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1 Entroopia ja informatsioon

1.1 Entroopia

1.1.1 De�nitsioon ja omadused

Vaatleme diskreetset juhuslikku suurust X jaotusega P . Olgu X = {x1, x2, . . .} Ülimalt
loenduv hulk, mis sisaldab juhusliku suuruse X võimalikke väärtusi. Tähistame

pi := P(X = xi) = P (xi),

s.t. pi on tõenäosus, et X võtab väärtuse xi. Jaotus P on üheselt määratud paaridega
{(xi, pi)}, sest iga hulga A ⊂ X korral

P (A) = P(X ∈ A) =
∑
i:xi∈A

pi =
∑
x∈A

P (x).

Tihti esitatakse selline jaotus tabelina

x1 x2 x3 . . .
p1 p2 p3 . . .

,

kusjuures xi 6= xj, kui i 6= j ja pi ≥ 0. Edaspidi ütleme, et jaotus (tõenäosusmõõt)
P on antud hulgal X . Paneme tähele, et X võib olla suvaline hulk, mitte ilmtingimata
reaalarvude alamhulk. Näiteks võib hulk X olla tähestik, s.t. X = {a, b, . . . , y}. Sellisel
juhul on X juhuslik täht. Informatsiooniteoorias nimetataksegi hulka X tihti tähestikuks
(alphabet).

Jaotuse P kandja (support) XP on tähed, mille korral P (x) > 0. Seega

XP := {x ∈ X : P (x) > 0}.

Tuletame meelde, et kui g : X → R on suvaline funktsioon, mis rahuldab tingimust∑
pi|g(xi)| < ∞, siis

Eg(X) =
∑
i

pig(xi) =
∑
x∈X

P (x)g(x) =
∑
x∈XP

P (x)g(x) (1.1)

NB! Alljärgnevas tähistame log := log2 ning lepime kokku, et 0 log 0 = 0.

Def 1.1 Juhusliku suuruse X (jaotuse P ) entroopia (entropy) H(X) on

H(X) = −
∑
i

pi log pi = −
∑
x∈X

P (x) logP (x) = −
∑
x∈XP

P (x) logP (x).
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Märkused:

� H(X) sõltub vaid juhusliku suuruse X jaotusest P . Seetõttu tähistame entroopiat
H(X) ka H(P ).

� Seose (1.1) tõttu

H(X) = E
(
− logP (X)

)
= E

(
log

1

P (X)

)
.

� Et − log pi ≥ 0, on
∑

i −pi log pi mittenegatiivsete liikmetega rida. Sellise rea
summa on alati de�neeritud, kuid võib olla lõpmatu. Seega

0 ≤ H(X) ≤ ∞,

kusjuures H(X) = 0 parajasti siis, kui X on peaaegu kindlasti konstant.

� Entroopia ei sõltu tähestikust X . Tõepoolest, olgu jaotused P ja Q antud tabelitega

P :
x1 x2 x3 . . .
p1 p2 p3 . . .

Q :
y1 y2 y3 . . .
p1 p2 p3 . . .

Siis H(P ) = H(Q). Et oluline on vaid tõenäosuste vektor (p1, p2, . . .), kasutame
tihti tähistust

H(p1, p2, . . .).

� Põhimõtteliselt võib entroopia de�neerida ka mõne muu logaritmi abil. Logaritmi
logb abil de�neeritud entroopiat tähistame Hb. Seega

Hb(X) = −
∑
i

pi logb pi = −
∑
x∈X

P (x) logb P (x).

Et logb p = logb a loga p, siis

Hb(X) = (logb a)Ha(X),

millest Hb(X) = (logb 2)H(X) ning He(X) = (ln 2)H(X). Informatsiooniteoorias
kasutatakse harilikult kahendlogaritmi abil de�neeritud entroopiat. Seda mõõde-
takse bittides. Naturaallogaritmi kaudu de�neeritud entroopiat mõõdetakse nat-
tides, kümnendlogaritmi kaudu de�neerituid entroopiat mõõdetakse dittides.

� Jaotuse P entroopia ei muutu, kui hulka X laiendada elementidega, mille tõenäosus
on 0. Seega, kui X ′ on suvaline hulk, mis sisaldab hulka X , siis kehtib

H(X) = −
∑
x∈X ′

P (x) logP (x). (1.2)
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Entroopia H(X) mõõdab juhusliku suuruse X �keskmist juhuslikkust�. Mida suurem on
entroopia, seda �juhuslikum� on X. Konstant ei ole juhuslik, seetõttu on konstandi en-
troopia 0. Entroopiat võib ka interpreteerida kui informatsioonihulka, mida juhusliku
suuruse väärtuse teadasaamine meile annab. Mida �juhuslikum� on X, seda vähem os-
kame me ära arvata juhusliku suuruse väärtust (juhusliku katse tulemust) ning seda enam
informatsiooni selle väärtuse (katse tulemuse) teadasaamine meile annab.

Esmakordselt de�neeris entroopia ameerika matemaatik C. Shannon oma 1948.-l aastal
ilmunud teedrajavas artiklisA mathematical theory of communication. Seetõttu nimetatakse
entroopiat tihti ka Shannoni entroopiaks.

Näited:

1 Olgu X = {0, 1}, p = P(X = 1). Seega on X Bernoulli p-jaotusega juhuslik suurus,
X ∼ B(1, p). Leiame

H(X) = −p log p− (1− p) log(1− p) =: h(p).

Funktsiooni h(p) nimetatakse binaarseks entroopiafunktsiooniks . Funktsioon
h(p) on nõgus, punkti 1

2
suhtes sümmeetriline ning saavutab maksimumi juhul, kui

p = 1
2
. Siis

h(
1

2
) = −1

2
log

1

2
− 1

2
log

1

2
= log 2 = 1.

Seega on (nihketa) mündi viske entroopia 1. Teadmine, kas sellise mündi viskel tuli
kull või kiri, annab meile täpselt 1 biti informatsiooni (sellest tulenevalt ongi en-
troopia de�neerimisel võetud aluseks kahendlogaritm). Kui kulli tulemise tõenäosus
p on väiksem arvust 1

2
, siis on entroopia väiksem kui 1. See ühtib intuitsiooniga:

mida väiksem on kulli tulemise tõenäosus, seda �mittejuhuslikum� on X ning seda
�kergem� on mündiviske tulemust ära arvata. Sellevõrra vähem informatsiooni mün-
divise endas kätkeb.

Figure 1: Binaarne entroopiafunktsioon
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2 Vaatleme jaotusi

P :
a b c d e
1
2

1
4

1
8

1
16

1
16

Q :
a b c d
1
4

1
4

1
4

1
4

.

Leiame

H(P ) = −1

2
log

1

2
− 1

4
log

1

4
− 1

8
log

1

8
− 1

16
log

1

16
− 1

16
log

1

16
=

1

2
+

2

4
+

3

8
+

4

16
+

4

16
=

15

8
H(Q) = log 4 = 2.

Seega on jaotus P "vähem juhuslik", kuigi tema aatomite arv on suurem.

1.1.2 Entroopia aksiomaatiline de�nitsioon

On kerge veenduda, et entroopial on nn. grupeerimisomadus

H(p1, p2, p3, . . .) = H(Σk
i=1pi, pk+1, pk+2, . . .) +

(
Σk

i=1pi
)
H
( p1
Σk

i=1pi
, . . . ,

pk
Σk

i=1pi

)
(1.3)

Omaduse (1.3) tõestus on ülesanne 2.

Grupeerimisomadus on teatavas mõttes igati loomulik juhuslikkuse "aditiivsuse" omadus,
mistõttu on loogiline eeldada, et iga funktsioon f(p1, p2, . . .), mis mõõdab juhuslikkust,
peaks seda omadust rahuldama. Selgub aga, et kui X on lõplik, siis f mis rahuldab gru-
peerimisomadust ning on lisaks pidev, sümmeetriline ja normeeritud (igati loomulikud
eeldused) saab olla ainult entroopia.

Sõnastame selle väitena. Lõpliku X korral on iga tõenäosusmõõt vektor (p1, . . . , pm), kus
|X | = m, pi ≥ 0 ja

∑n
i=1 pi = 1. Olgu selliste vektorite hulk Pm, seda hulka nimetatakse

((m− 1)-dimensionaalseks) simpleksiks. Funktsioon fm : Pm → R on pidev parajasti siis,
kui ta on pidev kõikide argumentide järgi. Funktsiooni fm nimetame sümmeetriliseks, kui
fm(p1, . . . , pm) ei sõltu argumentide järjekorrast.

Väide 1.1 Olgu iga m korral fm : Pm → [0,∞) sümmeetrilised funktsioonid, mis rahul-
davad järgmisi omadusi (aksioome):

A1 f2 on normaliseeritud, st f2(12 ,
1
2
) = 1;

A2 fm on pidev iga m = 2, 3, . . . korral;

A3 kehtib grupeerimisomadus: iga 1 < k < m korral

fm(p1, p2, . . . , pm) = fm−k+1(Σ
k
i=1pi, pk+1, . . . , pm)+

(
Σk

i=1pi
)
fk

( p1
Σk

i=1pi
, . . . ,

pk
Σk

i=1pi

)
.

A4 iga m < n korral fm( 1
m
, . . . , 1

m
) ≤ fn(

1
n
, . . . , 1

n
).
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Siis iga m korral

fm(p1, . . . , pm) = −
m∑
i=1

pi log pi. (1.4)

Tõestus. Olgu iga m korral

g(m) := fm(
1

m
, . . . ,

1

m
).

Grupeerimisomadust ja sümmeetriat m korda rakendades saame

g(mn) = fnm

( 1

nm
, . . . ,

1

nm︸ ︷︷ ︸
n

, . . . ,
1

nm
, . . . ,

1

nm︸ ︷︷ ︸
n

)

= fm(
1

m
. . . ,

1

m
) + fn

( 1
n
, . . . ,

1

n

)
= g(m) + g(n).

Seega iga täisarvu n ja k korral g(nk) = kg(n) ja A1 tõttu g(2k) = kg(2) = k ehk

g(2k) = log(2k), ∀k.

Omadust A4 kasutades on võimalik näidata, et ülaltoodud võrdus kehtib iga täisarvu n
korral, ehk

g(n) = log n, ∀n ∈ N.

Tõepoolest: oletame vastuväiteliselt, et leidub n nii, et g(n) > log(n). Siis leidub murd
l
k
nii, et g(n) > l

k
> log(n), millest k log(n) = log(nk) < l ehk nk < 2l. Omadus A4:

g(nk) ≤ g(2l) = l. Et aga g(nk) = kg(n), saame kg(n) ≤ l ehk g(n) ≤ l/k � vastuolu.
Eeldades vastuväiteliselt, et g(n) < log(n), jõuame ka vastuoluni (analoogiliselt).

Olgu nüüd m suvaline täisarv ja vaatleme vektorit (p1, . . . , pm), mille kõik komponen-
did on ratsionaalarvud. Seega leiduvad täisarvud k1, . . . , km ja ühine nimetaja n nii, et
pi =

ki
n
, i = 1, . . . ,m. Sellisel juhul

g(n) = fn
( 1

n
, . . . ,

1

n︸ ︷︷ ︸
k1

,
1

n
, . . . ,

1

n︸ ︷︷ ︸
k2

, . . . ,
1

n
, . . . ,

1

n︸ ︷︷ ︸
km

)

= fm(
k1
n
, . . . ,

km
n
) +

m∑
i=1

ki
n
fki(

1

ki
, . . . ,

1

ki
)

= fm(p1, . . . , pm) +
m∑
i=1

ki
n
g(ki) = fm(p1, . . . , pm) +

m∑
i=1

pi log(ki).

Seega

fm(p1, . . . , pm) = log(n)−
m∑
i=1

pi log(ki) = −
m∑
i=1

pi log(
ki
n
) = −

m∑
i=1

pi log pi
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ehk ratsionaalarvuliste argumentide korral (1.4) kehtib. Et fm on pidev, kehtib (1.4) su-
valiste argumentide korral.

Märkus: Väide kehtib ka ilma aksioomita A4.

1.1.3 Entroopia on rangelt nõgus

Funktsioon g : R → R on kumer, kui iga x1, x2 ja λ ∈ [0, 1] korral kehtib

g(λx1 + (1− λ)x2) ≤ λg(x1) + (1− λ)g(x2).

Funktsioon g on rangelt kumer kui võrdus kehtib vaid siis, kui λ = 1 või λ = 0. Funktsioon
g on nõgus, kui −g on kumer.

Jaotuste segu. Olgu P1 ja P2 kaks hulgal X antud jaotust. Eeldus, et P1 ja P2 on
antud ühel ja samal hulgal pole üldisust kitsendav: kui P1 on antud hulgal X1 ja P2 on
antud hulgal X2, siis de�neerime X = X1 ∪ X2. Mõõtude P1 ja P2 segu on nende kumer
kombinatsioon

Q = λP1 + (1− λ)P2, λ ∈ (0, 1).

Kui X1 ∼ P1 ja X2 ∼ P2 ning Z ∼ B(1, λ), siis järgmine juhuslik suurus on jaotusega Q:

Y =

{
X1 kui Z = 1,

X2 kui Z = 0.

On selge, et segu Q kätkeb endas nii P1 kui ka P2 juhuslikkust. Lisaks on juhuslik
komponendi valik (juhuslik suurus Z). Järgnev väide näitab, et H(Q) on suurem kui
λH(P1) + (1− λ)H(P2) ehk entroopia on nõgus.

Väide 1.2 Entroopia on rangelt nõgus, s.t.

H(Q) ≥ λH(P1) + (1− λ)H(P2), ∀λ ∈ (0, 1),

kusjuures võrratus on range välja arvatud juhul, kui P1 = P2.

Tõestus. Funktsioon f(y) = −y log y on rangelt nõgus (y ≥ 0). Seega iga x ∈ X korral

−λP1(x) logP1(x)− (1− λ)P2(x) logP2(x) = λf
(
P1(x)

)
+ (1− λ)f

(
P2(x)

)
≤ f

(
λP1(x) + (1− λ)P2(x)

)
= −Q(x) logQ(x).

Summeerides mõlemad pooled üle X , saame

λH(P1) + (1− λ)H(P2) ≤ H(Q).

Viimane võrratus on range, kui leidub vähemalt üks x ∈ X nii, et P1(x) 6= P2(x).

Näide: Olgu Pi = B(1, pi), i = 1, 2. Siis λP1 + (1 − λ)P2 = B(1, λp1 + (1 − λ)p2).
Entroopia nõgususest järeldub:

h(λp1+(1−λ)p2) = H(λP1+(1−λ)P2) ≥ λH(P1)+(1−λ)H(P2) = λh(p1)+(1−λ)h(p2),

st binaarne entroopiafunktsioon on nõgus.
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1.1.4 Jenseni võrratus

Edaspidi kasutame tihti Jenseni võrratust. Et Jenseni võrratus käsitleb X keskväärtust,
eeldame seejuures, et X ⊂ R, st tähed on reaalarvud (vastasel juhul pole EX de�neeri-
tud).

Teoreem 1.2 (Jenseni võrratus). Olgu X ⊂ R, ja g kumer funktsioon, kusjuures
E|g(X)| < ∞ ja E|X| < ∞. Siis

Eg(X) ≥ g(EX). (1.5)

Kui g on rangelt kumer, siis (1.5) on võrdus parajasti siis, kui X = EX p.k.

Tõestus. Tuleta meelde (rangelt) kumera funktsiooni de�nitisioon. Kumeral funktsioonil
g on omadus:

∀y ∈ R ∃m(y) ∈ R : g(x)− g(y) ≥ m(y)(x− y), ∀x ∈ R.

(m(y) = g′(y), kui viimane eksisteerib). Kui g on rangelt kumer, siis on ülaltoodud
võrratus võrdus vaid x = y korral.
Olgu y = EX ∈ R. Iga juhusliku suuruse X väärtuse xi korral

g(xi)− g(EX) ≥ m(EX)(xi − EX).

Seega

Eg(X)−g(EX) =
∑(

g(xi)−g(EX)
)
pi ≥ m(EX)

∑(
xi−EX

)
pi = m(EX)(EX−EX) = 0

ehk
Eg(X) ≥ g(EX).

Näitame nüüd, et rangelt kumera g korral on võrratus võrdus vaid siis, kui X = EX p.k.
Olgu

Z :=
(
g(X)− g(EX)

)
−m(EX)

(
X − EX

)
.

Juhuslik suurus Z on mittenegatiivne. Seega EZ = 0 parajasti siis, kui Z = 0 p.k., millest(
g(X) − g(EX)

)
= m(EX)

(
X − EX

)
p.k.. Rangelt kumera g korral tähendab viimane

võrdus, et X = EX p.k.

1.2 Ühisentroopia

Olgu X ja Y diskreetsed juhuslikud suurused, mis võtavad väärtusi tähestikel X ja Y .
Seega (X,Y ) on diskreetne juhuslik vektor, mille väärtused sisalduvad hulgas

X × Y = {(x, y) : x ∈ X , y ∈ Y}.

Olgu (X,Y ) ühisjaotus P . Seega on P hulgal X × Y antud tõenäosusmõõt. Tähistame

pij := P (xi, yj) = P
(
(X,Y ) = (xi, yj)

)
= P(X = xi, Y = yj).

Ühisjaotus esitatakse tihti tabelina
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X\Y y1 y2 . . . yj . . .
∑

x1 P (x1, y1) = p11 P (x1, y2) = p12 . . . p1j . . .
∑

j p1j = P (x1)

x2 P (x2, y1) = p21 P (x1, y2) = p22 . . . p2j . . .
∑

j p2j = P (x2)

· · · . . . . . . . . . . . . . . . . . .
xi pi1 pi2 . . . pij . . .

∑
j pij = P (xi)

· · · . . . . . . . . . . . . . . . . . .∑ ∑
i pi1 = P (y1)

∑
i pi2 = P (y2) . . .

∑
i pij = P (yj) . . . 1

Ülaltoodud tabelis ning ka edaspidi,

P (x) := P(X = x) ja P (y) := P(Y = y)

tähistavad marginaaltõenäosusi. Pane tähele, et kui mingi paari (x, y) korral P (x, y) > 0,
siis ka P (x) > 0 ja P (y) > 0. Kui X ja Y on sõltumatud, siis

P (x, y) = P (x)P (y) ∀x ∈ X , y ∈ Y .

Et juhuslikku vektorit (X,Y ) võib vaadelda kui diskreetset juhuslikku suurust, avaldub
tema entroopia

H(X,Y ) = −
∑
ij

pij log pij = −
∑

(x,y)∈X×Y

P (x, y) logP (x, y) = E
(
− logP (X,Y )

)
. (1.6)

Def 1.3 Juhusliku vektori (X,Y ) entroopiat (1.6) nimetatakse juhuslike suuruste X ja Y

ühisentroopiaks (joint entropy) .

Kui juhuslikud suurused X,Y on sõltumatud, siis

H(X,Y ) = −
∑

(x,y)∈X×Y

P (x, y) logP (x, y) = −
∑
x∈X

∑
y∈Y

P (x)P (y)(logP (x) + logP (y))

= −
∑
x∈X

P (x) logP (x)−
∑
y∈Y

P (y) logP (y) = H(X) +H(Y ).

Ülaltoodud argumendi saab esitada ka teisiti. Iga x ∈ X ja y ∈ Y korral kehtib
logP (x, y) = logP (x)+logP (y), millest logP (X,Y ) = logP (X)+logP (Y ). Keskväärtus
on lineaarne, seega

H(X,Y ) = −E
(
logP (X,Y )

)
= −E

(
logP (X) + logP (Y )

)
= −E logP (X)− E logP (Y ) = H(X) +H(Y ).

Sõltumatute juhuslike suuruste ühisentroopia on seega komponentide entroopiate summa.
See ühtib intuitsiooniga: kui X ja Y on sõltumatud, siis ei anna X väärtuse tead-
mine mingit informatsiooni Y kohta. See aga tähendab seda, et vektori (X,Y ) väärtuse
teadasaamine annab niipalju informatsiooni kui mõlematest komponentidest saadava in-
formatsiooni summa.
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Analoogiliselt de�neeritakse mitme juhusliku suuruse X1, . . . , Xn ühisentroopia

H(X1, . . . , Xn) := −E logP (X1, . . . , Xn).

Kui juhuslikud suurused on sõltumatud, siis

H(X1, . . . , Xn) =
n∑

i=1

H(Xi).

1.3 Tinglik entroopia

1.3.1 De�nitsioon

Tähistame tinglikud tõenäosused

P (x|y) := P(X = x|Y = y) =
P (x, y)

P (y)
, P (y|x) := P(Y = y|X = x) =

P (x, y)

P (x)
.

Tuletame meelde: juhusliku suuruse Y tinglik jaotus tingimuselX = x (eeldusel P (x) > 0)
on

y1 y2 y3 . . .
P (y1|x) P (y2|x) P (y2|x) . . .

.

Selle jaotuse entroopia avaldub

H(Y |x) :=: H(Y |X = x) := −
∑
y∈Y

P (y|x) logP (y|x).

Vaatleme hulgal X antud funktsiooni x 7→ H(Y |x). Võttes selle funktsiooni argumendiks
juhusliku suuruse X, saame uue juhusliku suuruse (juhusliku suuruse X funktsiooni),
mille jaotus on

H(Y |x1) H(Y |x2) H(Y |x3) . . .
P (x1) P (x2) P (x3) . . .

.

Sellise jaotuse keskväärtus on (tuleta meelde, et XP on P kandja � tähed, mille tõenäosus
on positiivne) ∑

x∈XP

H(Y |x)P (x).

Def 1.4 Juhusliku suuruse Y tinglik entroopia (conditional entropy) tingimusel
X on

H(Y |X) :=
∑
x∈XP

H(Y |x)P (x) = −
∑
x∈XP

P (x)
∑
y∈Y

logP (y|x)P (y|x)

= −
∑
x∈XP

∑
y∈Y

logP (y|x)P (x, y) = −E
(
logP (Y |X)

)
.
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Märkused:

� Kui juhuslikud suurused X ja Y on sõltumatud, siis P (y|x) = P (y) ∀x ∈ X , y ∈ Y ,
millest H(Y |X) = H(Y ).

� Üldiselt H(X|Y ) ei võrdu H(Y |X). Olgu näiteks X,Y sõltumatud juhuslikud suu-
rused, kusjuures H(X) 6= H(Y ). Siis H(X|Y ) = H(X) 6= H(Y ) = H(Y |X).

� H(Y |X) = 0 parajasti siis, kui Y on X funktsioon. Tõepoolest, H(Y |X) = 0
parajasti siis, kui H(Y |X = x) = 0 iga x ∈ X korral. See aga tähendab, et leidub
konstant f(x) nii, et P(Y = f(x)|X = x) = 1 ehk Y = f(X). Järelikult kehtib ka
H(X|X) = 0.

Järgmine väide avab tingliku entroopia olemuse.

Väide 1.3
H(X,Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y ).

Tõestus. Iga (x, y) ∈ X × Y korral nii, et P (x, y) > 0 kehtib P (x, y) = P (x)P (y|x),
millest

logP (x, y) = logP (x) + logP (y|x)
Seega

H(X,Y ) = −E logP (X,Y ) = −E logP (X)− E logP (Y |X) = H(X) +H(Y |X).

Et H(X,Y ) = H(Y,X), siis teine võrdus kehtib ka.

1.3.2 Ketireeglid

Olgu X,Y, Z kolm juhuslikku suurust väärtuste hulgaga. Olgu nende kandjad vastavalt
X ,Y ja Z. Analoogiliselt H(Y |X) de�nitsiooniga de�neerime H(X,Y |Z) ja H(X|Y, Z):

H(X,Y |Z) := −
∑
z∈Z

P (z)
∑

(x,y)∈X×Y

P (x, y|z) logP (x, y|z)

= −
∑

(x,y,z)∈X×Y×Z

logP (x, y|z)P (x, y, z) = −E logP (X,Y |Z)

H(X|Y, Z) := −
∑

(y,z)∈Y×Z

P (y, z)
∑
x∈X

P (x|y, z) logP (x|y, z)

= −
∑

(x,y,z)∈X×Y×Z

logP (x|y, z)P (x, y, z) = −E logP (X|Y, Z).

Nüüd on selge, kuidas suvaliste juhuslike suurusteX1, . . . , Xn korral on de�neeritud tinglik
entroopia

H(Xn, Xn−1, . . . , Xj|Xj−1, . . . , X1).

Väide 1.3 üldistub mitmes suunas. Alljärgnev on väite 1.3 tinglik versioon
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Väide 1.4
H(Y,X|Z) = H(X|Z) +H(Y |X,Z).

Tõestus. Iga sellise kolmiku (x, y, z) kus P (x, y, z) > 0 korral kehtib

P (x, y|z) = P (x|z)P (y|x, z).

Nüüd

H(X,Y |Z) = −E logP (X,Y |Z) = −E logP (X|Z)−E logP (Y |X,Z) = H(X|Z)+H(Y |X,Z).

Väitest 1.4 järeldub väide 1.3. Ka järgmine lemma üldistab väidet 1.3.

Lemma 1.1 (Ketireegel) Olgu X1, . . . , Xn juhuslikud suurused. Siis

H(X1, . . . , Xn) = H(X1) +H(X2|X1) +H(X3|X1, X2) + · · ·+H(Xn|X1, . . . , Xn−1).

Tõestus. Olgu juhuslike suuruste kandjad vastavalt X1, . . . ,Xn. Olgu x1 ∈ X1, . . . , xn ∈
Xn sellised, et P (x1, . . . , xn) > 0. Iga sellise vektori korral kehtib

P (x1, . . . , xn) = P (x1)P (x2|x1)P (x3|x1, x2) · · ·P (xn|x1, . . . , xn−1),

millest

H(X1, . . . , Xn) = −E logP (X1, . . . , Xn)

= −E logP (X1)− E logP (X2|X1)− · · · − E logP (Xn|X1, . . . , Xn−1)

= H(X1) +H(X2|X1) + · · ·+H(Xn|X1, . . . , Xn−1).

Kehtib ka ketireegli tinglik versioon.

Lemma 1.2 (Tinglik ketireegel) Olgu X1, . . . , Xn, Z juhuslikud suurused. Siis

H(X1, . . . , Xn|Z) = H(X1|Z)+H(X2|X1, Z)+H(X3|X1, X2, Z)+· · ·+H(Xn|X1, . . . , Xn−1, Z).

Tõestus. Olgu juhuslike suuruste X1, . . . , Xn, Z kandjad vastavalt X1, . . . ,Xn ja Z.
Väide järeldub sellest, et iga xi ∈ Xi ja z ∈ Z korral (tingimusel P (x1, . . . , xn, z) > 0)

P (x1, . . . , xn|z) = P (x1|z)P (x2|x1, z)P (x3|x2, x1, z) · · ·P (xn|x1, . . . , xn−1, z)

Tinglikust ketireeglist järeldub nii väide 1.4 kui ka ketireegel.
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1.4 Kullback-Leibleri kaugus

1.4.1 De�nitsioon

Olgu P ja Q kaks jaotust tähestikul X . Tuletame meelde, et need mõõdud esituvad
tabelitena

P :
x1 x2 x3 . . .

P (x1) P (x2) P (x3) . . .
Q :

x1 x2 x3 . . .
Q(x1) Q(x2) Q(x3) . . .

,

kusjuures võib olla, et mõne i korral Q(xi) = 0 või P (xi) = 0.

NB! Lepime kokku, et 0 log(0
q
) = 0, kui q ≥ 0, p log(p

0
) = ∞, kui p > 0.

Def 1.5 Mõõtude P ja Q Kullback-Leibleri kaugus (Kullback-Leibler distance,

Kullback-Leibler divergence, relative entropy) on

D(P ||Q) :=
∑
x∈X

P (x) log
P (x)

Q(x)
. (1.7)

Kui X ∼ P , siis kehtib

D(P ||Q) = E
(
log

P (X)

Q(X)

)
.

Kui X ∼ P ja Y ∼ Q, siis tähistame ka

D(X||Y ) := D(P ||Q).

Märkused:

� log P (x)
Q(x)

ei pruugi olla positiivne. Veendume, et rida (1.7) on sellegipoolest de�neer-
itud. Olgu

X+ :=
{
x ∈ X :

P (x)

Q(x)
> 1

}
, X− :=

{
x ∈ X :

P (x)

Q(x)
≤ 1

}
.

Et ∑
x∈X−

|P (x) log
P (x)

Q(x)
| =

∑
x∈X−

P (x) log
Q(x)

P (x)
≤

∑
x∈X−

P (x)
Q(x)

P (x)
≤ 1.

Seega on rea (1.7) negatiivne osa koonduv. Kui
∑

x∈X+ P (x) log P (x)
Q(x)

< ∞, on rida
(1.7) koonduv, vastasel juhul on tema summa ∞.

� D(P ||Q) nimetatakse küll Kullback-Leibleri kauguseks, kuid ta pole meetrika: kuigi
D(P ||Q) ≥ 0, kusjuures D(P ||Q) = 0 parajasti siis, kui P = Q (tõestus allpool),
pole üldiselt D(P ||Q) ja D(Q||P ) võrdsed (D pole sümmeetriline) ning ei kehti ka
kolmurga võrratus (vaata ülesanne 8).
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K-L kaugus mõõdab "keskmist üllatust", mille jaotusega P juhuslik suurus meile valmistab,
kui eeldame, et tema jaotus on Q. Oletame, et leidub x′ ∈ X nii, et Q(x′) = 0, kuid
P (x′) > 0. sellisel juhul∑

x∈X+

log
(P (x)

Q(x)

)
P (x) ≥ P (x′) log

(P (x′)

Q(x′)

)
= ∞.

Seega on üllatus lõpmatu, kui mingi (meie arvates) võimatu sündmus (x′) toimub (vähe-
malt üks kord). See ühtib intuitsiooniga: võimatu sündmuse toimumist peetakse imeks.
Vaatleme aga sellist x′′ ∈ X , et Q(x′′) > 0, kuid P (x′′) = 0. sellisel juhul

P (x′′) log
(P (x′′)

Q(x′′)

)
= 0.

Selline sündmus kaugustD(P ||Q) ei suurenda. Teisisõnu, üllatus ei suurene kui mõni meie
meelest positiivse tõenäosusega sündmus x′′ toimumata jääb. Ka see ühtib intuitsiooniga:
mingi positiivse tõenäosusega sündmuse mittetoimumist üldiselt imeks ei panda. Sellest
vaatepunktist lähtudes on K-L kauguse ebasümmeetrilisus igati loogiline.

Näide: Olgu P = B(1, 1
2
), Q = B(1, q). Siis

D(P ||Q) =
1

2
log(

1

2q
) +

1

2
log(

1

2(1− q)
) = −1

2
log(4q(1− q)) → ∞, kui q → 0

D(Q||P ) =q log(2q) + (1− q) log(2(1− q)) → 1 kui q → 0.

1.4.2 Gibbsi võrratus ja selle järeldused

Väide 1.5 (Gibbsi võrratus) D(P ||Q) ≥ 0, kusjuures D(P ||Q) = 0 parajasti siis, kui
P = Q.

Tõestus. Kui D(P ||Q) = ∞, siis väide kehtib triviaalselt. Vaatleme olukorda, kus
D(P ||Q) < ∞, s.t. rida (1.7) on absoluutselt koonduv.
Olgu X jaotusega P juhuslik suurus. De�neerime juhusliku suuruse Y := Q(X)

P (X)
. Olgu

g(x) := − log(x) rangelt kumer funktsioon. Seega

E|g(Y )| =
∑
x∈X

|−log
Q(x)

P (x)
|P (x) =

∑
x∈X

| log P (x)

Q(x)
|P (x) < ∞, E|Y | =

∑
x∈X

Q(x)

P (x)
P (x) = 1.

Jenseni võrratusest järeldub, et

D(P ||Q) = E
(
log

P (X)

Q(X)

)
= E

(
− log

Q(X)

P (X)

)
= Eg(Y ) ≥ g(EY ) = − log(1) = 0,

kusjuures D(P ||Q) = 0 parajasti siis, kui Y = 1 p.k. ehk Q(x) = P (x) iga sellise x ∈ X
korral, et P (x) > 0. Sellest järeldub, et Q(x) = P (x) iga x ∈ X korral.

Gibbsi võrratusest järeldub muuhulgas, et lõpliku tähestiku korral on suurim entroopia
ühtlasel jaotusel.
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Järeldus 1.1 Olgu |X | < ∞. Siis iga hulgal X antud jaotuse P korral H(P ) ≤ log |X |,
kusjuures võrdus kehtib vaid ühtlase jaotuse korral.

Tõestus. Olgu U ühtlane jaotus üle X , s.t. U(x) = |X |−1 iga x ∈ X korral. Siis

D(P ||U) =
∑
x∈X

P (x) log
P (x)

U(x)
= log |X | −H(P ) ≥ 0.

Väide 1.6 (log-sum võrratus) Olgu a1, a2, . . . ja b1, b2, . . . mittenegatiivsed arvud,
∑

ai <
∞ ja 0 <

∑
bi < ∞. Siis

∑
ai log

ai
bi

≥
(∑

ai
)
log

(∑
ai
)(∑

bi
) , (1.8)

kusjuures võrratus on võrdus parajasti siis, kui ai
bi
= c ∀i.

Tõestus. Olgu

a′i =
ai∑
j aj

, b′i =
bi∑
j bj

.

Seega on {a′i} ja {b′i} tõenäosusjaotused ning väitest 1.5 järeldub

0 ≤
∑

a′i log
a′i
b′i

=
∑ ai∑

j aj
log

ai∑
j aj

bi∑
j bj

=
1∑
j aj

[∑
ai log

ai
bi

−
(∑

ai
)
log

∑
aj∑
bj

]
.

Et (∑
ai
)
log

∑
aj∑
bj

< ∞,

siis (1.8) kehtib. Teame, et D({a′i}||{b′i}) = 0 parajasti siis, kui a′i = b′i, millest

ai
bi

=

∑
j aj∑
j bj

=: c, ∀i.

Märkus: Log-sum võrratuse tõestus põhineb Gibbsi võrratusel. Samas järeldub viimane
otseselt log-sum võrratusest. Seega on need võrratused ekvivalentsed.

Segude K-L kaugus. Olgu P1, P2, Q1, Q2 hulgal X antud jaotused. Vaatleme segusi

λP1 + (1− λ)P2 ja λQ1 + (1− λ)Q2.

Järeldus 1.2

D
(
λP1 + (1− λ)P2||λQ1 + (1− λ)Q2

)
≤ λD(P1||Q1) + (1− λ)D(P2||Q2). (1.9)
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Tõestus. Fikseerime x ∈ X . Log-sum võrratusest järeldub

λP1(x) log
λP1(x)

λQ1(x)
+ (1− λ)P2(x) log

(1− λ)P2(x)

(1− λ)Q2(x)

≥
(
λP1(x) + (1− λ)P2(x)

)
log

λP1(x) + (1− λ)P2(x)

λQ1(x) + (1− λ)Q2(x)
.

Summeeri üle hulga X .

Võrratust (2.2) võime interpreteerida: K-L kaugus on kumer paaride (P,Q) suhtes. Fik-
seeritud Q korral järeldub võrratusest (2.2), et funktsioon P 7→ D(P ||Q) on kumer.
Samamoodi järeldub, et funktsioon Q 7→ D(P ||Q) on kumer. Veel enam, mõlemad
nimetatud funktsioonid on rangelt kumerad (piirkonnas kus nad on lõplikud):

D(P ||Q) =
∑

P (x) logP (x)−
∑

P (x) logQ(x) = −
∑

P (x) logQ(x)−H(P ). (1.10)

Funktsioon P 7→
∑

P (x) logQ(x) on lineaarne, P 7→ H(P ) aga rangelt nõgus. Seega
P 7→ D(P ||Q) on rangelt kumer. Selles mõttes käitub ta kui kaugus.
Seosest (1.10) järeldub ka, et Q 7→ D(P ||Q) on rangelt kumer.

1.4.3 Pinskeri võrratus

Tõenäosusmõõtude omavaheline kaugus. Olgu ühel ja samal tähestikul X (aga
teame, et see eeldus pole kitsendav) antud kaks erinevat tõenäosusmõõtu P ja Q. Kuidas
mõõta nende omavahelist kaugust? Tõenäosusteoorias on selleks mitmesuguseid meetrikaid
(kaugusi) ja teatavas mõttes mõõdab P ja Q omavahelist kaugust ka K-L kaugus (kuigi ta
pole sümmeetriline). Vaadeldes mõõte P ja Q ruumi R|X | elementidena (oletame hetkeks,
et |X | < ∞) võivad kõne alla tulla kõik ruumis R|X | de�neeritud kaugused, näiteks euklei-
diline kaugus � l2-meetrika. Selgub, et tõenäosusmõõtude korral on otstarbekas kasutada
l1-meetrikat ja nii de�neerimegi P1 ja P2 vahelise kauguse järgmiselt:

‖P1 − P2‖ :=
∑
x∈X

|P1(x)− P2(x)|.

On lihtne näidata, et de�neeritud kaugus on meetrika ning samuti on lihtne näha (ülesanne
9), et

‖P1 − P2‖ = 2 sup
B⊆X

|P1(B)− P2(B)| = 2|P1(A)− P2(A)| ≤ 2, (1.11)

kus
A := {x ∈ X : P1(x) ≥ P2(x)}.

Seega, kui Pn on tähestikul antud mõõtude jada nii, et ‖Pn − P‖ → 0, siis iga B ⊂ X
korral Pn(B) → P (B), millest loomulikult (aga see tuleneb ju ka vahetult de�nitsioonist)
järeldub, et sellisel juhul iga tähe x ∈ X korral Pn(x) → P (x). Teisest küljest aga on
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võimalik näidata (lõpliku tähestiku korral on see ilmne, lõpmatu tähestiku korral järeldub
see nn She�e lemmast),

‖Pn − P‖ → 0 ⇔ Pn(x) → P (x), ∀x ∈ X .

Edaspidi tähistame: Pn → P tähendab ‖Pn −P‖ → 0 ja seega Pn → P parajasti siis, kui
Pn(x) → P (x) iga x korral.

Märkus: Kaugust ‖P2 −P2‖ nimetatakse ingliskeelses kirjanduses distance of total vari-
ation (variational distance) ja tähistatakse tihti ‖ · ‖TV .

Pinskeri võrratus. Pinskeri võrratus väidab muuhulgas, et kui P ja Pn on tähestikul
X de�neeritud jaotused nii, et D(Pn||P ) → 0 või D(P ||Pn) → 0, siis Pn → P .

Teoreem 1.6 (Pinskeri võrratus) Iga tähestikul X antud kahe jaotuse P ja Q korral
kehtib

D(P ||Q) ≥ 1

2 ln 2
‖P −Q‖2. (1.12)

Tõestus. Kõigepealt tõestame võrratuse juhul, kui |X | = 2. Seega olgu P = (p, 1− p) ja
Q = (q, 1− q), ‖P −Q‖ = 2|p− q|. Seega on vaja näidata, et

g(p, q) := p log
p

q
+ (1− p) log

(1− p

1− q

)
− 4

2 ln 2
(p− q)2 ≥ 0.

Fikseerime p ja võtame tuletise q järgi. Saame (kontrolli!)

dg(p, q)

dq
=

q − p

q(1− q) ln 2
− 4(q − p)

ln 2
.

