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1 Emntroopia ja informatsioon

1.1 Entroopia
1.1.1 Definitsioon ja omadused

Vaatleme diskreetset juhuslikku suurust X jaotusega P. Olgu X = {xy,y,...} Ulimalt
loenduv hulk, mis sisaldab juhusliku suuruse X voimalikke vaartusi. Tahistame

pi = P(X =1z;) = P(xy),

s.t. p; on toendosus, et X votab vidrtuse x;. Jaotus P on iiheselt midratud paaridega
{(z4,pi)}, sest iga hulga A C X korral

PA)=P(XecA)= p=)Y P)

;€A €A
Tihti esitatakse selline jaotus tabelina

Il‘l‘g‘xg‘...
pl‘pz‘ps‘---

)

kusjuures x; # x;, kui ¢ # j ja p; > 0. Edaspidi iitleme, et jaotus (tGendosusmoot)
P on antud hulgal X. Paneme tdhele, et X voib olla suvaline hulk, mitte ilmtingimata
reaalarvude alamhulk. Naiteks voib hulk X olla tihestik, s.t. X = {a,b,...,y}. Sellisel
juhul on X juhuslik tdht. Informatsiooniteoorias nimetataksegi hulka X tihti tdhestikuks
(alphabet).

Jaotuse P kandja (support) Xp on tdhed, mille korral P(z) > 0. Seega
Xp:={x e X:P(x)>0}

Tuletame meelde, et kui ¢ : X — R on suvaline funktsioon, mis rahuldab tingimust
> pilg(i)| < oo, siis

= pale) =D Pla)gx) = 3 Pla)g(x) (1.1)

zeX rzeXp
NB! Alljargnevas tdhistame log := log, ning lepime kokku, et 0log 0 = 0.

Def 1.1 Juhusliku suuruse X (jaotuse P) entroopia (entropy) H(X) on

~ pilogp =~ P(x)log P(x) = — 3 P(x)log P(x

TeEX reXp



Markused:

e H(X) soltub vaid juhusliku suuruse X jaotusest P. Seetottu téhistame entroopiat
H(X) ka H(P).

e Seose (1.1) tottu

H(X) = E(—log P(X)) = E(log P(1X)>.

o Et —logp, > 0, on >, —p;logp, mittenegatiivsete liikmetega rida. Sellise rea
summa on alati defineeritud, kuid voib olla lopmatu. Seega

0< H(X) < oo,
kusjuures H(X) = 0 parajasti siis, kui X on peaaegu kindlasti konstant.

e Entroopia ei soltu tdhestikust X'. Téepoolest, olgu jaotused P ja () antud tabelitega

951‘952‘353‘--- Q:yl‘yZ‘yS‘---

P:
pr|pe|ps |- prp2|ps] -

Siis H(P) = H(Q). Et oluline on vaid toenéosuste vektor (pi,pe,...), kasutame
tihti tahistust

H(p1,pa, .- ).

e Pohimotteliselt voib entroopia defineerida ka mone muu logaritmi abil. Logaritmi
log, abil defineeritud entroopiat tihistame Hj,. Seega

—> pilogypi = — Y P(x)log, P(x).
i TeEX

Et log, p = log, alog, p, siis
Hy(X) = (log, a) Ha(X),

millest H,(X) = (log,2)H(X) ning H.(X) = (In2)H(X). Informatsiooniteoorias
kasutatakse harilikult kahendlogaritmi abil defineeritud entroopiat. Seda moodde-
takse bittides. Naturaallogaritmi kaudu defineeritud entroopiat moodetakse nat-
tides, kiimnendlogaritmi kaudu defineerituid entroopiat moodetakse dittides.

e Jaotuse P entroopia ei muutu, kui hulka A laiendada elementidega, mille toendosus
on 0. Seega, kui X’ on suvaline hulk, mis sisaldab hulka X, siis kehtib

— > P(z)log P (1.2)

zeX’



Entroopia H(X) méodab juhusliku suuruse X “keskmist juhuslikkust”. Mida suurem on
entroopia, seda “‘juhuslikum” on X. Konstant ei ole juhuslik, seetottu on konstandi en-
troopia 0. Entroopiat voib ka interpreteerida kui informatsioonihulka, mida juhusliku
suuruse vadrtuse teadasaamine meile annab. Mida “juhuslikum” on X, seda vihem os-
kame me dra arvata juhusliku suuruse vaédrtust (juhusliku katse tulemust) ning seda enam
informatsiooni selle vaidrtuse (katse tulemuse) teadasaamine meile annab.

Esmakordselt defineeris entroopia ameerika matemaatik C. Shannon oma 1948.-1 aastal
ilmunud teedrajavas artiklis A mathematical theory of communication. Seetottu nimetatakse
entroopiat tihti ka Shannoni entroopiaks.

Niited:

1 Olgu X = {0,1}, p = P(X = 1). Seega on X Bernoulli p-jaotusega juhuslik suurus,
X ~ B(1,p). Leiame

H(X) = —plogp — (1 — p)log(l — p) =: h(p).

Funktsiooni h(p) nimetatakse binaarseks entroopiafunktsiooniks . Funktsioon
h(p) on noégus, punkti % suhtes siimmeetriline ning saavutab maksimumi juhul, kui
p = % Siis

1 1 1 1

1
)= —Zlog- — ~log - =log?2 = 1.
h(5) = —3logg — 5 log 5 =log

Seega on (nihketa) miindi viske entroopia 1. Teadmine, kas sellise miindi viskel tuli
kull voi kiri, annab meile tépselt 1 biti informatsiooni (sellest tulenevalt ongi en-
troopia defineerimisel voetud aluseks kahendlogaritm). Kui kulli tulemise toenéosus
p on viiksem arvust %, siis on entroopia viiksem kui 1. See iihtib intuitsiooniga:
mida viiksem on kulli tulemise toendosus, seda “mittejuhuslikum” on X ning seda
“kergem” on miindiviske tulemust dra arvata. Sellevorra vihem informatsiooni miin-

divise endas katkeb.

1.00 -
0.751

T 0.50+

0.25 1

0.00 0.25 0.50 0.75 1.00
p

Figure 1: Binaarne entroopiafunktsioon



2 Vaatleme jaotusi

>
o= Q
o] o

O
RS
i =
RIS QN
N RSN

1 1 1. 1 1 1 1. 1 1. 1 1 2 3 4
H(P)= ——log = — ~log = — ~log = — —1log — — —log— = — 4+ = 4+ 2 4 —
(P)=—5log 5 — Jlogy — glog o — Jplog 7 — Jelog e =g+ 7+ o+ fe

H(Q) =log4d =2.

Seega on jaotus P "vdhem juhuslik", kuigi tema aatomite arv on suurem.

1.1.2 Entroopia aksiomaatiline definitsioon

On kerge veenduda, et entroopial on nn. grupeerimisomadus

k k P1 Pk
H(p17p27p37 - ) = H(Zizlpi7pk+17pk+27 e ) (E 1p1)H<Ek 1pl . Ek 1]71) (13)

Omaduse (1.3) toestus on {ilesanne 2.

Grupeerimisomadus on teatavas mottes igati loomulik juhuslikkuse "aditiivsuse" omadus,
mistottu on loogiline eeldada, et iga funktsioon f(p1,po,...), mis moddab juhuslikkust,
peaks seda omadust rahuldama. Selgub aga, et kui X on 16plik, siis f mis rahuldab gru-
peerimisomadust ning on lisaks pidev, siimmeetriline ja normeeritud (igati loomulikud
eeldused) saab olla ainult entroopia.

Sonastame selle viitena. Lopliku X korral on iga toendosusmoot vektor (pi, ..., pm), kus
X =m, p; >0ja > p; =1 Olgu selliste vektorite hulk P, seda hulka nimetatakse
((m — 1)-dimensionaalseks) simpleksiks. Funktsioon f,, : P™ — R on pidev parajasti siis,
kui ta on pidev koikide argumentide jargi. Funktsiooni f,, nimetame siimmeetriliseks, kui
fm (D1, -, Pm) €i s0ltu argumentide jirjekorrast.

Viide 1.1 Olgu iga m korral fn, : P™ — [0,00) stimmeetrilised funktsioonid, mis rahul-
davad jargmisi omadusi (aksioome):

A1 fy on normaliseeritud, st fg(%, %) =1;
A2 f,, on pidev iga m =2,3,... korral;
A3 kehtib grupeerimisomadus: iga 1 < k < m korral

y4 Pk )

m 5 sy Pm) = Jm— Ekf iy o Pm Zkf ‘ < T
f (Pl P2 b ) f k+1( i=1Pis Pk+1 p )+< zflp>fk Zk i Zk D

A4 igam < n korral fm(%,,%) < fu(: ,%)

n’
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Siis iga m korral

fm(P1, - pm) = —sz‘logpz‘~ (1.4)

Toestus. Olgu iga m korral

1 1

9m) = fnlmo )

Grupeerimisomadust ja siimmeetriat m korda rakendades saame

1 1 1 1
90mn) = fam (=== )
nm’ nm, nm nm,
1 1 1 1
=l )+ fal ) = glm) + g(n).

Seega iga tdisarvu n ja k korral g(n*) = kg(n) ja A1 tottu g(2%) = kg(2) = k ehk
g(2") =log(2"), V.

Omadust A4 kasutades on voimalik niidata, et iilaltoodud vordus kehtib iga tdisarvu n
korral, ehk
g(n) =logn, Vne€N.

Toepoolest: oletame vastuvéiteliselt, et leidub n nii, et g(n) > log(n). Siis leidub murd
L nii, et g(n) > £ > log(n), millest klog(n) = log(n*) < [ ehk n¥ < 2". Omadus A4:
g(n¥) < g(2") = 1. Et aga g(n*) = kg(n), saame kg(n) < [ ehk g(n) < I/k — vastuolu.

Eeldades vastuviiteliselt, et g(n) < log(n), jouame ka vastuoluni (analoogiliselt).

Olgu niitid m suvaline taisarv ja vaatleme vektorit (p1,...,pm), mille koik komponen-
did on ratsionaalarvud. Seega leiduvad téisarvud kq,..., k., ja iihine nimetaja n nii, et
Di = %, t=1,...,m. Sellisel juhul

1 11 1 1 1
g<n):fn(ﬁ’.”7;7ﬁ7“.7E’“.’ﬁ’”.’E)
1 m

= fn( +Z fk )

k m
Seega
m R m =1 zl - zl —)=- 11 i
fu(pr, -, o) = log(n Zp og(k ;p og(—~) ;p 0gp



ehk ratsionaalarvuliste argumentide korral (1.4) kehtib. Et f,, on pidev, kehtib (1.4) su-
valiste argumentide korral. m

Markus: Vaide kehtib ka ilma aksioomita A4.

1.1.3 Entroopia on rangelt nogus

Funktsioon ¢ : R — R on kumer, kui iga x1, 22 ja A € [0, 1] korral kehtib
gz + (1 = AN)az) < Ag(z1) + (1 = A)g(a2).

Funktsioon g on rangelt kumer kui vordus kehtib vaid siis, kui A = 1 voi A = 0. Funktsioon
g on nogus, kui —g on kumer.

Jaotuste segu. Olgu P, ja P, kaks hulgal X antud jaotust. Eeldus, et P ja P on
antud iihel ja samal hulgal pole iildisust kitsendav: kui P, on antud hulgal &X; ja P, on
antud hulgal X5, siis defineerime X = X} U X,. Mootude P ja P, segu on nende kumer
kombinatsioon
Kui X; ~ P; ja Xo ~ P, ning Z ~ B(1, \), siis jargmine juhuslik suurus on jaotusega Q:
v — X: kui Z =1,
Xy kui Z=0.

On selge, et segu @) kitkeb endas nii P, kui ka P, juhuslikkust. Lisaks on juhuslik
komponendi valik (juhuslik suurus 7). Jérgnev viide néitab, et H(Q) on suurem kui
AH(Py) 4+ (1 — A\)H(P,) ehk entroopia on nogus.

Vaide 1.2 FEntroopia on rangelt nogus, s.t.
H(Q) = MH(P) + (1 - NH(Py), VA€ (0,1),
kusjuures vorratus on range vilja arvatud juhul, kur Py = Ps.
Toestus. Funktsioon f(y) = —ylogy on rangelt nogus (y > 0). Seega iga x € X korral
—APi(z)log Pi(z) — (1 — A) () log Pa(z) = /\f(Pl(I)) +(1- A)f(-%(@)
< F(API(@) + (1= NPs(2)) = Q) log Q).

Summeerides molemad pooled iile X', saame

AH(P) + (1 - MH(P) < H(Q).
Viimane vorratus on range, kui leidub vihemalt iiks x € X nii, et Pi(x) # Py(z). =

Niide: Olgu P, = B(1,p;), i = 1,2. Siis AP, + (1 = NPy, = B(1,Ap1 + (1 — N)p2).
Entroopia nogususest jéreldub:

h(Ap14+(1—=XN)ps) = HAPL+(1=X\)Py) > MNH(P)+(1=AN)H(Py) = Mh(p1)+(1—=N)h(p2),

st binaarne entroopiafunktsioon on nogus.



1.1.4 Jenseni vorratus

Edaspidi kasutame tihti Jenseni vorratust. Et Jenseni vorratus késitleb X keskviartust,
eeldame seejuures, et X C R, st tidhed on reaalarvud (vastasel juhul pole EX defineeri-
tud).

Teoreem 1.2 (Jenseni vorratus). Olgu X C R, ja g kumer funktsioon, kusjuures
Elg(X)| < o0 ja E|X| < c0. Siis

Eg(X) > g(EX). (1.5)
Kui g on rangelt kumer, siis (1.5) on vordus parajasti siis, kui X = EX p.k.

Toestus. Tuleta meelde (rangelt) kumera funktsiooni definitisioon. Kumeral funktsioonil
g on omadus:

VyeR dm(y) eR: g(x) —gy) 2mly)(z —y), VYzeR

(m(y) = ¢'(y), kui viimane eksisteerib). Kui ¢ on rangelt kumer, siis on iilaltoodud
vorratus vordus vaid x = y korral.
Olgu y = EX € R. Iga juhusliku suuruse X viirtuse x; korral

g(xi) = g(EX) =2 m(EX)(x; — EX).
Seega
Bg(X)—g(EX) = 3" (g(w)~g(BX))pi = m(EX) Y. (2i~EX)p; = m(EX)(EX~EX) = 0

ehk
Eg(X) > g(EX).

Néitame niiiid, et rangelt kumera g korral on vorratus vordus vaid siis, kui X = FX p.k.
Olgu
7z = (g(X) —g(EX)) — m(EX)(X — EX).

Juhuslik suurus Z on mittenegatiivne. Seega EZ = 0 parajasti siis, kui Z = 0 p.k., millest
(9(X) — g(EX)) = m(EX)(X — EX) p.k.. Rangelt kumera g korral tihendab viimane
vordus, et X = EX p.k. m

1.2 Uhisentroopia

Olgu X ja Y diskreetsed juhuslikud suurused, mis votavad vaartusi tdhestikel X ja ).
Seega (X,Y") on diskreetne juhuslik vektor, mille vidrtused sisalduvad hulgas

XxY=A(z,y):z € X,yeV}
Olgu (X,Y) iihisjaotus P. Seega on P hulgal X x ) antud téendosusmoot. Téhistame
pij = P(zi,y;) = P((X,Y) = (25,9;)) = P(X = 2;,Y = y5).

Uhisjaotus esitatakse tihti tabelina



X\Y 1 Yo Yj >

T P($1,y1) = P1u P(Il,?ﬂ) =DPpi2 |- P1j Z P1j = ( )
1) P(Iz, y1) = P21 P(xbyz) =Dp22 | --- P2j e 2 P2; = ( )
T Di1 Di2 cee Dij . Z Dij = ( z)

Yo | Xipa=Ply) | 2ipe=Py) | ... | 2oipij=Py) | .- K
Ulaltoodud tabelis ning ka edaspidi,
P(z) =P(X =2) ja P(y) =P =y)

tahistavad marginaaltoendosusi. Pane tdhele, et kui mingi paari (x,y) korral P(x,y) > 0,
siis ka P(x) > 0 ja P(y) > 0. Kui X ja Y on soltumatud, siis

P(z,y) = P(z)P(y) VYxe X,ye).

Et juhuslikku vektorit (X,Y") voib vaadelda kui diskreetset juhuslikku suurust, avaldub
tema entroopia

=Y pylogpy =~ Y Ple,y)log Pla.y) = B(~log P(X.Y)). (16)

(z,y)eXXY

Def 1.3 Juhusliku vektori (X,Y) entroopiat (1.6) nimetatakse juhuslike suuruste X ja'Y
iihisentroopiaks (joint entropy) .

Kui juhuslikud suurused X, Y on soltumatud, siis

H(X,)Y)=-— Z P(z,y)log P(z,y) = ZZP y)(log P(z) + log P(y))

(z,y)EX XY TEX yeY
==Y P(x)log P(z) = Y P(y)log Py) = H(X) + H(Y).
TEX yey

Ulaltoodud argumendi saab esitada ka teisiti. Iga 2 € X ja y € )Y korral kehtib
log P(z,y) = log P(x)+log P(y), millest log P(X,Y") = log P(X)+log P(Y). Keskvéértus
on lineaarne, seega

H(X,Y)=—-E(log P(X,Y)) = —E(log P(X) + log P(Y))
=—FElogP(X)—ElogP(Y)=H(X)+ H(Y).

Soltumatute juhuslike suuruste iihisentroopia on seega komponentide entroopiate summa.
See iihtib intuitsiooniga: kui X ja Y on soltumatud, siis ei anna X viartuse tead-
mine mingit informatsiooni Y kohta. See aga tahendab seda, et vektori (X,Y') véértuse
teadasaamine annab niipalju informatsiooni kui molematest komponentidest saadava in-
formatsiooni summa.
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Analoogiliselt defineeritakse mitme juhusliku suuruse Xy, ..., X,, ithisentroopia
H(Xy,...,X,) = —Flog P(Xy,...,X,).

Kui juhuslikud suurused on soltumatud, siis

H(Xy,...,X,) = iH(Xi).

1.3 Tinglik entroopia
1.3.1 Definitsioon

Té&histame tinglikud toendosused

P(x,y)
P(z)

P(zly) =P(X =z|Y =y) = P(ylz) =P =y|X =) =

Tuletame meelde: juhusliku suuruse Y tinglik jaotus tingimusel X = z (eeldusel P(z) > 0)
on
Y1 ‘ Yo ‘ Ys ‘ e
P(y,|r) ‘ P(ya|) ‘ P(ya|) ‘

Selle jaotuse entroopia avaldub

HY|z): = HY|X =z) := —ZP(y|x) log P(y|z).

yeY

Vaatleme hulgal X antud funktsiooni x — H (Y |x). Vottes selle funktsiooni argumendiks
juhusliku suuruse X, saame uue juhusliku suuruse (juhusliku suuruse X funktsiooni),
mille jaotus on

H(Y|w)) | HY |22) | HY |23) | ...

Sellise jaotuse keskvédrtus on (tuleta meelde, et X'p on P kandja — tihed, mille tGendosus
on positiivne)

> H(Y|z)P(x

ze€Xp

Def 1.4 Juhusliku suuruse Y tinglik entroopia (conditional entropy) tingimusel

X on
HY|X):= Y HY|2)Px) =~ > P(x)Y_log P(ylz)Pylr)
T€Xp T€Xp yey
== log P(ylz)P(z,y) = —E(log P(Y!X>)-
zeXp yey

11



Markused:

e Kui juhuslikud suurused X ja Y on soltumatud, siis P(y|z) = P(y) Vx € X,y € ),
millest H(Y|X) = H(Y).

o Uldiselt H(X|Y) ei vordu H(Y|X). Olgu niiteks X,Y sdltumatud juhuslikud suu-
rused, kusjuures H(X) # H(Y). Siis H(X|Y)=H(X) # H(Y) = HY|X).

e H(Y|X) = 0 parajasti siis, kui Y on X funktsioon. Téepoolest, H(Y|X) = 0
parajasti siis, kui H(Y|X = z) = 0 iga x € X korral. See aga tdhendab, et leidub
konstant f(z) nii, et P(Y = f(2)|X =2) =1 ehk Y = f(X). Jarelikult kehtib ka
H(X|X) = 0.

Jargmine vaide avab tingliku entroopia olemuse.

Viide 1.3
H(X,Y)=H(X)+H(Y|X)=H(Y)+ HX|Y).

Toestus. Iga (z,y) € X x Y korral nii, et P(x,y) > 0 kehtib P(x,y) = P(z)P(y|x),
millest
log P(z,y) = log P(x) + log P(y|x)

Seega
H(X,Y)=—FlogP(X,Y)=—FlogP(X)— FElogP(Y|X)=H(X)+ HY|X).

Et H(X,Y) = H(Y, X), siis teine vordus kehtib ka. m

1.3.2 Ketireeglid

Olgu X.,Y, Z kolm juhuslikku suurust viartuste hulgaga. Olgu nende kandjad vastavalt
X,V ja Z. Analoogiliselt H(Y'|X) definitsiooniga defineerime H(X,Y'|Z) ja H(X|Y, Z):

H(X,Y|Z)==) P(z) )  Plx,ylz)logP(z,yl2)
2€2 (z,y)eXxy
=— Y logP(z,ylz)P(x,y,2) = —Elog P(X,Y|Z)
(z,y,2) EXXYXZ
H(X|Y.Z)=~ Y Ply.2))_ Plalyz)log Plaly, =)
(y,2)EYXZ zeX
—— Y, logP(aly,2)P(z,y,2) = —Elog P(X|Y, Z).
(2,y,2) EXXYXZ
Niiiid on selge, kuidas suvaliste juhuslike suuruste Xy, ..., X, korral on defineeritud tinglik

entroopia
H(Xp, Xoo1,. 0, X5 X0, .0, Xq).

Viide 1.3 iildistub mitmes suunas. Alljargnev on véite 1.3 tinglik versioon
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Viide 1.4
H(Y,X|Z)=H(X|2)+ H(Y|X, Z).

Toestus. Iga sellise kolmiku (z,y, z) kus P(z,y, z) > 0 korral kehtib
P(x,ylz) = P(x]z) P(ylz, 2).

Niitid
H(X,Y|Z) = —Elog P(X,Y|Z) = —Elog P(X|Z)~Elog P(Y|X, Z) = H(X|Z)+H(Y|X, Z).
u
Viitest 1.4 jareldub viide 1.3. Ka jargmine lemma iildistab viidet 1.3.
Lemma 1.1 (Ketireegel) Olgu X, ..., X, juhuslikud suurused. Siis

H(Xy,....X,) = HXy)+ HXa| X1) + H( X5 X1, Xo) + -+ H(Xn | X1, .o, Xoo1).

Toestus. Olgu juhuslike suuruste kandjad vastavalt Xy,..., &,. Olgu 1 € X4,..., 2, €
X, sellised, et P(z1,...,2,) > 0. Iga sellise vektori korral kehtib

P(z1,...,xn) = P(x1) P(22]21) P(x3|z1, @2) - - - Paglzy, ... @p),
millest

H(Xy,..., X)) = —Elog P(X1,..., X))
= —FElog P(X;) — Elog P(X3|Xy) — -+ — Elog P(X,| X1,..., Xs1)
=H(X))+H(Xo|Xy)+ -+ HXp| X1, .o, Xno1).

[

Kehtib ka ketireegli tinglik versioon.

Lemma 1.2 (Tinglik ketireegel) Olgu X, ..., X,, Z juhuslikud suurused. Siis

H(X\, ..., X0 Z) = H(X\|2)+H(Xo| X1, Z)+H (Xs| X1, Xo, Z)+ - +H(Xn| X1, ..., Xp1, Z).

Toestus. Olgu juhuslike suuruste Xi,...,X,,Z kandjad vastavalt Xy,..., X, ja Z.
Viide jareldub sellest, et iga x; € & ja z € Z korral (tingimusel P(xy,...,z,,2) > 0)

P(:Ela"'axnlz) = P(l’l‘Z)P(iﬂzyﬂfl,Z)P(.Z'g‘l'g,xl,2>"'P(.l’n’l'l,...,ilj'n,l,Z)
|

Tinglikust ketireeglist jareldub nii védide 1.4 kui ka ketireegel.
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1.4 Kullback-Leibleri kaugus
1.4.1 Definitsioon

Olgu P ja @ kaks jaotust tadhestikul X. Tuletame meelde, et need moodud esituvad
tabelitena

T ‘ i) ‘ XT3 ‘ Q T ‘ ) ‘ T3 ‘

P(ﬂfl) ‘ P(l"Q) ‘ P(933) ‘ Q(ﬂfl) ‘ Q(lb) ‘ Q(l":s) ‘ s

kusjuures voib olla, et méne ¢ korral Q(x;) = 0 voi P(x;) = 0.

P

NB! Lepime kokku, et Olog(g) =0, kui ¢ > 0, plog(%) = oo, kui p > 0.

Def 1.5 Moéotude P ja Q Kullback-Leibleri kaugus (Kullback-Leibler distance,

Kullback-Leibler divergence, relative entropy) on

D(PIIQ) =Y Pla)log L) )

reX ZE)

Kui X ~ P, siis kehtib

D(P|Q) = E(log ggi)

Kui X ~ PjaY ~ (@, siis tdhistame ka

D(X][|Y) := D(P||@).

Markused:
e log % ei pruugi olla positiivne. Veendume, et rida (1.7) on sellegipoolest defineer-
itud. Olgu
P P
X+::{x€X: (I)>1}, X_::{:EEX: ($)§1}.
Q(z) Q(x)
Et )
P(x Q(z)
Z |P(x)log (x)| Z P(x) log P) < Z <1.
zeX— zeX— zEX—
P(x)

Seega on rea (1.7) negatiivne osa koonduv. Kui ) _,+ P(x)log G < 00, on rida
(1.7) koonduv, vastasel juhul on tema summa oo.

e D(P||Q) nimetatakse kiill Kullback-Leibleri kauguseks, kuid ta pole meetrika: kuigi
D(P||Q) > 0, kusjuures D(P||Q) = 0 parajasti siis, kui P = @ (t0estus allpool),
pole iildiselt D(P||Q) ja D(Q||P) vordsed (D pole siimmeetriline) ning ei kehti ka
kolmurga vorratus (vaata tilesanne 8).
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K-L kaugus moodab "keskmist {illatust", mille jaotusega P juhuslik suurus meile valmistab,
kui eeldame, et tema jaotus on Q. Oletame, et leidub 2’ € X nii, et Q(z') = 0, kuid
P(2") > 0. sellisel juhul

3 waliguy) e Pes(gi) =

Seega on iillatus 16pmatu, kui mingi (meie arvates) voimatu siindmus (z') toimub (véhe-
malt iiks kord). See {ihtib intuitsiooniga: voimatu siindmuse toimumist peetakse imeks.
Vaatleme aga sellist 2”7 € X, et Q(z") > 0, kuid P(2") = 0. sellisel juhul

P(x")log <SEZ:;> =0.

Selline stindmus kaugust D(P||Q) ei suurenda. Teisisonu, iillatus ei suurene kui moni meie
meelest positiivse toendosusega siindmus z” toimumata jaab. Ka see iihtib intuitsiooniga:
mingi positiivse toendosusega siindmuse mittetoimumist iildiselt imeks ei panda. Sellest
vaatepunktist ldhtudes on K-L kauguse ebasiimmeetrilisus igati loogiline.

Niide: Olgu P = B(1,1), Q = B(1,q). Siis

1 1 1
D(P||Q) =§log(2—q §1Og(m

D(QI||P) =qlog(2q) + (1 — q)log(2(1 — ¢q)) — 1 kui ¢ — 0.

1
)+ ) :—Elog(4q(1—9))—>oo, kuig — 0

1.4.2 Gibbsi vorratus ja selle jareldused
Viide 1.5 (Gibbsi vorratus) D(P||Q) > 0, kusjuures D(P||Q) = 0 parajasti siis, kui
P=qQ.
Toestus. Kui D(P||Q) = oo, siis vidide kehtib triviaalselt. Vaatleme olukorda, kus
D(P||Q) < oo, s.t. rida (1.7) on absoluutselt koonduyv.

Q)

Olgu X jaotusega P juhuslik suurus. Defineerime juhusliku suuruse Y := P Olgu
g(x) := —log(x) rangelt kumer funktsioon. Seega

Elg(Y) =Y |log Z|1 |P z) < oo, E|Y|= ZQi )= 1.

reX

Jenseni vorratusest jareldub, et

D(P|Q) = E(log ggi) — B(~log %) = Eg(Y) > g(EY) = —log(1) =0,

kusjuures D(P||Q) = 0 parajasti siis, kui Y = 1 p.k. ehk Q(x) = P(z) iga sellise x € X
korral, et P(z) > 0. Sellest jireldub, et Q(x) = P(z) iga z € X korral. m

Gibbsi vorratusest jareldub muuhulgas, et 1opliku tdhestiku korral on suurim entroopia
iihtlasel jaotusel.
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Jareldus 1.1 Olgu |X| < oo. Siis iga hulgal X antud jaotuse P korral H(P) < log|X|,
kusjuures vordus kehtib vaid tuhtlase jaotuse korral.

Toestus. Olgu U iihtlane jaotus iile X, s.t. U(z) = |X |~ iga x € X korral. Siis

D(P||U) =) P(x)log i)zlog])d—H(P)ZO.

TeEX )

Viide 1.6 (log-sum vorratus) Olgu ay, as, . .. ja by, b, ... mittenegatiivsed arvud, > a; <
00 ja 0 < > b < oco. Siis

@; ( ) ai)
a; log — > a;) log , 1.8
2mlosy, = (208 () .
kusjuures vorratus on vordus parajasti siis, kui b—’ =c Vi

Toestus. Olgu
/ a;

b=
a; = , b= .
Zj aj Zj b

Seega on {a;} ja {b;} toendosusjaotused ning véiitest 1.5 jareldub

ai

ngaglogb/_zzl log giay Z1 [Zaﬂ%%‘(Zai)log%Zj]
2.4

(2

Zj bj
Et

(Z a,) log S0, < 00,
siis (1.8) kehtib. Teame, et D({a;}||{0.}) = 0 parajasti siis, kui a; = b}, millest
a 2.0

—_— = = C, VZ
b b

Markus: Log-sum vorratuse toestus pohineb Gibbsi vorratusel. Samas jareldub viimane
otseselt log-sum vorratusest. Seega on need vorratused ekvivalentsed.

Segude K-L kaugus. Olgu P, P, 1, Q> hulgal X antud jaotused. Vaatleme segusi
AP+ (1=XN)Py,  ja @+ (1—X)Qs.
Jéreldus 1.2
D(APL+ (1= N Pof[AQu + (1= N)Q2) S AD(P[|@Q1) + (1 = A)D(P|Q2).  (L.9)
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Toestus. Fikseerime x € X'. Log-sum vorratusest jareldub

AP) 0 55,3y (1= VP ok 5
> (s 0 s G

Summeeri iile hulga X'. m

Vorratust (2.2) voime interpreteerida: K-L kaugus on kumer paaride (P, Q) suhtes. Fik-
seeritud @ korral jireldub vorratusest (2.2), et funktsioon P +— D(P||Q) on kumer.
Samamoodi jéreldub, et funktsioon @ — D(P||Q) on kumer. Veel enam, molemad
nimetatud funktsioonid on rangelt kumerad (piirkonnas kus nad on 16plikud):

D(P||Q) =) P(x)log P(z) = > P(z)log Q(x) = — > P(z)log Q(x) — H(P). (1.10)

Funktsioon P +— Y P(x)logQ(z) on lineaarne, P — H(P) aga rangelt nogus. Seega
P — D(P||Q) on rangelt kumer. Selles mottes kiitub ta kui kaugus.
Seosest (1.10) jareldub ka, et @ — D(P||Q) on rangelt kumer.

1.4.3 Pinskeri vorratus

Toendosusmootude omavaheline kaugus. Olgu iihel ja samal tdhestikul X (aga
teame, et see eeldus pole kitsendav) antud kaks erinevat toendosusmootu P ja ). Kuidas
moota nende omavahelist kaugust? Toendosusteoorias on selleks mitmesuguseid meetrikaid
(kaugusi) ja teatavas mottes moddab P ja ) omavahelist kaugust ka K-L kaugus (kuigi ta
pole siimmeetriline). Vaadeldes méote P ja @ ruumi RI*! elementidena (oletame hetkeks,
et |X| < oo) voivad kéne alla tulla koik ruumis RI*! defineeritud kaugused, niiteks euklei-
diline kaugus — lo-meetrika. Selgub, et toendosusmootude korral on otstarbekas kasutada
[i-meetrikat ja nii defineerimegi P, ja P, vahelise kauguse jargmiselt:

1Py = Pof| := ) |Pi(x) — Puo(a)].

reX

On lihtne néidata, et defineeritud kaugus on meetrika ning samuti on lihtne n&ha (iilesanne
9), et
|P1 — Py|| =2sup |P(B) — P(B)| =2|Pi(A) — B(A)] <2, (1.11)
BCX

kus
A:={z e X : P (x) > Px)}.

Seega, kui P, on tahestikul antud mootude jada nii, et |P, — P|| — 0, siis iga B C X
korral P,(B) — P(B), millest loomulikult (aga see tuleneb ju ka vahetult definitsioonist)
jareldub, et sellisel juhul iga tdhe z € X korral P,(z) — P(x). Teisest kiiljest aga on
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voimalik ndidata (16pliku tdhestiku korral on see ilmne, 1opmatu tihestiku korral jareldub
see nn Sheffe lemmast),

|P,—P|| -0 < P,(z)— P(z), VrelX.
Edaspidi tdhistame: P, — P tdhendab ||P, — P|| — 0 ja seega P, — P parajasti siis, kui
P,(z) — P(z) iga x korral.

Mirkus: Kaugust || P> — P|| nimetatakse ingliskeelses kirjanduses distance of total vari-
ation (variational distance) ja téhistatakse tihti || - || 7y

Pinskeri vorratus. Pinskeri vorratus viaidab muuhulgas, et kui P ja P, on tdhestikul
X defineeritud jaotused nii, et D(P,||P) — 0 voi D(P||P,) — 0, siis P, — P.

Teoreem 1.6 (Pinskeri vorratus) Iga tihestikul X antud kahe jaotuse P ja Q korral
kehtib

P — Q> 1.12
DPIQ) > 5o ]1P - Q) (112)
Toestus. Kéigepealt toestame vorratuse juhul, kui |[X| = 2. Seega olgu P = (p,1 —p) ja
Q=1(¢,1—-9q), ||P—Q| =2|p—q| Seega on vaja ndidata, et
1—p 4
9(p. q) pogq+( p)log - ST~ 2

Fikseerime p ja votame tuletise g jirgi. Saame (kontrolli!)

dg(p.q) _  a—p 4(q — p)

dq _q(l—q)1n2_ In2

Veendu, et kui 0 < ¢ < p, siis %};’Q) < 0 ehk ¢ — ¢g(p,q) on kahanev. Et g(p,p) = 0,
jareldub sellest, et kui ¢ < p, siis g(p,q) > 0. Kui g > p, siis 1 — ¢ < 1 — p ja tdhistades
q:=1—g¢q, p:=1—psaame jille, et vorratus kehtib.

Uldise tihestiku korral kasutame log-sum vorratust. Olgu

A={zeX:Px)>Q(z)}.

