15i-
gus.

Jireldus 7.11. Olgu A < R? mootuv kinnine hulk ning olgu funktsioonid
a=oary) jo B=py), (r.y)eA
pidevad hulgas A, kusjuures
alz,y) < B(x,y) iga (z,y) € A korral.
Siis koversilinder

C:= {(x,y,z) eR?: (n,y)e A, a(r,y) <z < B(x,y)}

on mootuv hulk ruumis R®, kusjuures tema ruumala Ve avaldub valemiga

Ve = ”(ﬁ(m/) —a(z,y)) dx dy.
A

ToOrEsTUS. Koversilindri C mootuvust me kaesolevas kursuses ei toesta.
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Koversilindri ¢ mo6tuvuse toestus toetub teoreemi [2.5] analoogile, mille kohaselt tokestatud

hulk ruumis R? on Jordani mottes mootuv parajasti siis, kui tema raja on nullméoduline.

Koversilindri C mo6tuvuse tottu eksisteerib kolmekordne integraal {fS, dz dydz,
kusjuures teoreemi [7.10] pohjal, kasutades kolmekordse inegraali arvutusvalemit iile
koversilindri teoreemist [7.2]

Ve = fﬂ dr dydz = “ (Lifi) dz) dx dy = ﬂ(ﬁ(%y) — a(z,y)) dzdy.
A Y A

C



VI peatiikk.
Joonintegraalid

§ 1. Joone kaare pikkus

1.1. Tasandilise joone moiste

Meenutame (vt. alajaotist [[[1.6.2)), et (pidevaks ehk Jordani) jooneks ruumis R™
nimetatakse pidevat funktsiooni ®: 7" — R™, kus 7' < R on mingi intervall. Hulka
{®(t): t € T} ruumis R™ (s.t. funktsiooni ® vdirtuste hulka) nimetatakse seejuures
joone @ jaljeks. Funktsiooni ® argumendile (antud juhul muutujale ¢) viidatakse
kui parameetrile. Jooni ruumis R? nimetatakse tasandilisteks joonteks. Olulisemaid
joonte esitusviise (esitus parameetriliste vorranditega, tasandilise joone esitus vor-
randiga y = f(x) ning polaarkoordinaatides) on tutvustatud alajaotises [[[1.6.3|

Joont @: T" — R™ on koige lihtsam ette kujutada kui ruumis R™ eeskirja u =
®(t) jargi liikuva punkti trajektoori: ajahetkel ¢ € T asub liikuv punkt ruumis R™
punktis ®(t) (vt. joonist kus m = 2).

—_—

Joonis 1.1. Siin ®(t) = (¢1(t), ¢2(t)), s.t. ¢1(t) ja ¢o(t) on punkti P(t)
(rist)koordinaadid.

229
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Sageli, koneldes joonest, peetakse tegelikult silmas hoopis teatava joone jilge. Néi-
teks viidates mingi joone punktidele, moistetakse selle all hoopis konealuse joone
jdlje punkte jne. Sedalaadi terminoloogilist ebatdpsust, mis iildjuhul sisulist kaksi-
pidimoistmist ei tekita, lubame endale kiesolevas konspektis ka meie.

Kui intervall T" on 16ik, s.t. T = [«, 5] mingite «, 5 € R, o < 3, korral, siis
nimetatakse joont ®: 7" — R™ kaareks. Ruumi R™ punkte ®(«a) ja ¢(5) nimetatakse
seejuures vastavalt kaare ® alguspunktiks ja kaare ® lopp-punktiks. Kaare algus- ja
1opp-punkti nimetatakse selle kaare otspunktideks. Kui A, B € R™, siis koneldes
kaarest AB peetakse silmas mingit kaart, mille alguspunkti on A ja lopp-punkt
on B.

Tasandilise joone moiste holmab hulgaliselt funktsioone, mille jilgi meie eel-
matemaatiline arusaam torgub joonteks nimetamast. Niiteks tasandi R? punkti-
hulk [0,1] x [0,1] := {(z,y): =,y € [0,1]} — ruut — on teatava pideva funktsiooni
®: [0,1] — R? viirtuste hulk, (s.t. teatava tasandilise joone jilg). Niisuguseid “eba-
joonelikke” jooni iihendab iiks {ihine omadus — kordsete punktide olemasolu. Kordse
punkti all moistetakse joone ®: T — R™ punkti (voi, tdpsemalt, selle joone jilje
punkti), mis vastab parameetri ¢ erinevatele viartustele, ehk, tolgendades joont ®
tasandil eeskirja u = ®(t) jérgi liikuva punkti trajektoorina, libib see liikkuv punkt
joone kordse punkti rohkem kui iiks kord. Seepérast on otstarbekas sisse tuua selliste
joonte klass, millel kordsed punktid puuduvad.

Definitsioon 1.1. Oeldakse, et joon ®: " — R™ on lihtne, kui funktsioon ® on
injektiivne, s.t. parameetri ¢ erinevatele vairtustele vastavad selle joone erinevad
punktid:

tteT, t+t = @)+ D)

(ehk, teisisonu, joonel ® ei ole kordseid punkte).

Definitsioon 1.2. Oeldakse, et kaar ®: [a, 5] — R™ on lihtne kinnine kaar, kui

®(a) = ©(B)
(s.t. tema otspunktid langevad kokku) ja

tela,fl,t' e (@, 8), t+t = @)+ 2(t)
(s.t. peale otspunktide tal rohkem kordseid punkte pole).

Jaotise 1opetuseks lepime kokku jargmises tdiendavas terminoloogias.

Vaatleme tasandilist kaart ®: [a, 5] — R?% Kui a < v < § < 8, siis kaarele
P|py.01: [, 0] — R? viitame kui kaare ® osakaarele. Kui @ < v < § < § < [ ning
C = ®(y), P := &), D := &(9), siis me iitleme, et punkt P asub vaadeldaval
kaarel punktide C ja D vahel.

Eeldame niitid, et kaar ®: [a, 5] — R? on lihtne. Siis see kaar méirab oma jiljel
L :={®(t): t € [, 8]} loomulikul viisil jérjestuse: loomulik on lugeda punkt P, € L
eelnevaks punktile P, € L, kui t; < to, kus t1, 5 € [a, 8] on sellised, et ®(¢1) = P ja
O(ty) = P, — tolgendades kaart & kui tasandil liikuva punkti liikumiseeskirja, 1dbib
see liikkuv punkt punkti P; enne kui punkti P.
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1.2. Taiendavaid iilesandeid

Selle jaotise iilesandeid [I.T]ja[I.3] kasutatakse mone selle peatiiki tulemuse toestamisel; iilesanne 1.2
annab abitulemuse iilesande [I.3]lahendamiseks. Materjali omandamise seisukohalt voib iilesannete
12 ja[I.3] lahendamise edasi liikata niikauaks, kuni iilesandele [T.3] hilisemas tekstis viidatakse; siis
on rangelt soovitatav need iilesanded dra lahendada.

Koik selle jaotise iilesanded on sonastatud tasandiliste joonte jaoks, kuid nende iilesannete
véited kehtivad ka joonte jaoks ruumis R™ mis tahes m € N korral, kusjuures ka nende viidete
toestused jadvad sisuliselt samaks.

Ulesanne 1.1. Tdestada, et tasandilise kaare ®: [o, 8] — R? jiilg L := {®(t): t € [, 5]} on
kinnine tokestatud hulk.

NAprUNAIDE. Esitada kaar parameetriliste vorranditega. Jélje tokestatuse toestamisel kasutada
Weierstrassi esimest teoreemi; jélje kinnisuse toestamisel kasutada hulga kinnisuse kriteeriumit
koonduvate jadade piirvidrtuste kaudu (lauset , Bolzano—Weierstrassi teoreemi (arvjadade
jaoks) ja parameetrilistes vorrandites esinevate funktsioonide pidevust.

Ulesanne 1.2. Olgu ®: [a, 3] — R? lihtne (tasandiline) kaar. Thistame L := {®(t): t € [, B8]},
s.t. L on kaare ® jilg. Siis me saame vaadelda poordfunktsiooni ®~1: L — [a, 3]. Toestada, et
poérdfunktsioon @1 on pidev.

NAPUNAIDE. Oletada vastuviiteliselt, et podrdfunktsioon ® ! pole pidev ning kasutada Bolzano—
Weierstrassi teoreemi (arvjadade jaoks) ja funktsiooni ® pidevust.

Ulesanne 1.3. Olgu ®: [, 8] — R? ja ¥: [y,5] — R? lihtsad (tasandilised) kaared, millel on
sama jilg, s.t. L := {®(t): t € [, B]} = {¥(7): 7 € [7,6]}. Tihistame A := ®() ja B := ®(),
s.t. A ja B on vastavalt kaare ® algus- ja lopp-punkt. Siis

(a) kaare ¥ alguspunkt saab olla ainult kas A voi B;

(b) kui kaare ¥ alguspunkt on A, siis funktsiooni ¥ poolt méiratud jilje L punktide jirjes-
tus thtib funktsiooni ® poolt méiiratud jirjestusega; kui kaare ¥ alguspunkt on B, siis
funktsiooni ¥ poolt madratud jéilje L punktide jérjestus on vastupidine funktsiooni ® poolt
madratud jirjestusele;

(¢) kui kaare ¥ alguspunkt on A, siis tema 16pp-punkt on B; kui kaare ¥ alguspunkt on B, siis
tema l16pp-punkt on A.

NAPUNAIDE. Télgendades funktsiooni ® funktsioonina [a, 8] — L, on pddrdfunktsioon @1 iiles-
andepéhjal pidev. Seega, tolgendades funktsiooni ¥ funktsioonina [, 6] — L, on kompositsioon

h:=&"1V: [v,0] = [e, 5]

pidev bijektsioon. (Mirgime, et ka funktsiooni h péoérdfunktsioon h=t = U=1®: [a, 5] — [7, 6] on
pidev.) TGestada, et

(A) h(7) = a voi h(y) = B;

(B) kui h(y) = a, siis mis tahes 71,72 € [, 5], 71 < 72 korral h(m) < h(72); kui h(y) = B; siis
mis tahes 71,72 € [, 8], 71 < T2 korral h(m) < h(12);

(C) kui h(y) = a, siis h(d) = 8; kui h(y) = g, siis h(d) = a.

Viidete (A) ja (B) toestamisel kasutada Bolzano-Cauchy teoreemi 16igus pideva funktsiooni vahe-
pealsetest védrtustest; viide (C) on vahetu jéreldus véitest (B). Viited (a)-(c) jarelduvad vastavalt
vaidetest (A)—(C). (Teiselt poolt, viide (c) on vahetu jéreldus viitest (b).)
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1.3. Tasandilise kaare pikkuse moiste

Vaatleme tasandilist kaart ®@: [a, 8] — R2. Jaotame Idigu [«, 3] osadeks punktidega
a=ty<t;<---<t, =p (neN) ning vaatleme kaare ® (voi, tipsemalt, kaare ®
jilje) punkte

AO = q)(to) = q)(Oé), Al = q)(tl), ...... y An = q)(tn) = (I)(ﬁ)
Uhendades iga j € {1,...,n} korral punktid A; ; ja A; sirgldiguga, saame murdjoone
ApAp ... A, (1.1)

(vt. joonist [1.2)).
v A

Ay

Ao

JOONIS 1.2. Joonisel on sinisega kujutatud kaart ® (voi, tdpsemalt, selle kaare
jilge) ning rohelisega (kool)murdjoont (1.1)), kus n = 7.

Sellist murdjoont nimetatakse kaare ® koolmurdjooneks. Punkte A; ; ja A,
tihendavatele sirgloikudele A; 1A;, j = 1,...,n, viidatakse kui kaare ® kooludele voi
ka kui (kool)murdjoone lilidele. Koolmurdjoone pikkuseks nimetatakse
tema liilide pikkuste summat 37, [A;14;].

Miérkus 1.1. Kui kaarel ® leidub kordseid punkte, siis voib juhtuda et mingi j € {1,...,n}
korral punktid A;_; ja A; langevad iihte. Sel juhul kool A;_1A; on tegelikult ihepunktiline hulk
{A;_1} = {A,}; selle “kodlu” pikkus loetakse vordseks nulliga.
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Definitsioon 1.3. Kui kaare ® koikvoimalike koolmurdjoonte (1.1 pikkuste hulk
on iilalt tokestatud, siis 6eldakse, et kaar ® on sirgestuv, kusjuures nende koolmurd-
joonte pikkuste hulga iilemist raja nimetatakse kaare ® pikkuseks.

Kui kaar ® esitub parameetriliste vorranditega

v=uat), y=yt), telap]

siis iga j € {1,...,n} korral kdolu A; ; A, pikkus on

2 2
VIetts) = ot + lytts) — vt I
seega koolmurdjoone (1.1]) pikkus on

2

’

)3 V0et) — 2t + u(t) — y(t;-0)

niisiis, juhul, kui kaar ® on sirgestuv, selle kaare pikkus sg on

swim s Sle(t) — a0+ it vt

a=:tg<t;<-<tp=:
Jargnev lause esitab paar lihtsat kaare pikkuse omadust.

Lause 1.1. Olgu AB tasandiline kaar.

(a) Olgu kaare AB koolmurdjoon l' saadud selle kaare kéolmurdjoont
liZAoAl...An (HEN)

mddravatele punktidele Ay, Ay, ..., Ay, kus Ag = A ja A, = B, uute punktide
Juurdelisamise teel. Siis koolmurdjoone I' pikkus sy ei ole vdiksem koolmurd-

joone | pikkusest s;:
Sy = Si. (12)

(b) Olgu C kaare AB punkt, mis asub punktide A ja B wvahel. Siis kaar AB on
sirgestuv parajasti siis, kui osakaared AC ja C'A on sirgestuvad; seejuures kaare
AB pikkus sap on osakaarte AC' ja C'B pikkuste sac ja scp summa:

SAB = SAC + ScB- (1.3)

TOESTUS. (a). Viite tdestuseks piisab toestada vorratus juhul, kui koolmurd-
joon I' on saadud punktidele Ay, Ay, ..., A, iihe uue punkti juurdelisamise teel.
Olgu k € {1,...,n} selline, et see uus punkt C' asub punktide Ay_; ja Ay vahel.
Koolmurdjooned [ ja I’ koosnevad iihtedest ja samadest sirgloikudest ainsa erinevu-
sega, et murdjoone I’ koosseisu kuuluvad sirgloigu A, 1Ay asemel sirgloigud A, C
ja C'Ai. Kuna

| A1 O] + |CAL| = |Ap_1 Ak

(POHJENDADA!) , siis kehtib ([1.2).
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(b). Eeldame koigepealt, et kaar AB on sirgestuv. Olgu l; := AA; ... Ay_1C ja
ly := CBy...B,, 1B vastavalt osakaarte AC' ja C'B mingid koolmurdjooned. Té-
histame kaare AB vastava koolmurdjoone AA,... Ay 1CB ... B, 1B stimboliga [
ning nende kolme murdjoone pikkused vastavalt siimbolitega s;,, S5, ning s;; siis

Sy, + Si, = Si1 < Sas,

seega
sup s;;, +sup s, < S4B,
kus vorratuse vasakul pool olevates liidetavates on supreemum voetud vastavalt iile

kaare AC' koikvoimalike koolmurdjoonte [y ja iile kaare C'B koikvoimalike koolmurd-
joonte [y; jarelikult kaared AC' ja C'B on sirgestuvad, kusjuures

SAc + ScB < SAB- (1.4)

Teiselt poolt, eeldame, et kaared AC' ja C'B on sirgestuvad. Olgu ®: [a, ] — R?
kaart AB defineeriv kujutus ning olgu 7 € (o, §) selline, et C' = ®(7). Olgu [ :=
AA; ... A, 1B (n e N) mingi kaare AB koolmurdjoon jaolgu av <ty < -+ <t, 1 <
S seda koolmurdjoont méddravad punktid, s.t. A; = O(¢;) iga j € {1,...,n — 1}
korral.

On kaks teineteist vilistavat voimalust:

(1) mingi k € {1,...,n — 1} korral 7 = t; (ning seega C = Ay);

(2) mingi k € {1,...,n} korral t; | < 7 <t (s.t. C asub punktide Aj | ja Ay
vahel).

Juhul (1) tdhistame stimboliga [; kaare AC koolmurdjoone AA; ... A, 1C ja
siimboliga [, kaare C'B koolmurdjoone C' Ay, ... A, 1B; siis

S = 81, + s, < Sac + seB-

Juhul (2) tdhistame siimboliga [; kaare AC' koolmurdjoone AA; ... A; 1C, siim-
boliga Iy kaare C'B koolmurdjoone C' Ay ... A, 1B ja siimboliga I’ kaare AB ko6dl-
murdjoone AA; ... A,_1CA, ... A,_1B; siis, arvestades, et kodlmurdjoon I’ on saa-
dud koolmurdjoont [ méaaravatele punktidele uue punkti C' juurdelisamise teel, véi-
te (a) pohjal

S < Sp =S, + Si, < Sac + ScB-

Niisiis igal juhul s; < sac + s¢p; seega
sup s; < sac + ScB,

kus vorratuse vasakul pool on supreemum voetud iile kaare AB koikvoimalike kool-
murdjoonte [; jarelikult kaar AB on sirgestuv, kusjuures

SAB < Sac + ScB- (1.5)

Soovitud vordus (1.3 jareldub vorratustest ([1.4]) ja ([1.5)). O
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Mirkus 1.2. Saab niidata, et kui tasandiline kaar ® on lihtne, siis mis tahes lihtsa tasandilise
kaare U korral, mille jilg on vordne kaare ® jiljega, on kaar U sirgestuv parajasti siis, kui kaar ®
on sirgestuv, kusjuures nende kaarte sirgestuvuse juhul on nende pikkused vérdsed.

Lausest (b), jireldub, et eelnev viide jadb kehtima, kui seal vaadelda lihtsate kaarte asemel
kaari, millel on tlimalt 16plik arv kordseid punkte.

Sellega on digustatud jargnev iilesannetekogudes sagedasti esinev {ilesandepiistitus: etteantud
(tasandilise) punktihulga korral — millele selles iilesandes viidatakse kui kaarele — leida selle punkti-
hulga — kaare — pikkus. Selles iilesandes peetakse “kaare” all silmas mingit kaart, millel on iilimalt
loplik arv kordseid punkte ning mille jélg see punktihulk on; eelneva viite pohjal on koigi niisuguste
(tilimalt 16pliku arvu kordsete punktidega) kaarte pikkused vordsed ning seega ei soltu vaadeldava
“kaare” pikkus sellise (iilimalt 16pliku arvu kordsete punktidega) kaare valikust.

Lause 1.2. Olgu ®: [, 8] — R? sirgestuv (tasandiline) kaar. Iga t € [, 5] korral
tahistame siimboliga s(t) selle kaare osakaare ACy pikkuse, kus A := ®(a) (s.t. A on
selle kaare alguspunkt) ja Cy := ®(t); seejuures defineerime s(a) = 0. Siis funktsioon
o, B] 2t — s(t) € R on pidev.

TOEsTUS. Kdigepealt niitame, et funktsioon ¢ — s(t) on vasakult pidev igas punk-
tis 7 € (o, B]. Selleks, fikseerides vabalt punkti 7 € («, 8] ja realaarvu e > 0, piisab
leida punkt 7. € [a, 7) nii, et

T.<t<tT = s(t)>s(1)—2¢

(pOoHJENDADA.!) Selleks omakorda piisab valida punkt 7. € [o,7) nii, et s(7.) >
s(1T) — 2¢ (POHJENDADA!) .

Valime punktid o = t5 < t; < -+ < t, = 7 (n € N) nii, et, tihistades
A; = ®(t;), 7 = 0,1,...,n, murdjoone ¢, := ApA; ... A, pikkus s;, > s(7) — ¢
(POHIJENDADA, MIKS SELLINE VALIK ON VOIMALIK!) . Fikseerime (esialgu) suvaliselt punk-
ti 7. € (t,1,7), tdhistame C' := ®(7.), murdjoone ApA; ... A, 1CA, ja selle murd-
joone osamurdjoone AgA; ... A, 1C téhistame vastavalt siimbolitega ¢ ja ¢/, nende
murdjoonte pikkused tdhistame siimbolitega s, ja sy ning sirgloigu C'A,, pikkuse
stimboliga |C'A,|. Siis

S(T) —e < sy < 8= 80+ |CA,| < s(12) + |CA,| = s(72) + d((I)(Ta), (D(T)).

Funktsiooni ® pidevuse tottu punktis 7 saanuksime me punkti 7. € (¢,_1,7) valida
algusest peale nii, et d(@(Tg), CID(T)) < e. Niisuguse punkti 7. jaoks kehtib vorratus
s(1.) > s(1) — 2¢, nagu soovitud.

Lause toestuseks jadb néidata, et funktsioon ¢ — s(t) on paremalt pidev igas
punktis 7 € [«, 3). Selleks, fikseerides vabalt punkti 7 € [a, 8) ja jada (7,,)>°_; pool-
16igus (7, 4] nii, et 7, ——T, piisab néidata, et s(7,) — s(7).

Vaatleme kaart ¥: [0, —a] 3 v — ®(8 — v) € R? Selle kaare alguspunkt
on esialgse kaare 16pp-punkt B := ®([) ja lopp-punkt on esialgse kaare alguspunkt
A = ®(«). (Piltlikult eldes, see uus kaar on “esialgne kaar AB lédbituna vastupidises
suunas”.) Iga punkti v € [0, 5 — ] korral olgu o(v) selle kaare punkte B ja D, :=
U(v) = ®(S—wv) ithendava osakaare BD, pikkus; seejuures loeme o(0) = 0. Eelnevalt
toestatu pohjal on funktsioon v — o(v) vasakult pidev igas punktis v € (0, 3 — .
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Paneme téhele, et iga t € [a, 8] korral s(t) + o(8 —t) = s, kus s on kaare AB

pikkus (ponIENDADA!) . Iga n € N korral g — 7, € [0, 5 — 7), kusjuures 8 — 7, ——
n—oo

f — T, seega, arvestades, et funktsioon v — o (v) on vasakult pidev punktis 5 — 7,

s(m) = 5= 08— 1) —> s —0(5—7) = 5(7),

nagu soovitud. O]

1.4. Koolmurdjoonte pikkuste piirviartus

Vaatleme (tasandilist) kaart ®: [, 3] — R% Kui a =ty < t; < --- =
(n € N), siis tdhega [ tdhistame kaare ® koolmurdjoont AgA; ... A, kus A; = (
j=0,1,...,n, simboliga s; tdhistame murdjoone [ pikkust ning

At‘j:t]—t‘jfl, ]:1,,71

Definitsioon 1.4. Arvu I € R nimetatakse kaare ® koolmurdjoonte pikkuste piir-
vddrtuseks, kui iga reaalarvu € > 0 korral leidub reaalarv § > 0 nii, et (kaare ® mis
tahes koolmurdjoone [ korral)

max At; <0 = |s;—I|<e. (1.6)
1<j<n

Mirkus 1.3. Olgu (tasandiline) kaar antud parameetriliste vorranditega
v=a(t), y=y), telafl (L7)
Loigu [a, 8] jaotusviisi korral punktidega
a=tg <ty <---<t,:=0 (neN) (1.8)

téhistame x; := z(t;), y; = y(t;), 4; = (z;,9;), 7 = 0,1,...,n, ning iga j € {1,...,n} korral
tdhistame Atj = tj — tjfl, A:cj =T —Ti-1, ij =Y~ Yji-1-

Osutub, et kui kaar (1.7) on lihtne, siis tema jaoks jaib kéolmurdjoonte pikkuste piirvidrtuse
moiste samaks, kui deﬁmtsiaom implikatsioonis (1.6) asendada tingimus

max At; <9 (1.9)
1<j<sn
tingimusega
max{|Az1|, [Ayil, ..., |Az,|, |Ay,|} <6 (1.10)
v01 tingimusega
lléljagxn d(Ajfl, AJ) < 4. (111)

Toepoolest, olgu kaar (1.7) lihtne. Testame koigepealt, et selle kaare jaoks jadb koolmurd-
joonte pikkuste piirvddrtuse moiste samaks, kui definitsiooni implikatsioonis (1.6) asendada
tingimus ([1.9) tingimusega ((1.10). Selleks, fikseerides vabalt reaalarvu > 0, piisab veenduda, et

(1) leidub reaalarv ¢; > 0 nii, et (16igu [e, 8] mis tahes jaotusviisi korral punktidega ([1.8))

max At; <01 == max{|Azi|, |Ayi|,..., | Az, ], |Ayn|} <73 (1.12)

1<j<n
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(2) leidub reaalarv o > 0 nii, et (16igu [, 3] mis tahes jaotusviisi korral punktidega (1.8))

max{|Ax1|, [Ay1], ..., | Ay, |Ayn,|} <y = 1rga<xn At; <~
(POHJENDADA!)
(1). Kuna funktsioonid (1.7) on pidevad, siis Cantori teoreemi ?? pdohjal on nad iihtlaselt
pidevad 16igus [, 3], seega leidub reaalarv §; > 0 nii, et

tt"efa, Bl ' =t"<é = |a@) -zt <y ja |y@) -yt <.
Kui niitid 16igu [a, 3] jaotusviis punktidega (1.8) rahuldab tingimust max;<,<, At; < d1, siis iga
je{l,...,n} korral |[t; —t;_1| < &1, jérelikult
lz(t;) —2(tj—) <v Ja |y(t;) —y(t;—)l <~

ning seega kehtib implikatsiooni (1.12)) paremal poolel oleva vorratus.

(2). Oletame vastuvditeliselt, et sellist reaalarvu o > 0 ei leidu. Siis iga n € N korral leiduvad
t,, ty € [, B] mid, et [t — ] >, kuid

nstn
/ n 1 . / n 1

(POHJENDADA!) . Bolzano—Weierstrassi teoreemi pohjal leiduvad jadadel (#],):-_; ja (¢/)*_; koon-

duvad osajadad (t], )7, ja (t] )~

n=1

(POHJENDADA, MIKS ME SAAME NENDE KOONDUVATE OSA-
JADADE ELEMENDID VALIDA UHTEDE JA SAMADE INDEKSITEGA!) . Olgu t',t” € [«, 5] nende osa-
jadade piirviértused, s.t. ¢} — t' jaty — t”; siis t' & t” (POHJENDADA!) | kuid z(t') =

z(t") ja y(t') = y(¢t") (POHIENDADA!) , mis on vastuolus kaare ((1.7) lihtsusega (POHJENDADA!) .

Jadb toestada, et kaare ((1.7)) jaoks jadb koolmurdjoonte pikkuste piirvddrtuse moiste samaks,

kui definitsiooni implikatsioonis ((1.6) asendada tingimus (1.9) tingimusega (1.11) (siin me
eeldame endiselt, et vaadeldav kaar on lihtne). Selleks mirgime, et kui 16ik [, 8] on jaotatud
osaloikudeks punktidega (1.8), siis iga j € {1,...,n} korral

max{|A:rj|,|ij|}< |Az;|2 4+ |Ay;|?2 = d(A;-1,4;) < \fmax{|Aa:]| |Ay]|}
ning seega
1

7 max d(Aj—1,4Aj) < max{|Azq],|Ayi], ..., [Az,|, [Ay,|} < max d(Aj_l,Aj).

Toestatav viide jareldub eelnevast vorratusteahelast (POHIJENDADA!) .

Teoreem 1.3. Tasandiline kaar on sirgestuv parajasti siis, kui tema koolmurdjoonte
pikkustel on olemas puirvddrtus;, seejuures selle kaare pikkus on vordne tema kool-
murdjoonte pikkuste piirvddrtusega.

TOEsTUS. Olgu tasandiline kaar ® esitatud parameetriliste vorranditega

x=uz(t), y=uy(t), t € |, B]. (1.13)

Piisavus. Eksisteerigu kaare ® koolmurdjoonte pikkustel piirvaartus I. Veendu-
maks, et see kaar on sirgestuv, kusjuures tema pikkus s¢ < I, piisab néidata, et selle
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kaare mis tahes koolmurdjoone [ ja mis tahes reaalarvu ¢ > 0 korral koolmurdjoone [
pikkus s; rahuldab tingimust
s <1 +e.

Olgu € > 0. Koolmurdjoonte pikkuste piirviartuse definitsiooni pohjal leidub
reaalarv § > 0 nii, et kehtib implikatsioon (L.6). Olgu ! kaare ® kdoolmurdjoon.
Koolmurdjoone [ punktidele 1opliku arvu uute punktide juurdelisamise teel on voi-
malik saada kaare ® koolmurdjoon I’, mis vastab 16igu [«, (] teatavale jaotusviisile,
mille osaldikude suurim pikkus on viiiksem kui d; seega |sp — I| < . Lause [L.1], (a),
pohjal niitid s; < sy < I + ¢, nagu soovitud.

Tarvilikkus. Eeldame, et kaar ® on sirgestuv, ja fikseerime vabalt reaalarvu ¢ > 0.
Veendumaks, et kaare ® pikkus s¢ on selle kaare koolmurdjoonte pikkuste piirvair-
tus, piisab leida reaalarv § > 0 nii, et (kaare ® mis tahes koolmurdjoone [ korral)
kehtib implikatsioon

max At; <9 = 5 >5p—¢
1<j<n

(pOHJENDADA!) . Selleks valime kaare ® koolmurdjoone [y, mille pikkus s;, rahuldab

tingimust
€
Sl = So — 5
Olgu m murdjoone [ liilide arv. Teoreemi toestuseks piisab niilid toestada jargmine
véide:

(o) leidub reaalarv § > 0 nii, et kui kaare ® kodlmurdjoon I’ on saadud mingit
koolmurdjoont [ mairavatele kaare punktidele {ihe uue punkti juurdelisamise
teel, siis

€

max At; <9 = 5§ >s——.
1<j<n 2m

Toepoolest, rahuldagu reaalarv § > 0 viite (o) tingimust ning olgu [ kaare ® ko66l-

murdjoon, mida médravad 16igu [, 5] punktid rahuldavad tingimust Jnax At; < 0.
<j<n

Tahistame siimboliga [’ kaare ® koolmurdjoone, mis on saadud kdolmurdjoont [
NBI Maksimaal. MAdravatele punktidele neist erinevate koolmurdjoont [y madravate punktide juurde-
selt on vaja juurde

leada m — 1 punk. lisammise teel; siis véite (o) pohjal
ti.