Veendu, et kui 0 < q < p, siis dg(p,q)
dq

< 0 ehk q 7→ g(p, q) on kahanev. Et g(p, p) = 0,
järeldub sellest, et kui q ≤ p, siis g(p, q) ≥ 0. Kui q > p, siis 1 − q < 1 − p ja tähistades
q := 1− q, p := 1− p saame jälle, et võrratus kehtib.
Üldise tähestiku korral kasutame log-sum võrratust. Olgu

A := {x ∈ X : P (x) ≥ Q(x)}.

De�neerime jaotused P̂ ja Q̂ järgmiselt

P̂ := (P (A), (1− P (A)), Q̂ := (Q(A), (1−Q(A)).

Log-sum võrratus:∑
x∈A

P (x) log
P (x)

Q(x)
≥ P (A) log

P (A)

Q(A)
,

∑
x∈Ac

P (x) log
P (x)

Q(x)
≥ ((1− P (A)) log

(1− P (A))

(1−Q(A))
,

millest saame, et

D(P ||Q) ≥ D(P̂ ||Q̂) ≥ 4

2 ln 2
(P (A)−Q(A))2 =

1

2 ln 2
‖P −Q‖2.

Siin teine võrratus tulenes sellest, et kahe tähe korral Pinskeri võrratus on juba tõestatud
ja viimane võrdus tuleb võrdusest (1.11).
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Pidevusest. Olles de�neerinud tõenäosusmõõtude koondumise on loomulik küsida, kas
koondumisest Pn → P järeldub entroopia koondumine H(Pn) → H(P ), (st kas en-
troopia on pidev funktsioon) või koondumine D(Pn||Q) → D(P ||Q) või koondumine
D(Q||Pn) → D(Q||P ) (st kas K-L kaugus on pidev ühe või teise argumendi järgi).

Entroopia pidevusest. Et q 7→ q log q on pidev funktsioon, on lihtne veenduda, et kui
|X | < ∞, on P 7→ H(P ) pidev funktsioon kõikidel tõenäosusmõõtude hulgal P |X | (veendu
selles!). Tuletame, et pidevus oli ka üks aksioomidest (lõplikumõõtmelise) entroopia de-
�neerimisel. Olukord on aga hoopis teine, kui |X | = ∞. Selgub, et sellisel juhul pole
entroopia ühegi mõõdu korral pidev: iga jaotuse P korral leidub jada Pn → P nii, et
H(Pn) 6→ H(P ). Väide kehtib ka siis, kui P aatomite hulk on lõplik. Veendume selles.
Olgu |X | = ∞, kuid mõõdul P vaid lõplik hulk m aatomeid. Seega olgu

P = (p1, p2, . . . , pm, 0, 0, . . .).

Konstrueerime jaotuste jada Pn järgmiselt:

Pn =
(
(1− 1

n
)p1, . . . , (1−

1

n
)pm,

1

nMn

, . . .
1

nMn︸ ︷︷ ︸
Mn

, 0, . . .), (1.13)

kus
Mn = d2nce, c > 0.

On kerge veenduda, et et Pn → P kuid (ülesanne 11)

H(Pn) = (1− 1

n
)H(P ) +

1

n
log2Mn + h(

1

n
) → H(P ) + c.

Vaadeldud näite korral piirjaotusel P on lõplik hulk aatomeid, kuid samasuguse kon-
tranäite saab konstureerida ka siis kui P aatomite arv on lõpmatu ehk kehtib järgmine
teoreem.

Teoreem 1.7 (S-W. So ja R. Yeung) Olgu tähestik X lõpmatu. Siis iga jaotuse P ja
arvu 0 ≤ c ≤ ∞ korral leidub jada Pn nii, et Pn → P , kuid H(Pn) → H(P ) + c.

K-L pidevusest. Vaatleme lühidalt funktsiooni P 7→ D(P ||Q) pidevust. Olgu |X | < ∞.
Teame, et P 7→ D(P ||Q) on kumer. Lõplikudimensionaalne kumer funktsioon on pidev
piirkonnas kus ta on lõplik. Seega, kui |X | < ∞, D(P ||Q) < ∞ ja Pn → P on selline,
et D(Pn||Q) < ∞ iga n korral, siis kehtib ka koondumine D(Pn||Q) → D(P ||Q). Pane
tähele, et ilma lisatingimuseta D(Pn||Q) < ∞ ülaltoodud koondumine ei kehti. Kon-
tranäitena vaatleme olukorda, kus |X | = 2, P = Q = (1, 0) ja Pn = (1− 1

n
, 1
n
). On selge,

et Pn → P , kuid iga n korral D(Pn||Q) = ∞.
Lõpliku tähestiku korral on kumer ka funktsioon Q 7→ D(P ||Q) ning sellest järeldub ka
selle funktsiooni pidevus.
Juhul, kui X on lõpmatu, ei järeldu koondumisest Pn → P koondumine D(Pn||Q) →
D(P ||Q). Kontranäide on ülesanne 12.
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1.4.4 Tinglik Kullback-Leibleri kaugus

Kullback-Leibleri kaugus mõõdab kahe jaotuse vahelist seost. Tinglik Kullback-Leibleri
kaugus mõõdab kahe tingliku jaotuse P1(y|x) ja P2(y|x) vahelist seost. Täpsemalt, olgu
iga x korral P1(y|x) ja P2(y|x) tinglikud jaotused hulgal Y . Seega võime iga sellise x
korral, mis rahuldab P (x) > 0, de�neerida nende jaotuste vahel KL-kauguse

D(P1(y|x)||P2(y|x)|x) :=
∑
y∈Y

P1(y|x) log
P1(y|x)
P2(y|x)

.

Nagu ikka informatsiooniteoorias, keskmistatakse tinglikud karakteristikud üle x-de hulgal
X antud jaotuse P (x).

Def 1.8 Olgu P1(y|x) ja P2(y|x) tingliku jaotused hulgal Y. Hulgal X antud jaotuse P (x)

korral tinglik Kullback-Leibleri kaugus (conditional relative entropy) on

D(P1(y|x)||P2(y|x)) :=
∑
x∈XP

D(P1(y|x)||P2(y|x)|x)P (x) =
∑
x∈XP

P (x)
∑
y∈Y

P1(y|x) log
P1(y|x)
P2(y|x)

=
∑
x∈XP

∑
y∈Y

P1(y, x) log
P1(y|x)
P2(y|x)

, kus P1(x, y) := P (x)P1(y|x).

Olgu nüüd X jaotusega P juhuslik suurus; (X,Y1) ja (X,Y2) olgu jaotustega P1(x, y) =
P (x)P1(y|x) ja P2(x, y) = P (x)P2(y|x) juhuslikud vektorid, st Pi(y|x) on Yi tinglik jaotus
tingimusel X = x, (i = 1, 2). Sellisel juhul

D
(
P1(y|x)||P2(y|x)

)
= E log

P1(Y1|X)

P2(Y1|X)
=: D(Y1||Y2|X) (1.14)

Märkused:

1. Tähistusest D(P1(y|x)||P2(y|x)) ei selgu, milline on jaotus P , üle mille keskmis-
tatakse. Harilikult selgub see kontekstist.

2. Tähistus D(Y1||Y2|X) võib olla eksitav. Olgu näiteks (X1, Y1) ning (X2, Y2) kaks
juhuslikku vektorit ühisjaotustega vastavalt P1(x, y) = P1(x)P1(y|x) ja P2(x, y) =
P2(x)P2(y|x). Võttes P (x) = P1(x), saame

D
(
P1(y|x)||P2(y|x)

)
= E log

P1(Y1|X1)

P2(Y1|X1)
. (1.15)

Võrduse (1.15) parem pool on igati korrektne, kuid tähistuse D(Y1||Y2|X1) korral
tuleb meeles pidada, et P2(x, y) pole mitte (X1, Y2) vaid (X2, Y2) ühisjaotus. Seega
P2(y|x) on juhusliku suuruse Y2 tinglik jaotus tingimusel X2 (mis tähistuses ei �g-
ureerigi) mitte X1. Seda tuleb meeles pidada eelkõige KL-kauguse ketireegli (väide
1.9) korral.
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Väide 1.7
D(P1(y|x)||P2(y|x)) ≥ 0,

kusjuures võrdus kehtib vaid siis kui P1(y|x) = P2(y|x) ∀y ∈ Y ja iga x ∈ XP .

Tõestus. Iga x ∈ X korral D(P1(y|x)||P2(y|x)|x) ≥ 0, millest järelduvalt

D(P1(y|x)||P2(y|x)) ≥ 0.

Oletame, et
D(P1(y|x)||P2(y|x)) = 0.

Siis iga x ∈ XP korral kehtib D(P1(y|x)||P2(y|x)|x) = 0 ja sellest järeldub väide.

Väide 1.8 (Tingimustamine suurendab K-L kaugust)

D(P1(y|x)||P2(y|x)) ≥ D(P1||P2),

kus Pi(y) =
∑

x Pi(y|x)P (x), kus i = 1, 2.

Tõestus. Log-sum võrratusest saame, et iga y ∈ Y korral∑
x

P1(y|x)P (x) log
P1(y|x)P (x)

P2(y|x)P (x)
≥ P1(y) log

P1(y)

P2(y)
.

Summeeri üle Y .

Väide 1.9 (K-L kauguse ketireegel) Olgu (X1, . . . , Xn) ja (Y1, . . . Yn) juhuslikud vek-
torid, mis võtavad väärtusi hulgal X × · · · × X . Siis

D
(
(X1, . . . , Xn)

∣∣∣∣∣∣(Y1, . . . , Yn)
)
=

D(X1||Y1) +D(X2||Y2|X1) +D(X3||Y3|X1, X2) + · · ·+D(Xn||Yn|X1, . . . , Xn−1).

Tõestus. Olgu

P (x1, . . . , xn) = P (x1)P (x2|x1)P (x3|x1, x2) · · ·P (xn|x1, . . . , xn−1)

vektori (X1, . . . , Xn) jaotus ning olgu

Q(x1, . . . , xn) = Q(x1)Q(x2|x1) · · ·Q(xn|x1, . . . , xn−1)

vektori (Y1, . . . , Yn) jaotus. Juhuslike vektorite vaheline K-L kaugus on de�neeritud

D(X1, . . . , Xn||Y1, . . . , Yn) = E log
P (X1, . . . , Xn)

Q(X1, . . . , Xn)

= E log
P (X1)P (X2|X1) · · ·P (Xn|X1, . . . , Xn−1)

Q(X1)Q(X2|X1) · · ·Q(Xn|X1, . . . , Xn−1)

= E log
P (X1)

Q(X1)
+ E log

P (X2|X1)

Q(X2|X1)
+ · · ·+ E log

P (Xn|X1, . . . , Xn−1)

Q(Xn|X1, . . . , Xn−1)

= D(X1||Y1) +D(X2||Y2|X1) + · · ·+D(Xn||Yn|X1, . . . , Xn−1).
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1.5 Vastastikune informatsioon

Olgu (X,Y ) juhuslik vektor ühisjaotusega P (x, y), (x, y) ∈ X × Y .

Def 1.9 Juhuslike suuruste X,Y vastastikune informatsioon (mutual information)
on

I(X;Y ) :=
∑
x,y

P (x, y) log
P (x, y)

P (x)P (y)
= D

(
P (x, y)||P (x)P (y)

)
= E

(
log

P (X,Y )

P (X)P (Y )

)
.

Vastastikune informatsioon on seega K-L kaugus jaotuse P (x, y) ning korrutismõõdu
P (x)P (y) vahel. Teisisõnu, I(X;Y ) on K-L kaugus vektori (X,Y ) ja samade marginaal-
jaotusega kuid sõltumatute komponentidega vektori vahel.

Märkused:

� Vastastikune informatsioon I(X;Y ) ei sõltu mitte ainult juhuslike suuruste X ja Y
jaotusest vaid ka nende ühisjaotusest, s.t. vektori (X,Y ) jaotusest.

� 0 ≤ I(X;Y ).

� Vastastikune informatsioon on sümmeetriline: I(X;Y ) = I(Y ;X).

� I(X;Y ) = 0 parajasti siis kui X,Y on sõltumatud.

Vastastikuse informatsiooni olemust aitab mõista järgmine seos:

I(X;Y ) = E log
P (X,Y )

P (X)P (Y )
= E log

P (X|Y )P (Y )

P (X)P (Y )
= E log

P (X|Y )

P (X)

= E logP (X|Y )− E logP (X) = H(X)−H(X|Y ).

Sümmeetria tõttu kehtib

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X). (1.16)

SuurusH(X) on juhusliku suuruseX "keskmine juhuslikkus", tema (väärtuse teadasaamisel
saadav) informatsioon. Tinglik entroopia H(X|Y ) on juhusliku suuruse X entroopia
tingimusel, et Y on teada ehk X tinglik "juhuslikkus". On selge, et mida rohkem annab
Y informatsiooni X kohta, seda väiksem on H(X|Y ). Kui X = f(Y ), siis H(X|Y ) = 0.
Kui X ja Y on sõltumatud, siis H(X|Y ) = H(X). Mida väiksem on H(X|Y ), seda
suurem on vahe H(X) − H(X|Y ) = I(X;Y ). Nüüd on selge, mida I(X;Y ) mõõdab:
juhusliku suuruse X entroopia kahanemist juhusliku suuruse Y läbi. Valemist (1.16)
järeldub, et täpselt sama palju kahaneb H(Y ) juhusliku suuruse X läbi. Sellest ka nime-
tus: vastastikune informatsioon. Kui X ja Y on sõltumatud, siis I(X;Y ) = 0 - juhuslikud
suurused X ka Y ei anna teineteise kohta mingisugust informatsiooni. Paneme tähele, et

I(X;X) = H(X)−H(X|X) = H(X),
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s.t. juhuslik suurus X annab iseenese kohta täpselt H(X) informatsiooni. Inglisekeelses
kirjanduses kutsutaksegi entroopiat teinekord self-information.

Väide 1.3: H(X|Y ) = H(X,Y )−H(Y ), millest

I(X;Y ) = H(X) +H(Y )−H(X,Y ). (1.17)

Vastastikuse informatsiooni, tingliku entroopia ja entroopia omavahelisi seoseid aitab
mõista alljärgnev diagramm.

Teeme veel mõned lihtsad kuid olulised järeldused.

Järeldus 1.3 (tingimustamine vähendab entroopiat) Juhuslike suuruste X ja Y
korral kehtib

H(X|Y ) ≤ H(X),

kusjuures ülaltoodud võrratus on võrdus vaid sõltumatute juhuslike suuruste korral.

Tõestus. H(X)−H(X|Y ) = I(X;Y ) ≥ 0.

Märkus: Tuleta meelde, et H(X|Y ) =
∑

y H(X|Y = y)P (y). Kuigi ülaltoodud summa
on väiksem kui H(X), võib mõne y ∈ Y korral siiski olla, et H(X|Y = y) > H(X).

Näide:

Y\X a b
u 0 3

4

v 1
8

1
8

Järeldus 1.4 Juhusliku vektori (X1, . . . , Xn) entroopia rahuldab

H(X1, . . . , Xn) ≤
n∑

i=1

H(Xi),

kusjuures võrratus on võrdus vaid sõltumatute komponentide korral.

Tõestus. Ketireegelist saame

H(X1, . . . , Xn) = H(X1) +H(X2|X1) +H(X3|X1, X2) + · · ·+H(Xn|X1, . . . , Xn−1).

Kasuta eelmist järeldust.
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1.5.1 Tinglik vastastikune informatsioon

Olgu X,Y, Z juhuslikud suurused, kusjuures Z kandja olgu Z.

Def 1.10 Juhuslike suuruste X,Y vastastikune informatsioon tingimusel Z

(conditional mutual information) on

I(X;Y |Z) :=H(X|Z)−H(X|Y, Z) = E log
P (X|Y, Z)
P (X|Z)

=E log
P (X|Y, Z)P (Y |Z)
P (X|Z)P (Y |Z)

= E log
P (X,Y |Z)

P (X|Z)P (Y |Z)

=
∑
x,y,z

P (x, y, z) log
P (x, y|z)

P (x|z)P (y|z)

=
∑
z∈Z

P (z)
∑
y,x

P (x, y|z) log P (x, y|z)
P (x|z)P (y|z)

=
∑
z∈Z

D
(
P (x, y|z)||P (x|z)P (y|z)

)
P (z).

Väide 1.10
I(X;Y |Z) ≥ 0,

kusjuures võrdus kehtib parajasti siis, kui X ja Y on tinglikult sõltumatud, s.t.

P (x, y|z) = P (x|z)P (y|z), ∀x ∈ X , y ∈ Y , z ∈ Z. (1.18)

Tõestus. Et iga z korral

D
(
P (x, y|z)||P (x|z)P (y|z)

)
P (z) ≥ 0,

siis I(X;Y |Z) = 0 parajasti siis, kui iga z ∈ Z korral

D
(
P (x, y|z)||P (x|z)P (y|z)

)
= 0

ja sellest järeldub (1.18).

Tinglikul vastastikusel informatsioonil on üldiselt samad omadused mis vastastikusel in-
formatsioonil. Kehtib (ülesanne 21)

I(X;X|Z) = H(X|Z)
I(X;Y |Z) = H(Y |Z)−H(Y |X,Z)

I(X;Y |Z) = H(X|Z) +H(Y |Z)−H(X,Y |Z).

Lisaks kehtib veel (ülesanne 21)

I(X;Y |Z) = H(X;Z) +H(Y ;Z)−H(X,Y, Z)−H(Z). (1.19)
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Väide 1.11 (Vastastikuse informatsiooni ketireegel)

I(X1, . . . , Xn;Y ) = I(X1;Y )+I(X2;Y |X1)+I(X3;Y |X1, X2)+· · ·+I(Xn;Y |X1, . . . , Xn−1).

Tõestus. Kasutame entroopia ketireeglit ja tingliku entroopia ketireeglit.

I(X1, . . . , Xn;Y ) =H(X1, . . . , Xn)−H(X1, . . . , Xn|Y )

=H(X1) +H(X2|X1) + · · ·+H(Xn|X1, . . . , Xn−1)

−H(X1|Y )−H(X2|X1, Y )− · · · −H(Xn|X1, . . . , Xn−1, Y ).

Väide 1.12 (Tingliku vastastikuse informatsiooni ketireegel)

I(X1, . . . , Xn;Y |Z) = I(X1;Y |Z) + I(X2;Y |X1, Z) + · · ·+ I(Xn;Y |X1, . . . , Xn−1, Z).

Tõestus. Analoogiline.

1.6 Andmetöötlusvõrratus

1.6.1 Lõplik Markovi ahel

Def 1.11 Juhuslikud suurused X1, . . . , Xn kandjatega vastavalt X1, . . . ,Xm moodustavad
Markovi ahela kui iga xi ∈ Xi ja iga m = 2, . . . , n− 1 korral

P(Xm+1 = xm+1|Xm = xm, . . . , X1 = x1) = P(Xm+1 = xm+1|Xm = xm). (1.20)

Seega on X1, . . . , Xn Markovi ahel parajasti siis, kui iga x1, . . . , xn korral

P (x1, . . . , xn) =

{
P (x1, x2)P (x3|x2) · · ·P (xn|xn−1) kui P (x2) > 0, . . . , P (xn) > 0,

0 muidu.

Asjaolu, et X1, . . . , Xn on Markovi ahel tähistatakse informatsiooniteoorias tihti:

X1 → X2 → · · · → Xn.

Seega X → Y → Z parajasti siis, kui

P (x, y, z) = P (x)P (y|x)P (z|y).

Väide 1.13 Kui X1 → X2 → · · · → Xn, siis Xn → Xn−1 → · · · → X1.

Tõestus. X1 → X2 → · · · → Xn parajasti siis kui

P (x1, . . . , xn)P (x2) · · ·P (xn−1) = P (x1, x2)P (x2, x3) · · ·P (xn−1, xn).

See on aga sümmeetriline.
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Väide 1.14 Markovi ahela iga alamjada on Markovi ahel, s.t. kui X1 → X2 → · · · → Xn,
siis Xn1 → Xn2 → · · · → Xnk

.

Tõestus. Tuletame meelde tingliku täistõenäosuse valemi: kui A,B,C1, C2, . . . on sünd-
mused ning C1, C2, . . . on täissüsteem (st Ci ∩ Cj = ∅ ja P(∪iCi) = 1), siis

P(A|B) =
∑
i

P(A|B,Ci)P(Ci|B). (1.21)

Fikseerime m ja näitame, et

P(Xm+2 = xm+2|Xm = xm, . . . , X1 = x1) = P(Xm+2 = xm+2|Xm = xm)

ehk
P (xm+2|xm, . . . , x1) = P (xm+2|xm).

Kõigepealt paneme tähele, et valemit (1.21) kasutades saame

P (xm+2|xm+1, xm) =
∑

x1,...,xm−1

P (xm+2|xm+1, xm, xm−1, . . . , x1)P (xm−1, . . . , x1|xm, xm+1)

=
∑

x1,...,xm−1

P (xm+2|xm+1)P (xm−1, . . . , x1|xm, xm+1) = P (xm+2|xm+1).

Analoogiliselt saame, et iga m1 < m2 < · · · < mk ≤ m korral

P (xm+2|xm+1, xmk
, xmk−1

, · · · , xm1) = P (xm+2|xm+1) (1.22)

[Seosest (1.22) järeldub P (xm+2|xm+1, xm) = P (xm+2|xm+1) (kuidas?)].
Seega

P (xm+2, xm+1|xm, . . . , x1) = P (xm+2|xm+1, xm, . . . , x1)P (xm+1|xm, . . . , x1)

= P (xm+2|xm+1, xm)P (xm+1|xm)

= P (xm+2, xm+1|xm).

Seega

P (xm+2|xm, . . . , x1) =
∑
xm+1

P (xm+2, xm+1|xm, . . . , x1)

=
∑
xm+1

P (xm+2, xm+1|xm) = P (xm+2|xm).

Viimasest võrdusest ja seosest (1.22) järeldub, et X1, . . . , Xm, Xm+2, . . . Xn on Markovi
ahel. Siit järeldub ülejäänu.

Järeldus 1.5 Kui X1 → X2 → · · · → Xn, siis iga m < n korral

P (xn, . . . , xm+1|xm, . . . , x1) = P (xn, . . . , xm+1|xm). (1.23)
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Tõestus. Tõepoolest, kui X1 → X2 → · · · → Xn on Markovi ahel, siis Väite 1.14 korral
on seda ka Xk → · · · → Xn (k ≥ 1), millest iga m > k korral

P (xm|xm−1, . . . , xk) = P (xm|xm−1) (1.24)

Tõestusest saime, et P (xm+2, xm+1|xm, . . . , x1) = P (xm+2, xm+1|xm). Kasutades seda
võrdust saame

P (xm+3, xm+2, xm+1|xm, . . . , x1) = P (xm+3|xm+2, xm+1, xm, . . . , x1)P (xm+2, xm+1|xm, . . . , x1)

= P (xm+3|xm+2, xm+1, xm, . . . , x1)P (xm+2, xm+1|xm)

= P (xm+3|xm+2, xm+1, xm)P (xm+2, xm+1|xm)

= P (xm+3, xm+2, xm+1|xm).

Siin eelviimane võrdus tuleneb seosest (1.24). Edasi jätka induktsiooniga.

Väide 1.15 Juhuslikud suurused X1, . . . , Xn on Markovi ahel parajasti siis, kui iga m =
2, . . . , n − 1 korral X1, . . . , Xm−1 ja Xm+1, . . . , Xn on antud Xm korral tinglikult sõl-
tumatud.

Tõestus. Olgu X1, . . . , Xn Markovi ahel. Tõestame, et

P (x1, . . . , xm−1, xm+1, . . . , xn|xm) = P (x1, . . . , xm−1|xm)P (xm+1, . . . , xn|xm). (1.25)

Seosest (1.23) saame

P (x1, . . . , xn) = P (x1, . . . , xm)P (xm+1, . . . , xn|x1, . . . , xm) = P (x1, . . . , xm)P (xm+1, . . . , xn|xm),

millest

P (x1, . . . , xn)

P (xm)
=

P (x1, . . . , xm)

P (xm)
P (xm+1, . . . , xn|xm) = P (x1, . . . , xm−1|xm)P (xm+1, . . . , xn|xm).

Kehtigu (1.25). Siis

P (xm+1, . . . , xn|x1, . . . , xm) =
P (x1, . . . , xn)

P (x1, . . . , xm)
=

P (x1, . . . , xn)

P (xm)P (x1, . . . , xm−1|xm)

=
P (x1, . . . , xm−1, xm+1, . . . , xn|xm)

P (x1, . . . , xm−1|xm)
= P (xm+1, . . . , xn|xm).

Seega X → Y → Z parjasti siis, kui antud Y korral on X ja Z tinglikult sõltumatud.
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1.6.2 Andmetöötlusvõrratus

Lemma 1.3 (Andmetöötlusvõrratus) Kui X → Y → Z, siis

I(X;Y ) ≥ I(X;Z),

kusjuures võrdus kehtib parajasti siis, kui X → Z → Y .

Tõestus. Et X ja Z on antud Y korral sõltumatud, siis I(X;Z|Y ) = 0. Seega ketireeglist
saame

I(X;Y, Z) = I(X;Z) + I(X;Y |Z) = I(X;Y ) + I(X;Z|Y ) = I(X;Y ). (1.26)

Et I(X;Y |Z) ≥ 0, siis I(X;Z) ≤ I(X;Y ), kusjuures võrdus kehtib parajsti siis, kui
I(X;Y |Z) = 0 ehk antud Z korral on X ja Y tinglikult sõltumatud ehk X → Z → Y on
Markovi ahel.

Olgu X juhuslik suurus, mille kohta vajame informatsiooni. Juhuslik suurus X on meil
teadmata, meie käsutuses on vaid Y (andmed), mis annabX kohta I(X;Y ) bitti informat-
siooni. Kas aga on võimalik Y töödelda nii, et X kohta saadav informatsioon suureneks?
Juhuslikku suurust Y on võimalik töödelda determineeritult, s.t. rakendame talle mingit
funktsiooni g. Seega saame uue juhusliku suuruse g(Y ). Et aga X → Y → g(Y ) on
Markovi ahel, siis andmetöötlusvõrratusest saame, et I(X;Y ) ≥ I(X; g(Y )) ehk g(Y )
ei anna rohkem informatsiooni X kohta, kui Y . Teine võimalus on töödelda Y juhus-
likult, s.t. lisada mingi X-st sõltumatu lisajuhuslikkus. Olgu Z andmete Y juhuslikul
töötlemisel saadud juhuslik suurus. Et lisajuhuslikkus onX-st sõltumatu, onX → Y → Z
Markovi ahel ning andmetöötlusvõrratusest järeldub I(X;Y ) ≥ I(X;Z), s.t. ka juhus-
lik töötlemine ei suurenda informatsiooni. Seega postuleerib andmetöötlusvõrratus väga
üldise printsiibi: andemete (juhuslikul või mittejuhuslikul) töötlemisel võib informatsioon
vaid kaotsi minna, mitte mingil juhul ei saa aga informatsiooni juurde võita. Kas sellest
järeldub igasuguse statistilise andmetöötluse mõttetus?

Järeldus 1.6 Kui X → Y → Z, siis

H(X|Z) ≥ H(X|Y ).

Tõestus. Ülesanne 25.

Järeldus 1.7 Kui X → Y → Z, siis

I(X;Z) ≤ I(Y ;Z), I(X;Y |Z) ≤ I(X;Y ).

Tõestus. Ülesanne 25.
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1.6.3 Piisav statistik

Olgu {Pθ} hulgal X antud tõenäosusjaotuste klass. Statistikas interpreteeritakse hulka
{Pθ} kui mudelit, indeksit θ nimetatakse parameetriks. Olgu X juhuslik valim jaotusest
Pθ. Juhuslikku valimit X vaatleme kui juhuslikku suurust väärtuste hulgaga X n. Seega
sõltub X jaotus vaid parameetrist θ. Olgu T (X) mingi statistik (valimi funktsioon), mille
abil püüame hinnata valimi genereerivat jaotust Pθ ehk siis parameetrit θ. Vaatleme
olukorda, kus parameeter θ on juhuslik eeljaotusega π (Bayesi lähenemisviis). Sellisel
juhul θ → X → T (X) on Markovi ahel ning andmetöötlusvõrratusest saame, et

I(θ;T (X)) ≤ I(θ;X).

Kui ülaltoodud võrratus on võrdus, siis on statistik T selline, et T (X) annab parameetri
kohta sama palju informatsiooni kui X (sõltumata parameetri eeljaotusest π). Lemmast
1.3 teame, et võrdus kehtib parajasti siis, kui antud T (X) korral on X ja θ sõltumatud
ehk θ → T (X) → X. Seos θ → T (X) → X kehtib aga parajasti siis, kui iga valimi
x ∈ X n korral

P(X = x|T (X) = t, θ) = P(X = x|T (X) = t)

ehk antud T (X) korral ei sõltu valimi jaotus parameetrist θ. Statistikas nimetatakse
selliseid statistikuid piisavateks. Seega oleme tõestanud järelduse.

Järeldus 1.8 Statistik T on piisav parajasti siis, kui iga θ jaotuse korral

I(θ;T (X)) = I(θ;X).

Näide: Olgu {Pθ} Bernoulli jaotuste hulk. Statistik T (X) =
∑n

i=1Xi on piisav, sest

P(X1 = x1, . . . , Xi = xi|T (X) = t, θ) =

{
0 kui

∑
i xi 6= t,

1
Ct

n
kui

∑
i xi = t.

Tõepoolest, kui
∑

i xi = t, siis

P(X1 = x1, . . . , Xn = xn|T (X) = t, θ) =
P(X1 = x1, . . . , Xn = xn, T (X) = t, θ)

P(T (X) = t, θ)

=
θt(1− θ)n−tπ(θ)∑

x1,...,xn:
∑

i xi=t θ
t(1− θ)n−tπ(θ)

=
1

Ct
n

,

sest �kseetud ühtede arvu korral on erinevateks valimiteks täpselt Ct
n võimalust.

1.7 Fano võrratus

OlguX tundmatu juhuslik suurus ning olgu X̂ korreleeritud juhuslik suurus, mida vaatleme
kui X hinnangut. Olgu

Pe := P(X 6= X̂)

hindamisel tehatava vea tõenäosus. Kui Pe = 0, siis X = X̂ p.k., millest H(X|X̂) = 0.
Seega on loogiline, et kui Pe on väike, siis H(X|X̂) peaks samuti väike olema. Selgub, et
lõpliku tähestiku korral see nii ongi.
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Teoreem 1.12 (Fano võrratus) Olgu X ja X̂ juhuslikud suurused tähestikul X . Siis

H(X|X̂) ≤ h(Pe) + Pe log(|X | − 1), (1.27)

kus h on binaarne entroopiafunktsioon.

Tõestus. Olgu

E =

{
1 kui X̂ 6= X,

0 kui X̂ = X.

Seega
E = I{X̂ ̸=X}, E ∼ B(1, Pe).

Entroopia ketireeglist saame

H(E,X|X̂) = H(X|X̂) +H(E|X, X̂) = H(X|X̂), (1.28)

sest H(E|X, X̂) = 0 (miks?)
Teisest küljest

H(E,X|X̂) = H(E|X̂) +H(X|E, X̂) ≤ H(E) +H(X|E, X̂) = h(Pe) +H(X|E, X̂).

Paneme tähele, et

H(X|E, X̂) =
∑
x∈X

P(X̂ = x,E = 1)H(X|X̂ = x,E = 1)

+
∑
x∈X

P(X̂ = x,E = 0)H(X|X̂ = x,E = 0).

Tingimusel X̂ = x ja E = 0 kehtib X = x, siis on H(X|X̂ = x,E = 0) = 0 ehk

H(X|E, X̂) =
∑
x∈X

P(X̂ = x,E = 1)H(X|X̂ = x,E = 1).

Kui E = 1 ja X̂ = x siis X ∈ X\x, millest H(X|X̂ = x,E = 1) ≤ log(|X | − 1).
Kokkuvõttes

H(X|E, X̂) ≤ Pe log(|X | − 1).

Seosest (1.28) saame, et

H(X|X̂) ≤ Pe log(|X | − 1) + h(Pe).

Järeldus 1.9

H(X|X̂) ≤ 1 + Pe log |X |, ehk Pe ≥
H(X|X̂)− 1

log |X |
.
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Kui |X | < ∞, siis Fano võrratusest järeldub, et kui Pe → 0, siis H(X|X̂) → 0. Kui aga
tähestik on lõpmatu, siis Fano võrratus on trivaalne ja ülaltoodud implikatsioon ei pruugi
kehtida.

Näide: Olgu Z ∼ B(1, p) ning olgu Y mingi selline juhuslik suurus, et Y > 0 ja
H(Y ) = ∞. De�neerime juhusliku suuruse X järgmiselt

X =

{
0 kui Z = 0,

Y kui Z = 1.

Olgu X̂ = 0 p.k. Siis Pe = P(X > 0) = P(X = Y ) = P(Z = 1) = p. Kuid

H(X|X̂) = H(X) ≥ H(X|Z) = pH(Y ) = ∞.

Seega iga p > 0 korral H(X|X̂) = ∞, mistõttu H(X|X̂) 6→ 0, kui Pe → 0.

Millal on Fano võrratus võrdus? Võrratuse tõestusest on näha, et võrdus kehtib
parajasti siis, kui iga x ∈ X korral

H(X|X̂ = x,E = 1) = log(|X | − 1) (1.29)

ning
H(E|X̂) = H(E). (1.30)

Seos (1.29) tähendab, et vektori X tinglik jaotus tingimusel, et X 6= X̂ = x on ühtlane
üle ülejäänud tähtede X\x. See aga tähendab, et leidub pi nii, et iga xi ∈ X korral

P(X̂ = xi, X = xj) = pi, ∀j 6= i.

Teisisõnu, vektori (X̂,X) ühisjaotuse tabelis

X̂\X x1 x2 · · · xn

x1 P(X̂ = x1, X = x1) P(X̂ = x1, X = x2) · · · P(X̂ = x1, X = xn)

x2 P(X̂ = x2, X = x1) P(X̂ = x2, X = x2) · · · P(X̂ = x2, X = xn)
· · · · · · · · · · · · · · ·
xn P(X̂ = xn, X = x1) · · · · · · P(X̂ = xn, X = xn)

on igas reas väljaspool peadiagonaali kõik elemendid võrdsed.
Seos (1.30) kehtib, kui iga x ∈ X korral P (X = x|X̂ = x) = 1− Pe ehk iga rea peadiago-
naali elemendi suhe rea summase on võrdne 1− Pe. Selline jaotustabel on näiteks

X̂\X a b a
a 3

10
1
10

1
10

b 1
25

3
25

1
25

c 3
50

3
50

9
50

.
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Ülaltoodud ühisjaotuse korral Pe =
2
5
, log(|X | − 1) = 1, millest

Pe log(|X | − 1) + h(Pe) =
2

5
+

3

5
log

5

3
+

2

5
log

5

2
=

3

5
log

5

3
+

2

5
log 5.

Teisest küljest aga

H(X|X̂ = a) = H(X|X̂ = b) = H(X|X̂ = c) =
3

5
log

5

3
+

2

5
log 5,

millest
H(X|X̂) =

3

5
log

5

3
+

2

5
log 5.

Seega on Fano võrratus võrdus.

1.8 Juhusliku protsessi entroopiamäär

Käesolevas alajaotuses vaatleme juhuslikku protsessi {Xn}∞n=1.

Def 1.13 Juhusliku protsessi {Xn}∞n=1 entroopiamäär (entropy rate) on

HX := lim
n→∞

1

n
H(X1, . . . , Xn),

kui piirväärtus eksisteerib.

Näited:

� Olgu {Xn}∞n=1 i.i.d. juhuslikud suurused jaotusest P , s.t. Xi ∼ P . Siis

lim
n→∞

1

n
H(X1, . . . , Xn) = lim

n→∞

1

n

n∑
i=1

H(Xi) = lim
n→∞

H(P ).

Seega on i.i.d. protsessil entroopiamäär de�neeritud, see võrdub jaotuse P entroop-
iaga.

� Olgu {Xn}∞n=1 sõltumatud juhuslikud suurused. Siis

1

n
H(X1, . . . , Xn) =

1

n

n∑
i=1

H(Xi).

Selline jada ei pruugi alati koonduda ja siis pole protsessi entroopiamäär de�neeri-
tud.

� Olgu X1, X2, . . . i.i.d. juhuslikud suurused, Xi ∼ P . Vaatleme juhuslikku ekslemist,
{Sn}∞n=0, s.t.

S0 = 0, S1 = X1, S2 = X1 +X2, . . . , Sn = X1 + · · ·+Xn.

Juhusliku ekslemise entroopia on HS = H(P ) (ülesanne).
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Vaatleme piirväärtust
H ′

X := lim
n

H(Xn|X1, . . . , Xn−1),

mis muidugi ei pruugi alati eksisteerida. Järgnevas näeme, et statsionaarsete protsesside
korral H ′

X alati eksisteerib ning see on võrdne protsessi entroopiamääraga HX . Tuletame
meelde statsionaarse protsessi de�nitsiooni.

Def 1.14 Juhuslik protsess {Xn}∞n=1 on statsionaarne (stationary) , kui iga n ≥ 1 ja
iga k ≥ 1 korral on juhuslikud vektorid

(X1, . . . , Xn) ja (Xk+1, . . . , Xk+n)

ühe ja sama jaotusega.

Kui {Xn}∞n=1 on statsionaarne protsess, siis on juhuslikud suurused X1, X2, . . . sama jao-
tusega, juhuslikud vektorid (X1, X2), (X2, X3), . . . on sama jaotusega, juhuslikud vektorid
(X1, X2, X3), (X2, X3, X4), . . . on sama jaotusega, jne.

Väide 1.16 Kui {Xn}∞n=1 on statsionaarne protsess, siis H ′
X on alati de�neeritud.

Tõestus. Et {Xn}∞n=1 on statsionaarne, siis iga n korral on juhuslikud vektorid (X1, . . . , Xn)
ja (X2, . . . , Xn+1) sama jaotusega. Sellest järeldub, et iga n korral

H(Xn|X1, . . . , Xn−1) = H(Xn+1|X2, . . . , Xn).

Seega

H(Xn+1|X1, . . . , Xn) ≤ H(Xn+1|X2, . . . , Xn) = H(Xn|X1, . . . , Xn−1),

millest saame, et {H(Xn|X1, . . . , Xn−1)} on mittenegatiivne ja mittekasvav jada ning sel-
lisel jadal on piirväärtus.

Järgnevas tõestame, et statsionaarse protsessi entroopiamäär on alatu de�neeritud ja see
võrdub H ′

X . Tõestuses kasutame Cesaro lemmat.

Lemma 1.4 (Cesaro lemma) Olgu {an} mittenegatiivsete reaalarvude jada, kusjuures
a1 > 0 ja

∑
n an = ∞. Tähistame bn :=

∑n
i=1 ai. Olgu xn → x suvaline koonduv jada.

Siis
1

bn

n∑
i=1

aixi → x, kui n → ∞.

Juhul, kui an = 1, saame
x1 + . . .+ xn

n
→ x.