Defineerime jaotused P ja Q jargmiselt
P = (P(A),(1 - P(4)), Q:=(Q(A),(1-Q(A)).
Log-sum vorratus:

Y P(a) log > P(A)lo i Y Pla) )log 5 ”“")

[L’
T€EA TEAC

~—

millest saame, et

D(PIIQ) > D(PYQ) > 5o (P(4) ~ QAN = 5= [|P ~ QI

Siin teine vorratus tulenes sellest, et kahe tdhe korral Pinskeri vorratus on juba toestatud
ja viimane vordus tuleb vordusest (1.11). m
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Pidevusest. Olles defineerinud toéendosusmootude koondumise on loomulik kiisida, kas
koondumisest P, — P jéreldub entroopia koondumine H(FP,) — H(P), (st kas en-
troopia on pidev funktsioon) voi koondumine D(P,||Q) — D(P||Q) voi koondumine
D(Q||P,) — D(Q||P) (st kas K-L kaugus on pidev iihe vdi teise argumendi jargi).

Entroopia pidevusest. Et ¢ — q¢logq on pidev funktsioon, on lihtne veenduda, et ku:
|X| < 00, on P+ H(P) pidev funktsioon kéikidel tdenfiosusméotude hulgal PI*! (veendu
selles!). Tuletame, et pidevus oli ka iiks aksioomidest (16plikumootmelise) entroopia de-
fineerimisel. Olukord on aga hoopis teine, kui |[X| = oco. Selgub, et sellisel juhul pole
entroopia iihegi moodu korral pidev: iga jaotuse P korral leidub jada P, — P nii, et
H(P,) /& H(P). Viide kehtib ka siis, kui P aatomite hulk on 16plik. Veendume selles.
Olgu |X| = oo, kuid méodul P vaid 16plik hulk m aatomeid. Seega olgu

P = (p17p27"'7pm70707---)'

Konstrueerime jaotuste jada P, jargmiselt:

1 1 1 1
Py=((1—)p1,eos (1= )Py —y i 0,..), 1.13
(= Iprses (U= )Py e oy 0 (1.13)
S~——— —
Mn
kus
M, =[2"], ¢>0.
On kerge veenduda, et et P, — P kuid (iilesanne 11)
1 1 1
H(P,)=(1- E)H<P) + Elog2 M, + h<ﬁ) — H(P)+c.

Vaadeldud néite korral piirjaotusel P on 1oplik hulk aatomeid, kuid samasuguse kon-
trandite saab konstureerida ka siis kui P aatomite arv on lopmatu ehk kehtib jirgmine
teoreem.

Teoreem 1.7 (S-W. So ja R. Yeung) Olgu tihestik X lopmatu. Siis iga jaotuse P ja
arvu 0 < ¢ < 0o korral leidub jada P, nii, et P, — P, kuid H(P,) — H(P) + c.

K-L pidevusest. Vaatleme liihidalt funktsiooni P +— D(P||Q) pidevust. Olgu |X| < oc.
Teame, et P — D(P||Q) on kumer. Loplikudimensionaalne kumer funktsioon on pidev
piirkonnas kus ta on 16plik. Seega, kui |X| < oo, D(P||Q) < oo ja P, — P on selline,
et D(P,]|Q) < oo iga n korral, siis kehtib ka koondumine D(F,||Q) — D(P||Q). Pane
tahele, et ilma lisatingimuseta D(F,||Q)) < oo iilaltoodud koondumine ei kehti. Kon-
tranditena vaatleme olukorda, kus |X| =2, P =Q = (1,0) ja P, = (1 — %, %) On selge,
et P, — P, kuid iga n korral D(P,||Q) = oc.

Lopliku tahestiku korral on kumer ka funktsioon @ — D(P]|Q) ning sellest jareldub ka
selle funktsiooni pidevus.

Juhul, kui X on Iopmatu, ei jareldu koondumisest P, — P koondumine D(P,||Q) —
D(P||Q). Kontrandide on iilesanne 12.
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1.4.4 Tinglik Kullback-Leibleri kaugus

Kullback-Leibleri kaugus moodab kahe jaotuse vahelist seost. Tinglik Kullback-Leibleri
kaugus moodab kahe tingliku jaotuse P (y|z) ja Pa(y|x) vahelist seost. Tépsemalt, olgu
iga « korral Pi(y|z) ja Pa(y|z) tinglikud jaotused hulgal ). Seega voime iga sellise x
korral, mis rahuldab P(z) > 0, defineerida nende jaotuste vahel KL-kauguse

yey

Nagu ikka informatsiooniteoorias, keskmistatakse tinglikud karakteristikud iile z-de hulgal
X antud jaotuse P(x).

Def 1.8 Olgu Pi(y|x) ja Pa(y|x) tingliku jaotused hulgal Y. Hulgal X antud jaotuse P(x)
korral tinglik Kullback-Leibleri kaugus (conditional relative entropy) on

D(Pi(yle)||Pa(yla)) == S D(Piyla)||Palyla)|e)P(z) = Y P(x) Y Pi(ylz)log Pi(ylz)

x€Xp z€Xp yey Pg(y|x)
B Z Z Pi(y|z) ._
— P1<y,l‘)10g ) kus Pl(xmy) T P(ZE)Pl(y|JZ>

— Py(y|z)

r€Xp yeY

Olgu niitid X jaotusega P juhuslik suurus; (X, Y)) ja (X, Y2) olgu jaotustega Pi(x,y) =
P(z)Pi(y|x) ja Py(x,y) = P(x)Py(y|z) juhuslikud vektorid, st P;(y|x) on Y; tinglik jaotus
tingimusel X =z, (i = 1,2). Sellisel juhul

D(Pi(y|z)||P2(y|z)) = Elog 2<YI|X)

A D(Y3|[Y2| X) (1.14)

Markused:

1. Téhistusest D(P;(y|z)||P:(y|z)) ei selgu, milline on jaotus P, iile mille keskmis-
tatakse. Harilikult selgub see kontekstist.

2. Tahistus D(Y;]|Y2|X) voib olla eksitav. Olgu niiteks (X7,Y]) ning (Xs, Ys) kaks
juhuslikku vektorit iihisjaotustega vastavalt Pi(x,y) = Pi(z)Pi(y|z) ja Py(z,y) =
Py(x)Py(y|z). Vottes P(z) = Pi(x), saame

P (1| Xh)

D(Py(ylz)||Pa(ylx)) = Elog By(Yi|X))

(1.15)
Vorduse (1.15) parem pool on igati korrektne, kuid tahistuse D(Y7||Y5]|X7) korral
tuleb meeles pidada, et Pa(x,y) pole mitte (X1, Y3) vaid (Xy, Ys) iihisjaotus. Seega
Py(y|x) on juhusliku suuruse Y3 tinglik jaotus tingimusel X, (mis tahistuses ei fig-

ureerigi) mitte X;. Seda tuleb meeles pidada eelkoige KL-kauguse ketireegli (véide
1.9) korral.
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Viaide 1.7
D(Py(y|z)||P2(y|z)) >0

kusjuures vordus kehtib vaid siis kui Py(y|z) = Py(y|z) Yy € Y ja iga x € Xp.
Toestus. Iga x € X korral D(Py(y|x)||Pz(y|x)|z) > 0, millest jarelduvalt
D(P(ylz)||Pa(ylz)) = 0

Oletame, et
D(P(ylo)|| Po(ylz)) =
Siis iga « € Xp korral kehtib D(P;(y|z)||Pa(y|z)|x) = 0 ja sellest jareldub véide. m

Viide 1.8 (Tingimustamine suurendab K-L kaugust)
D(Py(yl)|| Pa(ylz)) = D(P| ),
kus Pi(y) = 22, Piyle)P(x), kus i =1,2.

Toestus. Log-sum vorratusest saame, et iga y € ) korral

Py (yle) P(x) Py (y)
ZP1 (ylz) P logm > Pi(y)log Poly)’

Summeeri iile Y. m

Viide 1.9 (K-L kauguse ketireegel) Olgu (X1,...,X,) ja (Y1,...Y,) juhuslikud vek-
torid, mis votavad vddrtusi hulgal X x --- x X. Sis

D((Xl,...,Xn) (Yl,...,Yn)):
D(X1|[Y1) + D(Xa|[Ya| X1) + D(Xs|[Ya| X1, Xo) + -+ DXl [Yal X1, -+, K1)

Toestus. Olgu
P(zy,...,x,) = P(x1)P(x2|x1) P(x3]z1, 22) - - - P(mp|2y, ..., Tpq)
vektori (X7, ..., X,) jaotus ning olgu
Q1. .. xn) = Q(x1)Q(x2]21) - - Q(p|1, - -, TY1)
vektori (Y1,...,Y,) jaotus. Juhuslike vektorite vaheline K-L kaugus on defineeritud
P(Xy,... ,X )
o Xn)

D(X1,..., X,||Y1,....Y,) = Elog

Q(X1,

(Xl) (X2|X1) (Xn|X17"‘7Xn—1)
Elog

Q(X1)Q(Xa|Xq) - Q(Xn| X1, ..., Xo1)

X X P(X, | Xy,...,X,—
El ( 1)—|—E1 ( 2| 1)++E10g ( nl 1, s An 1)

Q(Xl) Q(X2|Xy) QX X1, ..., Xn)
= D(Xq|[Y1) + D(Xo||Y2| X1) + - -+ + D(X, ||V | Xy, . oo, X)),
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1.5 Vastastikune informatsioon

Olgu (X,Y) juhuslik vektor iihisjaotusega P(x,y), (z,y) € X x ).

Def 1.9 Juhuslike suuruste X,Y vastastikune informatsioon (mutual information)
on

P(X, ))

P(x,y) -
= X PG o8 gy — DI P) = (ke 5

P(z)P(y)

Vastastikune informatsioon on seega K-L kaugus jaotuse P(z,y) ning korrutismoodu
P(x)P(y) vahel. Teisisonu, 1(X;Y) on K-L kaugus vektori (X, Y’) ja samade marginaal-
jaotusega kuid soltumatute komponentidega vektori vahel.

Markused:

e Vastastikune informatsioon I(X;Y") ei soltu mitte ainult juhuslike suuruste X ja Y
jaotusest vaid ka nende iihisjaotusest, s.t. vektori (X,Y") jaotusest.

e 0 < I(X,Y).
e Vastastikune informatsioon on siimmeetriline: I(X;Y) = I(Y; X).
e /(X;Y) =0 parajasti siis kui X,Y on soltumatud.

Vastastikuse informatsiooni olemust aitab moista jirgmine seos:

PXY) _ . PXVIPY) . PX]Y)
POOPY) ~ PPy P TR
— Elog P(X|Y) — Elog P(X) = H(X) — H(X]Y).

I(X;Y) = FElog

Siimmeetria tottu kehtib
I(X;Y)=H(X)-HX|Y)=H(Y)—- H(Y|X). (1.16)

Suurus H (X)) on juhusliku suuruse X "keskmine juhuslikkus", tema (viirtuse teadasaamisel
saadav) informatsioon. Tinglik entroopia H(X|Y) on juhusliku suuruse X entroopia
tingimusel, et Y on teada ehk X tinglik "juhuslikkus". On selge, et mida rohkem annab
Y informatsiooni X kohta, seda viiksem on H(X|Y). Kui X = f(Y), siis H(X|Y) = 0.
Kui X ja Y on soltumatud, siis H(X|Y) = H(X). Mida viiksem on H(X|Y), seda
suurem on vahe H(X) — H(X|Y) = I(X;Y). Niiid on selge, mida I(X;Y) moodab:
juhusliku suuruse X entroopia kahanemist juhusliku suuruse Y 1dbi. Valemist (1.16)
jareldub, et tépselt sama palju kahaneb H(Y") juhusliku suuruse X 1dbi. Sellest ka nime-
tus: vastastikune informatsioon. Kui X ja Y on soltumatud, siis I(X;Y") = 0 - juhuslikud
suurused X ka Y ei anna teineteise kohta mingisugust informatsiooni. Paneme téhele, et

I(X; X) = H(X) - H(X|X) = H(X),
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s.t. juhuslik suurus X annab iseenese kohta tépselt H(X) informatsiooni. Inglisekeelses
kirjanduses kutsutaksegi entroopiat teinekord self-information.

Viide 1.3: H(X|Y) = H(X,Y) — H(Y), millest
I(X;Y)=HX)+H(Y)—-H(X,Y). (1.17)

Vastastikuse informatsiooni, tingliku entroopia ja entroopia omavahelisi seoseid aitab
moista alljirgnev diagramm.

Teeme veel moned lihtsad kuid olulised jareldused.

Jareldus 1.3 (tingimustamine viihendab entroopiat) Juhuslike suuruste X ja Y
korral kehtib
H(X]Y) < H(X),

kusjuures tlaltoodud vorratus on vordus vaid soltumatute juhuslike suuruste korral.

Toestus. H(X) — H(X|Y) =I(X:Y)>0.m

Miérkus: Tuleta meelde, et H(X|Y) =" H(X]Y = y)P(y). Kuigi iilaltoodud summa
on viiksem kui H(X), voib mone y € Y korral siiski olla, et H(X|Y =y) > H(X).

Naiide:
VX |al|b
v 1914
v 818

Jareldus 1.4 Juhusliku vektori (Xy,..., X,) entroopia rahuldab
H(Xy,.... X,) <Y H(X)),
i=1

kusjuures vorratus on vordus vaid soltumatute komponentide korral.

Toestus. Ketireegelist saame
H(Xy,...,X,) =H(X1) + HXo|X1) + H(X3| X0, Xo) + - + HX, | X4, ..., X))

Kasuta eelmist jareldust. m
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1.5.1 Tinglik vastastikune informatsioon
Olgu XY, Z juhuslikud suurused, kusjuures Z kandja olgu Z.

Def 1.10 Juhuslike suuruste X,Y vastastikune informatsioon tingimusel Z

(conditional mutual information) on

P(X|Y, Z)
P(X|2)

P(X|Y, Z)P(Y|Z) Bl P(X,Y|Z)
P(X[Z)P(Y]Z) SP(X|2)P(Y|Z)
N Pl 2) g P 812)

=3 Py 2)los oS

T,Y,%

]
) RO O
=2 P2 P Y8 B AG

z2EZ

=Y D(P xy! NP (x]2)P(ylz)) P(2).

z€EZ

I[(X;Y|Z) :=H(X|Z) — H(X|Y,Z) = Elog

=Flog

Viide 1.10
I(X;Y|Z) =0,

kusjuures vordus kehtib parajasti sits, kut X ja 'Y on tinglikult soltumatud, s.t.
P(z,y|z) = P(z|2)P(ylz), VeeX,ye)Y,z€Z. (1.18)

Toestus. Et iga z korral

D(Ple,yl2)|P(al2)Py]2)) P(2) = 0,

siis I(X;Y|Z) = 0 parajasti siis, kui iga z € Z korral

D(P(a,yl2)l|P(x]z)P(y]z)) = 0

ja sellest jéreldub (1.18). m

Tinglikul vastastikusel informatsioonil on iildiselt samad omadused mis vastastikusel in-
formatsioonil. Kehtib (iilesanne 21)

I(X;X|2) = H(X|Z)
I[(X;Y|Z)=H(Y|Z)— HY|X, 2)
I[(X;Y|2) = H(X|Z)+ H(Y|Z) - H(X,Y|Z).

Lisaks kehtib veel (iilesanne 21)

[(X;Y|Z)=H(X;Z)+ H(Y:;2) - HX,Y, 2) — H(Z). (1.19)
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Viide 1.11 (Vastastikuse informatsiooni ketireegel)
[(Xy,. . X3 Y) = IXY)H(Xy VX4 (X VX, Xo) o+ I(Xs YIX, L X)),
Toestus. Kasutame entroopia ketireeglit ja tingliku entroopia ketireeglit.

I(Xy,..., X Y)=H(Xy,...,X,) — H(Xy,...,X,|Y)
:H<X1) + H(Xz’X1> + e + H(Xn‘Xl, e ;Xn71>
— H(X1|Y) = H(X2|X1,Y) — -+ = H(X,,| Xy, .., X0, Y).

Viide 1.12 (Tingliku vastastikuse informatsiooni ketireegel)
I(Xy,..., X YN2) = 1(X; Y| 2) + (X Y| X1, Z) + -+ [( X, Y| Xy, .0, X, Z).

Toestus. Analoogiline. m

1.6 Andmetootlusvorratus
1.6.1 Loplik Markovi ahel

Def 1.11 Juhuslikud suurused Xy, ..., X, kandjatega vastavalt Xy, ..., X,, moodustavad
Markovi ahela kui iga x; € X; ja wga m =2,...,n—1 korral

P(Xm+1 = merlle = Tmy--- ,Xl = xl) = P(Xm+1 = l’erl’Xm = CL'm> (120)
Seega on X7,..., X, Markovi ahel parajasti siis, kui iga z, ..., x, korral

P(xy,z9)P(x3]z2) - - - P(ay|Tn_1) kui P(xe) >0,..., P(x,) >0,

P, o) = {O muidu.
Asjaolu, et Xy,..., X, on Markovi ahel tdhistatakse informatsiooniteoorias tihti:
Xi—=>Xg—> =X,
Seega X — Y — Z parajasti siis, kui
Pla,y,2) = P(x)P(ylx) P(=ly).
Viaide 1.13 Kut X1 - Xo — - = X, sits X,, &> X1 — - — X4,
Toestus. X; — Xy — --- — X, parajasti siis kui

P(zy,...,x,)P(x2) - P(xy—1) = P(x1,29)P(x2,23) - - - P(xp_1,2y).

See on aga siimmeetriline. m
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Vaide 1.14 Markovt ahela 1ga alamjada on Markovi ahel, s.t. kui X1 — Xo — -+ — X,
s1is Xy, — Xy, — - = X, .

Toestus. Tuletame meelde tingliku téaistéendosuse valemi: kui A, B, Cy,Cy, ... on siind-
mused ning Cy, Csy, . .. on tiissiisteem (st C; N C; = 0 ja P(U,C;) = 1), siis

P(A|B) =) P(A|B,C;))P(Cy|B). (1.21)

Fikseerime m ja niitame, et
P(Xm+2 = ZL‘m+2’Xm = Ty - ,Xl = ZL’l) = P(Xm+2 = xm+2|Xm = ZL’m)
ehk
P(zpmia|Tm, ..., x1) = P(mio|Tm).
Koigepealt paneme tihele, et valemit (1.21) kasutades saame

P($m+2|xm+1a :L‘m) = Z P<xm+2|mm+17 Ly Tm—15 - - - 7x1)P(xm—1) oo 7x1’$m7 xm—i—l)

L1505 Tm—1

= Y Plamea|Tme) P@mots - 21T, Tms1) = P(@mga|Tnir).

L1595 Tm—1

Analoogiliselt saame, et iga m; < mg < --- < my < m korral

P(merQ‘merl’ Ty Tmp_yy " 7xm1) = P(xm+2’xm+1) (1'22)

[Seosest (1.22) jareldub P(Zpi2|Tmi1, Tm) = P(Tmio|Tmy1) (kuidas?)].
Seega

P(Zmioy Tt |Tmy - -5 1) = P(Tima2|Tmat, Ty -+ o, 1) P(Tig1 [Ty - -+, 21)
P(Zmi2|Tmi1, Tm) P(Tmg1]|Tm)

= P(xm+27 Tm+1 |xm>

Seega

P(xpmia|Tm, ..., x1) = Z P(zmio, Tong1|Tmy - -+, 21)

Tm+41

= Z P<xm+27xm+l|xm> = P(xm+2’$m)

Tm+1

Viimasest vordusest ja seosest (1.22) jareldub, et Xi,..., X, Xpnyo, ... X, on Markovi
ahel. Siit jareldub iilejainu. m

Jareldus 1.5 Kui X1 — Xy — --- — X, stis iga m < n korral

P(Zp, ..., T;mi1|Tm, -y 21) = P(Tpy ooy Tt | T).- (1.23)
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Toestus. Toepoolest, kui X; — Xy — -+ — X, on Markovi ahel, siis Viite 1.14 korral
on seda ka Xy = --- = X,, (k> 1), millest iga m > k korral

P(zp|tm—1, ..., 2r) = P(Xp|Tm_1) (1.24)
Toestusest saime, et P(Zyi2, Tmit|Tm, -5 T1) = P(Tma2, Tmii|Tm). Kasutades seda
vordust saame
P(wm—i—?n Tm+2, xm+1|xm7 s ,1'1) = P(:Em+3|xm+27 Tm+1 Lmy - - - axl)P(xm—i—Qy xm+1|xm7 s 71'1)
- P(xm+3‘xm+27 Tm41,Tmy - - - ,$1>P<Im+27 Im+1|xm>
= P(xm+3‘xm+25 Tm+1, :Um)P(merZa merl‘xm)
= P(:L‘m-i—?n Tm+2, xm+1|xm)~

Siin eelviimane vordus tuleneb seosest (1.24). Edasi jitka induktsiooniga. m

Vaide 1.15 Juhuslikud suurused Xy, ..., X, on Markovi ahel parajasti siis, kui tga m =
2,...,n — 1 korral Xq,..., Xm-1 j06 Xppy1,..., Xy on antud X, korral tinglikult sol-
tumatud.

Toestus. Olgu X;,..., X,, Markovi ahel. Toestame, et
P(xy, .. Tty Tint1y - - o Tn|Tm) = P21, oo Tone 1| ) P (Tt 1y - -+ Tn|Tm) . (1.25)

Seosest (1.23) saame

P(z1,...,x,) = P(x1,.. ., ) P(Tmi1s - -y Tn|T1, ooy 2m) = P21, oo ) P(Tni1, - -+, T ),
millest
P(xy,...,z, Plxy,...,z,

(;)(xm) ) = ( ]13(xm) )P(xm+1,...,xn|xm) =P(x1,.. ., T 1|Tm) P(Tmit, - TolTm)-

Kehtigu (1.25). Siis

P(xy,...,x,) P(xy,...,x,)
P(zy, yr ey dn yeeeobm) = =
(Tt s l2ns e @m) = B S = B Py, o mma )
P(‘rl?'"7xm—17$m+17"'7xn|$m)
= = P(zy, )y dnldm)-
P(zy,...,xm 1|Tm) (1 TnlTm)
]

Seega X — Y — Z parjasti siis, kui antud Y korral on X ja Z tinglikult séltumatud.
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1.6.2 Andmetootlusvorratus

Lemma 1.3 (Andmetd6tlusvorratus) Kui X — Y — Z, siis
I(X;Y)> (X 2),
kusjuures vordus kehtib parajasti suis, kut X — Z — Y.

Toestus. Et X ja Z on antud Y korral soltumatud, siis 1(X; Z|Y') = 0. Seega ketireeglist
saame

I(X;Y,2)=1(X; 2)+ [(X;Y|2) = [(X;Y)+ [(X; Z|Y) = [(X;Y). (1.26)

Et [(X;Y|Z) > 0, siis [(X;Z) < I(X;Y), kusjuures vordus kehtib parajsti siis, kui
I(X;Y|Z) = 0 ehk antud Z korral on X ja Y tinglikult soltumatud ehk X — Z — Y on
Markovi ahel. =

Olgu X juhuslik suurus, mille kohta vajame informatsiooni. Juhuslik suurus X on meil
teadmata, meie kisutuses on vaid Y (andmed), mis annab X kohta I(X;Y") bitti informat-
siooni. Kas aga on voimalik Y t6ddelda nii, et X kohta saadav informatsioon suureneks?
Juhuslikku suurust Y on voimalik téodelda determineeritult, s.t. rakendame talle mingit
funktsiooni g. Seega saame uue juhusliku suuruse ¢g(Y). Et aga X — Y — ¢(Y) on
Markovi ahel, siis andmetootlusvorratusest saame, et I(X;Y) > I(X;g(Y)) ehk g(Y)
ei anna rohkem informatsiooni X kohta, kui Y. Teine voimalus on téédelda Y juhus-
likult, s.t. lisada mingi X-st soltumatu lisajuhuslikkus. Olgu Z andmete Y juhuslikul
tootlemisel saadud juhuslik suurus. Et lisajuhuslikkus on X-st soltumatu, on X — Y — Z
Markovi ahel ning andmetootlusvorratusest jareldub I(X;Y) > I(X; Z), s.t. ka juhus-
lik t66tlemine ei suurenda informatsiooni. Seega postuleerib andmetdotlusvorratus viga
lildise printsiibi: andemete (juhuslikul v6i mittejuhuslikul) t66tlemisel voib informatsioon
vaid kaotsi minna, mitte mingil juhul ei saa aga informatsiooni juurde voita. Kas sellest
jareldub igasuguse statistilise andmetootluse mottetus?

Jareldus 1.6 Kut X —Y — Z, siis
H(X|Z)> H(XIY).
Toestus. Ulesanne 25. m
Jareldus 1.7 Kut X =Y — Z, siis
I(X;2) <1(Y;Z), 1(X;Y|Z)<I(X:Y).

Téestus. Ulesanne 25. m
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1.6.3 Piisav statistik

Olgu {Fp} hulgal X antud toendosusjaotuste klass. Statistikas interpreteeritakse hulka
{Py} kui mudelit, indeksit § nimetatakse parameetriks. Olgu X juhuslik valim jaotusest
FPy. Juhuslikku valimit X vaatleme kui juhuslikku suurust véédrtuste hulgaga X™. Seega
soltub X jaotus vaid parameetrist 6. Olgu 7'(X) mingi statistik (valimi funktsioon), mille
abil piiliame hinnata valimi genereerivat jaotust Py ehk siis parameetrit . Vaatleme
olukorda, kus parameeter 6 on juhuslik eeljaotusega 7 (Bayesi lahenemisviis). Sellisel
juhul & — X — T'(X) on Markovi ahel ning andmetootlusvorratusest saame, et

1(0; (X)) < 1(6; X).

Kui iilaltoodud vorratus on vordus, siis on statistik 7" selline, et T'(X) annab parameetri
kohta sama palju informatsiooni kui X (s6ltumata parameetri eeljaotusest 7). Lemmast
1.3 teame, et vordus kehtib parajasti siis, kui antud 7'(X) korral on X ja € soltumatud
ehk 0 — T(X) — X. Seos 8§ — T(X) — X kehtib aga parajasti siis, kui iga valimi
x € X" korral
P(X =z|T(X)=1t,0)=P(X =z|T(X) =1t)

ehk antud 7'(X) korral ei soltu valimi jaotus parameetrist 6. Statistikas nimetatakse
selliseid statistikuid piisavateks. Seega oleme toestanud jérelduse.

Jareldus 1.8 Statistik T on piisav parajasti siis, kui iga 0 jaotuse korral
10;T(X)) =1(6; X).
Néide: Olgu {F} Bernoulli jaotuste hulk. Statistik 7'(X) = > ", X; on piisav, sest

{o kui 3, @; # t,

P(X1 = xl,...,Xi = .’L‘JT(X) = t,@) =

Téepoolest, kui ). x; = t, siis

P(Xlzﬂfl,...,X = Tn T(X):t,e)
P(T(X) =t,0)

el 1

B Zml Tnid, xl—te ( - e)n tﬂ-(e) B Cﬁz’

.....

P(Xl :Z)’Jl,...,Xn :l’n|T(X> :t70) =

sest fikseetud iihtede arvu korral on erinevateks valimiteks tipselt C* voimalust.

1.7 Fano vorratus

Olgu X tundmatu juhuslik suurus ning olgu X korreleeritud juhuslik suurus, mida vaatleme
kui X hinnangut. Olgu

P :=P(X #X)
hindamisel tehatava vea toendosus. Kui P, = 0, siis X = X p.k., millest H(X|X) = 0.
Seega on loogiline, et kui P, on viike, siis H(X|X) peaks samuti viike olema. Selgub, et
lopliku tdhestiku korral see nii ongi.
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Teoreem 1.12 (Fano vorratus) Olgu X ja X juhuslikud suurused tihestikul X . Siis
H(X|X) < h(P.) + P.log(|X| - 1), (1.27)
kus h on binaarne entroopiafunktsioon.

Toestus. Olgu
. {1 kui X # X,

0 kui X =X,
Seega
Entroopia ketireeglist saame
H(E,X|X) = H(X|X)+ H(F|X,X) = HX|X), (1.28)

sest H(E|X, X) = 0 (miks?)
Teisest kiiljest

H(E,X|X)=H(E|X)+ H(X|E,X)< H(E)+ H(X|E,X) = h(P,) + HX|E, X).

Paneme tahele, et

H(X|E,X)=> P(X —1D)HX|X =z,E=1)
reX

+Y P(X =2,E=0)H(X|X =2,E=0).
reX

Tingimusel X = z ja E = 0 kehtib X = z, siis on H(X|X =z, E = 0) = 0 ehk

H(X|E,X)=> P(X=2,E=1)H(X|X =2,E=1),

reX

Kui £ = 1ja X = zsiis X € X\, millest H(X|X = z,F = 1) < log(|X] — 1).
Kokkuvottes X
H(X|E7X) < Pelog(|X‘ - ]')

Seosest (1.28) saame, et

H(X|X) < P.log(|X| — 1) + h(P.).
]
Jéareldus 1.9

H(X|X) -1

H(X|X) <1+ P.log|X hk P, >
(X|X) <1+ Plogl|X|, e Z g ]
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Kui |X| < oo, siis Fano vorratusest jireldub, et kui P, — 0, siis H(X|X) — 0. Kui aga
tahestik on lopmatu, siis Fano vorratus on trivaalne ja iilaltoodud implikatsioon ei pruugi
kehtida.

Niide: Olgu Z ~ B(1,p) ning olgu Y mingi selline juhuslik suurus, et Y > 0 ja
H(Y) = 0o. Defineerime juhusliku suuruse X jargmiselt

X - 0 kui Z=0,
Y kuiZ=1.

Olgu X =0 pk. Siis P.=P(X >0)=P(X =Y)=P(Z =1) = p. Kuid
H(X|X)=H(X)> H(X|Z)=pH(Y) = .

Seega iga p > 0 korral H(X|X) = oo, mistottu H(X|X) 4 0, kui P, — 0.

Millal on Fano vorratus vordus? Vorratuse toestusest on niaha, et vordus kehtib
parajasti siis, kui iga x € X korral

H(X|X =2, FE=1) =log(|x| — 1) (1.29)

ning

H(E|X) = H(E). (1.30)

Seos (1.29) tihendab, et vektori X tinglik jaotus tingimusel, et X # X = z on iihtlane
tile iilejadnud téhtede X\z. See aga tdhendab, et leidub p; nii, et iga z; € X korral

P(X =z, X =x;)=p;, VYj#i

Teisisonu, vektori (X, X) iihisjaotuse tabelis

X\X T T T
T I)()( ::Zﬂl,)( = Il) I)<)( ::,rl,}( = $2) s I)()( ::iﬁl,}( ::(Xn)
zo |P(X =29, X =21) | P(X =20, X =29) | -+ | P(X =29, X =1x,)
r, | P(X=x,X=u1) | PX =2, X =x,)

on igas reas viljaspool peadiagonaali koik elemendid vordsed.
Seos (1.30) kehtib, kui iga © € X korral P(X = z|X = z) = 1 — P, ehk iga rea peadiago-
naali elemendi suhe rea summase on vordne 1 — P,.. Selline jaotustabel on néiteks

X\X

al| b | a

3 1 1
a 10139 110
b 1l
PR O I B

50 50 50



Ulaltoodud iihisjaotuse korral P. = 2, log(|X| — 1) = 1, millest

3 5 2 5 3 5 2
+glg—+—log—:—10g—+—10g5-

(G2 )

Teisest kiiljest aga

. . N 3 5 2
H(X]X:a):H(X|X:b):H(X|X:c):glog§—|—510g57
millest 5 S
H(X|X)=Zlog=+ = log5.
(XI%) = Jlog 2 + Zlogs

Seega on Fano vorratus vordus.

1.8 Juhusliku protsessi entroopiaméaar

Kéesolevas alajaotuses vaatleme juhuslikku protsessi { X, }52 ;.

Def 1.13 Juhusliku protsessi { X, };°, entroopiam&ir (entropy rate) on

1
HX = lim _H(X17~"7Xn)7

n—oo 1M

kui pitrvddrtus eksisteerib.
Naiited:
e Olgu {X,}22, ii.d. juhuslikud suurused jaotusest P, s.t. X; ~ P. Siis

1
lim —H(Xy,...,X,) = lim — ZH = lim H(P).

n—oo M n—oo M, n—oo

Seega on i.i.d. protsessil entroopiaméir defineeritud, see vordub jaotuse P entroop-
iaga.

e Olgu {X,}°2, soltumatud juhuslikud suurused. Siis

1 1 <

—H(Xy,...,X,)=— H(X

SO ) = ST HX)
Selline jada ei pruugi alati koonduda ja siis pole protsessi entroopiamair defineeri-
tud.

e Olgu X, Xy, ...1i.d. juhuslikud suurused, X; ~ P. Vaatleme juhuslikku ekslemist,
{5122, s.t.

So=0, 5 =X, =X1+Xs,....,8, =X+ + X,.

Juhusliku ekslemise entroopia on Hg = H(P) (iilesanne).
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Vaatleme piirvaartust
H;( = lim H(Xn’Xl, e 7Xn_1),

mis muidugi ei pruugi alati eksisteerida. Jargnevas néeme, et statsionaarsete protsesside
korral HY alati eksisteerib ning see on vordne protsessi entroopiamééraga Hx. Tuletame
meelde statsionaarse protsessi definitsiooni.

Def 1.14 Juhuslik protsess { X, }°°, on statsionaarne (stationary) , kuiigan > 1 ja
1ga k > 1 korral on juhuslikud vektorid

(Xl, e ’Xn> ja (X]g+17 Ce ,Xk+n)
tihe ja sama jaotusega.

Kui {X,,}22, on statsionaarne protsess, siis on juhuslikud suurused X, Xs,... sama jao-
tusega, juhuslikud vektorid (X7, X3), (X2, X3), ... on sama jaotusega, juhuslikud vektorid
(X1, Xo, X3), (X2, X3, Xy), ... on sama jaotusega, jne.

Viide 1.16 Kui {X,,}5°, on statsionaarne protsess, siis H on alati defineeritud.

Toestus. Et {X,,}°°; on statsionaarne, siis iga n korral on juhuslikud vektorid (X7, ..., X,)
ja (Xo, ..., X,41) sama jaotusega. Sellest jareldub, et iga n korral

H(X,| X, ..., Xn1) = HX 11| Xo, ..., X,).
Seega
H(Xp1| X1, 0, X)) S H( Xy Xo, o0, X)) = HXG| XY, -, X)),

millest saame, et {H(X,|X1,...,X,_1)} on mittenegatiivne ja mittekasvav jada ning sel-
lisel jadal on piirvadrtus. m

Jargnevas toestame, et statsionaarse protsessi entroopiaméir on alatu defineeritud ja see
vordub HY. Toestuses kasutame Cesaro lemmat.

Lemma 1.4 (Cesaro lemma) Olgu {a,} mittenegatiivsete reaalarvude jada, kusjuures
a; > 0 ja Zn a, = oo. Tdhistame b, = Z?:l a;. Olgu x, — x suvaline koonduv jada.
Siis

1 .
—Zaixi —x, kui n— oo.
i=1
Juhul, kui a,, = 1, saame

T+ ...+ x,

n

— Z.