€
Sy > Sy — 5
(poHIENDADA!) . Kuna koolmurdjoon I on tolgendatav kaare ® koolmurdjoonena, mis

on saadud koolmurdjoont [y méadravatele punktidele neist erinevate koolmurdjoont [
médravate punktide juurdelisamise teel, siis lause (a), pohjal sy = s;, ning seega

9 £ £
Sl>Sl/——>Slo——>Sq>———

° g
— =8 J—
2 2 9 9 * O

nagu soovitud.
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Jaab toestada vaide (o). Olgu kaare ® koolmurdjoon I saadud mingit koolmurd-
joont [ midravatele punktidele ithe uue punkti C' = (x(T), y(T)) juurdelisamise teel.
Asugu see uus punkt punktide Ay ja Ay vahel (ke {1,...,n}), s.t. tp_1 <7 < ts.
Koéolmurdjooned [ ja I’ koosnevad iihtedest ja samadest sirgloikudest ainsa erinevuse-
ga, et murdjoone I’ koosseisu kuuluvad sirgloigu Ay _; Ay asemel sirgloigud A, _1C' ja
C'Ag. Seega, téhistades nende sirgloikude pikkused vastavalt siimbolitega |Ay_1 Ayl
Ay 1C] ja |C A,

Sy — S = |Ak 1C| + |0Ak| — |Ak_1Ak| < |Ak_1C| + |CAk|

— \/\ —a(ts)[” + |y(r) — y(ten)| + \/\x(tk) —a(r)[* + ly(te) —y(7)[*
Q\fmax{‘:v — X tk 1) (7') - y(tk—l) ) (tk) - l’(T) ) (tk) - y(T)‘}

Funktsioonide = = x(t) ja y = y(t) pidevuse tottu 16igus [«, 5] on need funktsioonid
Cantori teoreemi pohjal iihtlaselt pidevad selles l()igus seega leidub 0 > 0 nii, et

o WO =) <

Niisiis, kui nax At; <0, siis |1 —t,_1| < d ja |ty — 7| < J ning seega
<]<n

ttela,pl t—t|<d = |x(t)—z()|<

€
44/2m’

€ €
Sp—5 <2V2— = —
: : 42m  2m

nagu soovitud. O]

1.5. (Tasandilise) kaare pikkuse arvutamine

Teeme méoned kiesoleva peatiiki 10puni kehtivad kokkulepped. Oeldes, et funktsi-
oonil ¢ eksisteerib loigus [a, B pidev tuletis, mbistame me selle all, et funktsioo-
nil ¢ eksisteerib vahemikus (a, §) pidev tuletis (s.t. pidev tuletisfunktsioon ¢'),
kusjuures tuletisfunktsioonil ¢’ eksisteerib punktis « 16plik parempoolne piir-
vidrtus ja punktis 4 16plik vasakpoolne piirvidrtus. (Sellisel juhul Geldakse ka,
et funktsioon ¢ on pidevalt diferentseeruv loigus |, f] .) Margime, et siit jirel-
dub funktsioonil ¢ punktides « ja [ vastavalt lopliku parempoolse ja lopliku
vasakpoolse tuletise olemasolu, kusjuures

¢y () = lim ¢'(t) ja ¢L(8) = lim ¢(t).

t—a+ t—p—

Oeldes, et funktsioonil ¢ eksisteerib loigus [o, B] pidev tuletis, vilja arvatud,
voib-olla, loplikus arvus punktides, milles tuletisfunktsioonil ¢’ eksisteerivad lop-
likud tihepoolsed puirvddrtused, moistame me selle all, et leiduvad arv n € N ja
punktid o = g < t; < --- <t, := [ nii, et igas vahemikus (¢;_1,%;) eksisteerib
funktsioonil ¢ pidev tuletis (s.t. pidev tuletisfunktsioon ¢'), kusjuures tuletis-
funktsioonil ¢’ eksisteerib punktis ¢;_; loplik parempoolne piirvddrtus ja punk-
tis t; 1oplik vasakpoolne piirvidrtus. (Sellisel juhul 6eldakse ka, et funktsioon ¢
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on tikiti pidevalt diferentseeruv loigus [a, 5] .) Mirgime, et siit jareldub funkt-
sioonil ¢ loplike iihepoolsete tuletiste olemasolu punktides tq,%q,...,t,, — eran-
diks on muidugi punktid ¢y = « ja t, = 3, milles funktsiooonil ¢ eksisteerivad
vastavalt loplik parempoolne ja loplik vasakpoolne tuletis.

Teoreem 1.4. Esitugu (tasandiline) kaar L parameetriliste vorranditega

T = :E(t), Y= y(t>7 te [Oz,ﬁ], (1'14)

kus funktsioonidel (1.14]) eksisteerib loigus [a, B] pidev tuletis. Siis kaar L on sirges-
tuv, kusjuures tema pikkus s;, avaldub valemiga

sL::Jﬁ«/xKﬂ24—y%ﬂ2dt (1.15)

TOEsTUS. Tahistame 5
sz«hﬁ?+y®wt (1.16)

(see integraal eksisteerib funktsiooni t — 4/2/(t)? 4+ y'(t)? pidevuse tottu) ja fiksee-
rime vabalt reaalarvu € > 0. Teoreemi toestuseks piisab leida reaalarv ¢ > 0 nii,
et mis tahes punktide o =: 9 < t; < --- < t, :=  (n € N) korral, tdhistades
Atj:=t;—t;_1,j=1,...,n,ja

0= Z \/‘x(t]) — x(tjfl)ﬁ + |y(t;) — y(tjfl)F

(s.t. £ on kaare L sellise koolmurdjoone pikkus, mis vastab punktidega to, 1, ..., t,
méadratud 16igu [a, 8] jaotusviisile), kehtib implikatsioon

max At; <0 — [(—1I|<e. (1.17)

1<j<n

Olgua =1 tyg <ty <--- <t, = f(neN).Igaje{l,. .. n}korral, arves-
tades, et funktsioonid z = z(t) ja y = y(t) rahuldavad 16igus [t;_i,t;] Lagrange’i
keskvédrtusteoreemi eeldusi, leiduvad punktid &;,n; € (¢j_1,%;) nii, et

x(t;) —x(t—1) = 2'(&§) Aty ja y(t;) —y(ti—1) = y'(n;) Aty,

jarelikult

VIe(t) = ot 0 + |u(t) — u(t; 0" = /(€2 (ALY + () (A2
= \J7(€)2 + v ()2 At

niisiis
n

= \/x'(ij)g +y' (1) Al

j=1
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Téahistame
n
Z\/ )2+ y'(§5)* Aty
7=1
siis
=1 <|l—o|l+|o—1I.
Arvestades, et o on punktidega to, t1, .. ., t, madratud 16igu [«, (] jaotusviisile vastav

integraalsumma funktsiooni t — +/2/(t)? + y/(t)? jaoks, saame leida reaalarvu §; > 0
nii, et
£
max At; <0 — |o—1I| <.
1<j<n 2

Edasi,

n

|€—U|<Z

\/x'(gj)2 +y' ()% — \/ﬁ’(fj)z + /()3

Arvestades, et kahe muutuja funktsioon

®: [a, 8] x [, 8] — /7 (€) n)?

on pidev kinnises tokestatud hulgas [, 8] x [, 8] € R?, on see funktsioon Cantori
teoreemi pohjal ka iihtlaselt pidev selles hulgas, jarelikult leidub d > 0 nii, et

At;. (1.18)

(&), (€,1') € [o, B] % [a, B, d((&,m), (€1) = /1€ = ER + | —nf? < 6
‘Vfﬂ’(& 2+y’ ()2 — T2+ y ()] < 5o

2(8 — )
Seega, kui max At; < 09, siis (arvestades, et sel juhul iga j € {1,...,n} korral
ji<n
d((&,m5), (§:&)) = Inj — & < At < 6)
< £ 5 $ £
|0 — ol <Z—Atj :—ZAtj _ =
j=1 2(6 - Oé) Q(B - Oé) j=1 2
Niisiis, kui [max At; < min{dy, do} =: 9, siis
] n
e €
< |- <S4 iog
-1 <|{l—0o|+]o |<2—i—2 5
s.t. implikatsioon (1.17) kehtib, nagu soovitud. O

Mairkus 1.4. Teoreemi saab toestada ka ilma Cantori teoreemi kasutamata. Toepoolest, Can-
tori teoreemi kasutasime me vaid tingimust

5
1Iilja<XnAt <0y = |€—0‘|<§ (1.19)
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rahuldava reaalarvu do > 0 leidmisel. Samas absoluutvédrtust |¢ — o] voib iilalt hinnata ka jargmi-
selt: vorratuse (|1.18) pohjal

0= o] < Z VEEN + 0 )? = \J2/(6)2 + /(&) At
1 n
¢ 2 15(05) = ()| 8t < (D) = (1)
(siin vorratus (1) on pohjendatud allpool), kus T' on punktidega to, t1, ..., t, midratud 16igu [«, 5]

jaotusviis ning S(T') ja s(T") on sellele jaotusviisile vastavad tuletisfunktsiooni y’ Darboux’ {ilem-
ja alamsumma. Tuletisfunktsiooni 3’ pidevuse tottu on see tuletisfunktsioon ka integreeruv, seega
leidub reaalarv do > 0 nii, et

max At; <dy = [{—0|<S(T)—s(T)<

1<j<n

s.t. kehtib implikatsioon ((1.19).
Vorratuse (1) toestuseks mirgime, et mis tahes a, 3,7 € R, 82 + 2 # 0, korral

‘\/a2+62—\/a2+v2‘=‘(\/Oﬂ+52_\/O‘2+72)(\/O‘2+52+\/0¢2+72)‘
Va2 + 2+ /a? + 42
I G R G | I
Va2 + 82 +4/a?+92 (a2 + B2 +/a? ++2

9

N ™

VB2 + /72 18] + | B+l
<|B—1l;
vorratus (1) jareldub saadud vorratusest, kui votta iga j € {1,...,n} korral a = 2'(&;), 8 = /(n;)

jay =y'(&)-

Mairkus 1.5. Teoreem jadb kehtima, kui seal asendada eeldus funktsioonidel (1.14) pideva
tuletise olemasolust 16igus [«, 5] norgema eeldustega, et funktsioonidel (1.14]) eksisteerib 16igus
[a, 5] pidev tuletis, vilja arvatud, voib-olla, 16plikus arvus punktides, milles tuletisfunktsioonidel
z’ ja 1y’ eksisteerivad 16plikud iihepoolsed piirvairtused. See jareldub lausest (POHJENDADA!) .

Miirkus 1.6. Teoreem [1.4] j#sib kehtima, kui seal asendada eeldus funktsioonidel pideva
tuletise olemasolust 16igus [a, §] (nérgema) eeldusega nendel funktsioonidel integreeruva tuletise
olemasolust selles 16igus (see eeldus on norgem ka mérkuses késitletud teoreemi eelduse
norgendusest).

Téepoolest, tuletisfunktsioonide 2’ ja 3y’ pidevust kasutasime me teoreemi tf)estuses vaid

(A) integraali (1 olemasolu pohjendades;

(B) tingimust ((1.19) rahuldava reaalarvu o > 0 leidmisel (seda nii vahetult teoreemi sonastusele
jérgnevas toestuses Cantori teoreemi rakendades kui ka méirkuses[I.4] toodud tdestusskeemis
tuletisfunktsiooni y’ integreeruvuse tagamiseks).

Eeldame niiiid, et funktsioonidel eksisteerib 16igus [, ] integreeruv tuletis. Ka niisugusel
juhul integraal eksisteerib. Toepoolest, kuna integreeruvate funktsioonide korrutis on integ-
reeruv, siis funktsioonid ¢ + 2'(t) 2'(t) = 2'(t)? ja t — o/(t) y'(t) = y'(t)? on integreeruvad 16igus
[, B]; kuna integreeruvate funktsioonide summa on integreeruv, siis funktsioon t — z/(¢)? + ¢/ (t)?
on integreeruv 16igus [a, £]; kuna integreeruva mittenegatiivse funktsiooni ruutjuur on integree-
ruv, siis integraal (1.16) eksisteerib. Samuti ldheb peaaegu sona-sonalt 1&bi mirkuses toodud
argument tingimus@ rahuldava reaalarvu do > 0 leidmisel (sest tuletisfunktsiooni 3’ pidevust
kasutati seal vaid tema integreeruvuse tagamiseks).




§ 1. JOONE KAARE PIKKUS 243

Jargnev jareldus teoreemist [I.4) annab valemid kaare pikkuse arvutamiseks juhul,
kui see kaar on antud vorrandiga y = y(z), © = x(y) voi polaarkoordinaatides.

Jareldus 1.5. (a) Olgu kaar L esitatud vorrandiga

y=vy(x), z€]la,b], (1.20)

kus funktsioonal eksisteerib loigus [a, b] pidev tuletis, vilja arvatud, voib-
olla, loplikus arvus punktides, milles tuletisfunktsioonil iy eksisteerivad loplikud
thepoolsed piirvidrtused. Siis kaar L on sirgestuv, kusjuures tema pikkus sy,
avaldub valemiga

b
sp = J 1+ vy (x)?de.
Olgu kaar L esitatud vorrandiga

x=2xz(y), yeled], (1.21)

kus funktsioonil eksisteerib loigus [c, d] pidev tuletis, vilja arvatud, voib-
olla, loplikus arvus punktides, milles tuletisfunktsioonil x' eksisteerivad loplikud
tihepoolsed piirvadrtused. Siis kaar L on sirgestuv, kusjuures tema pikkus sy,
avaldub valemiga

d
sy = J AV (y)? + 1dy.
Olgu kaar L esitatud polaarkoordinaatides vorrandiga

r=r(¢), ¢¢€laf] (1.22)

kus funktsioonil eksisteerib loigus [a, B] pidev tuletis, vilja arvatud,
voib-olla, loplikus arvus punktides, milles tuletisfunktsioonil r' eksisteerivad
loplikud thepoolsed pirrvddrtused. Siis kaar L on sirgestuv, kusjuures tema
pikkus sy, avaldub valemiga

B
s = f IO+ r(0) do. (1.23)

TOEsTUS. (a). Uldisust kitsendamata véime eeldada, et funktsioonil (1.20) eksistee-
rib pidev tuletis kogu 16igus [a,b] (PoHIENDADA!) . Vorrandiga (1.20)) esitatud kaar
L esitub parameetriliste vorranditega (vottes sisuliselt parameetri ¢ rolli muutuja z)

r=t, y=uy(t), t e la,bl].

Tuletisfunktsioonid

=) =1 ja ¢y =yt

rahuldavad teoreemi [1.4] eeldusi, seega valemi (1.15)) pohjal

o= [ViTy@ra = [ Vit yera

nagu soovitud.
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(b). Viite toestus on analoogiline viite (a) toestusega, aga siin tuleb kaare L
esitamisel parameetriliste vorranditega votta parameetri ¢ rolli (sisuliselt) muutuja y.

(c). Uldisust kitsendamata véime eeldada, et funktsioonil (1.22)) eksisteerib pidev
tuletis kogu 16igus [a, 5] (ponsENDADA!) . Vorrandiga ([1.22)) esitatud kaar L esitub
parameetriliste vorranditega (vottes parameetriks muutuja ¢)

r=7(¢) cosd, y=r(@)sing, e a,fl.

Tuletisfunktsioonid

' = (r(¢) cos ¢), = r'(§) cos ¢ —r(¢) sing,
y = (r(gzﬁ) sin gb); = 7'(¢) sing + r(¢) cos o

rahuldavad teoreemi [1.4] eeldusi, seega valemist ([1.15)) saame valemi ([1.23), sest

2(9) + o (¢9)? = (r'(qb) cos ¢ — r(¢) sin ¢)2 + (r'(qb) sin ¢ + r(¢) cos ¢)2
=1'(¢)? cos®> ¢ — 21" (¢) 7(¢) sin ¢ cos ¢ + 7(¢)? sin® ¢
+7'(¢)? sin® ¢ + 2" (¢) r(¢) sin ¢ cos ¢ + r(¢)? cos® ¢
= 1'(¢)?*(cos? ¢ + sin? @) + r(¢)*(sin? ¢ + cos? ¢)
= (0" + r(o)

1.6. Tiikiti siledad (tasandilised) kaared

Selles jaotises toome sisse iihe praktikas sagedasti esinevate sirgestuvate kaarte —
tiikiti siledate kaarte — klassi.

Definitsioon 1.5. Me iitleme, et tasandiline kaar on sile, kui teda esitavates para-
meetrilistes vorrandites

x=uz(t), y=uy(t), te o, B, (1.24)
funktsioonidel ([1.24)) eksisteerib 16igus [, 5] pidev tuletis, kusjuures
o'(1)* + o' (t)* £ 0 igate [, ] korral,

s.t. mitte iihegi t € |, 8] korral pole tuletised z'(t) ja y'(t) korraga nullid (siin tuletis-
te 2/(a) ja /() ning 2'(B) ja v'(5) all moistame vastavalt vastavaid parempoolseid
ning vasakpoolseid tuletisi).

Me iitleme, et tasandiline kaar on tikit: sile, kui ta on oma jarjestikuste
punktidega jaotatav loplikuks arvuks siledateks osakaarteks, s.t. leiduvad punktid
a =ty <t < -+ < t, = [ nii et iga j € {1,...,n} korral parameetriliste
vorranditega

v=u(t), y=y), telt_1 bl

esitatud osakaar on sile.
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1.7. Tokestatud variatsiooniga funktsioonid. Tarvilik ja piisav
tingimus kaare sirgestuvuseks

BLA-BLA-BLA. ..

1.8. Sirgestuva tasandilise kaare jilg on nullmooduga hulk
Selles jaotises toestame tema pealkirjas sonastatud tulemuse.
Teoreem 1.6. Sirgestuva tasandilise kaare jilg on nullmooduga hulk.

TOEsTUS. Olgu tasandiline kaar AB antud parameetriliste vorranditega

T = x(t)7 Yy = y(t)v te [Oé, 6] (125)
(siin funktsioonid (L.25) on pidevad ldigus [o, 8] ning A = (z(a),y(a)) ja B =

(z(B),y(B))). Teoreemi tdestuseks piisab niidata, et selle kaare jilje L := {(z(t),y(t)): t €
[, } Jordani vilismoot p*(L) = 0. Selleks omakorda, fikseerides vabalt reaalarvu
e > 0, piisab néidata, et

(o) leiduvad arv n € N ja punktid a = t; < t5 < ---t, < [ nii, et, tdhistades iga
i€ {l,...,n} korral

b= (z,y;) := (z(t:),y(t;)) ja Di:=[r; —e,z;+¢] x [yi — &,y + €]
(s.t. D; on ruut keskpunktiga P; ja kiiljepikkusega 2¢), kehtivad tingimused
(1) kuin > 2, siis iga i e {1,...,n — 1} korral
max{|z; 1 — 2, [y —vil} = € (1.26)
(s.t. ruudu D;; keskpunkt P,; paikneb ruudu D; rajajoonel) ja
{(z(),y(1)): te [ti,tin]} = D (1.27)

(s.t. kaare AB osakaar P, P, (v0i, tipsemalt, selle osakaare jilg) sisaldub
ruudus D;);

2) {(z(®),y(t)): t, <t < B} < D, (s.t. kaare AB osakaar P,B (voi, tipse-
malt, selle osakaare jilg) sisaldub ruudus D,,)

(vt. [joonist 22).
Toepoolest, kehtigu viide (o). Siis L < | J;, D;, seega arvestades, et
e ristkiiliksumma | Ji_, D; pindala ei iileta arvu n(2¢)?,
e kuin > 2, siisigaie {1,...,n — 1} korral 16igu P, P;;; pikkus o; > ¢,

e kui n > 2, siis koolmurdjoone PP, ... P, pikkus Z;:ll o; ei lileta kaare AB
pikkust s,

NB!

Joonis?
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saame
n—1
p*(L) < n(2e)? =4 + 4de(n — 1)e < 4 + 4e Z oy = 4 + des
i=1
(kui n = 1, siis loeme siin Z;:ll o; = 0), millest arvu e suvalisuse tottu jareldub, et
p*(L) = 0, nagu soovitud.
Toestame viite (o). Defineerime punktid o = ¢; < to < --- jargmise eeskirja jir-
gi. Koigepealt defineerime ¢; = o ning edasi, kui mingi k € N korral on defineeritud
punktid tq, ..., tg, kuid punkt 5, on veel defineerimata, siis toimime jargmiselt:

|[A] kui n = k jaoks kehtib (2), siis defineerimegi n = k ja 1opetame protsessi;

[B] kui n = k jaoks tingimus (2) ei kehti, siis defineerime
trsr o= inf{t € [tr, B]: max{|z(t) — zl, [y(t) — yil} = 5} (1.28)

(mérgime, et hulk, millest siin infiimum voetakse, on mittetiihi (POHJENDADA!)
ning seega see infiimum eksisteerib; seejuures see infiimum on rangelt vaiksem
arvust 3 (POHIJENDADA!) ).

Toepoolest, funktsioon F: [ty, 8] 3 t — max{|z(t) — zk|,|y(t) — yx|} € R on pidev 15igus
[tk, 5], kusjuures F(t;) = 0 ja leidub t” € [tg, 5] nii, et F(t") > ¢ (vastasel korral kehtiks
tingimus (2), kus n = k), seega Bolzano—Cauchy teoreemi ?? pohjal leidub ¢’ € (¢, t") nii,
et F(t') = e, s.t. t' on selle hulga element, iile mille valemis infiimum voetakse. Kuna
t' < t” < f, siis see infiimum on rangelt vaiksem kui §; niisiis ¢, < S.

Paneme téhele, et juhus |B| defineeritud punkt ¢;,; rahuldab tingimusi (1.26) ja

(1.27), kus i = k (POHJENDADA!) .

Toepoolest, kuna ti41 = inf{t € [ty,5]: F(t) = €}, siis funktsiooni F' pidevuse tottu ka
F(tr41) = €, s.t. kehtib (1.26)), kus ¢ = k. Tingimuse (kus i = k) kehtivuseks piisab
veenduda, et F(t) < eigat € [tk, tx+1] korral. Oletame vastuvéiteliselt, et leidub te [th, thi1]
nii, et F(f) > e. Kuna F(t;) = 0, siis Bolzano-Cauchy teoreemi ?? pohjal leidub 7 € (t,1)
nii, et F(f) = ¢. Arvestades, et { < t< ti+1, on see vastuolus punkti ¢;; valikuga.

Seega jaab teoreemi toestuseks veenduda, et kirjeldatud protsess tq, to, . .. leidmiseks
“peatub” 1opliku arvu sammude jirel, s.t. mingi k& € N jaoks kehtib (2). Selleks
mérgime, et kuna 16igus [a, 8] pidevad funktsioonid x = z(t) ja y = y(t) on iihtlaselt
pidevad selles loigus, siis leidub reaalarv ¢ > 0 nii, et

tt'efa, B, t—t]<d = max{|z(t) —z()],|y@t) —y{)|} <e.

Siit jareldub, et iga v = 1,2,... korral ¢;,; = t; + 0. Seega, kui valida » € N nii, et
o+ 20 > 3, voime Oelda, et kirjeldatud protsess peatub hiljemalt siis, kui on leitud
t1,...,t,, (POHJENDADA!) . O



§ 2. Esimest liiki tasandiline joonintegraal

2.1. Esimest liiki (tasandilise) joonintegraali moiste

Olgu @: [a, 8] — R? sirgestuv (tasandiline) kaar. Tihistame A := ®(«) ja B :=
®(F), s.t. A ja B on vastavalt selle kaare algus- ja 16pp-punkt; kaarele ® viitame
edasises kui kaarele AB. Olgu kaarel AB (voi, tipsemalt, selle kaare jaljel) madratud
kahe muutuja funktsioon z = f(P) = f(x,y).

Jaotame 16igu [« B] osaldikudeks punktidega

a=tg<ty<---<t,: =0 (neN) (2.1)

ja tahistame A; = ®(¢;), j =0,1,...,n. Iga j € {1,...,n} korral tdhistame At; :=
t; —tj_1, osakaare A; ;A; pikkuse tdhistame slimboliga s; ning fikseerime sellel
osakaarel mingi punkti Bj, s.t.

Bj = (I)(Tj), kus T; € [tj—latj] (22)

(vt. joonist kus n = T7).
v A By

Ay=A

JOONIS 2.1. Joonisel on kujutatud kaart AB (voi, tdpsemalt, selle kaare jilge)
koos selle kaare osakaartel A;_1A; fikseeritud punktidega Bj, j = 1,...,n.

Moodustame integraalsumma

f(B;) sj. (2.3)

1

J

n

247
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Definitsioon 2.1. Kui integraalsummadel (2.3) eksisteerib piirvddrtus I € R, s.t.
iga reaalarvu ¢ > 0 korral leidub reaalarv 6 > 0 nii, et (l6igu [a, S] mis tahes
jaotusviisi korral punktidega (2.1) ning mis tahes vastavate osakaarte punktide ({2.2))
korral)

max At; <§ =
1<j<n

D f(B;)s; - 1‘ <e, (2.4)

siis seda piirvidrtust nimetatakse esimest liiki (tasandiliseks) joonintegraaliks funkt-
stoonist f ile kaare AB ja tidhistatakse stimboliga

JAB f(z,y)ds := limi f(Bj)s; = 1. (2.5)

Mairkus 2.1. Olgu (tasandiline) kaar antud parameetriliste vorranditega

r=a(t), y=y(t), tela,p]. (2.6)

Loigu [a, 5] jaotusviisi korral punktidega o =: tg < t; < --- < t, := B (n € N) tdhistame
xj = z(t;), y; = y(t;), 4; := (z5,95), 7 = 0,1,...,n, ning iga j € {1,...,n} korral tdhistame
Atj = tj — tjfl, A.’L‘j = .Z’j — .I‘jfl, ij = yj — yjfl.

Analoogiliselt miirkusestf)estatuga saab niidata, et kui kaar (2.6) on lihine, siis tema jaoks
jaab integraalsummade (2.3)) piirvaartuse maoiste samaks, kui deﬁnitsiooni implikatsioonis (2.4)
asendada tingimus

max At; <9

1<j<n

tingimusega
max{|Ax1|, [Ay1], ..., |Az,], |Ay"|} <é

<
V01 tingimusega
max d(Ajfl,Aj) < 6.

1<j<n

Maérkus 2.2. Saab niidata, et kui tasandiline kaar ® on lihine ning sellel kaarel (voi tapsemalt,
tema jdljel) on mddratud (R-vddrtuseline) funktsioon f, siis mis tahes lihtsa tasandilise kaare W
korral, mille jilg on vordne kaare ® jdiljega, eksisteerib esimest litki joonintegraal funktsioonist f
tile kaare U parajasti siis, kui eksisteerib vastav integraal tile kaare ®, kusjuures nende integraalide
eksisteerimise juhul on nad vordsed.

Jargneva jaotise lausest (h), jireldub, et eelnev viide jadb kehtima, kui seal vaadelda
lihtsate kaarte asemel kaari, millel on iilimalt 1oplik arv kordseid punkte.

Sellega on digustatud jargnev iilesannetekogudes sagedasti esinev {ilesandepiistitus: etteantud
(tasandilise) punktihulga — millele selles tilesandes viidatakse kui kaarele — ning sellel punktihulgal
médratud (R-vadrtuselise) funktsiooni korral leida esimest liiki joonintegraal sellest funktsioonist
iile selle punktihulga — kaare. Selles iilesandes peetakse “kaare” all silmas mingit kaart, millel on
ilimalt 16plik arv kordseid punkte ning mille jilg see punktihulk on; eelneva pohjal on esimest
liiki joonintegraalid vaadeldavast funktsioonist iile koigi niisuguste (iilimalt 16pliku arvu kordsete
punktidega) kaarte vordsed ning seega ei soltu selle integraali vidrtus sellise (iilimalt 16pliku arvu
kordsete punktidega) kaare valikust.
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2.2. Integraalsummade piirvaartus integraalsummade jadade
piirvaartuste kaudu

Jargnev lause kirjeldab integraalsummade piirvidrtuse (ehk siis, teisisonu, esimest

liiki joonintegraali) moistet. Selleks lepime kokku jéirgnevas terminoloogias: koikjal

selle paragrahvi ulateses, koneldes (funktsiooni f) integraalsummade jadast (kaa-

rel AB), mdistame me selle all mingit niisugust arvjada (o,,)%_,, kus

(1) iga m € N korral o, on funktsiooni f integraalsumma tiiiipi (2.3)), s.t.

Nm

O = Y, F(B) $mj. (2.7)

j=1
kus n,, € N ning 16igu [«, 5] mingi jaotusviisi

a=ty <t <---<ty =p (2.8)
korral, defineerides

AT = (™), G =0,1,... 0,

iga j € {1,...,n,,} korral siimbol s tihistab (kaare AB) osakaare AT ;AT
pikkust ja punkt B asub sellel osakaarel, s.t.
B = ®(7;") mingi 7;" € [t]",,]"] korral; (2.9)

(2) integraalsummadele ([2.7) vastavate 16igu [, §] jaotusviiside (2.8)) pikima osa-
loigu pikkus ldheneb nullile protsessis m — oo, s.t.

max At]" —— 0, (2.10)

1<i<nm J m—>a0
kus At := 17" — 17" .
Lause 2.1. Olgu I € R. Jargmised vaited on samavddrsed:

(i) funktsiooni f integraalsummade (2.3) piirvidrtus on arv I;

(ii) funktsiooni f mis tahes integraalsummade jada (kaarel AB) koondub arvuks I.

TOEsTUS. (i)=(ii). Kehtigu (i), olgu (o, );_; funktsiooni f integraalsummade jada
(kaarel AB) ning olgu € > 0. Implikatsiooni toestuseks peame leidma naturaalarvu
N e N nii, et

meN,m=N = |o,—1I|<e. (2.11)

Eelduse (i) pohjal leidub reaalarv 6 > 0 nii, et (16igu [a, §] mis tahes jaotusviisi
korral punktidega (2.1) ning mis tahes vastavate osakaarte punktide (2.2) korral)
kehtib implikatsioon (2.4]). Niiiid, valides naturaalarvu N nii, et

meN m>=N — max At <9
1<j<n7n

(selline valik on voimalik koonduvuse (2.10) tottu), kehtib implikatsioon (2.11]), nagu
soovitud.



NB! Kui
kasutuses oleks
teoreem pidevate
funktsioonide
U—->R"™jaV - R
liitfunktsiooni
pidevusest,

U c R! ning
V < R™, siis po-
leks meil siin kaart
AB parameetriliste
vorranditega esi-
tavaid funktsioone
x ja y sisse tuua.

meie

kus

(Meile piisaks
siin  isegi juhust,
kus 1 = 1 ja
U = [a,] ¢ R

ning m = 2.)
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(ii)=(i). Kehtigu (ii). Oletame vastuviiteliselt, et arv I ei ole funktsiooni f
integraalsummade ([2.3|) piirvddrtus. Siis leidub reaalarv ¢ > 0 nii, et iga m € N
korral leiduvad 16igu [, 8] jaotusviis (2.8) ning punktid (2.9), j = 1,..., n,,, nii, et

1
max At < —,

kuid |0, — I| = ¢, kus integraalsumma o, on defineeritud vordusega ({2.7). Niiiid
(0)%_, on funktsiooni f integraalsummade jada (kaarel AB), mis ei koondu ar-
vuks I, vastuolu. O

Jaotise lopetuseks toestame, et esimest liiki joonintegraal pidevast funktsioonist
tle sirgestuva kaare eksisteerib alatu.

Teoreem 2.2. Olgu AB sirgestuv (tasandiline) kaar ning olgu funktsioon f pidev
sellel kaarel (voi, tapsemalt, selle kaare jaljel). Siis eksisteerib esimest liiki joon-

integraal § , 5 f(x,y) ds.