Teoreem 1.15 Kui {Xn}∞n=1 on statsionaarne protsess, siis HX on alati de�neeritud,
kusjuures H ′

X = HX .
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Tõestus. Entroopia ketireeglist saame

1

n
H(X1, . . . , Xn) =

1

n

n∑
k=1

H(Xk|X1, . . . , Xk−1).

Et H(Xk|X1, . . . , Xk−1) → H ′
X , siis Cesaro lemmast saame, et

lim
n→∞

1

n
H(X1, . . . , Xn) = lim

n→∞

1

n

n∑
k=1

H(Xk|X1, . . . , Xk−1) = H ′
X .

Seega statsionaarse protsessil on entroopiamäär alati de�neeritud ning lisaks de�nit-
sioonile saab selle leidmiseks kasutada ka seost HX = H ′

X . Ülaltoodud näidetest selgus,
et ka mittestatsionaarsel protsessil võib leidida entroopiamäär (millised näidetes toodud
protsessidest pole statsionaarsed?)

1.8.1 Markovi ahela entroopiamäär

Juhusliku protsessi entroopiamäära leidmine ei pruugi üldiselt olla kerge. Teatud protses-
side korral (nagu näiteks i.i.d. protsess), on aga entroopiamäära lihtne leida. Alljärgnevas
näeme, et ka satsionaarse Markovi ahela entroopiamäära on lihtne leida. Tuletame meelde
(lõpmatu) Markovi ahela de�nitsiooni. Olgu {Xn}∞n=1 juhuslik protsess, kusjuures juhus-
likud suurused Xi võtavad väärtusi hulgal X .

Def 1.16 Juhuslik protsess {Xn}∞n=1 on Markovi ahel , kui iga xi ∈ X ja iga m ≥ 1
korral kehtib (1.20), s.t.

P(Xm+1 = xm+1|Xm = xm, . . . , X1 = x1) = P(Xm+1 = xm+1|Xm = xm). (1.31)

Märkus: Arusaadavalt on võrdus (1.31) de�neeritud vaid siis, kui tinglik tõenäosus on
de�neeritud, s.t. P(Xm = xm, . . . , X1 = x1) > 0.

Markovi ahelate terminoloogias nimetatakse hulka X ahela seisundite hulgaks, selle ele-
mente nimetatakse Markovi ahela seisunditeks. Markovi ahel on homogeene, kui võrduse
(1.31) parem pool ei sõltu m-st. Sellisel juhul iga m ja iga xi, xj ∈ X korral

P(Xm+1 = xj|Xm = xi) = P (X2 = xj|X1 = xi) =: Pij.

Maatriksit P = (Pij) nimetatakse homogeense MA üleminekumaatriksiks. Alljärgnevas
vaatlemegi vaid homogeenset Markovi ahelat {Xn}. Olgu π(i) = π(xi) juhusliku suu-
ruse X1 jaotus (ütleme, et algtõenäosuste vektor). Siis P (X2 = xj) =

∑
i π(i)Pij ehk

X2 jaotus on πTP. Analoogiliselt on X3 jaotus πTP 2 ning Xk jaotus on πTP k. Seega
on {Xn} jaotus määratud üleminekumaatriksi P ja algtõenäosuste vektoriga π. Markovi
ahel on statsionaarne parajasti siis, kui algtõenäosuste vektor π on selline, et πTP = π
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ehk π(j) =
∑

i π(i)Pij iga j korral. Sellist vektorit nimetatakse statsionaarseks .

Näide: Olgu |X | = 2 ning olgu üleminekumaatriks(
1− α α
β 1− β

)
.

Sellise üleminekumaatriksiga Markovi ahela statsionaarne algtõenäosuste vektor on

(
β

α + β
,

α

α + β
).

Teoreem 1.17 Olgu {Xn} statsionaarne Markovi ahel üleminekumaatriksiga (Pij) ja al-
gtõenäosuste vektoriga π. Siis

HX = H(X2|X1) = −
∑
i

π(i)
∑
j

Pij logPij.

Tõestus. Markovi omadusest saame, et iga n korralH(Xn|Xn−1, . . . , X1) = H(Xn|Xn−1).
Et ahel on statsionaarne, siis H(Xn|Xn−1) = H(X2|X1) ja teoreemist 1.15 järeldub

HX = H ′
X = lim

n→∞
H(Xn|Xn−1, . . . , X1) = lim

n→∞
H(Xn|Xn−1) = H(X2|X1).

Seos
H(X2|X1) = −

∑
i

π(i)
∑
j

Pij logPij

on lihtne ülesanne.

1.9 Erinevate algjaotustega Markovi ahelad

Olgu X1, X2, . . . homogeene MA üleminekutõenäosustega R(x|y), (see tähendab R(x|y) =
P(Xn = x|Xn−1 = y)) ja algtõenäosustega π (st π(x) = P(X1 = x)). Olgu X ′

1, X
′
2, . . .

sama üleminekumaatriksi kuid algjaotusega π′ MA. Järgnev võrratus näitab, et sõltumata
algjaotustest π ja π′, juhuslike suuruste Xn ja Xn+1 jaotused lähenevad teineteisele K-L
mõttes.

Väide 1.17 Iga n = 1, 2, . . . korral kehtib

D(Xn+1||X ′
n+1) ≤ D(Xn||X ′

n). (1.32)

Tõestus. Olgu Pn ja P ′
n vastavalt Xn ja X ′

n jaotused. Seega (1.32) on

D(Pn+1||P ′
n+1) ≤ D(Pn||P ′

n). (1.33)

K-L ketireeglist saame

D
(
(Xn+1, Xn)||(X ′

n+1, X
′
n)
)
= D

(
Xn+1||X ′

n+1

)
+D

(
Xn||X ′

n|Xn+1

)
= D

(
Xn||X ′

n

)
+D

(
Xn+1||X ′

n+1|Xn

)
.
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Veendu, et D
(
Xn+1||X ′

n+1|Xn

)
= 0. Tõepoolest, et

P(Xn+1 = x|Xn = y) = P(X ′
n+1 = x|X ′

n = y) = R(x|y),

siis tähistades

P (y) = P(Xn = y), P (x, y) = P(Xn+1 = x,Xn = y), P ′(x, y) = P(X ′
n+1 = x,X ′

n = y),

saame

D
(
Xn+1||X ′

n+1|Xn

)
=

∑
y

P (y)
∑
x

P (x|y) log P (x|y)
P ′(x|y)

=
∑
y

P (y)
∑
x

P (x|y) log R(x|y)
R(x|y)

= 0.

Järeldus 1.10 Kui π′ on statsionaarne algjaotus, siis (1.32) on

D(Pn+1||π′) ≤ D(Pn||π′). (1.34)

Seega Xn jaotus Pn läheneb statsionaarsele jaotusele K-L mõttes. Mittenegatiivsete liik-
mentega mittekahaneval jadal {D(Pn||π′)} on piirväärtus. Juhuslike protsesside teooriast
teame, et taandumatu ja mitteperioodilise MA korral Pn(x) → π′(x), ∀x ∈ X . Kui X on
lõplik, siis sellest järeldub ka koondumine D(Pn||π′) → 0.

Järeldus 1.11 Kui statsionaarne algjaotus π′ on ühtlane üle lõpliku tähestiku X , siis
(1.34) on

H(Pn) ≤ H(Pn+1) (1.35)

Tõestus. Ülesanne 32.

Seega ühtlase algjaotuse korral on juhuslike suuruste X1, X2, . . . entroopia mittekahanev.

Näide. Olgu kaardipakis m kaarti: {1, . . . ,m}. Seega on kaardipakil m! võimalikku
seisundit. Kaardipaki segamist võib vaadelda Markovi ahelana. Pole raske veenduda,
et sellise Markovi ahela üleminekumaatriks on selline, et ka veergude summa on üks.
Seetõttu on statsionaarne jaotus ühtlane. Seega kaardipaki piirjaotus on ühtlane (see
ongi segamise mõte, mitteühtlase piirjaotuse korral oleksid mõned kaardid teatud posit-
sioonidel suurema tõenäosusega). Kaardipaki segamine seega suurendab selle entroopiat.

1.10 Statsionaarse juhusliku protsessi lähendamine k-järku Markovi
ahelaga

Teame, et Kullback-Leibleri kaugus D(X||Y ) mõõdab kahe juhusliku suuruse jaotuste
omavahelist kaugust. Samuti teame, et entroopiamäär on entroopia mõiste üldistus juh-
slikule protsessile. Kas neid mõisteid kombineerides on võimalik mõõta kahe juhusluku
protsessi jaotuse omavahelist kaugust?
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Olgu X = X1, X2, . . . ja Y = Y1, Y2, . . . kaks juhuslikku protsessi; olgu iga n korral
(X1, . . . , Xn) ∼ Pn ja (Y1, . . . , Yn) ∼ Qn. De�neerime kahe juhusliku protsessi jaotuse
K-L kauguse analoogi järgmiselt:

D(X||Y ) = lim
n

1

n
D(Pn||Qn),

kui see piirväärtus eksiteerib. Seda piirväärtust nimetatekse ka suhteliseks entroopi-
amääraks (relative entropy rate) ja tähistatakse HX||Y .

k-järku Markovi ahel. Olgu k ≥ 1 täisarv.

Def 1.18 Juhuslik protsess X1, X2, . . . tähestikul X on k-järku Markovi ahel kui iga m ≥
1 ja x1 ∈ X , i = 1, . . . ,m korral

P (Xm+1 = xm+1|Xm = xm, . . . , X1 = x1) = P (Xm+1 = xm+1|Xm = xm, . . . , Xm−k+1 = xm−k+1).

Seega 1-järku Markovi ahel on tavaline Markovi ahel, 2-järku Markovi ahela korral sõltub
homne nii tänasest kui eilsest jne. Kui X on k-järku Markovi ahel, siis

P (x1, . . . , xn) = P (x1, . . . , xk)P (xk+1|xk, . . . , x1)P (xk+2|xk+1, . . . , x2) · · ·P (xn|xn−1, . . . , xn−k),

kui vaid tinglikud tõenäosused on de�neeritud. Kui k-järku Markovi ahel on statsion-
aarne on tema jaotus de�neeritud tõenäosustega P (x1, . . . , xk) ja üleminekutõenäosustega
P (xk+1|x1, . . . , xk).

Väide 1.18 Olgu X = X1, X2, . . . statsionaarne protsess ja Y = Y1, Y2, . . . olgu statsion-
aarne k-järku Markovi ahel, mõlemad tähestikul X . Siis leidub D(X||Y ), mis avaldub
järgmiselt

D(X||Y ) = −HX − E logQ(Xk+1|Xk, . . . , X1),

kus Q(xk+1|xk, . . . , x1) on Y üleminekutõenäosused.

Tõestus. Et

logQn(x1, . . . , xn) =

logQn(x1, . . . , xk) + logQ(xk+1|xk, . . . , x1) + logQ(xk+2|xk+1, . . . , x2) + · · · logQ(xn|xn−1, . . . , xn−k),
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saame

D(Pn||Qn) =
∑

x1,...,xn

Pn(x1, . . . , xn) log
(Pn(x1, . . . , xn)

Qn(x1, . . . , xn)

)
=−H(Pn)−

∑
x1,...,xk

Pn(x1, . . . , xk) logQ(x1, . . . , xk)

−
∑

x1,...,xk+1

Pn(x1, . . . , xk+1) logQ(xk+1|xk, . . . , x1)

−
∑

x2,...,xk+2

Pn(x2, . . . , xk+2) logQ(xk+2|xk+1, . . . , x2)− · · ·

· · · −
∑

xn−k,...,xn

Pn(xn−k, . . . , xn) logQ(xn|xn−1, . . . , xn−k)

= −H(Pn)−
∑

x1,...,xk

Pn(x1, . . . , xk) logQ(x1, . . . , xk)

− (n− k)
∑

x1,...,xk+1

Pn(x1, . . . , xk+1) logQ(xk+1|xk, . . . , x1)

=−H(Pn)−
∑

x1,...,xk

Pn(x1, . . . , xk) logQ(x1, . . . , xk)− (n− k)E logQ(Xk+1|Xk, . . . , X1).

Jagades n-ga ja minnes piirile saame (X statsionaarsust arvestades)

lim
n

D(Pn‖Qn)

n
= −HX − E logQ(Xk+1|Xk, . . . , X1).

Olgu nüüd X1, X2, . . . statsionaarne protsess. Iga k korral de�neerime k-järku Markovi
ahela Y k = Y1, Y2, . . . järgmiselt:

P (Y1 = x1, . . . , Yk = xk) = P (X1 = x1, . . . , Xk = xk),

P (Yk+1 = xk+1|Yk = xk . . . , Y1 = x1) = P (Xk+1 = xk+1|Xk = xk . . . , X1 = x1).

Seega Y k üleminekutõenäosused on sama, misX protsessil ja ka algtõenäosused on samad.
Aga see ei tähenda, et protsessid oleksid samad, sest X ei pruugi olla k-järku Markovi
ahel, Y k aga on. Protsessi Y k võib vaadelda kui protsessi X k-järku Markovi lähendit.
Seega

E logQ(Xk+1|Xk, . . . , X1) = −H(Xk+1|X1, . . . , X1)

ja et X on statsionaarne, saame

lim
k→∞

H(Xk+1|X1, . . . , X1) = HX .

See omakorda tähendab, et

lim
k→∞

D(X||Y k) = −HX + lim
k→∞

H(Xk+1|X1, . . . , X1) = 0. (1.36)

Koondumine (1.36) tähendab, et igat statsionaarset protsessi saab kuitahes hästi lähen-
dada mingi k-järku Markovi ahelaga.
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1.11 Ülesanded

1. Olgu mündiviskel kulli saamise tõenäosus p. Münti vistatakse kuni esimese kullini.
Olgu X selleks kulunud visete arv. Leida H(X).

2. Tõestada grupeerimisomadus

H(p1, p2, p3, . . .) = H(p1 + p2, p3, . . .) + (p1 + p2)H(
p1

(p1 + p2)
,

p2
(p1 + p2)

)

ja järeldada sellest (1.3).

3. Leida selline P (y|x) ja P1(x) ja P2(x) nii, et P1 6= P2, kuid P1(y) = P2(y) iga y ∈ Y
korral.

4. Olgu g : X → X funktsioon. Tõestada, et

H(g(X)) ≤ H(X), H(g(X)|Y ) ≤ H(X|Y ).

5. Leida P nii, et H(P ) = ∞.

6. Olgu X1 ja X2 juhuslikud suurused väärtuste hulgaga vastavalt X1 = {1, . . . ,m},
X2 = {m+ 1, . . . , n}. Olgu X segujaotusega, s.t.

X =

{
X1 kui Z = 1,

X2 kui Z = 0,

kus Z ∼ B(1, p). Leida H(X). Veendu, et

2H(X) ≤ 2H(X1) + 2H(X2).

7. Olgu X ∼ P . Tõestada, et

P
(
P (X) ≤ d

)
(log

1

d
) ≤ H(X).

8. Leida jaotused P , Q ja R nii, et

D(P‖Q) > D(P‖R) +D(R‖Q).

9. Tõestada võrdused (1.11).

10. Olgu P ja Q tähestikul X antud jaotused. Olgu

χ2(P ||Q) :=
∑
x∈X

(P (x)−Q(x))2

Q(x)
.

Tõesta, et
χ2(P ||Q) ≥ (ln 2)D(P ||Q).
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11. Olgu Pn de�neeritud kui (1.13). Näita, et

H(Pn) → H(P ) + c.

12. Olgu X lõpmatu,

Pn = (1− α

log n
,

α

n log n
, . . . ,

α

n log n︸ ︷︷ ︸
n

, 0, · · · ),

kus α > 0. Veendu, et Pn → P , kus P = (1, 0, . . .), kuid H(Pn) → α. Olgu nüüd

Q = (q1, q2, q3, . . .),

kus qi = (1− q)qi−1, q ∈ (0, 1). Näita, et D(P ||Q) < ∞, kuid

D(Pn||Q) → ∞.

13. Olgu X = (X1, . . . , Xn) binaarsete komponentidega juhuslik vektor. Olgu R =
(R1, . . . , Rn) vektori X blokipikkuste indikaator. Näiteks, kui X = (1, 0, 0, 0, 1, 1, 0),
siis R = (1, 3, 2, 1). Näidata, et

0 ≤ H(X)−H(R) ≤ min
i

H(Xi).

14. Olgu X,Y juhuslikud suurused, olgu Z = X + Y .
Näita, et H(Z|X) = H(Y |X) ning veendu, et kui X ja Y on sõltumatud, siis
H(X) ≤ H(Z) ja H(Y ) ≤ H(Z).
Leida X ja Y nii, et H(X) > H(Z) ja H(Y ) > H(Z).
Millal kehtib H(Z) = H(X) +H(Y )?

15. Olgu
ρ(X,Y ) = H(X|Y ) +H(Y |X).

Tõesta, et ρ on poolmeetrika. Millal ρ(X,Y ) = 0?
Veendu, et

ρ(X,Y ) = H(X)+H(Y )−2I(X;Y ) = H(X,Y )−I(X;Y ) = 2H(X,Y )−H(X)−H(Y ).

16. Tõestada, et iga n ≥ 2 korral

H(X1, . . . , Xn) ≥
n∑

i=1

H(Xi|Xj, j 6= i).

Veenduda, et

1

2
[H(X1, X2) +H(X3, X2) +H(X1, X3)] ≥ H(X1, X2, X3).
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17. Olgu X,Y, Z juhuslikud suurused, kusjuures Y ja Z on sõltumatud. Tõesta, et

D(X||Y |Z) = −H(X|Z) +D(X||Y ) +H(X) ≤ H(Z) +D(X||Y ).

18. Tõesta, etD
(
(X, f(X))||(Y, f(Y ))

)
= D(X||Y ). Järelda sellest, etD

(
f(X)||f(Y )

)
≤

D(X||Y ). Veendu, et üldiselt D
(
(X, f(X))||(Y, g(Y ))

)
6= D(X||Y ).

19. (a) Olgu X1 ja X2 sama jaotusega juhuslikud suurused. Olgu

ρ(X1, X2) := 1− H(X2|X1)

H(X1)
. (1.37)

Tõestada, et ρ on sümmeetriline, ρ ∈ [0, 1]. Millal on ρ = 0? Millal on ρ = 1?

(b) Olgu (X,Y ) jaotustabel järgmine ϵ ∈ (0, 1
4
]:

Y \X −n −1 1 n
n 0 0 0 ϵ
1 0 1

4
− ϵ 1

4
0

-1 0 1
4

1
4
− ϵ 0

−n ϵ 0 0 0

Leida I(X;Y ) ning ρ (nagu seoses (1.37)). Leida cov(X,Y ) ja X ning Y korre-
latsioonikordaja. Veendu, et kui n → ∞, siis korrelatsioonikordaja piirväärtus
on 1 iga ϵ > 0 korral.

(c) Olgu (X,Y ) jaotustabel järgmine

Y \X −n −1 1 n
n 0 0 1

4
0

1 1
4

0 0 0
-1 0 0 0 1

4

−n 0 1
4

0 0

Leida I(X;Y ) ning ρ (nagu seoses (1.37)). Leida cov(X,Y ) ja X ning Y
korrelatsioonikordaja.

20. Tõestada, et

I(X;X|Z) = H(X|Z)
I(X;Y |Z) = H(Y |Z)−H(Y |X,Z)

I(X;Y |Z) = H(X|Z) +H(Y |Z)−H(X,Y |Z)
I(X;Y |Z) = H(X,Z) +H(Y, Z)−H(X,Y, Z)−H(Z).
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21. Tõestada, et

H(X,Y |Z) ≥ H(X|Z)
I(X,Y ;Z) ≥ I(X;Z)

H(X,Y, Z)−H(X,Y ) ≤ H(X,Z)−H(X)

I(X;Y |Z) ≥ I(Y ;Z|X)− I(Y ;Z) + I(X;Y ).

Millal kehtivad võrdused?

22. Leida X,Y, Z nii, et

I(X;Y |Z) > I(X;Y ) = 0

0 = I(X;Y |Z) < I(X;Y ).

23. Tõestada, et
H(X|g(Y )) ≥ H(X|Y ).

Leida vektor (X,Y ) nii, et X ja Y pole sõltumatud, g pole üksühene funktsioon,
kuid ülaltoodud võrratus on võrdus.

24. Olgu X = (X1, . . . , Xn) binaarsete komponentidega juhuslik vektor, kusjuures X
jaotus on järgmine:

P (x1, . . . , xn) =

{
2−(n−1) kui

∑
i xi on paarisarv;

0, kui
∑

i xi on paaritu arv.

Leida Xi jaotus. Leida (Xi, Xi+1) jaotus. Leida

I(X1;X2), I(X2;X3|X1), I(X4;X3|X1, X2), . . . , I(Xn;Xn−1|X1, X2, . . . , Xn−2).

25. Tõestada, et kui X → Y → Z, siis H(X|Z) ≥ H(X|Y ), I(X;Z) ≤ I(Y ;Z) ja
I(X;Y |Z) ≤ I(X;Y ).

26. Olgu {Pθ} Bernoulli jaotuste hulk, θ ∈ Θ, kus Θ on mingi ülimalt loenduv hulk, π on
parameetri eeljaotus. Olgu X juhuslik valim ja T (X) =

∑n
i=1 Xi. Leida H(θ|T (X))

ja H(θ|X). Veenduda, et informatsioonivõrratus on võrdus.

27. Olgu X1 → X2 → X3 → X4. Tõestada, et

I(X1;X4) ≤ I(X2;X3).

28. Olgu X1 → X2 → · · · → Xn. Leida I(X1;X2, X3, . . . , Xn).

29. Oletame, et X1 → X2 → X3 on Markovi ahel, kusjuures |X1| = n, |X2| = k, |X3| =
m, kusjuures k < n ja k < m. Tõestada, et "pudelikael" vähendab vastastikust
informatsiooni juhuslike suuruste X1 ja X3 vahel, s.t. I(X1;X3) ≤ log k. Järeldada,
et k = 1 korral ei saa X3 kuidagi sõltuda X3-st.
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30. Olgu X juhuslik suurus lõpliku väärtuste hulgaga, s.t. |X | = m. Leida väik-
seima veatõenäosusega mittejuhuslik hinnang juhuslikule suurusele X. Olgu Pe

vea tõenäosus, s.t. Pe = P(X 6= X̂). Millise X jaotuse korral on Fano võrratus
võrdus

H(X) = Pe log(|X | − 1) + h(Pe)?

31. Olgu P jaotus väärtuste hulgaga 1, 2, . . .. Olgu selle mõõdu keskväärtus µ. Tões-
tada, et

H(P ) ≤ µ log µ− (µ− 1) log(µ− 1),

kusjuures võrratus on võrdus parajasti siis, kui P on geomeetrilise jaotusega. Seega
�kseeritud keskväärtuse korral on geomeetriline jaotus suurima entroopiaga.

32. a) Tõestada Järeldus 1.11

b) Olgu X0 → · · · → Xn. Tõestada, et

H(X0|X1) ≤ H(X0|X2) ≤ H(X0|X3) ≤ · · · ≤ H(X0|Xn).

33. Olgu {Xn}∞n=1 statsionaarne juhuslik protsess. Tõestada, et

H(X1, . . . , Xn)

n
≤ H(X1, . . . , Xn−1)

n− 1
H(X1, . . . , Xn)

n
≥ H(Xn|X1, . . . , Xn−1).

34. Tõestada, et statsionaarse MA korral

H(X2|X1) = −
∑
i

π(i)
∑
j

Pij logPij.

35. Olgu X1, X2, . . . i.i.d. juhuslikud suurused, Xi ∼ P . Vaatleme juhuslikku ekslemist,
{Sn}∞n=0, s.t.

S0 = 0, S1 = X1, S2 = X1 +X2, . . . , Sn = X1 + · · ·+Xn.

Tõestada, et juhusliku ekslemise entroopia on HS = H(P ).

36. Koer liigub juhuslikult täisarvudel: ajahetkel 0 on koer positsioonil 0. Seejärel
hakkab ta tõenäosusega 0.5 liikuma paremale ja samasuure tõenäosusega vasakule.
Pärast esimest sammu jätkab ta liikumist esialgses suunas tõenäosusega 0.9, tõenäo-
sussega 0.1 vahetab ta suunda jne. Seega on koera tüüpiline trajektoor näiteks

(X0, X1, . . .) = (0,−1,−2,−3,−4,−3,−2,−1, 0, 1, 2, 3, . . .).

Leida HX .
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37. Vaatleme juhuslikku ekslemist ringil (0, 1, . . . , l), s.t. l-le järgneb 0. Olgu

Sn =
n∑

i=1

Xi,

kusjuures X1 on ühtlase jaotusega juhuslik suurus, X2, X3, . . . on i.i.d. juhuslikud
suurused P (X2 = 1) = P (X2 = 2) = 0.5. Leida HS.
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2 Kodeerimine

2.1 Põhimõisted

Vaatleme tähestikku X . Oletame, et informatsiooni edasiandmiseks on meie käsutuses
kanal, mille kaudu saab edastada vaid sümboleid etteantud lõplikust kodeerimistähestikust
D. Kui D := |D| < |X | (ja sellist olukorda vaatlemegi), tuleb iga tähestiku X täht esitada
kodeerimistähtede lõpliku stringina - koodisõnana. Teisisõnu, tähestik X tuleb kodeerida.
Näiteks kui D = {0, 1}, tuleb iga tähestiku X element kodeerida mingiks bitisõnaks.
Olgu D∗ kõikide kooditähtedest moodustatud lõplike sõnade hulk. Olgu X ∗ kõikide täht-
edest moodustatud lõplike sõnade hulk. Formaalselt

D∗ := ∪∞
n=1Dn, X ∗ := ∪∞

n=1X n.

Def 2.1 Kood (code) on kujutis

C : X → D∗.

Koode on väga palju ning väga erinevate omadustega. Näiteks on kood Morse tähestik,
mille korral hulga X moodustavad tähestik, numbrid ja kirjavahemärgid, kodeerimistäh-
estik D koosned kolmest elemendist: punkt, kriips ja paus (tegelikult kuulub Morse
kodeerimistähestikku ka pikk paus sõnavahedeks, kuid ülalkirjeldatud tähestiku kodeer-
imiseks pole seda vaja).

Def 2.2 Kood C on ühene (non-singular) , kui ta on injektiivne, s.t. C(xi) 6= C(xj)
iga xi 6= xj ∈ X korral.

Ühene kood kodeerib tähestiku üheselt. Sellest üksi ei piisa aga, et üheselt kodeerida
mitmest tähest koosnevat sõna x1x2 · · ·xn.

Olgu C kood. De�neerime tema laiendi

C∗ : X ∗ → D∗, C∗(x1 · · ·xn) := C(x1) · · ·C(xn).

Def 2.3 Kood C on üheselt dekodeeritav (uniquely decodable) , kui tema laiend
C∗ on ühene.

Üheselt dekodeeritava koodi korral vastab koodisõnale C(x1) · · ·C(xn) vaid üks originaal-
sõna x1 · · ·xn. Küll aga võib olla nii, et esimese tähe x1 dekodeerimiseks tuleb lugeda
kogu kodeeritud sõna C(x1) · · ·C(xn). On aga loomulik eeldada, et kood C on selline, et
täht x1 on dekodeeritud niipea kui see saab loetud (s.t. dekodeerimine toimub "on-line").
Sellisel juhul ei tohi tähe x1 kood C(x1) olla ühegi teise tähe koodi algus (vastasel juhul
ei teaks me, kas C(x1) on x1 kood või järgneb veel midagi ning C(x1) on vaid osa mingi
teise tähe koodist).

Def 2.4 Kood C on pre�kskood (pre�x-free, instantaneous) , kui ei leidu erinevaid
tähti xi ja xj nii, et tähe xi kood C(xi) on tähe xj koodi C(xj) algus (pre�ks).
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Märkused:

� Pre�kskood on üheselt dekodeeritav ja seetõttu ka ühene.

� Termini pre�kskood asemel oleks ehk loogilisem kasutada terminit mittepre�kskood,
kuid viimane tundub kohmakas. Inglisekeelses kirjanduses kasutatakse mõlemaid
termineid: nii pre�x code kui ka pre�x-free code.

Näited:

� Morse tähestikus tähistab iga koodi lõppu paus. Seega on Morse tähestik pre�k-
skood. Ilma pausideta oleks ei oleks Morse tähestik üheselt dekodeeritav.

� Olgu X = {a, b, c, d} ning vaatame kahendkoode C1, C2, C3 ja C4, millised esitame
tabelina

X C1 C2 C3 C4

a 0 0 10 0
b 0 010 00 10
c 1 01 11 110
d 0 10 110 111

Kood C1 pole ühene. Kood C2 on küll ühene, kuid pole üheselt dekodeeritav.
Näiteks kodeerimissõna 010 võib tähendada nii tähte b kui ka sõnu ad ja ca. Kood
C3 on üheselt dekodeeritav kuid mitte pre�kskood. Tõepoolest, saamaks teada,
kas jada 1100 . . . 0 kodeerib sõna cbb . . . b või dbb . . . b, peame lugema üle kõik nul-
lid ning veenduma kas neid on paaris- või paarituarv. Järelikult ei saa me esimest
tähte dekodeerida enne kui oleme kogu sõna ära lugenud. See on sellepärast nii, et
koodisõna C(c) = 11 on koodisõna C(d) = 110 pre�ks. Kood C4 on aga pre�kskood
ning iga tähe saame dekodeerida niipea kui oleme tema koodi lugenud. Dekodeerige
"on-line" string 01011111010.

2.2 Krafti võrratus

Pre�kskood kui puu. Iga pre�kskoodi võib esitada D-ndpuuna, kus igal sõlmel on
maksimaalselt D järglast ning igale lehele vastab üks tähestiku X täht. Koodipuu igale
oksale vsatab üks täht kooditähestikust D ning tee koodipuu juurest leheni ongi lehele
vastava tähe kood.

Näide: Olgu D = 3. Konstueerige järgmise koodi puu:

a b c d e f g h
1 2 010 012 02 000 001 002

Olgu C mingi kood. Olgu iga x korral l(x) := |C(x)| tähele x vastava koodisõna pikkus.
Ülaltoodud näites l(a) = l(b) = 1, l(c) = l(d) = 3 jne. Järjestades kõikide koodisõnade
pikkused kasvavalt, saame

l1 = l2 = 1, l3 = 2, l4 = l5 = l6 = l7 = l8 = 3.
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On selge, et kui C on pre�kskood (saab esitada puuna), siis koodisõnade pikkused ei
saa olla kuitahes lühikesed. Alljärgnev Krafti võrratus annab kena tõkke: suvalise pre-
�kskoodi koodisõnade pikkused {l(x) : x ∈ X} on piisavalt pikad rahuldamaks teatud
tingimust. Veel enam, nimetatud tingimus on piisav selleks, et leiduks vähemalt üks
etteantud pikkustega pre�kskood.

Teoreem 2.5 (Krafti võrratus) Olgu C : X → D∗ pre�kskood, li = l(xi). Siis∑
i

D−li ≤ 1. (2.1)

Teistpidi, olgu {li}|X |
i=1 täisarvud. Kui nad rahuldavad võrratust (2.1), siis leidub pre�k-

skood C : X → D∗ nii, et li = l(xi) ∀xi ∈ X .

Tõestus. Olgu D = {0, . . . , D − 1}. Tõestame kõigepealt, et iga pre�kskoodi sõnade
pikkused rahuldavad Krafti võrratust. Seda on väga lihtne näidata juhul kui tähestik X on
lõplik. Seega vaatame alguses juhtu, kui |X | = m < ∞. Olgu l∗ := max{l1, . . . , lm} < ∞.
Esita kood D-puuna. Koodisõnal (lehel) sügavusel li oleks sügavusel l∗ täpselt Dl∗−li

järglast. Erinevatele lehtedele kuuluvad (potensiaalsed) järglased sügavusel l∗ on lõiku-
matud. Seega nende summa ei ületa tippude arvu sügavusel l∗. Et sügavusel l∗ saab
D-puul olla ülimalt Dl∗ tippu, saame

m∑
i=1

Dl∗−li ≤ Dl∗ ⇔
m∑
i=1

D−li ≤ 1.

Tõestame nüüd Krafti võrratuse lõpmatu X korra. Vaatleme koodisõna d1d2 · · · dli . Olgu
0.d1d2 · · · dli reaalarv, millele vastav D-ndarv on 0.d1d2 · · · dli , s.t.

0.d1d2 · · · dli =
li∑

j=1

dj
Dj

. (2.2)

Vaatleme koodisõnale d1d2 · · · dli vastavat intervalli

[0.d1d2 · · · dli , 0.d1d2 · · · dli +D−li).

Siia intervalli kuuluvad need reaalarvud, millele vastavadD-ndarvud algavad 0.d1d2 · · · dli .
See on intervalli [0, 1] alamintervall, tema pikkus on D−li . Et C on pre�kskood, on er-
inevatele koodisõnadele vastavad intervallid lõikumatud, nende intervalli pikkuste summa
on seega väiksem või võrdne ühega ehk kehtib (2.1).

Teistpidi: olgu {li}|X |
i=1 tingimust (2.1) rahuldavad täisarvud. Sellisel juhul saab ühikinter-

valli jagada lõikudeks pikkustega D−li . Tõepoolest, reastame arvud li nii, et l1 ≤ l2 ≤ · · · .
Olgu esimene intervall [0, D−l1), teine [D−l1 , D−l1 + D−l2) jne. Esimese intervalli � ,
pikkusele l1 vastava intervalli � saame esitada kujul

0. 0 · · · 0︸ ︷︷ ︸
l1

,
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kus koma järel on l1 nulli. Selle intervalli lõpp-punkti D−l1 esitus D-ndarvuna on

0. 0 · · · 01︸ ︷︷ ︸
l1

.

Intervalli [0.0 . . . 0, 0.0 . . . 1) kuuluvad parajasti need D-ndarvud, mille algus on 0.0 . . . 0.
Järgmise intervalli � arvule l2 vastava intervalli [D−l1 , D−l1+D−l2) � algus- ja lõpp-punkti
esitame esitame D-ndarvuna, kus komakohti on l2 (tuleta meelde, et l2 ≥ l1). Seega teise
intervalli alguspunkt on

0.

l2︷ ︸︸ ︷
0 · · · 01︸ ︷︷ ︸

l1

0 · · · 0 . (2.3)

Sinna intervalli kuuluvad parajasti need arvud, mille D-nd esitus algab arvuga (2.3).
Järgmise intervalli alguspunkti D−l1 + D−l2 esitame D-ndkujul 0.d1d2 · · · dl3 . Paneme
tähele, arvu D−l1 +D−l2 D-ndkujus on (maksimaalselt) l2 kohta peale koma. Et l3 ≥ l2
tähendab see, et 0.d1d2 · · · dl3 on sisuliselt arvu D−l1 + D−l2 D-ndkuju ning (vajaduse
korral) teatav arv 0-e. Selle intervalli lõpp-punkti saab esitada l3-kohalise D-ndarvuna.
Arvule li vastava intervalli algus on D−l1 + · · · +D−li−1 . Selle arvu D-ndkujus on (mak-
simaalselt) li−1 komakohta. Et li ≥ li−1, saame (vajaduse korral 0-de lisamisel) selle arvu
esitada kujul D-ndkujul (2.2). Arvu D−l1 + · · ·+D−li esituseks D-nd kujul läheb samuti
vaja maksimaalselt li kohta.
Kokkuvõttes: arvule li vastava intervalli algus ja lõpp-punkti esitame D-nd kujul, kusju-
ures komakohti on li. Sellest piisab mõlema arvu esitamiseks. Koodi C konstrueerime
nii, et arvule li (tähele xi) seame vastavusse koodisõna d1d2 · · · dli , st vastava itervalli
alguspunkti komakohad. Seega iga koodisõna kuulub erinevasse intervalli. Intervallid
on lõikumatud, mistõttu on saadud kood pre�kskood, sest kõik need koodisõnad, millele
d1d2 · · · dli on pre�ksiks kuuluvad ühte intervalli.

Märkus: Edaspidi tõestame, et sama väide üldistud üheselt dekodeeritavate koodideni
(Teoreem 2.11).
Alternatiivse tõestuse teisele implikatsioonile võib leida Yeung'i raamatust (Thm 3.1).

Näited:

� Vaatleme veelkord koodi C4. Siin l1 = 1, l2 = 2, l3 = l4 = 3. Leiame reaalarvud,
millele vastavad kahendarvud on 0.d1d2 · · · dli . Saame

0.02 = 0, 0.102 = 0.12 = 0.5, 0.1102 = 0.112 =
1

2
+
1

4
= 0.75, 0.1112 =

1

2
+
1

4
+
1

8
= 0.875.

Vastavad intervallid (tõestuse esimene pool) on

[0, 0 +
1

2
), [0.5, 0.5 +

1

4
), [0.75, 0.75 +

1

8
), [0.875, 0.875 +

1

8
).

Antud näite korral on Krafti võrratus võrdus.
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� Teistpidi: olgu {1, 2, 3, 3} koodisõnade pikkused. Konstrueerime vastavate pikkustega
kahendkoodi. Lihtsaim võimalus selleks on konstrueerida vastav kahendpuu. Teo-
reemi tõestuses kasutatud protseduur oleks aga järgmine.
Konstrueerime intervallid

[0,
1

2
), [

1

2
,
1

2
+

1

4
), [

1

2
+

1

4
,
1

2
+

1

4
+

1

8
), [

1

2
+

1

4
+

1

8
, 1).

Vastavad intervallid kahendkujul (komakohti on niipalju kui li) on

[0.

1︷︸︸︷
0 , 0.1), [0.

2︷︸︸︷
10 , 0.11), [0.

3︷︸︸︷
110 , 0.111), [0.

3︷︸︸︷
111 , 1).

Koodisõnad: 0, 10, 110, 111.

� Olgu koodisõnade pikkused {2, 2, 3, 3}. Intervallid

[0,
1

4
), [

1

4
,
1

2
), [

1

2
,
1

2
+

1

8
), [

1

2
+

1

8
,
1

2
+

1

8
+

1

8
).

Vastavad intervallid kahendkujul (komakohti on niipalju kui li) on

[0.00, 0.01), [0.01, 0.10), [0.100, 0.101), [0.101, 0.110).

Koodisõnad: 00, 01, 100, 101.

� Olgu koodisõnade pikkused {1, 1, 2, 3, 3, 3, 3, 3} ja konstrueerime vastava kolmend-
koodi. Intervallid

[0,
1

3
), [

1

3
,
2

3
), [

2

3
,
2

3
+

1

9
), [

2

3
+

1

9
,
2

3
+

1

9
+

1

27
)

[
2

3
+

1

9
+

1

27
,
2

3
+

1

9
+

2

27
), [

2

3
+

2

9
,
2

3
+

2

9
+

1

27
), [

2

3
+

2

9
+

1

27
,
2

3
+

2

9
+

2

27
)

Vastavad intervallid 3-ndkujul

[0.0, 0.1), [0.1, 0.2), [0.20, 0.21), [0.210, 0.211), [0.211, 0.212), [0.212, 0.22), [0.220, 0.221), [0.221, 0.222).

Koodisõnad: 0, 1, 20, 210, 211, 212, 220, 221.

2.3 Keskmine koodipikkus ja entroopia

Vaatleme olukorda, kus tähed on juhuslikud, tähe x ∈ X tõenäosus on P (x). Olgu C
mingi kood ning l(x) = |C(x)|. Jaotusega P juhusliku tähe kodeerimiseks kulub seega
keskmiselt

L(C) =
∑
x

l(x)P (x)
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kooditähte. Suurust L(C) nimetame koodi C keskmiseks pikkuseks.