Teoreem 1.15 Kui {X,}°°, on statsionaarne protsess, siis Hy on alati defineeritud,
kusjuures Hs, = Hx.
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Toestus. Entroopia ketireeglist saame

1 1 —
EH(Xl, LX) = - H(Xp| X1, .., Xpe1).
k=1

Et H(Xg| Xy, .., Xp 1) = H, siis Cesaro lemmast saame, et

1 1
lim —H(Xy,...,X,) = lim =Y H(X;|X;,..., X4 ) = Hy.

n—oo M, n—oo M,

Seega statsionaarse protsessil on entroopiaméir alati defineeritud ning lisaks definit-
sioonile saab selle leidmiseks kasutada ka seost Hy = H%. Ulaltoodud niidetest selgus,
et ka mittestatsionaarsel protsessil voib leidida entroopiaméar (millised ndidetes toodud
protsessidest pole statsionaarsed?)

1.8.1 Markovi ahela entroopiamiéar

Juhusliku protsessi entroopiaméira leidmine ei pruugi iildiselt olla kerge. Teatud protses-
side korral (nagu néiteks i.i.d. protsess), on aga entroopiamééra lihtne leida. Alljairgnevas
ndeme, et ka satsionaarse Markovi ahela entroopiamééra on lihtne leida. Tuletame meelde
(Iopmatu) Markovi ahela definitsiooni. Olgu {X,,}22 | juhuslik protsess, kusjuures juhus-
likud suurused X; votavad vaartusi hulgal X.

Def 1.16 Juhuslik protsess {X,}:2, on Markovi ahel , kui iga v; € X ja iga m > 1
korral kehtib (1.20), s.t.

P(Xm+1 = .Z'erlle = Tmy - - - 7X1 = Il) = P(Xm+1 = .flferl’Xm = Z‘m> (131)

Mairkus: Arusaadavalt on vordus (1.31) defineeritud vaid siis, kui tinglik toendosus on
defineeritud, s.t. P(X,, = x,..., X1 =21) > 0.

Markovi ahelate terminoloogias nimetatakse hulka X ahela seisundite hulgaks, selle ele-
mente nimetatakse Markovi ahela seisunditeks. Markovi ahel on homogeene, kui vorduse
(1.31) parem pool ei soltu m-st. Sellisel juhul iga m ja iga z;,z; € X korral

P(Xerl = x]’X’H’L = xl) = P(XZ = leXl = xl) = PU

Maatriksit P = (P;;) nimetatakse homogeense MA tileminekumaatriksiks. Alljargnevas
vaatlemegi vaid homogeenset Markovi ahelat {X,}. Olgu 7(i) = 7(x;) juhusliku suu-
ruse X jaotus (iitleme, et algtéendosuste vektor). Siis P(Xy = x;) = >, w(i)FP,; ehk
X, jaotus on 77 P. Analoogiliselt on X3 jaotus 77 P? ning X, jaotus on 7! P*. Seega
on {X,} jaotus maaratud iileminekumaatriksi P ja algtéendosuste vektoriga m. Markovi
ahel on statsionaarne parajasti siis, kui algtoenfiosuste vektor 7 on selline, et 7/ P = 7
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ehk 7(j) = >, m(i)P;; iga j korral. Sellist vektorit nimetatakse statsionaarseks .

Niide: Olgu |X| = 2 ning olgu iileminekumaatriks

(1 -« o )

g 1=5)"

Sellise iileminekumaatriksiga Markovi ahela statsionaarne algtoendosuste vektor on
(i L
a+B a+p’

Teoreem 1.17 Olgu {X,,} statsionaarne Markovi ahel tuleminekumaatriksiga (Pi;) ja al-
gtoendosuste vektoriga w. Siis

Hy = H(X|Xy) = Z Z jlog Pj.

Toestus. Markovi omadusest saame, et iga n korral H(X,|X,_1,...,X1) = H(X,|X,-1).
Et ahel on statsionaarne, siis H (X, |X,,—1) = H(X3|X1) ja teoreemist 1.15 jareldub

HX = H;( = lim H(Xn|Xn—1a A ,Xl) = lim H(Xn|Xn_1) = H(X2|X1)

n—oo n—oo

(X2|X1 Z Z log f)ij

Seos

on lihtne tilesanne. m

1.9 Erinevate algjaotustega Markovi ahelad

Olgu X1, Xy, ... homogeene MA iileminekutoendosustega R(z|y), (see téhendab R(x|y) =
P(X, = z|X,-1 = y)) ja algtdendosustega 7 (st 7w(z) = P(X; = x)). Olgu X{, XJ,...
sama iileminekumaatriksi kuid algjaotusega 7’ MA. Jirgnev vorratus néitab, et soltumata
algjaotustest 7 ja 7', juhuslike suuruste X,, ja X, 1 jaotused lihenevad teineteisele K-L
mottes.

Vaide 1.17 Igan =1,2,... korral kehtib

D(Xnial| Xp41) < D(Xa][X7), (1.32)
Toestus. Olgu P, ja P, vastavalt X,, ja X jaotused. Seega (1.32) on

D(Fpal|P11) < D(P||F). (1.33)
K-L ketireeglist saame

D((Xpa1, X0)|[(X) 11, X})) = D( X || X} 41) + D(X0]| X Xs1)
D(X|I1X;) 4+ D (X1 X7 411 X5).
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Veendu, et D( X1 || X541 X ) = 0. Toepoolest, et
P(Xp1 = 2[Xy = y) = P(X, , = 2[X; = y) = R(z]y),
siis tahistades
Ply) =P(X,=y), Plz,y) =PXpp1=2,X,=y), Plz,y =PX,,, =zX,=y),

saaie

D(Xoni1]| X741 X0) Z ZP (z|y) log |’ Z ZP (z]y) lo : ;

Jareldus 1.10 Kui ' on statsionaarne algjaotus, siis (1.32) on
D(Poia||7’) < D(Fall7). (1.34)

Seega X, jaotus P, ldheneb statsionaarsele jaotusele K-L mottes. Mittenegatiivsete liik-
mentega mittekahaneval jadal {D(P,||7")} on piirvaédrtus. Juhuslike protsesside teooriast
teame, et taandumatu ja mitteperioodilise MA korral P,(z) — 7'(z), Vo € X. Kui X on
1oplik, siis sellest jareldub ka koondumine D(P,||7’) — 0.

Jareldus 1.11 Kui statsionaarne algjaotus ' on thtlane fle lopliku tdhestiku X, siis

(1.34) on
H(P,) < H(Ppy1) (1.35)

Toestus. Ulesanne 32. m
Seega iihtlase algjaotuse korral on juhuslike suuruste Xi, Xo, ... entroopia mittekahanev.

Niide. Olgu kaardipakis m kaarti: {1,...,m}. Seega on kaardipakil m! véimalikku
seisundit. Kaardipaki segamist voib vaadelda Markovi ahelana. Pole raske veenduda,
et sellise Markovi ahela iileminekumaatriks on selline, et ka veergude summa on iiks.
Seetottu on statsionaarne jaotus iihtlane. Seega kaardipaki piirjaotus on iihtlane (see
ongi segamise mote, mitteiihtlase piirjaotuse korral oleksid moned kaardid teatud posit-
sioonidel suurema toendosusega). Kaardipaki segamine seega suurendab selle entroopiat.

1.10 Statsionaarse juhusliku protsessi lihendamine k-jirku Markovi

ahelaga

Teame, et Kullback-Leibleri kaugus D(X||Y) moodab kahe juhusliku suuruse jaotuste
omavahelist kaugust. Samuti teame, et entroopiaméir on entroopia moiste {ildistus juh-
slikule protsessile. Kas neid moisteid kombineerides on voimalik moota kahe juhusluku
protsessi jaotuse omavahelist kaugust?
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Olgu X = X1,Xs,...jaY = Y1,Y,, ... kaks juhuslikku protsessi; olgu iga n korral
(X1,...,X,) ~ P,ja (Yq,...,Y,) ~ @Q,. Definecerime kahe juhusliku protsessi jaotuse
K-L kauguse analoogi jargmiselt:

1
D(X|[Y) = lim =D(F,||@n),
n n

kui see piirvaartus eksiteerib. Seda piirvadrtust nimetatekse ka suhteliseks entroopi-
amé&draks (relative entropy rate) ja tahistatakse Hxjy.

k-jairku Markovi ahel. Olgu k£ > 1 téisarv.

Def 1.18 Juhuslik protsess X1, Xs, ... tdhestikul X on k-jirku Markovi ahel kui iga m >
ljaxy e X, i=1,...,m korral

P(Xmi1 = Tms1| X = @, .., X1 = 21) = P(Xnt1 = Tt | X = Ty -+, X1 = Tineiog).-

Seega 1-jarku Markovi ahel on tavaline Markovi ahel, 2-jairku Markovi ahela korral soltub
homne nii tdnasest kui eilsest jne. Kui X on k-jarku Markovi ahel, siis

P(xy,...,x,) = P(x1,...,28) P(zri1|k, - - o, 21) P(Tpao|That, - -y 22) - P(@p|Tn_1, - s Tok),

kui vaid tinglikud toendosused on defineeritud. Kui k-jarku Markovi ahel on statsion-
aarne on tema jaotus defineeritud toendosustega P(x1, ..., xx) ja iileminekutoendosustega
P(l’kﬂ\l’l, e a$k>-

Vaiide 1.18 Olgu X = X1, X, ... statsionaarne protsess ja'Y = Y1,Ys, ... olgu statsion-
aarne k-jarku Markovi ahel, molemad tahestikul X. Siis leidub D(X||Y'), mis avaldub
jargmiselt

D<XHY) = _HX - ElOg Q(Xk+1’Xk7 s 7X1>7
kus Q(xgi1|Tk, ..., x1) on'Y dleminekutoendosused.

Toestus. Et

log Qn(z1,...,2,) =
log Qn(xla CIE 7xk’) + log Q(xk+1|xk7 cee agjl) + IOg Q($k+2|xk+lv CIE 73:2) + - log Q(In|xn—1a cee 7$n—k)a
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saalne

P.(zy,...,2,)
D(PIIQ) = 3 Pn<x1,...,:cn>1og(Q o ))
=—H(P,) — Z P (z1,...,z5)log Q(x1, ..., xx)
L1,y Tk
- Z Pn(xlv s axk—‘rl) log Q(xk+1|xk7 7561)
L] yenny Lh+1
— Z Pn(%,---u9€k+2)10gQ($k+2|$k+17---,1’2)_"‘
L2yeuny Th+2

T Z Pn(xn—kzv"wxn) 1OgQ(l‘n|l‘n—17"-7xn—k)

— _H(Pn) — Z Pn(.l'l, ce ,l’k) logQ(ﬂh, <o 7xk)

T1,e,Th
- (n_k:) Z P’VL(mla'"7$k+1)10gQ<mk+l|mka'--al‘l)
L] yeeny Th41

=—H(P,)— Y Pular,...,x)logQz1,...,2x) — (n — k)Elog Q(Xp 1| Xy, ...

Jagades n-ga ja minnes piirile saame (X statsionaarsust arvestades)

. D(P,]|Qy
11511% = —HX — ElogQ(Xk+1|Xk, . 7X1).
[ ]
Olgu niitid X7, X, ... statsionaarne protsess. Iga k korral defineerime k-jarku Markovi

ahela Y* = Y7, Y,, ... jirgmiselt:

P(leth...,yk:ilfk) :P<X1 :Z’l,...,Xk:.fL'k),

P(Yier = 2p|Ye = 2., Y1 = 1) = P(Xpy1 = @1 [ Xi = 25, Xo = 2).
Seega Y'* iileminekutdeniiosused on sama, mis X protsessil ja ka algtdeniosused on samad.
Aga see ei tdhenda, et protsessid oleksid samad, sest X ei pruugi olla k-jarku Markovi
ahel, Y* aga on. Protsessi Y* voib vaadelda kui protsessi X k-jirku Markovi lihendit.

Seega
FElog Q(Xk+1|Xku . 7X1) = _H(Xk—i-l‘Xlu . 7X1)

ja et X on statsionaarne, saame
lim H(Xk+1|X17 e ,Xl) = HX.
k—o0

See omakorda tidhendab, et
lim D(X||Y*) = —Hx + lim H(Xp1|X1,...,X1) =0. (1.36)
k—00 k—o0

Koondumine (1.36) tdhendab, et igat statsionaarset protsessi saab kuitahes hésti 1&hen-
dada mingi k-jarku Markovi ahelaga.
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1.11 Ulesanded

1. Olgu miindiviskel kulli saamise toendosus p. Miinti vistatakse kuni esimese kullini.
Olgu X selleks kulunud visete arv. Leida H(X).
2. Toestada grupeerimisomadus

P1 D2 )
(p1+p2)” (p1+p2)

H(p1,p2,p3,...) = H(p1 + p2,p3,...) + (p1 +p2) H(

ja jéreldada sellest (1.3).

3. Leida selline P(y|x) ja Pi(z) ja Py(z) nii, et P, # P», kuid Py (y) = Py (y) igay € Y
korral.

4. Olgu g : X — X funktsioon. Toestada, et
H(g(X)) < H(X), H(g(X)]Y) < H(X]Y).

5. Leida P nii, et H(P) = oc.

6. Olgu X; ja X, juhuslikud suurused vdartuste hulgaga vastavalt X} = {1,...,m},
Xo={m+1,...,n}. Olgu X segujaotusega, s.t.

v X kiz=1,
X, kui Z =0,

kus Z ~ B(1,p). Leida H(X). Veendu, et

H(X) < oH(X1) 4 oH(Xz2)

7. Olgu X ~ P. Toestada, et

8. Leida jaotused P, @) ja R nii, et
D(P[|Q) > D(P||R) + D(R[|Q).

9. Toestada vordused (1.11).

10. Olgu P ja @ tahestikul X antud jaotused. Olgu

Toesta, et
X*(Pl|Q) > (In2)D(P|Q).
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11.

12.

13.

14.

15.

16.

Olgu P, defineeritud kui (1.13). Néita, et

H(P,) = H(P) +c.

Olgu & 16pmatu,

P=( o o o 0.,

“logn’ nlogn’ nlogn’

kus o > 0. Veendu, et P, — P, kus P = (1,0,...), kuid H(P,) — «. Olgu niiiid
Q = (Q17Q2aCI3a .- ')a
kus ¢; = (1 — q)¢", ¢ € (0,1). Niita, et D(P]|Q) < oo, kuid

D(F,||Q) — oo.

= (Xy,...,X,) binaarsete komponentidega juhuslik vektor. Olgu R =
(Ry, ..., R,) vektori X blokipikkuste indikaator. Naiteks, kui X = (1,0,0,0,1,1,0),
siis R = (1,3,2,1). Néidata, et

0 < H(X)— H(R) <min H(X;).
Olgu X,Y juhuslikud suurused, olgu Z = X +Y.
Niita, et H(Z|X) = H(Y|X) ning veendu, et kui X ja Y on séltumatud, siis
HX)<H(Z)jaH(Y)<H(Z).

Leida X ja Y nii, et H(X) > H(Z) ja HY) > H(Z).
Millal kehtib H(Z) = H(X) + H(Y)?

Olgu
p(X,)Y)=HX|Y)+ HY|X).

Toesta, et p on poolmeetrika. Millal p(X,Y) = 07
Veendu, et

p(X,Y)=H(X)+H(Y)-20(X;Y) = HX,Y)—I(X;Y) = 2H(X,Y)—H(X)-H(Y).

Toestada, et iga n > 2 korral

Veenduda, et
1
§[H<X17X2) + H(X?))XQ) + H(XlaX?))] 2 H(X17X27X3)'
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17. Olgu X, Y, Z juhuslikud suurused, kusjuures Y ja Z on soltumatud. Toesta, et

D(X||Y|Z2)=—-H(X|Z)+ D(X||Y)+ H(X) < H(Z) + D(X|]Y).

18. Tdesta, et D((X, f(X)||(Y, f(Y))) = D(X||Y). Jérelda sellest, et D(f(X)[|f(Y)) <
D(X|Y'). Veendu, et iildiselt D((X, f(X))||(Y,9(Y))) # D(X|]Y).

19. (a) Olgu X; ja X5 sama jaotusega juhuslikud suurused. Olgu

H(X5|Xy)

p(Xl,XQ) =1- H(X1>

(1.37)

Toestada, et p on siimmeetriline, p € [0,1]. Millal on p = 07 Millal on p = 17
(b) Olgu (X,Y) jaotustabel jirgmine € € (0, 7:

Y\X | —n| -1 1 |n
n 0 0 0 €
1 |0 ]3—€¢] 3 |0
-1 o] 1 [3-€]O0
—n € 0 0 0

Leida I(X;Y') ning p (nagu seoses (1.37)). Leida cov(X,Y) ja X ning Y korre-
latsioonikordaja. Veendu, et kui n — o0, siis korrelatsioonikordaja piirvadrtus
on 1 iga e > 0 korral.

(c¢) Olgu (X,Y) jaotustabel jargmine

Y\NX|-n|-1]1|n
n | 0]0][5]0
1 Tl ofojo
-1 o004
-n | 0| 1 ]0]0

Leida I(X;Y) ning p (nagu seoses (1.37)). Leida cov(X,Y) ja X ning Y
korrelatsioonikordaja.

20. Toestada, et

I(X;X|Z) = H(X|Z)

[(X;Y|Z)=H(Y|Z) - HY|X, Z)

I[(X;Y|Z) = H(X|Z)+ H(Y|Z) — H(X,Y|Z)
I[(X;Y|Z)=H(X,Z)+H(Y,Z)— H(X,Y, Z) — H(Z).
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21.

22.

23.

24.

25.

26.

27.

28.
29.

Toestada, et

MH@ZMM@
I(X,Y;2) 2 (X3 2)

H(X.Y,Z) - H(X, )sm Z) — H(X)
I(X;Y|2) > I(YV; 2|X) = I(Y; Z) + I(X;Y).

Millal kehtivad vordused?
Leida X, Y, Z nii, et
I(X;YZ2)>1(X;Y)=0
0=I1(X;Y|Z) < I(X;Y).
Toestada, et
H(X[g(Y)) = H(X]Y).

Leida vektor (X,Y') nii, et X ja Y pole soltumatud, g pole iiksiihene funktsioon,
kuid iilaltoodud vorratus on vordus.

Olgu X = (Xi,...,X,) binaarsete komponentidega juhuslik vektor, kusjuures X
jaotus on jargmine:

Plx ) = 2-(=1 kui 3", z; on paarisarv;
AR (2 kui ), z; on paaritu arv.

Leida X; jaotus. Leida (X, X;;1) jaotus. Leida
I(Xl; Xz), I(Xz; XS’X1)7 I(X4§ X3\X1, X2)7 s >[<Xn; Xn71|X17X27 e 7Xn72)-

Toestada, et kui X — Y — Z, siis H(X|Z) > HX|Y), (X;2) < I(Y;Z) ja
I[(X;Y|Z) < I(X:Y).

Olgu { Py} Bernoulli jaotuste hulk, € ©, kus © on mingi {ilimalt loenduv hulk, 7 on
parameetri eeljaotus. Olgu X juhuslik valim ja T'(X) = > | X,. Leida H(0|T(X))
ja H(0|X). Veenduda, et informatsioonivorratus on vordus.

Olgu X7 — Xy — X3 — X,. Toestada, et

Olgu X — Xy =+ = X,,. Leida [(Xl;XQ,Xg, c 7Xn)

Oletame, et X; — Xy — X3 on Markovi ahel, kusjuures |X|| = n, |Xo| =k, | X3 =
m, kusjuures k < n ja k < m. Toestada, et "pudelikael" vihendab vastastikust
informatsiooni juhuslike suuruste X; ja X3 vahel, s.t. I(X;; X3) < logk. Jareldada,
et k =1 korral ei saa X3 kuidagi soltuda X3-st.
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30.

31.

32.

33.

34.

35.

36.

Olgu X juhuslik suurus 1opliku véddrtuste hulgaga, s.t. |X| = m. Leida viik-
seima veatOoendosusega mittejuhuslik hinnang juhuslikule suurusele X. Olgu P
vea toendosus, s.t. P, = P(X # X). Millise X jaotuse korral on Fano vorratus
vordus

H(X) = P.log(|X| — 1) + h(F.)?

Olgu P jaotus vaidrtuste hulgaga 1,2,.... Olgu selle moodu keskvaértus p. Toes-
tada, et

H(P) < plogp — (p— 1) log(p — 1),

kusjuures vorratus on vordus parajasti siis, kui P on geomeetrilise jaotusega. Seega
fikseeritud keskviartuse korral on geomeetriline jaotus suurima entroopiaga.

a) Toestada Jéreldus 1.11
b) Olgu Xo — --- = X,,. Toestada, et

H(Xo|X1) < H(Xo|X3) < H(Xo|X3) < -+ < H(Xo|X,).

Olgu { X, }°°, statsionaarne juhuslik protsess. Tdestada, et
H(X), X)) _ H(Xa, o Xo)
n - n—1

H(Xy,..., X,
(X >2H(XH|X1,...,X,L_1).
n

Toestada, et statsionaarse MA korral

H(Xa]X1) = =) (i) 3 Pylog Py,

)

Olgu X1, X, ... 1i.i.d. juhuslikud suurused, X; ~ P. Vaatleme juhuslikku ekslemist,
{Sn}nZos st

5020, SlzXh 52:X1+X2’7Sn:X1++Xn
Toestada, et juhusliku ekslemise entroopia on Hg = H(P).

Koer liigub juhuslikult tdisarvudel: ajahetkel 0 on koer positsioonil 0. Seejarel
hakkab ta toendosusega 0.5 liikkuma paremale ja samasuure toenédosusega vasakule.
Pérast esimest sammu jétkab ta lilkumist esialgses suunas toendosusega 0.9, toenéo-
sussega 0.1 vahetab ta suunda jne. Seega on koera tiiiipiline trajektoor niiteks

(Xo, X1,...) = (0,—1,-2,-3,-4,-3,-2,—-1,0,1,2,3,...).

Leida Hx.
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37. Vaatleme juhuslikku ekslemist ringil (0,1,...,1), s.t. l-le jargneb 0. Olgu

Sn = ile

kusjuures X; on iihtlase jaotusega juhuslik suurus, X5, X3,... on i.i.d. juhuslikud
suurused P(Xy = 1) = P(Xy =2) = 0.5. Leida Hg.
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2 Kodeerimine

2.1 Pohimoisted

Vaatleme tahestikku X. Oletame, et informatsiooni edasiandmiseks on meie kisutuses
kanal, mille kaudu saab edastada vaid siimboleid etteantud loplikust kodeerimistihestikust
D. Kui D := |D| < |X] (ja sellist olukorda vaatlemegi), tuleb iga tdhestiku X" tiht esitada
kodeerimistdhtede 1opliku stringina - koodisonana. Teisisonu, tihestik X tuleb kodeerida.
Niiteks kui D = {0, 1}, tuleb iga tihestiku X element kodeerida mingiks bitisonaks.
Olgu D* koikide kooditdhtedest moodustatud loplike sonade hulk. Olgu X* koikide téht-
edest moodustatud loplike sonade hulk. Formaalselt

D" =, D", XFi=U2 AT
Def 2.1 Kood (code) on kujutis
C: X — D"

Koode on viga palju ning viga erinevate omadustega. Niiteks on kood Morse tdhestik,
mille korral hulga X moodustavad tdhestik, numbrid ja kirjavaheméargid, kodeerimistah-
estik D koosned kolmest elemendist: punkt, kriips ja paus (tegelikult kuulub Morse
kodeerimistdhestikku ka pikk paus sonavahedeks, kuid iilalkirjeldatud tdhestiku kodeer-
imiseks pole seda vaja).

Def 2.2 Kood C' on iihene (non-singular) , kui ta on injektiivne, s.t. C(z;) # C(x;)
iga x; # x; € X korral.

Uhene kood kodeerib tihestiku iiheselt. Sellest iiksi ei piisa aga, et iiheselt kodeerida
mitmest tahest koosnevat sona x1xs - - - T,,.

Olgu C kood. Defineerime tema laiend:
C* X" =D, C(xy--x,) :=C(x1) - Clay).

Def 2.3 Kood C' on iiheselt dekodeeritav (uniquely decodable) , kui tema laiend
C* on iihene.

Uheselt dekodeeritava koodi korral vastab koodisonale C(x1) - - - C(x,,) vaid iiks originaal-
sona x ---x,. Kiill aga voib olla nii, et esimese tdhe x; dekodeerimiseks tuleb lugeda
kogu kodeeritud sona C(x1)---C(x,). On aga loomulik eeldada, et kood C' on selline, et
tdht 21 on dekodeeritud niipea kui see saab loetud (s.t. dekodeerimine toimub "on-line").
Sellisel juhul ei tohi tdhe 1 kood C(z1) olla iihegi teise tdhe koodi algus (vastasel juhul
ei teaks me, kas C(z1) on 7 kood véi jargneb veel midagi ning C'(z1) on vaid osa mingi
teise tihe koodist).

Def 2.4 Kood C on prefikskood (prefix-free, instantaneous) , kui ei leidu erinevaid
tahti x; ja x; nii, et tihe x; kood C(x;) on tihe x; koodi C(x;) algus (prefiks).
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Markused:

e Prefikskood on iiheselt dekodeeritav ja seetottu ka iihene.

e Termini prefikskood asemel oleks ehk loogilisem kasutada terminit mitteprefikskood,
kuid viimane tundub kohmakas. Inglisekeelses kirjanduses kasutatakse molemaid
termineid: nii prefix code kui ka prefix-free code.

Niited:

e Morse tidhestikus tdhistab iga koodi loppu paus. Seega on Morse tidhestik prefik-
skood. Ilma pausideta oleks ei oleks Morse tidhestik iiheselt dekodeeritav.

e Olgu X = {a,b, c,d} ning vaatame kahendkoode C}, Cy, C3 ja Cy, millised esitame
tabelina

X|C| Cy | Cs | Cy
0 0 10 | 0

0 | 010] 00 | 10
01 | 11 | 110
0 | 10 | 110 | 111

Kood C pole ithene. Kood C5 on kiill iithene, kuid pole iiheselt dekodeeritav.
Néiteks kodeerimissona 010 voib tdhendada nii tdhte b kui ka sonu ad ja ca. Kood
C3 on iiheselt dekodeeritav kuid mitte prefikskood. To6epoolest, saamaks teada,
kas jada 1100...0 kodeerib sona cbb...b voi dbb...b, peame lugema iile koik nul-
lid ning veenduma kas neid on paaris- voi paarituarv. Jarelikult ei saa me esimest
tdhte dekodeerida enne kui oleme kogu sona dra lugenud. See on sellepdrast nii, et
koodisona C(c) = 11 on koodisona C(d) = 110 prefiks. Kood C, on aga prefikskood
ning iga tihe saame dekodeerida niipea kui oleme tema koodi lugenud. Dekodeerige
"on-line" string 01011111010.

ISHENRw ] e
—_

2.2 Krafti vorratus

Prefikskood kui puu. Iga prefikskoodi voib esitada D-ndpuuna, kus igal sélmel on
maksimaalselt D jirglast ning igale lehele vastab iiks tdhestiku X tdht. Koodipuu igale
oksale vsatab iiks tdht kooditdhestikust D ning tee koodipuu juurest leheni ongi lehele
vastava tidhe kood.

Naiide: Olgu D = 3. Konstueerige jargmise koodi puu:

alblc|de| f]g]|h
1[2]010] 01202000001 | 002

Olgu C mingi kood. Olgu iga = korral [(x) := |C(x)| tdhele x vastava koodisona pikkus.
Ulaltoodud niites (a) = I(b) = 1, I(c) = I(d) = 3 jne. Jirjestades koikide koodisdnade
pikkused kasvavalt, saame

11212:1, l5:2, l4:l5216:l7218:3.
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On selge, et kui C' on prefikskood (saab esitada puuna), siis koodisonade pikkused ei
saa olla kuitahes liithikesed. Alljargnev Krafti vorratus annab kena tokke: suvalise pre-
fikskoodi koodisonade pikkused {l(z) : x € X'} on piisavalt pikad rahuldamaks teatud
tingimust. Veel enam, nimetatud tingimus on piisav selleks, et leiduks vdhemalt {iks
etteantud pikkustega prefikskood.

Teoreem 2.5 (Krafti vorratus) Olgu C : X — D* prefikskood, l; = (x;). Siis

Y pt<u (2.1)

Teistpidi, olgu {lz}‘;:'1 taisarvud. Kui nad rehuldavad vorratust (2.1), siis leidub prefik-
skood C : X — D* nii, et l; = l(z;) Vr; € X.

Toestus. Olgu D = {0,...,D — 1}. Toestame koigepealt, et iga prefikskoodi sonade
pikkused rahuldavad Krafti vorratust. Seda on véiga lihtne niidata juhul kui tdhestik X on
16plik. Seega vaatame alguses juhtu, kui |X'| = m < co. Olgu I* := max{ly,...,l,} < occ.
Esita kood D-puuna. Koodisonal (lehel) siigavusel I; oleks siigavusel [* tiipselt D'~
jarglast. Erinevatele lehtedele kuuluvad (potensiaalsed) jirglased siigavusel [* on 16iku-
matud. Seega nende summa ei iileta tippude arvu siigavusel [*. Et siigavusel [* saab
D-puul olla iilimalt D™ tippu, saame

ipl*li <D' < iD“ <1.
i=1 1=1

Toestame niiiid Krafti vorratuse lopmatu X korra. Vaatleme koodisona dids - - - d,. Olgu
0.d1dy - - - d, reaalarv, millele vastav D-ndarv on 0.dyds - - - d;;, s.t.

l; d.

Odidy -y =Y~ . (2.2)

j=1
Vaatleme koodisonale d;ds - - - d;; vastavat intervalli
[0.dydy -+ - dy,, 0.dydy - - - dy, + D7),

Siia intervalli kuuluvad need reaalarvud, millele vastavad D-ndarvud algavad 0.dyds - - - d,.
See on intervalli [0, 1] alamintervall, tema pikkus on D', Et C on prefikskood, on er-
inevatele koodisonadele vastavad intervallid 16ikumatud, nende intervalli pikkuste summa,

on seega viiksem voi vordne iihega ehk kehtib (2.1).

Teistpidi: olgu {ll}‘zf1 tingimust (2.1) rahuldavad tdisarvud. Sellisel juhul saab iihikinter-
valli jagada I6ikudeks pikkustega D~'. Toepoolest, reastame arvud /; nii, et I, < lp < ---.
Olgu esimene intervall [0, D7), teine [D~%, D~ + D=2) jne. Esimese intervalli — ,
pikkusele [; vastava intervalli — saame esitada kujul

0.0---0,
l
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kus koma jirel on [; nulli. Selle intervalli I16pp-punkti D~ esitus D-ndarvuna on

0.0---01.
I
Intervalli [0.0...0,0.0...1) kuuluvad parajasti need D-ndarvud, mille algus on 0.0...0.
Jirgmise intervalli — arvule I, vastava intervalli [D~", D=0 4 D~2) — algus- ja 1opp-punkti
esitame esitame D-ndarvuna, kus komakohti on [y (tuleta meelde, et Iy > [1). Seega teise
intervalli alguspunkt on

——
0.0---010---0. (2.3)

Sinna intervalli kuuluvad parajasti need arvud, mille D-nd esitus algab arvuga (2.3).
Jérgmise intervalli alguspunkti D~ + D=2 esitame D-ndkujul 0.d;ds---dj,. Paneme
tihele, arvu D~"" + D=2 D-ndkujus on (maksimaalselt) Iy kohta peale koma. Et I3 > I,
tihendab see, et 0.didy---d;, on sisuliselt arvu D~% + D~ D-ndkuju ning (vajaduse
korral) teatav arv O-e. Selle intervalli 16pp-punkti saab esitada l3-kohalise D-ndarvuna.
Arvule [; vastava intervalli algus on D™ + ... 4+ D7l-1 Selle arvu D-ndkujus on (mak-
simaalselt) /,_; komakohta. Et [; > [;_1, saame (vajaduse korral 0-de lisamisel) selle arvu
esitada kujul D-ndkujul (2.2). Arva D7 4 ... + Db esituseks D-nd kujul liheb samuti
vaja maksimaalselt [; kohta.

Kokkuvottes: arvule [; vastava intervalli algus ja lopp-punkti esitame D-nd kujul, kusju-
ures komakohti on [;. Sellest piisab molema arvu esitamiseks. Koodi C' konstrueerime
nii, et arvule [; (tdhele ;) seame vastavusse koodisona dids---d;;, st vastava itervalli
alguspunkti komakohad. Seega iga koodisona kuulub erinevasse intervalli. Intervallid
on loikumatud, mistottu on saadud kood prefikskood, sest koik need koodisonad, millele
dydy - - - d;, on prefiksiks kuuluvad iihte intervalli. =

Mirkus: Edaspidi toestame, et sama véiide iildistud iiheselt dekodeeritavate koodideni
(Teoreem 2.11).

Alternatiivse toestuse teisele implikatsioonile voib leida Yeung’i raamatust (Thm 3.1).

Niited:

e Vaatleme veelkord koodi Cy. Siin [y = 1, I = 2, l3 = I, = 3. Leiame reaalarvud,
millele vastavad kahendarvud on 0.d;ds - - - d;;. Saame

1 1 1 1 1
0y = 109 =0.15 =0. 1105 =0.119 = —4- = 0. A1l = —4+—+4- = 0.875.
0.0 =0, 0.10 =0.12 =0.5, 0.110, = 0.11, 2-|-4 0.75, 0 2 2+4+8 0.875
Vastavad intervallid (toestuse esimene pool) on
1 1 1 1
0,04 5),105,0.5+ 1), [0.75,0.75 + ), [0.875,0.875 + ).
Antud néite korral on Krafti vorratus vordus.
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e Teistpidi: olgu {1,2, 3, 3} koodisonade pikkused. Konstrueerime vastavate pikkustega
kahendkoodi. Lihtsaim voimalus selleks on konstrueerida vastav kahendpuu. Teo-
reemi toestuses kasutatud protseduur oleks aga jargmine.

Konstrueerime intervallid
i 11 1.1 11 1 1.1 1 1

Nz =+ )+ =t -4 =) =+ -+, 1)

Vastavad intervallid kahendkujul (komakohti on niipalju kui /;) on

1 2 3 3
~ =~ ~ =~ ~ N ~ =
0.0, 01), [0.710, 0.11), [0.T10, 0.111), [0. 11T, 1).

Koodisonad: 0, 10, 110, 111.
e Olgu koodisonade pikkused {2,2,3,3}. Intervallid

[01>[1 1)[1 1+1)[1+1 1+1+1)
1477047277272 872 872 8 87

Vastavad intervallid kahendkujul (komakohti on niipalju kui /;) on
[0.00,0.01), [0.01,0.10), [0.100, 0.101), [0.101, 0.110).
Koodisonad: 00, 01, 100, 101.

e Olgu koodisonade pikkused {1,1,2,3,3,3,3,3} ja konstrueerime vastava kolmend-
koodi. Intervallid

1, .1 2 1

2 2 2 12 1
0.). =Y [2. 24024+ 2 2424 —
[2+1+1 2+1+2)[2+2 2+2+1)[2 2_1_1 2_1_ +2)
3 9 273 9 2773 93 9 2773 9 2773 9 27

Vastavad intervallid 3-ndkujul
[0.0,0.1),]0.1,0.2),[0.20,0.21), [0.210,0.211), [0.211, 0.212), [0.212, 0.22), [0.220, 0.221), [0.221, 0.222).