TOESTUS. Olgu @: [, 5] — R? kaart AB defineeriv funktsioon (siin loomulikult
A = ®(a) ja B = ®(f)). Teoreemi toestuseks piisab leida arv I € R, mille puhul iga
reaalarvu € > 0 korral leidub reaalarv 6 > 0 nii, et, tuginedes paragrahvi alguses
sissetoodud téhistustele ja mérkides o := >7_, f(B;) s;, kehtib implikatsioon

max At; <d — |o—I|<e. (2.12)

1<j<n

Selleks paneme tdhele, et leidub koonduv funktsiooni f integraalsummade jada
(0,,)%_,  (POHJENDADA! — SELLEKS NAIDATA, ET FUNKTSIOONI f IGA INTEGRAALSUMMADE

JADA ON TOKESTATUD NING RAKENDADA BOLZANO-WEIERSTRASSI TEOREEMI . Tahlstame
I = lim,, .o 0., ja fikseerime vabalt reaalarvu ¢ > 0. Teoreemi toestuseks jadb
leida reaalarv § > 0 nii, et kehtib implikatsioon ([2.12]).

Esitugu kaar AB parameetriliste vorranditega = = z(t), y = y(t), t € |a, f], s.t.
®(t) = (x(t),y(t)) igat € [, 8] korral. Kuna funktsioon [a, 8] 5t — f(z(t),y(t)) =
f(q)(t)) € R on pidev (pomsENDADA!) , siis Cantori teoreemi pohjal on see funktsioon
tihtlaselt pidev 16igus [«, 5], seega leidub reaalarv § > 0 nii, et

5

7(8(0) — £ (2()] < =

kus s tdahistab kaare AB pikkust (siin me voime iildisust kitsendamata eeldada, et
s > 0). Teoreemi toestuseks jadb ndidata, et (tuginedes paragrahvi alguses sisse-
toodud tahistustele ja mirkides o := 77, f(B;) s;) kehtib implikatsioon (2.12)), s.t.
eeldades, et max;<j<, At; < 0, jidb néidata, et |0 — I| < e.

Kuna 0, —— 1, siis leidub indeks m € N nii, et |0, — I| < 5. Toetudes kées-
m—aoo

oleva jaotise alguses tingimustes (1) ja (2) sissetoodud téhistustele, esitub integraal-

summa o, kujul o, = > f(B}) Sk, kus iildisust kitsendamata voime eeldada,

et Maxj<k<n,, A’ < 0 POHIJENDADA, MIKS ME VOIME SIIN ULDISUST KITSENDAMATA EEL-

ttelo B, [t—t] <20 —

DADA, ET maxXj<k<n,, A7 < ! . Kuna

€
57
siis soovitud vorratuseks |0 — I| < ¢ jadb niidata, et |0 — 0| < 5.

lo—I| < |o—on|+ |om —1I| <|o—0m|+
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_ Olgu N €N ja reaalarvud to,t1, ... tn € [a, f] sellised, et a =ty <ty < --- <
ity = B ja {to,tl,...,t]\[} = {to,tb...,tn} U {tgn,tgn,,tnmm} Iga j S {O,L...,TL}
jaiga ke {0,1,...,n,} korral olgu i;,4;, € {0,1,..., N} sellised (iiheselt madratud)
indeksid, et ¢; = tNZ-]. jatl = tNZ-;C. Siisiga i € {1,..., N} korral leiduvad sellised tiheselt
médratud j € {1,....,n}jake {l,...,n,}, et

tj—l = tij—l <t; < tzJ = tj ja tzz_l = ti;_l <t; < tllk = t};n’

selliste j ja k korral defineerime C; := B; = ®(7;) ja D; := B;* = ®(7;"). Kuna
7y = < Dy =l = <t — tial + 6 = 6] <6+ 6 =24,

siis
m €
F(Ci) = F(D)] = |£(®(r3)) — F(@()] < 25"
Defineerime iga i € {0,1,..., N} korral A; := ®(%;) ning tahistame igai e {1,..., N}

korral siimboliga 5; (kaare AB) osakaare A, LA pikkuse. Niiiid

n n ij n 15 N
o= Y f(B)s;=>f(B;) > Z=> > f(C)F =D f(C)F
j=1 j=1 i=ij_141 j=li=i; 1+1 i=1
ja
Nom Nm ch Nom Z;C N
om = Y FBM s =Y F(BY) Y, =), >, f(D)3i=) (D)5
k=1 k=1 i=i) +1 k=1i=i} ,+1 i=1
ning seega
N N
o — o] = |2 (F(C) = F(D) 3| < D IF(Ch) = F(D2)] 5
i=1 =1
Noe e € €
< ; g i = % 121 S; = g S = 57
nagu soovitud. O]

2.3. Esimest liiki joonintegraali omadusi

Jargnev lause votab kokku esimest liiki joonintegraali olulisemad lihtsamat sorti
omadused.

Lause 2.3. Olgu AB sirgestuv kaar xy-tasandil ning olgu sellel kaarel (voi,
tapsemalt, selle kaare jiljel) mddratud kahe muutuja funktsioonid v = f(z,y) ja

v = g(x,y)
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Olgu funktsioon f konstantne kaarel AB, s.t. mingi ¢ € R korral f(x,y) = ¢
kaarel AB. Siis eksisteerib esimest litki joonintegraal SAB f(z,y)ds, kusjuures

f cds =csap (2.13)
AB

(simbol sap tihistab kaare AB pikkust).

Eksisteerigu esimest litki joonintegraal

flz,y)ds =: 1. (2.14)
AB

Siis funktsioon f on tokestatud kaarel AB (voi, tipsemalt, selle kaare jdljel).

FEksisteerigu esimest liiki joonintegraal (2.14) ning olgu a € R. Siis eksisteerib
ka esimest litki joonintegraal SAB af(x,y)ds, kusjuures

| erewis—a feyis
AB

AB

Eksisteerigu esimest litki joonintegraalid

flr,y)ds =1, ja f g(x,y)ds =: I. (2.15)
AB AB

Siis eksisteerivad ka esimest litki joonintegraalid § , . (f(z,y) + g(x,y)) ds, kus-
juures

LB (Fla.y) * g(e9))ds = | Fle.y)ds + j o(z,y) ds.

AB AB

FEksisteerigu esimest litki joonintegraalid (2.15) ning olgu a,b € R. Siis eksis-
teerib ka esimest liiki joonintegraal SAB (a f(z,y) + bg(x, y)) ds, kusjuures

f (af(x,y)—i—bg(:c,y)) ds =a flz,y)ds +b f(z,y)ds.
AB AB AB

FEksisteerigu esimest liiki joonintegraal (2.14)) ning olgu f(x,y) = 0 iga punkti
(x,y) korral kaarelt AB (voi, tapsemalt, selle kaare jaljelt). Siis

[z, y)ds = 0.
AB

FEksisteerigu esimest liiki joonintegraalid (2.15) ning olgu f(x,y) = g(z,y) iga
punkti (x,y) korral kaarelt AB (voi, tipsemalt, selle kaare jdljelt). Siis

flz,y)ds = f g(x,y) ds. (2.16)

AB AB
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(h) Olgu C kaare AB punkt, mis asub punktide A ja B wvahel. Siis esimest lii-
ki joonintegraal (2.14) eksisteerib parajasti siis, kui eksisteerivad esimest liiki
joonintegraalid

flz,y)ds = J; ja flz,y)ds =: Js. (2.17)
AC CB

Seejuures

fly)ds=| flz,y)ds+ | fla,y)ds. (2.18)
AB AC CB

(i) (Esimest liiki joonintegraali keskvddrtusteoreem.) Eksisteerigu esimest liiki

joonintegraal (2.14]). Siis

(i1) leidub reaalarv p nii, et
m = inf f(z,y) < p <sup f(z,y) = M, (2.19)

kus inf ja sup voetakse dle koigi punktide (x,y) kaarelt AB (véi, tdipse-
malt, selle kaare jdljelt), ja

f(z,y)ds = psas, (2.20)
AB

kus sap on kaare AB pikkus;

(i2) kui funktsioon f on pidev kaarel AB (véi, tapsemalt, selle kaare jiljel),
siis leidub punkt C kaarel AB (voi, tapsemalt, selle kaare jaljel) nii, et

f(z,y)ds = f(C) sap. (2.21)

AB

Mirkus 2.3. Viite (h) tdestus toetub lausele Selle lause kasutamine voimaldaks lihtsustada
ka véidete (b) ja (c) tOestusi.

LAUSE TOESTUS. Esitugu kaar AB parameetriliste vorranditega
c=alt), y=y(t), telndl

kus A = (z(a),y(@)) ja B = (x(B),y(8)). Loigu [a, 8] jaotusviisi korral punktidega
Ol=lt0<t1<---<tnl=5 (REN) (222)

tihistame A; = (2(t;),y(t;)), 5 = 0,1,...,n; iga j € {1,...,n} korral tihistame
At; :=t; —t;_1, osakaare A; 1A, pikkuse tdhistame siimboliga s; ning fikseerime
sellel osakaarel mingi punkti B, s.t. B; = (x(7;), (1)), kus 7; € [t;_1,¢;].

~—

(a). Konstantse funktsiooni f(x,y

Zf(Bj)SjZ

seega ka nende integraalsummade piirvidrtus on ¢ sap, s.t. kehtib (2.13).

= ¢ mis tahes integraalsumma

I agk

n
cs; = CZ 8j = cSag,
j=1

<
Il

(b). Viite toestus sarnaneb Riemanni mottes integreeruva funktsiooni tokesta-
tuse toestusega. Oletame vastuviiteliselt, et funktsioon f on tokestamata. Viite
toestuseks piisab niidata, et
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(o) 16igu [«, 8] mis tahes jaotusviisi korral punktidega (2.22)) ning mis tahes reaal-
arvu M = 0 korral leiduvad punktid (2.2)), nii et

> M.

Z f(B;)) s;

Tdepoolest, kehtigu véide (o). Sel juhul (vottes integraalsummade (2.3) piirvédrtuse definit-

sioonis € = 1) leidub ¢ > 0 nii, et kui nax At; < 6, siis mis tahes punktide B; korral vastavatelt
TIRN

osakaartelt A;_; A;

> f(By)s; - I‘ <1 ehk, teisisonu, I—1< > f(B))s; <I+1
j=1 j=1

ning seega

< max{|I —1],|I + 1]}

> F(By) s
j=1

Oleme saanud vastuolu viitega (o).

Jaab veel toestada viide (o). Olgu antud punktid (2.22) ja reaalarv M = 0.
Kuna funktsioon f on tokestamata kaarel AB, siis ta on tokestamata mingil osa-
kaarel A;,_1A;,. Valime iga j € {1,...,n}\{jo} korral vabalt punkti B; kaarel A; 1A,
ja tahistame

K= Zf(BJ) S;.
j—1
J*jo

Siis mis tahes punkti Bj, korral osakaarelt A;, 1 A;,

= |f(Bjo) Sjo + "€| = |f(Bj0)| Sjo — |'L€|

Z f(B)) s;

Jarelikult, kui valida punkt Bj, osakaarelt A _; A, nii, et

M + |&|
[F(Bjo)| > ———
Sjo
(niisugune valik on voimalik, sest funktsioon f on tokestamata osakaarel A; _1A4;,),
siis
M +
> Jsjo — k| = M.

Z f(B)) s;

Sjo
(c). Fikseerime vabalt € > 0. Viite toestuseks piisab leida reaalarv § > 0 nii, et

(16igu [, B] mis tahes jaotusviisi korral punktidega (2.22]) ning mis tahes vastavate
osakaarte punktide By, ..., B, korral)

n

Zaf(Bj) s; —al

j=1

n

D F(B))s; — 1‘ <e.

J=1

max At; <§ = = |a|

i<j<n Y
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Uldisust kitsendamata voime eeldada, et a # 0. Integraali (2.14) olemasolu t&ttu
leidub reaalarv ¢ > 0 nii, et

max At; <§ =
1<j<n

Niisiis, kui max At; <9, siis
1<j<n

€
<:|G|Taj = £.

Zaf(Bj)sj —al
j=1

(d). Fikseerime vabalt ¢ > 0. Viite toestuseks piisab leida reaalarv ¢ > 0 nii, et
(16igu [, 8] mis tahes jaotusviisi korral punktidega (2.22]) ning mis tahes vastavate
osakaarte punktide By, ..., B, korral)

D (F(By) £ 9(By)) s; — (I + 1)

J=1

< €.

max At; < =
1<j<sn

Selleks mérgime, et

n

€
1123831Atj <= Z;f(BJ) s;— I < 2
]:
ja
- €
gg?gz Atj < 62 - Zlg(Bj) Sj — I < 5
]:
Niisiis, kui max At; < min{d, 52} —: 5, siis
1<j<n
Z(f(BJ) ig(Bg)) Sj — (]1 i]g) < 5 + 5 —¢
j=1

(e). Viite (c) péhjal eksisteerivad joonintegraalid § , , a f(x,y) dsja§,, bg(z,y) ds,
seega vilite (d) pohjal eksisteerib ka joonintegraal §,,(a f(z,y) + bg(z,y)) ds, kus-
juures

Lg(af(ge’y) +holay))ds = f a f(z,y)ds +J bg(z,y) ds

AB AB
—a| faydsev| gly)ds
AB AB
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(f). Fikseerides vabalt reaalarvu ¢ > 0, piisab viite toestuseks naidata, et

[ > —¢ (2.23)

Integraali (2.14) olemasolu tottu leidub integraalsumma Y f(B;) s;, mis rahuldab

7j=1

n
tingimust | Y, f(B;) s; — I| < ¢; niisiis
j=1

I+e>> f(B)s;=0

j=1
(siin viimane vorratus kehtib, sest f(z,y) = 0 kaarel AB), millest jareldub ([2.23).

(g). Kuna f(z,y) = g(x,y) kaarel AB, siis f(x,y) — g(z,y) = 0 sellel kaarel,
seega vaidete (d) ja (f) pohjal

f(x,y)ds—f

ABg(x,y) ds = J (f(x,y) — g(x,y)) ds = 0,

AB AB

millest jareldub (2.16]).

(h). Olgu v € [a, §] selline, et C' = (x(y),y(7)). Siis kaared AC' ja CB esituvad
vastavalt parameetriliste vorranditega

r=uz(t), y=yt), telay] ja z=z0), y=y@), telv.p]

Tarvilikkus. Eksisteerigu esimest liiki joonintegraal (2.14)). Téestame ainult joon-
integraali §,., f(z,y)ds olemasolu (joonintegraali §, f(x,y)ds olemasolu toesta-
takse analoogiliselt). Selleks mérgime koigepealt, et viite (b) pohjal on funktsioon f
tokestatud kaarel AB, seega on funktsioon f tokestatud ka osakaarel AC, jareli-
kult funktsiooni f kéikvoimalike integraalsummade hulk (mis vastavad kaare AC
jaotusviisidele) on tokestatud (poHJENDADA!) , niisiis funktsiooni f mis tahes integ-
raalsummade jada kaarel AC on tokestatud (integraalsummade jada méistet on sel-
gitatud eespool jaotises . Kuna Bolzano—Weierstrassi teoreemi pohjal saab igast
tokestatud arvjadast vélja eraldada koonduva osajada, siis leidub koonduv funkt-
siooni f integraalsummade jada (v,,)%_, kaarel AC. Tahistame J := lim,, e Up,.

Olgu (py,)2_, suvaline funktsiooni f integraalsummade jada kaarel AC. Lause

pohjal piisab joonintegraali §,., f(z,y) ds olemasoluks niidata, et p,, —— J.
m—00

Selleks fikseerime vabalt funktsiooni f mingi integraalsummade jada (p},)%_, kaarel
CB. Kuna (pm, + 0,,)e_1 ja (Um + pl,)%_, on funktsiooni f integraalsummade jadad
kaarel AB (POHJENDADA!) , siis lause pohjal

Pm + Py —— 1 ja vy +p, —— I
m—0o0

m—00

ning jarelikult

pm = (Pm + Ph) — (U + p),) + 0 —— I =1+ J =J,

m—Q0

nagu soovitud.
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Piisavus. Eksisteerigu esimest liiki joonintegraalid (2.17)). Olgu (0,,)%_, suvaline
funktsiooni f integraalsummade jada kaarel AB, s.t. kehtivad lausele [2.1] eelnevad
tingimused (1) ja (2). Esimest liiki joonintegraali olemasoluks ja valemi
kehtivuseks piisab lause [2.1] pohjal nédidata, et oy, — J1 + Jo. Selleks mérgime

koigepealt, et viite (b) pohjal on funktsioon f tokestatud osakaartel AC' ja CB,
niisiis funktsioon f on tokestatud ka kaarel AB (pomJENDADA!) , s.t. leidub reaalarv
M = 0 nii, et

|f(z,y)| < M iga punkti (x,y) korral kaarelt AB.
Téahistame iga m € N korral
Jm =min{j € {1,... ,ny}: v < t;”}

(siis punkt C' asub kaarel A; _;A; ) ning, tdhistades kaarte A; _1C ja C'A;  pik-
kused vastavalt siimbolitega s{* ja 5{* (seejuures, kui C' = A;, , siis loeme 53" = 0),

P 1= if(B;”)sTJrf(C)SG” ja p;@:=f(0>§6”+4i F(B}") s

Siis (pm)eo_y ja (pl,)2_, on funktsiooni f integraalsummade jadad vastavalt kaartel
AC ja CB (rOHJENDADA!) , seega lause 2.1 pohjal p,, —— J; ja pl, —— J,. Kuna
m—00 m—0o0

N, Jm—1 N,
om = Y F(BM ST = > f(BY)st+ > f(B) s+ f(B)s)
j=1 j=1 j=jm+1

= P+, + F(BI) ST — f(C) s — f(C) 8y
= pm + Py + (F(B]L) = F(O)) ST

(sest sg' + 5p° = 870 ), siis jddb soovitud koonduvuseks o, —— J; + Jo néidata, et
m— 00

(f(BfL) = £(C)) s}, —— 0. (2.24)

Im oo

Kuna
[(F(B) = F(©O)sih | < (IF B+ F(O))s), < 2M 5],
siis piisab koonduvuseks (2.24) niidata, et st ——— 0. See jareldub lausest

m—0o0
(POHJENDADA!) .

(i1). Viite toestus sarnaneb Riemanni integraali keskvéidrtusteoreemi toestusega.
Viidete (a) ja (g) pohjal

msapg = mds < f(z,y)ds < M ds = M sup;
AB AB AB

seega, tihistades
e Sap flz,y)ds
. SAB 7

kehtivad (2.19) ja (2.20).
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(i2). Olgu p € R arv eelnevast véitest. Kui funktsioon f on pidev kaarel AB, siis
funktsioon

F(t) = f(z(t),y(), telap]
on pidev 16igus [, 8], kusjuures

inf F(t)= inf f(z(t),yt)) =m<p<M= su x(t),y(t)) = sup F(t),
te[a, ] () te[a,ﬁ]f( ()y( )) H te[o})ﬁ]f( ()y( )) te[o})ﬁ] ()

seega Bolzano—Cauchy teoreemi pohjal 16igus pideva funktsiooni vahepealsetest véir-
tustest leidub punkt v € [a, f] nii, et = F(v) ehk, tdhistades C' := (z(7),y(7)),

w=F(y) = f(z(v),y(n) = F(O),
niisiis kehtib . Il

2.4. Esimest liiki joonintegraali arvutamine

Teoreem 2.4. Olgu kahe muutuja funktsioon uw = f(P) = f(z,y) pidev (tasandili-
sel) kaarel L (voi, tapsemalt, selle kaare jiljel), mis esitub parameetriliste vorrandi-
tega

r=ux(t), y=uy), te o, B, (2.25)

kus funktsioonidel (2.25|) eksisteerib loigus [a, B] pidev tuletis. Siis eksisteerib esimest
liiki joonintegraal funktsioonist f ile kaare L, kusjuures

B
Lf(:);y) ds:f F (0 y(0) VT (0F + g ()2 dt. (2.26)

«

TOESTUS. Tahistame

B
I J F(e(t), () VO + ()2 dt. (2.27)

«

Fikseerides vabalt reaalarvu ¢ > 0, piisab valemi toestuseks leida reaalarv
d > 0 nii, et, jaotades 16igu [«, ] suvaliselt osaloikudeks punktidega o =: tg < t; <

- < t, := [ (n € N) ning fikseerides iga j € {1,...,n} korral suvaliselt punkti
7; € [tj-1,t;] ja tdhistades

2
Aty i=t;—tj, Bj=(2(r),y(m)), sj:= J V! (t)? +y/ (1) dt
tj—1

(mérgime, et s; on kaare L osakaare A;_;A; pikkus, kus A;_; = (z(t;j_1),y(t;—1))
ja Aj = (x(t;),y(t;))), kehtib implikatsioon

max At; <§ =
1<j<n
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Hindame:

anf(Bj)Sj—f‘z

S B | Ry

5[ stetev) IR
-2 ] s v R
X[ o) VR
<2 [ H).000) - S 0.0)|VEDT VT
-3 [ 17 - POl v 225)
kus

F(t) = f(z(),y(), tela,pl
Kuna funktsioon F' on pidev 16igus [a, #] (sest ta on pidevate funktsioonide liit-

funktsioon), siis Cantori teoreemi pohjal ta on selles 16igus iihtlaselt pidev, seega
leidub reaalarv § > 0 nii, et

Lt ela, Bl jt—t| <6 — |F(t)—F({)| <=,
SL
kus sy, on kaare L pikkus. Niisiis, kui max At; < 0, siis mis tahes j € {1,...,n} ja

1<j<n

t € [tj_1,t;] korral |7; — t| < & ning seega |F(1;) — F(t)| < i, jarelikult
SL

n

2

j=1

"orti ¢ e < ([t
f(B; s~—]‘< J — A2 ()2 +y(t)2dt = — J (62 +y/(t)2 dt
Bsy—1|< 3 | SV @R a= 23|
B
S 2! (t)? + ' (t)? dt = Zsp=e
ST, o ST

]

Mirkus 2.4. Teoreemi saab toestada ka ilma Cantori teoreemi kasutamata. Toepoolest, sum-
mat valemireas saab hinnata ka teisiti. Nimelt, kuna funktsioon t ~— 1/z'(t)2 + ¢/(t)? on
pidev 16igus [« 8], siis Weierstrassi esimese teoreemi pohjal on ta tokestatud selles 16igus, s.t.
leidub reaalarv M > 0 nii, et

()2 +y(t)2 <M igate |[a,Q] korral.
Seega, tdhistades

M;:= sup F(t), mj:= inf F(t), j=1,...,n

teftj—1,t;] teft;—1,t5]



260 VI. Joonintegraalid

(need supreemumid ja infiimumid eksisteerivad, sest 16igus [a, 8] pidev funktsioon F' on Weier-
strassi teoreemi pohjal tokestatud selles 16igus ning seega tokestatud ka igas osaldigus [t;_1,1;]),
kehtib

Zn:f(Bj)sj—I‘sifj (M; —my) M dt = Z th dt
j=1 t tj—1

j—1 i—

Kuna 16igus [«, 8] pidev funktsioon F on integreeruv selles 16igus, siis leidub reaalarv § > 0 nii, et

n

€
12¥E;zﬁt <4 54 (A{j-ﬂ%)[&@'< E].

j=1

Niisiis, kui max At; < 6, siis
1<j<n

Sj—-I‘<N[;} =

Miérkus 2.5. Teoreem [2.4] jiab kehtima, kui seal asendada eeldus funktsioonidel (2.25) pideva
tuletise olemasolust 16igus [, 3] norgema eeldusega, et funktsioonidel (2.25)) eksisteerib 16igus [, 5]
pidev tuletis, vélja arvatud, voib-olla, 1oplikus arvus punktides, milles tuletisfunktsioonidel ' ja v’

eksisteerivad 16plikud iihepoolsed piirviartused. See jareldub lausest (h) (POHJENDADA!) .

Mairkus 2.6. Teoreem jaab kehtima, kui seal asendada eeldus funktsioonidel pideva
tuletise olemasolust 16igus [«, 5] (nérgema) eeldusega nendel funktsioonidel integreeruva tuletise
olemasolust selles 16igus (see eeldus on nérgem ka mérkuses kasitletud teoreemi eelduse
norgendusest).

Téepoolest, mérkuse pohjal on kaar L ka sel eeldusel sirgestuv, kusjuures tema pikkus

on SL, S 4/x’ 24+ y/(t)%dt ja iga j € {1,...,n} korral on osakaare A; A; pikkus s; =
t] AT+ Y (8)?dt; samut1 eksisteerib 1ntegraal (2.27) (sest funktsioon z — /a'(t)? + y/(t)?

on mtegreeruv 101gus [a, B] ning antud 16igus integreeruvate funktsioonide korrutis on integreeruv
selles l()igus) Vahetult teoreemi (2.4 n sonastusele jirgnevas selle teoreemi toestuses tuletisfunkt-
sioonide z’ ja 1/ pldevust muuks ei kasutata. (Mérkuses n antud toestusskeemls kasutatakse
tuletisfunktsioonide #’ ja y’ pidevust lisaks veel funktsiooni ¢ — 4/2/(t)% + 3/ (¢)? tokestatuse poh-
jendamiseks 16igus [«, 8], aga ka see jareldub nende tuletlsfunktswomde 1ntegreeruvusest selles
16igus, sest mingis 16igus integreeruv funktsioon on tokestatud selles 16igus).

Jirgnev jireldus teoreemist annab valemid esimest liiki (tasandilise) joon-
integraali arvutamiseks juhul, kui kaar, iile mille integreeritakse, on antud vorrandiga
y = y(x), z = x(y) voi polaarkoordinaatides.

Jareldus 2.5. Olgu kahe muutuja funktsioon v = f(x,y) pidev tasandilisel kaarel L
(voi, tapsemalt, selle kaare jaljel).

(a) Olgu kaar L esitatud vorrandiga

y=y(x), ze€lab], (2.29)

kus funktsioonil (2.29)) eksisteerib loigus [a,b] pidev tuletis, vilja arvatud, voib-
olla, loplikus arvus punktides, milles tuletisfunktsioonil iy eksisteerivad loplikud
tihepoolsed piirvddartused. Siis

| reas = [ @) vie P

a
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(b) Olgu kaar L esitatud vorrandiga

r=2z(y), yeled|, (2.30)

kus funktsioonil (2.30) eksisteerib loigus |c, d] pidev tuletis, vilja arvatud, voib-
olla, loplikus arvus punktides, milles tuletisfunktsioonil x' eksisteerivad loplikud
tihepoolsed piirvddrtused. Siis

J;f(x,y)ds==~f £ (@), 9) V@) + Ldy.

c

Olgu kaar L esitatud polaarkoordinaatides vorrandiga

r= T(¢)v ¢ € [047 ﬂ]v (2'31)

kus funktsioonil (2.31) eksisteerib loigus o, f] pidev tuletis, vilja arvatud,
voib-olla, loplikus arvus punktides, milles tuletisfunktsioonil r' eksisteerivad
loplikud tihepoolsed piirvadrtused. Siis

B
Lﬂaw%=ffﬁ@%%@d@mwhﬁMW+M@M¢

«

TOESTUS. Jérelduse toestus on sarnane jirelduse toestusele (seejuures toetu-
takse teoreemi asemel teoreemile [2.4)). Seepérast jitame toestamise lugejale. [J

2.5.

Esimest liiki joonintegraali rakendusi

Teoreem 2.6. Olgu L sile kaar (véi, tapsemalt, sileda kaare jilg) xy-tasandil ning
olgu kahe muutuja funktsioon uw = f(x,y) pidev kaarel L. Siis silindrilise pinna

Y= {(x,y,Z): (r,y)e L, z € [va(x7y)]}

(vt. joonist[2.3) pindala on

Sy, = L f(z,y)ds.

TOESTUS. Seda teoreemi me kiesolevas kursuses el toesta. O



262 VI. Joonintegraalid

L

X

Joonis 2.2. Silindriline pind ¥ on joonisel viirutatud katkendliku joonega.



§ 3. Teist liiki tasandiline joonintegraal

3.1. Teist liiki joonintegraali moiste

Olgu (tasandiline) kaar antud parameetriliste vorranditega

T = J](t), Y= y(t)v te [a’ﬁ]' (31)

Téhistame A := (z(a),y(@)) ja B := ((8),y(B)), s.t. A ja B on vastavalt selle
kaare algus- ja lopp-punkt; sellele kaarele viitame edasises kui kaarele AB. Olgu
kaarel AB (voi, tdpsemalt, selle kaare jaljel) médratud kahe muutuja funktsioon

sz(P):f(l’,y)
Jaotame 16igu [«, (] osaloikudeks punktidega

a=tg<ty<---<t,: =0 (neN) (3.2)

ning tdhistame x; = z(t;), y; = y(t;), 4, = (z;,9), 5 = 0,1,...,n. Iga j €
{1,...,n} korral téhistame

Atj = tj — tjfl, A.I'j =TT ja ij =Y — Y
ning fikseerime osakaarel A; ;A; mingi punkti B;, s.t.

B; = (x(Tj),y(Tj)), kus 7; € [tj_1, ] (3.3)

(vt. joonist kus n = 7). Moodustame integraalsumma
2, [(B)) Az, (3.4)
j=1

Definitsioon 3.1. Kui integraalsummadel (3.4) eksisteerib piirviirtus I € R, s.t.
iga reaalarvu € > 0 korral leidub reaalarv § > 0 nii, et (16igu [, 5] mis tahes
jaotusviisi korral punktidega (3.2)) ning mis tahes vastavate osakaarte punktide (3.3)

korral)

> f(B;)) Az — 1‘ <e, (3.5)

7=1

max At; < =
1<j<n

siis seda piirvidrtust nimetatakse teist liiki (tasandiliseks) joonintegraaliks funkt-
stoonist f ile kaare AB projektsioonide jargi x-teljele ja tdhistatakse siimboliga

JAB f(z,y)dz = limi f(Bj) Azx; = 1. (3.6)

Kaarele AB viidatakse seejuures kui integreerimisteele.

263



NB! Tingimuse
maxigjgn At; <
5 voib  asendada
ka tingimusega

max1<i<n SA;_1A;

5, k ) )
' Us  SA; A

tdhistab  osakaare

Aj_1Aj pikkust!
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JOONIs 3.1. Joonisel on kujutatud kaart AB (voi, tdpsemalt, selle kaare jalge)
koos selle kaare osakaarte otspunktidega Ay, A1, ..., A, ja nende otspunktide
projektsioonidega xg,1,...,T, z-teljele ning osakaartel A; 1A; fikseeritud
punktidega Bj, j =1,...,n.

Analoogiliselt defineeritakse teist liiki (tasandiline) joonintegraal funktsioonist f
tle kaare AB projektsioonide jirgi y-teljele

f(x,y)dy. (3.7)

AB

Kui funktsioonid v = F(z,y) ja v = G(x,y) on miiratud kaarel AB (vdi,
tapsemalt, selle kaare jiljel), siis me téhistame

F(z,y)dx + J G(z,y) dy.

f Fdx—i—Gdy::J F(x,y)d:}c—i—G(x,y)dy::f
AB AB AB

AB

Mirkus 3.1. Analoogiliselt mirkuses toestatuga saab néidata, et kui kaar on lihtne,
siis tema jaoks jaab integraalsummade purvdadartuse moiste samaks, kui deﬁnitsiooni mp-
likatsioonis (3.5) asendada tingimus
max At; <9
1<j<n
tingimusega
max{|Az1|, |[Ayi], ..., |Az,], |Ay,|} <6

901 tingimusega
max d(Ajfl,Aj) < 6.