Näide: Vaatleme koodi C4. Olgu P (a) = 1
2
, P (b) = 1

4
, P (c) = P (d) = 1

8
. Siis

L(C4) =
1

2
+

1

4
2 +

1

8
3 +

1

8
3 =

7

4
.

Paneme tähele, et ka H(P ) = 7
4
.

Alljärgnevas otsime pre�kskoodi, mille keskmine pikkus oleks võimalikult väike, sest sell-
ise koodi korral on (antud jaotusega) juhusliku tähe kodeerimine efektiivne. Sellist koodi
(kui see eksisteerib) nimetame optimaalseks. Eelnevas nägime, et iga pre�kskoodi ko-
rral peavad koodisõnade pikkused rahuldama Krafti võrratust ning iga seda võrratust
rahuldavate pikkuste hulga korral on võimalik leida etteantud pikkustega pre�kskoodi.
On ka selge, et selliseid koode on mitu (vähemalt |X |!). Kuidas aga valida nende seast
väikseima keskmise pikkusega koodi? Intuitiivselt on selge, et keskmine koodipikkus on
väike, kui väikese tõenäosusega tähti kodeeritakse pikkade koodisõnadega ning lühikesed
koodisõnad hoitakse tähtedele, mille tõenäosus on suur. Ka Morse tähestik on üles ehi-
tatud sarnase printsiibi põhjal. Küll aga on Morse tähestikus sümbol "paus" kasutusel
vaid koodisõna lõpu tähistusena, mistõttu seda ei saa kasutada koodisõna keskel, samuti
ei saa mitut pausi kasutada kõrvuti. Seega on kooditähestikus olevas kolmest sümbolist
ühe kasutamisele seatud ranged kitsendused, mistõttu kindlasti leidub Morse tähestikust
väiksema keskmise pikkusega kolmendkood.

Järgnev teoreem annab alumise tõkke antud kõikide pre�kskoodide keskmistele pikkustele.
Selgub, et ühegi pre�kskoodi keskmine pikkus ei saa olla väiksem jaotuse P entroopiast.

Teoreem 2.6 Olgu C : X → D∗ pre�kskood. Siis

L(C) ≥ HD(P ),

kusjuures võrdus kehtib vaid siis, kui l(x) = − logD P (x), ∀x ∈ X .

Tõestus.

L(C)−HD(P ) =
∑
x

l(x)P (x)−
∑
x

P (x) logD
1

P (x)

= −
∑
x

P (x) logD D−l(x) +
∑
x

P (x) logD P (x).

Olgu

c :=
∑
x

D−l(x), R(x) :=
D−l(x)

c
.

Siis

L(C)−HD(P ) =
∑
x

P (x) logD
P (x)

R(x)
− logD c = D(P ||R) + logD

1

c
≥ 0,
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sest D(P ||R) ≥ 0 ning Krafti võrratusest järeldub, et logD
1
c
≥ 0.

Ülalolev võrratus on võrdus vaid siis, kui P = R ja c = 1. See aga kehtib parajasti siis,
kui iga x ∈ X korral P (x) = D−l(x). Tarvilik tingimus selleks võrduseks on, et iga x ∈ X
korral on − logD P (x) täisarv.

Optimaalsed koodid seost (2.4) rahuldavate jaotuste korral. Eelmisest teoreemist
järeldub, et kui jaotus P on selline, et

logD
1

P (x)
∈ Z, ∀x ∈ X , (2.4)

siis on väikseima keskmise pikkusega koodi kerge konstrueerida: võta l(x) = logD
1

P (x)
.

Nimetatud pikkused rahuldavad Krafti võrratust (võrdusena) ning vastavate pikkustega
koodi võib de�neerida näiteks nii nagu Krafti võrratuse tarvilikkuse tõestuses. Selliselt
konstrueeritud koodi keskmine pikkus on HD(P ) ning ülaltoodud teoreemist järelduvalt
on selline kood optimaalne.

Näide: Jaotus, mis rahuldab seost (2.4) on näiteks

a b c d e f g h i
1
32

1
32

1
16

1
16

1
16

1
8

1
8

1
4

1
4

Pikkused on {l(x)}x∈X = {5, 5, 4, 4, 4, 3, 3, 2, 2}. Vastava kahendkoodi konstrueerimiseks
on lihtsaim võimalus konstrueerida 5-astmeline kahendpuu ning hakata seda vastavalt sü-
napikkustele redutseerima. Teine võimalus on formaalselt järgida Krafti võrratuse tões-
tuses kasutatud skeemi: konstrueerida intervallid

[0, 2−2), [2−2, 2−2 + 2−2), [2−1, 2−1 + 2−3), [2−1 + 2−3, 2−1 + 2−3 + 2−3),

[2−1 + 2−2, 2−1 + 2−2 + 2−4), [2−1 + 2−2 + 2−4, 2−1 + 2−2 + 2−3),

[2−1 + 2−2 + 2−3, 2−1 + 2−2 + 2−3 + 2−4), [2−1 + 2−2 + 2−3 + 2−4, 2−1 + 2−2 + 2−3 + 2−4 + 2−5)

[2−1 + 2−2 + 2−3 + 2−4 + 2−5, 1).

Vastavad intervallid kahendkujul (2.2)

[0.00, 0.01), [0.01, 0.10), [0.100, 0.101), [0.101, 0.110), [0.1100, 0.1101), [0.1101, 0.1110),

[0.1110, 0.1111), [0.11110, 0.11111), [0.11111, 1).

Kood:

a b c d e f g h i
11111 11110 1110 1101 1100 101 100 01 00
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Shannon-Fano kood. Paraku ei rahulda kõik tõenäosusjaotused seost (2.4) ning selliste
jaotuste korral pole ülaltoodud protseduuri võimalik rakendada. Modi�tseerime seda aga
nii, et arvu logD

1
P (x)

(mis ei pruugi olla täisarv) asemel võtame koodisõna C(x) pikkuseks
selle ülemise täisosa s.t.

l(x) = dlogD
1

P (x)
e. (2.5)

On selge, et saadud koodipikkused {l(x)} rahuldavad Krafti võrratust ning seetõttu
leidub vastavate pikkustega pre�kskood C. Kirjeldatud protseduuri abil saadud koodi
nimetatakse Shannon-Fano koodiks. Teisisõnu on kood C Shannon-Fano kood para-
jasti siis, kui iga tähe x ∈ X korral kehtib (2.5).

Kui palju me aga sellise ümardamise kaudu kaotame keskmises koodipikkuses? Et

dlogD
1

P (x)
e < logD

1

P (x)
+ 1,

siis
L(C) =

∑
x

P (x)dlogD
1

P (x)
e <

∑
x

P (x) logD
1

P (x)
+ 1 = HD(P ) + 1.

Seega kehtib järeldus.

Järeldus 2.1 Alati leidub pre�kskood C : X → D∗ nii, et

HD(P ) ≤ L(C) < HD(P ) + 1.

Näide: Olgu P ühtlane üle viie tähe, s.t. P (xi) =
1
5
, i = 1, . . . , 5. Siis

l(x) = log
1

P (x)
= log 5 ja dlog 1

P (x)
e = 3.

Üks võimalik Shannon-Fano kood:

C(x1) = 000, C(x2) = 001, C(x3) = 010, C(x4) = 011, C(x5) = 110. (2.6)

Sellise koodi keskmine pikkus on 3. Seega kehtib

H(P ) = log 5 < L(C) = 3 < log 10 = H(P ) + 1.

On aga küllaltki lihtne konstrueerida lühema keskmise pikkusega kahendkoodi kood-
ipikkustega {3, 3, 2, 2, 2} (kuidas?). Sellise koodi keskmine pikkus on 12

5
= 2.4.

2.3.1 Valesti hinnatud tõenäosused

Shannon-Fano koodi konstrueerimiseks on vaja teada tähtede tõenäosusjaotust P . Ole-
tame aga, et oleme konstrueerinud Shannon-Fano koodi hoopis jaotuse Q abil, s.t. meie
käsutuses olev informatsioon tähtede jaotuse kohta on ebatäpne. On selge, et sellisel
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juhul on meil üsna vähe lootust saada optimaalsest või sellele suhteliselt lähedast jaotust.
Järgnev teoreem väidab, et jaotuse Q põhjal konstrueeritud Shannon-Fano kahendkoodi
keskmine pikkuse alumine tõke pole mitte entroopia H(P ) vaid H(P ) +D(P‖Q), ülem-
ine tõke on pole mitte H(P ) + 1 vaid H(P ) + D(P‖Q) + 1. Kui Q ei erine K-L mõttes
palju tähtede tegelikust jaotusest P , käitub Q põhjal konstrueeritud Shannon-Fano ka-
hendkoodi keskmine pikkus sarnaselt P põhjal konstrueeritud Shannon-Fano kahendkoodi
keskminse pikkusega.

Teoreem 2.7 Olgu P tähtede tegelik jaotus. Olgu

lQ(x) := dlog 1

Q(x)
e.

Kehtib
H(P ) +D(P‖Q) ≤

∑
x

lQ(x)P (x) < H(P ) +D(P‖Q) + 1. (2.7)

Tõestus. Ülemise tõkke leiame järgnevalt∑
x

lQ(x)P (x) =
∑
x

dlog 1

Q(x)
eP (x) <

∑
x

P (x)
(
log

1

Q(x)
+ 1

)
=

∑
x

P (x)
(
log

P (x)

Q(x)
+ log

1

P (x)
+ 1

)
= D(P‖Q) +H(P ) + 1.

Alumise tõkke leidmine on ülesanne 1.

2.4 Hu�mani kood

2.4.1 Hu�mani koodi konstrueerimine

Shannon-Fano meetod andis üsna hea keskmise pikkusega pre�kskoodi; kui jaotus P
rahuldab seost (2.4), on Shannon-Fano kood optimaalne. Käesolevas osas kirjeldame
aga protseduuri, mis lõpliku tähestiku X korral alati garanteerib optimaalse koodi. Selle
protseduuri abil saadud koode nimetatakse Hu�mani koodideks .

Näide: Olgu X = {a, b, c, d, e}. Jaotus P olgu

a b c d e
0.35 0.1 0.15 0.2 0.2

Olgu D = 2. Tuletame meelde, et iga pre�kskood on esitatav puuna, kus lehtedele vas-
tavad tähestiku X tähed. Seega on kahendkoodi konstrueerimine sisuliselt kahendpuu
konstrueerimine. Hu�mani protseduur puu leidmiseks on järgnev: leia kaks kõige väik-
sema tõenäosusega tähte ja ühenda nad eelviimasel tasemel. Antud näite korral ühenda

53



tähed b, c. Summeeri vastavad tõenäosused, antud juhul siis 0.1 ja 0.15 ning vaata vähen-
datud tähestikku {a, {b, c}, d, e} tõenäosustega vastavalt 0.35, 0.25, 0.2, 0.2. Saame n.n.
vähendatud jaotuse

a {b, c} d e
0.35 0.25 0.2 0.2

Nüüd leia järgmised kaks kõige väiksema tõenäosusega tähte, antud juhul d ja e ja ühenda
nad uueks täheks. Nii vähendame eelmist jaotust veel ühe tähe võrra ning uus jaotus on
järgmine

a {b, c} {d, e}
0.35 0.25 0.4

Otsi jälle kaks kõige väiksema tõenäosusega tähte ja ühenda need järgmisel tasemel. Saad
uue tähestiku {a, b, c}, {d, e} ja uue jaotuse

{a, b, c} {d, e}
0.6 0.4

Nimetatud tähestikus on vaid kaks tähte, mis ühinevad puu esimesel tasemel. Saad ka-
hendpuu, mille iga hargnemine tähista 0 ja 1-ga. Tee juurest leheni ongi vastava tähe
(igale lehele vastab täht) kood. Näiteks saame koodi C, kus

C(a) = 00 C(b) = 010 C(c) = 011 C(d) = 10 C(e) = 11.

Selle koodi keskmine pikkus L(C) = 23
4
+ 31

4
= 9

4
= 2.25. Jaotuse P entroopia on

H(P ) = −0.35 log(0.35)− 0.1 log(0.1)− 0.15 log(0.15)− 0.4 log(0.4) = 2.202.

Kui väikseimate tõenäosustega paar pole ühene, vali Hu�mani protseduuris suvaline neist.
Lühima pikkusega koodi annab iga valik.

Ülaltoodud näide kirjeldas kahendkoodi (kahendpuu) konstrueerimist Hu�mani meetodil.
D-ndkoodi konstrueerimine käib põhimõtteliselt sama moodi: igal sammul ühendaD väik-
seima tõenäosusega tähte ning liida vastavad tõenäosused. Kui selline protseduur jõuab
lõpuni k + 1 sammuga, on konstrueeritud puus k + 1 sõlme ja k(D− 1) +D lehte. Seega
peab tähestikus olema k(D−1)+D tähte. Kui see aga nii ei ole, peame tähestikku lisama
sobival hulgal (mitte rohkem kui D−2) pseudotähti, mille tõenäosus on 0. Selliste tähtede
lisamine ei muuda jaotust P , küll aga võimaldab läbi viia Hu�mani protseduuri nii, et
viimasel saamul ühendatakse D tähte. Paneme tähele, et pseudotähtede mittelisamine
ja protseduuri läbiviimine nii, et viimasel sammul ühendatakse vähem kui D tähte võib
oluliselt suurendada koodi keskmist pikkust.

Näited:

� Olgu jaotus P ja tähestik X järgmine
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a b c d e f
0.25 0.25 0.2 0.1 0.1 0.1

Olgu D = 3. Et 6 6= 3 + k(3− 1), siis peame lisama ühe pseudotähe. Uus tabel on
järgmine

a b c d e f ∗
0.25 0.25 0.2 0.1 0.1 0.1 0

Hu�mani koodi produtseerime nüüd järgmiselt: esimesel sammul ühendame tähed
e, f ja ∗; järgmisel sammul ühendame {e, f, ∗}, d ja c; ülejärgmisel sammul ühen-
dame {c, d, e, f, ∗}, b ja a.

Hu�mani kood:

C(a) = 1, C(b) = 2, C(c) = 01, C(d) = 02, C(e) = 000, C(f) = 001, C(∗) = 002.

� Vaatleme veelkord kõige esimest näidet. Olgu D = 4. Et |X | = 5, pole tähtede arv
võrdne arvuga k(D − 1) +D (mitte ühegi k korral). Lisades 2 pseudotähte, saame
|X | = 7 = (D − 1) +D. Uus jaotus on

a b c d e ∗ ∗
0.35 0.2 0.2 0.15 0.1 0 0

Esimesel sammul võtame kokku tähed d, e, ∗, ∗; teisel sammul kõik ülejäänud.

Hu�mani kood:

C(a) = 0, C(b) = 1, C(d) = 2, C(e) = 30, C(f) = 31, C(∗) = 32, C(∗) = 0.

Paneme tähele, et Hu�mani protseduur on rakendatav vaid lõpliku tähestiku korral, sest
kui |X | = ∞, pole võimalik leida väiseimaid tõenäosusi. Järgnevas tõestame, et lõplike
X korral garanteerib Hu�mani meetod optimaalse koodi. Eelkõige paneme tähele, et
optimaalne kood leidub. Tõepoolest, kui |X | < ∞, siis otsime minimaalse keskmise
pikkusega koodi sisuliselt lõplikust koodide hulgast ning seetõttu optimaalne kood leidub
(kuid pole üldiselt ühene).

2.4.2 Hu�mani koodi optimaalsus

Olgu X = {x1, . . . , xm}. Üldisust kitsendamata eeldame, et

P (x1) ≥ P (x2) ≥ · · · ≥ P (xm). (2.8)

Teame, et leidub vähemalt üks optimaalne kood. Hu�mani koodi optimaalsuse tõestus
põhineb optimaalse koodi alljärgnevatel omadustel.
Esimene omadus väidab, et iga optimaalne kood seab väiksema tõenäosusega tähtedele
vastavusse pikemad sõnad.
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Väide 2.1 Olgu C optimaalne. Siis l(xi) > l(xj) vaid siis, kui P (xi) ≤ P (xj).

Tõestus. Oletame vastuväiteliselt, et leiduvad xi ja xj nii, et P (xi) > P (xj) ja l(xi) >
l(xj). Vahetades koodis C sõnad C(xi) ja C(xj) saame uue koodi C∗. Et aga

L(C)− L(C∗) = P (xi)l(xi) + P (xj)l(xj)− (P (xi)l(xj) + P (xj)l(xi))

= (P (xi)− P (xj))(l(xi)− l(xj)) > 0,

ei saa C olla optimaalne.

Vastavalt väitele 2.1 leidub optimaalne koodi nii, et

l(x1) ≤ l(x2) ≤ · · · ≤ l(xm). (2.9)

Def 2.8 Koodisõnad d′, d′′ ∈ D∗ on vennad (siblings), kui nad on ühepikkused ja er-
inevad üksteisest vaid viimase sümboli poolest.

Hu�mani kahendkoodi optimaalsus. Vaatleme olukorda D = 2, s.t. tõestame vaid
Hu�mani kahendkoodi optimaalsuse. Sellisel juhul on igal koodisõnal vaid üks vend.
Järgnev omadus väidab, et leidub optimaalne kood nii, et kahe kõige väiksema tõenäo-
susega sõna koodid on vennad.

Väide 2.2 Leidub optimaalne kood C nii, et C(xm−1) ja C(xm) on vennad.

Tõestus. Olgu C optimaalne kood. Järjestame tähed nii, et kehtivad võrratused (2.8)
ja (2.9)). Seega C(xm) on pikim (võrratused (2.9)). Et C(xm) on pikim, ei saa koodisõna
C(xm) vend olla ühegi teise koodisõna pre�ks. Oletame, et C(xm) vend pole ühegi tähe
kood. Sellisel juhul saaksime aga koodisõna C(xm) vähendada ühe võrra, mis on vastuolus
koodi C optimaalsusega. Seega leidub xj nii, et C(xm) ja C(xj) on vennad. Kui j = m−1,
siis väide kehtib. Kui j < m − 1, siis võrratustest (2.9) saame, et l(xj) = l(xm−1) =
l(xm), mistõttu võime koodisõnad C(xj) ja C(xm−1) ära vahetada. Et l(xj) = l(xm), siis
selline vahetamine ei muuda keskmist koodipikkust (optimaalsust), võrratusi (2.9) ega ka
võrratusi (2.8).

Teoreem 2.9 Hu�mani kood on optimaalne kahendkood.

Tõestus. Väitest 2.2 teame, et leidub optimaalne kahendkood C nii, et C(xm−1) ja
C(xm) on vennad. Hu�mani koodil on sama omadus. Liigume nüüd mÃPÃPda koodi C
puud edasi, asendades C(xm−1) ja C(xm) nende ühise tüvega. Nii saame uue koodi C ′,
mis vastab redutseeritud (vähendatud) jaotusele, kus xm ja xm−1 on kokku võetud üheks
täheks y tõenäosusega pm + pm−1. Kood C ′ on keskmiselt lühem kui C, nende pikkuste
vahe on

L(C)− L(C ′) = lpm + lpm−1 − (pm + pm−1)(l − 1) = pm + pm−1,

kus l = l(xm) = l(xm−1). Seega ei sõltu koodi pikkuste vahe nende struktuurist, mis-
tõttu C on optimaalne parajasti siis, kui C ′ on optimaalne. Teisisõnu, iga vähendatud
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tähestikul antud optimaalsest koodist saame originaaltähestiku optimaalse koodi, lisades
y koodile sümboli "0" (ja saades xm−1 koodi) ning sümboli "1" (ja saades xm koodi).
Seega oleme optimaalse koodi leidmise probleemi taandanud optimaalse koodi otsimise
probleemile vähendatud tähestikul. Väitest 2.2 teame, et vähendatud jaotusel leidub op-
timaalne kood nii, et kahe väikseima tõenäosusega tähe koodid on vennad. Ühendame
need tähed, just nagu Hu�mani protseduuris, ning vähendame tähestikku veel ühe tähe
võrra. Nüüd otsime optimaalset koodi uuel tähestikul jne. Lõpuks vähendame tähestikku
kahe täheni ning sellisel juhul on optimaalne kood ilmne. Seega oleme tõestanud, et Hu�-
mani protseduur annab meile optimaalse kahendkoodi.

Analoogiliselt saab tõestada, et Hu�mani kood on optimaalne D-ndkood. Skitseerime
tõestuse.
Üldisust kitsendamata eeldame, et tähestikus on D + k(D − 1) tähte. Kui see nii pole,
lisame sobiva arvu pseudotähti. Pseudotähed ei suurenda keskmist koodipikkust, seega
optimaalne kood laiendatud tähestikul on optimaalne ka esialgsel tähestikul.

Def 2.10 Ütleme, et D-ndpuu on täielik, kui igal tema sõlmel on täpselt D alluvat.

Täielik puu rahuldab Krafti võrratust võrdusena. Täielikul puul on D + (m− 1)(D − 1)
lehte, kus m on sõlmede arv.

Järgnevas paneme tähele, et iga optimaalne koodipuu on täielik, sest

� optimaalse puu igal sõlmel on D alluvat v.a. juhul, kui alampuu pikkus on 1;

� mittetäielikud alampuud saavad olla vaid viimasel tasemel;

� keskmist pikkust suurendamata võib viimasel tasemel olevaid mittetäielikke alam-
puid muuta nii, et neid jääb maksimaalselt üks;

� kui tähestikus on J := D + k(D − 1) tähte (puul on D + k(D − 1) lehte), ei saa
optimaalsel puul olla vaid ühte mittetäielikku alampuud. Tõepoolest: oletame, et
optimaalsel puul on sõlm, millel on vähem kui D järglast. Et puu on optimaalne,
saab sellele sõlmele vastava alampuu pikkus olla vaid 1. Olgu selle sõlme järglaste
arv a. Et puu on optimaalne, ei saa a olla 1, millest eelÃPeldu tõttu 2 ≤ a ≤ D−1.
Elimineerides ainsa mittetäieliku alampuu (ning vaadeldes sõlme uue lehena) saame
täieliku puu, millel on J − a+ 1 = D+ k(D− 1)− a+ 1 lehte. Saadud uus puu on
täielik, mistõttu teme lehtede arv peab olema D+m(D− 1). See pole aga antud a
korral võimalik.

Nüüd on Hu�mani D-nd koodi optimaalsuse tõestus analoogiline Hu�mani kahendkoodi
optimaalsuse tõestusega. Väide 2.1 ja võrratused (2.9) kehtivad suvalise D korral. Ar-
vestades, et leidub alati täielik optimaalne koodipuu, on kerge nähe, et kehtib väite 2.2
analoog: leidub optimaalne D-ndkood C nii, et C(xm−D+1), C(xm−D+2), . . . , C(xm) on
vennad. Tõepoolest, väikseima tõenäosusega leht peab olema pikima koodisõnaga; et puu
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on täielik, peavad koodi kuuluma ka kõik tema vennad, optimaalsuse tõttu peavad ven-
dadele vastavad lehed olema võimalikult väikese tõenäosusega.

Teoreemi 2.9 üldistus D-ndkoodidele on nüüd ilmne (veendu!).

Märkused:

� Mitte kõik optimaalsed koodid pole Hu�mani koodid, s.t. leidub optimaalseid koode,
milliseid pole võimalik konstrueerida Hu�mani meetodil.
Olgu näiteks X = {a, b, c, d, e, f}, kõik tähed olgu võrdse tõenäosusega. Vaatleme
koode C1 ja C2, mis on antud tabelitena

täht \ kood C1 C2

a 11 111
b 101 110
c 100 101
d 011 100
e 010 01
f 00 00

Kood C2 on Hu�mani kood, kui kood C1 mitte (ülesanne 5), mõlemad on opti-
maalsed.

� Optimaalse koodi keskmine pikkus ei pruugi alati olla HD(P ). Tõepoolest, eelmises
näites on optimaalse (Hu�mani) koodi keskmine pikkus 8

3
, mis on rangelt suurem

entroopiast log 6. Teame, et Hu�mani koodi keskmine pikkus L rahuldab alati
võrratusi

HD(P ) ≤ L < HD(P ) + 1.

On kerge veenduda, et antud tõkkeid ei saa parandada. Et alumine tõke võib olla
täpne, seda me juba teame. Veendume nüüd, et L võib olla kuitahes lähedal arvule
HD(P ) + 1. Selleks vaatleme jaotust (k on piisavalt suur)

a b c d
1
k

1
k

1
k

1− 3
k

Hu�mani kahendkoodi pikkused on l(a) = l(b) = 3 l(c) = 2 l(d) = 1 (kui k on
piisavalt suur), millest L = 8

k
+ 1− 3

k
→ 1, kui k → ∞. Samas entroopia

H(P ) =
3

k
log k − (1− 3

k
) log(1− 3

k
) → 0, kui k → ∞.

Seega H(P ) + 1− L → 0, kui k → ∞.
Milline on ülaltoodud jaotuse Shannon-Fano kood?
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� Ülaltoodud näidetest võib jääda mulje, otsekui oleks Shannon-Fano koodi sõnapikkused
alati pikemad Hu�mani (või mõne teise optimaalse koodi sõnapikkustest). Kon-
tranäitena vaatleme jaotust

a b c d
1
3

1
3

1
4

1
12

Hu�mani koodisõnade pikkused on vastavalt (2, 2, 2, 2) või (1, 2, 3, 3). Seega leidub
Hu�mani kood nii, et l(c) = 3. Shannon-Fano koodi korral on aga l(c) = 2.

� Lõpmatu tähetiku korral Hu�mani koodi üldiselt de�neerida ei saa, sest selle kon-
strueerimine alagab altpoolt (kõige väiksema tõenäosusega tähtedest). Teatud tingimus-
tel on Hu�mani kahendkoodi võimalik de�neerida ka "tükikaupa", st ülalt alla.
Kirjeldame üht sellist olukorda. Olgu tõenäosused järjestatud

p1 ≥ p2 ≥ · · · .

Oletame, et leidub lõpmata palju aatomeid pm, mis rahuldavad tingimust

pm ≥
∑
i>m

pi =: p∗m. (2.10)

Kujutagem korraks ette, et tähestikus on lõplik arv (kuid väga palju) tähti. Olgu
pm1 , pm2 , . . . tingimust (2.10) rahuldavad aatomid. Et pm1 rahuldab tingimust (2.10),
on selge, et Hu�mani protseduuri järgides (lõpliku hulga tähtede korral on see või-
malik) ühendatakse kõik aatomid pj, kus j > m1 enne pm1 (tuletame meelde, et me
vaatleme olukorda D = 2). Seega, mingil hetkel on protseduur jõudnud jaotuseni

p1, p2, . . . , pm1 , p
∗
m1

. (2.11)

Et jaotuseni (2.11) jõutakse suvaliste aatomite pj, j > m1 korral (kui vaid nende
summa on p∗m1

), siis võib lõpmatu koodi konstrueerimist alustada jaotusele (2.11)
vastava kahendpuu konstrueerimisest. Edasi asume konstrueerime alampuud, mis
väljub sõlmest p∗m1

. Selleks vaatleme jaotust, mis on proportsionaalne vektoriga

pm1+1, pm1+2, . . . , pm2 , p
∗
m2

. (2.12)

Arvud (2.12) ei moodusta tõenäosusjaotust, sest nende summa on p∗m1
. Hu�mani

protseduuri seisukohalt pole kogusumma oluline. Argumenteerides nagu ülalpool,
näeme, et sõlmest p∗m1

väljuva alampuu konstrueerimist võime alustada aatomitele
(2.12) vastava alampuu konstrueerimisest. Edasi alustame sõlmele p∗m2

vastava alam-
puu konstrueerimist. Selleks vaatleme aatomeid

pm2+1, pm2+2, . . . , pm3 , p
∗
m3

, (2.13)

konstrueerime neile vastava puu jne. On selge, et kirjeldatud protseduur ei sõltu
tähtede hulgast ning üldistub seega lõpmatule tähestikule.

Näide: Kui jaotus on geomeetriline parameetriga p, kus p ≥ 0.5, siis (2.10) ke-
htib iga m korral (veendu selles!).
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2.5 Üheselt dekodeeritavad koodid

Iga pre�kskood on üheselt dekodeeritav, vastupidine ei kehti. Et üheselt dekodeeritavate
koodide klass on laiem pre�kskoodide klassist, on loomulik oletada, et üheselt dekodeer-
itava koodi sõnapikkused võivad olla "lühemad" kui pre�kskoodi sõnadpikkused. Pre-
�kskoodi sõnapikkuste alumise tõkke andis (teatavas mõttes) Krafti võrratus. Järgnev
teoreem väidab, et Krafti võrratus kehtib ka üheselt dekodeeritavate koodide korral ehk
üheselt dekodeeritavavate koodidide sõnapikkused ei saa tegelikult olla oluliselt "lühe-
mad" pre�kskoodide sõnapikkustest. Teisisõnu: üheselt dekodeeritavate koodide klass
pole sisuliselt laiem pre�kskoodide klassist.

Teoreem 2.11 Olgu C tähestikul X antud üheselt dekodeeritav kood, koodipikkustega
{l(x)}. Siis kehtib Krafti võrratus ∑

x

D−l(x) ≤ 1. (2.14)

Tõestus. Vaatleme erijuhtu, mil X on lõplik.
Olgu Ck koodi C k-laiend, s.t.

Ck : X k → D∗, Ck(x1 · · ·xk) = C(x1) · · ·C(xk).

(∑
x

D−l(x)
)k

=
∑
x1∈X

∑
x2∈X

· · ·
∑
xk∈X

D−l(x1)D−l(x2) · · ·D−l(xk)

=
∑

x1x2···xk∈Xk

D−l(x1)D−l(x2) · · ·D−l(xk)

=
∑

xk∈Xk

D−l(xk),

kus xk := x1 · · ·xk ja

l(xk) := l(x1) + · · ·+ l(xk) = |Ck(xk)|.

Olgu a(m) selliste k-sõnade arv, milliseid Ck kodeerib m-sõnaliste koodisõnadega. For-
maalselt

a(m) = |{xk ∈ X k : l(xk) = m}|.

Kasutame nüüd asjaolu, et X on lõplik. Olgu

lmax := max
x∈X

l(x).

On selge, et
max
xk∈Xk

l(xk) = klmax.
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Seega (∑
x

D−l(x)
)k

=
∑

xk∈Xk

D−l(xk) =
klmax∑
m=k

a(m)D−m.

Nüüd kasutame asjaolu, et C on üheselt dekodeeritav, millest johtuvalt Ck on ühene.
Fikseerimem ja vaatleme sõnu hulgast {xk ∈ X k : l(xk) = m}. Pikkusegam koodisõnu on
ülimaltDm. Et Ck on ühene, vastab erinevale koodisõnale erinev xk, mistõttu a(m) ≤ Dm.
Seega (∑

x

D−l(x)
)k

=
klmax∑
m=k

a(m)D−m ≤
klmax∑
m=1

DmD−m = klmax

ehk ∑
x

D−l(x) ≤
(
klmax

) 1
k .

Võrratuse vasak pool ei sõltu k-st. Järelikult∑
x

D−l(x) ≤ lim
k→∞

(
klmax

) 1
k = 1.

Lõpmatu X korral ei lähe ülaltoodud tõestus läbi, sest lmax = ∞. Vaatleme lõplikku
alamtähestikku Xm = {x1, . . . , xm} ⊂ X . Üheselt dekodeeritava koodi C ahend alamtäh-
estikule Xm on ikka üheselt dekodeeritav. Alamtähestik on lõplik, seega∑

x∈Xm

D−l(x) ≤ 1.

Kehtib iga m korral, millest∑
x∈X

D−l(x) = lim
m→∞

∑
x∈Xm

D−l(x) ≤ 1.

Paneme tähele, et triviaalselt kehtib ka vastupidine väide: kui etteantud koodipikkused
rahuldavad Krafti võrratust, siis leidub nende koodipikkustega üheselt dekodeeritav kood.
Teame ju, et Krafti võrratuse kehtivuse korral leidub vastavate koodipikkustega pre�k-
skood. Iga pre�kskood on aga üheselt dekodeeritav.

Ülaltoodud teoreemist järeldub, et üheselt dekodeeritavad koodide ja pre�kskoodide kood-
ipikkuste hulgad langevad kokku. Teisisõnu, igale üheselt dekodeeritavale koodile vastab
vähemalt üks samade koodipikkustega pre�kskood. See aga tähendab, et igale üheselt
dekodeeritavale koodile vastab sama keskmise pikkusega pre�kskood ning optimaalne pre-
�kskood on ka optimaalne üheselt dekodeeritav kood. Seega pre�kskoodide hulga laien-
damine üheselt dekodeeritavate koodideni ei anna keskmise koodipikkuse mõttes mingit
efekti. Seetõttu tegeletaksegi informatsiooniteoorias valdavalt pre�kskoodidega, sest vi-
imased esituvad puuna.
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2.6 Sõnade kodeerimine

Olgu X1, . . . , Xk juhuslik vektor tähestikul X k (juhuslik sõna). Olgu C tähestiku X mingi
kood. Selle koodi k-laiend Ck kodeerib sõnu X k. Samas võib hulka X k vaadelda omaette
tähestikuna ning püüda seda omaette (võimalikult optimaalselt) kodeerida. Kumb on
efektiivsem � kas kodeerida optimaalselt tähestik ja laiendada siis seda sõnadele või
kodeerida optimaalselt sõnu?
Olgu Ck : X k → D∗ sõnade kood, koodipikkustega l(xk). Et selle koodi keskmine pikkus
kasvab koos k-ga, huvitume koodipikkusest tähe kohta:

Lk :=
1

k
L(Ck) =

1

k

∑
xk∈Xk

P (xk)l(xk) =
1

k
El(X1, . . . , Xk).

Sama jaotusega tähed. Uurime kõigepealt tähtede koodi C laiendit Ck. On lihtne
veenduda, et kui X1, . . . , Xk on sama jaotusega P (kuid mitte ilmtingimata sõltumatud)
juhuslikud suurused, siis (ülesanne 14 ) L(Ck) = kL(C), millest

Lk(C
k) = L(C). (2.15)

Seega keskmiselt kulub ühe tähe kodeerimiseks ikka L(C) ühikut. Kui C on optimaalne,
siis

HD(P ) ≤ Lk < HD(P ) + 1,

kusjuures parempoolne võrratus võib olla kuitahes täpne.

Vaatleme nüüd parimat sõnade koodi. Järeldusest 2.1 saame, et leidub selline kood Ck,
et

HD(X1, . . . , Xk) ≤ L(Ck) < HD(X1, . . . , Xk) + 1,

millest
HD(X1, . . . , Xk)

k
≤ Lk ≤

HD(X1, . . . , Xk)

k
+

1

k
. (2.16)

Sõltumatud ja sama jaotusega (i.i.d) tähed. Oletame nüüd, et tähedX1, . . . , Xk on
sõltumatud ja sama jaotusega, Xi ∼ P . Siis HD(X1, . . . , Xk) =

∑k
i=1 HD(Xi) = kHD(P )

ning seosest (2.16) saame

HD(P ) ≤ Lk < HD(P ) +
1

k
. (2.17)

Seega alati leidub kood, mille korral Lk erineb HD(P )-st ülimalt 1
k
võrra. Suurendades

k-d kui vaja, saame entroopiale HD(P ) kuitahes lähedale. Võrratust (2.17) kutsutakse ka
Shannoni esimeseks teoreemiks (noiseless coding theorem). Pane tähele, et selline kood
pole üldiselt saadav optimaalse tähtede koodi laiendina.
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Statsionaarne protsess. Olgu X = X1, X2, . . . statsionaarne protsess, Xi ∼ P . Olgu
Ck : X k → D∗ optimaalne kood. Tuletame meelde, et statsionaarsel protsessil on alati
entroopiamäär

HX = lim
k

HD(X1, . . . , Xk)

k
= lim

k
HD(Xk|X1, . . . , Xk−1) ≤ H(P ).

(Kui D > 2, de�neerime entroopiamäära analoogiliselt. Meil on D �kseeritud, mistõttu
jätame ta tähistusest välja.) Seosest (2.16) saame, et

L∗ := lim
k

Lk = lim
k

HD(X1, . . . , Xk)

k
= HX . (2.18)

Seos (2.18) annab entroopiamäärale sisu: HX on protsessi kodeerimise keskmine pikkus
tähe kohta.

Kokkuvõtteks: Kui X = X1, X2, . . . on i.i.d. (väga spetsii�line statsionaarne protsess),
siis parima sõnade koodi ja pikkade sõnade korral keskmiselt kulub ühe tähe kohta L(P )
kooditähte. Sellisel juhul võidame sõnakaupa kodeerides vaid seda, et (piisavalt suure k
korral) on HD(P ) kuitahes täpselt saavutatav.

Kui HX < HD(P ), siis keskmine koodipikkus ühe tähe kohta võib olla oluliselt väik-
sem kui iga tähte eraldi kodeerides.

Näide: Olgu X statsionaarne MA üleminekumaatriksiga Ik (k seisundit). Sellisel juhul
H(P ) = log k, kuid Lk = HX = 0.

2.6.1 Üheselt dekodeeritava koodi muutmine pre�kskoodiks

Igale üheselt dekodeeritavale koodile saab vastavusse seada samade koodipikkustega pre-
�kskoodi. Kui kodeeritavaid tähti (neid on |X |) pole palju, võib ettentud koodipikkustega
koodipuu konstrueerimne olla suhteliselt lihtne. Üldiselt võib selleks kasutada Kra�ti võr-
ratuse tõestuses kasutatud võtet. Praktikas võib see olla suhteliselt keerukas, iseäranis
pikkade sõnade X k kodeerimisel. Järgnevas vaatleme, kuidas suvalise üheselt dekodeeri-
tava koodi saab muuta pre�kskoodiks sobiva pre�ksi lisamisel. Pre�ksi lisamine teeb küll
koodi pikemaks, kuid seda saab teha nii, et L∗ ei muutu, s.t. pikkade sõnade kodeerimisel
on vahe tühine.

Eliase delta kood. Alustame lemmast.

Lemma 2.1 (Eliase lemma) Leidub pre�kskood E : {1, 2, . . .} → D∗ nii, et

|E(n)| = logD n+ o(logD n) (2.19)

Tõestus. Iga naturaalarvu kodeerime kolmes osas

E(n) = u(n)v(n)w(n),
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kus w(n) on arvu n D-ndesitus. Seega

w(n) = plogD(n+ 1)q.

Teine osa v(n) on pikkuse w(n) D-ndesitus ja esimene osa u(n) koosneb nullidest, kusju-
ures neid nulle on niipalju kui on v(n) pikkus. Seega

|u(n)| = |v(n)| = plogD(1 + plogD(n+ 1)q)q.

Seega

|E(n)| = plogD(n+ 1)q+ 2plogD(1 + plogD(n+ 1)q)q = logDn+ o(logD n).

Veendume, et E(n) on pre�kskood. Oletame et leiduvad n ja m nii, et E(m) on E(n)
pre�ks, s.t.

u(n)v(n)w(n) = u(m)v(m)w(m)w′.