Koodisnad: 0, 1, 20, 210, 211, 212, 220, 221.

2.3 Keskmine koodipikkus ja entroopia

Vaatleme olukorda, kus tdhed on juhuslikud, tdhe z € X téendosus on P(x). Olgu C
mingi kood ning I(z) = |C(x)|. Jaotusega P juhusliku tihe kodeerimiseks kulub seega

keskmiselt
L(C) = I(z)P(x)
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kooditahte. Suurust L(C') nimetame koodi C' keskmiseks pikkuseks.

Néide: Vaatleme koodi Cy. Olgu P(a) = 3, P(b) = 1, P(c) = P(d) = 5. Siis
1 1 1 1 7
L = - 2 ———
(C)=g5+ 2+ 3+3=1.

Paneme téhele, et ka H(P) = .

Alljargnevas otsime prefikskoodi, mille keskmine pikkus oleks voimalikult viike, sest sell-
ise koodi korral on (antud jaotusega) juhusliku t&he kodeerimine efektiivne. Sellist koodi
(kui see eksisteerib) nimetame optimaalseks. Eelnevas négime, et iga prefikskoodi ko-
rral peavad koodisonade pikkused rahuldama Krafti vorratust ning iga seda vorratust
rahuldavate pikkuste hulga korral on voimalik leida etteantud pikkustega prefikskoodi.
On ka selge, et selliseid koode on mitu (vihemalt |X|!). Kuidas aga valida nende seast
viikseima keskmise pikkusega koodi? Intuitiivselt on selge, et keskmine koodipikkus on
véike, kui viikese toendosusega tiahti kodeeritakse pikkade koodisonadega ning liihikesed
koodisonad hoitakse tdhtedele, mille toendosus on suur. Ka Morse tdhestik on iiles ehi-
tatud sarnase printsiibi pohjal. Kiill aga on Morse tidhestikus siimbol "paus" kasutusel
vaid koodisona lopu tdhistusena, mistottu seda ei saa kasutada koodisona keskel, samuti
el saa mitut pausi kasutada korvuti. Seega on kooditdhestikus olevas kolmest siimbolist
iihe kasutamisele seatud ranged kitsendused, mistottu kindlasti leidub Morse tdhestikust
viiksema keskmise pikkusega kolmendkood.

Jargnev teoreem annab alumise tokke antud koikide prefikskoodide keskmistele pikkustele.
Selgub, et iihegi prefikskoodi keskmine pikkus ei saa olla viiksem jaotuse P entroopiast.

Teoreem 2.6 Olgu C' : X — D* prefikskood. Siis

kusjuures vordus kehtib vaid siis, kui l(z) = —logp, P(z), Vo € X.

Toestus.
1
L(C) — Hp(P) = Zz ZP ) log ) Plr)
:—ZP )logp D —i—ZP )logp P(z).
Olgu
D—l(z)
=Y D™ R(z):= :
=0 )=
Siis P(a) .
Xz
L(C) — ZP 1gDR$) logp, ¢ = D(P||R) +logp, — > 0,
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sest D(P||R) > 0 ning Krafti vorratusest jareldub, et log,, 1 > 0.

Ulalolev vorratus on vordus vaid siis, kui P = R ja ¢ = 1. See aga kehtib parajasti siis,
kui iga € X korral P(z) = D7!®)_ Tarvilik tingimus selleks vorduseks on, et iga v € X
korral on —log,, P(z) tiisarv. m

Optimaalsed koodid seost (2.4) rahuldavate jaotuste korral. Eelmisest teoreemist
jareldub, et kui jaotus P on selline, et

1
IOgD W S Z7 Vo € X, (24)

siis on viikseima keskmise pikkusega koodi kerge konstrueerida: vota I(z) = log, %.
Nimetatud pikkused rahuldavad Krafti vorratust (vordusena) ning vastavate pikkustega
koodi voib defineerida niiteks nii nagu Krafti vorratuse tarvilikkuse toestuses. Selliselt
konstrueeritud koodi keskmine pikkus on Hp(P) ning iilaltoodud teoreemist jarelduvalt

on selline kood optimaalne.

Niide: Jaotus, mis rahuldab seost (2.4) on néiteks

albleldle|f]g
1171 ‘ 1 L 1

8
Pikkused on {l(x)}.cx = {5,5,4,4,4,3,3,2,2}. Vastava kahendkoodi konstrueerimiseks
on lihtsaim voimalus konstrueerida 5-astmeline kahendpuu ning hakata seda vastavalt sii-

napikkustele redutseerima. Teine voimalus on formaalselt jargida Krafti vorratuse toes-
tuses kasutatud skeemi: konstrueerida intervallid

= .

| 16 |56 [ 5|
32 | 3 6 | 16 16 | 8

N
—

0,272), 272,272+ 272), 271,27 4 27%) 27 + 270 271 4 270 + 279,

[2—1 + 2—2’ 2—1 + 2—2 + 2—4)’ [2—1 + 2—2 + 2—4’ 2—1 + 2—2 + 2—3)’

[2—1 + 2—2 _|_ 2—37 2—1 _|_ 2—2 + 2—3 + 2—4)’ [2—1 + 2—2 + 2—3 + 2—47 2—1 + 2—2 + 2—3 + 2—4 + 2—5)
27 +272 423 27 1270 1),

Vastavad intervallid kahendkujul (2.2)

0.00,0.01), [0.01,0.10), [0.100,0.101), [0.101, 0.110), [0.1100, 0.1101), [0.1101, 0.1110),
0.1110,0.1111),[0.11110,0.11111), [0.11111, 1).

Kood:

o | b | e | d | e |Sf]g|h]|d
11111 | 11110 | 1110 | 1101 | 1100 | 101 | 100 | 01 | 00
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Shannon-Fano kood. Paraku ei rahulda koik toendosusjaotused seost (2.4) ning selliste
jaotuste korral pole iilaltoodud protseduuri voimalik rakendada. Modifitseerime seda aga
nii, et arvu log, ﬁ (mis ei pruugi olla tdisarv) asemel votame koodisona C'(z) pikkuseks

selle tilemise téisosa s.t. .

l(z) = [logp Tl’)]' (2.5)

On selge, et saadud koodipikkused {/(z)} rahuldavad Krafti vorratust ning seetottu
leidub vastavate pikkustega prefikskood C. Kirjeldatud protseduuri abil saadud koodi
nimetatakse Shannon-Fano koodiks. Teisisonu on kood C' Shannon-Fano kood para-
jasti siis, kui iga tdhe € X korral kehtib (2.5).

Kui palju me aga sellise imardamise kaudu kaotame keskmises koodipikkuses? Et

[log ﬁ} < logp ﬁ +1,
slis
:%:P(x lOgDP l <ZP 1ogDP1 @ +1=Hp(P)+1.
Seega kehtib jareldus.
Jareldus 2.1 Alati leidub prefikskood C' : X — D* nii, et
Hp(P) < L(C) < Hp(P) + 1.

Néide: Olgu P iihtlane iile viie tihe, s.t. P(z;) = £, 7=1,...,5. Siis

= log5 ja [log 1=3.

P()

Uks voimalik Shannon-Fano kood:

C(x1) =000, C(x9) =001, C(x3)=010, C(x4) =011, C(z5)=110. (2.6)
Sellise koodi keskmine pikkus on 3. Seega kehtib
H(P)=1logh < L(C)=3<logl0o = H(P)+ 1.
On aga kiillaltki lihtne konstrueerida lithema keskmise pikkusega kahendkoodi kood-
ipikkustega {3, 3,2, 2,2} (kuidas?). Sellise koodi keskmine pikkus on £ = 2.4.
2.3.1 Valesti hinnatud toeniosused

Shannon-Fano koodi konstrueerimiseks on vaja teada tdhtede toendosusjaotust P. Ole-
tame aga, et oleme konstrueerinud Shannon-Fano koodi hoopis jaotuse @) abil, s.t. meie
kdsutuses olev informatsioon tdhtede jaotuse kohta on ebatidpne. On selge, et sellisel
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juhul on meil {isna vahe lootust saada optimaalsest voi sellele suhteliselt 1dhedast jaotust.
Jargnev teoreem viidab, et jaotuse () pohjal konstrueeritud Shannon-Fano kahendkoodi
keskmine pikkuse alumine toke pole mitte entroopia H(P) vaid H(P) 4+ D(P||Q), iilem-
ine toke on pole mitte H(P) + 1 vaid H(P) + D(P||Q) + 1. Kui @ ei erine K-L mottes
palju tiahtede tegelikust jaotusest P, kiditub () pohjal konstrueeritud Shannon-Fano ka-
hendkoodi keskmine pikkus sarnaselt P pohjal konstrueeritud Shannon-Fano kahendkoodi
keskminse pikkusega.

Teoreem 2.7 Olgu P tdhtede tegelik jaotus. Olgu

1
lg(x) := [log W1
Kehtib
H(P)+ D(P|Q) < ) lo(x)P(x) < H(P) + D(P||Q) + 1. (2.7)

Toestus. Ulemise tokke leiame jirgnevalt

1 1
%: lo(@)P(x) = Y Tlog o) P < Z P(z) <log o 1)

x

= D(P|Q)+ H(P)+ 1.

Alumise tokke leidmine on tlilesanne 1. m

2.4 Huffmani kood
2.4.1 Huffmani koodi konstrueerimine

Shannon-Fano meetod andis iisna hea keskmise pikkusega prefikskoodi; kui jaotus P
rahuldab seost (2.4), on Shannon-Fano kood optimaalne. Ké&esolevas osas kirjeldame
aga protseduuri, mis 1opliku tdhestiku X korral alati garanteerib optimaalse koodi. Selle
protseduuri abil saadud koode nimetatakse Huffmani koodideks .

Niide: Olgu X = {a,b,c,d,e}. Jaotus P olgu

Olgu D = 2. Tuletame meelde, et iga prefikskood on esitatav puuna, kus lehtedele vas-
tavad téhestiku X tdhed. Seega on kahendkoodi konstrueerimine sisuliselt kahendpuu
konstrueerimine. Huffmani protseduur puu leidmiseks on jargnev: leia kaks koige vaik-
sema toendosusega tihte ja iithenda nad eelviimasel tasemel. Antud néite korral ihenda
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tdhed b, c. Summeeri vastavad toendosused, antud juhul siis 0.1 ja 0.15 ning vaata vihen-
datud tahestikku {a, {b,c},d, e} toendosustega vastavalt 0.35,0.25,0.2,0.2. Saame n.n.
vahendatud jaotuse
a |[{bc}]| d | e
0.35 | 0.25 [ 0.2 0.2

Niiiid leia jargmised kaks koige viiksema toendosusega tahte, antud juhul d ja e ja iihenda
nad uueks tdheks. Nii vihendame eelmist jaotust veel iihe tdhe vorra ning uus jaotus on

jargmine
a_|{bc}|{d.e}
0.35] 025 | 0.4

Otsi jélle kaks koige viiksema toendosusega téhte ja iihenda need jirgmisel tasemel. Saad
uue tiahestiku {a, b, c}, {d, e} ja uue jaotuse

{a,b.c} | {d.e}
06 | 04

Nimetatud tdhestikus on vaid kaks tdhte, mis iihinevad puu esimesel tasemel. Saad ka-
hendpuu, mille iga hargnemine téhista 0 ja 1-ga. Tee juurest leheni ongi vastava tidhe
(igale lehele vastab tdht) kood. Néiteks saame koodi C, kus

Cla)=00 C(b) =010 C(c)=011 C(d)=10 C(e)=11.
Selle koodi keskmine pikkus L(C) = 23 + 3% = § = 2.25. Jaotuse P entroopia on
H(P) = —0.3510g(0.35) — 0.110g(0.1) — 0.1510g(0.15) — 0.410g(0.4) = 2.202.

Kui viikseimate toendosustega paar pole iihene, vali Huffmani protseduuris suvaline neist.
Liithima pikkusega koodi annab iga valik.

Ulaltoodud niide kirjeldas kahendkoodi (kahendpuu) konstrueerimist Huffmani meetodil.
D-ndkoodi konstrueerimine kiib pohimotteliselt sama moodi: igal sammul iihenda D vaik-
seima toendosusega tidhte ning liida vastavad toenfdosused. Kui selline protseduur jouab
16puni k£ 4+ 1 sammuga, on konstrueeritud puus k + 1 solme ja k(D — 1) + D lehte. Seega
peab téhestikus olema k(D — 1)+ D téhte. Kui see aga nii ei ole, peame téhestikku lisama
sobival hulgal (mitte rohkem kui D —2) pseudotéhti, mille tdenfiosus on 0. Selliste téhtede
lisamine ei muuda jaotust P, kiill aga voimaldab 14bi viia Huffmani protseduuri nii, et
viimasel saamul tihendatakse D tdhte. Paneme tdhele, et pseudotihtede mittelisamine
ja protseduuri ldbiviimine nii, et viimasel sammul iihendatakse vihem kui D tdhte voib
oluliselt suurendada koodi keskmist pikkust.

Naiited:

e Olgu jaotus P ja tdhestik X jargmine
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Olgu D = 3. Et 6 # 3 + k(3 — 1), siis peame lisama iihe pseudotihe. Uus tabel on
jargmine
a‘b‘c‘d‘e‘f‘*
0.25[025[02[01]01[01]0

Huffmani koodi produtseerime niitid jirgmiselt: esimesel sammul iihendame tihed
e, f ja x; jairgmisel sammul iithendame {e, f,*}, d ja ¢; iilejargmisel sammul {ihen-

dame {c,d,e, f,x}, b ja a.

Huffmani kood:
C(a) =1, C(b) =2, C(c) =01, C(d) =02, C(e) =000, C(f)=001, C(x) = 002.

e Vaatleme veelkord koige esimest nédidet. Olgu D = 4. Et |X| = 5, pole tahtede arv
vordne arvuga k(D — 1) + D (mitte iihegi k korral). Lisades 2 pseudotéhte, saame
|X|=7= (D —1)+ D. Uus jaotus on

a | b c] d | e |x]x
0.35[02]02]015[01[0|0

Esimesel sammul votame kokku tédhed d, e, *, *; teisel sammul koik iilejadnud.

Huffmani kood:
C(a)=0, C(b)=1, C(d) =2, C(e) =30, C(f) =31, C(x) =32, C(x)=0.

Paneme tahele, et Huffmani protseduur on rakendatav vaid 16pliku tdhestiku korral, sest
kui |X| = oo, pole voimalik leida viiseimaid tGenédosusi. Jargnevas toestame, et 16plike
X korral garanteerib Huffmani meetod optimaalse koodi. Eelkdige paneme tihele, et
optimaalne kood leidub. Tdepoolest, kui |X| < oo, siis otsime minimaalse keskmise
pikkusega koodi sisuliselt 1oplikust koodide hulgast ning seetottu optimaalne kood leidub
(kuid pole iildiselt iihene).

2.4.2 Huffmani koodi optimaalsus
Olgu X = {x1,...,2,,}. Uldisust kitsendamata eeldame, et
P(z1) > P(xg) > -+ > P(x,). (2.8)

Teame, et leidub vihemalt {iks optimaalne kood. Huffmani koodi optimaalsuse toestus
pohineb optimaalse koodi alljargnevatel omadustel.

Esimene omadus vaidab, et iga optimaalne kood seab viiksema toendosusega tdhtedele
vastavusse pikemad sonad.
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Viide 2.1 Olgu C optimaalne. Siis l(x;) > l(z;) vaid siis, kui P(x;) < P(x;).

Toestus. Oletame vastuviiteliselt, et leiduvad x; ja z; nii, et P(z;) > P(x;) ja l(z;) >
l(z;). Vahetades koodis C' sonad C(z;) ja C(x;) saame uue koodi C*. Et aga

L(C) = L(C7) = P(:)l(z:) + P(x)l(z;) — (P(x:)l(2;) + P(x)l(2:))
= (P(z:) — P(x;))(I(z:) — U(x;)) >0,

ei saa C olla optimaalne. m

Vastavalt viitele 2.1 leidub optimaalne koodi nii, et
lx) <Uzo) < - < Uxpy). (2.9)

Def 2.8 Koodisonad d',d" € D* on vennad (siblings), kui nad on ihepikkused ja er-
inevad tksteisest vaid viimase simboli poolest.

Huffmani kahendkoodi optimaalsus. Vaatleme olukorda D = 2, s.t. toestame vaid
Huffmani kahendkoodi optimaalsuse. Sellisel juhul on igal koodisonal vaid iiks vend.
Jiargnev omadus véidab, et leidub optimaalne kood nii, et kahe koige viiksema toenéo-
susega sona koodid on vennad.

Viide 2.2 Leidub optimaalne kood C' nii, et C(zp-1) ja C(xy) on vennad.

Toestus. Olgu C optimaalne kood. Jirjestame tdhed nii, et kehtivad vorratused (2.8)
ja (2.9)). Seega C(x,,) on pikim (vorratused (2.9)). Et C(z,,) on pikim, ei saa koodisona
C(zy,) vend olla iihegi teise koodisona prefiks. Oletame, et C(z,,) vend pole iihegi téhe
kood. Sellisel juhul saaksime aga koodisona C(x,,) vihendada iihe vorra, mis on vastuolus
koodi C optimaalsusega. Seega leidub z; nii, et C'(z,,) ja C(x;) on vennad. Kui j = m—1,
siis véiide kehtib. Kui j < m — 1, siis vorratustest (2.9) saame, et I(z;) = (Ty—1) =
l(z,,), mistottu voime koodisonad C(z;) ja C(z,,—1) dra vahetada. Et l(z;) = l(z,,), siis
selline vahetamine ei muuda keskmist koodipikkust (optimaalsust), vorratusi (2.9) ega ka
vorratusi (2.8). m

Teoreem 2.9 Huffmani kood on optimaalne kahendkood.

Toestus. Viitest 2.2 teame, et leidub optimaalne kahendkood C' nii, et C(x,,_1) ja
C(x,,) on vennad. Huffmani koodil on sama omadus. Liigume niiiid mAPAPda koodi C
puud edasi, asendades C(z,,—1) ja C(x,,) nende iihise tiivega. Nii saame uue koodi C’,
mis vastab redutseeritud (vihendatud) jaotusele, kus z,, ja x,,—; on kokku voetud iiheks
tiaheks y toendosusega p,, + pm_1. Kood C’ on keskmiselt lithem kui C', nende pikkuste
vahe on

L(C) - L(Cl> = lpm + lpm,1 - (pm +pm*1)(l - 1) = Pm + Dm-1,

kus | = l(x,) = l(zm-1). Seega ei soltu koodi pikkuste vahe nende struktuurist, mis-
tottu C on optimaalne parajasti siis, kui C’ on optimaalne. Teisisonu, iga vihendatud
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tahestikul antud optimaalsest koodist saame originaaltdhestiku optimaalse koodi, lisades
y koodile siimboli "0" (ja saades x,,—; koodi) ning siimboli "1" (ja saades x,, koodi).
Seega oleme optimaalse koodi leidmise probleemi taandanud optimaalse koodi otsimise
probleemile vihendatud téhestikul. Viitest 2.2 teame, et vihendatud jaotusel leidub op-
timaalne kood nii, et kahe viiikseima tdeniosusega tihe koodid on vennad. Uhendame
need tidhed, just nagu Huffmani protseduuris, ning vihendame tdhestikku veel iihe tdhe
vorra. Niiiid otsime optimaalset koodi uuel tdhestikul jne. Lopuks vihendame tahestikku
kahe tdheni ning sellisel juhul on optimaalne kood ilmne. Seega oleme toestanud, et Huff-
mani protseduur annab meile optimaalse kahendkoodi. m

Analoogiliselt saab toestada, et Huffmani kood on optimaalne D-ndkood. Skitseerime
toestuse.

Uldisust kitsendamata eeldame, et tihestikus on D + k(D — 1) tihte. Kui see nii pole,
lisame sobiva arvu pseudotdhti. Pseudotdhed ei suurenda keskmist koodipikkust, seega
optimaalne kood laiendatud téhestikul on optimaalne ka esialgsel tihestikul.

Def 2.10 Utleme, et D-ndpuu on tdielik, kui igal tema solmel on tipselt D alluvat.

Tiielik puu rahuldab Krafti vorratust vordusena. Téielikul puul on D + (m — 1)(D — 1)
lehte, kus m on s6lmede arv.

Jiargnevas paneme tihele, et iga optimaalne koodipuu on téielik, sest
e optimaalse puu igal solmel on D alluvat v.a. juhul, kui alampuu pikkus on 1;
e mittetdielikud alampuud saavad olla vaid viimasel tasemel;

e keskmist pikkust suurendamata voib viimasel tasemel olevaid mittetéielikke alam-
puid muuta nii, et neid jidb maksimaalselt {iks;

e kui tdhestikus on J := D + k(D — 1) téhte (puul on D + k(D — 1) lehte), ei saa
optimaalsel puul olla vaid iihte mittetdielikku alampuud. Toepoolest: oletame, et
optimaalsel puul on solm, millel on vihem kui D jarglast. Et puu on optimaalne,
saab sellele solmele vastava alampuu pikkus olla vaid 1. Olgu selle solme jérglaste
arv a. Et puu on optimaalne, ei saa a olla 1, millest eelAPeldu téttu 2 < a < D — 1.
Elimineerides ainsa mittetédieliku alampuu (ning vaadeldes solme uue lehena) saame
taieliku puu, millel on J —a+1= D+ k(D — 1) —a+ 1 lehte. Saadud uus puu on
taielik, mistottu teme lehtede arv peab olema D + m(D — 1). See pole aga antud a
korral voimalik.

Niiiid on Huffmani D-nd koodi optimaalsuse toestus analoogiline Huffmani kahendkoodi
optimaalsuse toestusega. Véide 2.1 ja vorratused (2.9) kehtivad suvalise D korral. Ar-
vestades, et leidub alati tdielik optimaalne koodipuu, on kerge nédhe, et kehtib viite 2.2
analoog: leidub optimaalne D-ndkood C' nii, et C(zp-p+1), C(@m-—pi2),...,C(xy) on
vennad. Toepoolest, viikseima toendosusega leht peab olema pikima koodisonaga; et puu
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on taielik, peavad koodi kuuluma ka koik tema vennad, optimaalsuse tottu peavad ven-
dadele vastavad lehed olema voimalikult viikese toendosusega.

Teoreemi 2.9 iildistus D-ndkoodidele on niiiid ilmne (veendu!).

Markused:

e Mitte koik optimaalsed koodid pole Huffmani koodid, s.t. leidub optimaalseid koode,
milliseid pole voimalik konstrueerida Huffmani meetodil.
Olgu néiteks X = {a,b,c,d, e, f}, koik tdhed olgu vordse toendosusega. Vaatleme
koode C' ja Cs, mis on antud tabelitena

taht \ kood Cl Cg
a 11 | 111
b 101 | 110
¢ 100 | 101
d 011 | 100
e 010 | 01
f 00 | 00

Kood C5 on Huffmani kood, kui kood C; mitte (iilesanne 5), molemad on opti-
maalsed.

e Optimaalse koodi keskmine pikkus ei pruugi alati olla Hp(P). Toepoolest, eelmises

niites on optimaalse (Huffmani) koodi keskmine pikkus 5, mis on rangelt suurem
entroopiast log6. Teame, et Huffmani koodi keskmine pikkus L rahuldab alati
vorratusi

On kerge veenduda, et antud tokkeid ei saa parandada. Et alumine toke voib olla
tdpne, seda me juba teame. Veendume niiiid, et L voib olla kuitahes lihedal arvule
Hp(P) + 1. Selleks vaatleme jaotust (k on piisavalt suur)

| d
1

= O
=y

Huffmani kahendkoodi pikkused on [(a) = I(b) = 3 l(c¢) = 2 I(d) = 1 (kui k on
piisavalt suur), millest L = % +1- % — 1, kui k£ — oco. Samas entroopia

H(P)Z%10g/€—(1—%)10g(1—%)—>0, i k= o0,

Seega H(P)+1—L — 0, kui k — oc.
Milline on iilaltoodud jaotuse Shannon-Fano kood?
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e Ulaltoodud niidetest voib jaida mulje, otsekui oleks Shannon-Fano koodi sonapikkused
alati pikemad Huffmani (v6i mone teise optimaalse koodi sonapikkustest). Kon-
tranditena vaatleme jaotust

[ bleld
T

sl

Huffmani koodisonade pikkused on vastavalt (2,2,2,2) voi (1,2,3,3). Seega leidub

Huffmani kood nii, et [(¢) = 3. Shannon-Fano koodi korral on aga I(c) = 2.

a
1
3

e Lopmatu tdhetiku korral Huffmani koodi iildiselt defineerida ei saa, sest selle kon-
strueerimine alagab altpoolt (koige viiksema toendosusega tahtedest). Teatud tingimus-
tel on Huffmani kahendkoodi véimalik defineerida ka "tiikikaupa", st iilalt alla.
Kirjeldame {iht sellist olukorda. Olgu toendosused jirjestatud

PL=p2 >

Oletame, et leidub lopmata palju aatomeid p,,, mis rahuldavad tingimust

DPm > Zpi =:pr.. (2.10)
1>m
Kujutagem korraks ette, et tdhestikus on 16plik arv (kuid viga palju) tdhti. Olgu
Prmys Pmgs - - - tingimust (2.10) rahuldavad aatomid. Et p,,, rahuldab tingimust (2.10),
on selge, et Huffmani protseduuri jargides (16pliku hulga téhtede korral on see voi-
malik) thendatakse koik aatomid p;, kus j > m4 enne p,,, (tuletame meelde, et me
vaatleme olukorda D = 2). Seega, mingil hetkel on protseduur joudnud jaotuseni

plaan"'apmnp:nl' (211)

Et jaotuseni (2.11) joutakse suvaliste aatomite p;, j > my korral (kui vaid nende
summa on pj, ), siis voib 16pmatu koodi konstrueerimist alustada jaotusele (2.11)
vastava kahendpuu konstrueerimisest. Edasi asume konstrueerime alampuud, mis
véljub solmest py, . Selleks vaatleme jaotust, mis on proportsionaalne vektoriga

Pmi+1, Pmq+25 - - - 7pm27p:’<n2‘ (212)

Arvud (2.12) ei moodusta toendosusjaotust, sest nende summa on pj, . Huffmani
protseduuri seisukohalt pole kogusumma oluline. Argumenteerides nagu iilalpool,
ndeme, et solmest p; =~ viljuva alampuu konstrueerimist voime alustada aatomitele
(2.12) vastava alampuu konstrueerimisest. Edasi alustame sélmele p;, vastava alam-
puu konstrueerimist. Selleks vaatleme aatomeid

Pma+1, Pma+2, - - - 7pm37p:13a (213)

konstrueerime neile vastava puu jne. On selge, et kirjeldatud protseduur ei soltu
tahtede hulgast ning {ildistub seega lopmatule tdhestikule.

Niide: Kui jaotus on geomeetriline parameetriga p, kus p > 0.5, siis (2.10) ke-
htib iga m korral (veendu selles!).
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2.5 TUheselt dekodeeritavad koodid

[ga prefikskood on iiheselt dekodeeritav, vastupidine ei kehti. Et iiheselt dekodeeritavate
koodide klass on laiem prefikskoodide klassist, on loomulik oletada, et iiheselt dekodeer-
itava koodi sonapikkused voivad olla "liihemad" kui prefikskoodi sonadpikkused. Pre-
fikskoodi sonapikkuste alumise tokke andis (teatavas mottes) Krafti vorratus. Jérgnev
teoreem viidab, et Krafti vorratus kehtib ka iiheselt dekodeeritavate koodide korral ehk
itheselt dekodeeritavavate koodidide sonapikkused ei saa tegelikult olla oluliselt "lihe-
mad" prefikskoodide sonapikkustest. Teisisonu: {iiheselt dekodeeritavate koodide klass
pole sisuliselt laiem prefikskoodide klassist.

Teoreem 2.11 Olgu C' tihestikul X antud dheselt dekodeeritav kood, koodipikkustega
{l(x)}. Siis kehtib Krafti vorratus

d D <. (2.14)

Toestus. Vaatleme erijuhtu, mil X on loplik.
Olgu C* koodi C k-laiend, s.t.

CF: X% =D, CFay--xp) = Czy) - Olay).

(Z D—l(w)>k _ Z Z Z D) p=lz2) . p—Uek)

r1€X 120X rLEX

_ Z DUz p=l@2) . p—U=zx)

r1T0- TR EXE

— Z D),

zkeXxk
kus zF := T1-- Tk ja
Wxk) o= 1(xy) 4+ -+ U(2p) = |CF ()]

Olgu a(m) selliste k-sonade arv, milliseid C* kodeerib m-sonaliste koodisonadega. For-
maalselt

a(m) = [{z" € X% 1(z*) = m}|.

Kasutame niiiid asjaolu, et X on loplik. Olgu

Loz = max [(x).

On selge, et

max [(2%) = klpas-
zkeXxk
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Seega

kl"La:L‘

(> D‘l(‘”)>k - 3 D =Y a(m)D,

zhexk m=k

Niiiid kasutame asjaolu, et C on iiheselt dekodeeritav, millest johtuvalt C* on iihene.
Fikseerime m ja vaatleme sonu hulgast {z* € X* : [(2*) = m}. Pikkusega m koodisonu on
iilimalt D™. Et C* on iihene, vastab erinevale koodisonale erinev z*, mistottu a(m) < D™.
Seega

klmaz klmax
(Z D—zw)’“ =3 amD ™ <> DD = ks
T m=k m=1

ehk

Vorratuse vasak pool ei soltu k-st. Jarelikult

ST D7 < i (Klyae) * = 1.

k—o0

Lopmatu X korral ei ldhe iilaltoodud tégstus 1dbi, sest [q: = 0o0. Vaatleme 16plikku
alamtihestikku X, = {z1,...,z,,} C X. Uheselt dekodeeritava koodi C' ahend alamtih-
estikule &}, on ikka iiheselt dekodeeritav. Alamtihestik on 16plik, seega

Z D@ < 1.

xGXm

Kehtib iga m korral, millest

Paneme téhele, et triviaalselt kehtib ka vastupidine vaide: kui etteantud koodipikkused
rahuldavad Krafti vorratust, siis leidub nende koodipikkustega iiheselt dekodeeritav kood.
Teame ju, et Krafti vorratuse kehtivuse korral leidub vastavate koodipikkustega prefik-
skood. Iga prefikskood on aga iiheselt dekodeeritav.

Ulaltoodud teoreemist jareldub, et iitheselt dekodeeritavad koodide ja prefikskoodide kood-
ipikkuste hulgad langevad kokku. Teisisonu, igale iiheselt dekodeeritavale koodile vastab
vihemalt liks samade koodipikkustega prefikskood. See aga tdhendab, et igale iiheselt
dekodeeritavale koodile vastab sama keskmise pikkusega prefikskood ning optimaalne pre-
fikskood on ka optimaalne iiheselt dekodeeritav kood. Seega prefikskoodide hulga laien-
damine iiheselt dekodeeritavate koodideni ei anna keskmise koodipikkuse mottes mingit
efekti. Seetottu tegeletaksegi informatsiooniteoorias valdavalt prefikskoodidega, sest vi-
imased esituvad puuna.
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2.6 Sonade kodeerimine

Olgu X1, ..., X} juhuslik vektor tihestikul X* (juhuslik sona). Olgu C' téhestiku X’ mingi
kood. Selle koodi k-laiend C* kodeerib sonu X*. Samas voib hulka X* vaadelda omaette
tahestikuna ning piitida seda omaette (voimalikult optimaalselt) kodeerida. Kumb on
efektiivsem — kas kodeerida optimaalselt tdhestik ja laiendada siis seda sonadele voi
kodeerida optimaalselt sonu?

Olgu Cj, : X* — D* sonade kood, koodipikkustega [(z*). Et selle koodi keskmine pikkus
kasvab koos k-ga, huvitume koodipikkusest tdhe kohta:

1 1 i N
Ly =2 L(Cy) = ¢ > PEaMi(at) = TEUX, . X,

zkexk

Sama jaotusega tihed. Uurime kdigepealt tihtede koodi C laiendit C*. On lihtne
veenduda, et kui X, ..., X; on sama jaotusega P (kuid mitte ilmtingimata soltumatud)
juhuslikud suurused, siis (iilesanne 14 ) L(C*) = kL(C'), millest

Li(C*) = L(O). (2.15)

Seega keskmiselt kulub {ihe tihe kodeerimiseks ikka L(C') iihikut. Kui C' on optimaalne,
SIS
Hp(P) < Ly, < Hp(P) + 1,

kusjuures parempoolne vorratus voib olla kuitahes téapne.

Vaatleme niitid parimat sonade koodi. Jareldusest 2.1 saame, et leidub selline kood CY,
et
HD(X17. .. ,Xk) < L(Ck) < HD(X17. .. ,Xk) + 1,
millest Ho(X \ Ho(X v )
D( 17]{;"7 k>§Lk§ D( 17k:--7 k)_I_E

(2.16)

S6ltumatud ja sama jaotusega (i.i.d) tdhed. Oletame niiiid, et tdhed X7, ..., X on
soltumatud ja sama jaotusega, X; ~ P. Siis Hp(X1,..., Xy) = Zle Hp(X;) = kHp(P)

ning seosest (2.16) saame

Seega alati leidub kood, mille korral Ly erineb Hp(P)-st {ilimalt % vorra. Suurendades
k-d kui vaja, saame entroopiale Hp(P) kuitahes ldhedale. Vorratust (2.17) kutsutakse ka
Shannoni esimeseks teoreemiks (noiseless coding theorem). Pane tihele, et selline kood
pole iildiselt saadav optimaalse tdhtede koodi laiendina.
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Statsionaarne protsess. Olgu X = X;, Xy, ... statsionaarne protsess, X; ~ P. Olgu
Cy : X* — D* optimaalne kood. Tuletame meelde, et statsionaarsel protsessil on alati
entroopiamaar

Hp(Xy, ..., Xk)
k

(Kui D > 2, defineerime entroopiamééra analoogiliselt. Meil on D fikseeritud, mistottu

jatame ta téhistusest vilja.) Seosest (2.16) saame, et

Hp(Xy,..., Xk)
k

Seos (2.18) annab entroopiaméiirale sisu: Hy on protsessi kodeerimise keskmine pikkus
tahe kohta.

HX:hllC’l'l :hlgnHD(Xk|X17an—1)§H(P)

L* = liin Ly = hin = Hyx. (2.18)

Kokkuvotteks: Kui X = Xj, Xs,... on iid. (viga spetsiifiline statsionaarne protsess),
siis parima sonade koodi ja pikkade sonade korral keskmiselt kulub iihe tdhe kohta L(P)
kooditahte. Sellisel juhul voidame sénakaupa kodeerides vaid seda, et (piisavalt suure k
korral) on Hp(P) kuitahes tépselt saavutatav.

Kui Hx < Hp(P), siis keskmine koodipikkus iihe tidhe kohta v6ib olla oluliselt viik-
sem kui iga tdhte eraldi kodeerides.

Niide: Olgu X statsionaarne MA iileminekumaatriksiga I, (k seisundit). Sellisel juhul
H(P) = logk, kuid Lk = HX =0.