1<j<n
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Mirkus 3.2. Osutub, et kui tasandiline kaar ® on lihtne ning sellel kaarel (vdi tapsemalt, tema
jaljel) on madratud (R-vddrtuseline) funktsioon f, siis mis tahes lihtsa tasandilise kaare U korral,
mille jilg on vordne kaare ® jiljega ja mille algupunkt ihtib kaare ® alguspunktiga, eksisteerib
teist liiki joonintegraal funktsioonist [ iile kaare U (ikskoik, kas projektsioonide jirgi x-teljele voi
y-teljele) parajasti siis, kui eksisteerib vastav integraal ile kaare ®, kusjuures nende integraalide
eksisteerimise juhul on nad vordsed.

Toepoolest, kui ® ja ¥ on lihtsad kaared, mille alguspunktid ja jéljed tihtivad, siis funktsioo-
nid ® ja ¥ méaidravad sellel jiljel ihesuguse punktide jérjestuse (vt. {ilesannet . Siit jareldub,
et mis tahes sellel jéljel mddratud funktsiooni korral on selle funktsiooni integraalsummade hulk
(nii projektsioonide jérgi z-teljele kui ka y-teljele) iile kaare ® sama, mis vastavate integraalsum-
made hulk iile kaare U (POHJENDADA!) . Méarkusest jareldub, et ka nende integraalsumma-
de piirvdértused iile kaarte ® ja ¥ on vordsed (voi ei eksisteeri kumbki nendest piirvadrtustest)
(POHJENDADA!) ehk, teisisonu, teist liiki joonintegraalid vaadeldavast funktsioonist iile kaarte ®
ja ¥ on vordsed.

Eelnevast arutelust ndhtub, et toestatud viide jadb kehtima, kui seal vaadelda lihtsate kaarte
asemel kaari, mis médravad nende kaarte iihisel jaljel ihesuguse punktide jarjestuse (“jilje punktide
labimise jarjekorra”).

Eelnevaga on oigustatud jirgnev iilesannetekogudes sagedasti esinev iilesandepiistitus: ettean-
tud (tasandilise) punktihulga — millele selles iilesandes viidatakse kui kaarele ja mille puhul on
ette antud “tema punktide labimise jirjekord” — ning sellel punktihulgal mairatud (R-viirtuselise)
funktsiooni korral leida teist liiki joonintegraal sellest funktsioonist iile selle punktihulga — kaare
(kas siis projektsioonide jargi x-teljele voi y-teljele). Selles iilesandes peetakse “kaare” all silmas
mingit kaart, mille jélg see punktihulk on ning mille poolt miaratud “jélje punktide 1&bimise jérje-
kord” iihtib selle etteantud jérjekorraga: eelneva pohjal on teist liiki joonintegraalid vaadeldavast
funktsioonist iile koigi niisuguste kaarte vordsed ning seega ei soltu selle integraali viirtus sellise
kaare valikust.

3.2. Integraalsummade piirvaartus integraalsummade jadade
piirvaartuste kaudu

Jargnev lause kirjeldab integraalsummade piirvidrtuse (ehk siis, teisisonu, teist
liiki joonintegraali (projektsioonide jérgi z-teljele)) mdistet. Selleks lepime kokku
jirgnevas terminoloogias: koikjal selle paragrahvi ulatuses, koneldes (funktsiooni f)
integraalsummade jadast (kaarel AB) (projektsioonide jirgi x-teljele), moistame me

selle all mingit niisugust arvjada (o,,)%_;, kus

(1) iga m € N korral o, on funktsiooni f integraalsumma tiiiipi (3.4)), s.t.

Nm

Om =Y. [(B") AxT', (3.8)

=1

kus n,, € N ning 16igu [«, 5] mingi jaotusviisi

a=ty <ty <---<ty =p (3.9)
korral Azl := x(t]') — 2(t7,) ja
B} = (x(T]m),y(TJm)) mingi 7;" € [t} |, "] korral; (3.10)
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(2) integraalsummadele (3.8) vastavate 1oigu [a, §] jaotusviiside (3.9)) pikima osa-
1oigu pikkus ldheneb nullile protsessis m — oo, s.t.

max A" —— 0, (3.11)

1<jsnm I mow

kus At =17 — 7.

Lause 3.1. Olgu I € R. Jargmised vaited on samavddrsed:
(i) funktsiooni [ integraalsummade (3.4) piirvddrtus on arv I;

(ii) funktsiooni f mis tahes integraalsummade jada (kaarel AB projektsioonide jdr-
gi x-teljele) koondub arvuks I.

TOEsTUS. (i)=(ii). Kehtigu (i), olgu (o, );_; funktsiooni f integraalsummade jada
(kaarel AB projektsioonide jargi z-teljele) ning olgu e > 0. Implikatsiooni toestuseks
peame leidma indeksi N € N nii, et

meNm=N = |o,—I|<e. (3.12)

Eelduse (i) pohjal leidub reaalarv § > 0 nii, et (16igu [c, 8] mis tahes jaotusviisi
korral punktidega (3.2) ning mis tahes vastavate osakaarte punktide (3.3) korral)
kehtib implikatsioon (3.5]). Niiiid, valides naturaalarvu N nii, et

meN m>N — max At <9

(selline valik on voimalik koonduvuse (3.11)) tottu), kehtib implikatsioon (3.12]), nagu
soovitud.

(ii)=(i). Kehtigu (ii). Oletame vastuviiteliselt, et arv I ei ole funktsiooni f
integraalsummade (3.4]) piirvadrtus. Siis leidub reaalarv € > 0 nii, et iga m € N
korral leiduvad 16igu [«, 5] jaotusviis (3.9) ning punktid (3.10), j = 1,...,n,,, nii,

et

1
max At < —,
1<j<nm m

kuid |0y, — I| = ¢, kus integraalsumma o, on defineeritud vordusega (3.8)) (pon-

JENDADA!) . Niiiid (0,,,)%°_; on funktsiooni f integraalsummade jada (kaarel AB pro-
jektsioonide jirgi z-teljele), mis ei koondu arvuks I, vastuolu. O

Jaotise lopetuseks toestame, et teist litki joonintegraal pidevast funktsioonist iile
sirgestuva kaare (nii projektsioonide jargi x-teljele kui ka y-teljele) eksisteerib alati.

Teoreem 3.2. Olgu AB sirgestuv (tasandiline) kaar ning olgu funktsioonid F jo G
pidevad sellel kaarel (véi, tdpsemalt, selle kaare jiljel). Siis eksisteerib teist liiki
joonintegraal § , , F dx + G dy.
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TOESTUS. Toestame teoreemi viite ainult juhul, kus G = 0. Juhul, kus F = 0,
toestatakse viide analoogiliselt; viite kehtivusest juhtudel, kus vastavalt G = 0 ja
F =0, jareldub selle viite kehtivus iildjuhul (POHIJENDADA!) .

Niisiis, eeldame jiargnevas, et G = 0. Koneldes integraalsummadest ja integ-
raalsummade jadadest, moistame me selle all alati integraalsummasid ja integraal-
summade jadasid kaarel AB projektsioonide jirgi z-teljele.

Esitugu kaar AB parameetriliste vorranditega « = z(t), y = y(t), t € |a, 5]
Defineerime ®(t) := (z(t),y(t)) iga t € [a, ] korral (siis A = ®(a) ja B = ®(f)).
Teoreemi toestuseks piisab leida arv I € R, mille puhul iga reaalarvu ¢ > 0 korral
leidub reaalarv 6 > 0 nii, et, tuginedes paragrahvi alguses sissetoodud tdhistustele
ja markides o := Z?Zl F(B;) Az;, kehtib implikatsioon

max At; <d — |o—1I|<e. (3.13)
1<j<sn
Selleks paneme téhele, et leidub koonduv funktsiooni f integraalsummade jada
(0:n)%_,  (POHJENDADA! — SELLEKS NAIDATA, ET FUNKTSIOONI f IGA INTEGRAALSUMMADE

JADA ON TOKESTATUD NING RAKENDADA BOLZANO-WEIERSTRASSI TEOREEMI . T#histame
I = lim,, .o 0, ja fikseerime vabalt reaalarvu € > 0. Teoreemi toestuseks jaab
leida reaalarv § > 0 nii, et kehtib implikatsioon (3.13]).

Kuna funktsioon [a, 8] 3t — F(2(t),y(t)) = F(®(t)) € R on pidev, siis Cantori
teoreemi pohjal on see funktsioon iihtlaselt pidev 16igus [, (], seega leidub reaalarv
0 > 0 nii, et

€

t,t' € t—1t'] <20 F(®(t)) — F(®(t))]| < =—

kus s tdhistab kaare AB pikkust (siin me voime iildisust kitsendamata eeldada, et

s > 0). Teoreemi toestuseks jadb nididata, et (tuginedes paragrahvi alguses sisse-

toodud téhistustele ja mérkides o := 37, '(B;) Ax;) kehtib implikatsioon (3.13),
s.t. eeldades, et max; <<, At; < J, jddb niidata, et |0 — | < e.

Kuna 0, —— I, siis leidub indeks m € N nii, et |0, — I| < 5. Tuginedes kies-
m—o0

oleva jaotise alguses tingimustes (1) ja (2) sissetoodud téhistustele, esitub integraal-

summa o, kujul o,y = >3, F(B}*) Ax7', kus iildisust kitsendamata voime eeldada,

et max)<pen,, At]' < J POHJENDADA, MIKS ME VOIME SIIN ULDISUST KITSENDAMATA EEL-

DADA, ET maxXj<k<n,, At < 46! . Kuna

€
Y

|J—[|<|0—0m|+|0m—[|<|0—0m|+2

siis soovitud vorratuseks |0 — I| < ¢ jadb niidata, et |0 — 0| < 5.

_ Olgu N €N ja reaalarvud to.t1, ... in € [a, ] sellised, et a = Ty <t < --- <
tn = B ja {to,tl,...,t]\[} = {to,tl,...,tn} U {tan,ﬂln,,tzlm} Iga j S {O,l,...,n}
jaiga ke {0,1,...,n,} korral olgu i;,4;, € {0,1,..., N} sellised (iiheselt madratud)
indeksid, et t; = ?ZJ jaty = tNi;c. Siis iga i € {1,..., N} korral leiduvad sellised tiheselt
médratud j € {1,...,n}jake {l,...,n,}, et

tj,1 = tij—1 <t < tz‘j = tj ja t}?fl = t%il <t < tl/k = tzn’

NB! Alates sel-
lest “Kuna” kuni
jargmise 16igu vale-
mireani “|F(C;) —
F(D;)| =..., kor-
dab teoreemi [3.2]
toestus sona-sonalt
teoreemi [2.2] t&es-
tuse vastavat juppi.
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selliste j ja k korral defineerime C; := B; = ®(7;) ja D; := B;* = ®(7;"). Kuna
7y — T < g =Gl + [ = | < [t — o F I~ L] <6+ 6 =25,
siis
[F(C) = F(D)| = |F(@(r) = F(2(")] < o
Defineerime iga i € {1,..., N} korral AZ; := x(fz) — x(fi,l); siis

O'—ZF ) Ax; = ZF Z AT, = Z Z C)) Ax; = ZF ) AT,

i=1;_1+1 Jj=li=i;_1+1

2
(POHJENDADA, MIKS SIIN Az; = Y, AZ;!) jJa
i=ij_1+1

Om = % F(B™) Az = an] F(BM) 2 AZ; = % 2 F(D;) A%; = ZF ) A%
k=1 k=1

i=d)_+1 k=1i=i} | +1

i
(POHJENDADA, MIKS SIIN Az = Y AZ;!) . Seega, defineerides iga i € {0,1,..., N}
i=ip _,+1

korral ﬁl = (I)(IZ) ning tahistades iga ¢ € {1,..., N} korral siimboliga ‘}L,lﬁ,‘
punkte 211-,1 ja ﬁl iithendava sirgloigu pikkuse,

N N
o — 0l = Z(F(@) — F(Dy)) A%| < ) |F(Cy) — F(D)| |A%]
i=1
Noe o o~ e i~ o~ € €
— A A — A Al < —s=—
Z 2 = 2s ;‘ il <g50=5
(POHJENDADA, MIKS SIIN |A%;| < |AZ LA, | 7a A; |ﬁi_1ﬁi| < s!), nagu soovitud. ]

3.3. Teist liiki joonintegraali omadusi

Jargnev lause votab kokku teist liiki joonintegraali olulisemad lihtsamat sorti oma-
dused.

Lause 3.3. Olgu AB kaar xy-tasandil ning olgu sellel kaarel (voi, tdpsemalt, selle
kaare jiljel) mddratud kahe muutuja funktsioonid u = F(z,y), wy = Fi(z,y), us =
F2(x7y)7 v = G(Jf,y), U1 = Gl(‘ray) ja Vg = G2(x7y)

(a) Teist liiki joonintegraal soltub kaare (voi, tapsemalt, selle kaare jalje) libimise
suunast: kaare AB (voi tipsemalt, selle kaare jilje) libimisel vastassuunas
integraali mark muutub:

J Fda:—i—Gdy:—f Fdx+Gdy
BA

AB
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(siin peetakse kaare BA all silmas mingit kaart, mille jalg ihtib kaare AB jdl-
jega ning mille poolt sellel jiljel madratud punktide jirjestus (“jilje punktide
labimise jarjekord”) on tapselt vastupidine kaare AB poolt mddratud jdrjes-

tusele (muuhulgas, kaare BA alguspunkt on B ja lopp-punkt A)).

(b) Kui kaar AB on risti z-teljega, siis

f Fdx =0;
AB

kui kaar AB on risti y-teljega, siis

Gdy = 0.
AB

(c) Olgu ceR.

(cl) Kui eksisteerib teist liiki joonintegraal

J Fdr=:1,
AB

sus eksisteerib ka joonintegraal S ap ¢ F dx, kusjuures

J chxch Fdx.
AB AB

(3.14)

(3.15)

(c2) Kui eksisteerib teist litki joonintegraal SAB G dy, siis eksisteerib ka joon-

integraal SAB cGdy, kusjuures

J cGdy = CJ G dy.
AB AB

(d) (d1) Kus eksisteerivad teist litki joonintegraalid

f Fl dr =: Il ja f F2 dr =: [2,
AB AB

sus eksisteerivad ka joonintegraalid SAB (F1 + Fg) dx, kusjuures

J (F1 + Fy) do = J Fldxij Fydz.
AB AB AB

(d2) Kui eksisteerivad teist liiki joonintegraalid

f Gidy ja f G dy,
AB AB

siis eksisteerivad ka joonintegraalid § , (G1 + Gg) dy, kusjuures

| @rc)iy=]| Guays| Guay
AB

AB AB

(3.16)

(3.17)
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(e) Eksisteerigu teist litki joonintegraalid (3.16|) ja (3.17). Siis eksisteerib ka joon-
integraal

f (a1Fy + asFy) dx + (b1Gy + boGa) dy, (3.18)
AB

kusjuures
J ((L1F1 + CLQFQ) dx + (b1G1 + bQGg) dy
AB

:alf F1d$+a2f ngl'—i‘bl Gldy+b2 szy
AB AB

AB AB

(f) Olgu C kaare AB punkt, mis asub punktide A ja B vahel.

(f1) Kui eksisteerib teist liiki joonintegraal

J Fdz + Gdy, (3.19)
AB
sus eksisteerivad ka teist liiki joonintegraalid

J Fdx+Gdy ja f Fdx + Gdy. (3.20)
AC CB

(f2) Kui funktsioonid F ja G tokestatud kaarel AB ning eksisteerivad teist liiki

joonintegraalid (3.20)), siis eksisteerib ka teist liiki joonintegraal (3.19)),
kusjuures

J Fd:c+Gdy=J Fdx+Gdy+J Fdx+ Gdy.
AB AC CB

Mirkus 3.3. Viite (f) toestus toetub lausele Selle lause kasutamine voimaldaks lihtsustada
ka véidete (c) ja (d) toestusi.

LAUSE B.3] TOESTUS. Esitugu kaar AB parameetriliste vorranditega
v=a(t), y=yt), telafl,
kus A = (z(a),y(@)) ja B = (x(B),y(8)). Loigu [a, 8] jaotusviisi korral punktidega
a=ty<ty<---<t,:=p (neN) (3.21)
tahistame A; = (a:(tj), y(tj)), j=0,1,...,n;iga j € {1,...,n} korral tdhistame
Atji=tj—tj, Avji=xj—xj0, Ay =y —yja

ning, fikseerides osakaarel A; 1A; mingi punkti B;, s.t. B; = (I(Tj),y(Tj)), kus
T; € [tj—l7tj]7 tahistame

g =

J

F(B,) Ax;. (3.22)

n
=1
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(a). Olgu BA mingi kaar, mille jilg iihtib kaare AB jaljega ning mille poolt sellel
jaljel madratud punktide jirjestus (“jilje punktide ldbimise jarjekord”) on tépselt
vastupidine kaare AB poolt méidratud jirjestusele (muuhulgas, kaare BA algus-
punkt on B ja 16pp-punkt A). Siis funktsiooni F integraalsummad iile kaare BA
projektsioonide jirgi z-teljele on parajasti miinusmirgiga integraalsummad
(POHJENDADA!) . Méirkusest jareldub niilid, et funktsiooni F' integraalsummadel
iile kaare BA projektsioonide jargi x-teljele eksisteerib piirvidrtus parajasti siis, kui
eksisteerib piirvddrtus integraalsummadel , kusjuures need piirvaartused on
vastandmargilised (poHIENDADA!) . Niisiis, integraal SB 4 I dz eksisteerib parajasti
siis, kui eksisteerib {, , F'dx, kusjuures §, , Fde = —§, . F dx.

Analoogiliselt arutledes saame, et integraal SB 4 G dy eksisteerib parajasti siis,
kui eksisteerib §, , G dy, kusjuures {, , Gdz = —§,, G dy.

Eelnevast jareldub, et integraal SB 4 Fdr + G dy eksisteerib parajasti siis, kui
eksisteerib integraal SAB F dx + G dy, kusjuures

J Fda:—i—Gdy:J Fda:—i—f Gdyz—f Fda:—f Gdy
BA BA BA AB AB

:—<J Fdx—i—f Gdy)z—f Fdx + Gdy.
AB AB AA

(b). Kui kaar AB on risti z-teljega, siis kéik integraalsummad (3.22)) on vordsed
arvuga 0 (sest iga j € {1,...,n} korral Az; = 0), seega ka nende integraalsummade

piirvadrtus on 0, s.t. kehtib (3.14).
Juhtu, kus kaar AB on risti y-teljega, kéisitletakse analoogiliselt.

(c). Toestame ainult viite (c1). (Vaide (c2) toestatakse analoogiliselt.) Eksis-
teerigu teist liiki joonintegraal (3.15)). Fikseerime vabalt reaalarvu e > 0. Viite (cl)
toestuseks piisab leida reaalarv 6 > 0 nii, et (16igu [«, 5] mis tahes jaotusviisi korral
punktidega (3.21)) ning mis tahes vastavate osakaarte punktide By, ..., B, korral)
Z cF(Bj)Az; —cl

j=1

max At; <§ =

ma = |c|
<j<n

> F(B)) Az — ]‘ <e.
j=1

Uldisust kitsendamata voime eeldada, et ¢ & 0. Integraali (3.15) olemasolu tottu
leidub reaalarv ¢ > 0 nii, et

max At; < =
1<j<n

Niisiis, kui max At; <9, siis
1<j<n

Z cF(Bj)Az; —cl
j=1

£
<:|C|FJ =E£.

(d). Toestame ainult viite (d1). (Véide (d2) toestatakse analoogiliselt.) Eksis-
teerigu teist liiki joonintegraalid (3.16|). Fikseerime vabalt reaalarvu ¢ > 0. Vai-
te (d1) toestuseks piisab leida reaalarv 6 > 0 nii, et (16igu [«, 5] mis tahes jaotus-
viisi korral punktidega (3.21)) ning mis tahes vastavate osakaarte punktide By, ..., B,
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korral)

max At; < —
1<j<n

Selleks méargime, et

Integraalide (3.16)) olemasolu tottu leiduvad reaalarvud 4y, d; > 0 nii, et

$ 5
ja
S €
11’2;2% At] < (52 — jle2(B]) A,Tj — IQ < 5
Niisiis, kui max At; < min{d, 62} =: 0, siis
1<j<n
u 9
Z(Fl(BJ) + FQ(BJ)) A;Uj — (Il + ]2) < 5 + § = £
j=1

(e). Joonintegraali (3.18)) olemasolu jareldub vahetult viidetest (c) ja (d) (poH-
JENDADA!) ; seejuures (jillegi véidete (c¢) ja (d) pohjal)

J (CllFl + GQFQ) dx + (b1G1 + b2G2) dy
AB

= f (CL1F1 + GQFQ) dr + f (blGl + b2G2) dy
AB AB

= J CL1F1 dﬂf-i-f CLQFQdQ?‘FJ blGl dy+f bQGQdy
AB AB AB AB

:alj FldQZ—l—CLQf Fde“l_bl Gldy+b2 ngy
AB AB AB AB

(f). Olgu v € [a, A] selline, et C' = (z(7),y(7)). Siis kaared AC ja CB esituvad
vastavalt parameetriliste vorranditega

v=uz(t), y=yt), telay] ja z=z@), y=y@), tel[v.p]
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Toestame viite ainult juhul, kus G = 0. Juhul, kus F' = 0, toestatakse viide
analoogiliselt; viite kehtivusest juhtudel, kus vastavalt G = 0 ja F' = 0, jareldub
selle véite kehtivus iildjuhul (pPoHIJENDADA!) .

Niisiis, eeldame jargnevas, et G = 0. Koneldes integraalsummadest ja integraal-
summade jadadest, moistame me selle all alati integraalsummasid ja integraalsum-
made jadasid projektsioonide jargi z-teljele (selliste integraalsummade jada moistet
on selgitatud eespool jaotises .

(f1). Eksisteerigu teist liiki joonintegraal §,, F'dz =: I. Téestame ainult joon-
integraali § 10 F dx olemasolu (joonintegraali F dx olemasolu toestatakse ana-
loogiliselt).

Koigepealt niitame, et funktsiooni F' mis tahes integraalsummade jada kaa-
rel AC' on tokestatud. Oletame vastuviditeliselt, et funktsiooni F' mingi integraal-
summade jada (pm)y_; kaarel AC' on tokestamata. Joonintegraali §,, Fdz = I
olemasolu tottu leidub reaalarv 6 > 0 nii, et (16igu [, 5] mis tahes jaotusviisi korral
punktidega (3.21) ning mis tahes sellele jaotusviisile vastava integraalsumma ([3.22])
korral)

SCB

max At; <0 = Jo—I|<1
1<j<n

ning seega
nax At; <0 = o] <max{|] —1|,|] + 1|} =: k. (3.23)
<j<n
Fikseerime vabalt funktsiooni F' mingi niisuguse integraalsumma p’ kaarel C'B, mis
vastab 16igu [7, 8] mingile jaotusviisile, mille osaldikude maksimaalne pikkus on
viiksem kui 6. Kuna integraalsummade jada (p,,)%_, on tokestamata, siis leidub
funktsiooni F' integraalsumma p kaarel AC, mis vastab 16igu [« y] mingile jaotus-
viisile, mille osaldikude maksimaalne pikkus on védiksem kui 9, nii, et

lp| > &+ |p']

(porsENDADA!) . Niiid o := p + p' on funktsiooni F' integraalsumma kaarel AB,
mis vastab 16igu [a, B8] mingile jaotusviisile, mille osaldikude maksimaalne pikkus
on viiksem kui § (POHJENDADA!) , seega implikatsiooni (3.23) tottu |o| < k. Teiselt
poolt,
ol =1p+ 70| = lpl =1 >+ o] = 1| = &,

vastuolu. Niisiis, funktsiooni F' iga integraalsummade jada kaarel AC' on tokestatud.

Kuna Bolzano—Weierstrassi teoreemi pohjal saab igast tokestatud arvjadast vélja
eraldada koonduva osajada, siis leidub koonduv funktsiooni F' integraalsummade
jada (vy,)®_, kaarel AC. Tahistame J := lim,, o Up,.

Olgu (pm)%_, suvaline funktsiooni F' integraalsummade jada kaarel AC. Lau-

se(3.1{pohjal piisab joonintegraali { , . F'(z,y) dx olemasoluks niidata, et pp, — J.

Selleks fikseerime vabalt funktsiooni F' mingi integraalsummade jada (p/,)*_, kaa-
rel CB. Kuna (p,,, + )% _, ja (U, + pl,)%_, on funktsiooni F' integraalsummade
jadad kaarel AB (POHJENDADA!) , siis lause pohjal

Pt P —— 1 ja vty —— 1
m—0 m—00
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ning jarelikult

pmz(pm—i-p;n)—(Um—i-plm)-i-vm—>]—]+<]=J,

m—Q0

nagu soovitud.
(f2). Olgu funktsioon F' tokestatud kaarel AB, s.t. leidub reaalarv M > 0 nii, et

|F(z,y)] < M iga punkti (z,y) korral kaarelt AB,

ning eksisteerigu teist liiki joonintegraalid §{, ., F dz =: Jy ja {,, F dz =: J,. Olgu
(om)2_; suvaline funktsiooni F' integraalsummade jada kaarel AB, s.t. kehtivad lau-
sele eelnevad tingimused (1) ja (2). Teist liiki joonintegraali § , , F' dx olemasoluks

ja vorduseks
J Fd:):=f Fdx—l—f Fdx
AB AC CB

piisab lause [3.1| pohjal nédidata, et o,, —— J; + Js.
m—0a0

Tahistame iga m € N korral
Jm 1= min{je {1,...,nn}: v < t;”}

siis t; 1 <~y <t; )ning
Jm Im

Jm—1

Azl = z(v) — z(t, 1), pm = Y, F(BI") Azl + F(C) Axy,
j=1

AR = x(t;,)) — x(7), Pl = F(C)AZY + > F(B") Azl

Jj=jm+1

Siis (pm)oo_; ja (pl,)L_, on funktsiooni F integraalsummade jadad vastavalt kaartel
AC ja C'B (pOHJENDADA!) , seega lausep()hjal pm — Ji ja pl, —— J,. Kuna
m—Q0 m—00

N, Jm—1 N,
Om = 2 F(B") Azl = 2 F(B") Azl + 2 F(B") Azl + F(B) Azl
J=1 j=1 J=Jm+1

— pm + Py + F(BI) Ax™ — F(C) Aa — F(C) Az
= pm + P + (F(BI) — F(C)) Az

(sest Azg + AZg = Azl ), siis jidb soovitud koonduvuseks o, —— J; + Jo
m—0

niidata, et
(F(B*) — F(C)) Azl —— 0. (3.24)

Im oo
Kuna

[(F(BY) — F(C)) Az | < (|F(B)| + |[F(C)|) Azl < 2M Azl

Im

siis piisab koonduvuseks (3.24) niidata, et Az]' ——— 0. See jareldub Cantori

m—o0
teoreemist 16igus pideva funktsiooni iihtlasest pidevusest (POHJENDADA!) . O]
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Olgu L mingi sirgestuva lihtsa kinnise (tasandilise) kaare jilg xy-tasandil ning
olgu sellel jéljel L madratud pidevad funktsioonid F' ja G. Siis kirjaviisist

f Fdz + Gdy (3.25)
L

ei selgu, milline jélje L punkt tuleb teist liiki joonintegraali leidmisel valida
kaare alguspunktiks (ja iihtlasi 16pp-punktiks) ning millises suunas tuleb see jilg
labida (s.t. milline on on selle jilje “punktide ldbimise jarjekord”). Jilje L iihesuguse
libimise suuna puhul ei soltu integraal kaare alguspunkti valikust (see jireldub
lausest (f), ja markusest (poHIENDADA!) ), kiill aga soltub see integraal jilje
ldbimise suunast — jélje labimisel vastassuunas muutub selle integraali mérk (vt.
lauset [3.3] (a)).

Lihtsa kinnise kaare jilje labimise suunda, milles liikudes selle jiljega piiratud
tasandi osa jadb vasakule, nimetatakse positiivseks suunaks. (Piltlikult véiljendudes,
positiivne suund on kellaosuti litkumise vastassuund.)

On tavaks leppida kokku jérgmises: kui L on sirgestuva lihtsa kinnise kaare jélg,
siis kirjaviise puhul moistetakse jalje L ldbimise suunana posititvsel suunda,
s.t. selle integraali arvutamisel tuleb leida vastav teist liiki joonintegraal {ile niisuguse
lihtsa kinnise kaare ®: [o, 3] — R? mille jilg on L ning mille puhul parameetri
t € [a, B] kasvades liigub kaare punkt ®(¢) modda kaart positiivses suunas.

Kui on vaja mérkida integraali iile lihtsa kinnise kaare (mille jalg on L) nega-
tivses suunas (s.t. kellaosuti liltkumise vastassuunas), kirjutatakse integraali (3.25)
ette miinusmérk.

3.4. Teist liiki joonintegraali arvutamine

Teoreem 3.4. Olgu kahe muutuja funktsioon uw = f(P) = f(z,y) pidev (tasandili-
selt) kaarel AB (voi, tapsemalt, selle kaare jaljel), mis esitub antud parameetriliste
vorranditega

r=ux(t), y=uyt), te|a, B, (3.26)
kus funktsioonidel (3.26)) eksisteerib loigus |cv, B] pidev tuletis ning

A= (x(a),y(a)) ja B = (!L‘(ﬁ)ay(ﬁ))

Siis eksisteerivad teist litki joonintegraalid funktsioonist f tle kaare AB projektsioo-
nide jargi nit r- kui ka y-teljele, kusjuures

B

Fa,y) do — f F(e(t), y() /() dt (3.27)

AB @

ja
B

f(x,y) dy = j F (), y(0) ¥/ (2) dt. (3.28)

AB «

NB!

Joonis?
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TOESTUS. Toestame ainult valemi (3.27) (valem (3.28)) toestatakse analoogiliselt).
Téhistame

8
I:= J F(x(t), y(t)) 2'(t) dt. (3.29)

Fikseerides vabalt reaalarvu ¢ > 0, piisab valemi toestuseks leida reaalarv
d > 0 nii, et, jaotades 16igu [«, §] suvaliselt osaloikudeks punktidega o =: tg < t; <

- < t, := P (n € N) ning fikseerides iga j € {1,...,n} korral suvaliselt punkti
7; € [tj_1,t;] ja téhistades

Atji=t;—t;o1, Axj=ualty) —a(ti_1), Bj:= (z(r),y(1)),

kehtib implikatsioon

n

Zf(BJ) AI]‘ —]‘ < E.

max At; < =

1<j<n “
Selleks margime, et iga j € {1,...,n} korral Newton-Leibnizi valemi pohjal
2
Ay = w(ts) — 2ty 1) = f o) dt, (3.30)
ti—1
seega
n n t; B
D15 Ay~ 1] = |Y fGalm)n(e) [ a0 [ s) 0
j=1 j=1 tj—1 a

[ sy roa- [ reosm) o

i—1 Yt

1 (@), 9(7) = F (2(2), y(0) | 12/ )] . (3.31)
Kuna tuletisfunktsioon 2’ on pidev 16igus [«, 5], siis Weierstrassi esimese teoreemi
pohjal ta on ka tokestatud selles 16igus, s.t. leidub M > 0 nii, et

|2'(t)] < M iga t € [, 8] korral.