Sellisel juhul u(n) = u(m), sest mõlemad koosnevad nullidest ning v(n) ja v(m) esimene
sümbol pole 0. Sellise juhul aga v(n) = v(m), sest nende pikkused peavad olema võrdsed.
See aga tähendab, et w(m) = w(n) ehk w′ on tühi ja n = m.

Saadud koodi nimetatakse Eliase (delta) koodiks .

Näide: Leiame E(12). Numbri 12 kahendkuju on 1100. Seega w(12) = 1100. Et w(12)
koosneb 4 bitist, saame v(12) = 100. Lõpuks u(12) = 000. Seega

E(12) = u(12)v(12)w(12) = 0001001100.

Märkus: Kui D = 2, siis Eliase delta koodi saab vähendada kahe biti võrra. Tõepoolest,
et iga n korral |u(n)| ≥ 1, siis ühe nullidest võib "meelde jätta" ja koodi esimene osa on
siis u(n)−1. Teiseks, et iga kahendnumber algab ühega, võib ka selle arvu "meelde jätta"
ning seega kirjutamata jätta. Seega w(n) on siis arvu n kahendkuju, millest esimene üks
on kustutatud. Samas v(n) on ikka terve kahendkuju pikkuse kahendesitus. Seega saadud
kood, olgu see E∗ on täpselt kahe biti võrra lühem kui E(n). Seega E∗(12) = 00100100.

Üheselt dekoteeritavate koodide muutmine pre�kskoodideks. Olgu Ck : X k →
D∗ sõnade kood, koodipikkustega {l(xk)}. Olgu Ck üheselt dekodeeritav. De�neerime
koodi Ck Eliase laiendi

C∗
k(x

k) = E(l(xk))Ck(x
k).

Saadud kood on pre�kskood, sest pre�ks E(l(xk)) määrab järgneva koodisõna pikkuse.
Dekodeerija loeb läbi laiendi E(l(xk)), saab üheselt aru, millal see lõpeb ning kui pikk on
järgnev koodisõna. Viimane saab dekodeeritud just siis, kui ta lugemine lõpeb.
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Näide: Olgu D = 2 ja Ck(x
k) = 001001100111. Selle sõna pikkus on 12. Teame, et

E(12) = 0001001100. Seega

C∗
k(x

k) = 0001001100001001100111.

Kuigi antud näite korral on Eliase laiend peaaegu sama pikk kui koodisõna ise, garanteerib
Eliase lemma, et koodisõnade pikkuste kasvamisel (näiteks k kasvamisel) muutub laiendi
osa tühiseks.

Koodide kombineerimine. Teine rakendus Eliase laiendile on loenduva hulga kood-
ide kombineerimine üheks koodiks. Oletame, et meil on iga k ≥ 1 korral de�neeritud
pre�kskood

Ck : X k → D∗.

Kasutades Eliase laiendit saame de�neerida pre�kskoodi

C : X ∗ → D∗, C(xk) = E(k)Ck(x
k).

Seega Eliase laiend määrab ära koodi indeksi, seejärel dekodeeeritakse sõna.

2.7 Optimaalse koodi tõenäosuslik käitumine*

Optimaalne kood on lühima keskmise pikkusega. Olgu C optimaalne kood ja C ′ mingi
teine kood; nende koodisõnade pikkused olgu vastavalt {l(x)} ja {l′(x)}. Nagu üleelmises
osas toodud näidetest nägime, ei pruugi optimaalse koodi kõikide sõnade pikkused olla
lühemad teiste sõnade pikkustest: võib leiduda x ∈ X nii, et l′(x) < l(x). Kui tihti
seda aga juhtub ehk kui suur on selliste tähtede tõenäosus? Kui X on juhuslik täht, siis
viimane tõenäosus avaldub P(l′(X) < l(X)).
Optimaalsed koodid on Hu�mani koodid, nende pikkustega manipuleerimine pole lihtne.
seetõttu uurime tõenäosust P(l′(X) < l(X)) juhul, kui l on Shannon-Fano kood.
Esimene teoreem annab ülemise tõkke tõenäosusele, et l′(X) ≤ l(X)− c.

Teoreem 2.12 Olgu {l(x)} Shannon-Fano koodipikkused, {l′(x)} olgu üheselt dekodeeri-
tava koodi kodipikkused. Siis

P(l′(X) ≤ l(X)− c) ≤ D1−c.
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Tõestus.

P
(
l′(X) ≤ l(X)− c

)
= P

(
l′(X) ≤ dlogD

1

P (X)
e − c

)
≤ P

(
l′(X) ≤ logD

1

P (X)
− c+ 1

)
= P

(
l′(X) + c− 1 ≤ − logD P (X)

)
= P

(
P (X) ≤ D−l′(X)−c+1

)
=

∑
x:P (x)≤D−l′(x)−c+1

P (x)

≤
∑

x:P (x)≤D−l′(x)−c+1

D−l′(x)−c+1

≤
∑
x

D−l′(x)−c+1

≤ D−c+1
∑
x

D−l′(x)

≤ D1−c.

Optimaalne Shannon-Fano kood. Ülaltoodud teoreem ei anna mingit tõket tõenäo-
susele P(l′(X) < l(X)), sest teoreemist järeldub vaid triviaalne tõke:

P(l′(X) < l(X)) = P(l′(X) ≤ l(X)− 1) ≤ D1−1 = 1.

Järgnev teoreem aga väidab, et optimaalse Shannon-Fano koodi korral (tuletame meelde,
et see saab olla vaid siis, kui P rahuldab seost (2.4)) kehtib võrratus P(l′(X) < l(X)) ≤
P(l(X) < l′(X)). Seega juhuslikult valitud tähe korral on suurima tõenäosusega opti-
maalse Shannon-Fano kahendkoodi koodisõna pikkus lühem kui teise üheselt dekodeeri-
tava koodi koodisõna pikkus.

Teoreem 2.13 Rahuldagu P seost (2.4). Olgu l(x) = logD
1

P (x)
ning olgu {l′(x)} mingi

üheselt dekodeeritava koodi kodipikkused. Siis

P(l′(X) < l(X)) ≤ P(l(X) < l′(X)),

kusjuures võrdus kehtib vaid siis, kui l′(x) = l(x) iga x korral.

Tõestus. Olgu

sign(a) =


1 kui a > 0,

0 kui a = 0,

−1 kui a < 0.
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Kui a ∈ Z, siis
sign(a) ≤ Da − 1.

P(l′(X) < l(X))−P(l(X) < l′(X)) = Esign(l(X)− l′(X))

≤ E
(
Dl(X)−l′(X) − 1

)
=

∑
x

P (x)(Dl(x)−l′(x) − 1)

=
∑
x

D−l(x)(Dl(x)−l′(x) − 1)

=
∑
x

(D−l′(x) −D−l(x))

=
∑
x

D−l′(x) − 1

≤ 1− 1.

Võrratus on võrdus, kui iga x korral kehtib

sign(l(x)− l′(x)) = Dl(x)−l′(x) − 1.

See aga saab olla vaid siis, kui iga x korral l(x) = l′(x).

2.8 Diskreetse juhusliku suuruse genereerimine*

Olgu P lõplikul tähestikul X antud diskreetne jaotus. Seame endale eesmärgiks sellise
jaotusega juhusliku suuruse genereerimise mündivistega. Teisisõnu, olgu Z1, Z2, . . . sõl-
tumatud Bernoulli 1/2-jaotusega juhuslikud suurused. Olgu A algoritm, mis juhuslike su-
uruste Z1, Z2, . . . , ZT abil tekitab jaotusega P juhusliku suuruse, s.t. A(Z1, . . . , ZT ) ∼ P .
Siin T on juhuslik suurus, mille võimalikud väärtused on mittenegatiivsed täisarvud,
kusjuures see, kas T = n või mitte, sõltub juhuslikest suurusetst Z1, . . . , Zn (T on peatu-
mishetk).

Näide: Olgu P järgmine
a b c
1
2

1
4

1
4

Algoritm A võiks olla järgmine

A(Z1, . . . , ZT ) =


a kui Z1 = 0,

b kui Z1 = 1, Z2 = 1,

c kui Z1 = 1, Z2 = 0.

Seega

T =

{
1 kui Z1 = 0,

2 mujal.
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Muidugi on näites toodud jaotust võimalik tekitada mitmeti. Meid huvitab keskmiselt
lühim algoritm, s.t. algoritm, mis kasutab keskmiselt kõige vähem mündiviskeid. Tei-
sisõnu, otsime algoritmi, mille korral algoritmi keskmine pikkus ET oleks minimaalne.
Ülaltoodud näite korral on ET = 1.5 = H(P ).

Paneme tähele, et iga algoritmi võib esitada täieliku kahendpuuna. Puu lehtedel on täh-
estiku X tähed, kusjuures erinevatel lehtedel võib olla sama täht. Selliselt konstrueeritud
puul võib olla lõpmatu arv lehti. Kui leht on k-ndal tasemel, siis selle lehe tõenäosus on
2−k. Algoritmi keskmine pikkus on selle puu keskmine pikkus.

Olgu A ülalkirjeldatud puu (algoritm). Vaatleme kõiki puu lehti (sõltumata nendel olev-
ast tähest), olgu nende hulk Y . Igal lehel on tõenäosus 2−k, kus k on selle lehe sügavus.
Nii saame jaotuse Q. Selle jaotuse entroopia on puu keskmine pikkus ET , sest

ET =
∑
y∈Y

k(y)2−k(y) =
∑
y

− log 2−k(y)2−k(y) = H(Q).

Nüüd on lihtne tõestada seos algoritmi keskmise pikkuse ja juhusliku suuruse X entroopia
vahel.

Teoreem 2.14 Ükski jaotust P genereeriva algoritmi keskmine pikkus pole suurem kui
H(P ), s.t.

ET ≥ H(P ).

Tõestus. Olgu A algoritm, mis genereerib X. Olgu Q algoritmile A vastava puu lehtede
jaotus, Y ∼ Q. Teame, et H(Y ) = E(T ). Et aga algoritm on esitatav puuna, kehtib
X = f(Y ). Seega ET = H(Y ) ≥ H(X) = H(P ).

Ülaltoodud teoreem pole eriti üllatav: et H(P ) on jaotuseses sisaldav informatsioon, on
üsna loomulik, et H(P ) seab alumise piiri selle jaotuse tekitamiseks vajaminevate mün-
divisete arvule.

Ülaltoodust on ka selge, et seost (2.4) rahuldava P korral leidub algoritm, mille keskmine
pikkus on H(P ). Tõepoolest, olgu C jaotusele P vastav Shannon-Fano kood. Sellele
koodile vastav puu on täielik ning kui seda puud kasutada juhusliku suuruse genereer-
imiseks, saame, et tähe x tõenäosus on 2−k(x), kus k(x) on tähe x sügavus. Et k(x) =
l(x) = log 1

P (x)
, saame, et 2−k(x) = P (x). Seega võib seda puud seda võib kasutada X

genereerimiseks. Algoritmi keskmine pikkus koodi keskmine pikkus, mis võrdub entroop-
iaga H(P ).

Seega on seost (2.4) rahuldava jaotuse P optimaalne genereerimine sisuliselt ekvivalentne
optimaalse kahendkoodi leidmisega. Kas selline ilus seos kodeerimise ja genereerimise
vahel kehtib ka juhul, kui P ei rahulda seost (2.4)? Teisisõnu, kas ka üldisel juhul on
jaotust P tekitav optimaalne algoritm sisuliselt sama, mis jaotust P kodeeriv minimaalne
algoritm. On lihtne veenduda, et üldiselt pole nii, sest iga optimaalne koodipuu (nt.
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Hu�mani puu) tekitab (kui seda kasutada juhuslikkuse genereerimisel) vaid seost (2.4)
rahuldava jaotuse. Tekitamaks suvalist jaotust, toimime järgmiselt: aatomi P (x) teki-
tamiseks leiame suurima arvu 2−k1 nii, et 2−k1 ≤ P (x) ning seame ühele sügavusel k1
olevatest lehtedest vastavusse x. Seejärel leiame suurima 2−k2 nii, et 2−k2 ≤ P (x)− 2−k1

ning seame ülele sügavusel k2 olevatest lehtedest x jne. Sisuliselt leiame aatomi P (x)
kahendesituse:

P (x) =
∑
i≥1

2−ki(x).

Nüüd konstrueerime kahendpuu, kus sügavusel ki(x) olevale lehele same vastavusse tähe
x. Et

∑
x P (x) = 1, siis on sellise puu konstrueerimine alati võimalik ning see on täispuu.

Näited:

� Olgu
a b c d
9
16

5
16

1
16

1
16

0.10012 0.01012 0.00012 0.00012

Vastav puu (algoritm) on järgmine.

� Olgu
a b
2
3

1
3

0.1010101 · · ·2 0.0101010 · · ·2
vastav puu (algoritm) on järgmine.

Saab näidata, et selline algoritm on minimaalse keskmise pikkusega, kusjuures

H(X) ≤ ET < H(X) + 2.

2.9 Ülesanded

1. Tõesta alumine tõke teoreemis 2.7

2. Olgu P
a b c d e f g h

0.25 0.05 0.1 0.13 0.2 0.12 0.08 0.07

Konstrueerida optimaalne kahend- ja kolmendkood, leida nende keskmine pikkus.

3. Olgu koodipikkused 1, 1, 2, 2, 3, 3, 3.

a) Kas leidub selliste koodipikkustega kahendkood? Kui vastus on jaatav, siis kon-
strueerida vastavate koodipikkustega kahendkood. Kas leidub jaotus P , mille
jaoks konstrueeritud kood on optimaalne?
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b) Kas leidub selliste koodipikkustega kolmendkood? Kui vastus on jaatav, siis
konstrueerida vastavate koodipikkustega kolmendkood. Kas leidub jaotus P ,
mille jaoks konstrueeritud kood on optimaalne?

c) Kas leidub selliste koodipikkustega neljandkood? Kui vastus on jaatav, siis kon-
strueerida vastavate koodipikkustega kood. Kas leidub jaotus P , mille jaoks
konstrueeritud kood on optimaalne?

4. Kas C saab olla Hu�mani kood, kui tema sõnad on

� {0, 10, 11}
� {00, 01, 10, 110}
� {10, 01, 00, }?

5. OlguX = {a, b, c, d, e, f}, kõik tähed olgu võrdse tõenäosusega. Vaatleme koode C1

ja C2, mis on antud tabelitena

täht \ kood C1 C2

a 11 111
b 101 110
c 100 101
d 011 100
e 010 01
f 00 00

Veendu, et C2 on Hu�mani kood, kuid kood C1 mitte, mõlemad on optimaalsed.

6. Kood on su�kskood, kui ükski koodisõna pole mingi teise koodisõna su�ks. Kas
su�kskood on üheselt dekodeeritav?

7. Olgu
l1 ≤ l2 ≤ · · · ≤ lm

täisarvud. Iga 1 ≤ k ≤ m korral valitakse binaarne koodisõna pikkusega lk kõikide
pikkusega lk võimalike koodisõnade seast ühtlase jaotusega. Nii saadakse juhuslik
kood C. Olgu P pre�kskoodide hulk. Tõestada, et

P(C ∈ P) =
m∏
k=2

(
1−

k−1∑
j=1

2−lj
)+

.

Tõestada, et P(C ∈ P) > 0 parajasti siis, kui l1 ≤ l2 ≤ · · · ≤ lm rahuldavad Krafti
võrratust.

8. Olgu LD(p1, . . . , pm) jaotusele (p1, . . . , pm) vastava optimaalse D-koodi keskmine
pikkus. Veendu, et kuigi optimaalne kood pole tõenäosuste (p1, . . . , pm) pidev funk-
tsioon, on seda LD(p1, . . . , pm).
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9. Näita, et kui LD(p1, . . . , pm) = HD(p1, . . . , pm), siis m = D + k(D − 1), kus k on
mittenegatiivne täisarv.

10. Olgu q < 2
3
. Olgu p ∈ [0, 1] selline, et

L2(1− q,
q

2
,
q

2
, ) = H2(1− p,

p

2
,
p

2
).

Leida seos p ja q vahel.

11. a) Leida L2(0.5, 0.25, 0.1, 0.05, 0.05, 0.05), ja L4(0.5, 0.25, 0.1, 0.05, 0.05, 0.05).

b) Vaatleme 2-ndkoodi, mis on saadud 4-ndkoodist järgmiselt: iga 4-ndkoodi täht,
olgu need {α, β, γ, δ}, kodeeritakse pikkusega 2 kahendsõnaks järgmiselt:

α 7→ 00, β 7→ 01, γ 7→ 10, δ 7→ 11.

Nimetagem seda protsessi "topeldamiseks". Leida jaotuse (0.5, 0.25, 0.1, 0.05, 0.05, 0.05)
Hu�mani 4-ndkoodi topeldamisel saadud kahendkood. Mis on selle keskmine
pikkus?

c) Olgu LT (P ) jaotuse P Hu�mani 4-ndkoodi topeldamisel saadud 2-ndkoodi keskmine
pikkus. Tõestada, et

L2(P ) ≤ LT ≤ L2(P ) + 1.

d) Näita, et ülaltoodud võrratused võivad olla võrdused.

12. Olgu u1, u2, . . . , um mittenegatiivsed arvud. Leida järgmise optimeerimisülesande
lahend:

min
l1,...,lm

m∑
i=1

uili

nii, et
m∑
i=1

D−li ≤ 1.

13. Olgu jaotuse P aatomid järjestatud P (x1) > P (x2) ≥ P (x3) ≥ · · · ≥ P (xm).
Leiduvad arvud a ja b nii, et

� kui P (x1) > a, siis iga Hu�mani kahendkoodi korral tähe x1 koodipikkus on 1;

� kui P (x1) < b, siis iga Hu�mani kahendkoodi korral tähe x1 koodipikkus on
vähemalt 2.

Leida minimaalne a ja maksimaalne b.

14. Olgu X1, . . . , Xn sama jaotusega juhuslikud suurused tähestikul X . Olgu C täh-
estiku X mingi kood, Ck olgu C laiend sõnadele X k. Tõestada, et L(Ck) = kL(C).
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15. Olgu Y statsionaarne Markovi ahel üleminekumaatriksiga1
2

1
4

1
4

1
4

1
2

1
4

0 1
2

1
2


Leida selle protsessi entroopiamäär HY . Olgu C1 C2 ja C3 seisundite koodid.
Vaatleme järgmist kodeerimisprotseduuri: Y1 kodeeeri koodiga C1. Edaspidi kodeeri
järgmiselt: Y2 kodeeri koodiga, mis vastab seisundile Y1 (st kui Y1 = 1, siis vali C1,
kui Y1 = 2, siis vali C2 jne), Y3 kodeeri koodiga mis vastab seisundile Y2 jne. Kas
leiduvad koodid C1, C2, C3 nii, et kirjeldatud kodeerimisprotseduuri korral

lim
n

El(Y1, . . . , Yn)

n
= HY ?

16. Olgu P
a b c
0.5 0.25 0.25

Olgu X1, X2, . . . jaotusega P iid juhuslikud suurused. Olgu C tähestikul {a, b, c}
antud kood. Vaatleme protsessi

Z = Z1Z2Z3, . . . = C(X1)C(X2) . . .

Kas Z on üldiselt statsionaarne protsess?
Leida Z entroopiamäär, kui kood C on järgmine:

(a)

C(x) =


0, kui x = a;
10, kui x = b;
11, kui x = c.

(b)

C(x) =


00, kui x = a;
10, kui x = b;
01, kui x = c.

(c)

C(x) =


00, kui x = a;
1, kui x = b;
01, kui x = c.

17. Olgu P (x1) ≥ P (x2) ≥ P (x3) ≥ · · ·P (xm). De�neerime

F (xi) :=
i−1∑
k=1

P (xk).

Tähe xi kood olgu F (xi) kahendesitus, millest on võetud l(xi) = p− logP (xi)q ko-
makohta. Tõestada, et saadud kood on pre�kskood ning et selle koodi keskmine
pikkus li rahuldab võrratusi H(P ) ≤ L < H(P ) + 1. Ülalde�neeritud koodi
nimetatakse ka Shannoni koodiks.
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3 AEP omadus

3.1 Nõrgalt tüüpilised sõnad

Olgu X1, X2, . . . iid juhuslikud suurused (tÃ¤hestikul X ), Xi ∼ P . Eeldame

H := H(P ) < ∞.

Olgu X1, . . . , Xn esimesed n juhuslikku suurust ülaltoodud jadast. Selle juhusliku vektori
väärtuste hulk on X n, iga võimaliku väärtuse tõenäosus on

P (x1, . . . , xn) = P (x1) · · ·P (xn).

Uurime vektori X1, . . . , Xn juhusliku väärtuse tõenäosust P (X1, . . . , Xn). Olgu x∗ ∈ X
maksimaalse tõenäosusega täht. Kuigi suurima tõenäosusega võtab vektor X1, . . . , Xn

väärtuse
P n(x∗) = 2n logP (x∗),

selgub, et suure n korral P (X1, . . . , Xn) suure tõenäosusega lähedane arvule 2−nH . Vi-
imane võib olla aga oluliselt väiksem maksimaalsest tõenäosusest 2n logP (x∗) Seda asjaolu
võib interpreteerida: suure n korral on praktiliselt kõik realisatsioonid võrdtõenäolised.
Sõltumatute ja sama jaotusega juhuslike suuruste jada seda omadust nimetame AEP
omaduseks (asymptotic equipartition property).

Paneme tähele, et nõrgast suurte arvude seadusest järeldub koondumine

− 1

n
logP (X1, . . . , Xn) = − 1

n

n∑
i=1

logP (Xi)
P→ −E logP (X1) = H. (3.1)

Tähistame xn := x1, . . . , xn.

Def 3.1 HulgaW n
ϵ moodustavad kõik vektorid (sõnad) xn ∈ X n, mis rahuldavad tingimust

2−n(H+ϵ) ≤ P (x1, . . . , xn) ≤ 2−n(H−ϵ). (3.2)

Tingimust (3.2) rahuldavaid sõnu nimetame nõrgalt ϵ-tüüpilisteks (weakly ϵ-typical) .

Teoreem 3.2 (Nõrk AEP) Iga ϵ > 0 korral

1 Kui xn ∈ W n
ϵ , siis

2−n(H+ϵ) ≤ P (xn) ≤ 2−n(H−ϵ). (3.3)

2 Piisavalt suure n korral
P (W n

ϵ ) > 1− ϵ. (3.4)

3 Piisavalt suure n korral
(1− ϵ)2n(H−ϵ) ≤ |W n

ϵ | ≤ 2n(H+ϵ). (3.5)
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Tõestus. Omadus 1 järeldub vahetult de�nitsioonist (3.2).

Omadus 2 järeldub vahetult koondumisest (3.1), sest tõenäosuse järgi koondumis de�nit-
sioonist johtuvalt ∀ϵ > 0 korral leidub no nii, et

P
(∣∣− 1

n

n∑
i=1

logP (Xi)−H
∣∣ ≤ ϵ

)
≥ 1− ϵ, (3.6)

kui n > no.

Et nõrgalt tüüpilise sõna tõenäosus on vähemalt 2−n(H+ϵ), siis

1 ≥ P (W n
ϵ ) =

∑
xn∈Wn

ϵ

P (xn) ≥ |W n
ϵ |2−n(H+ϵ),

millest
|W n

ϵ | ≤ 2n(H+ϵ).

Paneme tähele, et saadud tõke kehtib iga n korral. Teisest küljest, et suure n korral
P (W n

ϵ ) > 1− ϵ ning iga nõrgalt tüüpilise sõna tõenäosus on ülimalt 2−n(H−ϵ), siis

1− ϵ ≤ P (W n
ϵ ) =

∑
xn∈Wn

ϵ

P (xn) ≤ |W n
ϵ |2−n(H−ϵ),

millest
|W n

ϵ | ≥ (1− ϵ)2n(H−ϵ).

Seega on suure n korral nõrgalt tüüpiliste sõnade hulgaW n
ϵ mõõt praktiliselt üks. Tõenäo-

sus, et iid. juhusliku vektori X1, . . . , Xn väärtus pole nõrgalt tüüpiline on väga väike.
Kõikide nõrgalt tüüpiliste sõnade tõenäosus on umbes 2−nH ehk kõik nõrgalt tüüpilised
sõnad on sisuliselt võrdtõenäosused. Samas on (suure n korral) nõrgalt tüüpiliste sõnade
osakaal kõikide pikkusega n sõnade seas väga väike. Tõepoolest, olgu H < log |X | < ∞.
Siis nõrgalt tüüpiliste sõnade osakaal läheb nulliks, sest (piisavalt väikese ϵ korral)

|W n
ϵ |

|X |n
≤ 2n(H+ϵ)

2n log |X | = 2n(H+ϵ−log |X |) → 0.

Nõrk AEP omadus annab järjekordse interpretatsiooni entroopiale.

Näide: Olgu X1, . . . , Xn iid Bernoulli p-jaotusega. Siis

P (x1, . . . , xn) = pk(1− p)n−k, k =
n∑

i=1

xi.

Seega

− 1

n
logP (x1, . . . , xn) = −k

n
log p− n− k

n
log(1− p),

millest järelduvalt on x1, . . . , xn nõrgalt tüüpiline, kui ühtede proportsioon on peaaegu p.
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3.1.1 Nõrk AEP ja kodeerimine

Nõrga AEP omaduse abil on lihtne näha, et suure n korral on iid vektorit X1, . . . , Xn tõe-
poolest võimalik kodeerida nii, et keskmine koodipikkus tähe kohta on ligikaudu võrdne
entroopiaga. Vaatleme olukorda D = 2, suurema D korral on kodeerimine analoogiline.

Olgu X1, . . . , Xn iid juhuslikud suurused lõplikul tähestikul X . Fikseerime ϵ > 0 ja
jagame kõikvõimalike sõnade hulga X n kaheks: nõrgalt tüüpilised sõnad W n

ϵ ning üle-
jäänud. Järjestame mõlemad hulgad ning kodeerime nende indekseid. Et |W n

ϵ | ≤ 2n(H+ϵ),
siis kõigi nõrgalt tüüpiliste sõnade indeksite kodeerimist binaarsteks koodisõnadeks on
võimalik teha nii, et kood on ühene ja iga koodisõna pikkus on dn(H+ ϵ)e ≤ n(H+ ϵ)+1.
Liidame nendele sõnadele pre�ksi 0, mis näitab kuulumist nõrgalt tüüpiliste sõnade hulka.
Seega

l(xn) = dn(H + ϵ)e+ 1 ≤ n(H + ϵ) + 2, ∀xn ∈ W n
ϵ .

Ülejäänud sõnad kodeerime samuti võrdse pikkusega koodisõnadeks. Iga hulga X n el-
emendi (neid on ju 2n log |X |) saab kodeerida nii, et kood on ühene ja koodisõna pikkus
on dn log |X |e ≤ n log |X | + 1. Kasutamegi seda lihtsat koodi ja liidame koodisõnadele
pre�ksi 1, mis näitab kuulumist hulka X n \W n

ϵ . Seega

l(xn) = dn log |X |e+ 1 ≤ n log |X |+ 2, ∀xn 6∈ W n
ϵ .

Saadud kood on pre�kskood, sest esimene bitt näitab järgneva koodi pikkuse. Loomulikult
pole kirjeldatud kood optimaalne, sest hulka W n

ϵ mittekuuluvaid sõnu kodeerisime väga
mõtlematult.
Leiame saadud koodi keskmise pikkuse

L =
∑

xn∈Xn

l(xn)P (xn) =
∑

xn∈Wn
ϵ

l(xn)P (xn) +
∑

xn ̸∈Wn
ϵ

l(xn)P (xn)

≤
∑

xn∈Wn
ϵ

(n(H + ϵ) + 2)P (xn) +
∑

xn ̸∈Wn
ϵ

(n log |X |+ 2)P (xn)

= P (W n
ϵ )(n(H + ϵ) + 2) + (1− P (W n

ϵ ))(n log |X |+ 2).

Seega, kui n on piisavalt suur, siis Teoreemi 3.2 väite 2 tõttu 1− P (W n
ϵ ) ≤ ϵ nii, et

L ≤ n(H + ϵ) + ϵ(n log |X |) + 2 = n(H + ϵ′),

kus ϵ′ = ϵ+ ϵ log |X |+ 2
n
ja selle võib (sobiva ϵ ja n valikul) teha kuitahes väikeseks.

Kokkuvõtteks: Oleme tõestanud, et iga ϵ > 0 korral leidub n ja AEP omadusel põhinev
pre�kskood C : X n → {0, 1}∗ nii, et

H ≤ Ln(C) < H + ϵ. (3.7)
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3.1.2 Suurima tõepäraga hulk

Eelmises peatükis kirjeldatud lihtne meetod kodeerimiseks keskmise pikkusega nH sai
võimalikuks tänu sellel, et suure n korral leidus hulkW n

ϵ nii, et tema tõenäosus on kuitahes
suur, kuid elementide arv võrreldes kõikide sõnade arvuga väike (juhul, kui H < log |X |).
Samas ei kuulu hulka W n

ϵ üldjuhul kõige suurema tõepäraga sõnad, mistõttu W n
ϵ pole

väikseim (sõnade arvu mõttes) hulk, mille tõenäosus on vähemalt 1−ϵ. Olgu Bn
ϵ väikseim

hulk mis rahuldab tingimust P (Bn
ϵ ) ≥ 1 − ϵ. Seega kui eelmises peatükis kirjeldatud

koodis hulga W n
ϵ asemel võtta hulk Bn

ϵ , väheneb keskmine koodipikkus. Kas ka oluliselt?
Võrratustest (3.7) on selge, et väga oluliselt keskmine koodimikkus väheneda ei saa. See
tuleneb asjaolust, et kuigi |W n

ϵ | ≥ |Bn
ϵ | ning enamikul juhtudest on see võrratus range,

on nende hulkade elementide arv sama suurusjärku st |Bn
ϵ | ≈ 2nH . Veendume selles.

Lemma 3.1 Iga 1 > ϵ > 0 ja δ > 0 korral leidub n nii suur, et

|Bn
ϵ | ≥ 2n(H−δ) (3.8)

Tõestus. Valime ϵ1 > 0 nii väikese, et ϵ1 < δ ja ϵ1 + ϵ < 1. Olgu n nii suur, et

P (W n
ϵ1) > 1− ϵ1. (3.9)

(sellise n olemasolu järeldub Teoreemist 3.2) ning lisaks kehtib

ϵ1 −
log(1− (ϵ+ ϵ1))

n
< δ. (3.10)

De�neerime
S := W n

ϵ1
∩Bn

ϵ .

Siis

1− (ϵ1 + ϵ) ≤ P (S) =
∑
xn∈S

P (xn) ≤ |S|2−n(H−ϵ1) ≤ |Bn
ϵ |2−n(H−ϵ1),

kus esimene võrratus järeldub Bn
ϵ de�nitsioonist ja võrratusest (3.9) ning teine võrratus

järeldub W n
ϵ1
de�nitsioonist. Seega

log |Bn
ϵ | ≥ log(1− (ϵ+ ϵ1)) + n(H − ϵ1) = n

( log(1− (ϵ+ ϵ1))

n
+H − ϵ1

)
≥ n(H − δ).

Viimane võrratus tuleb seosest (3.10).

3.1.3 Näide

Olgu X1, . . . , X25 iid B(1, 0.1) jaotusega juhuslikud suurused. Seega võimalikke vektor-
eid xn on 225. Alljärgnevas tabelis on kõik vektorid xn jaotatud klassidesse ühtede arvu
k järgi. Ühte klassi kuuluvad vektorid on võrdse tõenäosusega. Teises veerus on klassi
kuuluvate vektorite arv ja kolmandas veerus on klassi kuuluvate vektorite tõenäosuste
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summa: klassi tõenäosus. Neljandas veerus on suurus 1
n
logP (xn), kus P (xn) on klassi

kuuluva ühe vektori tõenäosus (mitte klassi tõenäosus).

Arvestades, et h(0.1) = 0.468996, ja võttes ϵ = 0.2, same, et hulka W 25
0.2 kuuluvad klasside

k = 1, 2, 3, 4 elemendid. Seega

P (W 25
0.2) = 0.199416 + 0.265888 + 0.226497 + 0.138415 = 0.830216 ≥ 1− ϵ.

Samas |W 25
0.2| = 25 + 300 + 2300 + 12650 = 15275, millest

1

25
log |W 25

0.2| ≈ 0.556 ∈ (468996− 0.2, 468996 + 0.2)

Seega W 25
0.2 rahuldab tingimusi (3.4) ja (3.5).

Leiame hulga B25
n . Antud näite korral vektorite tõenäosused kahanevad ülalt alla: kõige

suurema tõenäosusega vektor koosneb nullidest ja moodustab esimese klassi (selle tõenäo-
sus on 0.0717898); vektorid, milles on vaid 1 null on tõenäosuse järgi teisel kohal, sellise
vektori tõenäosus on 0.199416/25 = 0.00797 jne. Seega hulga B25

0.2 moodustamine hakkab
ülalt kuni klassi mass ületab 0.8. Esimese nelja klassi kogumass on 0.7635908, seega
kuuluvad need klassid hulka B25

n . Lisaks peame veel võtma elemente viiendast klassist
(k = 4). Selle klassi elementide tõenäosus on 0.138415

12650
= 0.0000109419. Seega tuleb sellest

klassist võtta ⌈0.8− 0.7635908

0.0000109419

⌉
= 3328

elementi. Seega
|B25

0.2| = 1 + 25 + 300 + 2300 + 3325 = 5951

ning
1

25
log |B25

0.2| ≈ 0.501.

Kuigi hulkadesse B25
0.2 ja W 25

0.2 kuuluvad klassid sisuliselt on samad (esimene klass koosneb
vaid ühest elmendist ega oma seega suurt tähtsust), tuleneb võimsuste vahe sellest, et
klass k = 4 kuulus hulka W 25

0.2 täielikult, kuid hulka B25
0.2 vaid osaliselt.
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k
(
n
k

) (
n
k

)
pk(1− p)n−k =

(
n
k

)
P (xn) − 1

n logP (xn)

0 1 0.0717898 0.152003

1 25 0.199416 0.2788

2 300 0.265888 0.405597

3 2300 0.226497 0.532394

4 12650 0.138415 0.659191

5 53130 0.0645937 0.785988

6 177100 0.0239236 0.912785

7 480700 0.00721505 1.03958

8 1081575 0.00180376 1.16638

9 2042975 0.000378567 1.29318

10 3268760 0.0000673009 1.41997

11 4457400 0.0000101971 1.54677

12 5200300 1.32185×10−6
1.67357

13 5200300 1.46872×10−7
1.80036

14 4457400 1.39878×10−8
1.92716

15 3268760 ≈ 0 2.05396

16 2042975 ≈ 0 2.18076

17 1081575 ≈ 0 2.30755

18 480700 ≈ 0 2.43435

19 177100 ≈ 0 2.56115

20 53130 ≈ 0 2.68794

21 12650 ≈ 0 2.81474

22 2300 ≈ 0 2.94154

23 300 ≈ 0 3.06833

24 25 ≈ 0 3.19513

25 1 ≈ 0 3.32193

3.2 Nõrgalt ühistüüpilised sõnad

Olgu P (x, y) jaotus hulgal X × Y , (X,Y ) ∼ P . Vaatleme iid juhuslikke vektoreid
(X1, Y1), . . . , (Xn, Yn). Siis iga (xn, yn) ∈ X n × Yn korral

P (xn, yn) =
n∏

i=1

P (xi, yi).

Def 3.3 Hulga W n
ϵ moodustavad kõik sõnapaarid (xn, yn) ∈ X n × Yn, mis rahuldavad

tingimusi

� 2−n(H(X)+ϵ) ≤ P (xn) ≤ 2−n(H(X)−ϵ)

� 2−n(H(Y )+ϵ) ≤ P (yn) ≤ 2−n(H(Y )−ϵ)

� 2−n(H(X,Y )+ϵ) ≤ P (xn, yn) ≤ 2−n(H(X,Y )−ϵ).

Neid tingimusi rahuldavid sõnu nimetatakse nõrgalt ϵ- ühistüüpilisteks (jointly ϵ-typical) .
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Seega on paar (xn, yn) nõrgalt ühistüüpiline, kui nii xn ja yn on nõrgalt tüüpilised ning
sõnapaari (xn, yn) ühistõenäosus on ligikaudu 2−nH(X,Y ).

Olgu Px ja Py mõõdu P marginaaljaotused. Siis Px × Py on samade marginaalidega
sõltumatute komponentidega vektori jaotus. Tähistame

Px × Py(x
n, yn) :=

n∏
i=1

Px × Py(xi, yi) =
n∏

i=1

Px(xi)Py(yi).

Tõestame nüüd teoreemi 3.2 kahemõõtmelise versiooni.

Teoreem 3.4 Iga ϵ > 0 korral

1 Piisavalt suure n korral
P (W n

ϵ ) > 1− ϵ. (3.11)

2 Piisavalt suure n korral

(1− ϵ)2n(H(X,Y )−ϵ) ≤ |W n
ϵ | ≤ 2n(H(X,Y )+ϵ). (3.12)

3 Piisavalt suure n korral

(1− ϵ)2−n(I(X;Y )+3ϵ) ≤ Px × Py(W
n
ϵ ) ≤ 2−n(I(X;Y )−3ϵ).

Tõestus. Tõestus on analoogiline teoreemi 3.2 tõestusega. Väide 1 järeldub sellest, et

− 1

n
logP (X1, . . . , Xn) = − 1

n

n∑
i=1

logP (Xi)
P→ H(X)

− 1

n
logP (Y1, . . . , Yn) = − 1

n

n∑
i=1

logP (Yi)
P→ H(Y )

− 1

n
logP

(
(X1, Y1), . . . , (Xn, Yn)

)
= − 1

n

n∑
i=1

logP (Xi, Yi)
P→ H(X,Y )

(ülesanne 1). Ka väite 2 tõestus on analoogiline:

1 ≥ P (W n
ϵ ) =

∑
(xn,yn)∈Wn

ϵ

P (xn, yn) ≥ |W n
ϵ |2−n(H(X,Y )+ϵ),

1− ϵ ≤ P (W n
ϵ ) =

∑
(xn,yn)∈Wn

ϵ

P (xn, yn) ≤ |W n
ϵ |2−n(H(X,Y )−ϵ),

millest
(1− ϵ)2n(H(X,Y )−ϵ) ≤ |W n

ϵ | ≤ 2n(H(X,Y )+ϵ).
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Korrutismõõdu korral

Px × Py(W
n
ϵ ) =

∑
(xn,yn)∈Wn

ϵ

P (xn)P (yn)

≤
∑

(xn,yn)∈Wn
ϵ

2−n(H(X)−ϵ)2−n(H(Y )−ϵ)

≤ 2n(H(X,Y )+ϵ)2−n(H(X)−ϵ)2−n(H(Y )−ϵ)

= 2−n(I(X;Y )−3ϵ)

Px × Py(W
n
ϵ ) ≥ (1− ϵ)2n(H(X,Y )−ϵ)2−n(H(X)+ϵ)2−n(H(Y )+ϵ)

= (1− ϵ)2−n(I(X;Y )+3ϵ).