2.6.1 TUheselt dekodeeritava koodi muutmine prefikskoodiks

Igale iiheselt dekodeeritavale koodile saab vastavusse seada samade koodipikkustega pre-
fikskoodi. Kui kodeeritavaid t&hti (neid on |X|) pole palju, voib ettentud koodipikkustega
koodipuu konstrueerimne olla suhteliselt lihtne. Uldiselt voib selleks kasutada Kraffti vor-
ratuse toestuses kasutatud votet. Praktikas voib see olla suhteliselt keerukas, isedranis
pikkade sonade X* kodeerimisel. Jirgnevas vaatleme, kuidas suvalise iiheselt dekodeeri-
tava koodi saab muuta prefikskoodiks sobiva prefiksi lisamisel. Prefiksi lisamine teeb kiill
koodi pikemaks, kuid seda saab teha nii, et L* ei muutu, s.t. pikkade sonade kodeerimisel
on vahe tiihine.

Eliase delta kood. Alustame lemmast.

Lemma 2.1 (Eliase lemma) Leidub prefikskood E : {1,2,...} — D* nii, et
|E(n)| = logpn + o(logpn) (2.19)

Toestus. Iga naturaalarvu kodeerime kolmes osas



kus w(n) on arvu n D-ndesitus. Seega
w(n) =logp(n+1)7

Teine osa v(n) on pikkuse w(n) D-ndesitus ja esimene osa u(n) koosneb nullidest, kusju-
ures neid nulle on niipalju kui on v(n) pikkus. Seega

u(n)| = [v(n)] = "logp(1 + "logp(n + 1)),
Seega
|E(n)| ="logp(n+ 1)+ 2 logp (1 + Tlogp(n + 1)) = logpn + o(log, n).

Veendume, et E(n) on prefikskood. Oletame et leiduvad n ja m nii, et E(m) on E(n)
prefiks,; s.t.

u(n)v(n)w(n) = u(m)v(m)w(m)w'.
Sellisel juhul u(n) = u(m), sest molemad koosnevad nullidest ning v(n) ja v(m) esimene
siimbol pole 0. Sellise juhul aga v(n) = v(m), sest nende pikkused peavad olema vordsed.
See aga tahendab, et w(m) = w(n) ehk w’ on tiihi ja n = m.
[

Saadud koodi nimetatakse Eliase (delta) koodiks .

Niide: Leiame F(12). Numbri 12 kahendkuju on 1100. Seega w(12) = 1100. Et w(12)
koosneb 4 bitist, saame v(12) = 100. Lopuks u(12) = 000. Seega

E(12) = u(12)v(12)w(12) = 0001001100.

Mirkus: Kui D = 2, siis Eliase delta koodi saab vihendada kahe biti vorra. Toepoolest,
et iga n korral |u(n)| > 1, siis {ihe nullidest voib "meelde jatta" ja koodi esimene osa on
siis u(n) — 1. Teiseks, et iga kahendnumber algab tihega, voib ka selle arvu "meelde jatta"
ning seega kirjutamata jétta. Seega w(n) on siis arvu n kahendkuju, millest esimene tiks
on kustutatud. Samas v(n) on ikka terve kahendkuju pikkuse kahendesitus. Seega saadud
kood, olgu see E* on tapselt kahe biti vorra lithem kui E(n). Seega E*(12) = 00100100.

Uheselt dekoteeritavate koodide muutmine prefikskoodideks. Olgu O} : X* —
D* sonade kood, koodipikkustega {I(z*)}. Olgu C} iiheselt dekodeeritav. Defineerime
koodi C), Eliase laiend:

Ci(a*) = E(I(z"))Cu(%).

Saadud kood on prefikskood, sest prefiks E(I(x*)) miirab jirgneva koodisona pikkuse.
Dekodeerija loeb libi laiendi E(I(z¥)), saab iiheselt aru, millal see 16peb ning kui pikk on
jargnev koodisona. Viimane saab dekodeeritud just siis, kui ta lugemine lopeb.
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Niide: Olgu D = 2 ja Ci(z*) = 001001100111. Selle sona pikkus on 12. Teame, et
E(12) = 0001001100. Seega

C(z*) = 0001001100001001100111.

Kuigi antud néite korral on Eliase laiend peaaegu sama pikk kui koodisona ise, garanteerib
Eliase lemma, et koodisonade pikkuste kasvamisel (niiteks k& kasvamisel) muutub laiendi
osa tiihiseks.

Koodide kombineerimine. Teine rakendus Eliase laiendile on loenduva hulga kood-
ide kombineerimine iiheks koodiks. Oletame, et meil on iga k& > 1 korral defineeritud
prefikskood

Ck : Xk — D*.

Kasutades Eliase laiendit saame defineerida prefikskoodi
C:X* =D C(z") = E(k)Cy(z").

Seega Eliase laiend madrab dra koodi indeksi, seejirel dekodeeeritakse sona.

2.7 Optimaalse koodi toeniosuslik kiitumine*

Optimaalne kood on lithima keskmise pikkusega. Olgu C optimaalne kood ja C’ mingi
teine kood; nende koodisonade pikkused olgu vastavalt {I(x)} ja {I'(x)}. Nagu iileelmises
osas toodud néaidetest ndgime, ei pruugi optimaalse koodi koikide sonade pikkused olla
lihemad teiste sonade pikkustest: voib leiduda z € X nii, et I'(x) < I(z). Kui tihti
seda aga juhtub ehk kui suur on selliste tihtede toendosus? Kui X on juhuslik tédht, siis
viimane toenéosus avaldub P(I'(X) < [(X)).

Optimaalsed koodid on Huffmani koodid, nende pikkustega manipuleerimine pole lihtne.
seetottu uurime toendosust P(I'(X) < (X)) juhul, kui [ on Shannon-Fano kood.
Esimene teoreem annab iilemise tokke toenéosusele, et I'(X) < I(X) — c.

Teoreem 2.12 Olgu {l(x)} Shannon-Fano koodipikkused, {I'(x)} olgu iheselt dekodeeri-
tava koodi kodipikkused. Siis

P(I'(X)<I(X)—-c) < D'
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Toestus.

P(z’(X) <U(X) - c) —P

P(z)

(]

z:P(z)< DV (@)—ct1

< Z Dfl/(m)chrl

z:P(z)<D-V(®)—ct1

< ZDfl’(x)chrl
< pD—ctt ZDfl’(m)
S Dl*C.

Optimaalne Shannon-Fano kood. Ulaltoodud teoreem ei anna mingit toket teniio-
susele P(I'(X) < (X)), sest teoreemist jareldub vaid triviaalne toke:

PI'(X)<IU(X)=Pl'(X)<I(X)-1)<D'"!'=1.

Jargnev teoreem aga viidab, et optimaalse Shannon-Fano koodi korral (tuletame meelde,
et see saab olla vaid siis, kui P rahuldab seost (2.4)) kehtib vorratus P(I'(X) < (X)) <
P(I(X) < I'(X)). Seega juhuslikult valitud tihe korral on suurima toendosusega opti-
maalse Shannon-Fano kahendkoodi koodisona pikkus lithem kui teise iiheselt dekodeeri-
tava koodi koodisona pikkus.

Teoreem 2.13 Raohuldagu P seost (2.4). Olgu l(z) = log, ﬁ ning olgu {I'(x)} mingi
tiheselt dekodeeritava koodi kodipikkused. Siis

P(I'(X) < 1(X)) < P(I(X) <I'(X)),
kusjuures vordus kehtib vaid siis, kui l'(x) = l(z) iga x korral.

Toestus. Olgu
1 kui a > 0,

sign(a) =<0  kuia=0,
—1 kuia <0.
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Kui a € Z, siis
sign(a) < D* — 1.

P(I'(X) < (X)) = P(I(X) < I'(X)) = Esign(l(X) — I'(X))
< E(DZ(X)—Z’(X) . 1)
= Pa)(D'@7® — 1)

_ Y priw(piee )
= Z(D—l’(x) — D)
- Ty

<1-1
Vorratus on vordus, kui iga = korral kehtib
sign(l(z) — I'(z)) = D!®V@ _q,

See aga saab olla vaid siis, kui iga = korral [(z) = l'(z). =

2.8 Diskreetse juhusliku suuruse genereerimine*

Olgu P loplikul tdhestikul X antud diskreetne jaotus. Seame endale eesmérgiks sellise
jaotusega juhusliku suuruse genereerimise miindivistega. Teisisonu, olgu Zp, Zs, ... sol-
tumatud Bernoulli 1/2-jaotusega juhuslikud suurused. Olgu A algoritm, mis juhuslike su-
uruste Zy, Zs, ..., Zr abil tekitab jaotusega P juhusliku suuruse, s.t. A(Zy,...,Zr) ~ P.
Siin T' on juhuslik suurus, mille voimalikud vaédrtused on mittenegatiivsed téisarvud,

kusjuures see, kas T' = n voi mitte, soltub juhuslikest suurusetst Z, ..., Z, (T on peatu-
mishetk).
Naide: Olgu P jiargmine
al|blc
21411
Algoritm A voiks olla jargmine
a kui Z; =0,

A(Zb...,ZT): b kui Z]_:]_,ZQZ].7
¢ kui lel,ZQIO.

Seega

T_ 1 kui Z; =0,
2 mujal.
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Muidugi on niites toodud jaotust voimalik tekitada mitmeti. Meid huvitab keskmiselt
liihim algoritm, s.t. algoritm, mis kasutab keskmiselt koige vihem miindiviskeid. Tei-
sisonu, otsime algoritmi, mille korral algoritmi keskmine pikkus ET" oleks minimaalne.
Ulaltoodud niite korral on ET = 1.5 = H(P).

Paneme tahele, et iga algoritmi voib esitada téieliku kahendpuuna. Puu lehtedel on téh-
estiku X tdhed, kusjuures erinevatel lehtedel voib olla sama tdht. Selliselt konstrueeritud
puul voib olla I6pmatu arv lehti. Kui leht on k-ndal tasemel, siis selle lehe téendosus on
27k Algoritmi keskmine pikkus on selle puu keskmine pikkus.

Olgu A iilalkirjeldatud puu (algoritm). Vaatleme koiki puu lehti (sdltumata nendel olev-
ast tihest), olgu nende hulk ). Igal lehel on toendiosus 2%, kus k on selle lehe siigavus.
Nii saame jaotuse (). Selle jaotuse entroopia on puu keskmine pikkus E7T', sest

ET =) k(y)2*W =) " —log27*W2*W) = H(Q).

yey Y

Niiiid on lihtne toestada seos algoritmi keskmise pikkuse ja juhusliku suuruse X entroopia
vahel.

Teoreem 2.14 Ukski jaotust P genereeriva algoritmi keskmine pikkus pole suurem kui
H(P), s.t.
ET > H(P).

Toestus. Olgu A algoritm, mis genereerib X. Olgu @ algoritmile A vastava puu lehtede
jaotus, Y ~ Q. Teame, et H(Y) = E(T). Et aga algoritm on esitatav puuna, kehtib
X =f(Y). Seega ET =H(Y)> H(X)=H(P).m

Ulaltoodud teoreem pole eriti iillatav: et H(P) on jaotuseses sisaldav informatsioon, on
tisna loomulik, et H(P) seab alumise piiri selle jaotuse tekitamiseks vajaminevate miin-
divisete arvule.

Ulaltoodust on ka selge, et seost (2.4) rahuldava P korral leidub algoritm, mille keskmine
pikkus on H(P). Toepoolest, olgu C jaotusele P vastav Shannon-Fano kood. Sellele
koodile vastav puu on taielik ning kui seda puud kasutada juhusliku suuruse genereer-
imiseks, saame, et tihe z tdeniosus on 27F®) kus k(x) on tihe z siigavus. Et k(z) =
l(x) = log ﬁ, saame, et 27%@) = P(z). Seega voib seda puud seda voib kasutada X
genereerimiseks. Algoritmi keskmine pikkus koodi keskmine pikkus, mis vordub entroop-

iaga H(P).

Seega on seost (2.4) rahuldava jaotuse P optimaalne genereerimine sisuliselt ekvivalentne
optimaalse kahendkoodi leidmisega. Kas selline ilus seos kodeerimise ja genereerimise
vahel kehtib ka juhul, kui P ei rahulda seost (2.4)7 Teisisonu, kas ka iildisel juhul on
jaotust P tekitav optimaalne algoritm sisuliselt sama, mis jaotust P kodeeriv minimaalne
algoritm. On lihtne veenduda, et iildiselt pole nii, sest iga optimaalne koodipuu (nut.
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Huffmani puu) tekitab (kui seda kasutada juhuslikkuse genereerimisel) vaid seost (2.4)
rahuldava jaotuse. Tekitamaks suvalist jaotust, toimime jargmiselt: aatomi P(x) teki-
tamiseks leiame suurima arva 27% nii, et 27" < P(z) ning seame iihele siigavusel k;
olevatest lehtedest vastavusse z. Seejirel leiame suurima 27%2 nii, et 2752 < P(x) — 277
ning seame iilele siigavusel ko olevatest lehtedest x jne. Sisuliselt leiame aatomi P(x)

kahendesituse:
P(z) = Z 9 ki(@)
i>1

Niiiid konstrueerime kahendpuu, kus siigavusel k;(x) olevale lehele same vastavusse tihe
z. Et ) P(x) = 1, siis on sellise puu konstrueerimine alati voimalik ning see on téispuu.

Naited:

e Olgu
a b c d

9 5 1 1

16 16 16 16
0.10013 | 0.01015 | 0.00012 | 0.00015

Vastav puu (algoritm) on jargmine.

e Olgu

N Q
=y

1

3 3
0.1010101---5 | 0.0101010 - - -9

vastav puu (algoritm) on jargmine.
Saab néidata, et selline algoritm on minimaalse keskmise pikkusega, kusjuures

H(X)< ET < H(X) +2.

2.9 TUlesanded

1. Toesta alumine toke teoreemis 2.7
2. Olgu P
a‘b‘c‘d‘e‘f‘g‘h
0.250.05[0.1]0.13 0.2 0.12 | 0.08 | 0.07

Konstrueerida optimaalne kahend- ja kolmendkood, leida nende keskmine pikkus.
3. Olgu koodipikkused 1,1,2,2, 3,3, 3.

a) Kas leidub selliste koodipikkustega kahendkood? Kui vastus on jaatav, siis kon-
strueerida vastavate koodipikkustega kahendkood. Kas leidub jaotus P, mille
jaoks konstrueeritud kood on optimaalne?
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b) Kas leidub selliste koodipikkustega kolmendkood? Kui vastus on jaatav, siis
konstrueerida vastavate koodipikkustega kolmendkood. Kas leidub jaotus P,
mille jaoks konstrueeritud kood on optimaalne?

c) Kas leidub selliste koodipikkustega neljandkood? Kui vastus on jaatav, siis kon-
strueerida vastavate koodipikkustega kood. Kas leidub jaotus P, mille jaoks
konstrueeritud kood on optimaalne?

. Kas C saab olla Huffmani kood, kui tema sonad on
e {0,10,11}

e {00,01,10,110}

e {10,01,00,}?

. OlguX = {a,b,c,d, e, f}, koik tdhed olgu vordse toendosusega. Vaatleme koode C
ja Cs, mis on antud tabelitena

taht \ kood Cl CQ
a 11 | 111
b 101 | 110
¢ 100 | 101
d 011 | 100
e 010 | 01
f 00 | 00

Veendu, et Cy on Huffmani kood, kuid kood C mitte, molemad on optimaalsed.

. Kood on sufikskood, kui iikski koodisona pole mingi teise koodisona sufiks. Kas
sufikskood on iiheselt dekodeeritav?

. Olgu
L<L<--- <,

taisarvud. Iga 1 < k& < m korral valitakse binaarne koodisona pikkusega [ koikide
pikkusega [ voimalike koodisonade seast iihtlase jaotusega. Nii saadakse juhuslik
kood C'. Olgu P prefikskoodide hulk. Toestada, et

P(CeP)= ﬁ(l . §2_lf>+.

Toestada, et P(C € P) > 0 parajasti siis, kui [ < ly < --- <[, rahuldavad Krafti
vorratust.

. Olgu Lp(p1,-..,pm) jaotusele (pi,...,pmn) vastava optimaalse D-koodi keskmine
pikkus. Veendu, et kuigi optimaalne kood pole téendosuste (p1, ..., pmn) pidev funk-
tsioon, on seda Lp(p1,...,Pm)-
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10.

11.

12.

13.

14.

Niita, et kui Lp(p1,-.-,pm) = Hp(p1,.-.,pm), siis m = D + k(D — 1), kus k on
mittenegatiivne taisarv.

Olgu g < % Olgu p € [0, 1] selline, et

q pp
Lo(1 — - = = Ho(1 — = =)
2( Q72727> 2( p7272>

Leida seos p ja g vahel.

a) Leida L,(0.5,0.25,0.1,0.05,0.05,0.05), ja L4(0.5,0.25,0.1,0.05,0.05,0.05).

b) Vaatleme 2-ndkoodi, mis on saadud 4-ndkoodist jargmiselt: iga 4-ndkoodi téht,
olgu need {«, 3,7,0}, kodeeritakse pikkusega 2 kahendsonaks jargmiselt:

a— 00,8+ 01,7+ 10,0 — 11.

Nimetagem seda protsessi "topeldamiseks". Leida jaotuse (0.5, 0.25,0.1,0.05,0.05,0.05)

Huffmani 4-ndkoodi topeldamisel saadud kahendkood. Mis on selle keskmine
pikkus?

c) Olgu Ly (P) jaotuse P Huffmani 4-ndkoodi topeldamisel saadud 2-ndkoodi keskmine

pikkus. Toestada, et
Ly(P) < Ly < Ly(P) + 1.

d) Niita, et iilaltoodud vorratused voivad olla vordused.

Olgu uy,us, ..., u, mittenegatiivsed arvud. Leida jargmise optimeerimisiilesande
lahend:
m
min u;l;
Iyl
=1
m

Olgu jaotuse P aatomid jarjestatud P(zy) > P(xg) > P(x3) > -+ > P(xy,).
Leiduvad arvud a ja b nii, et

e kui P(x1) > a, siis iga Huffmani kahendkoodi korral téhe x; koodipikkus on 1;

e kui P(x;) < b, siis iga Huffmani kahendkoodi korral téhe x; koodipikkus on
vahemalt 2.

Leida minimaalne a ja maksimaalne b.

Olgu Xi, ..., X, sama jaotusega juhuslikud suurused tadhestikul X. Olgu C tdh-
estiku X mingi kood, C* olgu C' laiend sénadele X*. Tdestada, et L(C*) = kL(C).
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15.

16.

17.

Olgu Y statsionaarne Markovi ahel iileminekumaatriksiga

O =
DN [0 | = [ =
DO [ = [ s | =

Leida selle protsessi entroopiaméir Hy. Olgu C7 C5 ja (3 seisundite koodid.
Vaatleme jargmist kodeerimisprotseduuri: Y; kodeeeri koodiga C. Edaspidi kodeeri
jargmiselt: Y5 kodeeri koodiga, mis vastab seisundile Y} (st kui Y; = 1, siis vali Cf,
kui Y = 2, siis vali Cy jne), Y3 kodeeri koodiga mis vastab seisundile Y; jne. Kas
leiduvad koodid C1, C5, C3 nii, et kirjeldatud kodeerimisprotseduuri korral

El(Yy,....Y,)

n n
Olgu P
a ‘ b ‘ ¢
0.5]0.25 ] 0.25
Olgu X1, Xs, ... jaotusega P iid juhuslikud suurused. Olgu C tédhestikul {a,b,c}

antud kood. Vaatleme protsessi
Z = 212223, cee = C(Xl)C(XQ) cee

Kas Z on iildiselt statsionaarne protsess?
Leida Z entroopiaméér, kui kood C' on jargmine:

(2)

0, kuixr=a;
C(x) =< 10, kuiz =b;
11, kuiz =c.
(b)
00, kuix = a;
C(z) =< 10, kuiz =1b;
01, kuix=c.
()
00, kuixz = a;
Clz)=«¢ 1, kuiz=1
01, kuizxz=c.

Olgu P(x1) > P(x9) > P(x3) > --- P(x,,). Defineerime

F(x;) := i P(xy).

Téhe x; kood olgu F(z;) kahendesitus, millest on voetud I(z;) = "—log P(x;)™ ko-
makohta. Toestada, et saadud kood on prefikskood ning et selle koodi keskmine
pikkus I; rahuldab vorratusi H(P) < L < H(P) + 1. TUlaldefineeritud koodi
nimetatakse ka Shannoni koodiks.
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3 AEP omadus

3.1 Norgalt tiiiipilised sonad
Olgu X, Xo, ... iid juhuslikud suurused (tAQhestikul X), X; ~ P. Eeldame
H = H(P) < oc.

Olgu X3,..., X, esimesed n juhuslikku suurust iilaltoodud jadast. Selle juhusliku vektori
vadartuste hulk on X", iga voimaliku vaartuse toendosus on

P(zy,...,2,) = P(xq) -+ P(x,).

Uurime vektori Xi, ..., X, juhusliku vidrtuse toendosust P(Xy,...,X,). Olgu z* € X
maksimaalse toendosusega tdht. Kuigi suurima toendosusega votab vektor Xy, ..., X,

vaartuse
Pn(x*) _ 2nlog P(x*)’

selgub, et suure n korral P(X1,...,X,) suure toenfosusega lihedane arvule 27, Vi-
imane voib olla aga oluliselt viiksem maksimaalsest toenosusest 27°8F(*") Seda asjaolu
voib interpreteerida: suure n korral on praktiliselt koik realisatsioonid vordtoendolised.
Soltumatute ja sama jaotusega juhuslike suuruste jada seda omadust nimetame AEP
omaduseks (asymptotic equipartition property).

Paneme téhele, et n6rgast suurte arvude seadusest Jareldub koondumine
(0] P n O, i (0) . .
n g 1, 3 n " g g 1

Tahistame 2™ := 21, ..., T,.

Def 3.1 Hulga W} moodustavad kdik vektorid (sonad) ™ € X™, mis rahuldavad tingimust
9 nlH+e) < P(zy,...,x,) < 9~ n(H—e) (3.2)

Tingimust (3.2) rahuldavaid sénu nimetame norgalt e-tiitipilisteks (weakly e-typical) .

Teoreem 3.2 (Nork AEP) Iga ¢ > 0 korral

1 Kui x™ € W", siis

€

277L(H+E) < P(l’n) < 2fn(er). (33)

2 Piisavalt suure n korral
PWM >1—e. (3.4)

3 Piisavalt suure n korral
(1 —e)2nH=9 < || < onite), (3.5)
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Toestus. Omadus 1 jéreldub vahetult definitsioonist (3.2).

Omadus 2 jareldub vahetult koondumisest (3.1), sest toendosuse jirgi koondumis definit-
sioonist johtuvalt Ve > 0 korral leidub n, nii, et

P(}—%ZlogP(Xi)—H| ge) >1—e (3.6)
=1
kui n > n,.

Et norgalt tiiiipilise soéna téendosus on vihemalt 277+ siig

1> PV = Y Pl > Wi
zreWwr

millest
’WGn ’ < 2n(H+e) )

Paneme tahele, et saadud toke kehtib iga n korral. Teisest kiiljest, et suure n korral
P(W?™) > 1 — € ning iga norgalt tiiiipilise sona tdendosus on iilimalt 277~ siig

L—e< P = 3 P(") < |Wrj2o,

zneWwr

millest
W7 = (1 — )20,

Seega on suure n korral norgalt tiiiipiliste sonade hulga W moot praktiliselt iiks. Toendo-
sus, et iid. juhusliku vektori Xy,..., X, vidrtus pole norgalt tiiiipiline on viga véike.
Kaikide norgalt tiiiipiliste sonade tdensiosus on umbes 277 ehk koik norgalt tiiiipilised
sonad on sisuliselt vordtoensdosused. Samas on (suure n korral) norgalt tiiiipiliste sonade
osakaal koikide pikkusega n sonade seas viga viike. Toepoolest, olgu H < log |X| < oc.
Siis norgalt tiilipiliste sonade osakaal liheb nulliks, sest (piisavalt véikese € korral)

n n(H+e
||Vj6/6|n| = ;iogx) = 2rreel 0,

Nork AEP omadus annab jarjekordse interpretatsiooni entroopiale.
Naiide: Olgu X,..., X, iid Bernoulli p-jaotusega. Siis
P(xy,....z0) =p" (1L —p)" ", k= Zmz
i=1

Seega

1 k
__logp(mlw"axn):__1ng_n lOg(l—p),
n n

millest jarelduvalt on 1, ..., x, norgalt tiiiipiline, kui {ihtede proportsioon on peaaegu p.
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3.1.1 Nork AEP ja kodeerimine

Norga AEP omaduse abil on lihtne nidha, et suure n korral on iid vektorit Xy, ..., X, toe-
poolest voimalik kodeerida nii, et keskmine koodipikkus tidhe kohta on ligikaudu vordne
entroopiaga. Vaatleme olukorda D = 2, suurema D korral on kodeerimine analoogiline.

Olgu Xi,...,X, iid juhuslikud suurused loplikul tdhestikul X. Fikseerime ¢ > 0 ja
jagame koikvoimalike sonade hulga X™ kaheks: norgalt tiitipilised sonad W/ ning iile-
jadinud. Jirjestame molemad hulgad ning kodeerime nende indekseid. Et [W| < 2H+e),
siis koigi norgalt tiiiipiliste sonade indeksite kodeerimist binaarsteks koodisonadeks on
voimalik teha nii, et kood on iihene ja iga koodisona pikkus on [n(H +e€)] < n(H +¢€)+ 1.
Liidame nendele sonadele prefiksi 0, mis nditab kuulumist norgalt tiiiipiliste sonade hulka.
Seega
l(z")=[n(H+e)]+1<n(H+e)+2, Va"eWl

Ulejadnud sénad kodeerime samuti vordse pikkusega koodisonadeks. Iga hulga X™ el-
emendi (neid on ju 2"'°¢l*1) saab kodeerida nii, et kood on iihene ja koodiséna pikkus
on [nlog|X|] < nlog|X|+ 1. Kasutamegi seda lihtsat koodi ja liidame koodisonadele
prefiksi 1, mis niitab kuulumist hulka X™ \ W". Seega

[(z") = [nlog|X|] +1 <nlog|X|+2, Va"¢gW

Saadud kood on prefikskood, sest esimene bitt niitab jairgneva koodi pikkuse. Loomulikult
pole kirjeldatud kood optimaalne, sest hulka W mittekuuluvaid sonu kodeerisime viga
motlematult.

Leiame saadud koodi keskmise pikkuse

L= > 1")Pa")= > I@")P@E")+ Y  l(z")P(=")

xn GX" " EW;”’ n QWG‘VL
< Y (m(H+e) +2)Pa") + Y (nlog|X|+2)P(a")
TnEWn zngWwn

=PW™)(n(H +¢€)+2)+ (1 —PW"))(nlog |X]|+2).
Seega, kui n on piisavalt suur, siis Teoreemi 3.2 viite 2 tottu 1 — P(W) < € nii, et
L<n(H+e¢€)+e(nlog|X|)+2=n(H+¢),
kus € = ¢ + elog |X| + 2 ja selle voib (sobiva € ja n valikul) teha kuitahes viikeseks.

Kokkuvétteks: Oleme toestanud, et iga € > 0 korral leidub n ja AEP omadusel pohinev
prefikskood C' : X™ — {0, 1}* nii, et

H < L,(C) < H+e. (3.7)
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3.1.2 Suurima toepéraga hulk

Eelmises peatiikis kirjeldatud lihtne meetod kodeerimiseks keskmise pikkusega nH sai
voimalikuks tédnu sellel, et suure n korral leidus hulk W nii, et tema toendosus on kuitahes
suur, kuid elementide arv vorreldes koikide sonade arvuga vaike (juhul, kui H < log | X|).
Samas ei kuulu hulka W iildjuhul koige suurema toepdraga sonad, mistottu W/ pole
viikseim (sonade arvu méttes) hulk, mille tGendosus on vihemalt 1 —e. Olgu BY viikseim
hulk mis rahuldab tingimust P(B!) > 1 — e. Seega kui eelmises peatiikis kirjeldatud
koodis hulga W asemel votta hulk B, viheneb keskmine koodipikkus. Kas ka oluliselt?
Vorratustest (3.7) on selge, et viga oluliselt keskmine koodimikkus véheneda ei saa. See
tuleneb asjaolust, et kuigi |[W"| > |B”| ning enamikul juhtudest on see vorratus range,

on nende hulkade elementide arv sama suurusjirku st |B"| ~ 2", Veendume selles.

Lemma 3.1 Iga 1 > ¢ > 0 ja 0 > 0 korral leidub n nii suur, et
B > 270 (3.8)
Toestus. Valime ¢; > 0 nii viikese, et €, < § ja €; + € < 1. Olgu n nii suur, et
P(W3)>1—e. (3.9)
(sellise n olemasolu jéreldub Teoreemist 3.2) ning lisaks kehtib

log(1 — (e +a))

<. (3.10)

€1
Defineerime
S = Wg N B
Siis
1—(e14+¢€) <P(S) = Z P(z™) < |S|27H =) < | grjg—nH—a),
znes

kus esimene vorratus jareldub B definitsioonist ja vorratusest (3.9) ning teine vorratus
jareldub W definitsioonist. Seega

log(1 — (e +€1))

log |B'| > log(1 — (e +€1)) + n(H —e1) = n( +H —€) >n(H-9).

Viimane vorratus tuleb seosest (3.10). m

3.1.3 Naide

Olgu Xi,...,Xo5 iid B(1,0.1) jaotusega juhuslikud suurused. Seega voimalikke vektor-
eid 2 on 2?°. Alljirgnevas tabelis on koik vektorid 2" jaotatud klassidesse iihtede arvu
k jirgi. Uhte klassi kuuluvad vektorid on vordse toendosusega. Teises veerus on klassi
kuuluvate vektorite arv ja kolmandas veerus on klassi kuuluvate vektorite toendosuste
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summa: klassi toendosus. Neljandas veerus on suurus %log P(z™), kus P(z™) on klassi
kuuluva 4he vektori tdendosus (mitte klassi toendosus).

Arvestades, et 1(0.1) = 0.468996, ja vottes € = 0.2, same, et hulka W3 kuuluvad klasside
k=1,2,3,4 elemendid. Seega

P(WE) = 0.199416 + 0.265888 + 0.226497 + 0.138415 = 0.830216 > 1 — .

Samas |W23| = 25 + 300 + 2300 + 12650 = 15275, millest

1

o= log [ Wi & 0.556 € (468996 — 0.2, 468996 + 0.2)
Seega W3 rahuldab tingimusi (3.4) ja (3.5).

Leiame hulga B%5. Antud niite korral vektorite tdenfiosused kahanevad iilalt alla: koige
suurema toendosusega vektor koosneb nullidest ja moodustab esimese klassi (selle toenéo-
sus on 0.0717898); vektorid, milles on vaid 1 null on téendosuse jargi teisel kohal, sellise
vektori toenfiosus on 0.199416/25 = 0.00797 jne. Seega hulga B33 moodustamine hakkab
iilalt kuni klassi mass iiletab 0.8. Esimese nelja klassi kogumass on 0.7635908, seega
kuuluvad need klassid hulka B2°. Lisaks peame veel votma elemente viiendast klassist
(k = 4). Selle klassi elementide toenéiosus on %2555 = 0.0000109419. Seega tuleb sellest
klassist votta

0.8 — 0.7635908
=332
[ 0.0000109419 —‘ 3328

elementi. Seega
|B3%| = 1+ 25+ 300 + 2300 + 3325 = 5951

ning

1
5 log | Bg3| ~ 0.501.

Kuigi hulkadesse B33 ja W25 kuuluvad klassid sisuliselt on samad (esimene klass koosneb
vaid iihest elmendist ega oma seega suurt tihtsust), tuleneb voimsuste vahe sellest, et
klass k = 4 kuulus hulka W5 téielikult, kuid hulka B33 vaid osaliselt.
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Bl G [ (P =—p" = () P(") [ =3 log P(a")
0 1 0.0717898 0.152003
1 25 0.199416 0.2788
2 300 0.265888 0.405597
3 2300 0.226497 0.532394
4 12650 0.138415 0.659191
S 23130 0.0645937 0.785988
6 | 177100 0.0239236 0.912785
7 | 480700 0.00721505 1.03958
8 | 1081575 0.00180376 1.16638
9 | 2042975 0.000378567 1.29318
10 | 3268760 0.0000673009 1.41997
11 | 4457400 0.0000101971 1.54677
12 | 5200300 1.32185x1076 1.67357
13 | 5200300 1.46872x10~7 1.80036
14 | 4457400 1.39878x1078 1.92716
15 | 3268760 ~ 0 2.05396
16 | 2042975 ~ 0 2.18076
17 | 1081575 ~ 0 2.30755
18 | 480700 ~ 0 2.43435
19 | 177100 ~ 0 2.56115
20 | 53130 ~0 2.68794
21 | 12650 ~ 0 2.81474
22 2300 ~ 0 2.94154
23 300 ~ 0 3.06833
24 25 ~0 3.19513
25 1 ~ 0 3.32193

3.2 Norgalt tihistiitipilised sonad

Olgu P(z,y) jaotus hulgal X x Y, (X
(Xn,Yy). Siis iga (2"

(X17)/1>7"'7

Def 3.3 Hulga W moodustavad koik sonapaarid (

€

P(z"

Y") =

n

i=1

Y) ~ P. Vaatleme iid juhuslikke vektoreid
y") € X" x Y™ korral

" y") € X" x V", mis rahuldavad

Lingimust
o 27 MHX)+9) < p(gn) < 2-HX)=¢)
o 2 n(H(Y)+e) < P(y") <27 n(H(Y)—e)
o 27 MHXY)He) < p(gn yn) < 27 MHXY)=e)

Neid tingimusi rahuldavid sonu nimetatakse norgalt e- iihistiitipilisteks (jointly e-typical) .
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Seega on paar (z",
sonapaari (z",y") uhlstoenaosus on ligikaudu 27 "# (Y,

y™) norgalt thistiiiipiline, kui nii 2" ja y™ on norgalt tiilipilised ning

Olgu P, ja P, moodu P marginaaljaotused. Siis P, x P, on samade marginaalidega

soltumatute komponentidega vektori jaotus. Téhistame
Py x Py(a",y") = Hpm x Py(xi,y;) = HPx(xi)Py(yi)'
i=1 '

Toestame niiiid teoreemi 3.2 kahemootmelise versiooni.
Teoreem 3.4 Iga € > 0 korral

1 Piusavalt suure n korral
PWI) >1—e.

2 Piisavalt suure n korral

(1 o 6)Q’rL(H(X,Y)—E) < |W€n| < 2n(H(X,Y)+e)‘

3 Piisavalt suure n korral

(1 o 6)Q—n(I(X;Y)—‘rZ%e) <P, x Py(W:) < 2—n(I(X;Y)—3e)'

(3.11)

(3.12)

Toestus. Toestus on analoogiline teoreemi 3.2 toestusega. Viide 1 jareldub sellest, et

1 1 — P
—~log P(Xy,..., X,) = —— Zlog P(X;) = H(X)

1
——log P(Y3,.... Y, :——ZlogP H(Y)

1 P
——log P((X1,Y1),..., (X0 Yy)) = - Z log P(X;,Y;) = H(X,Y)

i=1

(tilesanne 1). Ka véite 2 toestus on analoogiline:

L>PWr) =Y Pla"y") > [Wr2 D,

(zm,ym)eWn

l—e<PW" = Y P@"y") < |Wrm#E0=,

(zmym)ews

millest
(1 _ 6)2n(H(X,Y)—e) < |W€n| < 2n(H(X,Y)+e)‘
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Korrutismoodu korral

P, x P,(W! = Y Pa")PQy")
(zmym)ewe
< Z 2771(H(X)76)277L(H(Y)76)
(wn’yn)ewg
< 2n(H(X,Y)+6)27n(H(X)7e)27n(H(Y)76)

— 27n(I(X;Y)736)

P, x Py<W5n) > (1 o 6)2H(H(X,Y)—E)2—7L(H(X)+E)2—7L(H(Y)+E)
_ (1 . 6)2—H(I(X;Y)+3€)‘

Teoreemi 3.4 esimese kahe viite interpretatsioon jadb samaks: norgalt iihistiiiipiliste so-
nade hulga toendosus on ligikaudu iiks, koik norgalt {ihistiilipilised sonad on praktiliselt
vordtoeniolised ja nende arv on ligikaudu 2"7(XY) Tarvilik tingimus sénapaari (27, y")
(norgalt) ihistiiiipilisuseks on kummagi sona (nork) tiitipilisus. Paare, kus molemad so-
nad on (nérgalt) tiiiipilised on ligikaudu 2"7(X)27H(Y) Paneme aga tihele, et iildiselt
onH(XY) o gnH(X)gnH(Y) = Qeega on selliste paaride seas on vaid viike osa iihistiiiipilisi
paare. Fikseeritud esimese sona 2™ korral on iihistiiiipiliste paaride (z™,y") arv keskmiselt
QrHXY)=H(X)) — onHIIX) "Valides teise (norgalt tiiiipilise) sona y™ juhuslikult iile kdigi
tiilipiliste sonade (iihtlase jaotusega), saame, et selline juhuslik séltumatute komponen-
tidega sonapaar on iihistiiiipiline (ligikaudse) t&enfosusega 2"HY|1X)=nH(Y) — o=nl(X3Y),
See ongi sisuliselt teoreemi kolmas viide: kui paar (2™, y") on valitud juhuslikult (vastavalt
antud marginaaljaotustele), kusjuures sona y" ei soltu sonast z™, on see paar tihistiitipi-
line toendosusega 2~/ (X3Y)  Mida suurem on vastastikune informatsioon, seda viiksem
on nimetatud toendosus ning seda raskem on juhuslikult kokku saada iihistiiiipilist paari.