Loigus [a, 3] pidev funktsioon t — f(x(t),y(t)) on Cantori teoreemi pohjal iihtlaselt
pidev selles 16igus, seega leidub 0 > 0 nii, et

t,t' el Bl [t—t[<0 = ‘f(ﬂﬂ(t),y(t)) —f(l’(t')yy(t'))‘ < m-
Kui niiiid lr%;i}; At; < 0, siis
n n t c c n
Bj)Aw;— 1 — Mdt= At; =e.
215 Ay ‘<2 B M= g R =




§ 3. TEIST LIIKI TASANDILINE JOONINTEGRAAL 277

Mirkus 3.4. Teoreemi [3.4]saab toestada ka ilma Cantori teoreemi kasutamata. Toepoolest, sum-
mat valemireas (3.31]) saab hinnata ka teisiti. Nimelt, tdhistades

M;:= sup f(;v(t)7y(t)), mj = inf f(x(t),y(t)), j=1,....n

teltj—1,t;] te[tj—1,t5]

(need supreemumid ja infiimumid eksisteerivad, sest 16igus [«, 8] pidev funktsioon t — f(z(t),y(t))
on Weierstrassi teoreemi pohjal tokestatud selles 16oigus ning seega tokestatud ka igas osaldigus
[tj—ly tj]), kehtib

tj

zn:f(Bj)A%—f‘SZn:fj (Mj—mj)Mdt=Mi(Mj—mj)f dt

j—1 j=1 tj—1

=M Z(M] — mj) At]

Kuna 16igus [a, ] pidev funktsioon ¢ — f(x(t),y(t)) on integreeruv selles 15igus, siis leidub reaalarv
5> 0 nii, et
€

n
At; <6 M; —mj) At; < —.
max At; <§ = jZ:l( j—my) Aty < 57

1<j<n

Niisiis, kui max At; < 6, siis
1<j<n

Zf(Bj)Amj—1‘<M;4=g.

j=1

Mirkus 3.5. Teoreem [3.4] jiib kehtima, kui seal asendada eeldus funktsioonidel (3.26) pideva
tuletise olemasolust 16igus [«, §] norgema eeldusega, et funktsioonidel (3.26)) eksisteerib 16igus [, 5]
pidev tuletis, vélja arvatud, voib-olla, 16plikus arvus punktides, milles tuletisfunktsioonidel ' ja v’

eksisteerivad 16plikud iihepoolsed piirvaartused. See jareldub lausest (f) (POHJENDADA!) .

Mairkus 3.6. Teoreem jaab kehtima, kui seal asendada eeldus funktsioonidel pideva
tuletise olemasolust 16igus [«, 5] (nérgema) eeldusega nendel funktsioonidel integreeruva tuletise
olemasolust selles 16igus (see eeldus on norgem ka mirkuses kisitletud teoreemi eelduse
norgendusest).
Toéepoolest, tuletisfunktsioonide =’ ja 3’ pidevust kasutab mérkuses [3.4] antud toestusskeem
vaid integraalide ja Sf f(z(t), y(t)) ¥/ (t) dt olemasolu ning valemite jay(t;))—y(tj—1) = w8l Valemi-

Z_l y'(t) dt pohjendamiseks. Need integraalid eksisteerivad ning valemid kehtivad ka eeldusel, et Ze(stj) ,?;32_1) 2
tuletisfunktsioonid z’ ja y’ on integreeruvad. (Vahetult teoreemi sonastusele jargnev toestus S:j_l y' () dt
kasutab tuletisfunktsioonide z’ ja y’ pidevust lisaks veel nende (tuletis)funktsioonide tokestatuse f;‘g;"i“’l‘eib?;fenf
pohjendamiseks, aga ka nende funktsioonide tokestatus jareldub nende integreeruvusest.) ?eagne]flsfllfi vat}r;
vaid  tuletisfunks-
sioonide z’ ja '

Jargnev jareldus teoreemist annab valemid teist liiki (tasandilise) jooninteg- integreeruvust.
raali arvutamiseks juhul, kui kaar, iile mille integreeritakse, on antud vorrandiga
y = y(x), z = x(y) voi polaarkoordinaatides.

Jareldus 3.5. Olgu kahe muutuja funktsioon v = f(x,y) pidev tasandilisel kaa-
rel AB (voi, tipsemalt, selle kaare jiljel).

(a) Olgu kaar AB esitatud vorrandiga

y=vy(x), z€]la,b], (3.32)
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kus
A= (a,y(a)) ja B = (b,y(b))

ning funktsioonil (3.32)) eksisteerib loigus [a,b] pidev tuletis, vilja arvatud,
voib-olla, loplikus arvus punktides, milles tuletisfunktsioonil y' eksisteerivad
loplikud tihepoolsed piirvadrtused. Stis

b b

f(.y) dz = j Foy@)de o | floy)dy = j £, y(@)) o (z) da.

AB a AB a

Olgu kaar AB esitatud vorrandiga
v=a(y), yeled, (3.33)

kus
A= (z(c),c) ja B=(x(d),d).

ning funktsioonil (3.33) eksisteerib loigus [c,d]| pidev tuletis, vilja arvatud,
voib-olla, loplikus arvus punktides, milles tuletisfunktsioonil x' eksisteerivad
loplikud tihepoolsed piirvidrtused. Siis

d

F(e)y) () dy a LBf(fc,y)dy= j f(x(y).y) dy.

C

f(%y)dl‘:J

AB c

Olgu kaar AB esitatud polaarkoordinaatides vorrandiga

r= T(¢)v ¢ € [047 ﬂ]v (334)

kus (ristkoordinaatides)
A= (r(a)cosa,r(a)sina) ja B = (r(fB)cospB,r(3)sinp)

(s.t. polaarkoordinaatides A = (r(a),a) ja B = (r(ﬂ),ﬁ)) ning funktsioonil
eksisteerib loigus [a, B] pidev tuletis, vilja arvatud, véib-olla, loplikus
arvus punktides, milles tuletisfunktsioonil v’ eksisteerivad loplikud iihepoolsed
prrvadrtused. Stis

B
flz,y)de = f f(r(¢) cos ¢, r(¢) sin qﬁ) (r'(gb) cos ¢ — r(¢) sin (b) do

AB «

ja
B8
f(x,y)dy = f £ (r(9) cos 6, 7() sin 6 (' () sin + r(6) cos ) d.

AB «

TOEsTUS. Jarelduse toestus on sarnane jiarelduse toestusele (seejuures toetu-
takse teoreemi asemel teoreemile [3.4). Seepérast jitame toestamise lugejale. [
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3.5. Greeni valem

Meenutame, et piirkonnaks ruumis R™ nimetatakse lahtise sidusa hulga ja selle hulga
raja mingi alamhulga iihendit. Seejuures lahtiseks piirkonnaks nimetatakse lahtist
sidusat hulka (sel juhul “selle hulga raja mingi alamhulk” piirkonna definitsioonis on
tiihi hulk) ning kinniseks piirkonnaks nimetatakse lahtise sidusa hulga sulundit (sel
juhul “selle hulga raja mingi alamhulk” piirkonna definitsioonis on kogu raja).

Teoreem 3.6 (Greeni valem). Eksisteerigu pidevatel kahe muutuja funktsioonidel

OF oG
u = F(z,y) ja v = G(x,y) pidevad osatuletised ™ ja ™ tokestatud kinnises
Y x
piirkonnas D, mille rajajoon 0D on tikiti sile lihtne kinnine kaar (véi, tdpsemalt,
raja 0D on mingi tikiti sileda lihtsa kinnise kaare jilg). Siis

oG OoF
fj (é‘_x — 5_y) dr dy = LD Fdx + Gdy. (3.35)
D

Mairkus 3.7. Paneme tdhele, et molemad integraalid valemis eksisteerivad.

Toepoolest, hulga D rajajoon on tiikiti sile ning funktsioonid F' ja G on pide-
vad sellel rajajoonel (voi, tdpsemalt, selle joone jéljel), seega vorduse paremal
poolel olev integraal eksisteerib teoreemi pohjal. (Teine voimalus selle integraali
olemasolu pohjendamiseks on mérkida, et teoreemi pohjal on hulga D rajajoon
sirgestuv ning seega eksisteerib vorduse paremal poolel olev integraal teoree-
mi [3.2] pohjal.)

Teiselt poolt, kuna hulga D rajajoon on teoreemi[I.4] pohjal sirgestuv, siis teoree-
mi 1.6 pohjal on hulga D raja nullméoduga hulk ning seega teoreemi[V][2.5] pohjal on
hulk D mootuv. Vorduse (3.35) vasakul poolel oleva integraali olemasolu jareldub
niiiid teoreemist [VI2.8l

Miérkus 3.8. Teoreem [3.6|on tidhelepanuvidrne jirgmises mottes: funktsioonide F ja G kilitumine
piirkonna D rajajoonel annab meile piisavalt informatsiooni funktsiooni % — ‘;—F kiitumise kohta
piirkonnas D, et me saaksime leida integraali sellest funktsioonist iile hulga D. -

Teoreemile (Greeni valemile) toetub kompleksmuutuja funktsioonide teoorias olulist rolli

etendava Cauchy (integraal)valemi toestus.
Toestame Greeni valemist ainult jargnevas lauses toodud erijuhud.
Lause 3.7. Kehtigu teoreemi[3.6] eeldused.
(a) Olgu
D:={(z,y): z€[a,b], a(z) <y < B(2)},
(s.t. D on kovertrapets; vt. joonist , kus funktsioonidel
a=a(@) ju B=B@), zelab]

eksisteerib loigus [a, b] pidev tuletis. Siis

oF J
— —dxdy = Fdx. 3.36
JDJ oy Y oD ( )
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JOONIS 3.2. Joonisel on kovertrapets D vérvitud helesiniseks; selle kdver-
trapetsi rajajoon (mis samuti sisaldub selles kovertrapetsis) on kujutatud
tumesinisega.

(b) Olgu
D= {(z,y): yeled], 7(y) <z <y},

kus funktsioonidel

y=9(y) jo d=0(y), yelcd],

eksisteerib loigus |c, d| pidev tuletis. Siis
f —drdy = Gdy. (3.37)

TOESTUS. Toestame ainult viite (a). (Viide (b) toestatakse analoogiliselt.)
Téhistame

A= (a,a(a)), B := (b,a(b)), C .= (b,ﬁ(b)), D = (a,ﬂ(a))
(vt. joonist [3.2)). Siis

J—da:d JJ (x,y)dzd f fx)ﬁF(x Ydy |dx
Y= By ,Y) Y= o« Jaw) By Y)ay

_ j (F(2.8@) = F(2,0(x)) ) dz:
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ning jarelikult

J Fdxzf Fdx—kf Fdx—i—f Fdx+f Fdxzf Fdx—kf Fdx
oD AB BC cD DA AB cD
b b
:f Fdx—f FdxzfF(x,a(x))dx—fF(x,ﬁ(x))d:v

J — dx dy,

nagu soovitud. O]

Mairkus 3.9. Valem (3.36]) jadb kehtima, kui

(1) piirkond D esitub 16pliku @hendina D = | J Dj, kus Dy, ..., D,, on paarikaupa
j=1
loikumatute sisemustega kovertrapetsid, mis rahuldavad lause (a), eeldusi
kovertrapetsi D kohta.

Toepoolest, eelduse (1) kehtides lause 3.7, (a), pohjal

fj dedy = — ij dxdyzZ—Jfa—ydxdy=ZL Fdx
=l j=1v0D;
:f Fdzx.
oD

Siin viimane vordus kehtib, sest summas Z SaD F'dx esinevad integraalid iile raja-
‘j,

joonte 0D; niisuguste osade, mis pole rajajoone 0D osad, kaks korda, kusjuures

ithel juhul léibitakse selline osa iihes suunas ja teisel juhul vastupidises suunas; see-

ga koonduvad summas )] SaDj F dx integraalid {ile rajajoonte 0D; osade, mis pole
j=1
rajajoone 0D osad, paarikaupa vélja.

Analoogiliselt saab niidata, et valem (3.37) jadb kehtima, kui

(2) piirkond D esitub 16pliku ithendina D = U D., kus D, ..., D!, on paarikaupa
=1
loikumatute sisemustega kovertrapetsid, mis rahuldavad lause (b), eeldusi

kovertrapetsi D kohta.

Eelnevast jareldub, et kui samaaegselt kehtivad eeldused (1) ja (2), siis kehtib
Greeni valem (3.35), sest niisugusel juhul

([(Z-2)w=[[Locar- [ iusr- [ are | e

:J Fdzr + Gdy.
oD

NB!

Joonis?



NB! Joonis?

NB! “Integree-
rimistee” mobistet
tutvustatakse 1k.

NB! Mis on murd-
joon? Mis on murd-
joone liilid? Eelne-
vas on olnud juttu

kaare kodlmurdjoo-
nest ja selle liilidest

(vt. jaotise al-
gust, 1k.[232]).
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3.6. Teist liiki joonintegraali soltumatus integreerimisteest

Olgu funktsioonid F ja G pidevad piirkonnas D < R2. Vaatleme teist liiki joon-
integraali

f Fdz+ G dy (3.38)
AB

iile piirkonnas D sisalduva tiikiti sileda kaare AB. Kui mis tahes piirkonnas D sisal-
duvate punkte A ja B iihendavate tiikiti siledate kaarte L; ja Lo korral, mille algus-
punkt on A ja 1opp-punkt B (vt. [joonist 277 ), kehtib vordus

J Fdx—l—Gdy:J Fdz+ G dy,
Ly

Lo

siis 6eldakse, et teist liiki joonintegraal (3.38)) ei soltu integreerimisteest piirkonnas D.
Sellisel juhul kasutatakse joonintegraali (3.38]) mérkimiseks siimbolit

B
J Fdx+Gdy:
A

see integraal soltub integereerimistee alguspunktist A ja 16pp-punktist B, kuid mitte
neid punkte iihendavast integreerimisteest.

Mirkus 3.10. Heine-Boreli lemma (vt. ??) abil saab niiidata, et kui piirkond D < R? on
lahtine, siis mis tahes punktide A, B € D korral leidub neid punkte ithendav (l6plikust arvust
lillidest koosnev) lihtne murdjoon, mis tervikuna sisaldub hulgas D. Esitame selle viite toestuse
skeemi.

Olgu A, B € D, A + B. Siis hulga D sidususe tottu leidub punkte A ja B ithendav kaar, mis
tervikuna sisaldub hulgas D. Esitugu mingi selline kaar AB parameetriliste vorranditega

r=uzx(t), y=uy), tela, Bl (3.39)

kus A = (z(a),y(e)) ja B = (z(8),y(B))- Iga t € [a, B] korral téhistame C; := (x(t),y(t))
(s.t. C¢ on kaare AB punkt, mis vastab parameetri viartusele t); siis hulga D lahtisuse tottu leidub
reaalarv v, > 0 nii, et B(Cy,r:) < D (stimbol B(Cy,r;) tdhistab lahtist kera (ehk siis vaadeldaval
kahedimensionaalsel juhul lahtist ringi) keskpunktiga C; ja raadiusega r;). Funktsioonide (3.39)
pidevuse tottu leidub iga ¢ € [a, 8] korral reaalarv §, > 0 nii, et

t'ela,B], ' €(t—0,t+0) = Cpe€B(Ctry)

(POHIENDADA!) . Niiiid hulk {(¢t — &;,¢ + &;: ¢ € [, 8]} on 16igu [ev, 8] lahtine kate, seega Heine—
Boreli lemma pohjal leidub tal 16plik alamkate, s.t. leiduvad tg,t1,...,t, € [a, 8] (n € N) nii, et
[a, B] € U;L:o Uj, kus U; := (t; — &,,t; + 6,). Uldisust kitsendamata voime eeldada, et a =ty <
t1 < - < t, = B, kusjuures iga j € {1,...,n} korral U;_1 n U; + & (POHJENDADA!) . Siit
jéreldub, et iga j € {1,...,n} korral B(Cy,_,,r¢;_,) nB(Cy,,7¢,) # & (POHJENDADA!) ning seega

sirgloik Cy,_, Cy, sisaldub tervikuna hulgas D (POHJENDADA!) . Niisiis, murdjoon C;,Cy, ...Cy,
sisaldub tervikuna hulgas D. Arvestades, et C;, = A ja C;, = B, jaib viite toestuseks niidata, et
mis tahes punkte A ja B iihendava (Ioplikust arvust lLilidest koosneva) murdjoone ¢ korral leidub
neid punkte A ja B iihendav lihtne murdjoon ¢', mis punktihulgana on murdjoone £ alamhulk:
¢ c £. Selle véite saab lihtsasti toestada matemaatilise induktsiooni abil murdjoone ¢ liilide arvu n
jérgi (TEHA SEE INDUKTSIOON LABI!) .
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Selles jaotises anname moned tarvilikud ja piisavad tingimused teist liiki joon-
integraalide soltumatuseks integreerimisteest. Selleks vajame me dhelisidusa (tasan-
dilise) piirkonna moistet.

Definitsioon 3.2. Oeldakse, et hulk D < R? on dhelisidus, kui ta on sidus ning
mis tahes selles hulgas sisalduva lihtsa kinnise kaarega piiratud tasandi osa sisaldub
selles hulgas.

L

(O

JOONIs 3.3. Joonisel vasakul helesinisega kujutatud hulk on iihelisidus — see
hulk on sidus ning mis tahes selles hulgas sisalduva lihtsa kinnise kaarega piira-
tud tasandi osa sisaldub selles hulgas. Joonisel paremal helesinisega kujutatud
sidus hulk ei ole iihelisidus — selles hulgas sisalduva lihtsa kinnise kaarega L
piiratud tasandi osa ei sisaldu selles hulgas.

Mirkus 3.11. Eelnev iihelisidususe definitsioon ei ole matemaatiliselt range — formaalselt pole
selge, mida moista “lihtsa kinnise kaarega piiratud tasandi osa” all. Esitame matemaatiliselt range
definitsiooni.

Definitsioon 3.3. Oeldakse, et hulk D c R? on dhelisidus, kui mis tahes selles hulgas sisalduv
lihtne kinnine kaar on pidevalt deformeeritav mingiks hulga D punktiks, s.t. mis tahes pideva funkt-
siooni ®@: [«, B] — D korral, kus ®(a) = ®(5), leiduvad pidev funktsioon I': [0,1] x [a, 5] — D ja
punkt P € D nii, et

e I'(0,t) = ®(¢t) iga t € [«, 8] korral,
e I'(s,a) =T(s, ) iga s € [0, 1] korral;
e I'(1,¢t) = Pigat € [a, S] korral.

Teoreem 3.8. Olgu kahe muutuja funktsioonid u = F(x,y) ja v = G(z,y) pidevad
lahtises piirkonnas D < R2. Jargmised viited on samavddrsed:

(i) mis tahes punktide A, B € D korral integraal (3.38)) ei soltu integreerimisteest
piirkonnas D;

(ii) integraalialune avaldis F dx + Gdy on tépne diferentsiaal, s.t. leidub piir-
konnas D diferentseeruv kahe muutuja funktsioon U = U(x,y), mille tdis-
diferentsiaal on see avaldis:

dU = Fdz + G dy. (3.40)

NB! Must-valge
televisiooni vaata-
jad siin neid hulki
helesinisena ei née!



NB! Must-valge
televisiooni vaata-
jad siin neid hulki
helesinisena ei née!
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Seejuures kehtib “Newton-Leibnizi valem”
J Fdx+Gdy=U(B)—-U(A). (3.41)
AB

Kui purkond D on thelisidus ning funktsioonidel F ja G eksisteerivad selles

OF
piirkonnas pidevad osatuletised — ja —, siis tingimused (i) ja (ii) on samavadrsed

oy ox

tingimusega
(iii) integraalialune avaldis F dx + G dy on kinnine diferentsiaal, s.t. piirkonnas D

oF oG

-— = . 3.42

oy  or ( )
Mairkus 3.12. Nagu jérgnevast toestusest ndeme, kehtib teoreemi [3.8 implikatsioon
(il)=>(iii) (ning seega ka implikatsioon (i)=>(iii)) ka ilma eelduseta piirkonna D iiheli-
sidususe kohta.

Teoreemi[3.8|implikatsiooni (iii)=>(ii) (voi (iii)=(i)) tGestus iildjuhul on kiiesoleva
kursuse jaoks liiga keeruline. Seepirast piirdume me selle implikatsiooni toestusega
teataval erijuhul — tdhekujuliste piirkondade juhul — mis holmab olulisemaid prakti-
kas ettetulevaid iihelisidusaid piirkondi — muuhulgas ka néiteks kumeraid piirkondi.

Definitsioon 3.4. Oeldakse, et hulk D < R? on tihekujuline, kui leidub punkt
A € D nii, et mis tahes punkti B € D korral punkte A ja B iihendav sirgloik
sisaldub hulgas D.

Joonis 3.4. Joonisel vasakul helesinisega kujutatud hulk on tdhekujuline —
selle hulga punkti A selle hulga mis tahes punktiga P iithendav sirgloik sisaldub
selles hulgas. Samas see hulk ei ole kumer — selle hulga punkte B ja C ithendav
sirgloik ei sisaldu selles hulgas. Joonisel paremal helesinisega kujutatud hulk ei
ole tdhekujuline — selles hulgas ei leidu definitsiooni tingimust rahuldavat
punkti A.
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TEOREEMI [3.8] TOESTUS. (i)=>(ii). Olgu mis tahes punktide A, B € D korral integ-
raal (3.38) soltumatu integreerimisteest. Fikseerime vabalt punkti A € D ja definee-
rime piirkonnas D kahe muutuja funktsiooni u = U(B) = U(x,y) vordusega

B
U(B)zJ Fdr+Gdy, BeD
A

(seejuures me loeme U(A) = 0). Implikatsiooni tdestuseks piisab néidata, et piir-
konnas D
Vg

or oy
Toestame neist samasustest vaid esimese (teine toestatakse analoogiliselt). Fiksee-
rime vabalt punkti B := (xg, ) € D. Me peame niitama, et

U(zo + h,yo) — U(xo, yo)
h h—0

F ja G.

F(ffo,yo)-

Mérgime, et piirkonna D lahtisuse tottu leidub reaalarv § > 0 nii, et Us(B) < D;
niisiis, kui || < 9, siis punkte B = (x¢,yo) ja C := (xo + h, yo) lithendav sirgloik BC
sisaldub piirkonnas D. Valides integraalis Si F dx + G dy integreerimisteeks kaare,
mis on saadud vabalt valitud (punkte A ja B iihendava ja piirkonnas D sisalduva)
tiikiti sileda kaare AB ja sirgloigu BC' ithendamisel (selliseid tiikiti siledaid kaari AB

leidub — vt. mérkust [3.10]),

c B
U(xo + h,yo) — U(zo,yo) = U(C) — U(B) =J Fda:—i—Gdy—f Fdx+ Gdy
A A
B

B c
:f Fdx—i—Gdy—i—J Fdx—i—Gdy—f Fdz+ Gdy
A B A

C C xo+h
=J Fd:);-i—Gdy:f Fda:=f F(x,y0)dx = F(&r, yo) R,

B B )

kus punkt &, paikneb punktide zg ja x¢ + h vahel (sellise punkti &, olemasolu jarel-
dub integraalarvutuse keskviartusteoreemist); jirelikult, arvestades, et &, > %o,

funktsiooni F' pidevuse tottu

Ulzo + h,yo) — Ul(zo, vo) _F
h

(&ns10) 7 F(x0,v0),

nagu soovitud.

(ii)=>(i). Leidugu piirkonnas D diferentseeruv kahe muutuja funktsioon u =
U(x,y), mis rahuldab tingimust (3.40)), s.t.

Olgu piirkonna D punkte A ja B iithendav (piirkonnas D sisalduv) tiikiti sile kaar
antud parameetriliste vorranditega

=), y=y), telaf]
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kus
(z(@),y(0)) = A ja (x(8),y(8)) = B.
Implikatsiooni toestuseks piisab néidata, et kehtib vordus (3.41)). Veendume selles:

J Fdr+ Gdy = 6U(:L‘ y)dx—i—a—U(x y) dy
AB o

dy

AB

B
- L <g—g(x(t),y(t)) 2 (t) + a—y(az(t),y(t)) y’(t)> dt

nagu soovitud (siin vordus (=) kehtib Newton-Leibnizi valemi pohjal).

Eeldame niiiid taiendavalt, et funktsioonidel F' ja G eksisteerivad piirkonnas D

oG
pidevad osatuletised — ja —
oy or’
(ii)=(iii). Kehtigu (ii). Siis piirkonnas D
oU oU
F=— ja G=—
ox - oy
ning jarelikult
or o*U o oG O*U
dy  Oyox L oxr Oy
oF . 0G . C e
Kuna osatuletised é‘_ e on pidevad piirkonnas D, siis teist jirku segaosa-
Y x
. *U . U : .. - : I
tuletised ja on pidevad piirkonnas D; jérelikult teoreemi 11,3.4| pohjal
oyox = Jdxdy
o*U 0*U oF 0G
2y or =5 o piirkonnas D; niisiis ﬁ_y = piirkonnas D, nagu soovitud.

NB! *Ulesanne.
Pohjendada, et td- Eeldame niiiid tdiendavalt, et piirkond D on tdhekujuline.

hekujuline hulk on

helisisus: (iii)=-(ii). Kehtigu (iii). Implikatsiooni tdestuseks piisab leida piirkonnas D dife-
rentseeruv kahe muutuja funktsioon u = U(z,y), mis rahuldab tingimust (3.40).
Piirkonna D tdhekujulisuse tottu leidub punkt A € D nii, et mis tahes punkti B € D
korral punkte A ja B iihendav sirgloik sisaldub piirkonnas D. Defineerime funkt-
siooni U: D — R vordusega

U(B) :zf Fdx+Gdy, BeD,
AB

kus integreerimisteeks on punkte A ja B iihendav sirgloik (seejuures me loeme
U(A) = 0). Tingimuse (3.40) kehtivuseks piisab néidata, et piirkonnas D
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(POHJENDADA , MIKS SIIT JARELDUB FUNKTSIOONI U DIFERENTSEERUVUS JA TINGIMUSE ({3.40)

kenTivus! Toestame neist samasustest vaid esimese (teine toestatakse analoogili-
selt). Fikseerime vabalt punkti B := (xg,y9) € D. Me peame niitama, et

U(zo + h,yo) — U(zo,90)

h b0 F(SC(J, yo)-

Mérgime, et piirkonna D lahtisuse tottu leidub reaalarv § > 0 nii, et Us(B) < D;
niisiis, kui |h| < 9, siis punkte B = (x¢, yo) ja C := (xo + h, yo) tthendav sirgloik BC
sisaldub piirkonnas D. Naeme, et

Fdx—i—Gdy—f Fdx+ Gdy.

AB

U(zo + h,y0) = Ulxo,50) = U(C) —U(B) = JAC

Greeni valemi pohjal, tdhistades kolmnurga ABC' kontuuri tdhega L ja selle kolm-
nurga enda tdhega A ning oletades konkreetsuse mottes, et h > 0 (juhtu, kus h < 0,
késitletakse analoogiliselt), jareldub samasusest (3.42)), et (vt. joonist

Fda:—l—Gdy—l—J Fdz + Gdy

de:E—i—Gdy:J Fdx—i—Gdy—i—f
L AC BA

CB

oG OF
~J[(G ) =0
A

yA

Yo -

>
\ Zo xo+h x
D

Joonis 3.5. Kolmnurk A on joonisel virvitud helesiniseks.

NB! Must-valge
televisiooni
vaatajad siin
seda kolmnurka
helesinisena ei née!



NB! Siin “pr
ei tarvitse olla
eriti hea tdhistus;
eespool on sellega
tédhistatud miskise
ko6lmurdjoone
pikkust!
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seega

Fda:—l—Gdy—i—J Fdz+ Gdy

U(xo + h,yo) — U(z0,%0) = f
BA

AC

xo+h
:J Fd:v—i—Gdyzj Fdx:f F(x,y0) dx
BC BC o
= F(ffwy()) h?

kus punkt &, paikneb punktide zq ja xo + h vahel (sellise punkti &, olemasolu jirel-
dub integraalarvutuse keskviirtusteoreemist); jarelikult, arvestades, et &, 7 o,

funktsiooni F' pidevuse tottu

U(zo + h,y0) — U(wo, 10)
h

= F(fiwyo) h——>0> F(x()v yo),

nagu soovitud. O]

3.7. Teoreemi 3.8 implikatsiooni (iii)=(i) toestus iildjuhul

Teoreemi [3.8|implikatsiooni (iii)=>(i) toestus iildjuhul (s.t. ilma eelduseta piirkonna D
tahekujulisuse kohta) toetub jargmisele lemmale.

Lemma 3.9. Olgu funktsioonid F' ja G pidevad lahtises piirkonnas D ning olgu
A, B € D ja e > 0. Siis iga tervikuna hulgas D sisalduva punkte A ja B tihendava
sirgestuva kaare AB korral leidub tervikuna hulgas D sisalduv (loplikust arvust lili-
dest koosnev) kaare AB kéolmurdjoon € (alguspunktiga A ja lopp-punktiga B) nii,
et

J Fdx+Gdy—JFdx+Gdy‘<s. (3.43)
AB ¢

TOEsTUS. Fikseerime vabalt reaalarvu € > 0. Olgu punkte A ja B iihendav sirges-
tuv kaar, mis tervikuna sisaldub hulgas D, esitatud parameetriliste vorranditega

T = J](t), Y= y(t)v te [Oé,ﬂ], (344)

kus A = (z(a),y(@)) ja B = (z(8),y(B)). Téhistame selle kaare pikkuse tihega s.
Iga ¢ € [a, 3] korral tihistame Cy := (x(t),y(t)) (s.t. C; on kaare AB punkt, mis
vastab parameetri vidrtusele ¢); siis hulga D lahtisuse tottu leidub reaalarv r;, > 0
nii, et B(Cy, 1) < D (siimbol B(Cy, ;) téhistab lahtist kera — ehk siis vaadeldaval
kahedimensionaalsel juhul lahtist ringi — keskpunktiga C; ja raadiusega r;); seejuures
funktsioonide F' ja GG pidevuse tottu voime arvu r; valida nii, et

\F(P) — F(C))| < é ja |G(P) - G(Cy)] < é iga P € B(C,, 1) korral,

(3.45)
Joonintegraalide SABFdzE =: I ja SABGdy =: [, olemasolu tottu leidub reaal-
arv 6 > 0 nii, et mis tahes punktide « =ty < t; < --- < t, = f (n € N) ning

funktsioonide F' ja G mis tahes integraalsummade o ja o9 korral (16igus [a, f])
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vastavalt projektsioonide jirgi x- ja y-teljele, mis vastavad 16igu [«, 5] jaotusviisile
punktidega to,t1,- - , ty,

€
4
(siin, nagu ikka, At; = ¢; —t;_;). (Liit)funktsioonide

[, B] 2t — F(a(t),y(t)) = f(t) eR ja [a,B] 3t~ G(z(t),y(t)) = g(t) eR

pidevuse tottu on need funktsioonid (Cantori teoreemi pohjal) iihtlaselt pidevad
16igus [a, ], seega leidub reaalarv ¢’ > 0 nii, et

maxAt; <26 = |o—L| <> ja |02—12|<Z (3.46)

tt'elap], t—t| <20 = |f(t)—f(t’)l<§ ja g(t) — gt <§-
(3.47)

Funktsioonide (3.44]) pidevuse tottu leidub iga ¢ € [«, 5] korral reaalarv 6; > 0 nii,
et
t'el|a, B, ' €(t—0,t+08) = CpeB(Cyry)

(pOHIENDADA!) ; seejuures voime iildisust kitsendamata eeldada, et 6, < max{d, '}.
Niiiid hulk {(t — ;¢ + &;): t € [o, 8]} on 1digu [ov, 3] lahtine kate, seega Heine—
Boreli lemma pohjal leidub tal 1oplik alamkate, s.t. leiduvad to,t1,...,t, € [, 5]
(n € N) nii, et [a,8] = UjoUj, kus Uj = (5 — 04,5 + 0r,). Uldisust kitsenda-
mata voime eeldada, et o = t9 < t; < --- < t, = 3, kusjuures iga j € {1,...,n}
korral U;_1 n U; + J (ponseNDADA!) . Siit jéareldub, et iga j € {1,...,n} korral
B(Cy,_, 1, ) nB(Cy,, ;) + & (POHIENDADA!) ning seega sirgloik Cy,_ Oy, sisaldub
tervikuna hulgas D (p6nseNpADA!) . Niiiid murdjoon Cy,C}, . .. Cy, sisaldub tervikuna
hulgas D, kusjuures C, = A ja C}, = B, seega, tdhistades selle murdjoone siimbo-
liga £, jaab toestada vorratus (3.43)). Selleks, téhistades {, F'dx =: Jy ja §, G dy =: J,
piisab toestada vorratused [I; — Ji| < § ja [I; —Ja| < 5. Toestame neist vorratustest
ainult esimese (teine vorratus toestatakse siimmeetriliselt).