Teoreemi 3.4 esimese kahe väite interpretatsioon jääb samaks: nõrgalt ühistüüpiliste sõ-
nade hulga tõenäosus on ligikaudu üks, kõik nõrgalt ühistüüpilised sõnad on praktiliselt
võrdtõenäolised ja nende arv on ligikaudu 2nH(X,Y ). Tarvilik tingimus sõnapaari (xn, yn)
(nõrgalt) ühistüüpilisuseks on kummagi sõna (nõrk) tüüpilisus. Paare, kus mõlemad sõ-
nad on (nõrgalt) tüüpilised on ligikaudu 2nH(X)2nH(Y ) Paneme aga tähele, et üldiselt
2nH(X,Y ) < 2nH(X)2nH(Y ). Seega on selliste paaride seas on vaid väike osa ühistüüpilisi
paare. Fikseeritud esimese sõna xn korral on ühistüüpiliste paaride (xn, yn) arv keskmiselt
2n(H(X,Y )−H(X)) = 2nH(Y |X). Valides teise (nõrgalt tüüpilise) sõna yn juhuslikult üle kõigi
tüüpiliste sõnade (ühtlase jaotusega), saame, et selline juhuslik sõltumatute komponen-
tidega sõnapaar on ühistüüpiline (ligikaudse) tõenäosusega 2nH(Y |X)−nH(Y ) = 2−nI(X;Y ).
See ongi sisuliselt teoreemi kolmas väide: kui paar (xn, yn) on valitud juhuslikult (vastavalt
antud marginaaljaotustele), kusjuures sõna yn ei sõltu sõnast xn, on see paar ühistüüpi-
line tõenäosusega 2−nI(X;Y ). Mida suurem on vastastikune informatsioon, seda väiksem
on nimetatud tõenäosus ning seda raskem on juhuslikult kokku saada ühistüüpilist paari.

Näide: Olgu X = Y = {0, 1} ning olgu jaotustabel

X\Y 1 0
1 7

80
1
80

0 9
80

63
80

Seega X ∼ B(1, 0.1), Y ∼ B(1, 0.2). Ühisentroopia

H(X,Y ) = H(X) +H(Y |X) = h(
1

10
) + h(

7

8
).

Sõnad xn = 1000000000 ja yn = 0110000000 on mõlemad nõrgalt tüüpilised (suvalise ϵ
korral) ehk

xn ∈ W 10
ϵ , yn ∈ W 10

ϵ .
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Tähistame p = 1
10
, q = 1

8
ja leiame

P (xn, yn) =
( 1

80

)( 9

80

)2(63
80

)7

= (pq)((1− p)q)2((1− p)(1− q))7 = q3(1− q)7(1− p)9p.

1

n
logP (xn, yn) =

3

10
log q +

7

10
log(1− q) +

9

10
log(1− p) +

1

10
log p

= q log q +
7

40
log q − 7

40
log(1− q) + (1− q) log(1− q) + (1− p) log(1− p) + p log p

= −h(q)− h(p) +
7

40
log(

q

1− q
).

Järelikult
− 1

n
logP (xn, yn)−H(X,Y ) =

7

40
log(7),

mistõttu
(xn, yn) 6∈ W 10

ϵ ,

kui ϵ < 7
40
log(7).

3.3 Nõrga AEP omadusega protsessid

Nõrk AEP omadus (teoreemid 3.2 ja 3.4) põhinevad sõltutmatute sama jaotusega juhuslike
suuruste (iid protsessi) X = {Xn}∞n=1 omadusel

− 1

n
logP (X1, . . . , Xn) → HX , p.k., (3.13)

kus HX on Xi entroopia ja seega protsessi entroopiamäär. Sõltumatuse korral järeldub
(3.13) vahetult (tugevast) suurte arvude seadusest. Selgub aga, et koondumine (3.13) ei
kehti mitte ainult iid protsesside korral vaid ka mitmete teiste statsionaarsete protsesside
korral (tuleta meelde, et statsionaarsel protsessil on alati de�neeritud entroopiamäär).
Sellisel juhul, arusaadavalt, kehtivad ka teoreemi 3.2 kõik väited.

Def 3.5 Protsessil X1, X2 . . . on AEP omadus (AEP property) , kui kehtib (3.13),
kus HX on protsessi entroopiamäär.

Nõrga AEP omadusega on kõik ergoodilised protsessid. Näiteks lahutamatu Markovi ahel.

3.4 Ülesanded

1. Tõestada teoreemi 3.4 väide 1.

2. Olgu X1, X2, . . . iid juhuslikud tähed jaotusega P . Olgu Q mingi teine tähestikul X
antud jaotus. Vaatleme tõepärasuhet

Q(X1) · · ·Q(Xn)

P (X1) · · ·P (Xn)
.

Tõestada, et iga ϵ > 0 ja n korral leidub hulk An
ϵ ⊂ X n ja konstant A (sõltumatu n

ja ϵ-ist) nii, et (siin P (xn) :=
∏n

i=1 P (xi), Q(xn) :=
∏n

i=1 Q(xi))
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1 Kui xn ∈ An
ϵ , siis

2−n(A+ϵ) ≤ Q(xn)

P (xn)
≤ 2−n(A−ϵ);

2 piisavalt suure n korral
P (An

ϵ ) > 1− ϵ;

3 piisavalt suure n korral

(1− ϵ)2−n(A+ϵ) ≤ Q(An
ϵ ) ≤ 2−n(A−ϵ).

3. Olgu X1, X2, . . . iid juhuslikud suurused, Xi ∼ U [0, 1] (ühtlane jaotus). Kon-
strueerime n-tahuka küljepikkustega X1, . . . , Xn, selle tahuka ruumala on Vn =∏n

i=1Xi. Sama ruumalaga n-kuubi küljepikkus on Vn

1
n . Leida E(Vn

1
n ), limnE(Vn

1
n )

ja limn Vn

1
n (tõenäosuse järgi) ning võrdluseks leia (EVn)

1
n ja limn(EVn)

1
n .

4. Olgu X1, X2, . . . lõpliku seisundite hulgaga statsionaarne Markovi ahel ülemineku-
maatriksiga I (ühikmaatriks). Tõestada koondumine (3.13). eee
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4 Infovahetus läbi kanali

Käsitleme informatsiooni edastamist läbi diskreetse (näiteks binaarse) infokanali. Selleks
kodeerime edastatava teksti (binaarse infokanali korral kahendkoodi abil) ja sisestame
saadud koodi bitikaupa kanalisse. Vastuvõtja dekodeerib saadud jada. Selline süsteem
ei tekita mingeid probleeme kui kanal töötab vigadeta, s.t. iga sisestatud sümbol väljub
iseendana. Paraku pole see alati nii � sisestatud sümbolid võivad kanalis teatud tõenäo-
susega muutuda või kaduda. Sellisel juhul ei pruugi vastuvõetud tekst olla identne saade-
tuga ning informatsioon läheb kaotsi. Alljärgnevas uurime, kuidas ülalkirjeldatud vigase
kanali abil informatsiooni võimalikult täpselt vahetada.

4.1 Diskreetne kanal

Olgu X mingi lõplik tähestik. Seda interpreteerime kui sisendtähestikku. Olgu Y mingi
teine lõplik tähestik, mida interpreteerime kui väljundtähestikku. Meie käsitluses on
diskreetne kanal üleminekutõenäosuste maatriks(

P (y|x)
)
x∈X ,y∈Y . (4.1)

Arv P (y|x) on tõenäosus, et sümboli x � sisend� sisendamisel kanalisse väljub sealt
sümbol y � väljund. Selline kanal on discreetne kanal (discrete channel) . Kanal

on mäluta (memoryless) , kui väljund sõltub ainult sisendist, kuid mitte eelnevatest
sisenditest või väljundistest. Vigadeta kanali korral on üleminekumaatriks ühikmaatriks.

Kanali võimsus. Olgu nüüd P (x) mingi jaotus sisendtähestikul X . Seda interpreteer-
ime kui sisendite jaotust. Koos kanaliga (4.1), saame nüüd mingi ühisjaotuse P (x, y) =
P (x)P (y|x) tähestikul X × Y . Olgu nüüd (X,Y ) ∼ P (x, y) antud ühisjaotusega juhuslik
vektor. s.t. X on jaotusega P (x) juhuslik sisend ning Y on juhuslik väljund.

Def 4.1 Kanali (4.1) võimsus (capacity) on

C = max
P (x)

I(X;Y ),

kus maksimum on võetud üle kõikide võimalike sisendjaotuste hulgal X .

Märkused:

� Funktsioonil P (x) 7→ I(X;Y ) on pidev ning kõikide sisendjaotuste hulk on ruumi
R|X | kompaktne kumer alamhulk (simpleks). Seega on funktsioonil P (x) 7→ I(X;Y )
maksimum. Saab näidata, et see funktsioon on nõgus, mistõttu lokaalne maksimum
on ka globaalne ning maksimumi võib leida kumerate optimiseerimismeetoditega.

� Kanali võimsus rahuldab võrratust: C ≤ logmin{|X |, |Y|}, sest
C = max

P (x)
I(X;Y ) ≤ max

P (x)
H(X) ≤ log |X |, C = max

P (x)
I(X;Y ) ≤ max

P (x)
H(Y ) ≤ log |Y|.

� Kanali võimsust võib interpreteerida kui maksimaalset infohulka, mida ühe edas-
tamise käigus läbi kanali on võimalik saata.
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4.2 Näiteid kanalitest

Vigadeta binaarne kanal. Sellise kanali korral X = Y = {0, 1} ning P (y|x) on ühik-
maatriks. Seega iga sisestatud bitt edastatakse muutmatuna. On selge, et ühe
edastamise käigus saabki maksimaalselt edastada ühe biti, seega sellise kanali võim-
sus on 1, mis ühtlasi on ka maksimaalne võimsus, mis binaarsel kanalil võib olla.
Formaalselt I(X;Y ) = H(X;X) = H(X), millest

C = max
P (x)

H(X) = 1,

kus maksimim saavutatakse B(1, 1
2
) jaotuse korral.

Ebaoluliste vigadega kanal. Selle kanali korral X = {0, 1}, Y = {0, 1, 2, 3}, ülem-
inekumaatriks on (

p 1− p 0 0
0 0 q 1− q

)
Sellises kanalis on küll üksjagu juhuslikkust, kuid erinenevatele sisenditele vastavate
väljundite hulgad on lõikumatud. Seega määrab väljund (selle klass) üheselt sisendi
ja kanal on vigadeta. Arusaadavalt on selle kanali võimsus samuti 1. Formaalselt

C = max
P (x)

(
H(X)−H(X|Y )

)
= max

P (x)
H(X) = 1,

sest X = f(Y ) ja seetõttu H(X|Y ) = 0.

Vigadega klaviatuur. Siin X = Y on tähestik, |X | = 26. Vigase klaviatuuri korral iga
x ∈ X korral

P (x|x) = P (järgmine täht|x) = 0.5.

Seega sellise klaviatuuri korral edastatakse täht vigadeta vaid pooltel juhtudel. Üle-
jäänud juhtudel edastatakse järgmine täht. Leiame võimsuse

C = max
P (x)

(
H(Y )−H(Y |X)

)
= max

P (x)
H(Y )− 1 = log 26− 1 = log 13,

kusjuures maksimum saavutatakse ühtlase sisendjaotuse korral. Saadud võimsus
ühtib intuitsiooniga � kui vigadeta klaviatuuri korral edastame korraga maksimaalselt
log 26 bitti informatsiooni, siis vigase klavituuri korral saame vigadeta edastada vaid
pooltest tähtedest.

Binaarne sümmeetriline kanal. Siin X = Y = {0, 1} ja üleminekumaatriks on(
1− p p
p 1− p

)
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Seega sümbol edastetekse täpselt tõenäosusega 1− p, kuid tõenäosusega p muutub
ta teiseks sümboliks. Leiame vastastikuse informatsiooni

I(X;Y ) = H(Y )−H(Y |X) = H(Y )−
∑
x

P (x)H(Y |X = x)

= H(Y )−
∑
x

P (x)h(p) = H(Y )− h(p).

Seega on I(X;Y ) maksimaalne siis, kui Y on ühtlase jaotusega. See saavutatakse
ühtlase sisendjaotuse korral ning seega

C = max
P (x)

I(X;Y ) = 1− h(p).

Kui p = 0, on kanal vigadeta ning tema võimsus on 1. Kui p = 0.5, on X ja Y
sõltumatud. Sellisel juhul ei toimu mingisugust infovahetust ning kanali võimsus on
arusaadavalt 0.

J. Thomas and T. Cover: "This is the simplest model of a channel with errors;
yet it captures most of the complexity of the general problem".

Binaarne kadumiskanal. Sellisel juhul X = {0, 1} ja Y = {0, 1, e}. Sümbolit e inter-
preteerime kui signaali selle kohta, et sisend on kaduma läinud (vaikus). Kumbki
signaal läheb kaduma tõenäosusega p. Üleminekumaatriks on selline, et

P (x|x) = 1− p, P (e|x) = p, x = 0, 1.

Leiame binaarse kadumiskanali võimsuse

C = max
P (x)

(
H(Y )−H(Y |X)

)
= max

P (x)
H(Y )− h(p).

Leidmaks maxP (x) H(Y ) de�neerime sündmuse E = {Y = e}. Et E = f(Y ), siis

H(Y ) = H(Y,E) = H(E) +H(Y |E) = h(p) +H(Y |E).

Olgu π = P (X = 1). Siis P (Y = 1|Y 6= e) = π ja P (Y = 0|Y 6= e) = (1− π) ja

H(Y |E) = H(Y |Y 6= e)P (Y 6= e) = h(π)(1− p).

Seega
C = max

P (x)
H(Y |E) = max

π
h(π)(1− p) = 1− p.

Alternatiiv: Y jaotus:

P (Y = 1) = π(1− p), P (Y = 0) = (1− p)(1− π), P (Y = e) = p.

Seega
H(Y ) = H(π(1− p), (1− p)(1− π), p) = (1− p)h(π) + h(p).

Siin viimane võrdus tuleb grupeerimisomadusest. Et h(π) on maksimaalne kui π =
0.5, saame

max
π

H(π(1− p), (1− p)(1− π), p) = (1− p) + h(p).
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Sümmeetriline kanal. Selle kanali korral koosnevad üleminekumaatriksi read samadest
elementidest. Teisisõnu, maatriksi read on ükseteise permutatsioonid. Samuti on
permutatsioonid üleminekumaatriksi veerud. Sümmeetrilised kanalid on näiteks0.3 0.2 0.5

0.5 0.3 0.2
0.2 0.5 0.3

 (
0.2 0.2 0.3 0.3
0.3 0.3 0.2 0.2

)
.

Sellise kanali võimsust on kerge leida. Olgu rea entroopia Hr. Siis

I(X;Y ) = H(Y )−H(Y |X) = H(Y )−Hr ≤ log |Y| −Hr,

kusjuures võrdus kehtib ühtlase väljundjaotuse korral. Veendume, et ühtlane sisend-
jaotus garanteerib ühtlase väljundjaotuse. Ühtlase sisendjaotuse korral

P (y) =
∑
x∈X

P (y|x)P (x) =
1

|X |
∑
x

P (y|x) = c

|X |
,

kus c on veeruelementide summa. Saadud arv ei sõltu y-st, mistõttu on välundjaotus
ühtlane ja

C = log |Y| −Hr.

Ülaltoodud argument kehtib ka siis, kui üleminekumaatriksi read on üksteise per-
mutatsioonid ja veergude summa on konstantne (kuid veerud ei pruugi olla üksteise
permutatsioonid). Selliseid kanalaeid nimetatakse nõrgalt sümmeetrilisteks. Nõrgalt
sümmeetriline kuid mitte sümmeetriline kanal on näiteks(

1
3

1
6

1
2

1
3

1
2

1
6

)
.

J. Thomas and T. Cover: "In general, there are no closed form solution for the capacity.
but for many simple channels it is possible to calculate the capacity using properties like
symmetry."

4.3 Kanaliteoreem

Infovahetus läbi kanali. Olgu {1, 2, . . . ,M} sõnad. Nende seast valitakse juhuslikult
üks. Olgu juhuslik suurus W see juhuslik sõna. Sõna W kodeeritakse n-elemendiliseks
koodisõnaks. Olgu

C : {1, 2, . . . ,M} 7→ X n

kood. Kodeeritud sõna (n-dimensionaalne juhuslik vektor) Xn := C(W ) saadetakse
bitikaupa läbi kanali

{P (y|x)}x∈X ,y∈Y .

Et kanal on mäluta, siis tõenäosus sõna yn saamiseks sõna xn sisestamisel on

P (yn|xn) =
n∏

i=1

P (yi|xi).
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Saadud sõna, olgu see Y n, dekodeeritakse. Olgu

g : Yn → {1, 2, . . . ,M}

dekodeeriv funktsioon. Pärest dekodeerimist saame sõna Ŵ = g(Y n), mis paraku ei
pruugi alati olla esialgne sõna W .

Def 4.2 Olgu {P (y|x)}x∈X ,y∈Y diskreetne mäluta kanal. Selle kanali (M,n) kood koos-
neb järgmistest komponentidest:

� hulk {1, . . . ,M} (sõnade indeksid);

� kodeeriv funktsioon
C : {1, . . . ,M} → X n;

Koodisõnad
{C(1), . . . , C(M)}

moodustavad koodiraamatu .

� dekodeeriv funktsioon
g : Yn → {1, 2, . . . ,M}.

Veatõenäosused. Olgu λi (tinglik) tõenäosus, et (M,n) kood teeb sõna i edastamisel
vea. Seega

λi = P(Ŵ 6= i|W = i) = P
(
g(Y n) 6= i|W = i

)
=

∑
yn: g(yn )̸=i

P (yn|C(i)).

Olgu
λmax := max

i
λi

ning olgu Pe vea tegemise tõenäosus juhul, kui sõna valitakse ühtlaselt üle kõikide sõnade
hulga {1, . . . ,M}. Seega

Pe = P(Ŵ 6= W ) =
∑
i

P(Ŵ 6= i|W = i)P(W = i) =
1

M

∑
i

P(Ŵ 6= i|W = i) =
1

M

∑
i

λi.

On selge, et
Pe ≤ λmax.

Def 4.3 (M,n) koodi määr (rate) on

R :=
logM

n
.

Formaalselt on koodi määr vaid koodi C omadus (tingimusel et X on �kseeritud) ja näitab
mitu bitti informatsiooni C korral läbi kanali saadetakse. Praktikas otsime aga koodi C
kanalist sõltuvalt � nii, et viga oleks maksimaalselt väike.
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4.4 Näited koodidest binaarse sümmeetrilise kanali korral

4.4.1 Ühtlane kood ja kordamiskood

Ühtlane kood. Olgu |X | = 2 ja C ühtlane kood, mis M = 2n korral hulga {1, . . . , 2n}
üks-ühesesse vastavusse hulgaga X n (tuleta meelde kodeerimist nõrga AEP abil). Selle
koodi määr on 1. On selge, et kui |X | = 2, siis parema määraga koodi konstrueerida pole
võimalik.
Kui M = 16, siis ühtlase koodi koodiraamat on

(0000), (1000), (0100), (0010), (0001), (1100), (1010), (1001),

(0110), (0101), (0011), (1110), (1101), (1011), (0111), (1111).

Kui kanal on vigadeta binaarne kanal, on vaadeldud kood igati mõistlik: tal on maksi-
maalne määr ja λmax = 0.
Sama koodi võib ka kasutada binaarse sümmeetrilise kanali korral. Koodi määr on endiselt
1, kuid veatõenäosus kasvab koos n-ga (koos M -ga):

1− λi = P(Ŵ = i|W = i) = P(Y n = C(i)) = (1− p)n.

Kuigi koodil on kõrge määr, pole see antud kanali korral mõistlik.

Kordamiskood. Binaarse sümmeetrilise kanali korral pakutakse tihti välja nn kor-
damiskoodi (repetition code): iga bitt ühtlases koodis esitatakse m kordselt. Kui m on
piisavalt suur ja p < 0.5, siis suurte arvude seaduse tõttu suure tõenäosusega enamik neist
jõuab kohale. Seega kordamiskoodi korral edastatakse ühtlase koodi bitid pikkusega m
blokkide kaupa, vastuvõtja seab igale blokile vastavusse ühe biti vastavalt sellele, milliseid
bitte on vastuvõetud blokis enamus (viikide vältimiseks olgu m paaritu arv). Teinekord
tähistatakse sellist koodi Rm. Esialgne ühtlane kood on siis R1. Näiteks kui M = 16, siis
koodi R3 koodiraamat on

(000 000 000 000), (111 000 000 000), (000 111 000 000), (000 000 111 000),

(000 000 000 111), (111 111 000 000), (111 000 111 000), (111 000 000 111),

(000 111 111 000), (000 111 000 111), (000 000 111 111), (111 111 111 000),

(111 111 000 111), (111 000 111 111), (000 111 111 111), (111 111 111 111).

Leiame veatõenäosuse λi. Selleks paneme tähele, et piisab kui leiame ühe ühtlase koodi
biti (ühe m-bloki) valesti esitamise tõenäosuse pb, sest otsitav veatõenäosus on siis

1− λi = P(Y n = C(i)) = (1− pb)
4.

Üks m-blokk dekodeeritakse vigaselt, kui vähemalt kaks bitti edastatakse valesti. Seega
R3 korral

pb = 3p2(1− p) + p3.
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Kui p = 0.1, siis pb = 3 · 0.01 · 0.9 + (0.01)3 = 0.028 ja iga i = 1, . . . ,M korral

λi = 1− (1− 0.028)4 = 0.107... = λmax = Pe.

Nägime, et R3 kahandas ühe biti edastamise veatõenäosuse esialgselt 0.1-lt (R1 korral)
0.028-ni (R3 korral). Antud näite korral keskmine viga Pe on nii R1 kui ka R3 korral
enam-vähem võrdne (0.1 ja 0.107...) kuid tuletame meelde, et R1 korral saab selle veaga
edastada vaid kaks sõna (ühe biti), kuid R3 korral 16 sõna (neli bitti). Küll aga vähenes
koodi määr. Antud juhul on tegemist (16, 12) koodiga ja tema määr seega

R =
logM

n
=

4

12
=

1

3
.

On selge, et kui logM on täisarv, siis koodi Rm määr on alati 1
m
(miks?).

Suurte arvude seadusest järeldub, et kui p < 0.5, siis valides m piisavalt suure, saame
tõenäosuse pb teha kuitahes väikeseks (ülesanne 1). Teisisõnu, iga ϵ0 > 0 korral leidub
m0(ϵ0) nii, et kui m ≥ m0(ϵ0), siis koodi Rm korral pb ≤ ϵ0. Seega saab iga sõnade arvu
M korral teha kuitahes väikeseks ka λmax. Tõepoolest, et (olgu logM täisarv)

λmax = 1− (1− pb)
logM ,

pole raske näha, et λmax → 0, kui pb → 0. Seega saab veatõenäosuse teha kuitahes
väikeseks, kuid seejuures peab m olema väga suur ja koodi määr 1

m
seega väga väike. Saab

näidata, et kui p = 0.1, siis saavutamaks pb = 10−15, mis on teatav tehniline standard
arvuti kettaseadmetel, peaks m olema ligikaudu 61. Sisuliselt tähendab see sõnastikust
61 koopia tegemist.

4.4.2 Hammingi kood

Hammingi kood kuulub binaarse sümmeetrilise kanali tarbeks loodud nn paarsust kon-
trollivate (parity check) koodide hulka. Sellised koodid põhinevad lihtsal asjaolul � kui
ülekande käigus muutub ainult üks bitt, muudab see koodisõna ühtede paarsust. Viimast
on aga lihtne kontrollida. Lihtne näide sellisest koodist on järgmine: olgu koodisõna
pikkus paaritu arv. Liidame sellele ühe biti nii, et ühtede arv koodisõnas oleks paarisarv.
Kui ülekande käigus ainult üks bitt (paaritu arv bitte) muutub, muutub ka koodisõnas
olevate ühtede paarsus. Nii saab dekodeerija aru, et juhtunud on viga. Kahjuks ei oska
ta aga seda viga parandada. Hammingi kood on selline, et ühe biti muutumist saab
dekodeerimise käigus korrigeerida ning esialgse sõna seega restaureerida. Kui koodisõna
pole liiga pikk ja veatõenäosus liiga suur, on kahe või enama biti muutumise tõenäosus
väike võrreldes ühe biti muutumise tõenäosusega.

Hammingi (7, 4) kood: idee. Tutvume Hammingi (16,7)-koodiga (kirjanduses nimetatakse
seda (7, 4) koodiks). Selle koodi määr on seega 4

7
ning ta on mõeldud 16 sõna edastamiseks
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läbi binaarse sümmeetrilise kanali. Kood on järgmine: sõna W ∈ {1, . . . , 16} kahende-
situsele s1, s2, s3, s4 liidetakse kolm (paarsus)bitti t5, t6, t7 eeskirja alusel, mida on kõige
lihtsam selgitada järgmise diagrammi põhjal.

t7

t5

t6

s1

s4

s2

s3

Arvud t5, t6, t7 valitakse nii, et igas ringis oleks ühtesi paarisarv. Nii saadakse järgmised
16 koodisõna (paksult on trükitud bitid s1s2s3s4):

0000000 0100110 1100011 1000101

0001011 0101101 1101000 1001110

0010111 0110001 1110100 1010010

0011100 0111010 1111111 1011001

Dekodeerimine käib analoogiliselt: ülekandel saadud sõna r1, r2, r3, r4, r5, r6, r7 bitid paigutatakse
ringidesse samasse positsioonidesse, mis bitid s1, s2, s3, s4, t5, t6, t7. Seega
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Nüüd kontrollitakse kõikides ringides olevate ühtede paarsust. Seejuures on 8 võimalust:
kas kõigis kolmes ringis on ühtesid paarisarv, ühes kolmest ringis pole see nii, kahes ringis
pole see nii, kolmes ringis pole see nii. Kui kõikides ringides on ühtesi paarisarv, loetakse
saadud sõna veatuks. Sellisele sõnale vastab üks koodisõna ning see koodisõna on Ŵ .
Ülejäänud juhtudel on vähemalt ühes ringis ühtesi paaritu arv. Ütleme, et need ringid on
vigased. Hammingi kood on aga konstrueeritud nii, et ükskõik mitu vigast ringi korraga
ka ei oleks, ikka saab vaid ühe biti muutmisega ringide paarsused korda seada. Selleks
tuleb lihtsalt muuta seda bitti, mis asub kõikide vigaste ringide ühisosas. Näiteks kui
vigased on kaks alumist ringi, tuleb muuta bitti r4; kui vigased on kõik kolm ringi, tuleb
muuta bitti r3 jne. Pärast vea parandamist, on saadud sõna üks 16 koodisõnast ning see
koodisõna on Ŵ .
Kui koodisõna edastamisel ei muutunud ükski bitt, siis dekodeerimisel ühtki viga ei paran-
datud ning Ŵ = W . Kui ülekandel muutus üks bitt, siis muutus mõne ringi paarsus ning
antud meetod võimaldab seda viga parandada (muutunud bitt leitakse üles). Ka sellisel
juhul Ŵ = W . Kui ülekande käigus muutus kaks või enam bitti, siis sõltumata sellest kui
palju ringe on vigased, parandatakse vahetatakse ülimalt üks bitt. Saadud sõna on alati
koodisõna, mis aga erineb sisestatust ning Ŵ 6= W . Seega

λmax = λi = 1− ((1− p)7 + 7p(1− p)6).

When p = 0.1, then λmax ≈ 0.15. Proovi dekodeerida sõnad

1101011, 0110110, 0100111, 1111111.
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Hammingi kood kui lineaarne kood. Hammingi kood on lineaarne: st iga kahe
koodisõna summa 2-jäägiklassiringis (st 1 + 1 = 0, 0 + 1 = 1, 1 + 0 = 1, 0 + 0 = 0) on
omakorda koodisõna. Nimelt iga koodisõna

cT = (s1, s2, s3, s4, t5, t6, t7)

paarsusvektor tT = (t5, t6, t7) avaldub korrutisena (jäägiklassiringis)

t =

 1 1 1 0
0 1 1 1
1 0 1 1




s1
s2
s3
s4

 (4.2)

Olgu seoses (4.2) olev maatriks P . Siis (4.2) on t = Ps, kus sT = (s1, s2, s3, s4). De�neer-
ime 7× 4 maatriksi

G :=

(
I4
P

)
,

kus I4 on 4× 4 ühikmaatriks. Siis iga koodisõna c avaldub

c =

(
s
t

)
= Gs =

(
I4
P

)
s. (4.3)

Seosest (4.3) järeldub nüüd koodi lineaarsus. De�neerime nüüd 3 × 7 maatriksi H
järgmiselt

H =
(
P I3

)
=

 1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 0 1 1 0 0 1

 . (4.4)

Jäägiklassiringis on −P = P (sest 1 + 1 = 0), mistõttu

HG =
(
−P I3

)( I4
P

)
= (−P + P ) =

 0 0 0 0
0 0 0 0
0 0 0 0

 .

Seega korrutades maatriksit H koodisõnaga c (ikka jäägiklassiringis), saame

Hc = HGs =

 0
0
0

 . (4.5)

Maatriksi H veerud on kõik hulga {0, 1}3 elemendid välja arvatud 0 vektor. Kõik vektorid
on erinevad, mistõttu suvalise kahe vektori summa ei saa olla 0. Kui koodivektoris pole
ainult nullid, peab tas olema vähemalt 3 ühte sest ühe või kahe ühega ei saaks kehtida (4.5).
Samas koodi lineaarsuse tõttu on iga kahe koodivektori vahe koodivektor. Seega erinevad
kaks koodivektorit vähemalt kolme biti võrra. Teisisõnu, kahe koodisõna omavaheline
kaugus Hammingi mõttes on vähemalt 3. Kui nüüd ühe koodisõna c üks bitt muutub, siis
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erineb muudetud vektor, olgu see r, sõnast c täpselt ühe biti võrra (kaugus on 1), kuid
kõikidest teistest koodisõnadest vähemalt 2 biti võrra (kaugus vähemalt 2). Seega on c
vektor mis minimiseerib üheselt Hammingi kauguse r ja teiste koodisõnade vahel, st

c = arg min
i=1,...,16

h(r, ci), (4.6)

kus h on Hammingi kaugus ja c1, . . . , c16 kõikvõimalikus koodisõnad. Loomulikult pole
c leidmiseks vaja leida h(r, ci) kõikide koodisõnade korral. Seda nägime juba ülalpool
(ringide abil) ning selles on kerge veenduda ka maatriksite abil.
Tõepoolest, kui ülekande käigus muutub täpselt üks bitt, siis vastuvõtjani jõuab vektor
r = c + ei, kus ei koosneb nullides välja arvatud i-s positsioon, kus on 1 (i = 1, . . . , 7).
korrutades vektorit r maatriksiga H, saame

Hr = H(c+ ei) = Hei.

Ent Hei on maatriksi i-s veerg. Maatriksi H veerud on üksteisest erinevad. Seega teades
veergu Hei, teame positsiooni i ning seega on viga võimalik parandada.

Hammingu koodi suuremate sõnastike jaoks. Nüüd on kerge üldistada kirjeldatud
meetodi suurema sõnastiku kodeerimiseks. Oletame, et tahame kodeerida 25 koodisõna.
Siis on paarsusbitte tarvis vähemalt 4 (miks?). Seega konstrueerime 4 × 5 maatriksi P ,
mille veerud on kõik erinevad ja sisaldavad vähemalt 2 ühte. Näiteks

P =


1 1 1 1 1
1 1 0 0 1
0 1 0 1 0
1 0 1 0 0


Iga algse koodisõna sT = (s1, . . . , s5) ∈ {0, 1}5 korral vektor t = Ps määrab paar-
suslaiendi. Näiteks kui s = (1, 0, 0, 1, 1), on paarsusbitid 1, 0, 1, 1 ja nii on koodisõna
100111011. Maatriks H on nüüd (P, I4):

1 1 1 1 1 1 0 0 0
1 1 0 0 1 0 1 0 0
0 1 0 1 0 0 0 1 0
1 0 1 0 0 0 0 0 1


Maatriksi H veerud on kõik erinevad ja H read on ortogonaalsed kõikide koodisõnadega.
Kõik vektorid on erinevad, mistõttu suvalise kahe vektori summa ei saa olla 0. Peale
nullvektori igas koodivektoris peab olema vähemalt 3 ühte sest ühe või kahe ühega ei
saaks kehtida (4.5). Seega on kõikide koodisõnade Hammingi kaugus vähemalt 3.
Äsja konstrueeritud koodi on (32,9)-kood, tema määr on 5

9
, Tegelikult saab 4 paarsusbiti

abil laiendada rohkem sõnu kui 25. Tõepoolest, et maatriksi ridu on 4, saab maksimaalne
veergude arv maatriksis H olla 24 − 1 = 15. See saab olla maksimaalne (laiendatud)
koodisõna pikkus. Originaalkoodisõna pikkus saab olla maksimaalselt 15− 4 = 11. Seega
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saab nelja paarsusbitiga laiendada maksimaalselt 211 koodisõna. Selle koodi määr on 11
15
.

Analoogiliselt saame, et k paarsusbitiga saab laiendada

22
k−1−k

sõna, koodi määr on siis 2k−1−k
2k−1

. Määr läheneb ühele, kui k kasvab, kuid seejuures kasvab
ka veatõenäosus, sest pikkade koodisõnade puhul on suurem tõenäosus, et muutub rohkem
kui 1 bitt.

4.5 Kanaliteoreem

Def 4.4 Olgu P (y|x) diskreetne mäluta kanal. Arv R on kanali saavutatav määr
(achievable rate) , kui leidub selle kanali (p2nRq, n) koodide jada nii, et nende maksi-
maalne viga λmax läheneb nullile.

Kas arv R on saavutatav määr või mitte, on kanali omadus. Kui R on kanali saavu-
tatav määr, siis leidub selline kanali (p2nRq, n) koodide jada, et maksimaalne viga läheneb
nullile. Kui maksimaalne viga läheneb nullile, siis suvaliseW jaotuse korral läheneb nullile
ka viga P(Ŵ 6= W ). Seega, kui R > 0 on kanali saavutatav määr, siis kuitahes suure
sõnade arvu M ja kuitahes väikese ϵ > 0 korral leidub alati mingi n ja mingi (p2nRq, n)
kood nii, et selle koodi maksimaalne viga on väiksem kui ϵ. Seega selle koodi korral võib
juhuslikult valitud sõna hulgast {1, . . . , p2nRq} läbi kanali edastada nii, et vea tõenäosus
on väiksem kui ϵ.
Binaarse vigadeta kanali korral on 1 koodi saavutatav määr.

Edaspidi tähistame p2nRq lihtsalt 2nR.

Järgnev teoreem, nn Shannoni teine teoreem on informatsiooniteooria keskne tulemus.

Teoreem 4.5 (Kanaliteoreem) Olgu C kanali võimsus. Siis iga arv R < C on selle
kanali saavutatav määr. Teisisõnu, iga sellise arvu R korral leidub (2nR, n) koodid nii, et
λmax → 0.
Teistpidi, kui leidub (2nR, n) kood nii, et λmax → 0, siis R ≤ C.

4.5.1 Esimese väite tõestus

Olgu R < C. Näitame, et R on saavutatav määr.

Esimese sammuna �kseerime suvalise C−R
3

> ϵ > 0 ning näitame, et leidub kood C∗

nii, et Pe(C∗) ≤ 2ϵ, kus Pe(C∗) on edastamisel tehtud viga juhul, kui W on ühtlase jao-
tusega ning kood on C∗. Selleks toimime järgmiselt:

1) Fikseerime sisendjaotuse P (x), mille korral I(X;Y ) = C. See jaotus, nagu ka kanal
{P (y|x)} on teada nii vastuvõtjale kui ka sisendajale.
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2) Jaotuse P (x) abil genereerime 2nR juhuslikku sõna xn(1), . . . , xn(2nR). Saadud 2nR

sõna vaatleme hulga
{1, . . . , 2nR}

koodina:
C : {1, . . . , 2nR} → X n, C(i) = xn(i).

Olgu
Xn(1), . . . , Xn(2nR)

sõltumatud juhuslikud sama jaotusega juhuslikud vektorid, kusjuures iga vektor

Xn(i) = (X1(i), . . . , Xn(i))

omakorda koosneb samuti iid komponentidest. Vektor Xn(i) modelleerib koodisõna xn(i).
Seega

P(Xn(i) = xn(i)) =
n∏

j=1

P (xj(i)),

kus xn(i) = x1(i), . . . , xn(i).

Juhuslik iid komponentidega maatriks

X :=

 X1(1) X2(1) · · · Xn(1)
· · · · · · · · · · · ·

X1(2
nR) X2(2

nR) · · · Xn(2
nR)


modelleerib juhjuslikku koodi. Iga maatriksi rida on üks koodisõna, tõenäosus koodi C
saamiseks on

P(X = C) = P (C) =
2nR∏
j=1

n∏
i=1

P (xi(j)).

3) Saadud kood edastatakse informatsiooni saatjale ning vastuvõtjale.

4) Sõnastikust {1, . . . , 2nR} valime ühtlase jaotusega sõna w. Olgu W juhuslik sõna,
s.t.

P(W = w) = 2−nR.

5) Valitud sõna w kodeeritakse selle koodi abil ja saadud koodisõna xn(w) saadetakse läbi
kanali.

6) Vastuvõtja saab signaali yn vastavalt jaotusele

P
(
yn|xn(w)

)
=

n∏
i

P
(
yi|xi(w)

)
.
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7) Vastuvõtja dekodeerib saadud sõna yn vastavalt järgmisele eeskirjale

g(yn) =

{
k kui (xn(k), yn) ∈ W n

ϵ ning iga i 6= k korral (xn(i), yn) 6∈ W n
ϵ ,

∗ muidu.

Siin ∗ 6∈ Y , mistõttu see väljund on kindlasti viga. Püüame hinnata ülalkirjeldatud
juhuslikul kodeerimisel saadud viga. Selleks hindame keskmist viga üle kõigi juhuslike
koodide

∑
C

P (C)Pe(C) =
∑
C

P (C) 1

2nR

2nR∑
j

λj(C) =
1

2nR

2nR∑
j

∑
C

P (C)λj(C),

kus
λj(C) := P(Ŵ 6= W |W = j, C)

on sõna j edastamisel tehtud viga koodi C korral. Summa∑
C

P (C)λj(C)

on sõna j dekodeerimisel tehtud keskmine viga (üle kõikide koodide). Olgu C1 ja Cj koodid,
kus esimene ja j-s rida on ära vahetatud, muidu samad. On selge, et P (C1) = P (Cj).
Sellest järeldub, et ∑

C

P (C)λj(C) =
∑
C

P (C)λ1(C)

ehk

∑
C

P (C)Pe(C) =
1

2nR

2nR∑
j

∑
C

P (C)λj(C) =
∑
C

P (C)λ1(C)

=
∑
C

P (C)P(Ŵ 6= W |W = 1, C)

=
∑
C

P (C|W = 1)P(Ŵ 6= W |W = 1, C)

= P(Ŵ 6= W |W = 1),

kus kolmas võrdus järeldub sellest, et sõna- ja koodivalik on sõltumatud, P (C|W = 1) =
P (C). Tuletame meelde, et P(Ŵ 6= W |W = 1, C) on esimese sõna edastamisel tehtud
viga koodi C korral, P(Ŵ 6= W |W = 1) on aga kogu kirjeldatud juhusliku kodeerimise
kaudu esimese sõna edastamisel tehtud viga.