Niide: Olgu X =Y = {0, 1} ning olgu jaotustabel

X\Y|1]o0
1 1L
859

0 |3 | s

Seega X ~ B(1,0.1), Y ~ B(1,0.2). Uhisentroopia

1 7

—) + h(=).

) T Q)

Sonad z™ = 1000000000 ja y™ = 0110000000 on molemad norgalt tiitipilised (suvalise e
korral) ehk

H(X,Y)=H(X)+H(Y|X) = h(

" e Wel()’ yn c WEIO-
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Téahistame p = %, q= % ja leiame

ety = (55) (5) () = a1 =P~ D)1 —0) = ¢*(1 — "1~ p)'p.

1 3 7 9 1
Elog P(z",y") = —logq+ —log(1 — q) + — log(1 — p) + — logp

10 10 10 10
7 7
= qlogg+ j5logg — ;log(l —¢) + (1 - g)log(1 — ¢) + (1 = p)log(1 — p) + plogp
7 q
=—h(q)—h — log(——).
(@) = hlp) + 35 Og(l—q)
Jarelikult . .
—Zlog P(a",y") — H(X,Y) = —1
~log P(a”,y") — H(X,Y) = 5 10g(7),
mistottu

(a",y") € W,
kui e < 751og(7).

3.3 Norga AEP omadusega protsessid

Nork AEP omadus (teoreemid 3.2 ja 3.4) pohinevad soltutmatute sama jaotusega juhuslike
suuruste (iid protsessi) X = {X,,}>°, omadusel
1
——log P(X1,....X,) = Hx, pk. (3.13)

kus Hx on X; entroopia ja seega protsessi entroopiamaér. Soltumatuse korral jareldub
(3.13) vahetult (tugevast) suurte arvude seadusest. Selgub aga, et koondumine (3.13) ei
kehti mitte ainult iid protsesside korral vaid ka mitmete teiste statsionaarsete protsesside
korral (tuleta meelde, et statsionaarsel protsessil on alati defineeritud entroopiaméér).
Sellisel juhul, arusaadavalt, kehtivad ka teoreemi 3.2 koik viited.

Def 3.5 Protsessil X1,Xs... on AEP omadus (AEP property) , kui kehtib (3.13),
kus Hx on prolsessi entroopiamddr.

Norga AEP omadusega on koik ergoodilised protsessid. Naiteks lahutamatu Markovi ahel.

3.4 TUlesanded

1. Toestada teoreemi 3.4 viide 1.

2. Olgu X3, Xo, ... iid juhuslikud tdhed jaotusega P. Olgu () mingi teine tdhestikul X
antud jaotus. Vaatleme toepdrasuhet

QXy) - Q(Xy)
P(X1)--- P(Xy)

Toestada, et iga € > 0 ja n korral leidub hulk A” C X" ja konstant A (soltumatu n
ja e-ist) nii, et (siin P(z") =[], P(z;), Q") =], Q(z:))
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1 Kui 2" € A7, siis

2 piisavalt suure n korral

3 piisavalt suure n korral

(1 . 6)2771(A+e) < Q(A?) < 27n(Afe)'

. Olgu Xy, Xo,... iid juhuslikud suurused, X; ~ UJ[0,1] (iihtlane jaotus). Kon-
strueerime n-tahuka kiiljepikkustega X;,..., X, selle tahuka ruumala on V,, =
[T, Xi. Sama ruumalaga n-kuubi kiiljepikkus on V,n. Leida E(Vn%), lim,, E(Vn%)
ja lim, V,n (toendosuse jargi) ning vordluseks leia (EVH)% ja limn(EVn)%.

. Olgu X, X, ... lopliku seisundite hulgaga statsionaarne Markovi ahel iilemineku-
maatriksiga I (ithikmaatriks). Toestada koondumine (3.13). eee
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4 Infovahetus labi kanali

Késitleme informatsiooni edastamist 1abi diskreetse (néiteks binaarse) infokanali. Selleks
kodeerime edastatava teksti (binaarse infokanali korral kahendkoodi abil) ja sisestame
saadud koodi bitikaupa kanalisse. Vastuvotja dekodeerib saadud jada. Selline siisteem
ei tekita mingeid probleeme kui kanal t60tab vigadeta, s.t. iga sisestatud siimbol viljub
iseendana. Paraku pole see alati nii — sisestatud siimbolid voivad kanalis teatud toen&o-
susega muutuda voi kaduda. Sellisel juhul ei pruugi vastuvoetud tekst olla identne saade-
tuga ning informatsioon laheb kaotsi. Alljargnevas uurime, kuidas iilalkirjeldatud vigase
kanali abil informatsiooni voimalikult tipselt vahetada.

4.1 Diskreetne kanal

Olgu X mingi loplik tdahestik. Seda interpreteerime kui sisendtahestikku. Olgu Y mingi
teine loplik tdhestik, mida interpreteerime kui wdiljundtihestikku. Meie késitluses on
diskreetne kanal iileminekutoendosuste maatriks

(P(y\:v))x@nyey. (4.1)

Arv P(y|x) on toendosus, et stimboli z — sisend— sisendamisel kanalisse véljub sealt
stimbol y — wvdljund. Selline kanal on discreetne kanal (discrete channel) . Kanal

on méluta (memoryless) , kui viiljund soltub ainult sisendist, kuid mitte eelnevatest
sisenditest voi valjundistest. Vigadeta kanali korral on {ileminekumaatriks iihikmaatriks.

Kanali voimsus. Olgu niiiid P(z) mingi jaotus sisendtidhestikul X'. Seda interpreteer-
ime kui sisendite jaotust. Koos kanaliga (4.1), saame niiiid mingi iihisjaotuse P(x,y) =
P(z)P(y|x) tdhestikul X x Y. Olgu niitid (X,Y) ~ P(x,y) antud iihisjaotusega juhuslik
vektor. s.t. X on jaotusega P(x) juhuslik sisend ning Y on juhuslik véljund.

Def 4.1 Kanali (4.1) voimsus (capacity) on
C =maxI(X;Y),

P(z)
kus maksimum on voetud file koikide voimalike sisendjaotuste hulgal X .

Markused:

e Funktsioonil P(x) — I(X;Y’) on pidev ning koikide sisendjaotuste hulk on ruumi
RI* kompaktne kumer alamhulk (simpleks). Seega on funktsioonil P(x) — I(X;Y)
maksimum. Saab n#idata, et see funktsioon on nogus, mistottu lokaalne maksimum
on ka globaalne ning maksimumi voib leida kumerate optimiseerimismeetoditega.

e Kanali voimsus rahuldab vorratust: C' < logmin{|X|, ||}, sest

C=maxI(X;Y) <max H(X) <log|X|, C=maxI(X;Y)<maxH(Y) <logl|)|.
P(z) P(z) P(z) P(z)

e Kanali voimsust voib interpreteerida kui maksimaalset infohulka, mida iihe edas-
tamise kiigus 14bi kanali on voimalik saata.
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4.2 Naiteid kanalitest

Vigadeta binaarne kanal. Sellise kanali korral X = Y = {0, 1} ning P(y|z) on iihik-
maatriks. Seega iga sisestatud bitt edastatakse muutmatuna. On selge, et iihe
edastamise kiigus saabki maksimaalselt edastada iihe biti, seega sellise kanali voim-
sus on 1, mis iihtlasi on ka maksimaalne voimsus, mis binaarsel kanalil voib olla.

Formaalselt [(X;Y) = H(X; X) = H(X), millest

C=max H(X) =1,
P(x)

kus maksimim saavutatakse B(1, 3) jaotuse korral.

Ebaoluliste vigadega kanal. Selle kanali korral X = {0,1}, Y = {0,1,2,3}, iilem-

inekumaatriks on
p 1—p 0 0
0 0 qg 1—g¢q

Sellises kanalis on kiill iiksjagu juhuslikkust, kuid erinenevatele sisenditele vastavate
viljundite hulgad on 16ikumatud. Seega méaarab véljund (selle klass) iiheselt sisendi
ja kanal on vigadeta. Arusaadavalt on selle kanali voimsus samuti 1. Formaalselt

C=max (H(X)—-HX|Y)) =maxH(X) =1,
nax (H(X) = H(X|Y)) = max H(X)

sest X = f(Y) ja seetottu H(X|Y) = 0.

Vigadega klaviatuur. Siin X = ) on téhestik, |X| = 26. Vigase klaviatuuri korral iga
x € X korral
P(z|x) = P(jargmine tiaht|z) = 0.5.

Seega sellise klaviatuuri korral edastatakse tiht vigadeta vaid pooltel juhtudel. Ule-
jaanud juhtudel edastatakse jairgmine taht. Leiame voimsuse

C = r;l(ajsi(H(Y) — H(Y|X)) = e H(Y)—1=1log26—1=1log13,

kusjuures maksimum saavutatakse iihtlase sisendjaotuse korral. Saadud voimsus
iihtib intuitsiooniga — kui vigadeta klaviatuuri korral edastame korraga maksimaalselt
log 26 bitti informatsiooni, siis vigase klavituuri korral saame vigadeta edastada vaid
pooltest tdhtedest.

Binaarne siimmeetriline kanal. Siin X = Y = {0, 1} ja iileminekumaatriks on

(700
p 1-p
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Seega siimbol edastetekse tapselt toendosusega 1 — p, kuid toendosusega p muutub
ta teiseks siimboliks. Leiame vastastikuse informatsiooni

[(X:Y)=H(Y) - HY|X) = HY) - Y P@)H(Y|X = z)

= H(Y) =) P(x)h(p) = H(Y) = h(p).

Seega on I(X;Y) maksimaalne siis, kui Y on iihtlase jaotusega. See saavutatakse
iihtlase sisendjaotuse korral ning seega

C=maxI(X;Y)=1-—h(p).
nax1(X;Y) = 1 h(p)

Kui p = 0, on kanal vigadeta ning tema voimsus on 1. Kui p = 0.5, on X ja Y
soltumatud. Sellisel juhul ei toimu mingisugust infovahetust ning kanali voimsus on
arusaadavalt 0.

J. Thomas and T. Cover: "This is the simplest model of a channel with errors;
yet it captures most of the complexity of the general problem".

Binaarne kadumiskanal. Sellisel juhul X = {0,1} ja ) = {0,1,e}. Siimbolit e inter-
preteerime kui signaali selle kohta, et sisend on kaduma ldinud (vaikus). Kumbki
signaal liheb kaduma toensiosusega p. Uleminekumaatriks on selline, et

P(z|z)=1—p, Plejx)=p, z=0,1.
Leiame binaarse kadumiskanali voimsuse

C = max(H(Y) - H(Y]X)) = max H(Y) - h(p)

Leidmaks maxp(,) H(Y') defineerime siindmuse £ = {Y =e}. Et £ = f(Y), siis
HY)=H(Y,E)=H(E)+ H(Y|E) = h(p) + H(Y|E).
Olgu 7 = P(X = 1). Siis P(Y = 1|Y #¢) =7 ja P(Y = 0]Y #¢) = (1 — ) ja
H(Y|E) = H(YY £ ¢)P(Y #¢) = h(m)(1 - p).
Seega

C= IIIDI(a})(HO/‘E) =maxh(m)(1 —p)=1—p.

Alternatiiv: Y jaotus:
PY=1)=mn(1-p), PY=0)=(1-p(1—m), PY =e€)=p.
Seega
H(Y) = H(r(1=p),(1 =p)(1 —=7),p) = (1 = p)h(m) + h(p).

Siin viimane vordus tuleb grupeerimisomadusest. Et A(7) on maksimaalne kui 7 =
0.5, saame

max H (r(1 = p), (1 =p)(1 = 7),p) = (1 =p) + h(p).
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Stimmeetriline kanal. Selle kanali korral koosnevad iileminekumaatriksi read samadest
elementidest. Teisisonu, maatriksi read on {ikseteise permutatsioonid. Samuti on
permutatsioonid iileminekumaatriksi veerud. Stimmeetrilised kanalid on néiteks

030205 02 02 03 03
0.5 03 0.2 03 03 02 02)°
0.2 0.5 0.3 ' ' ' '

Sellise kanali voimsust on kerge leida. Olgu rea entroopia H,. Siis
I(X;Y)=H(Y)-HY|X)=H(Y)-H, <log|Y|— H,,

kusjuures vordus kehtib iihtlase viljundjaotuse korral. Veendume, et iihtlane sisend-
jaotus garanteerib iihtlase viljundjaotuse. Uhtlase sisendjaotuse korral

P(y) = " Plyl) P(z) = % > Ple) = g

reX

kus c on veeruelementide summa. Saadud arv ei soltu y-st, mistottu on vilundjaotus
ithtlane ja
C =log|Y| — H,.

Ulaltoodud argument kehtib ka siis, kui iileminekumaatriksi read on iiksteise per-
mutatsioonid ja veergude summa on konstantne (kuid veerud ei pruugi olla iiksteise
permutatsioonid). Selliseid kanalaeid nimetatakse norgalt simmeetrilisteks. Norgalt
siimmeetriline kuid mitte siimmeetriline kanal on néiteks

(1)

J. Thomas and T. Cover: "In general, there are no closed form solution for the capacity.
but for many simple channels it is possible to calculate the capacity using properties like
symmetry."

LWl
N O =
0=

4.3 Kanaliteoreem

Infovahetus l4bi kanali. Olgu {1,2,..., M} sonad. Nende seast valitakse juhuslikult
iiks. Olgu juhuslik suurus W see juhuslik sona. Sona W kodeeritakse n-elemendiliseks

koodisonaks. Olgu
C:{1,2,..., M} — X"

kood. Kodeeritud sona (n-dimensionaalne juhuslik vektor) X" := C(W) saadetakse
bitikaupa 1abi kanali

{P(y|x)}x6?€,y63"
Et kanal on méluta, siis toendosus sona y" saamiseks sona z" sisestamisel on

n

P(y"|2") = [ Pyl

i=1
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Saadud sona, olgu see Y", dekodeeritakse. Olgu
g:Y"—={1,2,...,M}

dekodeeriv funktsioon. Pirest dekodeerimist saame sona W = g(Y™), mis paraku ei
pruugi alati olla esialgne sona W.

Def 4.2 Olgu {P(y|2)}sex yey diskreetne mdluta kanal. Selle kanali (M,n) kood koos-
neb jargmistest komponentidest:

e hulk {1,..., M} (sonade indeksid);

e kodeeriv funktsioon

C:{1,...,M} - X",

Koodisonad

moodustavad koodiraamatu .

o dekodeeriv funktsioon

g: V" —={1,2,...,M}.

Veatoendosused. Olgu \; (tinglik) toendosus, et (M, n) kood teeb sona i edastamisel
vea. Seega

N =P(W £iW =) =P(g(Y") #iW =i)= Y Py"[C(i)).
Y g(y™)#

Olgu

Amaz = Max \;
ning olgu P, vea tegemise toenédosus juhul, kui sona valitakse iihtlaselt iile koikide sonade
hulga {1,..., M}. Seega
A - . . . 1 - . . 1
P.=P(W#W)= ZP(W%HW:z)P(W =) = MZP(W%@WV:z) = MZA’"
On selge, et
Pe S Amaa)'

Def 4.3 (M, n) koodi méiir (rate) on

R logM'

n

Formaalselt on koodi méér vaid koodi C omadus (tingimusel et X" on fikseeritud) ja néitab
mitu bitti informatsiooni C korral 1abi kanali saadetakse. Praktikas otsime aga koodi C
kanalist soltuvalt — nii, et viga oleks maksimaalselt viike.
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4.4 Naited koodidest binaarse siimmeetrilise kanali korral
4.4.1 Uhtlane kood ja kordamiskood

Uhtlane kood. Olgu |X| = 2 ja C iihtlane kood, mis M = 2" korral hulga {1,...,2"}
tiks-iihesesse vastavusse hulgaga X™ (tuleta meelde kodeerimist norga AEP abil). Selle
koodi maér on 1. On selge, et kui |X| = 2, siis parema méiraga koodi konstrueerida pole
voimalik.

Kui M = 16, siis iihtlase koodi koodiraamat on

(0000), (1000), (0100), (0010), (0001), (1100), (1010), (1001),
(0110), (0101), (0011), (1110), (1101), (1011), (0111), (1111).

Kui kanal on vigadeta binaarne kanal, on vaadeldud kood igati moistlik: tal on maksi-
maalne maar ja \,q. = 0.

Sama koodi voib ka kasutada binaarse stimmeetrilise kanali korral. Koodi méaar on endiselt
1, kuid veatdensosus kasvab koos n-ga (koos M-ga):

1—N=P(W =i[W=0)=PY"=C(i)) = (1—p)"

Kuigi koodil on korge méair, pole see antud kanali korral moistlik.

Kordamiskood. Binaarse siimmeetrilise kanali korral pakutakse tihti vilja nn kor-
damiskoodi (repetition code): iga bitt iihtlases koodis esitatakse m kordselt. Kui m on
piisavalt suur ja p < 0.5, siis suurte arvude seaduse tottu suure toendosusega enamik neist
jouab kohale. Seega kordamiskoodi korral edastatakse iihtlase koodi bitid pikkusega m
blokkide kaupa, vastuvotja seab igale blokile vastavusse iihe biti vastavalt sellele, milliseid
bitte on vastuvoetud blokis enamus (viikide véltimiseks olgu m paaritu arv). Teinekord
tahistatakse sellist koodi R,,. Esialgne iihtlane kood on siis R;. Néiteks kui M = 16, siis
koodi R3 koodiraamat on

000 000 000 000),
000000000111
000111111000
111111000111),

111000 000 000),
111111 000000
000111000111
111000111 111),

000111 000 000),
111000111 000
000000111111
000111111111),

000000111 000),
111000000111
111111111000
111111111 111).

Y ) 9 Y

o~ o~ o~~~

)
),
)
)

A~~~ I~ —~

)
);
)
)

o~ o~~~

)
),
)
)

A~ /N I/~

)
),
)
)

Leiame veatoendosuse \;. Selleks paneme tihele, et piisab kui leiame iihe iihtlase koodi
biti (iithe m-bloki) valesti esitamise toendosuse py, sest otsitav veatdendosus on siis

1-XN=PY"=C(>)) = (1—p)"
Uks m-blokk dekodeeritakse vigaselt, kui vihemalt kaks bitti edastatakse valesti. Seega

Rs korral

po = 3p°(1 —p) +p°.
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Kui p = 0.1, siis p, = 3-0.01- 0.9+ (0.01)> = 0.028 jaiga i = 1,..., M korral
i =1—(1-0.028)" =0.107... = A\pae = P..

Négime, et Rs kahandas iihe biti edastamise veatoendosuse esialgselt 0.1-1t (R; korral)
0.028-ni (R3 korral). Antud niite korral keskmine viga P, on nii Ry kui ka Rs korral
enam-vihem vordne (0.1 ja 0.107...) kuid tuletame meelde, et R; korral saab selle veaga
edastada vaid kaks sona (iihe biti), kuid Rj3 korral 16 sona (neli bitti). Kiill aga vihenes
koodi médr. Antud juhul on tegemist (16, 12) koodiga ja tema méiir seega

_logM 4

1
R=——=5%"3

On selge, et kui log M on téisarv, siis koodi R,, méér on alati % (miks?).

Suurte arvude seadusest jareldub, et kui p < 0.5, siis valides m piisavalt suure, saame
toendosuse p, teha kuitahes viiikeseks (iilesanne 1). Teisisonu, iga €y > 0 korral leidub
mo(€o) nii, et kui m > mg(e), siis koodi R, korral p, < €. Seega saab iga sonade arvu
M korral teha kuitahes viikeseks ka A4, TOepoolest, et (olgu log M téisarv)

)\ma:c =1~ (1 - pb)log]V[’

pole raske ndha, et A\, — 0, kui p, — 0. Seega saab veatoenidosuse teha kuitahes
viikeseks, kuid seejuures peab m olema viga suur ja koodi méér % seega vaga vaike. Saab
niidata, et kui p = 0.1, siis saavutamaks p, = 107, mis on teatav tehniline standard
arvuti kettaseadmetel, peaks m olema ligikaudu 61. Sisuliselt tdhendab see sonastikust
61 koopia tegemist.

4.4.2 Hammingi kood

Hammingi kood kuulub binaarse siimmeetrilise kanali tarbeks loodud nn paarsust kon-
trollivate (parity check) koodide hulka. Sellised koodid pohinevad lihtsal asjaolul — kui
iilekande kdigus muutub ainult iiks bitt, muudab see koodisona iihtede paarsust. Viimast
on aga lihtne kontrollida. Lihtne néide sellisest koodist on jargmine: olgu koodisona
pikkus paaritu arv. Liidame sellele {ihe biti nii, et iihtede arv koodisonas oleks paarisarv.
Kui tilekande kiigus ainult iiks bitt (paaritu arv bitte) muutub, muutub ka koodisonas
olevate iihtede paarsus. Nii saab dekodeerija aru, et juhtunud on viga. Kahjuks ei oska
ta aga seda viga parandada. Hammingi kood on selline, et iihe biti muutumist saab
dekodeerimise kiigus korrigeerida ning esialgse sona seega restaureerida. Kui koodisona
pole liiga pikk ja veatoendosus liiga suur, on kahe voi enama biti muutumise toendosus
véike vorreldes iihe biti muutumise toendosusega.

Hammingi (7,4) kood: idee. Tutvume Hammingi (16,7)-koodiga (kirjanduses nimetatakse
seda (7,4) koodiks). Selle koodi méér on seega 2 ning ta on moéeldud 16 sona edastamiseks
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1abi binaarse stimmeetrilise kanali. Kood on jargmine: sona W € {1,...,16} kahende-
situsele sy, $2, 53, 54 liidetakse kolm (paarsus)bitti ts,ts, t7 eeskirja alusel, mida on koige
lihtsam selgitada jargmise diagrammi pohjal.

t5

sl s2
s3

t7 t6
s4

Arvud t5, tg, t7 valitakse nii, et igas ringis oleks iihtesi paarisarv. Nii saadakse jargmised
16 koodisona (paksult on triikitud bitid s;525384):

0000000 0100110 1100011 1000101
0001011 0101101 1101000 1001110
0010111 0110001 1110100 1010010
0011100 0111010 1111111 1011001

Dekodeerimine kiib analoogiliselt: iilekandel saadud sona ry, 9, 73, 74, 75, 76, 77 bitid paigutatakse
ringidesse samasse positsioonidesse, mis bitid s, so, S3, S4, t5, tg, t7. Seega
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Niiiid kontrollitakse koikides ringides olevate iihtede paarsust. Seejuures on 8 voimalust:
kas koigis kolmes ringis on iihtesid paarisarv, ithes kolmest ringis pole see nii, kahes ringis
pole see nii, kolmes ringis pole see nii. Kui koikides ringides on iihtesi paarisarv, loetakse
saadud sona veatuks. Sellisele sonale vastab iiks koodisona ning see koodisona on W,
Ulejésinud juhtudel on vihemalt iihes ringis iihtesi paaritu arv. Utleme, et need ringid on
vigased. Hammingi kood on aga konstrueeritud nii, et iikskoik mitu vigast ringi korraga
ka ei oleks, ikka saab vaid {ihe biti muutmisega ringide paarsused korda seada. Selleks
tuleb lihtsalt muuta seda bitti, mis asub koikide vigaste ringide iihisosas. Néiteks kui
vigased on kaks alumist ringi, tuleb muuta bitti r4; kui vigased on koik kolm ringi, tuleb
muuta bitti r3 jne. Pirast vea parandamist, on saadud sona iiks 16 koodisonast ning see
koodisdna on W.

Kui koodisona edastamisel ei muutunud iikski bitt, siis dekodeerimisel iihtki viga ei paran-
datud ning W = W. Kui iilekandel muutus iiks bitt, siis muutus mone ringi paarsus ning
antud meetod voimaldab seda viga parandada (muutunud bitt leitakse iiles). Ka sellisel
juhul W = W. Kui iilekande kdigus muutus kaks voi enam bitti, siis soltumata sellest kui
palju ringe on vigased, parandatakse vahetatakse iilimalt {iks bitt. Saadud sona on alati
koodisona, mis aga erineb sisestatust ning W # W. Seega

)\max = )\z =1- ((]‘ _p)7 + 7p(1 _p)ﬁ)
When p = 0.1, then Ay =~ 0.15. Proovi dekodeerida sonad

1101011, 0110110, 0100111, 1111111.
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Hammingi kood kui lineaarne kood. Hammingi kood on lineaarne: st iga kahe
koodisona summa 2-jadgiklassiringis (st 1 +1 =0,0+1=1,14+0=1,04+0 = 0) on
omakorda koodisona. Nimelt iga koodisona

T __
¢ = (s1,S2,S3, 54, t5, L6, t7)

paarsusvektor t7 = (ts, g, t7) avaldub korrutisena (jiigiklassiringis)

1110 21
t=101 11 2 (4.2)

101 1 53

S4

Olgu seoses (4.2) olev maatriks P. Siis (4.2) on t = Ps, kus s = (s1, s, 83, 54). Defineer-

ime 7 x 4 maatriksi
_ (L
G = < P ) ,

kus I, on 4 x 4 ithikmaatriks. Siis iga koodisona c avaldub

c:<i>:G3:(%>s. (4.3)

Seosest (4.3) jéreldub niiiid koodi lineaarsus. Defineerime niiiid 3 x 7 maatriksi H
jargmiselt

1110100
H=(P I)=[0111010]. (4.4)
1011001
Jadgiklassiringis on —P = P (sest 1 + 1 = 0), mistottu

, 0000
HG=(—P [3)(;):(—P+P): 0000
0000

Seega korrutades maatriksit H koodisonaga c (ikka jadgiklassiringis), saame

0
He=HGs=| 0 |. (4.5)
0

Maatriksi H veerud on koik hulga {0, 1} elemendid vilja arvatud 0 vektor. Koik vektorid
on erinevad, mistottu suvalise kahe vektori summa ei saa olla 0. Kui koodivektoris pole
ainult nullid, peab tas olema vihemalt 3 iihte sest iihe voi kahe iihega ei saaks kehtida (4.5).
Samas koodi lineaarsuse tottu on iga kahe koodivektori vahe koodivektor. Seega erinevad
kaks koodivektorit vihemalt kolme biti vorra. Teisisonu, kahe koodisona omavaheline
kaugus Hammingi mottes on vihemalt 3. Kui niiiid iihe koodisona c iiks bitt muutub, siis
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erineb muudetud vektor, olgu see r, sonast ¢ tédpselt iihe biti vorra (kaugus on 1), kuid
koikidest teistest koodisonadest vihemalt 2 biti vorra (kaugus vihemalt 2). Seega on c
vektor mis minimiseerib iiheselt Hammingi kauguse r ja teiste koodisonade vahel, st

¢=arg min h(r,c;), (4.6)
kus h on Hammingi kaugus ja ci, ..., c koikvoimalikus koodisonad. Loomulikult pole
¢ leidmiseks vaja leida h(r, ¢;) koikide koodisonade korral. Seda négime juba iilalpool
(ringide abil) ning selles on kerge veenduda ka maatriksite abil.

Toepoolest, kui iilekande kdigus muutub tapselt iiks bitt, siis vastuvotjani jouab vektor
r = ¢+ ¢;, kus e; koosneb nullides viilja arvatud i-s positsioon, kus on 1 (i = 1,...,7).
korrutades vektorit » maatriksiga H, saame

Hr =H(c+e;) = He,.

Ent He; on maatriksi i-s veerg. Maatriksi H veerud on iiksteisest erinevad. Seega teades
veergu He;, teame positsiooni ¢ ning seega on viga voimalik parandada.

Hammingu koodi suuremate sonastike jaoks. Niiiid on kerge iildistada kirjeldatud
meetodi suurema sonastiku kodeerimiseks. Oletame, et tahame kodeerida 2° koodisona.
Siis on paarsusbitte tarvis vahemalt 4 (miks?). Seega konstrueerime 4 x 5 maatriksi P,
mille veerud on koik erinevad ja sisaldavad vihemalt 2 iihte. Naiteks

— O~
O = ==
— o o
O = O =
S O = =

Iga algse koodisona s’ = (s1,...,s5) € {0,1}° korral vektor ¢ = Ps miiirab paar-

suslaiendi. Néiteks kui s = (1,0,0,1,1), on paarsusbitid 1,0,1,1 ja nii on koodiséna
100111011. Maatriks H on niiiid (P, I4):

111111000
110010100
010100010
1010000O0T1

Maatriksi H veerud on koik erinevad ja H read on ortogonaalsed koikide koodisonadega.
Koik vektorid on erinevad, mistottu suvalise kahe vektori summa ei saa olla 0. Peale
nullvektori igas koodivektoris peab olema vidhemalt 3 iihte sest iihe voi kahe iihega ei
saaks kehtida (4.5). Seega on koikide koodisonade Hammingi kaugus vihemalt 3.

Asja konstrueeritud koodi on (32,9)-kood, tema méér on g, Tegelikult saab 4 paarsusbiti
abil laiendada rohkem sonu kui 2°. Toepoolest, et maatriksi ridu on 4, saab maksimaalne
veergude arv maatriksis H olla 2* — 1 = 15. See saab olla maksimaalne (laiendatud)
koodisona pikkus. Originaalkoodisona pikkus saab olla maksimaalselt 15 —4 = 11. Seega
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saab nelja paarsusbitiga laiendada maksimaalselt 2! koodisona. Selle koodi méiir on %
Analoogiliselt saame, et k paarsusbitiga saab laiendada

22"’—1—]9
sona, koodi mééar on siis 22;:’“. Maar laheneb {ihele, kui k& kasvab, kuid seejuures kasvab
ka veatoendosus, sest pikkade koodisonade puhul on suurem toenéosus, et muutub rohkem
kui 1 bitt.

4.5 Kanaliteoreem

Def 4.4 Olgu P(y|x) diskreetne mdluta kanal. Arv R on kanali saavutatav mAir

(achievable rate) , kui leidub selle kanali ("2"7,n) koodide jada nii, et nende maksi-
maalne viga Apqaq ldheneb nullile.

Kas arv R on saavutatav mair voi mitte, on kanali omadus. Kui R on kanali saavu-
tatav médr, siis leidub selline kanali ("2"7, n) koodide jada, et maksimaalne viga liheneb
nullile. Kui maksimaalne viga ldheneb nullile, siis suvalise W jaotuse korral ldheneb nullile
ka viga P(W # W). Seega, kui R > 0 on kanali saavutatav mér, siis kuitahes suure
sonade arvu M ja kuitahes viiikese € > 0 korral leidub alati mingi n ja mingi (7277, n)
kood nii, et selle koodi maksimaalne viga on viiksem kui €. Seega selle koodi korral voib
juhuslikult valitud sona hulgast {1,...,72"%7} 1ibi kanali edastada nii, et vea toenfiosus
on vaiksem kui e.

Binaarse vigadeta kanali korral on 1 koodi saavutatav méar.

Edaspidi tdhistame "2"%7 lihtsalt 2"%,

Jargnev teoreem, nn Shannoni teine teoreem on informatsiooniteooria keskne tulemus.

Teoreem 4.5 (Kanaliteoreem) Olgu C kanali voimsus. Siis iga arv R < C on selle
kanali saavutatav mddr. Teisisonu, iga sellise arvu R korral leidub (2"%,n) koodid nii, et
Amaz — 0.

Teistpidi, kui leidub (2", n) kood nii, et \pae — 0, siis R < C.

4.5.1 Esimese viite toestus

Olgu R < C. Niitame, et R on saavutatav maér.

Esimese sammuna fikseerime suvalise % > € > 0 ning naitame, et leidub kood C*
nii, et P.(C*) < 2¢, kus P.(C*) on edastamisel tehtud viga juhul, kui W on iihtlase jao-

tusega ning kood on C*. Selleks toimime jargmiselt:

1) Fikseerime sisendjaotuse P(z), mille korral I(X;Y) = C. See jaotus, nagu ka kanal
{P(y|x)} on teada nii vastuvotjale kui ka sisendajale.
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2) Jaotuse P(z) abil genereerime 2"% juhuslikku sona z"(1),...,z"(2""). Saadud 2"%
sona vaatleme hulga
{1,...,2"%

koodina:
C:{1,....2"y = x"  C(i) = 2"(4).
Olgu
X"(1),..., X" (2"

soltumatud juhuslikud sama jaotusega juhuslikud vektorid, kusjuures iga vektor
X"(1) = (X1(0), ..., X,(2))

omakorda koosneb samuti iid komponentidest. Vektor X™(i) modelleerib koodisona x" (7).
Seega

n

P(X"(i) = "(i)) = ] ] P(a;(0)).

j=1
kus 2"(i) = x1(3), . .., T, (7).
Juhuslik iid komponentidega maatriks
X (1) Xo(1) - X,(1)
X = e e e e
X1(2nR) XQ(Q"R) . Xﬂ(QnR)

modelleerib juhjuslikku koodi. Iga maatriksi rida on iiks koodisona, toendosus koodi C

saamiseks on
onk p

P(X =C) =TI P

j=11:=1

3) Saadud kood edastatakse informatsiooni saatjale ning vastuvotjale.
4) Sonastikust {1,...,2"%} valime iihtlase jaotusega sona w. Olgu W juhuslik sona,

S.t.
P(W =w)=2"%

5) Valitud séna w kodeeritakse selle koodi abil ja saadud koodisona x™(w) saadetakse 14bi
kanali.