Uhelt poolt,
J1 = JF(M = J Fdx,
¢ ; Ci;_, Ci

kus Cy,_,Cy; on punkte C;_, ja C, iihendav sirgloik (alguspunktiga Cy,_, ja 16pp-
punktiga Cy)). Iga j € {1,...,n} korral tihistame

Az; = x(t;) —x(ti1) ja Ay =ylty) —y(tj1);

siis sirgloik Cy, | Cy; esitub parameetriliste vorranditega

Xr = iC(tjfl) + tA.CEJ = ¢j(t), Yy = y(tjfl) + tAy] = wj(t)u te [O, 1],
ning seega, arvestades, et ¢ (t) = Ax;,

1

By | Pde= [ Po0.0,0) 60 = Aay [ Plos(0.0,00) ar
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Integraalarvutuse keskvéddrtusteoreemi pohjal leidub A; € [0, 1] nii, et

f F (1), 05(0) di = F(6;(0), () = F(P).

0

kus Py = (0;(A;), ¢;(N;)) = (2(t;1) + Az, y(t;-1) + AjAy;). Seega

Ji=) = ZF ) Az,
j=1

Teiselt poolt, arvestades, et iga j € {1,...,n} korral At; =t; —t;_1 < 20 (POH-
JENDADA!) , jéreldub implikatsioonist (3.46]), et

19
Il —;F(Ct])A.Z’] < Z
Niiiid
= i < |L= Y F(Cy) Axg| + | Y (F(Cy) — F(Py)) Az
j=1 j=1
8 n
<+ D IF(Cy) — F(B)| Az,

1

J

Kuna }}7 | |Az;| < s (POHIENDADAL) , siis piisab vorratuse |[; — Ji| < § (ja iihtlasi

lemma) toestuseks ndidata, et iga j € {1,...,n} korral
£
F(Cy, < — 3.48
F(C) ~ F(P)| < — (3.48)
(POHIENDADA!) . Fikseerime vabalt j € {1,...,n}. Kui P; € B(Cy,,r,), siis vorratus

kehtib hinnangute pohjal. Jaab vaadelda juhtu, kus Pj ¢ B(Cy,,ry;).
Kuna punkt P; asub punkte Cy, | ja C}, iihendaval sirgloigul, siis sel juhul P; €

B(Cy,_,,m,_,) (poHIENDADA!) . Niiiid, arvestades, et |t; —t; 1| < 20’ (POHJENDADA!) ,
ning seega 1mp1ikatsiooni (3.47)) pohjal

|F(Cyy) — F(Cy,_ )| = [F(a(ty), y(t;) — F(x(t1), y(t;1)) | = 1f{t;) = f(t;-1)]

€
<5
8s

saame (jéllegi hinnangute (3.45]) pohjal)

|F(Cy,) — F(P)| < |F(Cy,) — F(Cy, )| + [F(Cy,_, — F(P)| <8_+88 =

Niisiis, vorratus (3.48)) kehtib igal juhul. O

Niiiid oleme voimelised esitama teoreemi implikatsiooni (iii)=(i) toestuse
tildjuhul (s.t. ilma tdiendava eelduseta piirkonna D tdhekujulisuse kohta).
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TEOREEMI [3.8] (iii)=>(i), TOESTUS. Olgu piirkond D iihelisidus ning eksisteerigu

F
funktsioonidel F' ja G selles piirkonnas pidevad osatuletised m ja g—G Eeldame, et
Y x
a0 e oF  0G . . 9 -
kehtib (iii), s.t. Frial piirkonnas D. Olgu A, B € D ning olgu ¢: [a,b] — R* ja
Y x

¥ [¢,d] — R? kaared alguspunktiga A ja l1opp-punktiga B (s.t. ¢(a) = ¥(c) = A ja
o(b) = ¢(d) = B), mis tervikuna sisalduvad hulgas D (v6i, tdpsemalt, nende kaarte
jaljed sisalduvad hulgas D), kusjuures funktsioonid ¢ ja 1 on tiikiti lineaarsed (s.t.
16igud [a, b] ja [c,d] saab jaotada 16plikuks arvuks osaloikudeks, millest igaiihel on
vastavalt funktsioonid ¢ ja 1 lineaarsed). Kaarte ¢ ja v jiljed on loplikust arvust
lillidest koosnevad murdjooned (mis tervikuna sisalduvad hulgas D). Viidates kaar-
tele ¢ ja 1 vastavalt kui kaartele AB ja @, piisab lemma pohjal implikatsiooni
toestuseks ndidata, et §,, Fdz + Gdy = {3 F dov + G dy (POHIENDADA!) .

Loigud [a, b] ja [c, d] saab jaotada 16plikuks arvuks osaloikudeks vastavalt punk-
tidegaa=tg<t1 < ---<t,=bjac=Ty<Ty <---<T, =d, kus n € N ning iga
j € {1,...,n} korral osakaartel ¢|,_, ] ja ¥|r;_,,r;) on iihine alguspunkt ja iihine
1opp-punkt, s.t. ¢(t;—1) = Y(Tj-1) =: Aj_1 ja ¢(t;) = ¥(1;) =: A;, ning, viidates
edasises neile osakaartele vastavalt kui kaartele A;_;A; ja AJ/-_—lTélj, kas

(1) osakaared A; 1A, ja A::ilj on lihtsad, kusjuures nende jaljed iihtivad,
vOi
(2) osakaared A; 1A, ja AJ/':171J- (voi, tdpsemalt, nende osakaarte jéljed) 16ikuvad
ainult nende osakaarte alguspunktis A;_; ja lopp-punktis A;.

Soovitud vorduse §, , F'dx + G dy = {53 F dx + G dy toestuseks piisab veenduda, et
iga j € {l,...,n} korral

J Fd$+Gdy=f Fdz + Gdy. (3.49)
Aj—14; Aj1A,

Olgu j € {1,...,n} suvaline. Juhul (1) jéreldub soovitud vordus (3.49) mérkusest[3.2]
Jaab vaadelda juhtu (2). Soovitud vorduse (3.49) toestuseks sel juhul paneme koige-
pealt tihele, et, tdnu eeldusele (iii), Greeni valemi (3.35) pohjal

(§) mis tahes tervikuna hulgas D sisalduva lihtsa kinnise kaare L korral

JFdx—i—Gdy:O
L

(pOHJENDADA!) . Siit jareldub, et soovitud vorduse ([3.49) toestamisel voime iildisust

kitsendamata eeldada, et kaared A, 1A, ja Amj on lihtsad (PomJENDADA!) . Niiiid
véite () pohjal

OZJ AFd:U—i—Gdy:J
A

j—145 A1 Aj14;

Fdx—i—Gdy—i—fA Fdx+Gdy

AjA;1

:J Fdx+Gdy— Fdz + Gdy,
AjflAj AjflAj
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kus AJ/-A]\-,l téhistab kaart A]/-:171j labituna vastupidises suunas ning Aj,lAml
téhistab kaarte A; 1 A; ja AjA;_1 konkatenatsiooni, s.t. mingit niisugust lihtsat kin-
nist kaart, kus alguses ldbitakse kaar A;_;A; ning seejdrel kaar A;A; ;. Soovitud

vordus (3.49)) jareldub eelnevast vordusteahelast. O
3.8. Teist liiki joonintegraali rakendusi

3.8.1. Tasandilise kujundi pindala arvutamine

Olgu xy-tasandi piirkonna D raja 0D tiikiti sile lihtne kinnine kaar (voi, tapsemalt,
raja 0D on mingi niisuguse kaare jilg). Defineerime funktsioonid

F(x,y) = -y ja G(z,y) =z
siis oF oG

seega Greeni valemi (3.35) pohjal

ﬂ d dy — ﬂ(—‘;—j(x,y)) dr dy — LD Flz,y)dz = — prdx,

H dr dy = Ug(w,y) dr dy = J G(z,y)dy = f  dy,
)s )s oz oD oD

millest, arvestades, et hulga D pindala Sp = {{, dz dy, saame pindala Sp arvuta-
miseks valemid

sz—J ydz, szj xdy
oD oD

1
sz—(J —ydx—i—xdy).
2\Jop

3.8.2. Jou t60 arvutamine

ja

Liikugu punktmass tasandil méoda sirgestuvat kaart AB punktist A punktini B jou
F(z,y) = (P(z,y), Q(z,y)) viljas, kus u = P(z,y) jav = Q(z,y) on kaarel AB (voi,
tapsemalt, selle kaare jiljel) pidevad funktsioonid. (Seda liikumist moéoda kaart AB
tuleb moista nii, et vaadeldav punkmass liigub tasandil eeskirja X = ®(t) jérgi, s.t.
ajahetkel ¢ € [a, 8] asub liikuv punkt tasandi R? punktis ®(¢), kus ®: [, 3] — R?
on kaart AB esitav funktsioon (siin loomulikult ®(e) = A ja ®(3) = B)). Siis jou F
poolt tehtud t66 W esitub valemiga

W= P(zy)de+Qz,y)dy.
AB



§ 4. Ruumilise kaare sirgestuvus ja pikkus ning
esimest ja teist liiki ruumilised joonintegraalid

Ruumiliste joonte all moistame me jooni ruumis R3.

Ruumilise kaare sirgestuvus ja pikkus ning esimest ja teist litki joonintegraalid tile
ruumise kaare (ruumilised joonintegraalid) defineeritakse analoogiliselt tasandilise
kaare juhuga; seejuures teist liiki joonintegraali puhul lisandub loomulikul viisil teist
liiki joonintegraal projektsioonide jérgi z-teljele.

Ruumiliste kaarte ja joonintegraalide jaoks kehtivad koigi selles peatiikis tasan-
diliste kaarte ja joonintegraalide jaoks toestatud omaduste ja arvutusvalemite loo-
mulikud analoogid; erandiks on teist liiki tasandiliste joonintegraalide jaoks jaotistes
ja toestatud tulemused, milledele ruumiliste joonintegraalide jaoks vahetud
analoogid puuduvad.

§ 5. Cauchy integral formula

Theorem (Cauchy integral formula). Let D be a bounded domain with piecewise
smooth boundary 0D. If f(z) is analytic on D, and f(z) extends smoothly to the
boundary 0D, then

1 f(w)

f(z)=— ~——dw for every z € D.
21 Jopw — 2

293
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VII peatiikk.
Parameetrist soltuvad integraalid

§ 1. Parameetrist soltuvad Riemanni integraalid

1.1. Parameetrist soltuva Riemanni integraali moiste

Olgu kahe muutuja funktsioon w = f(z,y) méadratud hulgas [a,b] x Y, kus Y < R.

Eksisteerigu iga vairtuse y € Y korral Riemanni integraal SZ f(z,y) dx. Sel juhul
on hulgas Y médratud (muutuja y) funktsioon

I(y) = f f(,y) de. (1.1)

Eeldame niiiid, et kahe muutuja funktsioon w = f(z,y) on méaratud kover-
trapetsis

{(z,y) eR*: y e [c.d], aly) <z < By)},

kus « ja 8 on 16igus [c, d] pidevad (muutuja y) funktsioonid, mis rahuldavad tingi-
must a(y) < B(y) iga y € [c¢,d]| korral. Eksisteerigu iga védrtuse y € [c, d] korral
Riemanni integraal Sggﬁ f(z,y) dx. Sel juhul on 16igus [c, d] madratud (muutuja y)
funktsioon

B(y)
I(y) = f | @y (1.2)

Nii funktsioonile (1.1)) kui ka funktsioonile (1.2)) viidatakse kui parameetrist
s6ltuvale Riemanni integraalile. Parameetri rollis on siin muutuja y: valemites (1.1)
ja (1.2) esinevad integraalid soltuvad parameetri y viédrtusest. Mérgime, et kui Y =

[c,d], siis funktsioon (1.1)) on erijuht funktsioonist (1.2)), kus a(y) = a ja S(y) = b
iga y € [c, d] korral.

Jargnevates kahes jaotises huvitab meid, millised eeldused funktsiooni f jaoks
garanteerivad vastavalt parameetrist soltuvate integraalide (1.1)) ja (1.2)) pidevuse,
integreeruvuse (Riemanni mottes) ja diferentseeruvuse.
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1.2. Parameetrist soltuva Riemanni integraali pidevus,
integreeruvus ja diferentseeruvus

Teoreem 1.1. Olgu kahe muutuja funktsioon w = f(x,y) pidev ristkilikus [a,b] x
[c,d]. Siis parameetrist soltuv Riemanni integraal (L.1)) on pidev loigus [c, d].

TOESTUS. First things first: funktsiooni f pidevuse tottu ristkiilikus [a,b] x ¢, d]
on iga véartuse y € ¢, d| korral funktsioon [a,b] 3 x — f(z,y) € R pidev 16igus
[a,b], seega see funktsioon on ka integreeruv 16igus [a, b], s.t. eksisteerib Riemanni
integraal SZ f(z,y) dx; niisiis funktsioon on médratud 16igus [c, d].

Peame nditama, et funktsioon on pidev igas 16igu [c, d] punktis. Fikseerime
vabalt punkti y, € [c, d]. Toestamaks, et funktsioon on pidev punktis 1, piisab
niidata, et iga reaalarvu ¢ > 0 korral leidub reaalarv 6 > 0 selliselt, et kehtib
implikatsioon

[1(y) = I(yo)| <&

Fikseerime vabalt reaalarvu € > 0. Mis tahes punkti y € [¢, d] korral

€led ly—wl<d = (1.3)

[1(y) — L(yo)| =

——J(ﬂ%y%aﬂ%%ndw

a

[ e[ s

b
<f|ﬂ%w—f®wdww

Ristkiilik [a, b] x [¢, d] on kinnine tokestatud hulk tasandil R?, seega Cantori teoree-
mi pohjal on selles ristkiilikus pidev funktsioon f {ihtlaselt pidev selles ristkiilikus,
jarelikult leidub reaalarv 6 > 0 selliselt, et kehtib implikatsioon

(2,9), (u,v) € [a,b] x [, d], d((z,y), (u,v)) <

=

£

|f(z,y) — flu,v)] < 20—a)

(siin d((z,y), (u,v)) on punktide (z,y) ja (u,v) vaheline kaugus tasandil R?). Niiiid,
kui punkt y € [¢, d] rahuldab tingimust |y — yo| < 0, siis mis tahes x € [a, b] korral
£(,5) — £, u0)| < 3= (55t d((z, ), (2,40)) = Iy — o] < 8) ning seega

I(y) — I(yo)| < J 2(be€_a) dv = 2(b€—a)

-(b—a,):§<5.

Implikatsioon (|1.3)) kehtib. O

Teoreem 1.2. Olgu kahe muutuja funktsioon w = f(x,y) pidev ristkilikus [a,b] x
[c,d]. Siis parameetrist soltuv Riemanni integraal (1.1) on integreeruv loigus [c, d],

kusjuures
flw) dy = f(ff(a:,y) dx) dy Lb <ff(g:,y) dy) da.

(1.4)
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TOESTUS. Teoreemi pohjal on funktsioon (I.1)) pidev 1digus [c,d], seega see
funktsioon on ka integreeruv selles loigus, s.t. eksisteerib Riemanni integraal Si I(y) dy
ehk, teisisonu, eksisteerib Riemanni integraal Sf (SZ f(z,y) dm) dy. Niisiis jaab toes-
tada vaid vordus (x) vordusteahelas (L1.4). Jirelduse [V][5.3| pohjal (kui seal votta
alx) = cja f(x) = d iga x € [a,b] korral ning y(y) = a ja §(y) = biga y € |¢,d]
korral) on funktsioon f (Riemanni mottes) integreeruv ristkiilikus [a,b] % [c,d],
kusjuures

f U:f(x,y) dx) dy = ﬂ f(x,y) dz dy = Lb (Ldf(;g’y) dy) i,
[a,b] x [c,d]

nagu soovitud. O]
Teoreem 1.3. Olgu kahe muutuja funktsioon w = f(x,y) ja tema osatuletisfunki-
sioon g—f pidevad ristkilikus [a,b] x [c,d]. Siis parameetrist soltuv Riemanni integ-
raal (L.1) on diferentseeruv loigus [c,d], kusjuures

b
I'(y) = J %(m,y) dx igas punktis y € |c,d|.

TOESTUS. Olgu yo € [¢, d]. Peame niitama, et

I(y) — (%) v of
E—— J a—y(x, Yo) dz. (1.5)

a

Koonduvuse ([1.5) toestuseks tuleb niidata, et iga reaalarvu € > 0 korral leidub
reaalarv 0 > 0 selliselt, et kehtib implikatsioon

I(y)—1T b0
yeled,0<|y—y|<d = ‘M— —f(rc,yo)dfv

<e. (1.6
Y—1%Y a ay ( )

Fikseerime vabalt reaalarvu e > 0. Mis tahes y € [c, d]\{yo} korral

I(y) — I(yo) = f £ y) de f f(.y0) do = f (F(e.y) — f(x.0)) do.

a

Iga = € |a, b] korral rahuldab funktsioon n — f(z,n) 16igus [yo, y| (voi 16igus [y, yo],
kui y < yo) Lagrange’i keskvairtusteoreemi eeldusi (mérgime, et selle funktsiooni
tuletisfunktsioon on 7 — %(x, n)), jarelikult (Lagrange’i keskvidrtusteoreemi poh-

jal) leidub punkt 7, . € (yo,y) (VOi 7y € (y,%0), kul y < yo) selliselt, et

Fl,y) = Flsgo) = f;—;c(x,ny@) v = 0):
1)~ 1w = | Z—gwy,x) = w)de = (=) [

a a

b af
6_y(x7 Uy,x) dx
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ja seega
1(y) — I(yo) bof B bof bof
‘W _L 5_y(x7y0) dz| = L 6—y($,ny’z) dl’—L @(IayO) dr
b/o P
— L (a_g(xany,x) - a_g(l’,yo)) dx
bl 5 5
< L 6—5(%%@) - a_i(l",yo) dx.
of

Kuna osatuletisfunktsioon 7, on pidev kinnises tokestatud hulgas [a, b] x [, d] tasan-
dil R?, siis Cantori teoreemi pohjal on see osatuletisfunktsioon selles hulgas ka iiht-

laselt pidev, jarelikult leidub reaalarv o > 0 selliselt, et kehtib implikatsioon
(x,y), (u,v) € [a,b] x [¢c,d], d((x,y), (u,v)) <9
of

— | F - L] < 55°

20 —a)

(siin d((z,y), (u,v)) on punktide (z,y) ja (u,v) vaheline kaugus tasandil R?). Niisiis,
kui y € [¢,d] rahuldab tingimust 0 < |y — yo| < 0, siis mis tahes = € [a,b] korral

g_f(xa T}y,m) - g_f(mvy())‘ < P} ba_a (SeSt d((l’, ny,$>7 (ZE, ?JO)) = |ny,$ - y0| < |y - y0| < 5)
Y y (b—a)

NBI  Osatule NINE seega

tisfunktsiooni f

pidevuse tottu b b

on siin  vorratus [ - [ a

S 1Y) = I{yo) —f(a:,yo)cm <Jv;dI=L'(b—a)=i<€.
tegelikult _Fl(ar}ge; Y — Yo a 5y a 2(b - a) 2(b - a) 2

seega me voiksime

mwinds st Implikatsioon (T.6) kehtib. O

e~
b—a
ja kustutada
viimases valemireas

memendi <5 < ] 3. Parameetrist soltuva Riemanni integraali pidevus,
integreeruvus ja diferentseeruvus — juht, kus integraali
rajad soltuvad parameetrist

asemele

Koikjal selles jaotises tdhistame

A= {(x,y) eR*: yeled], aly) <z < 5(y)},

kus « ja 8 on 16igus [, d] pidevad (muutuja y) funktsioonid, mis rahuldavad tingi-
must a(y) < B(y) iga y € [¢,d] korral (meenutame, et sellist hulka 4 nimetatakse
kovertrapetsiks), ning

D :=[a,b] x [¢,d] = {(z,y) e R*: z € [a,b], y € [c,d]},
kus reaalarvud a ja b on sellised, et a < b ning
a<aly) ja Bly)<b  igaye|[c,d] korral. (1.7)

Margime, et Weierstrassi teise teoreemi pohjal on 16igus [c, d] pidevad funktsioonid «
ja [ tokestatud selles 16igus ning jarelikult tingimust ([1.7) rahuldavaid reaalarvusid
a ja b leidub.
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Teoreem 1.4. Olgu kahe muutuja funktsioon w = f(x,y) pidev ristkilikus D. Siis
parameetrist soltuv Riemanni integraal (1.2) on pidev loigus [c,d)].

TOESTUS. First things first: funktsiooni f pidevuse tottu ristkiilikus [a,b] x ¢, d]
on iga véartuse y € [¢,d] korral funktsioon [a,b] 2 x — f(z,y) € R pidev 16igus
[a,b], seega see funktsioon on ka integreeruv 1digus [a, b], jarelikult see funktsioon
on integreeruv ka loigu [a,b] igas osaldigus; muuhulgas see funktsioon on integ-
reeruv 16igus [a(y), 5(y)], s.t. eksisteerib Riemanni integraal Sg Eg; f(z,y) dz; niisiis
funktsioon (1.2)) on méiratud 16igus [c, d].

Peame néitama, et funktsioon on pidev igas 16igu |c, d| punktis. Fikseerime
vabalt punkti yg € [c, d]. Toestamaks, et funktsioon on pidev punktis yg, piisab
niidata, et iga reaalarvu € > 0 korral leidub reaalarv 6 > 0 selliselt, et kehtib
implikatsioon

eled, ly—yl<d = [y -1y <e (1.8)

Fikseerime vabalt reaalarvu € > 0. Mis tahes punkti y € [¢, d] korral

B(y) B(yo) B(y) a(y)
10) = | fewde= | pepdes [ jepd- [ peyds
a(y) a(yo) B(yo) a(yo)
seega, arvestades, et (yy) = Sggg; f(z,y) dz,
B(vo) B(y) a(y)
-1 = [ (e -s@w)ar [ sepde [ e wo)
a(yo) B(yo) a(yo)

ning jarelikult

B(yo)
_|_

a(y)
| il

a(yo)

1(y) — I(o)| < j

a(yo)

B(y)
F(ey) — Flanyo)| da + \ L Gy

Ristkiilik D on kinnine tokestatud hulk tasandil R?, seega Cantori teoreemi pohjal
on selles ristkiilikus pidev funktsioon f iihtlaselt pidev selles ristkiilikus, jarelikult
leidub reaalarv §; > 0 selliselt, et kehtib implikatsioon

(@,9), (u,v) € D, d((z,y), (w,v)) <& = |f(z,y) = flu,v)] <

2(b—a)

(siin d((z,y), (u,v)) on punktide (z,y) ja (u,v) vaheline kaugus tasandil R?). Niiiid,
kui punkt y € [¢, d] rahuldab tingimust |y — yo| < 01, siis mis tahes x € [a, b] korral
|f(z,y) — flz,y0)| < ey (sest d((x,y), (x,90)) = |y — yo| < 61) ning seega NBI| Funktsiooni

f pidevuse tottu

on B(Siin) vorratus
Yo = .
B(yo) e e < Satyo) 2=y 9@

/B(y()) i !
f(x’ y) — f(:];" Y ) dx < J - dx - . 5(y ) _ Ck(y ) < tegelikult range!
i NSy 200 2y ) )

DN ™
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Weierstrassi teise teoreemi pohjal on funktsioon f tokestatud ristkiilikus D, seega
leidub reaalarv M > 0 selliselt, et |f(x,y)| < M iga (z,y) € D korral, jarelikult iga
y € |c,d] korral

B(y)
\ [ il
B(yo)

Funktsioonide (8 ja a pidevuse tottu 16igus [c, d] leidub reaalarv d, > 0 selliselt, et
kehtib implikatsioon

< M |B(y) — Bwo)| ja < M |o(y) — a(yo)|-

a(y)
f f(x,y)| de

a(yo)

9 . 3

cled ly-wl <6 —  Bu-Aw) <7 R lel-alw)l < 7

Niiiid, kui punkt y € [¢, d] rahuldab tingimust |y — yo| < 02, siis

By)
U (x,y)| dx| +

B(yo)

a(y)

F(2, )| da =

<Mt Mg =5

a(yo)

Eelnevast jareldub, et kui punkt y € [¢,d] rahuldab tingimust |y — yo| < ¢ :=
min{51,52}7 siis

g £
I(y) -1 4=
() =L)< 5 +5=¢

Implikatsioon (1.8]) kehtib. O

Teoreem 1.5. Olgu kahe muutuja funktsioon w = f(x,y) pidev ristkilikus D. Siis
parameetrist soltuv Riemanni integraal (1.2)) on integreeruv loigus [c, d].

TOESTUS. Teoreemi [1.4] pohjal on funktsioon ([1.2)) pidev 16igus [c, d], jarelikult see
funktsioon on ka integreeruv 16igus [c, d]. O

Teoreem 1.6. Olgu kahe muutuja funktsioon w = f(x,y) ja tema osatuletisfunki-
stoon % pidevad ristkilikus D ning olgu funktsioonid o ja [ diferentseeruvad loi-
gus [e,d]. Siis parameetrist soltuv Riemanni integraal on diferentseeruv loi-
gus [c,d], kusjuures

B(y)
1) = [ 5 w0 a3 ) S(30).0) -6 S (0(0).0) iges punkis y e[ ).

TOESTUS. Olgu yo € ¢, d]|. Teoreemi toestuseks peame néitama, et

I(y) = I(yo) J ) of
Y —Yo Y=Y Ja(yo) 5y

= (z,90) dz + g (%o) f(ﬁ(”yo)? yo) - 0/(1/0) f(Oé(yo)7 yo).

Arvestades vordust (1.9)), piisab selleks niidata, et

1 J (o) ; ; p %) 9
x,y) — f(x, r—> x dx 1.10
= a(y0>(( y) = f (@, o)) dv —— a2y (1.10)
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ning s
Y
_1 J fx,y) de —— 8'(yo) F(B(w0), vo) (1.11)
Y = Yo Jayo) Yy—Yo
ja (v)
_1 f f(,y) de —— o' (o) f(a(y0), vo)- (1.12)
Y = Yo Ja(yo) Y=o

Toestame kdigepealt koonduvuse (1.10)). Selleks peame néitama, et iga reaalarvu
e > 0 korral leidub reaalarv § > 0 selliselt, et kehtib implikatsioon

yelc,d], 0 <|y—yo|l <o

B(yo) Bun) |
— ‘ 1 J (f(z,y) = flz,90)) do — J %(%yo) dr (1.13)

Y = Y0 Jatuo) awo) OY

< €.

Fikseerime vabalt reaalarvu ¢ > 0. Kui y € [¢, d]\{yo}, siis iga = € [a(yo), B(vo)]
korral rahuldab funktsioon n — f(z,n) 16igus [yo, y] (v6i 16igus |y, yo], kui y < yo)
Lagrange’i keskvadrtusteoreemi eeldusi (mérgime, et selle funktsiooni tuletisfunkt-
sioon on 7 — %(x,n)), jarelikult (Lagrange’i keskvéirtusteoreemi pohjal) leidub

punkt 7, . € (Y0,y) (vOi 1y, € (y,y0), kui y < yo) selliselt, et

F(@y) — f(e0) = %(:n,ny,x) (v — 0):

niisiis
1 J‘ﬂ(yo) b@f
x,y) — flx,y dxzf —(z,ny.)dx
U@ - sy de = | )
ja seega
1 Jﬂ(yo) B(yo) of
() = S} do | S o) o
‘y—yo alyo) aly) Y
B(yo) of B(vo) of
- L wnnae- | L o
JOé(yo) ay ! a(yo) 0

B(vo) of of
— - = d
J (yo) <ay ('r?ny,l') ay (l‘,yo)) x

B(yo) of of
< = \T, Nya) — 7 \T,
[ |3y ) = 5y o
of

Kuna osatuletisfunktsioon 7y on pidev kinnises tokestatud hulgas D tasandil R? siis

Cantori teoreemi pohjal on see osatuletisfunktsioon selles hulgas ka {ihtlaselt pidev,
jarelikult leidub reaalarv ¢ > 0 selliselt, et kehtib implikatsioon

(x,y), (u,v) € D, d((x,y), (um)) <) = ‘Z—g(x,y) — %(u, v)

dz.

2(b—a)
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(siin d((z,y), (u,v)) on punktide (z,y) ja (u,v) vaheline kaugus tasandil R?). Niisiis,

kui y € [c,d] rahuldab tingimust 0 < |y — yo| < d, siis mis tahes x € [a, b] korral

@ nya) = Z @ vo)| < 557 (sest d((@, 1), (2,90)) = [y — w0l < |y — 0l < 0)

ning seega

‘ 1 ngo)(f( )V fe)d f(yo) 5f( y
S =T, %) d
Y—1%Y a(yo) a(yo) 6y
B(yo) c . 8
< L(yo) 2(b — a) dr = 0 —a) (B(yo) — al(yo)) < - <e.

Implikatsioon kehtib. Koonduvus on toestatud.