Juhuslik vektor Xn(i) on juhusliku koodi i-s sõna, Y n(i) olgu selle väljund läbi kanali.
De�neerime sündmuse

Ei = {(Xn(i), Y n(1)) ∈ W n
ϵ }.
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Esimese sõna kodeerimine on vigane siis, kui toimub sündmus Ec
1 või üks sündmustest

E2, . . . , E2nR . Seega

P(Ŵ 6= W |W = 1) ≤ P(Ec
1 ∪ E2 ∪ · · · ∪ E2nR) ≤ P(Ec

1) +
2nR∑
i=2

P(Ei).

Teoreemi 3.4 esimesest väitest järeldub, et piisavalt suure n korral

P(Ec
1) ≤ ϵ.

Tuletame meelde, et Xn(i) on iid vektor jaotusest P . See jaotus oli aga selline, et

I(X1(i);Y1(i)) = C.

Vektorid Xn(i) ja Xn(1) on sõltumatud, mistõttu on sõltumatud ka Xn(i) ja Y n(1).
Teoreemi 3.4 viimasest väitest saame, et piisavalt suure n korral

P(Ei) = P
(
(Xn(i), Y n(1)) ∈ W n

ϵ

)
≤ 2−n(I(X1(i);Y1(i))−3ϵ) = 2−n(C−3ϵ), j = 2, . . . , 2nR.

Kokkuvõttes,

P(Ŵ 6= W |W = 1) ≤ ϵ+
2nR∑
i=1

2−n(C−3ϵ) = ϵ+ 2−n(C−R−3ϵ) ≤ 2ϵ,

kui n on piisavalt suur ja ϵ on nii väike, et C −R− 3ϵ > 0, s.t. R + 3ϵ < C.

Tõestasime, et kuitahes väikese ϵ korral leidub piisavalt suur n nii, et∑
C

P (C)Pe(C) ≤ 2ϵ.

Et keskmine on väiksem kui 2ϵ, siis peab leidume vähemalt üks kood C∗ nii, et

Pe(C∗) ≤ 2ϵ.

Edaspidi võib kasutada seda (mittejuhuslikku) koodi.

Tuletame meelde, et Pe on keskmine viga (üle ühtlase jaotusega sõnavaliku). Seega oleme
tõestanud, et koodi C∗ korral on

1

2nR

2nR∑
i

λi ≤ 2ϵ.

Ülaltoodud võrratusest järeldub, et leidub vähemalt 2nR−1 indeksit i nii, et λi ≤ 4ϵ.
Tõepoolest, kui see nii, ei ole, s.t. leidub vähemalt 2nR−1 + 1 λi-d mis on suuremad kui
4ϵ, siis oleks

∑2nR

i λi > 2ϵ. Jätame koodist C∗ alles pooled koodisõnad, need mille korral
λi ≤ 4ϵ. Sellise pooliku koodiga saame kodeerida

2nR−1 = 2n(R− 1
n
)

sõna. See tähendab, et meil on (2n((R− 1
n
), n) kood nii, et λmax ≤ 4ϵ. Vahe R ja R − 1

n

vahel läheneb n kasvamisel nullile. Seega on iga R < C saavutavav määr. �
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Märkused:

� Teoreemi tõestus põhineb sisuliselt järgneval: juhuslikult valitud koodisõna xn on
suure tõenäosusega nõrgalt tüüpiline. Sellise sõna kanali kaudu edastamisel on
väljund yn suure tõenäosusega üks neist 2nH(Y |X) vektorist mis on sisendiga koos
ühistüüpilised. Ülalkirjeldatud infovahetus töötab hästi, kui erinevatele sisenditele
vastavad ühistüüpilised vektorite hulgad on sisuliselt kattumatud. See aga seabki
piiri sisendite arvule. Tõepoolest, kui kõikide nõrgalt tüüpiliste väljundite hulk on
jagatud lõikumatuteks klassideks, millistes igaühes on umbes 2nH(Y |X) elementi ning
kui kõiki nõrgalt tüüpilisi väjundeid on umbes 2nH(Y ), siis peab nende klasside arv
olema ligikaudu

2nH(Y )

2nH(Y |X)
= 2nI(X;Y ).

Igale klassile vastab üks sisend. Kokku peab olema ligikaudu 2nI(X;Y ) sisendit.

� Ülaltoodud tõestus on olemasolu, mitte konstruktsioonitõestus. Tõestus ei anna
eeskirja parima koodi C∗ konstrueerimiseks. Põhimõtteliselt võiks küll leida iga
võimaliku koodi korral tema maksimaalse vea ning otsida parimat koodi kõikide
võimalike koodide seast. Et aga (2nR, n) koodi konstrueerimiseks tuleb läbi vaadata
2n2

nR
võimalikku koodi, langeb see variant ära.

Muidugi võib koodi konstrueerida ka juhuslikult, nii nagu ülaltoodud tõestuses.
Suure tõenäosusega (ja suure n korral) see kood töötab hästi. Sellise juhuslikult
genereeritud koodi korral on probleem dekodeerimine. Teadmata tema struktuuri
paistab ainus võimalus dekodeerimiseks n×2Rn tabelist õige vaste otsimine ning see
on ebapraktiline.

Töö praktiliselt rakendatava kõrge määraga (2nR, n) koodi leidmiseks on algas sisuliselt
juba pärast Shannoni esimese artikli ilmumiset ning kestab siiamaani. Pikka aega ei
suudetud selliseid koode leida või nende efektiivsust tõestada. 1993 aastal pakuti välja
nn. turbokood, mis peaaegu saavutab kanali võimsuse. Samuti saavutavad kanali võimsuse
nn Low Density Parity Check koodid.

4.5.2 Teise väite tõestus

Lemma 4.1 Olgu Xn = C(W ) juhuslik koodisõna, Y n = (Y1, . . . , Yn) selle väljund. Siis

I(Xn;Y n) ≤ nC.

Tõestus. Entroopia tinglikust ketireeglist järeldub, et

H(Y n|Xn) = H(Y1|Xn) +H(Y2|Y1, X
n) + · · ·+H(Yn|Y1, . . . , Yn−1, X

n).

Vastavalt de�nitsioonile

H(Yi|Y1, . . . , Yi−1, X
n) = −

∑
yi,yi−1,xn

logP (yi|y1, . . . , yi−1, x1, . . . , xn)P (y1, . . . , yi, x1, . . . , xn).
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Kanal on mäluta, s.t. iga i korral

P (yi|y1, . . . , yi−1, x1, . . . , xn) = P (yi|xi)

ja
P (y1, . . . , yi, x1, . . . , xn) = P (yi|xi)P (y1, . . . , yi−1, x1, . . . , xn),

millest
H(Yi|Y1, . . . , Yi−1, X

n) = H(Yi|Xi).

Järelikult

H(Y n|Xn) =
n∑

i=1

H(Yi|Xi), (4.7)

millest

I(Xn;Y n) = H(Y n)−H(Y n|Xn) = H(Y n)−
n∑

i=1

H(Yi|Xi)

≤
n∑

i=1

(H(Yi)−H(Yi|Xi)) =
n∑

i=1

I(Xi;Yi) ≤ nC

Veata koodid. Kanaliteoreemi teine väide on sisuliselt järgmine: kui leidub (2nR, n)
kood, mille maksimaalne viga on väike, siis R ≤ C. Tõestuse idee selgitamiseks tõestame
esialgu nõrgema väite.

Väide 4.1 Kui leidub (2nR, n) kood, mille maksimaalne viga on 0, siis R ≤ C.

Tõestus. Oletame sellise (2nR, n) koodi olemasolu. Seega leidub dekodeeriv funktsioon
g nii, et g(Y n) = W p.k.. Teisisõnu, H(W |Y n) = 0. Kui juhuslik sõna W on ühtlase
jaotusega, siis H(W ) = nR. Tuletame meelde, et Xn = C(W ) on juhuslik koodisõna. Et

W → Xn → Y n

on Markovi ahel, siis andmetöötlusvõrratusest järeldub

I(W ;Y n) ≤ I(Xn;Y n). (4.8)

Arvestades, et
I(W ;Y n) = H(W )−H(W |Y n) = H(W ), (4.9)

saame lemmast 4.1 ja andmetöötlusvõrratusest (4.8)

nR = H(W ) = I(W ;Y n) ≤ I(Xn;Y n) ≤
n∑

i=1

I(Xi;Yi) ≤ nC.
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Milline peab olema C, et poleks vigu ? Kui λmax = 0, siis W = g(Y n) nii, et

W → Xn → Y n → W.

Nüüd on kerge näha, et

I(W ;Y n) = I(W ;Xn) = I(Xn;Y n) = I(W ;W ) = H(W ) = H(Xn) = H(Y n).

Tõepoolest, esimese võrduse saame kui rakendame andmetöötlusvõrratust ahelatele W →
Xn → Y n ja Xn → Y n → W . Sama võrratust rakendades ahelale Y n → W → Xn koos
võrratuse (4.8) ja esimese võrdusega annab teise võrduse. Neljas võrdus on ilmne ja
kolmas järeldub neljandast võrratuse (4.9) tõttu. Et Xn = C(W ), siis H(Xn|W ) = 0,
millest H(W ) = I(Xn;W ) = H(Xn) − H(Xn|W ) = H(Xn) ja nii saame viienda võr-
duse. Viimase võrduse tõestus on analoogiline, sest W = g(Y n) ⇒ H(W |Y n) = 0 ja
H(W ) = I(Y n;W ) = H(Y n)−H(W |Y n).

Võrdusest I(Xn;W ) = H(W )−H(W |Xn) = H(W ) järeldub, et

H(W |Xn) = H(W |C(W )) = 0

st kood C on ühene.

Oletame nüüd, et koodi C määr on kanali võimsus C ja λmax = 0. Siis Väite 4.1 tõestuses
olevad võrratused peavad olema võrdused. Neist esimene on

I(W ;Y n) = I(Xn;Y n),

mis tuleneb sellest, et λmax = 0 ja toob enesega kaasa C ühesuse. Teine võrratus võrdus
siis, kui H(Y n) =

∑n
i=1H(Yi), mis tähendab, et juhuslikud suurused Yi on sõltumatud.

Kolmas võrdus
n∑

i=1

I(Xi;Yi) = nC

kehtib siis, kui iga i korral I(Xi;Yi) = C ehk Xi jaotus on selline, mis saavutab kanali
võimsuse.

Kokkuvõtteks: Seega (2nR, n) kood, mille korral Pe = 0 ja R = C peab rahuldama
tingimusi:

� C on (üks)ühene;

� ühtlase jaotusega W korral juhuslikud suurused Xi on kanali võimsust saavutava
jaotusega P ∗(x);

� ühtlase jaotusega W korral juhuslikud suurused Y n
i on iid juhuslikud suurused jao-

tusega
P (y) =

∑
x

P (y|x)P ∗(x). (4.10)
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Siit järeldub, et (peaaegu) samasugused omadused peavad olema (2nR, n) koodil, mille
maksimaalne viga on väike.

Näited:

� Vigadega klaviatuur. Sellisel juhul on lihtne saavutada kanali võimsust. Tõepoolest,
olgu M = 13n ja olgu C ühtlane kood koodiraamatuga {1, 3, 5, . . . , 25}n. Selle koodi
määr on R = (logM)/n = log 13 = C, mis ühtlasi on kanali võimsus. On selge, et
sellise koodi korral λmax = 0. Kas ülaltoodud tingimused on täidetud?
Kui W on ühtlase jotusega, siis juhuslik koodisõna Xn = X1, . . . , Xn on ühtlase
jaotusega hulgal {1, 3, 5, . . . , 25}n ja on lihtne veenduda (aga veenduge!), et siis
X1, . . . , Xn iid juhuslikud suurused ning Xi jaotus on ühtlane üle paaritute täht-
ede {1, 3, 5, . . . , 25}. See jaotus (ühtlane üle {1, 3, 5, . . . , 25}) on ka kanali võimsust
saavutav jaotus P ∗. Sellise sisendjaotuse korral on väljund ühtlane üle kõikide täht-
ede ning Y1, . . . , Yn on iid juhuslikud suurused jaotusega (4.10).

� Binaarne kadumiskanal. Selle kanali korral ei saa viga Pe olla 0. Samas peaks efek-
tiivne kood ikkagi olema selline, et vektori Y1, . . . , Yn jaotus on lähedane Bernoulli
1
2
iid jaotusele. Kordamiskoodi korral pole see kindlasti nii.

Fano võrratus taaskord. Väite 4.1 üldistus juhule, kui väikesed vead on lubatud
põhineb Fano võrratusel. Esitame Fano võrratuse meile sobival kujul.

Lemma 4.2 (Fano võrratus) Olgu W juhuslik täht. Siis

H(W |Y n) ≤ 1 +P(W 6= Ŵ )nR. (4.11)

Tõestus. Tuletame meelde Fano võrratuse:

H(W |Ŵ ) ≤ h(P(W 6= Ŵ )) +P(W 6= Ŵ ) log(2nR − 1) ≤ 1 +P(W 6= Ŵ )nR.

Et Ŵ = g(Y n), siis (andmetöötlusvõrratus: I(W ;Y n) ≥ I(W, Ŵ ))

H(W |Ŵ ) = H(W |g(Y n)) ≥ H(W |Y n).

Teise väite tõestus. Olgu (2nR, n) koodide jada nii, et λmax → 0. Näiteme, et R ≤ C.
Et λmax → 0, siis

Pe =
1

2nR

2nR∑
i=1

λi → 0.

Seega piisab, kui näitame, et seosest Pe → 0 järeldub, et R ≤ C. Arv Pe on tõenäosus
P(Ŵ 6= W ) juhul kui W on ühtlase jaotusega üle tähestiku. Seega tõestuseks piisab, kui

101



vaatame sellise jaotusega W ning veendume, et P(Ŵ 6= W ) = Pe → 0 viib seoseni R ≤ C.
Tõestus on põhimõtteliselt sama, mis väitel 4.1, kus näitasime, et

nR = H(W ) = H(W )−H(W |Y n) +H(W |Y n) = I(W ;Y n) +H(W |Y n) = I(W ;Y n),

sest veatu dekodeerimise korral H(W |Y n) = 0. Praegusel juhul H(W |Y n) 6= 0, kuid
Fano võrratuse abil saame H(W |Y n) ülalt hinnata suurusega 1 + PenR. Muu on kõik
samamoodi:

nR = H(W ) = H(W |Y n) + I(W ;Y n) ≤ 1 + PenR + I(W ;Y n)

≤ 1 + PenR + I(Xn;Y n) ≤ 1 + PenR + nC.

Tuletame meelde et kaks viimast võrratust järelduvad andmetöötlusvõrratusest (4.8) ja
lemmast 4.1. Seega

R ≤ PeR +
1

n
+ C. (4.12)

Et n kasvades PeR + 1
n
→ 0, siis R ≤ C.

Märkused:

1. Võrratus (4.12): iga n korral

Pe ≥ 1− C

R
− 1

nR
⇒ lim

n
Pe ≥ lim

n

(
1− C

R
− 1

nR

)
= 1− C

R
.

Seega, kui C < R, siis C
R
< 1, millest järeldub, et leidub δ′ > 0 nii, et Pe > δ′, kui n

on piisavalt suur. Sellisel juhul ei saa Pe olla 0 ka väiksese n korral (sest kui mingi
n korral on Pe = 0, siis on see nii ka 2n korral ja 3n korral jne). Järelikult, kui
C < R, siis leidub δ > 0 nii, et Pe > δ iga n korral.

2. Tõestatud väidet nimetatakse teinekord ka nõrgaks väiteks. Saab näidata, et kehtib
ka tugev versioon: kui leidub ϵ > 0 nii, et R ≥ C + ϵ, siis Pe → 1.

4.6 Tagasisidega infovahetus

Tagasisidega (feedback) infovahetus on järgmine: pärast koodisõna xn i-nda biti edas-
tamist läbi kanali, saadab vastuvõtja saadud signaali yi muutusteta saatjale tagasi. Saatja
arvestab saadud informatsiooni järgmise biti saatmisel. Seega on sellise kanali korral koodi
C asemel jada Ci, kusjuures Ci argumendid on täht W ning siiani saadetud bittide tule-
mused y1, . . . , yi−1. Nii saadakse väljund yn, mis dekodeeritakse funktsiooni g abil.

102



Def 4.6 Olgu {P (y|x)}x∈X ,y∈Y diskreetne kanal. Selle kanali tagasisidega (M,n) kood
koosneb järgmistest komponentidest:

� hulk {1, . . . ,M};

� kodeerivad funktsioonid

Ci : {1, . . . ,M} × Y i−1 → X ;

� dekodeeriv funktsioon
g : Yn → {1, 2, . . . ,M}.

Tagasisidega infovahetuse kasulikkus tuleb hästi esile näiteks binaarse kadumiskanali kor-
ral: sümboli e saamisel edastab saatja eelnevalt saadetud sümboli veelkord kuni see lõpuks
kohale jõuab.

Tagasisideta infovahetus on tagasisidega infovahetuse erijuht. Seega iga tagasisideta info-
vahetuse korral saavutatav määr on saavutatav ka tagasisidega infovahetuse korral. Võiks
arvata, et tagasiside korral saab ehk saavutada kõrgemat määra kui C. Üllataval kombel
pole see nii: ka tagasisidega infovahetuse korral ei saa saavutada võimsusest C kõrgemat
määra.

Teoreem 4.7 Kui R on tagasisidega infovahetuse saavutatav määr, siis R ≤ C.

Tõestus. Argumenteerime analoogiliselt teise väite tõestusega tagasisideta kanali korral.
Olgu (2nR, n) koodide jada nii, et λmax → 0. Näitame, et R ≤ C.
Olgu W ühtlane üle tähestiku. Siis Pe = P(Ŵ 6= W ) → 0. Fano võrratusest saame

nR = H(W ) = H(W |Y n) + I(W ;Y n) ≤ 1 + PenR + I(W ;Y n).

Hindame

I(W ;Y n) = H(Y n)−H(Y n|W )

= H(Y n)−H(Y1|W )−H(Y2|Y1,W )− · · · −H(Yn|Y1, . . . , Yn−1,W )

= H(Y n)−
n∑

i=1

H(Yi|Y1, . . . , Yi−1,W )

= H(Y n)−
n∑

i=1

H(Yi|Y1, . . . , Yi−1,W,Xi).

Viimane võrdus kehtib sest Xi = Ci(Y1, . . . , Yi−1,W ). Et aga Yi sõltub vaid Xi-st, siis

P (yi|y1, . . . , yi−1, w, xi) = P (yi|xi) ja H(Yi|Y1, . . . , Yi−1,W,Xi) = H(Yi|Xi).
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Nüüd läheb jälle kõik vanamoodi

I(W ;Y n) = H(Y n)−
n∑

i=1

H(Yi|Y1, . . . , Yi−1,W,Xi) = H(Y n)−
n∑

i=1

H(Yi|Xi)

≤
n∑

i=1

H(Yi)−
n∑

i=1

H(Yi|Xi) =
n∑
i

I(Xi, Yi) ≤ nC.

Kokkuvõttes nR ≤ PenR + 1 + nC ehk R ≤ PeR + 1
n
+ C → C.

Märkus: Tagasisideta infovahetuse korral kasutasime Lemmat 4.1, mis tugineb võrdusele

H(Y n|Xn) ≤
∑
i

H(Yi|Xi),

täpsemalt seosele
P (yi|y1, . . . , yi−1, x1, . . . , xn) = p(yi|xi),

mis aga tagasiside korral ei kehti, sest xi+1, xi+2, . . . annab ka yi kohta infot.

4.7 Kaheastmeline kodeerimine

Siiani vaatlesime juhusliku sõnaW edastamist läbi kanali. Alljärgnevas uurime mõnevõrra
reaalsemat probleemi. Olgu meie infoallikas juhuslik protsess V1, V2, . . . (digitaliseeritud
kõne, muusika jne), kus iga juhusliku suuruse väärtuste hulk on V . Eesmärk on n ülekan-
dega läbi kanali edastada allika esimesed n sümbolit V1, . . . , Vn. Kas see on väikese veaga
võimalik?

Muidugi võib vektorit V n = (V1, . . . , Vn) vaadelda juhusliku sõnana hulgast Vn ja rak-
endada kanaliteoreemi. Viimasest järeldub, et kui log |V| < C, siis leidub (|V|n, n) koodide
jada nii, et maksimaalne viga läheneb nullile ehk vektorit V n võib n ülekande abil edas-
tada kuitahes väikese veaga. Mida aga teha, kui log |V| > C? Järgnev teoreem väidab,
et juhul kui V1, V2, . . . on nõrga AEP omadusega protsess, võib soovitud (n ülekannet,
nulliks koonduv viga) infovahetus olla võimalik ka siis, kui log |V| > C. Piisav tingimus
selleks on H < C, kus H on protsessi V1, V2, . . . entroopiamäär. Tähestiku suurus V pole
enam oluline.

Teoreem 4.8 Olgu V n = V1, . . . , Vn esimesed n juhuslikku suurust nõrga AEP omadusega
juhuslikust protsessist, H olgu selle protsessi entroopiamäär. Kui H < C, siis on vektorit
V n võimalik n ülekandega edastada läbi kanali nii, et P(V̂n 6= Vn) → 0.

Tõestus. Vali ϵ > 0 nii väike, et H + 2ϵ < C. Et protsessil on AEP omadus, siis iga
piisavalt suure n korral leidub hulk W n

ϵ (nõrgalt tüüpilised sõnad) nii, et P (W n
e ) > 1− ϵ

ja |W n
ϵ | ≤ 2n(H+ϵ). Indekseerime kõik sõnad hulgast W n

ϵ ja nüüd võib hulka W ϵ
n võib
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vaadelda kui sõnastikku, mis koosneb 2nR sõnast, kus R ≤ H + ϵ < C. Formaalselt oleme
de�neerinud funktsiooni (allikakood)

f : W n
ϵ → {1, . . . , 2nR},

mis igale nõrgalt tüüpilisele sõnale seab vastavusse tema indeksi. Et R ≤ H + ϵ < C, siis
kanaliteoreemist saame, et saadud sõnad saab edastada kuitahes väikese veaga. Teisisõnu,
leidub (2nR, n) kood nii, et λmax → 0. Vastuvõtja dekodeerib esmajärjekorras indeksi
hulgast W n

ϵ ja seejärel leiab temale vastava sõna hulgast Vn. Olgu

g : Yn → Vn

saadud dekooder. Et λmax → 0, siis piisavalt suure n korral iga nõrgalt tüüpilise sõna
dekodeerimisel tehtav viga on väiksem kui ϵ. Kokkuvõttes iga piisavalt suure n korral
sellisel infovahetusel tekkiva vea tõenäosus rahuldab seoseid

P(V̂ n 6= V n) ≤ P(V n 6∈ W n
ϵ ) +P(g(Y n) 6= V n|V n ∈ W n

ϵ ) ≤ 2ϵ.

Ülaltoodud tõestuses kasutasime kaheastmelist kodeerimist: esimene aste on allika V n

kodeerimine optimaalselt (kuid kanalist sõltumatult) ligikaudu 2nH koodisõnaks (tule-
tame meelde, et nõrgalt tüüpilised sõnad annavad suure n korral optimaalse koodi),
teine aste on saadud sõnade kodeerimine (esimesest osast sõltumatult) optimaalse in-
fovahetuse käigus, s.t. ka kood C on teatavas mõttes optimaalne (kuid sõltumatu al-
likast V n). Seega allika optimaalne kodeerimine koos optimaalse ning allikast sõltumatu
kanali koodiga annab hea tulemuse. Samas võib need kaks sammu ühendada: sõna V n

kodeeritakse otse sõnaks xn, mis saadetakse kohe kanalisse. Nimetame sellist protse-
duuri üheastmeliseks kodeerimiseks (joint source-channel coding) . Kui infova-
hetus on tagasisisdega, siis üheastmeline kodeerimine tähendab koode Ci nii, et

Ci : Vn × Y i−1 → X .

Ülalkirjeldatud kaheastmelist kodeerimist võib vaadelda üheastmelise kodeerimise eri-
juhuna, mistõttu on loomulik küsida, kas üheastmelisel kodeerimisel ei saa äkki paremat
tulemust, s.t. kas ei saa äkki n ülekande abil väikese veaga läbi kanali saata sõna V n ka
siis, kui H > C? Järgnev teoreem annab esitatud küsimusele eitava vastuse: diskreetse
mäluta kanali korral tagab kaheastmeline kodeerimine optimaalse tulemuse (isegi tagasi-
side korral). Lisaeeldus on |V| < ∞.

Teoreem 4.9 (Separation theorem) Olgu V1, . . . , Vn esimesed n juhuslikku suurust
nõrga AEP omadusega statsionaarsest juhuslikust protsessist, H olgu selle protsessi en-
troopiamäär, |V| < ∞. Olgu V̂ n vektori V n väljund, mis on saadud tagasisidega info-
vahetusel n ülekande abil. Kui H > C, siis leidub ϵ > 0 nii, et P(V̂ 6= V ) > ϵ iga n
korral.
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Tõestus. Olgu
Ci : Vn × Y i−1 → X , i = 1, . . . , n

(n ülekannet) ja
g : Yn → Vn, V̂ = g(Y n).

Statsionaarse juhusliku protsessi korral

H ≤ H(V1, . . . , Vn)

n
=

1

n
H(V n) =

1

n
H(V n|V̂ n) +

1

n
I(V n; V̂ n).

Esimene võrratus kehtib, sest statsionaarsuse tõttu H(Vn|V1, . . . , Vn−1) ↘ H ja

H(V1, . . . , Vn) = H(V1) + · · ·+H(Vn|V1, . . . , Vn−1)

= H(Vn) +H(Vn|Vn−1) + · · ·+H(Vn|V1, . . . , Vn−1)

≥ nH(Vn|V1, . . . , Vn−1).

Fano võrratusest saame (|V| on lõplik)

H(V |V̂ ) ≤ 1 +P(V̂ 6= V n) log |V|n = 1 +P(V̂ 6= V n)n log |V|.

Andmetöötlusvõrratusest (V n → Y n → V̂ n) saame

I(V n; V̂ n) ≤ I(V n;Y n).

Teoreemi 4.7 tõestusest nägime, et

I(V n;Y n) ≤ nC.

Seega

H ≤ 1

n
+P(V̂ 6= V n) log |V|+ C.

Kui Pe → 0, siis H ≤ C; kui H > C, siis

P(V̂ 6= V n) ≥ H − C

log |V|
− 1

n log |V|
,

millest näeme, et kui H > C, siis leidub ϵ > 0 nii, et P(V̂ 6= V n) > ϵ, kui n on piisavalt
suur. See aga tähendab, et leidub ϵ > 0 nii, et P(V̂ 6= V n) > ϵ iga n korral.

Seega üheastmeline (kombineeritud) kodeerimine ja tagasiside ei suurenda infovahetuse
efektiivsust: kaheastmeline kodeerimine annab sama hea tulemuse. Kuigi see paistab
loomulik, pole see iseenesestmõistetav ning keerulisemate kanalite korral ei pruugi ka ke-
htida. Seetõttu on teoreemil 4.9 suur tähtsus praktikas, sest ta lubab allika koode ja
infovahetust optimiseerida teineteisest sõltumatult. Samuti lubab see teoreem saata er-
inevaid allikaid läbi sama (kord juba optimiseeritud infovahetusega) kanali. Samuti lubab
ta saata sama (kord juba optimaalselt kodeeritud) allikat läbi erinevate kanalite.
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Teisest küljest aga tuleb alati meeles pidada, et tõestatud kahe- ja üheastmelise kodeerim-
ise ekvivalentsus on asümptootiline. Lõpliku n korral võib aga üheastmeline kodeerimine
ikkagi vähendada vea tõenäosust.

Mida teha, kui H > C? Teoreemist 4.9 järeldub, et n ülekandega soovitud tulemust
ei saavuta: leidub δ > 0 nii, et n ülekande abil saadud hinnang V̂ n rahuldab seost
P(V̂ n 6= V n) > δ. Saavutamaks väikest viga, tuleb seega teha rohkem ülekandeid.
Tuletame meelde, et kaheastmelise kodeerimise korral on esimese kodeerimise tulemus
ligikaudu M := 2nH koodisõna. Kui H > C, siis n ülekandega neid koodisõnu nulliks
koonduva veaga edastada ei saa. Et aga

M = 2nH = 2
H
k
(kn),

siis mingi positiivse täisarvu k (ja piisavalt suure n) korral saab neid M koodisõna edas-
tada kn ülekandega nii, et viga on kuitahes väike. Siin k peab olema selline, et H

k
< C.

4.8 Ülesanded

1. Vaatleme binaarset sümmeetrilist kanalit, p < 0.5. Olgu m paaritu ja olgu pb(m)
kordamiskoodi Rm korral ühe bloki vigase dekodeerimise tõenäosus.

1 Tõesta, et

pb(m) =
m∑

k>m
2

(
m

k

)
pk(1− p)m−k.

2 Suurte arvude seadusest järelda, et limm Pb(m) = 0.

2. Olgu X = {0, 1}. Vaatleme kanalit, kus sisendile X liidetakse sõltumatu juhuslik
suurus aZ, kus Z ∼ B(1, 0.5). Leida selle kanali võimsus.

3. Olgu X = {0, . . . , 10}. Vaatleme kanalit, kus Y = X+Z (mod 11), kus X on sisend,
Y on väljund ning Z on sõltumatu juhuslikust suurusest X. Juhusliku suuruse Z
jaotus olgu

1 2 3
1
3

1
3

1
3

Leida kanali võimsus. Milline jaotus saavutab võimsuse?

4. Olgu (X1, P1(y|x),Y1) ja (X2, P2(y|x),Y2) kanalid võimsustega C1 ja C2. De�neerime
korrutiskanali

(X1 ×X2, P1(y1|x1)P2(y2|x2),Y1 × Y2).

Leida selle kanali võimsus.

5. Olgu K(ϵ) binaarne sümmeetriline kanal veatõenäosusega ϵ. Olgu K(ϵ1) → K(ϵ2)
jadaühendus.
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� Leida jadaühendusel saadud kanali võimsus C.

� Tõestada, et C ≤ C(K(ϵ1)) ∧ C(K(ϵ2)).

� Tõestada, et kanali K(ϵ) n-kordsel jadaühendusel

X → K(ϵ) → K(ϵ) → · · · → K(ϵ) → Y (n)

saadud kanal on K(1
2

(
1− (1− 2ϵ)n)

)
, millest limn I(X;Y (n)) = 0.

6. Leida järgmise Z-kanali võimsus ja seda saavutav jaotus(
1 0
0.5 0.5

)
Olgu kanal Z-kanal. Vaatleme juhuslikku (n, 2nR) koodi, kus iga koodisõna on iid
B(1, 1

2
) jaotusega. Millise R korral läheneb üle kõigi võimalike koodide keskmine

viga Pe nullile?

7. Vaatleme binaarseid sümmeetrilisi kanaleid Yi = Xi + Zi (mod 2), kus X = Y =
{0, 1}. Olgu Zn = Z1, . . . , Zn sama jaotusega (kuid mitte sõltumatud) juhus-
likud suurused, Zi ∼ B(1, ϵ), vektor Zn on sõltumatu juhuslikust vektorist Xn =
X1, . . . , Xn. Seega on n binaarset sümmeetrilist kanalit veatõenäosusega ϵ. Kui aga
juhuslikud suurused Zi pole sõltumatud, on kanalid mäluga.

� Tõestada, et I(Xn;Y n) ≤ n − h(ϵ). Leida Xn ja Zn jaotus, mis saavutab
võrduse.

� Veenduda, et mälu suurendab kanali võimsust ehk

max
P (xn)

I(Xn, Y n) > nC.

8. Olgu (X , P1,X ) ja (X , P2,X ) kaks kanalit võimsustega vastavalt C1 ja C2. Olgu C
kanali (X , P1P2,X ) võimsus. Tõestada, et

C ≤ C1 ∧ C2.

9. Olgu xn(1), . . . , xn(2nR) koodiraamat. Dekodeeriv funktsioon (suurime tõepära dekooder)g
olgu

g(yn) = argmax
i

P (yn|xn(i)) = argmax
i

P(Y n = yn|W = i).

Olgu W jaotus ühtlane.

� Tõestada, et g minimiseerib vea tõenäosuse

Pe = P(g(Y n) 6= W ) =
1

2nR

2nR∑
i=1

P (g(Y n) 6= i|W = i) =
1

2nR

2nR∑
i=1

λi

üle kõikide dekodeerivate funktsioonide.
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� Leida kontranäide selle kohta, et g ei minimiseeri λmax üle kõikide dekodeerivate
funktsioonide.

Näpunäide: Näita, et

argmax
i

P(Y n = yn|W = i) = argmax
i

P(W = i|Y n = yn) =: g∗(yn).

Seejärel veendu, et iga teise dekodeeriva funktsioooni g korral

P(W 6= g∗(yn)|Y n = yn) ≤ P(W 6= g(yn)|Y n = yn), ∀yn.

10. Olgu K(ϵ) binaarne sümmeetriline kanal, kusjuures ϵ < 1
2
. Olgu xn(1), . . . , xn(2nR)

koodiraamat. Iga kahe vektori xn, yn ∈ {0, 1} korral de�neerime Hammingu kauguse

d(xn, yn) =
n∑

i=1

|xi − yi|.

Olgu dekodeeriv funktsioon

g(yn) = argmin
i

d(yn, xn(i)).

Tõestada, et g on eelmises ülesandes de�neeritud suurime tõepära dekooder.

11. Olgu X = Y = {0, 1, 2, 3, 4}. Olgu kanal antud üleminekutõenäosuste maatriksiga

1

2


0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0


Leida koodiraamat x2(1), . . . , x2(5) nii, et iga sõna saab edasi anad veatult, st leidub
g nii, et P(g(Y 2) = i|W = i) = 0 iga i = 1, . . . , 5 korral.
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5 Lempel-Ziv kood

5.1 Asümptootiliselt optimaalsed koodid

Tuleta meelde sõnade kodeerimist (alam-peatükk 2.6). Sellest teame, et kui informatsioo-
niallikas on statsionaarne protsess, siis leiduvad pre�kskoodid

Cn : X n → {0, 1}∗

nii, et keskmised koodipikkused tähe kohta koonduvad protsessi entroopiamääraks (koon-
dumine (2.18)):

Ln =
1

n
El(X1, . . . , Xn) → HX .

Ülaltoodud koondumine kehtib ka siis, kui iga n korral Cn on optimaalne (Hu�mani kood)
vektori (X1, . . . , Xn) jaoks. Sellisel juhul Ln on vähim võimalik üle kõikide võimalike
sõnade koodide, mistõttu suvaliste koodide jada Cn korral kehtib

lim inf
n
Ln = lim inf

1

n
El(X1, . . . , Xn) ≥ HX .

Kui informatsiooniallikas on lisaks nõrk AEP protsess, siis teame, et leiduvad pre�k-
skoodid � Shannon-Fano koodid � mille korral koodisõnade pikkuste entroopiamääraks
koondumine kehtib ka peaaegu kindlasti (veendu selles!):

l(X1, . . . , Xn)

n
→ HX , p.k.. (5.1)

Selgub, et ka seda tõket ei saa parandada, sest kehtib järgmine teoreem.

Teoreem 5.1 Olgu Cn : X n → {0, 1}∗ pre�kskoodide jada, X1, X2, . . . olgu nõrga AEP
omadusega protsess entroopiamääraga HX . Siis

lim inf
n

1

n
l(X1, . . . , Xn) ≥ HX p.k., (5.2)

kus l(x1, . . . , xn) = |Cn(x1, . . . , xn)|.

Teoreemist 5.1 järeldub, et kui jada l(X1,...,Xn)
n

koondub mingiks (mitte ilmtingimata kon-
stantseks) piirväärtuseks p.k., siis see piirväärtus peab olema vähemaltHX p.k.. Teisisõnu,
koondumine (5.1) on (teatavas mõttes) parim võimalik. Siit ka järgmine de�nitsioon.

Def 5.2 Koodide Cn : X n → {0, 1}∗ jada nimetatakse asümptootiliselt optimaalseks

(asymptotically optimal) , kui

1

n
l(X1, . . . , Xn) → HX , p.k..

Seega nõrga AEP omadusega informatsiooniallika korral Shannon-Fano koodide jada on
asümptootiliselt optimaalne.
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Teoreemi 5.1 tõestus. Tuleta meelde, et

xn := (x1, . . . , xn), Xn = (X1, . . . , Xn).

Suvalise juhusliku protsessi X = X1, X2, . . . korral tähistame x = x1, x2, . . . (võimalik
realisatsioon) ning

P (xn) := P(Xn = xn).

Teoreemi 5.1 tõestus põhineb järgmisel lemmal.

Lemma 5.1 (Barron) Olgu Cn : X n → {0, 1}∗ pre�kskoodide jada, X olgu juhuslik
protsess. Olgu αn selline positiivsete numbrite jada, et

∑
n 2

−αn < ∞. Siis

P
(
l(Xn) + logP (X1, . . . , Xn) ≥ −αn ev.

)
= 1. (5.3)

Tõestus. Paneme tähele, et

Bn :={xn : l(xn) + logP (xn) ≤ −αn} = {xn : 2l(x
n)+logP (xn) ≤ 2−αn}

={xn : 2l(x
n)2logP (xn) ≤ 2−αn} = {xn : P (xn) ≤ 2−αn2−l(xn)}.

Seega Krafti võrratusest järeldub

P (Bn) =
∑
x∈Bn

P (xn) ≤
∑
x∈Bn

2−αn2−l(xn) = 2−αn
∑

xn∈Xn

2−l(xn) ≤ 2−αn .

Boreli-Cantelli I lemmast järeldub, et

P (lim sup
n

Bn) = P{x : x ∈ Bn i.o. } = 0 ⇒ = P{x : x ∈ Bc
n ev. } = P (lim inf

n
Bc

n) = 1

ehk

P{x : x ∈ Bc
n ev. } = P{x : l(xn)+logP (xn) > −αn ev. } = P(l(Xn)+logP (Xn) > −αn ev.) = 1.

Võttes αn = 2 log n = log n2, saame∑
n

2−αn =
∑
n

n−2 < ∞,
αn

n
→ 0.

Rakendades ülaltoodud lemmat, saame nõrga AEP omaduse tõttu

lim inf
n

l(Xn)

n
≥ lim inf

n

− logP (Xn)− αn

n
= lim inf

n

− logP (Xn)

n
= HX , p.k.

mis on (5.2). �
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Järeldus 5.1 Olgu Cn : X n → {0, 1}∗ üheselt dekodeeritavate koodide jada, X1, X2, . . .
olgu nõrga AEP omadusega protsess entroopiamääraga HX . Siis kehtib (5.2)

Tõestus. Eliase laiendi abil saab suvalise üheselt dekodeeritava koodi muuta pre�k-
skkoodiks. Sõna xn koodisõna pikkus l(xn) suureneb log l(xn)+ o(log l(xn)) võrra. Seega,
kui

lim inf
n

l(xn)

n
< HX

on ka

lim inf
n

l(xn) + log l(xn) + o(log l(xn))

n
< HX .