6) Vastuvotja saab signaali y™ vastavalt jaotusele

y "™ (w HP Yilwi(w
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7) Vastuvotja dekodeerib saadud sona y™ vastavalt jargmisele eeskirjale

o) = {k‘ kui (z™(k),y™) € W ning iga i # k korral («"(3),y") & W,

*  muidu.

Siin * ¢ ), mistottu see viljund on kindlasti viga. Piiliame hinnata iilalkirjeldatud
juhuslikul kodeerimisel saadud viga. Selleks hindame keskmist viga iile koigi juhuslike
koodide

onR onR

S POPE) = Y P57 S M) = 515 30 3 PEONC),

kus
A (C) = P(W # W|W = j,C)

on sona j edastamisel tehtud viga koodi C korral. Summa

> PC)A(C)
C

on sona j dekodeerimisel tehtud keskmine viga (iile koikide koodide). Olgu C; ja C; koodid,
kus esimene ja j-s rida on dra vahetatud, muidu samad. On selge, et P(Cy) = P(C;).
Sellest jareldub, et

ehk

P(W #W|W =1),

kus kolmas vordus jareldub sellest, et sona- ja koodivalik on séltumatud, P(C|W = 1) =
P(C). Tuletame meelde, et P(W # W|W = 1,C) on esimese sona edastamisel tehtud
viga koodi C korral, P(W # W|W = 1) on aga kogu kirjeldatud juhusliku kodeerimise
kaudu esimese sona edastamisel tehtud viga.

Juhuslik vektor X™(i) on juhusliku koodi i-s sona, Y"(i) olgu selle viljund 1&bi kanali.
Defineerime siindmuse

B = {(X"(2),Y"(1)) € W}
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Esimese sona kodeerimine on vigane siis, kui toimub siindmus EY voi iiks siindmustest
Es, ..., Eyr. Seega

nR
P(W £ W|W =1)<P(ESUE,U---U Eyur) < P(E) + QXIP(Ei).
i=2
Teoreemi 3.4 esimesest viitest jareldub, et piisavalt suure n korral
P(E}) <e.
Tuletame meelde, et X™ () on iid vektor jaotusest P. See jaotus oli aga selline, et
I[(Xa(i); Ya(2)) = C.
Vektorid X" (i) ja X™(1) on soltumatud, mistottu on soltumatud ka X"(i) ja Y™(1).
Teoreemi 3.4 viimasest vaitest saame, et piisavalt suure n korral
P(E;) = P((X"(i), Y"™(1)) € W) < 27 KlOMi) =80 — o=n(C=3) = j — 9 onf
Kokkuvottes,

onR

PW#WIW =1) <e+ Y 2703 = ¢ 977739 < 9
i=1
kui n on piisavalt suur ja € on nii viike, et C' — R — 3¢ > 0, s.t. R+ 3e < C.

Toestasime, et kuitahes viikese € korral leidub piisavalt suur n nii, et
Y P(C)P.C) < 2.
c

Et keskmine on viiksem kui 2¢, siis peab leidume vihemalt iiks kood C* nii, et
P.(C*) < 2e.
Edaspidi voib kasutada seda (mittejuhuslikku) koodi.

Tuletame meelde, et P. on keskmine viga (iile iihtlase jaotusega sonavaliku). Seega oleme
toestanud, et koodi C* korral on

1 onR

Ulaltoodud vorratusest jireldub, et leidub vihemalt 2771 indeksit ¢ nii, et \; < 4e.
T&epoolest, kui see nii, ei ole, s.t. leidub vdhemalt 2"%~! + 1 \;-d mis on suuremad kui
4e, siis oleks Z?nR A; > 2e. Jatame koodist C* alles pooled koodisonad, need mille korral
A; < 4de. Sellise pooliku koodiga saame kodeerida

2nR—1 _ 2TL(R—%)

sona. See tidhendab, et meil on (2"((3’%),71) kood nii, et A4 < 4€. Vahe R ja R — %
vahel ldheneb n kasvamisel nullile. Seega on iga R < C' saavutavav méiar.
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Markused:

e Teoreemi toestus pohineb sisuliselt jargneval: juhuslikult valitud koodisona z™ on
suure toendosusega norgalt tiilipiline. Sellise sona kanali kaudu edastamisel on
villjund y” suure toendosusega iiks neist 2"71X) vektorist mis on sisendiga koos
ithistiiiipilised. Ulalkirjeldatud infovahetus té6tab histi, kui erinevatele sisenditele
vastavad iihistiilipilised vektorite hulgad on sisuliselt kattumatud. See aga seabki
piiri sisendite arvule. Toepoolest, kui koikide norgalt tiiiipiliste véiljundite hulk on
jagatud loikumatuteks klassideks, millistes igaiihes on umbes 2"7(1%) elementi ning
kui kdiki norgalt tiitipilisi vijundeid on umbes 2"7() siis peab nende klasside arv
olema ligikaudu

2nH(Y)

_ onI(X;Y)
onH (Y|X) :

Igale klassile vastab iiks sisend. Kokku peab olema ligikaudu 2 %Y) sisendit.

e Ulaltoodud toestus on olemasolu, mitte konstruktsioonitdestus. Toestus ei anna

eeskirja parima koodi C* konstrueerimiseks. Pohimotteliselt voiks kiill leida iga
voimaliku koodi korral tema maksimaalse vea ning otsida parimat koodi koikide
voimalike koodide seast. Et aga (2"%,n) koodi konstrueerimiseks tuleb libi vaadata
272" ygimalikku koodi, langeb see variant ira.
Muidugi voib koodi konstrueerida ka juhuslikult, nii nagu iilaltoodud toestuses.
Suure toendosusega (ja suure n korral) see kood téotab hésti. Sellise juhuslikult
genereeritud koodi korral on probleem dekodeerimine. Teadmata tema struktuuri
paistab ainus voimalus dekodeerimiseks n x 25" tabelist dige vaste otsimine ning see
on ebapraktiline.

T66 praktiliselt rakendatava korge midraga (2"%,n) koodi leidmiseks on algas sisuliselt
juba pérast Shannoni esimese artikli ilmumiset ning kestab siiamaani. Pikka aega ei
suudetud selliseid koode leida voi nende efektiivsust toestada. 1993 aastal pakuti vilja
nn. turbokood, mis peaaegu saavutab kanali voimsuse. Samuti saavutavad kanali voimsuse
nn Low Density Parity Check koodid.
4.5.2 Teise viite toestus
Lemma 4.1 Olgu X™ = C(W) juhuslik koodisona, Y™ = (Y1,...,Y,) selle viljund. Siis
I(X™ Y™ <nC.

Toestus. Entroopia tinglikust ketireeglist jareldub, et

HY™X™) =HY||X")+ HY,|Y1, X") + -+ HY, Y1, ..., Y1, X7).

Vastavalt definitsioonile

HY;|Yy, ..., Y1, X") = — Z log P(yily1, -+ Yic1, @1, -y X0) P(yn, -y Ys, Ty - o, Tp).

i,y tan
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Kanal on maluta, s.t. iga ¢ korral

Pilya, -y Yic1, @1, -« s ) = Plyila;)

ja

Py, ¥is @1y ) = P(yilz) P(ys, - o, Y1, X1y - -, Tn),s
millest

H(KD/M o 7Yi—1a XTL) = H(YZ|X1)
Jarelikult .
H(Y"X") =Y H(Yi|X)), (4.7)
=1

millest

I(X™Y™) = HY™) - HY™X") = HY™) = ) H(Y;|X;)

=1
<Y (H(Y;) — HYi| X)) = > I(X;;Y;) < nC
=1 =1

| ]

Veata koodid. Kanaliteoreemi teine viide on sisuliselt jirgmine: kui leidub (2", n)
kood, mille maksimaalne viga on viike, siis R < C. Toestuse idee selgitamiseks tGestame
esialgu norgema véite.

Viide 4.1 Kui leidub (2%, n) kood, mille maksimaalne viga on 0, siis R < C.

Toestus. Oletame sellise (277, n) koodi olemasolu. Seega leidub dekodeeriv funktsioon
g nii, et g(Y™) = W p.k.. Teisisonu, H(W|Y™) = 0. Kui juhuslik séna W on iihtlase
jaotusega, siis H(W) = nR. Tuletame meelde, et X™ = C(W) on juhuslik koodisona. Et

W — X" =YY"
on Markovi ahel, siis andmetdtlusvorratusest jareldub
I(W;Y™) < I(X™Y™). (4.8)

Arvestades, et
IW;Y")=HW)—-HW|Y")=H(W), (4.9)

saame lemmast 4.1 ja andmetootlusvorratusest (4.8)
nR=HW)=IW;Y") <I(X"Y") <> I(X;Y;) <nC.

i=1
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Milline peab olema C, et poleks vigu ? Kui Ao, = 0, siis W = g(Y™) nii, et
W—=X"—=>Y"—>W.
Niiiid on kerge niha, et
[(W;Y™) = [(W; X") = [(X";Y"™) = I(W; W) = H(W) = H(X") = HY™).

Toepoolest, esimese vorduse saame kui rakendame andmetddtlusvorratust ahelatele W —
X" = Y"ja X" —- Y™ — W. Sama vorratust rakendades ahelale Y — W — X" koos
vorratuse (4.8) ja esimese vordusega annab teise vorduse. Neljas vordus on ilmne ja
kolmas jireldub neljandast vorratuse (4.9) tottu. Et X™ = C(W), siis H(X"|W) = 0,
millest HW) = I(X™ W) = H(X™) — H(X"|W) = H(X") ja nii saame viienda vor-
duse. Viimase vorduse toestus on analoogiline, sest W = ¢g(Y") = H(W|Y™) = 0 ja
HW)=1(Y"W)=H(Y"™) — HW|Y").

Vordusest [(X™;, W) = H(W)— H(W|X") = H(W) jareldub, et
HW|X™")=HW|C(W))=0
st kood C on iihene.

Oletame niiiid, et koodi C méér on kanali voimsus C' ja A, = 0. Siis Viite 4.1 toestuses
olevad vorratused peavad olema vordused. Neist esimene on

I(W;Y™) =1(X™ Y™,

mis tuleneb sellest, et A\, = 0 ja toob enesega kaasa C iihesuse. Teine vorratus vordus
sits, kui H(Y™) = " | H(Y;), mis tdhendab, et juhuslikud suurused Y; on soltumatud.
Kolmas vordus .

> I(X;Yi) =nC

i=1
kehtib siis, kui iga i korral I(X;;Y;) = C ehk X; jaotus on selline, mis saavutab kanali
voimsuse.

Kokkuvotteks: Seega (2"% n) kood, mille korral P, = 0 ja R = C peab rahuldama
tingimusi:

e C on (iiks)iihene;

e iihtlase jaotusega W korral juhuslikud suurused X; on kanali voimsust saavutava
jaotusega P*(x);

e iihtlase jaotusega W korral juhuslikud suurused Y;" on iid juhuslikud suurused jao-
tusega

P(y) = Plyl)P*(x). (4.10)
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Siit jéreldub, et (peaaegu) samasugused omadused peavad olema (2" n) koodil, mille
maksimaalne viga on véike.

Naiited:

e Vigadega klaviatuur. Sellisel juhul on lihtne saavutada kanali voimsust. Toepoolest,

olgu M = 13" ja olgu C iihtlane kood koodiraamatuga {1,3,5,...,25}". Selle koodi
méédr on R = (log M)/n = log13 = C, mis iihtlasi on kanali voimsus. On selge, et
sellise koodi korral A\, = 0. Kas iilaltoodud tingimused on tdidetud?

Kui W on iihtlase jotusega, siis juhuslik koodisona X" = Xj,..., X, on iihtlase
jaotusega hulgal {1,3,5,...,25}" ja on lihtne veenduda (aga veenduge!), et siis
Xi,...,X, iid juhuslikud suurused ning X; jaotus on iihtlane iile paaritute tdht-
ede {1,3,5,...,25}. See jaotus (iihtlane iile {1,3,5,...,25}) on ka kanali voimsust
saavutav jaotus P*. Sellise sisendjaotuse korral on viljund iihtlane iile koikide téht-
ede ning Y7,...,Y, on iid juhuslikud suurused jaotusega (4.10).

Binaarne kadumiskanal. Selle kanali korral ei saa viga P, olla 0. Samas peaks efek-
tiivne kood ikkagi olema selline, et vektori Y7, ..., Y, jaotus on lihedane Bernoulli
% iid jaotusele. Kordamiskoodi korral pole see kindlasti nii.

Fano vorratus taaskord. Viite 4.1 iildistus juhule, kui védikesed vead on lubatud
pohineb Fano vorratusel. Esitame Fano vorratuse meile sobival kujul.

Lemma 4.2 (Fano vorratus) Olgu W juhuslik tiht. Siis

HWI|Y™) <1+ P(W # W)nR. (4.11)

Toestus. Tuletame meelde Fano vorratuse:

HW|W) < h(P(W £ W))+P(W # W)log(2™ —1) < 1+ P(W # W)nR.

Et W = g(Y™), siis (andmetdotlusvorratus: I(W;Y™) > I(W, W)

H(W|W)=HWl|g(Y")) = HW[Y™).

Teise viite toestus. Olgu (2"% n) koodide jada nii, et A\pq. — 0. Niiteme, et R < C.
Et Az — 0, siis

1
PE:QTL_R;)\I%O

Seega piisab, kui néitame, et seosest P — 0 jareldub, et R < C. Arv F, on toendosus
P(W # W) juhul kui W on iihtlase jaotusega iile tdhestiku. Seega toestuseks piisab, kui
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vaatame sellise jaotusega W ning veendume, et P(W # W) = P, — 0 viib seoseni R < C.
Toestus on pohimotteliselt sama, mis viitel 4.1, kus niitasime, et

nR=H(W) = H(W)— HWI[Y") + HWI[Y"™) = [(W;Y") + HW[Y™) = [(W;Y™),

sest veatu dekodeerimise korral H(W|Y™) = 0. Praegusel juhul H(W|Y™) # 0, kuid
Fano vorratuse abil saame H(W|Y™) iilalt hinnata suurusega 1 + P,nR. Muu on koik
samamoodi:

nR=H(W)=HWI[Y") + [(W;Y") <1+ PR+ [(W;Y")
<14 PnR+I1(X"Y") <1+ P.nR+nC.

Tuletame meelde et kaks viimast vorratust jarelduvad andmetootlusvorratusest (4.8) ja
lemmast 4.1. Seega

1
R<PR+-+C. (4.12)

Et n kasvades P.R + % — 0, siis R < C.

Maérkused:
1. Vorratus (4.12): iga n korral

C 1 C 1 C
P>1———— = limP > (1-———) —1- =

=" "R nR we=R U T R TR R
Seega, kui C' < R, siis % < 1, millest jareldub, et leidub ¢’ > 0 nii, et P, > ¢’, kui n
on piisavalt suur. Sellisel juhul ei saa P, olla 0 ka véiksese n korral (sest kui mingi
n korral on P, = 0, siis on see nii ka 2n korral ja 3n korral jne). Jarelikult, kui
C < R, siis leidub § > 0 nii, et P. > ¢ iga n korral.

2. Toestatud viidet nimetatakse teinekord ka norgaks vaiteks. Saab niidata, et kehtib
ka tugev versioon: kui leidub e > 0 nii, et R > C' + ¢, siis P. — 1.

4.6 Tagasisidega infovahetus

Tagasisidega (feedback) infovahetus on jargmine: pérast koodisoéna z" i-nda biti edas-
tamist 1dbi kanali, saadab vastuvotja saadud signaali y; muutusteta saatjale tagasi. Saatja
arvestab saadud informatsiooni jirgmise biti saatmisel. Seega on sellise kanali korral koodi
C asemel jada C;, kusjuures C; argumendid on tdht W ning siiani saadetud bittide tule-
mused v, ..., y;—1. Nii saadakse viljund y", mis dekodeeritakse funktsiooni g abil.
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Def 4.6 Olgu {P(y|x) }rex yey diskreetne kanal. Selle kanali tagasisidega (M, n) kood
koosneb jdargmistest komponentidest:

e hulk {1,...,M};
e kodeerivad funktsioonid
Ci:{l,.... M}y x Y"1 = Xx;
o dekodeeriv funktsioon
g:Y"—{1,2,...,M}.

Tagasisidega infovahetuse kasulikkus tuleb hésti esile néiteks binaarse kadumiskanali kor-
ral: siimboli e saamisel edastab saatja eelnevalt saadetud siimboli veelkord kuni see lopuks
kohale jouab.

Tagasisideta infovahetus on tagasisidega infovahetuse erijuht. Seega iga tagasisideta info-
vahetuse korral saavutatav miir on saavutatav ka tagasisidega infovahetuse korral. Voiks
arvata, et tagasiside korral saab ehk saavutada kérgemat méira kui C. Ullataval kombel
pole see nii: ka tagasisidega infovahetuse korral ei saa saavutada voimsusest C' kbrgemat
maéra.

Teoreem 4.7 Kui R on tagasisidega infovahetuse saavutatav mdadr, siis R < C.

Toestus. Argumenteerime analoogiliselt teise viite toestusega tagasisideta kanali korral.

Olgu (2%, n) koodide jada nii, et A\pee — 0. Niitame, et R < C.

Olgu W iihtlane iile tahestiku. Siis P, = P(WW # W) — 0. Fano vorratusest saame
nR=HW)=HWI|Y")+I(W;Y") <1+ PnR+I1(W;Y").

Hindame

I(W:Y™) = H(Y") — HY"|W)
= HY") = HY W) — HY[Y1,W) — -« — H(Y,[V1,..., Y, 1, W)

=H(Y") =) HY;W,...,Yi,W)
=1

=HY") =Y HYin,...,Yi1, W, X;).
=1

Viimane vordus kehtib sest X; = C;(Y1,..., Y1, W). Et aga Y; soltub vaid X;-st, siis

P(yl|y1a s 7y7ﬁ—17w7$i) = P(yl|xl) ja H(}/;D/la s 7}/;—17W7 Xz) = H(YZ|X1)
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Niiiid laheb jalle koik vanamoodi

FV V™) = O = 3 (VY Ve, WX = HO) = 3 V)

i=1
n n

< ST HY) - S HIX) = 31X Y) < n0

=1 i=

Kokkuvottes nR < PnR+1+nC ehk R < PR+ % +C—=C.nm

Maérkus: Tagasisideta infovahetuse korral kasutasime Lemmat 4.1, mis tugineb vordusele

H(Y"|X") <) H(YilX)),

tdpsemalt seosele
P(yZ’y17 e Yie1, 1y - 7x'fl) = p<yl|‘r2)7

mis aga tagasiside korral ei kehti, sest x;11,2;12,... annab ka y; kohta infot.

4.7 Kaheastmeline kodeerimine

Siiani vaatlesime juhusliku sona W edastamist 14bi kanali. Alljargnevas uurime monevorra
reaalsemat probleemi. Olgu meie infoallikas juhuslik protsess Vi, Va, ... (digitaliseeritud
kone, muusika jne), kus iga juhusliku suuruse viértuste hulk on V. Eesmérk on n iilekan-
dega labi kanali edastada allika esimesed n siimbolit V7, ..., V,. Kas see on viikese veaga
voimalik?

Muidugi voib vektorit V™ = (V4,...,V,) vaadelda juhusliku sonana hulgast V" ja rak-
endada kanaliteoreemi. Viimasest jareldub, et kui log |V| < C| siis leidub (|V|", n) koodide
jada nii, et maksimaalne viga ldheneb nullile ehk vektorit V" voib n {ilekande abil edas-
tada kuitahes viikese veaga. Mida aga teha, kui log|V| > C7 Jérgnev teoreem viidab,
et juhul kui V3, V3, ... on norga AEP omadusega protsess, voib soovitud (n iilekannet,
nulliks koonduv viga) infovahetus olla voimalik ka siis, kui log [V| > C. Piisav tingimus
selleks on H < C', kus H on protsessi Vi, Vs, ... entroopiaméar. Tahestiku suurus V pole
enam oluline.

Teoreem 4.8 Olgu V" = Vi, ..., V, esimesed n juhuslikku suurust norga AEP omadusega
Juhuslikust protsessist, H olgu selle protsessi entroopiamdadr. Kui H < C, siis on vektorit
V™ woimalik n tlekandega edastada libi kanali nii, et P(V,, #V,) — 0.

Toestus. Vali € > 0 nii viike, et H + 2¢ < C. Et protsessil on AEP omadus, siis iga
piisavalt suure n korral leidub hulk W (norgalt tiitipilised sonad) nii, et P(W?) > 1 —¢

€

ja [Wr| < 2n(+9) Indekseerime koik sénad hulgast W ja niiiid voib hulka W< voib
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vaadelda kui sonastikku, mis koosneb 2" sonast, kus R < H +¢ < C. Formaalselt oleme
defineerinud funktsiooni (allikakood)

fowr—{1,..., 2"},

mis igale norgalt tiilipilisele sonale seab vastavusse tema indeksi. Et R < H 4+ € < (| siis
kanaliteoreemist saame, et saadud sonad saab edastada kuitahes viikese veaga. Teisisonu,
leidub (2%, n) kood nii, et A\nae — 0. Vastuvotja dekodeerib esmajiirjekorras indeksi
hulgast W ja seejérel leiab temale vastava sona hulgast V". Olgu

g:yr—-y"

saadud dekooder. Et A,.. — 0, siis piisavalt suure n korral iga norgalt tiiiipilise sona
dekodeerimisel tehtav viga on viiksem kui e. Kokkuvottes iga piisavalt suure n korral
sellisel infovahetusel tekkiva vea toendosus rahuldab seoseid

P(V' £ V") <PV W) +P(g(Y") £ VV" € W) < 2.
|

Ulaltoodud tdestuses kasutasime kaheastmelist kodeerimist: esimene aste on allika V™
kodeerimine optimaalselt (kuid kanalist soltumatult) ligikaudu 2" koodisonaks (tule-
tame meelde, et norgalt tiiiipilised sonad annavad suure n korral optimaalse koodi),
teine aste on saadud sonade kodeerimine (esimesest osast soltumatult) optimaalse in-
fovahetuse kiigus, s.t. ka kood C on teatavas mottes optimaalne (kuid soltumatu al-
likast V™). Seega allika optimaalne kodeerimine koos optimaalse ning allikast soltumatu
kanali koodiga annab hea tulemuse. Samas voib need kaks sammu iihendada: sona V"
kodeeritakse otse sonaks x™, mis saadetakse kohe kanalisse. Nimetame sellist protse-
duuri iiheastmeliseks kodeerimiseks (joint source-channel coding) . Kui infova-
hetus on tagasisisdega, siis iiheastmeline kodeerimine tdhendab koode C; nii, et

C V' x Yt 5 x.

Ulalkirjeldatud kaheastmelist kodeerimist véib vaadelda iiheastmelise kodeerimise eri-
juhuna, mistottu on loomulik kiisida, kas iiheastmelisel kodeerimisel ei saa dkki paremat
tulemust, s.t. kas ei saa #dkki n iilekande abil viikese veaga libi kanali saata sona V" ka
siis, kui H > C?7 Jargnev teoreem annab esitatud kiisimusele eitava vastuse: diskreetse
méluta kanali korral tagab kaheastmeline kodeerimine optimaalse tulemuse (isegi tagasi-
side korral). Lisaeeldus on |V| < co.

Teoreem 4.9 (Separation theorem) Olgu Vi,...,V, esimesed n juhuslikku suurust
norga AEP omadusega statsionaarsest juhuslikust protsessist, H olgu selle protsessi en-
troopiamdadr, |V| < oo. Olgu vV vektori V™ valjund, mis on saadud tagasisidega info-
vahetusel n dlekande abil. Kui H > C, siis leidub ¢ > 0 nii, et P(V # V) > € iga n
korral.
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Toestus. Olgu ‘
C:V'xY s x, i=1,....n

(n iilekannet) ja X
g: Yyt =V V=gkm").
Statsionaarse juhusliku protsessi korral

H 1 1 - 1 ~

n n

H <

Esimene vorratus kehtib, sest statsionaarsuse tottu H(V,|Vi,..., V1) \( H ja

HVi,...,Vi) = HVi) + -+ HV, Vi, ..., Vi)
— H(V,) + HVo Vo) + -+ HVu Vi, ..., Viy)
> nH(V,|Vi, ..., Vi),

Fano vorratusest saame (V| on 16plik)
HVIV)<1+P(V £V")log V" =1+ P(V # V"nlog|V|.
Andmetostlusvorratusest (V™ — Y™ — V") saame
(Vv < I(VhY™).
Teoreemi 4.7 toestusest nagime, et
(V" Y™ <nC.

Seega
1 ~
H< —+PV #V")log|V|+C.
n
Kui P, — 0, siis H < C; kui H > (), siis

S H-C 1
~ log|V]  nlog|V|’

P(V #£ V")

millest ndeme, et kui H > C siis leidub € > 0 nii, et P(V # V™) > ¢, kui n on piisavalt

suur. See aga tihendab, et leidub e > 0 nii, et P(V # V") > € iga n korral. m

Seega iiheastmeline (kombineeritud) kodeerimine ja tagasiside ei suurenda infovahetuse
efektiivsust: kaheastmeline kodeerimine annab sama hea tulemuse. Kuigi see paistab
loomulik, pole see iseenesestmoistetav ning keerulisemate kanalite korral ei pruugi ka ke-
htida. Seetottu on teoreemil 4.9 suur tidhtsus praktikas, sest ta lubab allika koode ja
infovahetust optimiseerida teineteisest soltumatult. Samuti lubab see teoreem saata er-
inevaid allikaid 1&bi sama (kord juba optimiseeritud infovahetusega) kanali. Samuti lubab

ta saata sama (kord juba optimaalselt kodeeritud) allikat 1dbi erinevate kanalite.

106



Teisest kiiljest aga tuleb alati meeles pidada, et toestatud kahe- ja iiheastmelise kodeerim-
ise ekvivalentsus on asiimptootiline. Lopliku n korral voib aga iiheastmeline kodeerimine
ikkagi vihendada vea toendosust.

Mida teha, kui H > C? Teoreemist 4.9 jiareldub, et n iilekandega soovitud tulemust
ei saavuta: leidub d > 0 nii, et n iilekande abil saadud hinnang V™ rahuldab seost
P(V” # V™) > 0. Saavutamaks viikest viga, tuleb seega teha rohkem iilekandeid.
Tuletame meelde, et kaheastmelise kodeerimise korral on esimese kodeerimise tulemus
ligikaudu M := 2™ koodisona. Kui H > C, siis n iilekandega neid koodisonu nulliks
koonduva veaga edastada ei saa. Et aga

M = onHl — o (kn)

siis mingi positiivse tdisarvu k (ja piisavalt suure n) korral saab neid M koodisona edas-
tada kn tilekandega nii, et viga on kuitahes viike. Siin k£ peab olema selline, et % < C.

4.8 TUlesanded

1. Vaatleme binaarset siimmeetrilist kanalit, p < 0.5. Olgu m paaritu ja olgu p,(m)
kordamiskoodi R,, korral iihe bloki vigase dekodeerimise toendosus.

1 Toesta, et
k> k

2 Suurte arvude seadusest jirelda, et lim,, P,(m) = 0.

2. Olgu X = {0,1}. Vaatleme kanalit, kus sisendile X liidetakse soltumatu juhuslik
suurus aZ, kus Z ~ B(1,0.5). Leida selle kanali vbimsus.

3. Olgu X = {0,...,10}. Vaatleme kanalit, kus Y = X+ Z (mod 11), kus X on sisend,
Y on viljund ning Z on soltumatu juhuslikust suurusest X. Juhusliku suuruse Z
jaotus olgu

Wl =
= DO
Wi L2

3
Leida kanali voimsus. Milline jaotus saavutab voimsuse?

4. Olgu (X1, Pi(y|x), V1) ja (Xa, Pa(y|x), Vo) kanalid voimsustega C ja Cy. Defineerime
korrutiskanali

(X1 X Xy, Pl(y1|x1)P2(y2|x2),y1 X y2>-

Leida selle kanali voimsus.

5. Olgu K (¢€) binaarne siimmeetriline kanal veatoendosusega €. Olgu K(e1) — K(€)
jadaiihendus.
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e Leida jadaiihendusel saadud kanali voimsus C'.
e Toestada, et C' < C(K(e1)) N C(K(e2)).
e Toestada, et kanali K (€) n-kordsel jadaiihendusel
X = K(e) > K(e) > -+ — K(e) = Y(n)
saadud kanal on K (3(1 — (1 —2¢)")), millest lim,, I(X;Y (n)) = 0.

6. Leida jargmise Z-kanali voimsus ja seda saavutav jaotus

1 0
0.5 0.5

Olgu kanal Z-kanal. Vaatleme juhuslikku (n,2"®) koodi, kus iga koodisona on iid
B(1,3) jaotusega. Millise R korral liheneb iile koigi voimalike koodide keskmine
viga P, nullile?

7. Vaatleme binaarseid siimmeetrilisi kanaleid ¥; = X; + Z; (mod 2), kus X =) =
{0,1}. Olgu Z™ = Z,,...,Z, sama jaotusega (kuid mitte soltumatud) juhus-
likud suurused, Z; ~ B(1,¢€), vektor Z™ on soltumatu juhuslikust vektorist X" =
Xi,...,X,. Seega on n binaarset siimmeetrilist kanalit veatoenéfosusega €. Kui aga
juhuslikud suurused Z; pole soltumatud, on kanalid méluga.

e Toestada, et [(X™;Y") < n — h(e). Leida X™ ja Z" jaotus, mis saavutab
vorduse.

e Veenduda, et méilu suurendab kanali voimsust ehk

max [ (X", Y") > nC.
P(xzm)

8. Olgu (X, P, X) ja (X, Py, X) kaks kanalit voimsustega vastavalt C ja Cy. Olgu C
kanali (X, P, P», X') voimsus. Toestada, et

C <CyNCh.

9. Olgu z"(1),...,2"(2"") koodiraamat. Dekodeeriv funktsioon (suurime toepiira dekooder)g
olgu
9(y") = argmax P(y"[z"(i)) = argmax P(Y" = y"|W = ).

Olgu W jaotus iihtlane.

e Toestada, et g minimiseerib vea toéenfosuse

2nR 277.R

1 ) ) 1
P=P(gy") £ W) = 5o S Pl(Y™) £iW =) = 52 3"\,
i=1 i=1
ile koikide dekodeerivate funktsioonide.
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10.

11.

e Leida kontrandide selle kohta, et g ei minimiseeri \,,,; iile koikide dekodeerivate
funktsioonide.

Néapunéide: Niita, et
argmax P(Y" = y"|W = i) = argmax P(W =4|Y" = y") =: ¢"(y").
Seejarel veendu, et iga teise dekodeeriva funktsioooni g korral

PW # g (y")|Y" =y") <PW #g(y")Y" =y"), Yy~

Olgu K(¢) binaarne siimmeetriline kanal, kusjuures € < 3. Olgu z"(1),...,z"(2"%)
koodiraamat. Iga kahe vektori ™, y™ € {0, 1} korral defineerime Hammingu kauguse

d(z"y") = |z — yil.
i=1
Olgu dekodeeriv funktsioon
9(y") = argmind(y", z"(i)).
Toestada, et g on eelmises iilesandes defineeritud suurime toepéra dekooder.

Olgu X =Y =10,1,2,3,4}. Olgu kanal antud iileminekutéendosuste maatriksiga

01001
10100
o101 0
2100101

10010

nii, et iga sona saab edasi anad veatult, st leidub

Leida koodiraamat z%(1), ..., 2%(5
=0iga:=1,...,5 korral.

g nii, et P(g(Y?) =i|[W = z)
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5 Lempel-Ziv kood

5.1 Asiimptootiliselt optimaalsed koodid

Tuleta meelde sonade kodeerimist (alam-peatiikk 2.6). Sellest teame, et kui informatsioo-
niallikas on statsionaarne protsess, siis leiduvad prefikskoodid

Cn: X" —{0,1}"
nii, et keskmised koodipikkused tihe kohta koonduvad protsessi entroopiamééraks (koon-
dumine (2.18)):
1
L,=—-FEl(Xy,...,X,) — Hx.
n
Ulaltoodud koondumine kehtib ka siis, kui iga n korral C,, on optimaalne (Huffmani kood)

vektori (Xi,...,X,) jaoks. Sellisel juhul L, on vdhim voimalik iile koikide voimalike
sonade koodide, mistottu suvaliste koodide jada C, korral kehtib

1
liminf L, = liminf —FI(Xy,..., X,) > Hy.
n n

Kui informatsiooniallikas on lisaks nork AEP protsess, siis teame, et leiduvad prefik-
skoodid — Shannon-Fano koodid — mille korral koodisonade pikkuste entroopiaméiraks
koondumine kehtib ka peaaegu kindlasti (veendu selles!):

0(X1, ..., X,)

n

Selgub, et ka seda toket ei saa parandada, sest kehtib jirgmine teoreem.

Teoreem 5.1 Olgu C,, : X™ — {0,1}* prefikskoodide jada, X1, X, ... olgu norga AEP
omadusega protsess entroopiamddraga Hx. Stis

1
liminf —1(Xy,...,X,) > Hx p.k., (5.2)
noon

kus l(xy,...,xn) = [Co(x1, ..., 20)].

stantseks) piirvédrtuseks p.k., siis see piirvadrtus peab olema viahemalt Hx p.k.. Teisisonu,
koondumine (5.1) on (teatavas mottes) parim voimalik. Siit ka jargmine definitsioon.

Def 5.2 Koodide C,, : X" — {0, 1}* jada nimetatakse astimptootiliselt optimaalseks
(asymptotically optimal) , kui

1
“U(Xy,. .., X)) — Hy, pk..
n

Seega norga AEP omadusega informatsiooniallika korral Shannon-Fano koodide jada on
astimptootiliselt optimaalne.
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Teoreemi 5.1 toestus. Tuleta meelde, et

n

= (z,. . x,), X' = (X, ..., X5).

Suvalise juhusliku protsessi X = Xj, Xs,... korral tdhistame © = 21, x9,... (voimalik

realisatsioon) ning
P(z™) :=P(X" =z").

Teoreemi 5.1 toestus pohineb jargmisel lemmal.