Jadb toestada koonduvused ja (L.12). Integraalarvutuse keskvéirtusteo-
reemi pohjal leiduvad iga y € [c¢,d] korral punktid x1, € [B(vo), 5(y)] ja xoy €
[a(yo), a(y)] (kui B(y) < B(yo), siis siin ja edaspidises toestuses moistame 1oigu

[5(v0), B(y)] all 16iku [5(y), 5(yo)]; kui ay) < a(yo), siis mdistame 16igu [a(yo), a(y)]
all 16iku [a(y), a(yo)]) selliselt, et

Jﬂ(y)
B(yo)

f(z,y)de = f(a1y,9) (By) — B(w))

ja
o(y)
J,,,, Fe0) e = ) (oto) ~ aw)
ning seega
LW By) — Byo) :
dg = 2\~ P) .
T ] S de = FEZI ) 80) £ (3) )
ja
I _ a(y) — a(yo) ,
| p e = S ) s ) £ (0l ),
s.t. ja kehtivad. Eelnevas arvestasime, et
By) - B(yo) By) ja a(y) - a(yo) o (o)
Y— %Y Yy—vo Y —Y y—Yo
ning et

f@y,y) — F(Bwo),w0) Ja  flway,y) P f(a(yo), %)

Y—=Yo

(1.14)

Siin koonduvuste (1.14) toestuseks mérgime, et kuna =1, € [B(v), 5(y)] ja xqy €

[a(yo), @(y)], kusjuures funktsioonide 3 ja a pidevuse tottu S(y) —— B(yo) ja
Y—Yo

a(y) —— a(yo), siis 1, —— B(yo) ja r2y ——> a(yo) ning jérelikult funktsiooni f
Y—Yo Y—Yo Y—Yo

pidevuse tottu kehti b ((1.14)). O
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2.1. Parameetrist soltuva esimest liiki paratu integraali moiste

Olgu kahe muutuja funktsioon w = f(x,y) méaratud hulgas [a,0) x Y, kus Y < R.
Eeldame, et iga vaartuse y € Y korral paratu integraal SZO f(z,y) dx koondub, s.t. iga
vidrtuse y € Y korral see piratu integraal eksisteerib ja on 16plik (sellisel juhul Gel-
dakse ka, et pdratu integraal SZO f(z,y) dx koondub hulgas Y). Sel juhul on hulgas Y’
méadratud (muutuja y) funktsioon

1) - | " fa,y) da. (2.1)

Funktsioonile (2.1]) viidatakse kui parameetrist soltuvale (esimest litki) paratule integ-
raalile. Parameetri rollis on siin muutuja y: valemis (2.1)) esineva pératu integraali
vaartus soltub parameetri y vadrtusest.

Nagu parameetrist soltuva Riemanni integraali puhul, huvitavad meid ka para-
meetrist soltuva paratu integraali puhul tingimused, mis garanteerivad selle
funktsiooni pidevuse, integreeruvuse ja diferentseeruvuse. Vastavasisulised teoreemid
— mis on jaotistes ja parameetrist soltuvat Riemanni integraali kisitlevate
teoreemide analoogid — tdestame me jaotises[2.4] Neis teoreemides on tiheks oluliseks
eelduseks parameetrist soltuva paratu integraali (2.1)) dihtlane koonduvus, millele on
piithendatud selle paragrahvi jargmised kaks jaotist ja2.3

2.2. Parameetrist soltuva esimest liiki paratu integraali
iihtlase koonduvuse moiste ja Cauchy kriteerium

Koikjal selles jaotises eeldame me, et kahe muutuja funktsioon w = f(x,y) on
méadratud hulgas [a,0) x Y, kus Y < R.

Definitsioon 2.1. Oeldakse, et piratu integraal koondub thtlaselt (para-
meetri y suhtes) hulgas Y, kui see integraal koondub hulgas Y (s.t. iga vidrtuse
y € Y korral see piratu integraal eksisteerib ja on 16plik), kusjuures iga reaalarvu
e > 0 korral leidub reaalarv A > a selliselt, et kehtib implikatsioon

f: flz,y)dx

Teoreem 2.1 (parameetrist soltuva esimest liiki paratu integraali iihtlase koondu-
vuse Cauchy kriteerium). Eksisteerigu mis tahesy € Y ja b € (a,0) korral Riemanni

ReR R> A = < ¢ iga y € Y korral. (2.2)

integraal Ss f(z,y) dx. Jargmised vdited on samavddrsed:
(i) pdratu integraal (2.1)) koondub ihtlaselt hulgas Y';

(ii) iga reaalarvu e > 0 korral leidub reaalarv A = a selliselt, et kehtib implikatsioon
R/
f(x,y) dx

R ReR, R >R>A = <¢e igay€eY korral

(2.3)

R
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Teoreemi (implikatsiooni (ii)=>(i)) toestamisel on mugav toetuda jargnevale
lemmale, mis taandab kiisimuse parameetrist soltuva pératu integraali (iihtlase)
koonduvuse kohta kiisimusele teatavate parameetrist soltuvate integraalide funkt-
sionaaljadade (iihtlase) koonduvuse kohta, ning mida kasutavad ka teoreemi
(parameetrist soltuva esimest liiki pératu integraali iihtlase koonduvuse Dini tun-
nuse) ning teoreemide toestus ed . (Teoreemid annavad piisavad tin-
gimused selleks, et parameetrist soltuv paratu integraal oleks vastavalt pidev,
integreeruv ja diferentseeruv 16igus [c, d].)

Lemma 2.2. Fksisteerigu mis tahes y € Y ja b € (a,0) korral Riemanni integraal
b
§o f(2,y) da.

(a) Olgu y €Y. Jirgmised vdited on samavddrsed:

(i) pdratu integraal (2.1) koondub punktis y;

(ii) mis tahes arvude b, € (a,0), n = 1,2,..., korral, mis rahuldavad tingi-
must b, —— o0, funktsionaaljada (gn)n 1, kus
n—0o0
bn
%:YanHﬂf f(z,n)dz e R, (2.4)

koondub punktis y.

Seejuures, kui kehtib iks vdidetest (i) ja (ii), siis vdites (ii) kirjeldatud funkt-
stonaaljadad (g,)*_, koonduvad punktis y piirvadrtuseks 1(y).

(b) Jargmised vdited on samavddrsed:

(i) pdratu integraal (2.1) koondub ihtlaselt (parameetriy suhtes) hulgas Y;

(ii) mis tahes arvude b, € (a, o), n 1,2,..., korral, mis rahuldavad tingi-
must b, —— o0, valemitega (2.4 deﬁneemtud funktsionaaljada (g,)*_

koondub uhtlaselt hulgas Y .

Seejuures, kui kehtib ks vdidetest (i) ja (ii), siis vdites (ii) kirjeldatud funkt-
sionaaljadade (g,)e_, piirfunktsioon hulgas' Y on I.

Maérkus 2.1. Samavéirsused (i)<(ii) lemma viidetes (a) ja (b) jddvad kehtima, kui neis

kummaski asendada véites (ii) tingimus “mis tahes arvude b, € (a,0), n = 1,2,..., korral, mis
rahuldavad tingimust b,, —— 00” tingimusega “mis tahes arvude b,, € (a,0), n = 1,2,..., korral,
n—o

mis rahuldavad tingimusi b; < by < --- ja b, —— 00”. See ndhtub nende viidete implikatsioonide
n—o

(ii)=>(i) toestus t est.

LEMMA TOESTUS. (a). Viide (i) tihendab, et eksisteerib 16plik piirvidrtus limy e SZ f(z,y)dz.
Funktsiooni piirvaartuse olemasolu Heine kriteeriumi pohjal tdhendab see oma-

korda, et mis tahes arvude b,, € (a,00),n = 1,2, ..., korral, mis rahuldavad tingimust
b, —— oo, eksisteerib 1oplik piirvddrtus lim, . g,(y), kus funktsioonid g,, n
n—a0

1,2,..., on defineeritud valemitega (2.4)), ehk, teisisonu, funktsionaaljada (g,)*_;
koondub punktis y. Samavéérsus (i)<>(ii) on toestatud.
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Viite “Seejuures, . ..” toestuseks mérgime, et kui paratu integraal (2.1)) koondub
punktis y, siis Heine kriteeriumi pohjal mis tahes arvude b, € (a,0), n =1,2,...,

korral, mis rahuldavad tingimust b, —— oo, funktsionaaljada (g,)%_;, mis on defi-
n—a0

neeritud valemitega ({2.4)), koondub punktis y piirviartuseks I(y).
(b). (i)=(ii). Kehtigu (i), rahuldagu arvud b, € (a,0), n = 1,2,..., tingimust

b, —— oo ning olgu funktsioonid g,, n = 1,2, ..., defineeritud valemitega ([2.4).
n—a0
Implikatsiooni toestuseks piisab ndidata, et funktsionaaljada (g, ):_; koondub iihtla-

selt piirfunktsiooniks I hulgas Y, s.t. iga reaalarvu ¢ > 0 korral leidub indeks N € N
selliselt, et kehtib implikatsioon

0

f(z,y)dx

bn

neN,n>=N =

< ¢ igayeY korral (2.5)

(mingime, et sin 1(y) — gu(y) = §° fla,y)do — 0 fla,y)do = §° f(r,y)do).
Fikseerime vabalt reaalarvu € > 0. Pédratu integraali (2.1 iihtlase koonduvuse tottu
hulgas Y leidub reaalarv A > a selliselt, et kehtib implikatsioon (2.2). Kui niitid
indeks NV € N on selline, et b, > A iga indeksi n > N korral (niisugune indeks N
leidub, sest b, —— o0), siis implikatsioon kehtib.

n—0
(ii)=(i). Kehtigu (ii). Siis juba toestatud viite (a) implikatsiooni (ii)=>(i) pohjal
paratu integraal koondub hulgas Y. Oletame vastuviiteliselt, et see koondu-
vus pole iihtlane. Siis leidub reaalarv € > 0 selliselt, et iga reaalarvu A > a korral
leiduvad reaalarv R > A ja punkt y € Y selliselt, et ‘S;; f(z,y) dx‘ > . Muu-
hulgas iga n € N korral leidub b, > a + n selliselt, et ‘S;: f(z,y) dx‘ > & mingi

y € Y korral. Paneme tdhele, et b, —— oo ning et iga n € N korral, definee-
n—aoo

rides funktsiooni g, valemiga (2.4)), |1(y) — gn(y)| = ¢ mingi y € Y korral (sest
I(y) = ga(y) =57 fla,y)de— SZ” f(x,y)dzx = S;Z f(x,y) dz); niisiis funktsionaaljada
(gn)%_, ei koondu funktsiooniks I iihtlaselt hulgas Y. Arvestades, et viite (a) osa
“Seejuures, ...” pohjal funktsioon I on funktsionaaljada (g,):, piirfunktsioon hul-
gas Y, jareldub siit, et funktsionaaljada (g,)*_; ei koondu iihtlaselt hulgas Y; niisiis
(i) ei kehti. Joudsime vastuoluni.

Viide “Seejuures, ...” jireldub implikatsiooni (i)=>(ii) tOestusest (voi viite (a)
osast “Seejuures, ..."). ]

TEOREEMI TOESTUS. (i)=(ii). Kehtigu (i) ning olgu ¢ > 0. Pératu integraali
iihtlase koonduvuse tottu hulgas Y leidub reaalarv A > a selliselt, et kehtib
implikatsioon (2.2), kus arv e on asendatud arvuga 5. Kui niiid arvud R, R’ € R on
sellised, et R > R > A, siis iga y € Y korral

R

f(x,y)de
R

o0

j:f@:,y) dr— [ fla.y)de

R/

0

< f(x,y)de
R/

g €
+ <zt =g

2 2

f: flz,y)dx

niisiis implikatsioon teoreemi viitest (ii) kehtib.
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(ii)=(i). Kehtigu (ii) ning rahuldagu arvud b, € (a,0), n = 1,2,..., tingimust

b, —— oo. Lemma (b), pohjal piisab implikatsiooni toestuseks niidata, et
n—o0

valemitega defineeritud funktsionaaljada (g,)®_, koondub iihtlaselt hulgas Y
piirfunktsiooniks /. Funktsionaaljada iihtlase koonduvuse Cauchy kriteeriumi pohjal
piisab selleks néidata, et iga reaalarvu € > 0 korral leidub indeks N € N selliselt, et
kehtib implikatsioon

bn

f(z,y)dx

m,neN, mn=>=N =

< ¢ igayeY korral (2.6)
b"n.

(mérgime, et siin g,(y) — gm(y) = §." f(z,y) do = §" f(z,y)dz = §" f(z,y)dz).
Fikseerime vabalt reaalarvu e > 0. Tehtud eelduse pohjal véite (ii) kehtivuse kohta
leidub reaalarv A selliselt, et kehtib implikatsioon sellest véitest. Kui niiiid indeks
N € N on selline, et b, > A iga indeksi n > N korral (niisugune indeks N leidub,
sest b, —— o), siis implikatsioon kehtib. O

n—o0

2.3. Piisavaid tingimusi parameetrist soltuva esimest liiki
paratu integraali iihtlaseks koonduvuseks — Weierstrassi
tunnus ja Dini tunnus

Teoreem 2.3 (parameetrist soltuva esimest liiki paratu integraali iithtlase koon-
duvuse Weierstrassi tunnus). Olgu kahe muutuja funktsioon w = f(x,y) maaratud
hulgas [a,0)x Y, kus Y < R, kusjuures mis tahesy € Y ja b € (a,o0) korral eksistee-
rib Riemanni integraal SZ f(z,y) dx, ning olgu ihe muutuja funktsioon ¢ mdadaratud
poolsirgel [a, ). Kui

(1) [f (@, 9)| < o(x) iga (z,y) € [a,00) x Y korral;
(2) piratu integraal §, ¢(z) dz koondub,

sits paratu integraal (2.1) koondub dhtlaselt ja absoluutselt hulgas Y. (Siin pdiratu
integraali (2.1) absoluutne koonduvus hulgas Y tihendab, et iga y € Y korral piratu
integraal § | f(z,y| dz koondub.)

TOESTUS. Kehtigu tingimused (1) ja (2) ning olgu ¢ > 0. Cauchy kriteeriumi (teo-
reemi pohjal piisab pédratu integraali (2.1) iihtlase koonduvuse toestuseks hul-
gas Y leida reaalarv A > a selliselt, et kehtib implikatsioon . Paratu integraali
§7 ¢(x) dz koonduvuse tdttu leidub (piratu integraali koonduvuse Cauchy kritee-
riumi pohjal) reaalarv A > a selliselt, et mis tahes reaalarvude R, R > A korral
‘ng ¢(x) dz| < e. Kui niiiid reaalarvud R ja R’ on sellised, et R’ > R > A, siis mis
tahes y € Y korral

R/

f(z,y)de
R

Implikatsioon (2.3|) kehtib.

R’ R’
< f faplde< [ o@)de <.
R R
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Eelnevast arutelust nihtub, et ka parameetrist soltuv pératu integraal {* | f(z,y)| dx
koondub Cauchy kriteeriumi (teoreemi pohjal iihtlaselt parameetri y suhtes hul-
gas Y. O]

Teoreem 2.4 (parameetrist soltuva esimest liiki paratu integraali iihtlase koondu-
vuse Dinil| tunnus). Olgu kahe muutuja funktsioon w = f(x,y) mittenegatiivne ja
pidev “poolribas” |a,0) % |c,d|. Koondugu pdratu integraal loigus [c,d], kus-
Juures piirfunktsioon I on pidev loigus [c,d]. Siis see piratu integraal koondub piir-
funktsiooniks I ihtlaselt loigus [c, d].

Teoreemi [2.4) on mugav jéreldada lemma [2.2] abil funktsionaaljada iihtlase koon-
duvuse Dini tunnusest.

Parema jilgitavuse huvides sonastame siinkohal funktsionaaljada iihtlase koonduvuse Dini
tunnuse.

Teoreem 2.5 (funktsionaaljada iihtlase koonduvuse Dini tunnus). Koondugu léigus [c,d]
mdadratud funktsionaaljada (g,)_, piirfunktsiooniks g selles loigus. Kui

(1) funktsioonid g,, n=1,2,..., ja g on pidevad loigus [c,d];
(2) (arv)jada (gn(y));f:1 on monotoonne iga y € [c,d] korral;
siis funktsionaaljada (gn)r_; koondub ihtlaselt loigus [c,d].

TEOREEMI [2.4] TOESTUS. Olgu arvud b, € (a,0), n = 1,2,..., sellised, et b; <
by < --- ja b, —— o0. Defineerime iga n € N korral funktsiooni g, valemiga ({2.4)),

n—o0

kus Y = [¢,d]. Lemma [2.2] (b), pohjal piisab teoreemi toestuseks néidata, et funkt-
sionaaljada (g,)%_; koondub iihtlaselt 16igus [c, d] (vt. mirkust 2.2)). See koonduvus
jireldub teoreemist 2.5 sest funktsionaaljada (g,)*_, rahuldab selle teoreemi eeldusi,
kus g = I.

Toepoolest, funktsionaaljada (g,) koondub piirfunktsiooniks I 16igus [¢,d] lemma (a),
pohjal; funktsioonid ¢,, n = 1,2,..., on pidevad 16igus [c, d] teoreemi pohjal; (arv)jada
(gn(y))::1 on monotoonne iga y € [c,d] korral, sest mis tahes y € [c,d] ja n € N korral
funktsiooni f mittenegatiivsuse tottu (arvestades, et b,, < b,11)

br+1 by, bry1
gnH(y)—gn(y):f fay) di — J f(,y) do = j f(z.y) dz > 0.

a

2.4. Parameetrist soltuva esimest liiki paratu integraali
pidevus, integreeruvus ja diferentseeruvus
Jérgnevad teoremid annavad piisavad tingimused selleks, et parameetrist

soltuv pératu integraal (2.1) oleks vastavalt pidev, integreeruv ja diferentseeruv
16igus [c, d].

1Ulisse Dini (1845-1918) — itaalia matemaatik
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Teoreem 2.6. Olgu kahe muutuja funktsioon w = f(x,y) pidev “poolribas” [a, o) x
[c,d], kusjuures piratu integraal (2.1) koondub dhtlaselt loigus [c,d]. Siis funkt-
sioon (2.1 on pidev loigus [c,d].

Teoreem 2.7. Olgu kahe muutuja funktsioon w = f(x,y) pidev “poolribas” |a, ) x
[c,d], kusjuures piratu integraal (2.1) koondub dhtlaselt loigus [c,d]. Siis funkt-
sioon (2.1) on integreeruv loigus [c,d], kusjuures

[ = [ ([ rwar)an= ([ st tv) ar

Teoreem 2.8. Olgu kahe muutuja funktsioon w = f(x,y) ja tema osatuletisfunkt-
sioon % pidevad “poolribas” [a, ) X [¢,d], kusjuures paratu integraal (2.1)) koondub
l6igus [c, d] ning parameetrist soltuv piratu integraal § %(1’, y) dx koondub ihtlaselt
(muutuja y suhtes) loigus [c,d]. Siis funktsioon (2.1) on diferentseeruv loigus [c, d],
kusjuures
’ “of ‘ ‘
I'(y) = a—(a:, y)dx igas punktis y € ¢, d]. (2.7)
a 0¥

Teoreeme [2.6H2.8 on mugav jireldada lemma [2.2]abil analoogilistest teoreemidest
funktsionaalrea summa pidevuse, integreeruvuse ja diferentseeruvuse kohta.

Parema jélgitavuse huvides sonastame siinkohal need teoreemid.

Teoreem 2.9. Kui

(1) funktsioonid g, n =1,2,..., on pidevad ldigus [c,d];

(2) funktsionaaljada (g,)i—, koondub piirfunktsiooniks g dhtlaselt loigus [c,d],
siis ka funktsioon g on pidev loigus [c, d].
Teoreem 2.10. Kui

(1) funktsioonid g,, n =1,2,..., on integreeruvad loigus [c, d];

(2) funktsionaaljada (g,)_, koondub piirfunktsiooniks g ihtlaselt loigus [c,d],

siis ka funktsioon g on integreeruv loigus [c, d], kusjuures

d d
| sy = i [ an(wd.

Teoreem 2.11. Kui
(1) funktsioonidel g,, n =1,2,..., eksisteerib loigus [c,d] pidev tuletis;
(2) funktsionaaljada (g,)>_, koondub piirfunktsiooniks g ldigus [c, d];

(3) tuletisfunktsioonide funktsionaaljada (gl,);—q koondub piirfunktsiooniks h dihtlaselt 16i-
gus [c,d],

siis ka piirfunktsioon g on diferentseeruv loigus [c,d], kusjuures

g’ (y) = h(y) igas punktis y € [c,d].
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TEOREEMI TOESTUS. Valime arvud b, € (a,00),n = 1,2,..., nii, et b, —— 0,

n—eo

ning defineerime iga n € N korral funktsiooni g,, valemiga (2.4), kus Y = [c,d]. Siis
teoreemip()hjal funktsioonid g,,n = 1,2, ..., on pidevad (sest igan € N korral on
funktsioon f pidev ristkiilikus [a, b, x[¢, d]); lemma[2.2] (b), pohjal funktsionaaljada
(gn)_; koondub iihtlaselt 16igus [c, d] piirfunktsiooniks I. Teoreemi pohjal on
funktsioon I pidev 16igus |c, d]. O

TEOREEMI 2.7 TOESTUS. Teoreemi[2.6|pohjal on funktsioon (2.1)) pidev 16igus [c, d],
seega see funktsioon on ka integreeruv selles loigus; niisiis eksisteerib Riemanni integ-
raal Sf I(y) dy. Teoreemi pohjal iga reaalarvu b > a korral

f(fﬂx’y) dx) dy = Lb <ff(f€, ) dy) d,

kus selle vorduse kehtivus tdhendab muuhulgas koigi selles vorduses esinevate integ-
raalide olemasolu (koik selles vorduses esinevad integraalid on Riemanni integraalid).
Teoreemi toestuseks jadb ndidata, et

Lb(ff (2,9) dy) dr — fl (v) dy. (2.8)

Olgu reaalarvud b, > a, n = 1,2,..., sellised, et b, —— oo0. Heine kriteeriumi
n—0o0

pohjal funktsiooni piirvdértuse jaoks piisab koonduvuse (2.8]) toestuseks veenduda,
et

Lbn <Ldf(x, Y) dy) de —— d](y) dy. (2.9)

—
n—ao c

Selleks defineerime iga n € N korral funktsiooni g, valemiga (2.4)), kus Y = [¢, d];
siis lemma [2.2 (b), pohjal funktsionaaljada (g,);2_; koondub iihtlaselt 16igus [c, d|
piirfunktsiooniks I, seega teoreemi pohjal

n—a0
C C

d d
f gn(y)dy —— | 1(y) dy.
Koonduvuse (2.9) ja iihtlasi ka teoreemi toestuseks jaéb niiiid vaid mérkida, et iga

n € N korral
d d / (b b s d
J gn(y) dy = J < flz,y) dx) dy = J (J f(z,y) dy> dz.

TEOREEMI 2.8 TOESTUS. Valime arvud b, € (a,00),n = 1,2,..., nii, et b, —— o0,

n—o0

ning defineerime iga n € N korral funktsiooni g, valemiga (2.4), kus Y = [c,d].
Siis lemma (a), pohjal funktsionaaljada (g,)>_, koondub piirfunktsiooniks /
16igus |c, d]|. Teoreemi pohjal on iga n € N korral funktsioon g, diferentseeruv
16igus [, d], kusjuures

[]

bn,
gn(y) = a—(x, y)dx igas punktis y € [c, d];
. Oy



310 VII. Parameetrist soltuvad integraalid

seejuures teoreemi pohjal on tuletisfunktsioon ¢/, pidev 16igus [c,d]. Lemma
2.2, (b), pohjal koondub tuletisfunktsioonide funktsionaaljada (g},)*_, parameet-
rist soltuvaks piratuks integraaliks =~ 2 9 - (2,y) dx iihtlaselt (muutuja y suhtes) 16i-

gus [c,d]. Teoreemi pohjal on piirfunktsmon I diferentseeruv 16igus [c, d], kus-
juures kehtib (2.7)). ]

Teoreemist [2.8] eksisteerib jérgnev tugevam versioon.

Teoreem 2.12. Olgu kahe muutuja funktsioon w = f(x,y) ja tema osatuletisfunktsioon Pg

pidevad “poolribas” [a,0) x [c,d], kusjuures pdratu integraal . koondub vdhemalt ihes
loigu [c, d] punktis (s.t. leidub yo € [c, d] selliselt, et piratu mtegmals f(x,y0) dx koondub)

ning parameetrist soltuv paratu integraal S * (5 x,y) dx koondub ihtlaselt (muutuja y suhtes)

loigus [c,d]. Siis ka piaratu integraal (2.1) koondub dhtlaselt loigus [c,d], kusjuures tema
piirfunktsioon I on diferentseeruv selles loigus. Seejuures

rof

I'(y) = Ew (x,y)dx igas punktis y € [c,d]. (2.10)

Teoreemi [2.12] tGestus on {ilesehituselt sarnane teoreemi [2.8| toestusega, kuid teoreemi [2.11]
asemel kasutatakse seal jirgnevat tugevamat versiooni teoreemist

Teoreem 2.13. Kui
(1) funktsioonid g,, n =1,2,..., on diferentseeruvad loigus [c,d];
(2) funktsionaaljada (g,)*_, koondub vihemalt ihes loigu [c, d] punktis;

(3) tuletisfunktsioonide funktsionaaljada (gl,)"_ koondub piirfunktsiooniks h ihtlaselt 16i-
gus [c,d],

siis ka funktsionaaljada (g, )7_; koondub ihtlaselt loigus [c,d]. Seejuures on funktsionaaljada
(gn)%_, piirfunktsioon g diferentseeruv loigus [c,d], kusjuures

g’ (y) = h(y) igas punktis y € [c,d].

TroreEMI 2.12] TOESTUS. Olgu arvud b, € (a,0), n = 1,2,..., sellised, et b, —— o0.

n—w0
Defineerime iga n € N korral funktsiooni g,, valemiga (2.4), kus Y = [, d]. Siis lemma[2.2] (a)
pohjal funktsionaaljada (g,)_, koondub vihemalt iihes 15igu [c,d] punktis. Teoreemi
pohjal on iga n € N korral funktsioon g,, diferentseeruv 16igus [c, d], kusjuures

bn
gn(y) = J Z—f(x,y) dzx igas punktis y € [c, d].
a Y

Lemma [2.2] (b), péhjal koondub tuletisfunktsioonide funktsionaaljada (g/,)~_, parameetrist
soltuvaks pératuks integraaliks Sav af (x y) dz iihtlaselt (muutuja y suhtes) 16igus [c, d]. Teo-

reemi pohjal koondub ka funktswnaahada (gn)y_, ihtlaselt 16igus [c, d]; seejuures selle
funktsionaaljada (g, );_; piirfunktsioon g diferentseeruv 16igus [c, d], kusjuures

zof : .
= a—(x,y) dzx igas punktis y € [c, d].
a OY

Eelnevast arutelust ndhtub, et mis tahes arvude b, € (a,0), n = 1,2,..., korral, mis rahul-
davad tingimust b, —— o0, koondub valemitega (2.4) defineeritud funktsionaaljada (g,):_,
n—uxL
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iihtlaselt 16igus [c, d]. Lemma 2.2} (b), pohjal koondub pératu integraal (2.1) iihtlaselt (para-
meetri y suhtes) 16igus [c,d], kusjuures kéikide tilalkirjeldatud funktsionaaljadade (g,)%_,
piirfunktsioonid on /. Niiiid aga jdreldub eelnevast, et funktsioon I on diferentseeruv 16igus

[c, d], kusjuures kehtib (2.10). O

2.5. Esimest liiki paratu integraal parameetrist soltuvast
esimest liiki paratust integraalist

Teoreem 2.14. Olgu a,c € R ning olgu funktsioon w = f(x,y) mittenegatiione ja
pidev hulgas {(x,y) eR2:z>a,y = c}, kusjuures parameetrist soltuvad pdratud
integraalid

)= [ fede o K= [ sy

(koonduvad ja) on pidevad vastavalt poolsirgetel y € ¢, 0) ja x € |a, ). Kui koondub

tiks pdratutest integraalidest
ee)
f [z, y) dy) da,

1= (wa(w,m daz) t o [ K- [ OO( c

suis koondub ka teine nendest integraalidest, kusjuures need kaks pdratut integraali
on vordsed.

TOESTUS. Siimmeetria pohjal piisab vaadelda vaid juhtu, kui koondub péaratu integ-
raal SZO K(x) dz. Teoreemi toestuseks peame niitama, et koondub ka paratu integraal

§77 I(y) dy, kusjuures {7 I(y) dy = {7 K(z) dz, s.t. iga reaalarvu € > 0 korral leidub
reaalarv D > c selliselt, et kehtib implikatsioon

[Ma- [ K as

c

deR,d>D - <e. (2.11)

Fikseerime vabalt reaalarvu € > 0. Iga reaalarvu d > ¢ korral koondub parameetrist
soltuv péaratu integraal SZO f(z,y) dx Dini tunnuse (teoreemi pohjal {ihtlaselt
muutuja y suhtes 16igus [c, d], jarelikult teoreemi pohjal on funktsioon I integ-
reeruv 16igus [c, d], kusjuures

f I(y)dy = f (LOO f(z,y) dac) dy = LOO (f fla,y) dy) .

Seega mis tahes reaalarvude d > ¢ ja b > a korral
d
j fz,y) dy) dx

[“wwae- 1= ["([ revw)a- ([

© d
] f(:my)dy—f f(x,y)dy)dsc

(
_ m( [ faw) dy) dr
(

Jd

(o0 b
], f(z,y) dy) dzx +L (

JOO flz,y) dy) dz.

d



312 VII. Parameetrist soltuvad integraalid

Piratu integraali | K(z) dz koonduvuse t5ttu leidub reaalarv b > a selliselt, et

§, K(z)de = | K(z)dx| < £ (POHIENDADA, MIKS SELLINE REAALARV b LEiDUB!) . Niiiid
mis tahes reaalarvu d > c korral funktsiooni f mittenegatiivsuse tottu iga x € [a, o)

korral

0< Loof(x,y)dy<foof($7y)dy:K(x)

0< LOO <LOO f(z,y) dy> dz < LOO K(z)dr < %

Dini tunnuse (teoreemi pohjal koondub parameetrist soltuv pératu integraal
SZO f(z,y) dy iihtlaselt muutuja = suhtes 16igus [a, b], seega leidub reaalarv D > ¢
selliselt, et

ning jarelikult

e o]
deR, d>D = J flz,y)dy =
d

o 0]
L f(z,y) dy‘ < ﬁ iga x € [a, b] korral.
Niitid mis tahes reaalarvu d > D korral

b
<§+J s d =~ o (b—a) = <.

[1wa- | " K@) da o S

[

a

Implikatsioon (2.11)) kehtib. O

2.6. Parameetrist soltuv teist liiki paratu integraal

Olgu kahe muutuja funktsioon w = f(z,y) méadratud hulgas [a,b) x Y, kus Y < R.
Eeldame, et (teist litki) piratu integraal SZ f(z,y) dx koondub hulgas Y, s.t. iga vair-
tuse y € Y korral (teist liiki) paratu integraal SZ f(z,y) dx koondub (s.t. iga viértuse
y € Y korral eksisteerib iga ¢ € (a,b) korral Riemanni integraal SZ f(z,y) dx, kusjuu-
res eksisteerib 16plik piirvidrtus limg SZ f(z,y) dz; see piirvddrtus ongi (teist liiki)
piratu integraal SZ f(z,y) dx). Nendel eeldustel on hulgas Y médratud (muutuja y)
funktsioon

I(y) =J f@,y) da. (2.12)

Funktsioonile (2.12)) viidatakse kui parameetrist soltuvale (teist liiki) paratule integ-
raalile. Parameetri rollis on siin muutuja y: valemis (2.12)) esineva pératu integraali
vaartus soltub parameetri y vadrtusest.