5.2 Universaalsed koodid ning Lempel-Ziv kood

Shannon-Fano kood on küll asümptootiliselt optimaalne, kuid selle konstrueerimiseks on
vaja teada iga n korral vektoriXn = (X1, . . . , Xn) jaotust. Ka Hu�mani koodi konstrueer-
imiseks on tarvis teada sõna jaotust. Praktikas pole aga jaotus enamasti teada, mistõttu
pakuvad huvi koodid, mis oleksid asümptootiliselt optimaalsed iga nõrga AEP omadusega
protsessi korral. Koode, mis ei sõltu allika jaotusest nimetatakse universaalseteks . Kas
aga sellised koodid üldse leiduvad? Esimesed universaalsed asümptootiliselt optimaalsed
koodid esitasid aastatel 1977 ja 1978 A. Lempel ja J. Ziv. Seetõttu nimetatakse neid
(ja teisi sarnasel põhimõttel töötavaid koode) Lempel-Ziv (LZ) koodideks, lühidalt
LZ77 ja LZ78. Järgnevas tutvume põgusalt koodiga LZ78. LZ koodid on olemuselt väga
lihtsad, mistõttu neid (eriti LZ78 koodi) kasutatakse kompressiooniprogramides (UNIX:
"compress", Mac "Stu�It", PC: "arc"). Asümptootilise optimaalsuse tõttu on LZ koodide
kasutamine (teatud mõttes) teoreetiliselt õigustatud.

5.2.1 Liigendamine ja kodeerimine

Olgu X lõplik tähestik, vektor (jada) xn ∈ X n on koodi sisend. Kõik LZ koodid põhinevad
sisendjada xn jagamiseks alamsõnadeks � liigendamisel (parsing) . Koodi LZ78 liigen-
damine seisneb jada xn jagamine sõnadeks w(1), w(2), . . . , w(K) nii, et järgmine sõna
on lühim uus sõna. Seega esimene sõna on alati ühetäheline, teine sõna ülimalt ka-
hetäheline jne. Formaalselt on liigendamiseeskiri järgmine:

a) Esimene sõna on x1.

b) Olgu xnj = w(1) · · ·w(j).

kui xnj+1 6∈ {w(1), . . . , w(j)}, siis w(j + 1) = xnj+1,

kui xnj+1 ∈ {w(1), . . . , w(j)}, siis w(j + 1) = xm+1
nj+1,

kus m > nj on väikseim indeks nii, et

xm
nj+1 ∈ {w(1), . . . , w(j)}, kuid xm+1

nj+1 6∈ {w(1), . . . , w(j)}.
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Näide: Kui x18 = 110010100010001000, siis liigendus on järgmine:

1, 10, 0, 101, 00, 01, 000, 100, 0

Pärast liigendust esitub sisendvektor sõnade jadana:

xn = w(1)w(2) · · ·w(K)v, (5.4)

kus viimane osa v on on kas tühi hulk või võrdub mingi eelpool oleva sõnaga. Ülaltoodud
näites v = w(3) = 0.
On selge, et iga liigenduses olev sõna w(i) erineb ühest oma eelkäijast vaid viimase tähe
poolest. Seega on iga sõna üheselt määratud eelpoolnimetatud eelkäija ja viimase tähega.

Näide: Ülaltoodud liigenduse võib esitada seega järgmiselt

(0, 1), (1, 0), (0, 0), (2, 1), (3, 0), (3, 1), (5, 0), (2, 0), 0.

Siin igas paaris esimene arv näitab eelpoololeva sõna indeksit ja teine arv lisatud bitti.
Kui esimene arv on 0, siis järgnev sümbol on uus sõna. Veendu, et kasutades ülaltoodud
paare saad rekonstrueerida esialgse jada. Nüüd kodeerime sõnade indeksid ja viimased
tähed ning saamegi LZ koodi. Formaalselt käib see järgmiselt: (kahend)kodeerigu

f : {1, . . . , n} → {0, 1}plognq

sõnade indekseid. Kodeerigu
g : X → {0, 1}plog |X |q

tähti. De�neerime koodi

Cn : X n → {0, 1}∗, Cn(xn) = b(1)b(2) · · · b(K)b(K + 1),

kus sõnad b(i) on saadud liigendusest (5.4) järgmise eeskirja alusel.

5.2.2 LZ algoritm:

1) kui j ≤ K ja |w(j)| = 1, siis b(j) = 0g(w(j)).

2) kui j ≤ K ja i < j on selline, et w(j) = w(i)a, siis b(j) = 1f(i)g(a).

3) kui v = ∅, siis b(K + 1) = ∅. Kui v = w(i), siis b(K + 1) = 1f(i).

Seega lisasümbol 0 näitab, et järgneb tähe kood; lisasümbol 1 näitab, et järgneb sõna
(indeksi) kood ning sellele järgnev kood on tähe kood (või ei järgne midagi).

Näide: Olgu X = {0, 1}. Siis g(a) = a. Olgu n = 18. Siis f : {1, . . . , 18} → {0, 1}5.
Olgu f(i) arvu i− 1 ühtlane kood, st

f(1) = 00000, f(2) = 10000, f(3) = 01000, f(4) = 00100 f(5) = 00010, f(6) = 00001, · · · .
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Leiame C18(110010100010001000). Toodud vektori liigendus on meile tuttav:

(0, 1), (1, 0), (0, 0), (2, 1), (3, 0), (3, 1), (5, 0), (2, 0), 0.

Seega K = 8 ja b(1) = 0g(1) = 01, b(2) = 1f(1)g(0) = 1000000, b(3) = 0g(0) = 00,
b(4) = 1f(2)g(1) = 1100001, b(5) = 1f(3)g(0) = 1010000, b(6) = 1f(3)g(1) = 1010001,
b(7) = 1f(5)g(0) = 1000100, b(8) = 1f(2)g(0) = 1100000, b(9) = 1f(3) = 101000. Seega

C18(110010100010001000) = 0110000000011000011010000101000110001001100000101000.

Dekodeerija peab teadma numbrite koodi f ja tähtede koogi g. Näites oleva teksti
dekodeerimiseks liigendame omakorda kodeeritud teksti

0 1 1 00000 0 0 0 1 00001 1 1 00010 0 1 00010 1 1 00010 0 1 00001 0 1 00101 0 1 00010.

Kui liigendusel saadud sõna algab ühega, järgneb sellele viietäheline numbrikood (antud
juhul number) ja uue tähe kood, kui uus sõna algab nulliga, järgneb sellele number. See-
järel dekodeerime numrid, vaatame eelmisi sõnu ja dekodeerime teksti.

Nagu näha, ei anna lühikeste sõnade LZ kodeerimine erilist efekti, pigem vastupidi.
Paneme tähele, et koodi saab lühendada, kui f kodeerib vaid sõnade w(i) indeksi. Ülal-
toodud näites K = 8, seega võib võtta f : {1, . . . , 8} → {0, 1}4. Selline f sõltub aga
sisendist x18 ja nii tuleks kodeerimisel sisend läbida kaks korda: esimene kord liigendada
sisend ja määrata sõnade arv, teisel korral aga kodeerida. Ülalesitatud algoritm kodeerib
sisendit on-line. Asümptootiliselt on erinevad kodeerimisvariandid samad.

Veel üks võimalus kahendteksti kodeerimisel on kasutada numbrite kodeerimisel kahend-
koodi, kusjuures koodisõnade pikkus sõltub viidatavate sõnade arvust: kui viidatavate
sõnade arv on k, kasutame dlog ke biti pikkusi kahendsõnu. Vaatame tuttavat näidet:
vektori 110010100010001000 liigendus on endiselt järgmine

(0, 1), (1, 0), (0, 0), (2, 1), (3, 0), (3, 1), (5, 0), (2, 0), 0.

Esimene täht on alati uus sõna, ja esimesele tähele eelnevat nulli me ei kodeeri, seega
paarist (0,1) saab 1. Nüüd on meil kaks eelnevat sõna ∅, {1} ja neile saab viidata ühe
bitiga (0-uus, 1-esimene), seega paar (1,0) jääb muutumatuks. Nüüd on meil 3 eelnevat
sõna (uus, esimene ja teine) ning nendele viitamiseks on vaja kaht bitti [00-uus, 01-
esimene ja 10-teine), seega paarist (0,0) saab (00,0) ja eale seda on meil 4 eelnevat sõna
(uus, esimene, teine ja kolmas) ning ka neile seeb viidata kahe bitiga ehk (2,1) 7→ (10,0).
Edaspidi tuleb numbrite kodeerimiseks kasutada kolmekohalisi kahendarve, seega (3,0) 7→
(011,0); (3,1) 7→ (011,1); (5,0) 7→ (101,0) ja (2,0) 7→ (010,0). Seega

C(110010100010001000) = 1100001000110011110100100.

Saame palju lühema sõna. Dekodeerimisel peame samuti arvestama, et koodide pikkused
muutuvad. Dekodeerimise liigendus

1 1 0 00 0 10 0 011 0 011 1 101 0 010 0
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Siit saame paarid

(0, 1), (1, 0), (0, 0), (2, 1), (3, 0), (3, 1), (5, 0), (2, 0)

ning dekodeerime teksti. Paneme tähele, et dekodeerimisel pole enan vaja teada kodeeri-
tava sõna pikkust või liigenduste arvu.

Näited: Olgu sisendssõna 000000000000100000000000. Liigendus

(0, 0), (1, 0), (2, 0), (3, 0), (2, 1), (4, 0)(6, 0).

Pärast numbrite kodeerimist saame liigenduseks

0, (1, 0), (10, 0), (11, 0), (010, 1), (100, 0), (110, 0).

Seega kood

C(000000000000100000000000) = 010100110010110001100.

Proovige kirjeldatud meetodil dekodeerida sõna

00101011101100100100011010101000011

(Vastus: 0100001000100010101000001 .)

5.2.3 Lempel-Ziv teoreem

LZ koodi asümptootilise optimaalsuse näitab järgmine kuulus teoreem. Teoreem eeldab,
et sisendprotsess X = X2, X2, . . . on ergoodiline protsess. Iga ergoodiline protsess on
statsionaarne (st tal on entroopiamäär) ning nõrga AEP omadusega.

Teoreem 5.3 ( Lempel-Zivi teoreem) Kui X on ergoodiline protsess entroopiamääraga
HX , ja Cn on LZ kood, siis

lim sup
n

l(X1, . . . , Xn)

n
= lim sup

n

K(X1, . . . , Xn) log n

n
= HX , p.k.,

kus l(x1, . . . , xn) = |Cn(x1, . . . , xn)|.

Teoreemi tõestamiseks tuleb hinnata suurust l(xn) = l(x1, . . . , xn). Vaatleme veelkord
LZ78 algoritmi. Osa 1) järgi kodeerimiseks kulub

|X |(plog |X |q+ 1) =: A

bitti. Osa 2) järgi kulub ühe sõna w(j) kodeerimiseks (plog nq + 1 + plog |X |q) bitti.
Kokku kulub osa 2) järgi kodeerimiseks

K(plog nq+ 1 + plog |X |q) = K(plog nq+B)
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bitti (siin B := 1 + plog |X |q. Osa 3) nõuab ülimalt

plog nq+ 1

bitti. Tuletame meelde, et liigendusel saadud sõnade arv K = K(xn) sõltub sisendist xn.
Seega

l(xn) ≤ A+K(plog nq+B) + plog nq+ 1 ≤ (log n+ 1)(K + 1) +KB + A+ 1

= K log n+ log n+K(B + 1) + A+ 2.

Et A ja B on konstandid, on domineeriv liige K log n. LZ teoreemi tõestus seisnebki seose

lim sup
n

K(Xn) log n

n
= HX , p.k.

näitamises.

Märkus: Lempel-Zivi teoreemist järeldub LZ koodi asümptootiline optimaalsus:

1

n
l(Xn) → HX p.k.

Sellest koondumises aga ei järeldu vahetult koondumine

Ln =
El(Xn)

n
→ HX . (5.5)

Lempel-Zivi teoreemi tõestusest selgub aga, et jada l(Xn)
n

on p.k. tõkestatud, sest

K(Xn) log n

n

on tõkestatud jadaga, mille ülemine piirväärtus on log |X |. Domineeritud koondumise
tereemist saame, et kehtib ka (5.5).
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6 Diferentsiaalentroopia ja MaxEnt printsiip

Informatsiooniteooria põhimõisted � entroopia, tinglik entroopia, vastastikune informat-
sioon, K-L kaugus jt � olid siiani de�neeritud vaid diskreetsetel jaotustel. Loomulikult
tekib küsimus: kas ja kuidas üldistuvad need mõisted pidevatele (ja kõikidele muudele)
tõenäosusjaotustele. Järgnevas tutvustame nende mõistete loomulikku üldistust pide-
vatele jaotustele. Kuigi üldistused on enesestmõistetavad, puudub neil selline üheselt
interpreteeritav tähendus kui diskreetsete jaotuste korral.

6.1 Diferentsiaalentroopia

Olgu X pidev juhuslik suurus jaotusega P ja tihedusega f . Olgu S = supp(P ) jaotuse P
kandja � väikseim kinnine hulk, mis sisaldab hulka {x : f(x) > 0}. Olgu 0 log 0 := 0.

Def 6.1 Juhusliku suuruse X (jaotuse P , tiheduse f) diferentsiaalentroopia (di�erential

entropy) on

h(X) :=: h(P ) :=: h(f) :=

∫
−f(x) log f(x)dx =

∫
S

−f(x) log f(x)dx, (6.1)

kui see integraal eksisteerib.

Märkused:

� Integraal (6.1) ei pruugi alati olla de�neeritud. Sellisel juhul pole ka diferentsiaa-
lentroopia de�neeritud.

� Erinevalt entroopiast võib diferentsiaalentroopia olla ka negatiivne. Üldiselt võib
diferentsiaalentroopia olla nii +∞ kui ka −∞.

� Ülaltoodust johtuvalt võib diferentsiaalentroopia olla 0 ka siis, kui X pole p.k. kon-
stant. Teisisõnu: sellest, et difenrentsiaalentroopia on 0 ei järeldu, et X on mitte-
juhuslik.

� Harilikult de�neeritakse diferentsiaalentroopia (ning kõik teised alljärgnevad mõisted)
naturaallogaritmi abil. Meie jääme kahendlogaritmi juurde.

6.1.1 Näited

Ühtlane jaotus. Olgu X ∼ U(0, a). Siis f(x) = 1
a
I(0,a) ja

h(X) = −
∫ a

0

1

a
log adx = log a.

Nagu näha, kui a = 1, siis h(X) = 0 ning

lim
a→∞

h(X) = ∞, lim
a→0

h(X) = −∞.
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Normaaljaotus. Olgu X ∼ N (0, σ2). Siis∫ ∞

−∞
f(x) ln f(x)dx =

∫ ∞

−∞

1√
2πσ2

e−
x2

2σ2

(
− ln

√
2πσ2 − x2

2σ2

)
dx

= − ln
√
2πσ2 −

∫ ∞

−∞

x2

2σ2

1√
2πσ2

e−
x2

2σ2 dx

= −EX2

2σ2
− ln

√
2πσ2

= −(
1

2
+ ln

√
2πσ2) = −1

2
ln(e2πσ2).

Seega

he(X) := −
∫ ∞

−∞
f(x) ln f(x)dx =

1

2
ln(e2πσ2)

ning, et ln(a) = ln 2 log a, siis

−
∫ ∞

−∞
f(x) log f(x)dx =

1

ln 2
he(X) =

1

2
log(e2πσ2).

Eksponentjaotus. Olgu X ∼ E(λ) s.t

f(x) = λe−λx, x ≥ 0.

Seega ∫ ∞

0

f(x) ln f(x)dx = lnλ−
∫ ∞

0

λxf(x)dx = lnλ− 1,

millest he(X) = 1− lnλ ja

h(X) =
1

ln 2
− log λ.

Märkus: Ülaltoodud näidetes on h > −∞, kusjuures entroopia läheneb −∞ siis, kui dis-
persioon läheneb nullile ehk juhuslikud suurused lähenevad (mittejuhuslikule) konstandile.
Sellest võib sugeneda lootus, et h(X) = −∞ parajasti siis, kui X = c p.k. See ei ole nii,
sest leidub (mittekõdunenud) jaotusi, mille korral di�erentsiaalentroopia on −∞.

6.2 Pideva juhusliku suuruse kvantiseerimine

Pideva jaotuse kvantiseerimine (quantization) on jaotuse lähendamine diskreetse
jaotusega (nt histogramm). Esmapilgul võib tunduda, et kvantiseerimisel saadud diskreetse
jaotuse entroopia peaks olema "lähedane" vastavale diferentsiaalentroopiale. Arusaa-
davalt pole see aga nii (kas või juba sellepärast, et difenentsiaalentroopia võib olla ka
negatiivne).

118



Oletame, et tihedusega f antud pideva jaotuse kandja on jaotatud pikkusega ∆ inter-
vsallideks. Eeldame (lihtsuse mõttes), et tihedusfunktsioon on igal intervallil

Ii := (i∆, (i+ 1)∆)

pidev. Siis leidub xi ∈ Ii nii, et

f(xi)∆ =

∫ (i+1)∆

i∆

f(x)dx.

De�neerime diskreetse jaotuse

P (∆) = {xi, pi}, kus pi :=
∫ (i+1)∆

i∆

f(x)dx = f(xi)∆.

Selle jaotuse entroopia on

H(P (∆)) = −
∑
i

pi log pi

= −
∑
i

f(xi)∆ log(f(xi)∆)

= −
∑
i

f(xi)∆ log(f(xi))− log(∆)
∑
i

f(xi)∆

= −
∑
i

f(xi)∆ log(f(xi))− log(∆),

sest

∆
∑
i

f(xi) =
∑∫ (i+1)∆

i∆

f(x)dx =

∫
f(x)dx = 1.

Kui f(x) log f(x) on Riemanni mõttes integreeruv, siis

lim
∆→0

−
∑
i

f(xi)∆ log(f(xi)) = −
∫

f(x) log f(x)dx = h(f),

millest
lim
∆→0

H(P (∆)) + log∆ = h(f). (6.2)

Kui näiteks ∆ = n−1, siis suure n korral seosest (6.2) saame

H(P (
1

n
))− log n ≈ h(f).

Näide: Olgu X ∼ U(0, 1), ∆ = 2−n. Siis H(P (∆)) = n ja log∆ = −n, millest näeme, et
(6.2) kehtib iga n korral võrdusena:

H(P (∆)) + log∆ = 0 = h(f).
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Kokkuvõtteks: Kvantiseerides saab hinnata pideva jaotuse momente. Näiteks, ülaltoodud
kvantiseerimise korral iga Riemaani mõttes integreeruva funktsiooni g korral∑

i

g(xi)pi =
∑
i

g(xi)f(xi)∆i →
∫

g(x)f(x)dx,

kui ∆ → 0 ja parempoolne integraal eksisteerib. Kuid kvantiseerimist ei saa kasutada
entroopia hindamiseks.

6.3 AEP ja diferentsiaalentroopia

Tuletame meelde, et kui X1, X2, . . . on AEP omadusega juhuslik protsess (tähestikul X )
entroopiamääraga H, siis iga ϵ > 0 korral leidub n(ϵ) ja hulk W n

ϵ ⊂ X n nii, et P (W n
ϵ ) >

1− ϵ,
(1− ϵ)2n(H−ϵ) ≤ |W n

ϵ | ≤ 2n(H+ϵ) (6.3)

ning iga x ∈ W n
ϵ korral

2−n(H+ϵ) ≤ P (xn) ≤ 2−n(H−ϵ).

Muuhulgas kehtib ülaltoodud omadus siis, kui X1, X2, . . . on i.i.d. juhuslikud suurused
Xi ∼ P ja H = H(P ).

Olgu nüüd X1, X2, . . . i.i.d. pidevad juhuslikud suurused. Selgub, et AEP omadus ke-
htib ka nüüd, kuid hulga W n

ϵ võimsuse asemel on seoses (6.3) tema ruumala ja entroopia
asemel on diferentsiaalentroopia.

Def 6.2 Mõõtuva hulga A ⊂ Rn ruumala on

V(A) :=

∫
A

dx1 · · · dxn.

Teoreem 6.3 Olgu X1, X2, . . . iid juhuslikud suurused, Xi jaotus on pidev tihedusega f .
Olgu f log f integreeruv ja ϵ > 0. Siis leidub n(ϵ) nii, et iga n > n(ϵ) korral leidub hulk
W n

ϵ ⊂ Rn nii, et

1
P (W n

ϵ ) > 1− ϵ. (6.4)

2
(1− ϵ)2n(h−ϵ) ≤ V(W n

ϵ ) ≤ 2n(h+ϵ). (6.5)

3 iga xn ∈ W n
ϵ korral

2−n(h+ϵ) ≤ f(xn) ≤ 2−n(h−ϵ), (6.6)

kus h := h(f) ja f(xn) = f(x1, . . . , xn) = f(x1) · · · f(xn).
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Tõestus. Tõestus on analoogiline diskreetse AEP omaduse tõestusega. Olgu

W n
ϵ := {xn ∈ Rn : 2−n(h+ϵ) ≤ f(xn) ≤ 2−n(h−ϵ)}.

Suurte arvude seadusest järeldub, et

− log f(X1, . . . , Xn)

n
→ −E

(
log f(X1)

)
= h(f), p.k.,

millest järeldub (6.6). Hinnangutest

1− ϵ ≤ P (W n
ϵ ) =

∫
Wn

ϵ

f(x1, . . . , xn)dx1 · · · dxn ≤ 1

saame (6.5).

6.4 Ühisdiferentsiaalentroopia

Juhusliku vektori (X1, . . . , Xn) (ühis)diferentsiaalentroopia de�neeritakse analoogiliselt
diskreetse vektori entroopiaga.

Def 6.4 Olgu Xn = (X1, . . . , Xn) pidev juhuslik vektor ühistihedusega f . Vektori Xn

ühisdiferentsiaalentroopiaks (joint di�erential entropy) on

h(Xn) = h(X1, . . . , Xn) := −
∫

f(xn) log f(xn)dxn = −
∫

f(x1, . . . , xn) log f(x1, . . . , xn)dx1 · · · dxn,

kui integraal eksisteerib.

Näide: Olgu ϕ(xn) mitmemõõtmelise normaaljaotuse N (µ,Σ) tihedusfunktsioon,

ϕ(xn) =
1

(
√
2π)n|Σ| 12

exp[−1

2
(xn − µ)′Σ−1(xn − µ)].

−
∫ ∞

−∞
ϕ(xn) lnϕ(xn)dxn =

∫ ∞

−∞

1

2
(xn − µ)′Σ−1(xn − µ)ϕ(xn)dxn + ln[(2π)

n
2 |Σ|

1
2 ]

=
1

2
E
(
(Xn − µ)′Σ−1(Xn − µ)

)
+

1

2
ln[(2π)n|Σ|],

kus Xn on jaotusega ϕ juhuslik vektor. Et tr(AB) = tr(BA), saame

(Xn − µ)′Σ−1(Xn − µ) = tr
(
(Xn − µ)′Σ−1(Xn − µ)

)
= tr

(
Σ−1(Xn − µ)(Xn − µ)′

)
,

millest

E(Xn − µ)′Σ−1(Xn − µ) = Etr
(
(Xn − µ)′Σ−1(Xn − µ)

)
= tr

(
E
(
Σ−1(Xn − µ)(Xn − µ)′

))
= tr

(
Σ−1E(Xn − µ)(Xn − µ)′

)
= tr(In) = n.
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Seega

−
∫ ∞

−∞
ϕ(xn) lnϕ(xn)dxn =

1

2
[n+ln

(
(2π)n|Σ|

)
] =

1

2
[ln en+ln

(
(2π)n|Σ|

)
] =

1

2
ln[(2πe)n|Σ|].

Seega diferentsiaalentroopia on 1
2
ln[(2πe)n|Σ|] natti ja

1

2
log[(2πe)n|Σ|]

bitti.

Diferentsiaalentroopia omadused:

� Olgu Xn pidev juhuslik vektor, µ ∈ Rn. Siis h(Xn + µ) = h(Xn)

� Olgu pidev juhuslik vektor, A olgu pööratav maatriks. Siis

h(AXn) = h(Xn) + log |A|,

kus |A| on A determinandi absoluutväärtus.

Nende omaduste tõestus on ülesanne 2

6.5 Tinglik diferantsiaalentroopia, Kullback-Leibleri kaugus ja vas-
tastikune informatsioon

Tinglik diferentsiaalentroopia. Tuletame meelde, et kui (X,Y ) on tihedusega f(x, y)
juhuslik vektor, siis

f(x|y) = f(x, y)

f(y)

on juhusliku suuruse X tinglik tihedus. Siin f(x) ja f(y) on marginaaltihedused.

Def 6.5 Olgu (X,Y ) on tihedusega f(x, y) juhuslik vektor. Tinglik diferentsiaalentroopia
on

h(X|Y ) = −
∫ ∫

f(x|y) log f(x|y)dxf(y)dy = −
∫ ∫

f(x, y) log f(x|y)dxdy,

kui see integraal eksisteerib.

Analoogiliselt entroopiaga saame

h(X,Y ) = −
∫ ∫

f(x, y) log f(x, y)dxdy = −
∫ ∫

f(x, y) log
(f(x, y)

f(y)
f(y)

)
dxdy

= −
∫ ∫

f(x, y) log f(x|y)dxdy −
∫ ∫

f(x, y) log f(y)dxdy

= h(X|Y ) + h(Y ).

Siit järeldub ketireegel

h(X1, . . . , Xn) = h(X1) + h(X2|X1) + · · ·+ h(Xn|X1, . . . , Xn−1).
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Kullback-Leibleri kaugus.

Def 6.6 Olgu f, g kaks tõenäosustihedust. Nende Kullback-Leibleri kaugus on

D(f ||g) :=
∫

f(x) log
f(x)

g(x)
dx.

Märkused:

1. Ülaltoodud de�nitisioonis, nagu ikka, 0 log 0
0
:= 0.

2. Erinevalt diferentsiaalentroopiast on D(f ||g) ≤ ∞ on alati de�neeritud (võib olla
∞). Tõestus on sama, mis diskreetsel juhul (kontrolli !)

3. Kui D(f ||g) < ∞, siis tiheduse g kandja sisaldab f kandjat.

Lemma 6.1 (Gibbsi võrratus) Iga kahe tiheduse f ja g korral

D(f ||g) ≥ 0,

kusjuures D(f ||g) = 0 parajasti siis, kui f = g p.k.

Tõestus. Sama, mis diskreetsel juhul (kontrolli !)

KL kaugus ja mõjusus. Olgu {fθ : θ ∈ Θ} tõenäosustiheduste pere (mudel). Olgu
θ∗ ∈ Θ �kseeritud parameeter (õige parameeter) ja X1, . . . , Xn iid valim jaotusest fθ∗ ja
vaatame logaritmilist tõepärafunktsiooni

ln(θ) :=
1

n

n∑
i=1

ln fθ(Xi).

Suurte arvude seaduse põhjal koondub ln(θ) p.k. piirväärtuseks∫
ln fθ(x)fθ∗(x)dx =: l(θ),

mida nimetatakse tõepärakontrastiks (likelihood contrast) . Gibbsi võrratusest järel-
dub, et

0 ≤
∫

fθ∗(x) ln
(fθ∗(x)
fθ(x)

)
dx =

∫
fθ∗(x) ln fθ∗(x)dx−

∫
fθ∗(x) ln fθ(x)dx = l(θ∗)− l(θ).

Seega θ∗ maksimiseerib tõepärakontrasti, st l(θ∗) ≥ l(θ) iga θ ∈ Θ korral. Eeldasime, et
θ∗ ∈ Θ (st mudel on korrektne). Siis l(θ∗) = maxθ∈Θ l(θ) ja sellel asjaolul põhineb STP
hinnangu mõjusus: θ̂n → θ∗, p.k., kus

θ̂n = argmax
θ∈Θ

ln(θ).
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Mis juhtub aga siis, kui θ∗ 6= Θ (mudel on vale)? Sellisel juhul

l(θ∗)− l(θ) = D(fθ∗‖fθ) > 0,

millest
max
θ∈Θ

l(θ) = min
θ∈Θ

D(fθ∗‖fθ) > 0.

Olgu
θ̂ := argmax

θ∈Θ
l(θ) = argmin

θ∈Θ
D(fθ∗‖fθ)

(eeldame, et θ̂ leidub). Jaotus fθ̂ on tegeliku jaotuse fθ∗ parim lähend (KL-mõttes)
mudelist {fθ : θ ∈ Θ}. Kui mudel on korrektne, st tegelik jaotus kuulub sinna, siis
θ̂ = θ∗. Sellest järeldub, et kui korrektse mudeli korral koondub STP hinnang θ̂n tege-
likuks parameetriks θ∗, siis vale mudeli korral θ̂n → θ̂, p.k..

Pane tähele, et kui {Pθ} on tähestikul X antud diskreetsete tõenäosusjaotuste hulk
(mudel), siis STP hinnang on jaotus, mis minimiseerib KL kaugust mudeli ja empiirilise
jaotuse vahel:

Pθ̂n
= argminD(Pn‖Pθ), Pn(x) =

1

n

n∑
i=1

Ix(Xi), ∀x ∈ X .

Vastastikune informatsioon.

Def 6.7 Olgu (X,Y ) juhuslik vektor ühistihedusega f(x, y), marginaaltihedustega f(x) ja
f(y). Juhuslike suuruste vastastikune informatsioon on

I(X;Y ) := D(f(x, y)||f(x)f(y)) =
∫

f(x, y) log
f(x, y)

f(x)f(y)
dxdy.

Võrreldes diskreetse juhuga vastastikuse informatsiooni omadused ei muutu:

� Vastastikune informatsioon I(X;Y ) ei sõltu mitte ainult juhuslike suuruste X ja Y
jaotusest vaid ka nende ühisjaotusest, s.t. vektori (X,Y ) jaotusest.

� 0 ≤ I(X;Y ).

� Vastastikune informatsioon on sümmeetriline: I(X;Y ) = I(Y ;X).

� I(X;Y ) = 0 parajasti siis kui f(x, y) = f(x)f(y), st X ja Y on sõltumatud.

Analoogiliselt diskreetse juhuga kehtib (kui h(X|Y ) ja h(Y |X) on lõplikud)

I(X;Y ) = h(X)− h(X|Y ) = h(Y )− h(Y |X) ≥ 0.

Ketireeglist saame

h(X1, . . . , Xn) ≤
n∑

i=1

h(Xi).
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Mitmemõõtmelise normaaljaotuse korral saame ülaltoodud võrratuses nn. Hadamardi
võrratuse

1

2
log[(2πe)n|Σ|] ≤

n∑
i=1

1

2
log[(2πe)σ2

i ] ⇔ |Σ| ≤
n∏

i=1

σ2
i . (6.7)

6.6 MaxEnt printsiip

Vaatleme järgmist ülesannet: leida tundmatu jaotus P , kui on teada (valimi põhjal hin-
natud):

� supp(P ) = S (kandja);

�
∫
FidP = ci, i = 1, . . . , k,

kus Fi on mingisugused funktsioonid (näiteks polünoomid) ja ci on (harilikult valimi põh-
jal hinnatud) jaotuse P Fi-momendid.

Üks lähenemine antud ülesandele on momentide meetod, kus antud jaotuste hulgast
(mudelist) valitakse hinnanguks (ainus) selline, mille Fi-momendid on ci. Selline lähene-
mine eeldab aga mudeli olemasolu.

Maksimaalse entroopia printsiip: Kõikide ülaltoodud tingimusi rahuldavate jao-
tuste hulgast leida selline, mille (diferentsiaal)entroopia on maksimaalne. Sellist jaotust
nimetatakse maksimaalse entroopiaga (MaxEnt) jaotuseks.

Juhul kui otsitav (hinnatav) jaotus on pidev (see, kas otsitav jaotus on pidev, diskreetne
või midagi muud on harilikult selge ülesande püstitusest), saame järgmise optimiseerim-
isülesande:

Maksimaalse entroopia ülesanne pidevate jaotuste korral: maksimiseerida

h(f) = −
∫

f(x) log f(x)dx

üle funktsioonide, mis rahuldavad tingimusi:

1) f(x) ≥ 0, f(x) = 0 ⇔ x 6∈ S;

2)
∫
S
f(x)dx = 1;

3)
∫
S
Fi(x)f(x)dx = ci, i = 1, . . . , k.

Järgnev teoreem annab lihtsa eeskirja maksimaalse entroopiaga jaotuse leidmiseks. Tule-
tame meelde, et iga funktsiooni f ja hulga S ⊂ R korral

f(x)IS(x) =

{
f(x), kui x ∈ S;
0, mujal.
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Teoreem 6.8 Kui leiduvad konstandid a0, a1, . . . , ak nii, et funktsioon

f ∗(x) = exp[a0 +
k∑

i=1

aiFi(x)]IS(x) (6.8)

rahuldab tingimusi 2), 3), siis f ∗ on ainus (Lebesgue p.k.) maksimaalse entroopiaga
tihedusfunktsioon.

Tõestus. Olgu g suvaline tingimusi 1),2), 3) rahuldav jaotus. Veendume, et he(g) ≤
he(f

∗), kusjuures võrdus kehtib vaid siis, kui g = f ∗ p.k.. Siis ka h(g) ≤ h(f ∗) ja võrdus
kehtib vaid siis, kui tihedused on p.k. võrdsed.

he(g) = −
∫
S

g(x) ln g(x)dx

= −
∫
S

g(x) ln
(
f ∗(x)

g(x)

f ∗(x)

)
dx

= −De(g||f ∗)−
∫
S

g(x) ln f ∗(x)dx

≤ −
∫
S

g(x) ln f ∗(x)dx

= −
∫
S

(a0 +
k∑

i=1

aiFi(x))g(x)dx

= −(a0 +
k∑

i=1

aici)

= −
∫
S

(a0 +
k∑

i=1

aiFi(x))f
∗(x)dx

= −
∫
S

f ∗(x) ln f ∗(x)dx

= he(f
∗)

Võrdus he(f
∗) = he(g) kehtib parajasti siis, kui

De(g||f ∗) =

∫
S

g(x) ln
g(x)

f ∗(x)
dx = 0.

Aga Gibbsi võrratusest teame, et see on nii vaid siis, kui g = f ∗ p.k.

Märkused:

� Teoreem kehtib ka mitmemõõtmeliste jaotuste korral (sellisel juhul otsime maksi-
maalse ühisentroopiaga jaotust). Tõestus on sama.
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� Kui kandja S on ülimalt loenduv hulk X , otsime diskreetset jaotust. Asendades
ülaltoodud tõestuses integreerimise summeerimisega, saame, et teoreem kehtib ka
diskreetsete jaotuste korral. Seega diskreetsel juhul MaxEnt jaotus (kui leidub) on

P ∗(x) = exp[a0 +
k∑

i=1

aiFi(x)], (6.9)

kus ai on valitud nii, et P ∗ rahuldaks kitsendusi.

6.6.1 Näited

Keskväärtus ja dispersioon: Olgu S = R, F1(x) = x, c1 = 0 ja F2(x) = x2, c2 = σ2.
Otsime MaxEnt tihedust (üle reaaltelje) keskväärtusega 0 ja disp. σ2 tiheduste seast.
Jaotus (6.8) on kujul

exp[a0 + a1x+ a2x
2].

Normaaljaotuse kuju; MaxEnt jaotus: N (0, σ2).

Esimest ja teist järku moment: Olgu S = R, F1(x) = x, c1 = µ ja F2(x) = x2, c2 =
α. Jaotus (6.8) on kujul

exp[a0 + a1x+ a2x
2].

Normaaljaotuse kuju; MaxEnt jaotus: N (µ, α− µ2)

Keskväärtus: Olgu S = R, F1(x) = x, c1 = µ. Otsime MaxEnt tihedust (üle R)
keskväärtusega µ. Sellist pole.

Keskväärtus ning mittenegatiivsus: Olgu S = [0,∞), F1(x) = x, c1 = µ. Otsime
MaxEnt tihedust üle [0,∞) keskväärtusega µ. Jaotus (6.8):

exp[a0 + a1x]I[0,∞).

Eksponentjaotuse kuju; MaxEnt jaotus: E(µ−1).

Tõkestatud kandja: Olgu S = [a, b], tingimusi pole. Jaotus (6.8):

exp[a0]I[a,b].

Ühtlase jaotuse kuju; MaxEnt jaotus :U(a, b).

Keskväärtus ja loenduv kandja: Olgu S = {1, 2, . . .} F1(x) = x, c1 = µ. Jaotus
(6.9):

P ∗(x) = exp[a0 + a1x]

MaxEnt distribution: Geometric G( 1
µ
).
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Teine moment ja mittenegatiivsus: Olgu S = [0,∞) ja F1(x) = x2. Jaotus (6.8):

exp[a0 + a1x
2]I[0,∞)

Kui c1 = 1, siis MaxEnt jaotus on

f(x) =

√
2

π
exp[−x2

2
], x ≥ 0 (6.10)

Lõplik kandja: Olgu S = {1, 2, 3, 4, 5, 6}, tingimusi pole. Jaotus (6.9):

P ∗(x) = exp[a0].

MaxEnt jaotus on ühtlane.

Etteantud segamomendid: Olgu S = Rn, Fij = xixj, cij = σij i, j = 1, . . . , n. Seega
on etteantud segamomendid EXiXj = σij. Jaotus (6.8):

f(xn) = exp[a0 +
∑
ij

aijxixj].

Mitmemõõtmelise normaaljaotuse kuju; MaxEnt jaotus on N (0,Σ), kus Σ = (σij).

6.7 Ülesanded

1. Tõestada teoreem 6.3.

2. Tõestada ühisdiferentsiaalentroopia omadused:

� Olgu Xn pidev juhuslik vektor, µ ∈ Rn. Siis h(Xn + µ) = h(Xn)

� Olgu pidev juhuslik vektor, A olgu pööratav maatriks. Siis

h(AXn) = h(Xn) + log |A|,

kus |A| on A determinandi absoluutväärtus.

3. Leida h(f), kus f(x) = 1
2
λ exp[−λ|x|] (Laplace'i jaotus ehk kahepoolne eksponent-

jaotus).

4. Olgu X ∼ U(−1
2
, 1
2
), Z ∼ U(−a

2
, a
2
), a > 0, X ja Z on sõltumatud, Y = X + Z.

Leida I(X;Y ).

5. Olgu Π kõikide kõikide ruumil (R2,B(R2)) olevate selliste ühistiheduste hulk, mis
esituvad marginaaltiheduste korrutisena: g1(x)g2(y). Olgu (X,Y ) juhuslik vektor
ühistihedusega f(x, y). Tõestada, et

I(X;Y ) = inf
g1(x)g2(y)∈Π

D(f(x, y)||g1(x)g2(y)).

Miinimumi realiseerib vektori (X,Y ) marginaaljaotuste korrutis.
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6. Vaatleme diskreetsel tähestikul X antud tõenäosusjaotusi. Olgu P selliste jaotuste
klass, mille korral ∑

j

Fi(xj)P (xj) = ci. i = 1, . . . , k.

Olgu Q suvaline jaotus. Tõestada, et kui leiduvad konstandid ai, i = 0, . . . , k nii,
et P ∗ ∈ P , kus

P ∗(xj) = Q(xj) exp[a0 +
k∑

i=1

aiFi(xj)],

siis
P ∗ = argmin

P∈P
D(P ||Q).

7. Olgu fo suvaline tõenäosusjaotus. Tõestada. et leidub tingimus F ja konstant c
(mis sõltuvad fo-st) nii, et fo on MaxEnt tihedus.
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