Lemma 5.1 (Barron) Olgu C, : X" — {0,1}* prefikskoodide jada, X olgu juhuslik
protsess. Olgu v, selline positiivsete numbrite jada, et ) 27" < oco. Siis

P(l(X”) tlog P(X1,. .., X0) > —an ev.) ~ 1. (5.3)

Toestus. Paneme téhele, et

B, :={z" : l(z") + log P(z") < —ay} = {a" : 2@ He Pe") < g=any
:{In . 2l(m")210gP(z”) < 2—an} _ {:L,n . P(.In) < 2—an2—l(z”)}'

Seega Krafti vorratusest jareldub

P(B,) = Z P(z") < Z 9—ang—l(z") _ g—an Z o—l(a") < g=an.

x€By xeBy znexn

Boreli-Cantelli I lemmast jireldub, et
P(limsup B,) =P{r:z € B,i0. } =0 = =P{z:zeB,ev. } = P(limninf B¢ =1
ehk
P{z:x € B, ev. } = P{z :l(2")+log P(z") > —a, ev. } = P(I(X")+log P(X") > —av, ev.) = 1.
]
Vottes o, = 2logn = log n?, saame

22’% = Zn’Q < 00, SN}

~ ~ n

Rakendades iilaltoodud lemmat, saame norga AEP omaduse tottu

timint ) > fiing 08P Zan gy Zlog POXT)

n n n n n n

= Hx, pk

mis on (5.2). A
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Jareldus 5.1 Olgu C,, : X" — {0,1}* dheselt dekodeeritavate koodide jada, X1, Xo, ...
olgu norga AEP omadusega protsess entroopiamddraga Hx. Siis kehtib (5.2)

Toestus. Eliase laiendi abil saab suvalise iiheselt dekodeeritava koodi muuta prefik-
skkoodiks. Sona x" koodisona pikkus I(2™) suureneb log(z") + o(log l(z™)) vorra. Seega,
kui

liminfl(m ) < Hx
n n
on ka I(2) + log (™) + oflog I(z"
i inf (2") + log l(z") 4 o(log I(z™)) < Hy.
n n
[ |

5.2 Universaalsed koodid ning Lempel-Ziv kood

Shannon-Fano kood on kiill asiimptootiliselt optimaalne, kuid selle konstrueerimiseks on
vaja teada iga n korral vektori X" = (Xy,..., X, ) jaotust. Ka Huffmani koodi konstrueer-
imiseks on tarvis teada sona jaotust. Praktikas pole aga jaotus enamasti teada, mistottu
pakuvad huvi koodid, mis oleksid asiimptootiliselt optimaalsed iga norga AEP omadusega
protsessi korral. Koode, mis ei soltu allika jaotusest nimetatakse universaalseteks . Kas
aga sellised koodid iildse leiduvad? Esimesed universaalsed asiimptootiliselt optimaalsed
koodid esitasid aastatel 1977 ja 1978 A. Lempel ja J. Ziv. Seetottu nimetatakse neid
(ja teisi sarnasel pohimottel tootavaid koode) Lempel-Ziv (LZ) koodideks, lihidalt
LZ77 ja LZ78. Jargnevas tutvume pogusalt koodiga LZ78. LZ koodid on olemuselt viga
lihtsad, mistottu neid (eriti LZ78 koodi) kasutatakse kompressiooniprogramides (UNIX:
"compress", Mac "StuffIt", PC: "arc"). Asiimptootilise optimaalsuse tottu on LZ koodide
kasutamine (teatud mottes) teoreetiliselt digustatud.

5.2.1 Liigendamine ja kodeerimine

Olgu X loplik téhestik, vektor (jada) 2™ € X™ on koodi sisend. Koik LZ koodid pohinevad
sisendjada ™ jagamiseks alamsonadeks — liigendamisel (parsing) . Koodi LZ78 liigen-
damine seisneb jada z" jagamine sénadeks w(1),w(2),...,w(K) nii, et jirgmine sona
on liihim uus sona. Seega esimene sona on alati iihetdheline, teine sona iilimalt ka-
hetdheline jne. Formaalselt on liigendamiseeskiri jargmine:

a) Esimene sona on ;.
b) Olgu 2™ = w(l)---w(j).

kui 2,01 & {w(l),...,w(j)}, siis w(j +1) = 2,41,
kui 2,41 € {w(1),...,w(j)}, sils w(j + 1) = xZZJfl,

kus m > n; on véikseim indeks nii, et
a1 € {w(1), . w()}, kuid oty € {w(l), ... w(5)}
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Niide: Kui 2'® = 110010100010001000, siis liigendus on jirgmine:
1,10,0,101, 00,01, 000, 100,0
Pérast liigendust esitub sisendvektor sonade jadana:
" =w(Dw(2) - w(K)v, (5.4)

kus viimane osa v on on kas tiihi hulk v6i vordub mingi eelpool oleva sénaga. Ulaltoodud
néites v = w(3) = 0.

On selge, et iga liigenduses olev sona w(i) erineb iihest oma eelkiijast vaid viimase tihe
poolest. Seega on iga sona iiheselt madratud eelpoolnimetatud eelkiija ja viimase tdhega.

Niide: Ulaltoodud liigenduse voib esitada seega jargmiselt
(O’ ]'>7 (17 0)7 (07 O)’ (27 1)7 (37 0)7 (3’ ]‘)7 (57 0)7 (2’ O)’ O

Siin igas paaris esimene arv naitab eelpoololeva sona indeksit ja teine arv lisatud bitti.
Kui esimene arv on 0, siis jargnev siimbol on uus sona. Veendu, et kasutades {ilaltoodud
paare saad rekonstrueerida esialgse jada. Niiiid kodeerime sonade indeksid ja viimased
tahed ning saamegi LZ koodi. Formaalselt kiib see jargmiselt: (kahend)kodeerigu

{1, .,n} — {0,1} e’

sonade indekseid. Kodeerigu
g: X —{0,1} leelXl"

tahti. Defineerime koodi
Cn: X" —{0,1}", Cu(z") =b(1)b(2)---b(K)b(K + 1),

kus sonad b(7) on saadud liigendusest (5.4) jargmise eeskirja alusel.

5.2.2 LZ algoritm:

1) kui j < K ja [w(j)| =1, siis b(j) = 0g(w(}))

2) kui j < K jai < j on selline, et w(j) = w(i)a, siis b(j) = 1f(i)g(a).
3) kuiv =0, siis b(K + 1) = 0. Kui v = w(s), siis b(K + 1) = 1f(i).

Seega lisasiimbol 0 n#itab, et jargneb tdhe kood; lisasiimbol 1 niitab, et jirgneb sona
(indeksi) kood ning sellele jargnev kood on tidhe kood (v6i ei jargne midagi).

Niide: Olgu X = {0,1}. Siis g(a) = a. Olgu n = 18. Siis f : {1,...,18} — {0,1}".
Olgu f(i) arvu ¢ — 1 {ihtlane kood, st

£(1) = 00000, f(2) =10000, f(3)=01000, f(4)=00100 f(5)= 00010, f(6)= 00001, --
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Leiame C15(110010100010001000). Toodud vektori liigendus on meile tuttav:
(0,1),(1,0),(0,0),(2,1),(3,0),(3,1),(5,0),(2,0),0.

Seega K = 8 ja b(1) = 0g(1) = 01, b(2) = 1£(1)g(0) = 1000000, b(3) = 0g(0) = 00,
b(4) = 1f(2)g(1) = 1100001, b(5) = 1£(3)g(0) = 1010000, b(6) = 1f(3)g(1) = 1010001,
b(7) = 1£(5)g(0) = 1000100, b(8) = 1£(2)g(0) = 1100000, b(9) = 1£(3) = 101000. Seega

C15(110010100010001000) = 0110000000011000011010000101000110001001100000101000.

Dekodeerija peab teadma numbrite koodi f ja tdhtede koogi g. Naites oleva teksti
dekodeerimiseks liigendame omakorda kodeeritud teksti

01 1000000 00 1000011 1000100 1000101 1000100 1000010 1001010 100010.

Kui liigendusel saadud sona algab iihega, jargneb sellele viietdheline numbrikood (antud
juhul number) ja uue téhe kood, kui uus sona algab nulliga, jirgneb sellele number. See-
jarel dekodeerime numrid, vaatame eelmisi sonu ja dekodeerime teksti.

Nagu nédha, ei anna liihikeste sonade LZ kodeerimine erilist efekti, pigem vastupidi.
Paneme tihele, et koodi saab lithendada, kui f kodeerib vaid sonade w(i) indeksi. Ulal-
toodud niiites K = 8, seega voib votta f : {1,...,8} — {0,1}*. Selline f soltub aga
sisendist 28 ja nii tuleks kodeerimisel sisend libida kaks korda: esimene kord liigendada
sisend ja méirata sonade arv, teisel korral aga kodeerida. Ulalesitatud algoritm kodeerib
sisendit on-line. Astimptootiliselt on erinevad kodeerimisvariandid samad.

Veel iiks voimalus kahendteksti kodeerimisel on kasutada numbrite kodeerimisel kahend-
koodi, kusjuures koodisonade pikkus soltub viidatavate sonade arvust: kui viidatavate
sonade arv on k, kasutame [logk] biti pikkusi kahendsonu. Vaatame tuttavat naidet:
vektori 110010100010001000 liigendus on endiselt jargmine

(0,1),(1,0),(0,0),(2,1),(3,0),(3,1),(5,0),(2,0),0.

Esimene tdht on alati uus sona, ja esimesele tdhele eelnevat nulli me ei kodeeri, seega
paarist (0,1) saab 1. Niiiid on meil kaks eelnevat sona 0, {1} ja neile saab viidata iihe
bitiga (0-uus, l-esimene), seega paar (1,0) jadb muutumatuks. Niiiid on meil 3 eelnevat
sona (uus, esimene ja teine) ning nendele viitamiseks on vaja kaht bitti |00-uus, 01-
esimene ja 10-teine), seega paarist (0,0) saab (00,0) ja eale seda on meil 4 eelnevat sona
(uus, esimene, teine ja kolmas) ning ka neile seeb viidata kahe bitiga ehk (2,1) — (10,0).
Edaspidi tuleb numbrite kodeerimiseks kasutada kolmekohalisi kahendarve, seega (3,0) —
(011,0); (3,1) — (011,1); (5,0) = (101,0) ja (2,0) — (010,0). Seega

C(110010100010001000) = 1100001000110011110100100.

Saame palju lithema sona. Dekodeerimisel peame samuti arvestama, et koodide pikkused
muutuvad. Dekodeerimise liigendus

1 10 000 100 0110 0111 1010 0100
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Siit saame paarid
(0,1),(1,0),(0,0),(2,1),(3,0),(3,1),(5,0),(2,0)

ning dekodeerime teksti. Paneme tédhele, et dekodeerimisel pole enan vaja teada kodeeri-
tava sona pikkust voi liigenduste arvu.

Niited: Olgu sisendssona 000000000000100000000000. Liigendus
(0,0),(1,0),(2,0),(3,0),(2,1), (4,0)(6,0).
Parast numbrite kodeerimist saame liigenduseks
0,(1,0),(10,0),(11,0),(010,1),(100,0), (110,0).
Seega kood
C(000000000000100000000000) = 010100110010110001100.
Proovige kirjeldatud meetodil dekodeerida sona
00101011101100100100011010101000011

(Vastus: 0100001000100010101000001 .)

5.2.3 Lempel-Ziv teoreem

LZ koodi asiimptootilise optimaalsuse néitab jirgmine kuulus teoreem. Teoreem eeldab,
et sisendprotsess X = Xs, Xy, ... on ergoodiline protsess. Iga ergoodiline protsess on
statsionaarne (st tal on entroopiaméir) ning norga AEP omadusega.

Teoreem 5.3 ( Lempel-Zivi teoreem) Kui X on ergoodiline protsess entroopiamddraga
Hx, ja C, on LZ kood, siis

(X, ... X, K(Xy,... X,)1
limsupM = lim sup (X, Jlogn = Hyx, pk,
n n n n
kus l(z1,...,2,) = |Cp(x1, ..., 240)|
Teoreemi toestamiseks tuleb hinnata suurust [(z™) = I(z1,...,x,). Vaatleme veelkord

LZ78 algoritmi. Osa 1) jirgi kodeerimiseks kulub
] (Tlog | A7+ 1) = A

bitti. Osa 2) jirgi kulub iihe sona w(j) kodeerimiseks ("logn™ 4+ 1 + Tlog |X|™) bitti.
Kokku kulub osa 2) jérgi kodeerimiseks

K("logn+ 1+ "log|X|") = K("logn™+ B)
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bitti (siin B := 1+ "log |X|". Osa 3) nouab ilimalt
Mogn'+1

bitti. Tuletame meelde, et liigendusel saadud sonade arv K = K (a™) soltub sisendist x™.
Seega

l(z") < A+ K("logn"+ B) +logn"+1 < (logn+1)(K+1)+ KB+ A+1
= Klogn+logn+ K(B+1)+ A+2.

Et A ja B on konstandid, on domineeriv liige K logn. LZ teoreemi toestus seisnebki seose

: K(X™)logn
lim sup ————
n n

= HX; pk

naitamises.

Mairkus: Lempel-Zivi teoreemist jareldub LZ koodi astimptootiline optimaalsus:
1 n
—(X")— Hx pk.
n

Sellest koondumises aga ei jareldu vahetult koondumine

_ EI(X")

n

L,

— Hy. (5.5)

Lempel-Zivi teoreemi toestusest selgub aga, et jada @ on p.k. tokestatud, sest

K(X™) logn
n

on tokestatud jadaga, mille iilemine piirviértus on log|X’|. Domineeritud koondumise
tereemist saame, et kehtib ka (5.5).
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6 Diferentsiaalentroopia ja MaxEnt printsiip

Informatsiooniteooria pohimoisted — entroopia, tinglik entroopia, vastastikune informat-
sioon, K-L kaugus jt — olid siiani defineeritud vaid diskreetsetel jaotustel. Loomulikult
tekib kiisimus: kas ja kuidas iildistuvad need moisted pidevatele (ja koikidele muudele)
toendosusjaotustele. Jargnevas tutvustame nende moistete loomulikku iildistust pide-
vatele jaotustele. Kuigi iildistused on enesestmoistetavad, puudub neil selline iiheselt
interpreteeritav tdhendus kui diskreetsete jaotuste korral.

6.1 Diferentsiaalentroopia

Olgu X pidev juhuslik suurus jaotusega P ja tihedusega f. Olgu S = supp(P) jaotuse P
kandja — vaikseim kinnine hulk, mis sisaldab hulka {z : f(x) > 0}. Olgu 0log0 := 0.

Def 6.1 Juhusliku suuruse X (jaotuse P, tiheduse f) diferentsiaalentroopia (differential

entropy) on

hMX) :=: h(P) :=: h(f) := / —f(x)log f(z)dx = /s —f(z)log f(z)dz, (6.1)

kui see integraal eksisteerib.
Markused:

e Integraal (6.1) ei pruugi alati olla defineeritud. Sellisel juhul pole ka diferentsiaa-
lentroopia defineeritud.

e Erinevalt entroopiast voib diferentsiaalentroopia olla ka negatiivne. Uldiselt voib
diferentsiaalentroopia olla nii +o00 kui ka —oo.

e Ulaltoodust johtuvalt vdib diferentsiaalentroopia olla 0 ka siis, kui X pole p.k. kon-
stant. Teisisonu: sellest, et difenrentsiaalentroopia on 0 ei jareldu, et X on mitte-
juhuslik.

e Harilikult defineeritakse diferentsiaalentroopia (ning koik teised alljargnevad maisted)
naturaallogaritmi abil. Meie jidme kahendlogaritmi juurde.
6.1.1 Naited
Uhtlane jaotus. Olgu X ~ U(0,a). Siis f(z) = 11, ja

T a

“1
h(X)= —/0 alogadarzloga.

Nagu néiha, kui a = 1, siis h(X) = 0 ning

lim A(X) =00, limh(X)= —oc.

a—00 a—0
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Normaaljaotus. Olgu X ~ AN (0,0?). Siis

[e’s) IE2
—InV2ro? — L
nyane /oo 20% /o102

_a%
e 22dx

EX?
= — — InV2no?

202
1 1
—(5 +1nV2ro?) = ) In(e2mo?).
Seega
/ f(x)In f(z ln(eZwa )

Eksponentjaotus. Olgu X ~ E()\) s.t
flz)=Xe™, >0.

Seega
/OO f(z)ln f(x)dx =In X\ — /00 Axf(x)dr =In\ — 1,
0 0

millest h.(X)=1—1InA ja
1
h(X)=— —log\.
n

Mirkus: Ulaltoodud niidetes on h > —oo, kusjuures entroopia laheneb —oo siis, kui dis-
persioon 1&heneb nullile ehk juhuslikud suurused 1&henevad (mittejuhuslikule) konstandile.

Sellest, voib sugeneda lootus, et h(X) = —oo parajasti siis, kui X = ¢ p.k. See ei ole nii,
sest leidub (mittekodunenud) jaotusi, mille korral differentsiaalentroopia on —oo.

6.2 Pideva juhusliku suuruse kvantiseerimine

Pideva jaotuse kvantiseerimine (quantization) on jaotuse lihendamine diskreetse
jaotusega (nt histogramm). Esmapilgul v6ib tunduda, et kvantiseerimisel saadud diskreetse
jaotuse entroopia peaks olema '"ldhedane" vastavale diferentsiaalentroopiale. Arusaa-
davalt pole see aga nii (kas voi juba sellepérast, et difenentsiaalentroopia voib olla ka
negatiivne).
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Oletame, et tihedusega f antud pideva jaotuse kandja on jaotatud pikkusega A inter-
vsallideks. Eeldame (lihtsuse méttes), et tihedusfunktsioon on igal intervallil

I = (iA, (i + 1)A)

pidev. Siis leidub z; € I; nii, et

Defineerime diskreetse jaotuse
(i+1)A
P) = {aupi} ks = [ flado = fla)a
iA

Selle jaotuse entroopia on

= - sz' log ps

= Z flz)Alog(f(z;)A)

= - Z fla)Alog(f(z:) —log(A) Y fla:)A

i

=—Zf A Tlog(f(z:)) — log(A),

- SWIEESY / SH)A flayde = [ fa)do =

Kui f(z)log f(z) on Riemanni méottes integreeruv, siis

i~ 3 ) (s = [ f@)log f(a)dz = b(s),
millest
lim H(P(A) +log A = h(f). (6.2)

Kui niiteks A = n~!, siis suure n korral seosest (6.2) saame
H(P() ~logn ~ h(f).

Naide: Olgu X ~ U(0,1), A =27". Siis H(P(A)) = n jalog A = —n, millest ndeme, et
(6.2) kehtib iga n korral vordusena:

H(P(A)) +log A =0=h(f).
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Kokkuvotteks: Kvantiseerides saab hinnata pideva jaotuse momente. Naiiteks, iilaltoodud
kvantiseerimise korral iga Riemaani mottes integreeruva funktsiooni g korral

S e = Y gl (@) - / o) (2)da,

kui A — 0 ja parempoolne integraal eksisteerib. Kuid kvantiseerimist ei saa kasutada
entroopia hindamiseks.

6.3 AEP ja diferentsiaalentroopia

Tuletame meelde, et kui X, Xo,... on AEP omadusega juhuslik protsess (tdhestikul X)
entroopiamédraga H, siis iga € > 0 korral leidub n(e€) ja hulk W* C X" nii, et P(W) >
1 —ce,

(1 . 6)2n(H—e) < |Wen‘ < 2n(H+e) (63)

ning iga x € W/ korral
2—n(H+E) < P(Zlfn) < 2—n(H—e).

Muuhulgas kehtib iilaltoodud omadus siis, kui X;, Xs,... on i.i.d. juhuslikud suurused
X; ~ Pja H=H(P).

Olgu niiiid X1, X, ... i.i.d. pidevad juhuslikud suurused. Selgub, et AEP omadus ke-
htib ka niiiid, kuid hulga W véimsuse asemel on seoses (6.3) tema ruumala ja entroopia
asemel on diferentsiaalentroopia.

Def 6.2 Mootuva hulga A C R™ ruumala on

V(A) = /Adlﬁy“dﬂﬁn-

Teoreem 6.3 Olgu X1, X, ... iid juhuslikud suurused, X; jaotus on pidev tihedusega f.
Olgu flog f integreeruv ja € > 0. Siis leidub n(€) nii, et iga n > n(€) korral leidub hulk
W C R™ nui, et

1
PW™) >1—e (6.4)
2
(1 — )29 < V(Wn) < 2nihte, (6.5)
3 iga 2" € WP korral
27n(h+e) < f(ﬂ?n) < an(hfe)’ (66)

kus h := h(f) ja f(z™) = f(x1,...,2,) = f(2z1) - f(20).
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Toestus. Toestus on analoogiline diskreetse AEP omaduse toestusega. Olgu
W= {z" e R": 97 hte) < £z < 2_”(h_6)}.
Suurte arvude seadusest jareldub, et

_logf(X177Xn) —

n

B(log f(X1)) = h(f), Pk,

millest jareldub (6.6). Hinnangutest

l—e< PW!) = flzr,... xp)dey -+ -dr, <1

we

saame (6.5). m

6.4 Uhisdiferentsiaalentroopia

Juhusliku vektori (X7,...,X,) (iihis)diferentsiaalentroopia defineeritakse analoogiliselt
diskreetse vektori entroopiaga.

Def 6.4 Olgu X" = (Xy,...,X,) pidev juhuslik vektor thistihedusega f. Vektori X"
tihisdiferentsiaalentroopiaks (joint differential entropy) on

h(X™) = h(Xy,..., X,) /f )log f(x /f 1, .., xy)log f(xy, ... xp)dey - - - day,

kui integraal eksisteerib.

Naide: Olgu ¢(z") mitmemdootmelise normaaljaotuse N (p, ) tihedusfunktsioon,
1

") = oy P~

— [ o motanydst = [ St - s - wotade + af2m) ]
= 2 B((X" — Y7 (X7 = ) + 3 Inl(2m)" S]],
kus X™ on jaotusega ¢ juhuslik vektor. Et tr(AB) = tr(BA), saame
(X" = )2 HX" = ) = (X" = ) 27X = ) = tr(STHX" = ) (X" = p)),
millest
B(X" = p) S (X" = ) = Bur((X7 = p)S 7 (X" = ) = (B (X" = ) (X" = p)'))
= tr(STE(X" — @) (X" — p)') = (1) = n.
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Seega
¢ ") In (2" )da [n+1n(( m)"2))] = e+ ((27)"[Z])] = 5 n[(2me)" .
Seega diferentsiaalentroopia on 1 In[(27e)"|]] natti ja
1
5 log{(2me)"]
bitti.
Diferentsiaalentroopia omadused:
e Olgu X" pidev juhuslik vektor, u € R™. Siis h(X™ + p) = h(X™)
e Olgu pidev juhuslik vektor, A olgu pooratav maatriks. Siis
RAX™) = h(X") + log Al,
kus |A| on A determinandi absoluutvéartus.

Nende omaduste toestus on ilesanne 2

6.5 Tinglik diferantsiaalentroopia, Kullback-Leibleri kaugus ja vas-
tastikune informatsioon

Tinglik diferentsiaalentroopia. Tuletame meelde, et kui (X, Y") on tihedusega f(z,y)
juhuslik vektor, siis
fz,y)

flzly) =
=)
on juhusliku suuruse X tinglik tihedus. Siin f(z) ja f(y) on marginaaltihedused.

Def 6.5 Olgu (X,Y) on tihedusega f(x,y) juhuslik vektor. Tinglik diferentsiaalentroopia
on

nexly) == [ [ stalitos stelydz iy =~ [ [ fa.)tog faly)dsdy

kui see integraal eksisteerib.

Analoogiliselt entroopiaga saame

— | | fla.y)log f(z,y)dedy = f(x,w1og(f(”“"’y)f<y>)dxdy
/] /] i

— [ [ o ftaldzdy ~ [ [ o.9)1og sy

= W(X|Y) + h(Y).

Siit jareldub ketireegel
hf(Xla s 7Xn) = h’(Xl) + h(X2|X1) oot h(Xn’Xb s 7Xn—l)-
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Kullback-Leibleri kaugus.
Def 6.6 Olgu f, g kaks toendosustihedust. Nende Kullback-Leibleri kaugus on

D(fllg) = / f(2)log %d

Markused:
1. Ulaltoodud definitisioonis, nagu ikka, OIOg% = 0.

2. Erinevalt diferentsiaalentroopiast on D(f||g) < oo on alati defineeritud (voib olla
00). Toestus on sama, mis diskreetsel juhul (kontrolli !)

3. Kui D(f]|g) < o0, siis tiheduse g kandja sisaldab f kandjat.

Lemma 6.1 (Gibbsi vorratus) Iga kahe tiheduse f ja g korral

D(fllg) =0,
kusjuures D(f||g) = 0 parajasti siis, kui f = g p.k.

Toestus. Sama, mis diskreetsel juhul (kontrolli !) m

KL kaugus ja mdjusus. Olgu {fy : 6 € O} tdendosustiheduste pere (mudel). Olgu
0* € © fikseeritud parameeter (Gige parameeter) ja X7, ..., X, iid valim jaotusest fy- ja
vaatame logaritmilist toepéarafunktsiooni

1 n
L,(0):==) 1 X;).
)= 5 X
Suurte arvude seaduse pohjal koondub [,,(0) p.k. piirvdartuseks
/ln fo(x) for (x)dx =: 1(6),

mida nimetatakse toepdrakontrastiks (likelihood contrast) . Gibbsi vorratusest jirel-
dub, et

0< [ fr@)n (J;f ((x)))dx — [ @) for(o)d = [ o) fola)da = 167) ~ U6).
o\ T

Seega 6* maksimiseerib toeparakontrasti, st [(6*) > [(0) iga 6 € © korral. Eeldasime, et

0* € © (st mudel on korrektne). Siis [(6*) = maxsce [(0) ja sellel asjaclul pohineb STP

hinnangu mdéjusus: 6, — 0, p.k., kus

0, = arg max 1,(6).
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Mis juhtub aga siis, kui 8* # © (mudel on vale)? Sellisel juhul
1(07) —1(0) = D(fo-lfo) > 0,

millest

max ((0) = min D(fo-|lfo) >0

EC)
Olgu

0 .= arg rgleaé(l(e) = argmin D( fo-

fo)

(eeldame, et 6 leidub). Jaotus f; on tegeliku jaotuse fy- parim ldhend (KL-mottes)
mudelist {fy : ¢ € ©}. Kui mudel on korrektne, st tegelik jaotus kuulub sinna, siis
6 = 6*. Sellest jireldub, et kui korrektse mudeli korral koondub STP hinnang 6,, tege-
likuks parameetriks 6%, siis vale mudeli korral 0, — é7 p.k..

Pane tihele, et kui {P} on téhestikul X antud diskreetsete toendosusjaotuste hulk
(mudel), siis STP hinnang on jaotus, mis minimiseerib KL kaugust mudeli ja empiirilise
jaotuse vahel:

1 n
Py =argmin D(P,||Py), P.(xz)=— E L(X;), VredX.
n /’/-L —

Vastastikune informatsioon.

Def 6.7 Olgu (X,Y) juhuslik vektor thistihedusega f(z,y), marginaaltihedustega f(x) ja
f(y). Juhuslike suuruste vastastikune informatsioon on

I(X;Y) = D(f(x.9)||f( /f:v Dlog )f())dxdy

Vorreldes diskreetse juhuga vastastikuse informatsiooni omadused ei muutu:

e Vastastikune informatsioon 1(X;Y") ei soltu mitte ainult juhuslike suuruste X ja Y
jaotusest vaid ka nende iihisjaotusest, s.t. vektori (X,Y") jaotusest.

o 0<I(X:Y).
e Vastastikune informatsioon on siimmeetriline: 1(X;Y) = I(Y; X).
e [(X;Y) =0 parajasti siis kui f(z,y) = f(z)f(y), st X ja Y on séltumatud.
Analoogiliselt diskreetse juhuga kehtib (kui h(X1]Y) ja A(Y|X) on 16plikud)
[(X;Y) = h(X) — h(X|Y) = h(Y) — h(Y|X) > 0.

Ketireeglist saame



Mitmemootmelise normaaljaotuse korral saame ilaltoodud vorratuses nn. Hadamard:
vorratuse

1 "1 -
5 log[(2me)"|5]) < > 5 log[(2me)o?] & |9 < []o7 (6.7)
=1 =1

6.6 MaxEnt printsiip

Vaatleme jérgmist iilesannet: leida tundmatu jaotus P, kui on teada (valimi pohjal hin-
natud):

e supp(P) = S (kandja);
o [FidP=c¢;,i=1,...,k,

kus F; on mingisugused funktsioonid (néiteks poliinoomid) ja ¢; on (harilikult valimi poh-
jal hinnatud) jaotuse P F;-momendid.

Uks lihenemine antud iilesandele on momentide meetod, kus antud jaotuste hulgast
(mudelist) valitakse hinnanguks (ainus) selline, mille F;-momendid on ¢;. Selline ldhene-
mine eeldab aga mudeli olemasolu.

Maksimaalse entroopia printsiip: Koikide iilaltoodud tingimusi rahuldavate jao-
tuste hulgast leida selline, mille (diferentsiaal)entroopia on maksimaalne. Sellist jaotust
nimetatakse maksimaalse entroopiaga (MaxEnt) jaotuseks.

Juhul kui otsitav (hinnatav) jaotus on pidev (see, kas otsitav jaotus on pidev, diskreetne
voi midagi muud on harilikult selge tilesande piistitusest), saame jargmise optimiseerim-
istilesande:

Maksimaalse entroopia iilesanne pidevate jaotuste korral: maksimiseerida

W) = - / f(2) log f(a)dz

iile funktsioonide, mis rahuldavad tingimusi:
1) f(2) 20, f(z) =0 & o & S:

2) [y f(a)de = 1;

3) [(Fi(x)f(x)de =c;,i=1,... k.

Jargnev teoreem annab lihtsa eeskirja maksimaalse entroopiaga jaotuse leidmiseks. Tule-
tame meelde, et iga funktsiooni f ja hulga S C R korral

= g™
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Teoreem 6.8 Kui leiduvad konstandid ag, aq, ..., a; nii, et funktsioon

k
£ (@) = explan + 3 ()] Is(a) (65)
i=1
rahuldab tingimusi 2), 3), siis f* on ainus (Lebesgue p.k.) maksimaalse entroopiaga

tihedusfunktsioon.

Toestus. Olgu ¢ suvaline tingimusi 1),2), 3) rahuldav jaotus. Veendume, et h.(g) <
he(f*), kusjuures vordus kehtib vaid siis, kui g = f* p.k.. Siis ka h(g) < h(f*) ja vordus
kehtib vaid siis, kui tihedused on p.k. vordsed.

fuwz—émwmmmm
:—[qg(x)ln(f*(x)ﬁ*((:?))d$
:—m@ww—émmmﬁWMx

g—émmmﬁqu

Vordus he(f*) = he(g) kehtib parajasti siis, kui

De(g]|f*) = /Sg(x) In %dw =0.

Aga Gibbsi vorratusest teame, et see on nii vaid siis, kui g = f* p.k. =
Markused:

e Teoreem kehtib ka mitmemodtmeliste jaotuste korral (sellisel juhul otsime maksi-
maalse iihisentroopiaga jaotust). Toestus on sama.
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e Kui kandja S on iilimalt loenduv hulk X, otsime diskreetset jaotust. Asendades
iilaltoodud toestuses integreerimise summeerimisega, saame, et teoreem kehtib ka
diskreetsete jaotuste korral. Seega diskreetsel juhul MaxEnt jaotus (kui leidub) on

k
P*(z) = explag + » _ a;Fi(x)], (6.9)
i=1
kus a; on valitud nii, et P* rahuldaks kitsendusi.

6.6.1 Naited

Keskviirtus ja dispersioon: Olgu S =R, Fi(z) =z, ¢; = 0 ja Fy(z) = 22, ¢ = 0.
Otsime MaxEnt tihedust (iile reaaltelje) keskviidrtusega 0 ja disp. o? tiheduste seast.
Jaotus (6.8) on kujul

explag + ayx + aza?).

Normaaljaotuse kuju; MaxEnt jaotus: N(0,0?).

Esimest ja teist jirku moment: Olgu S =R, Fi(z) =, c; = p ja Fo(z) = 22, ¢ =
a. Jaotus (6.8) on kujul
explag + ayx + aya?).

Normaaljaotuse kuju; MaxEnt jaotus: N (pu, a — p?)

Keskviirtus: Olgu S = R, Fi(z) = z, ¢4 = p. Otsime MaxEnt tihedust (iile R)
keskvaartusega p. Sellist pole.

Keskviirtus ning mittenegatiivsus: Olgu S = [0,00), Fi(x) = z, ¢; = p. Otsime
MaxEnt tihedust iile [0, c0) keskvéirtusega p. Jaotus (6.8):

explag + a17] 1o ).

Eksponentjaotuse kuju; MaxEnt jaotus: E(u™!).

Tokestatud kandja: Olgu S = [a, b], tingimusi pole. Jaotus (6.8):
explao]lqp)-
Uhtlase jaotuse kuju; MaxEnt jaotus :U(a, b).
Keskvéirtus ja loenduv kandja: Olgu S = {1,2,...} Fi(z) = x, ¢y = pu. Jaotus

(6.9):
P*(z) = explag + a1 7]

MaxEnt distribution: Geometric (i)
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Teine moment ja mittenegatiivsus: Olgu S = [0,00) ja Fi(z) = z%. Jaotus (6.8):
explag + a12°] Lo o)

Kui ¢; = 1, siis MaxEnt jaotus on

re) = Zenl-2) w0 (6.10)
x) =1/—exp[——], = .
- P o b =
Loplik kandja: Olgu S = {1,2,3,4,5,6}, tingimusi pole. Jaotus (6.9):
P*(z) = explao).
MaxEnt jaotus on iihtlane.

Etteantud segamomendid: Olgu S =R", F}; = a2, ¢;j = 04 1,] = 1,...,n. Seega
on etteantud segamomendid EX;X; = o;;. Jaotus (6.8):

f(z") = explag + Z ;T T;).

Mitmemddtmelise normaaljaotuse kuju; MaxEnt jaotus on N (0, X), kus 3 = (0y5).

6.7 Ulesanded
1. Toestada teoreem 6.3.
2. Toestada iihisdiferentsiaalentroopia omadused:
e Olgu X" pidev juhuslik vektor, p € R". Siis h(X" + p) = h(X™)
e Olgu pidev juhuslik vektor, A olgu péoratav maatriks. Siis
h(AX™) = h(X") + log |A|,
kus |A] on A determinandi absoluutvéirtus.

3. Leida h(f), kus f(z) = 1Xexp[—A|z|] (Laplace’i jaotus ehk kahepoolne eksponent-
jaotus).

4. Olgu X ~ U(-3%,3), Z ~U(—
Leida I(X;Y).

,5), @ >0, X ja Z on soltumatud, ¥ = X + Z.

5. Olgu IT koikide koikide ruumil (R? B(R?)) olevate selliste iihistiheduste hulk, mis
esituvad marginaaltiheduste korrutisena: ¢;(x)ga2(y). Olgu (X,Y) juhuslik vektor
tihistihedusega f(z,y). Toestada, et

I(X;Y) = inf  D(f(z,y)|lg1(x)g2(y)).

g1(z)g2(y)€ll

Miinimumi realiseerib vektori (X,Y) marginaaljaotuste korrutis.
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6. Vaatleme diskreetsel tdhestikul X antud toendosusjaotusi. Olgu P selliste jaotuste
klass, mille korral

> Fi(x)P(zj)=c. i=1,...k
J

Olgu @ suvaline jaotus. Toestada, et kui leiduvad konstandid a;, + = 0,..., k nii,
et P* € P, kus
k
P*(z;) = Q(a;) explag + » _ a;Fy(x;)],
i=1
siis

P* = argmin D(P||Q).
arg min D(P||Q)

7. Olgu f, suvaline toendosusjaotus. Toestada. et leidub tingimus F' ja konstant c
(mis soltuvad f,-st) nii, et f, on MaxEnt tihedus.
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