Teoreemides, mis annavad piisavad tingimused funktsiooni pidevuseks,
integreeruvuseks ja diferentseeruvuseks (sellised teoreemid on vastavate
parameetrist soltuvat esimest liiki paratut integraali kisitlevate teoreemide
2.6 analoogid), on iiheks oluliseks eelduseks parameetrist soltuva (teist liiki)
pératu integraali iihtlane koonduvus.
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Jargnevates definitsioonis teoreemis ja lemmas[2.16] eeldame me, et kahe
muutuja funktsioon w = f(x,y) on midratud hulgas [a,b) x Y, kus Y < R.

Definitsioon 2.2. Oeldakse, et piratu integraal koondub iihtlaselt (para-
meetri y suhtes) hulgas Y, kui see integraal koondub hulgas Y (s.t. iga viértuse
y € Y korral see paratu integraal eksisteerib ja on 16plik), kusjuures iga reaalarvu
e > 0 korral leidub arv A € [a, ) selliselt, et kehtib implikatsioon

Re (A)b) — < ¢ iga y €Y korral.

L: fz,y)dx

Jargnev teoreem annab tarviliku ja piisava tingimuse parameetrist soltuva teist
liiki pératu integraali iihtlaseks koonduvuseks.

Teoreem 2.15 (parameetrist soltuva teist liiki paratu integraali iihtlase koonduvuse
Cauchy kriteerium). FEksisteerigu mis tahes y € Y ja t € (a,b) korral Riemanni
integraal SZ f(z,y) dx. Jargmised vdited on samavddrsed:

(i) pdratu integraal (2.12)) koondub dihtlaselt hulgas Y ;

(ii) iga reaalarvu € > 0 korral leidub arv A € [a,b) selliselt, et kehtib implikatsioon

R/

RReR A<R<R <b =

flz,y)dx| <e igayeY korral

R

Teoreemi [2.15] (implikatsiooni (ii)=>(i)) toestamisel on mugav toetuda jirgne-
vale lemmale, mis taandab kiisimuse parameetrist soltuva teist liiki paratu integraali
(iihtlase) koonduvuse kohta kiisimusele teatavate parameetrist soltuvate integraalide
funktsionaaljadade (iihtlase) koonduvuse kohta.

Lemma 2.16. Eksisteerigu mis tahes y € Y ja t € (a,b) korral Riemanni integraal

SZ f(z,y)de.

(a) Olgu y €Y. Jargmised vdited on samavddrsed:

(i) pdratu integraal (2.12) koondub punktis y;

(ii) mis tahes arvude b, € (a,b), n = 1,2,..., korral, mis rahuldavad tingi-
must b, —— b, funktsionaaljada (g,)*_,, kus
n—aoo

bn
gn: Y 31— flz,n)dx e R, (2.13)

koondub punktis y.

Seejuures, kui kehtib iks vdidetest (i) ja (ii), siis vdites (ii) kirjeldatud funkt-
stonaaljadad (g,)*_, koonduvad punktis y piirvadrtuseks 1(y).
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(b) Jargmised vdited on samavddrsed:

(i) pdratu integraal (2.12)) koondub dhtlaselt (parameetriy suhtes) hulgas Y';

(ii) mis tahes arvude b, € (a,b), n 1 2,..., korral, mis rahuldavad tingi—
must b, —— b, valemitega (2.13] deﬁneemtud funktsionaaljada (g,)5_

koondub uhtlaselt hulgas Y .

Seejuures, kui kehtib iks vdidetest (i) ja (ii), siis vdites (ii) kirjeldatud funkt-
stonaaljadade (g,)>_, piirfunktsioon hulgas Y on I.

Maérkus 2.2, Samaviidrsused (i)<(ii) lemma vaidetes (a) ja (b) jddvad kehtima, kui neis

kummaski asendada vaites (ii) tingimus “mis tahes arvude b, € (a,b), n = 1,2,..., korral, mis
rahuldavad tingimust b, —— b” tingimusega “mis tahes arvude b, € (a,b), n = 1,2,..., korral,
n—ow

mis rahuldavad tingimusi b; < by < ... ja b, —— b".

n—xL

Jérgnevad kaks teoreemi annavad piisavaid tingimusi parameetrist soltuva teist
liiki paratu integraali iihtlaseks koonduvuseks. Need teoreemid on vastavate para-
meetrist soltuvat esimest liiki paratut integraali késitlevate teoreemide ja -
Weierstrassi tunnuse ja Dini tunnuse — analoogid.

Teoreem 2.17 (parameetrist soltuva teist liiki paratu integraali {ihtlase koonduvu-
se Weierstrassi tunnus). Olgu kahe muutuja funktsioon w = f(x,y) mddratud hulgas
[a,b) x Y, kus Y < R, kusjuures mis tahes y € Y ja t € (a,b) korral eksistee-
rib Riemanni integraal SZ f(z,y) dx, ning olgu ihe muutuja funktsioon ¢ mdadaratud
poolloigus [a,b). Kui

(1) |f(z,y)| < &(x) iga (x,y) € [a,b) X Y korral;
(2) paratu integraal S x) dz koondub,

sits paratu integraal (2.12) koondub ihtlaselt ja absoluutselt hulgasY . (Siin piratu
integraali (2.12)) absoluutne koonduvus hulgas Y tihendab, et igay € Y korral piratu

integraal Sz |f(x,y| dx koondub.)

Teoreem 2.18 (parameetrist soltuva teist liiki paratu integraali ihtlase koonduvuse
Dini tunnus). Olgu kahe muutuja funktsioon w = f(x,y) mittenegatiivne ja pidev
“poollahtises” ristkilikus |a, b) x [¢, d]. Koondugu pdratu integraal loigus |c, d],
kusjuures piirfunktsioon I on pidev loigus |c,d]. Siis see paratu integraal koondub
piirfunktsiooniks I ihtlaselt loigus [c, d].

Teoreemide ja[2.18|toestused on analoogilised vastavalt teoreemide[2.3]ja[2.4]
toestustega: teoeemi toestus toetub (parameetrist soltuva teist liiki pdratu in-
tegraali iihtlase koonduvuse) Cauchy kriteeriumile (teoreemile [2.15), teoreemi [2.18]
toestus toetub funktsionaaljada tihtlase koonduvuse Dini tunnusele (teoreemile [2.5))
ja lemmale [2.16]

Sonastame niiiid teoreemid, mis annavad piisavad tingimused vastavalt funkt-
siooni ([2.12)) pidevuseks, integreeruvuseks ja diferentseeruvuseks 16igus |[c, d].



§ 2. PARAMEETRIST SOLTUVAD PARATUD INTEGRAALID 315

Teoreem 2.19. Olgu kahe muutuja funktsioon w = f(x,y) pidev “poollahtises” rist-
kiilikus [a,b) x [¢, d], kusjuures pdratu integraal (2.12)) koondub ihtlaselt loigus [c,d].
Siis funktsioon (2.12)) on pidev loigus [c,d)].

Teoreem 2.20. Olgu kahe muutuja funktsioon w = f(x,y) pidev “poollahtises” rist-
kiilikus [a,b) x [¢, d], kusjuures paratu integraal (2.12)) koondub ihtlaselt loigus [c,d].
Siis funktsioon (2.12) on integreeruv loigus [c,d], kusjuures

fl(y) dy = f(ff(x,y) dx) dy = Lb (Ldf(x’y) dy) i

Teoreem 2.21. Olgu kahe muutuja funktsioon w = f(x,y) ja tema osatuletisfunki-
$100N % pidevad “poollahtises” ristkilikus [a,b) X |c,d|, kusjuures pdratu integraal
(2.12) koondub loigus [c,d] ning parameetrist soltuv paratu integraal SZ %(x,y) dx
koondub ihtlaselt (muutuja y suhtes) loigus [c,d]. Siis funktsioon (2.12)) on diferent-

seeruv loigus [c, d], kusjuures

b

0

I'(y) = J 6—f(x,y) dx igas punktis y € [c,d].
a OY

Nagu juba 6eldud, teoreemid on teoreemide analoogid. Ka teo-

reemide toestused on analoogilised vastavalt teoreemide toestus-

tega: teoreemid jarelduvad vastavalt teoreemidest 2.11], kuid seejuures

toetutakse lemma 2.2] asemel lemmale 2.16]



§ 3. Euleri integraalid

Selles paragrahvis tutvume me teatavate oluliste mitteelementaarfunktsioonidega,
mis on tuntud Fuleri integraalide nime all.

Fuleri esimest litki integraaliks ehk (Euleri) beetafunktsiooniks nimetatakse para-
meetri(te)st soltuvat integraali

1

B(p,q) = f 2?11 —2) N da. (3.1)
0

Selles integraalis on parameetrite rollis p ja q. Paneme tihele, et kui p < 1 voi ¢ < 1,

siis integraal on parameetri(te)st soltuv pdratu integraal: kui p < 1, siis integ-

raalialune funktsioon on tokestamata punkti 0 igas parempoolses iimbruses; kui

q < 1, siis integraalialune funktsioon on tokestamata punkti 1 igas vasakpoolses

iimbruses.

Euleri teist litki integraaliks ehk (Euleri) gammafunktsiooniks nimetatakse para-
meetrist soltuvat integraali

['(p) = JOO e " xP~ . (3.2)

0

Selles integraalis on parameetri rollis p. Integraal on parameetrist soltuv pdratu
integraal. Paratus selles integraalis esineb kahel pohjusel: esiteks, “lilemine integreeri-
misraja on c0” ning, teiseks, kui p < 1, siis integraalialune funktsioon on tokestamata
punkti 0 igas parempoolses timbruses.

3.1. Euleri integraalide koonduvuspiirkond

Lause 3.1. (a) FEuleri esimest liiki integraal (3.1)) koondub parajasti siis, kuip > 0
ja q > 0.

(b) Euleri teist liiki integraal (3.2)) koondub parajasti siis, kui p > 0.

TOESTUS. (a). Pératu integraal (3.1)) koondub parajasti siis, kui koonduvad péaratud
integraalid

1

%
L = J N1 —2)T de ja I, = f P11 —2) da; (3.3)
0

1

2

seejuures integraalide Iy ja I puhul piisab vaadelda vaid vastavalt juhtusid, kuip < 1
ja g < 1 (sest kui p > 1, siis integraali I; alune funktsioon on pidev 16igus [0, %],
kui aga ¢ = 1, siis integraali I, alune funktsioon on pidev 16igus [%, O]; seega need
funktsioonid on Riemanni mottes integreeruvad vastavalt 16ikudes [07 %] ja [%, O],
jarelikult need integraalid eksisteerivad ja on loplikud — vaadeldavatel juhtudel on
tegemist tavaliste Riemanni integraalidega).

316
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Mis tahes reaalarvu ¢ korral (1 — x)¢1 — 1, seega integraal I; koondub
x—0+

1
parajasti siis, kui koondub integraal {? 27~'dz (POHIENDADA!); see integraal aga
koondub parajasti siis, kui p > 0 (POHJENDADA!) .

Mis tahes reaalarvu p korral 27! —— 1, seega integraal I, koondub parajasti

r—1—

siis, kui koondub integraal Si(l —x)? ' dz (POHIENDADA!) ; see integraal aga koondub
2

parajasti siis, kui ¢ > 0 (POHIJENDADA!) .
Kokkuvottes oleme saanud, et paratu integraal (3.1) koondub parajasti siis, kui
p>0jaqg>0.

(b). Pdratu integraal (3.2)) koondub parajasti siis, kui koonduvad pératud integ-
raalid

1 0
I, = f e TxP L dx ja Iy = f e TP du; (3.4)
0 1

seejuures integraali I; puhul piisab vaadelda vaid juhtu, kuip < 1 (sest kuip > 1, siis
integraalialune funktsioon on pidev 16igus [0, 1], seega see funktsioon on Riemanni
mottes integreeruv selles 1oigus, jarelikult see integraal eksisteerib ja on loplik —
vaadeldaval juhul on tegemist tavalise Riemanni integraaliga).

Paneme tédhele, et integraal I5 koondub iga p € R korral. Toepoolest, olgu p € R.
Integraalis I, tekib pératus vaid sellest, et “lilemine integreerimisraja” on oo (integ-
raalialune funktsioon on pidev kogu poolsirgel [1,20)). Mis tahes reaalarvu « kor-
ral e x* —— (0 (POHJENDADA!) , seega ka

T—C0

- -1
e TP _
T —e xl,p-&-l N O,
.1'72 r—0

jéarelikult leidub reaalarv A > 1 selliselt, et

2

0<e “zP'<a? igaz> A korral (POHJENDADA!) .

Kuna piratu integraal {; 272dx koondub (p6mseNDADA!) , siis koondub ka integ-
raal Is.
¥ —— 1, siis integ-

Uurime niitid paratu integraali I; koonduvust. Kuna e~ ;
r—0+

raal I; koondub parajasti siis, kui koondub integraal Sé 2P Y dx (POHIENDADA!) ; see
integraal aga koondub parajasti siis, kui p > 0.

Kokkuvottes olemegi saanud, et piratu integraal (3.2) koondub parajasti siis,
kui p > 0. O]

3.2. Euleri funktsioonide pidevus

Lause 3.2. (a) Euleri beetafunktsioon (3.1)) on pidev kvadrandis
{(p.g) eR*: p>0, ¢>0}. (3.5)

(b) Euleri gammafunktsioon (3.2) on pidev poolsirgel {p € R: p > 0}.
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TOESTUS. (a). Toestamaks, et Euleri beetafunktsioon (3.1) on pidev kvadrandis (3.5,
piisab veenduda, et see funktsioon on pidev igas ristkiilikus

{(p,q) eR*: p1 <p < p2, 1 < ¢ < o}, (3.6)

kus 0 < p; < pyjal < q < ¢qo. Eeldamegi, et 0 < p; < py ja 0 < ¢ < ¢o. Veen-
dumaks, et beetafunktsioon on pidev ristkiilikus (3.6]), piisab veenduda, et (para-
meetritest p ja ¢ soltuvad) paratud integraalid on pidevad selles ristkiilikus (sest
B(p,q) = I + I5). Veendumaks, et piratud integraalid on pidevad ristkiilikus
(3-6), piisab teoreemi pohjal niidata, et need piratud integraalid koonduvad
iihtlaselt parameetrite p ja g suhtes selles ristkiilikus. (Tdpsemalt, integraalide I
ja I, pidevus ristkiilikus jareldub nende integraalide iihtlasest koonduvusest
selles ristkiilikus teoreemi [2.19)analoogide pohjal kahest parameetrist soltuva piratu
integraali jaoks vastavalt funktsioonist, mis on maaratud “poollahtises” risttahukas
(a,b] x [p1, 2] * [q1, q2], ja funktsioonist, mis on médratud “poollahtises” risttahukas
[a7 b) X [p17p2] X [q17Q2]')

Niitamaks, et piratud integraalid koonduvad {ihtlaselt parameetrite p ja ¢
suhtes ristkiilikus (3.6)), rakendame Weierstrassi tunnust (teoreemi analooge
kahest parameetrist sdltuva péaratu integraali jaoks). Mis tahes = € (0, 1), p € [p1, po]

ja q € |q1, ¢2] korral

|$p’1(1 — x)q’1| = mp’1(1 — 3:)‘171 < xpl*l(l — x)(ﬂ’l.

1
Kuna pératud integraalid {2 z” ' (1—z)? " dz ja {1 271 (1—z)2 ! dz koonduvad,
2
siis Weierstrassi tunnuse pohjal (teoreemi analoogide pohjal kahest parameet-
rist soltuva pératu integraali jaoks vastavalt funktsioonist, mis on méaaratud hulgas

(a,b] x Y x Z, ja funktsioonist, mis on méératud hulgas [a,b) x Y x Z) koonduvad
paratud integraalid I; ja I iihtlaselt parameetrite p ja g suhtes ristkiilikus (3.6)).

(b). Toestamaks, et Euleri gammafunktsioon on pidev poolsirgel {p e R: p >
0}, piisab veenduda, et see funktsioon on pidev igas 16igus [p1, p2], kus 0 < p; < po.
Eeldamegi, et 0 < p; < po. Veendumaks, et gammafunktsioon on pidev 16igus [p1, ps],
piisab veenduda, et (parameetrist p soltuvad) paratud integraalid on pidevad
selles 16igus (sest I'(p) = I + I). Veendumaks, et paratud integraalid on pide-
vad 16igus [p1,ps], piisab vastavalt teoreemide ja pohjal niidata, et need
péaratud integraalid koonduvad iihtlaselt parameetri p suhtes l6igus [p1, p2]. (Tép-
semalt, integraali I; puhul toetutakse siin teoreemi [2.19] asemel tema analoogile
“poollahtises” ristkiilikus (a, b] x [¢, d| médratud funktsiooni jaoks.)

Niitamaks, et paratud integraalid koonduvad iihtlaselt parameetri p suhtes
16igus [p1, p2], rakendame Weierstrassi tunnust (vastavalt teoreemi analoogi
“poollahtises” ristkiilikus (a,b] x [c, d] médratud funktsiooni jaoks ja teoreemi [2.3).
Mis tahes z € (0,1] ja p € [p1, po] korral

le “aP ) = e TaPt < e TPl
B . 1 g i .. . . -
Kuna paratu integraal So e~*xP1~! dx koondub, siis Weierstrassi tunnuse pohjal (teo-

reemi analoogi pohjal “poollahtises” ristkiilikus (a,b] x [¢,d] m&&dratud funkt-
siooni jaoks) koondub pératu integraal I; iihtlaselt parameetri p suhtes 16igus [p1, pz].
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Mis tahes z € [1,00) ja p € [p1, p2] korral
le a7t = e TPt < e tal2

Kuna pératu integraal S;’O e *xP2~! dx koondub, siis Weierstrassi tunnuse (teoree-
mi pohjal koondub pératu integraal I, iihtlaselt parameetri p suhtes loigus

[pl ; p2] . O

3.3. Euleri gammafunktsiooni omadusi

Lause 3.3. Euleri gammafunktsioon (3.2)) on poolsirgel {p € R: p > 0} kui tahes
palju kordi diferentseeruv; seejuures me voime seda funktsiooni diferentseerida kui
tahes palju kordi integraalt mdrg: all. Tapsemalt, iga n € N korral igas punktis p > 0

a"T e —z,.p—1 ” —z_p—1 n
dp"(p): . d_p”(e a? ) dw = ) e xP (Inx)" de. (3.7)

TOEsTUS. Lause toestuseks piisab veenduda, et mis tahes reaalarvude p, > p; > 0
korral kehtib valem iga n € N korral igas punktis p € [py, p2]. Fikseerime vabalt
reaalarvud py > p; > 0. Veendumaks, et valem kehtib iga n € N korral igas
punktis p € [p1, p2], piisab, defineerides

1 o0
Li(p) = j e 2P tdr ja L(p) = J e 2Pt dx,
0 1

veenduda, et iga n € N korral igas punktis p € [p1, po]

d"I,
dp™

1 n 0
(p) = J e 2P '(Inx)"dr ja "Iy (p) = J e 2P (Inx)" dw (3.8)
0 dp" 1

(sest D(p) = ILi(p) + L(p) ning § e “a YInz)"dx = S(l) e *zP(Inz)"dr +
§”e=aP~1(Inz)" dz). Veendumaks, et iga n € N korral igas punktis p € [py, p2] keh-
tivad vordused , piisab vastavalt teoreemide jap()hjal niidata, et nendes
vordustes paremal pool vordusmaérki olevad paratud integraalid koonduvad iihtla-
selt parameetri p jirgi 1oigus [py, po]. (Tdpsemalt, vordustest esimese kehtivuse
pohjendamisel me toetume siin teoreemi 2.21] asemel tema analoogile “poollahtises”
ristkiilikus (a, b] x [¢, d] médratud funktsiooni jaoks.)

Néitamaks, et vordustes esinevad paratud integraalid koonduvad iihtlaselt
parameetri p suhtes 16igus [p1, p2], rakendame Weierstrassi tunnust (vastavalt teoree-
mi analoogi hulgas (a, b] x Y méératud funktsiooni jaoks ja teoreemi [2.3). Mis
tahes z € (0,1] ja p € [p1, po] korral, valides reaalarvu « > 0 selliselt, et p; — a > 0,

(Inz)" ‘

le 2P (Inz)"| = e 2P H(Inx)"| < e 2P |(Inz)"?| = e “aPr ! —a

1—a—1|(Inz)"
‘ T

dzx koondub (sest ‘%‘ —— 0 (pOH-
r—0+

C . 1 _ o < .
JENDADA!) ja pdratu integraal So e zP1=~1 dz koondub (POHIENDADA, MIKS STIT JA-

Kuna piratu integraal S(l) e TaP
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RELDUB PARATU INTEGRAALI SO e @gpi-o |20 4o koonpuvUs!) ) siis Weierstrassi tun-

nuse pohjal (teoreemi [2.17] analoogl pohjal hulgas (a,b] x Y méédratud funktsiooni
jaoks) koondub pératu integraal S e P71 (Inz)" dx iihtlaselt parameetri p suhtes
16igus [p1, p2]. Mis tahes x € [1,00) ja p € [p1, p2] korral

(In x)”

le 2P (Inx)"| = e 2P (Inz)" < e "2 (Inz)" = e “al?

Kuna pératu integraal §° e~®z?2 (1”) dx koondub (sest (ln;”) —— 0 (POHJENDADA!)

Tr—0

ja paratu integraal Sl e TP dx koondub (POHJENDADA, MIKS ST JARELDUB PARATU

INTEGRAALI ;e %aP2 122% gy koonpuvus!) ) siis Weierstrassi tunnuse (teoreemi )

pohjal koondub pératu integraal §;” e *2P~!(Inz)" du iihtlaselt parameetri p suhtes
16igus [p1, po]. O

Lause 3.4. Mis tahes reaalarvu p > 0 korral

I'(p+1) = pI'(p). (3.9)
TOESTUS. Ositi integreerimise valemi pohjal

0

I'(p+1) = J e “al dx = J P d(—e™") = (—e_%p)‘gj +pf e P d

0 0 0

0
=0+ pf e “aP Vdx = pl'(p).
0

Toepoolest,

e 1 o'}
I'lp+1) = J e TxP dx = f e TaP dx +J e 2P dx
0 0 1
1 b

= lim e *zP dr + lim e Tzl dx.
a—0+ a b—o 1

Rakendades integraalidele Si e *xPdzr ja Sllj e %zPdr, kus 0 < a < 1 ja b > 1, ositi integree-
rimise valemit, saame

1 1 1
J e TxPdx = f 2P d(—e™") = (_e_xxp)le +PJ e "a? " du

a a a
ja

b b b
J e aP dr = J 2P d(—e™") = (—e_mxp)ﬁ +pf e P ldx,
1

1 1
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seega

1 b
lim (eaap —e ! +pJ e TPl dm) + lim (el —e by +plf e aP! dx)
a—0+ a b—oC 1

1 e
(0— et +pj e TgPl d:v) + (el —O—i—pf e TgPl d:r)
0 1

o
= pJ e 2xPVdx = pI(p).
1

L(p+1)

[]

Mis tahes n € N ja reaalarvu p > n — 1 korral saame valemit (3.9) n korda
rakendades
F'p+1)=plp—1)---(p—n+I'(p—n+1). (3.10)

Valemile (3.10) (samuti valemile (3.9))) viidatakse kui (gammafunktsiooni) taanda-
masvalemile: see valem voimaldab esitada gammafunktsiooni vidrtused argumendi
vaartuste korral, mis on suuremad iihest, selle funktsiooni véédrtuste kaudu argu-
mendi vidrtuste korral, mis on nulli ja iihe vahel.
Arvestades, et I'(1) = §’e “dax = 1, saame, vittes taandamisvalemis
p=neN,
'n+1)=nn—-1)---2-1=nl

Lause 3.5. Mis tahes reaalarvu p € (0,1) korral

F(p)T(1—p) = — (3.11)

sinmp’

Valemile (3.11)) viidatakse kui (gammafunktsiooni) tdiendusvalemile

LAUSE [3.5] TOESTUS. KAESOLEVAS KURSUSES ME SEDA TEOREEMI EI TOESTA.

3.4. Euleri beetafunktsiooni omadusi

Lause 3.6. Mis tahes reaalarvude p > 0 ja q > 0 korral

(a) B(p,q) = B(q,p);

(b) B(p,g+1) = ]%qB(p, q);

(¢) B(p+1,9) = ——B(p,q);

ptyq
(d) kui 0 <p <1, siis B(p,1—p) = = i ;
sin 7p
e} tp*l
B = ———dt
(e) (p, Q) JO (1 + t)p+q

]
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Valemile (a) lauses 3.6 viidatakse kui beetafunktsiooni simmeetriaomadusele, vale-
mitele (b) ja (c¢) kui taandamisvalemitele ning valemile (d) kui tdiendusvalemile.
Téiendusvalemi (d) toestamise liikkkame edasi jirgmisse jaotisse: me jiareldame selle
gammafunktsiooni tdiendusvalemist (lausest kasutades seost Euleri integraalide

vahel (lauset [3.7).

LAUSE 3.6l TOEsTUS. Olgu p > 0 ja ¢ > 0.

(a). Valem B(p,q) = B(q,p) saadakse, kui teha integraalis Sé 2P 11— 2)7 tdx
muutuja vahetus z =1 —t.

Toepoolest,

1

1
2
P11 —2)T  do + J 2P (1 —2) da
2

P11 —2) N de = J
0

B(pa) = |

0
% b
= lim P 1 —2) Yde + lim | 2P'(1—2)?  da.

a—0+ J, b—1— 1
1
Tehes integraalides {2 P~ (1 — )9~ dx ja Sli Pl (1—2)lde, kusO<a< ijal <b<l,
2
muutuja vahetuse x = 1 — ¢, saame

% l1—a
f xpflu—x)q*ldx:J 11— L gy

2

ja
b 3
J xpflu—x)q*ldx:f 111 = 1 gy,
3 1-b
seega
1—a %
B(p,q) = lim t171(1 — )P~ dt + lim t17 (1 — )P tat
a—0+ % b—1— 1—b
L 1

. 1
- f T 1 — )P dt + f N1 —t)Phdt = J t7H (1 — )P~ dt = B(q,p)-
} 0 ’

(b). Ositi integreerimise valemi pohjal

1 1
B(p,q+1) = J 11 —2)dr = lim | 2?11 —2)%dx

0 a—0+ a
P P(1 — 2)e 1 1
= lim | (1—2) d(x_) — lim (u n QJ (1 — )0 d:r;)
a—0+ a p P u J,

P(1 — a)? 1
= lim (O— u) + 2 1im (1 —2)" dx

a—0+ p p a—0+ a

1

g
= —f 2P (1 —2) " da.
P Jo
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Arvestades, et

2P(1—2) = 2P(1 —2)7 — 2P (1 — )0 2P (1 — )97t
=2 M (1—2) Nz 1) +2” 11 —a2)7!

= 2P (1 —2) + 2P (1 — 7))

saame eelnevast vordusteahelast

1 1
B(p,g+1) = _QJ 2P (1 —x)'de + QJ P (1 —2) N da
D Jo P Jo

q q
= —=B(p,q+1)+ =B(p,q),
p( ) ) (,q)

millest jareldub toestatav vordus B(p,q+ 1) = %B(p, q).
prq

(¢). Beetafunktsiooni siimmeetriaomaduse (a) ja taandamisvalemi (b) pohjal

P P
B(p+1,q) =B(qg,p+1) = ——B(q,p) = ——B(p,q)-
( ) ( ) " (¢,p) p+q( )

(e). Valem saadakse, kui teha integraalis B(p.q) = Sé 2P~ 1(1 — 2)9 1 dr muutuja

vahetus z = POHJENDADA!) . O

t
Tt

3.5. Euleri integraalide vaheline seos

Lause 3.7. Mis tahes reaalarvude p > 0 ja q > 0 korral

['(p) T'(q)
L(p+q)

Enne lause toestamist toestame — jéreldusena sellest lausest ja lausest
(gammafunktsiooni tiiendusvalemist) — lause [3.6] viite (d) (beetafunktsiooni téien-
dusvalemi).

B(p.q) = (3.12)

LAUSE [3.6], (d), TOESTUS. Kui0 < p < 1, siis lausete [3.7] ja[3.5] (gammafunktsiooni
taiendusvalemi) pohjal
L(p) (1 —p) m

B(p,1—-p) = O I'(p) (1 —p) = prp—

]

LAUSE [3.71 TOESTUS. Olgu p,q > 0 ning olgu ¢t > 0. Tehes integraalis T'(p) =
§o e~ 2P~! dz muutuja vahetuse x = tu, saame I'(p) = t* [ e~ uP~ du (pOHIEN-

F o0
(p) = J e " uPt du.

DADA!) , millest
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Vottes selles vorduses arvude p ja t rolli vastavalt p + ¢ ja 1 + t ning korrutades
seejérel saadud vorduse molemaid pooli arvuga tP~!, saame

r =1 ”
0 0

kus f(u,t) = e UTOup-lypta=l Vardusteahel (3.13) kehtib iga ¢ > 0 korral, seega
lause [3.6] (e), pohjal

T(p+q) B(p.g) = T(p + q) ijdtz Looqu Flu,t) du> . (3.14)

o (L+t)pta

Kui p,q > 1, siis teoreemi pohjal

f:o (f Fu.) du) dt = f U:O F(u,1) dt) du, (3.15)

sest juhul, kui p,q > 1, rahuldab funktsioon f teoreemi eeldusi, kui seal votta
a = ¢ = 0 ning muutujate x ja y rolli votta vastavalt u ja t; nimelt,

e funktsioon f on mittenegatiivne ja pidev kvadrandis {(u,t): u,t = 0};

e parameetrist £ soltuv paratu integraal I(t) := So (u,t) du koondub ja on pidev
poolsirgel t > 0 (vordus(t)e (3.13) pohJal

e parameetrist u soltuv piratu integraal K(u) := { f(u,t)dt koondub ja on
pidev poolsirgel u = 0:

© o0
- J f(u7 t) dt = J 6_(1+t)u tp_l up-i-q—l dt
0 0

e8] o0
=e "ul! f e ()P tudt = e tul! f e TP dr = e "ud T (p);
0 0
(3.16)
e piratu integraal § I(t)dt = § (. f(u,t) du) dt koondub (vordus(t)e (3.14)

pohjal).

Vordustest (3.14), (3.15) ja (3.16]) saame niiiid

I(p+q) B f(f futdt>du_f K(u ()Looe_“uq_ldu

=T(p

millega on toestatud vorduse kehtivus juhul, kui p,q > 1.
Olgu niitid p,q > 0 suvalised. Siis p+1 > 1 ja ¢ + 1 > 1, seega #sjatoestatu

pohjal

Flp+1)T(¢g+1)

Blp+1,q+1) = Totg+2)

(3.17)
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Beetafunktsiooni taandamisvalemi(te) (lause [3.6] (b) ja (c)) pohjal

q p
B +1, == ° B 9 7
(p+1,9) retl pia (p,q)

7
p+qg+1

Blp+1,g+1) =

gammafunktsiooni taandamisvalemi (lause pohjal

T(p+1)T(g+1) pT'(p)qT(q)

T(p+q+2) pP+a+D)p+Tp+q)

Vordus (3.12) jareldub vordustest (3.17)—(3.19)).
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