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I peatiikk.
Mooduga ruumid

§ 1. Sissejuhatus

Hulkasid, mille elementideks on mingi etteantud hulga alamhulgad, nimetame edas-
pidi ((alam)hulkade) kogumiteks. Hulga X koigi alamhulkade kogumit tiahistame
stimboliga P(X). Funktsioone, mille méa#ramispiirkonnaks on mingi alamhulkade
kogum, nimetame hulgafunktsioonideks.

1.1. Hulkade “mootmine”

Méoduteooria (ja integraaliteooria) teke oli motiveeritud vajadusega “maota” ette-
antud hulga alamhulki. Toome moned esimesena pahetulevad ndited niisuguse “moot-
mise” kohta:

e tasandilise kujundi pindala leidmine — hulga R? alamhulkade “mootmine”;
e ruumilise keha ruumala leidmine — hulga R?® alamhulkade “mootmine”;
e ruumilise keha massi leidmine — hulga R?® alamhulkade “mootmine”;

e antud juhusliku katse puhul mingi siindmuse toendosuse leidmine — selle ju-
husliku katse elementaarsiindmuste hulga alamhulkade “mootmine”.

Koigi néitena toodud “mootmiste” puhul tuleb meil lahendada kaks iilesannet.
Kui meil on vaja “moota” hulga X alamhulki, siis me peame

(1) defineerima, mida antud kontekstis “mootmine” tihendab, s.t. eraldama vélja
teatava alamhulkade kogumi 21 C P(X) — niisuguste alamhulkade kogumi,
mida me oskame “moota” (nn. “mootuvate” alamhulkade kogumi) — ning de-
fineerima hulgafunktsiooni p: 2 — [0, 0o, mis seab igale alamhulgale A € 2
vastavusse tema “moodu” p(A);

(2) leidma tohusad vahendid “mootuvate” alamhulkade “mootude” véljarehkenda-
miseks konkreetsetel juhtudel.



2 1. Mooduga ruumid

Stindmuste kiigust ette rutates olgu 6eldud, et esimene iilesanne sunnib meid sisse
tooma moodu moiste, teine aga integraali moiste.

Illustreerime kirjeldatud kahest etapist koosnevat “mootmisprotseduuri” tasandi-
lise kujundi pindala leidmise iilesande varal.

1.1.1. Tasandilise kujundi pindala moiste

Meenutame, kuidas matemaatilise analiiiisi kursuses defineeritakse tasandilise kujun-
di pindala. Maisteid “tasand” ja “ruum R?”, samuti moisteid “tasandiline kujund” ja
“ruumi R? alamhulk” kasutame me jirgnevas siinoniiiimidena.

Definitsioon 1.1. Hulkkilikuks nimetatakse kinnist lihtsat murdjoont. Hulknurgaks
nimetatakse tasandi osa, mida piirab hulkkiilik. Hulknurksummaks nimetatakse lop-
liku arvu hulknurkade iihendit.

Hulknurksumma pindala saab defineerida loomulikul viisil: hulknurksumma on
esitatav lopliku arvu paarikaupa loikumatute sisemustega kolmnurkade iihendina,
tema pindala defineeritakse kui nende kolmnurkade pindalade summa. (Kolmnurga
pindala defineeritakse nagu elementaargeomeetrias: “alus korda korgus jagatud kahe-
ga”.) Hulknurksumma @ C R? pindala tihistame me siimboliga S(Q).

Tasandilise kujundi pindala defineeritakse hulknurksumma pindala kaudu.

Definitsioon 1.2. Olgu K C R? tokestatud hulk. Arvu
S(K) =inf {S(Q): @ on hulknurksumma, Q D> K}

nimetatatakse kujundi K Jordan{l] véilisméoduks. Arvu

S(K) = sup{S(Q): Q@ on hulknurksumma, Q) C K}, kui K° # ();
= o, kui K° = (),

nimetatakse kujundi K Jordani sisemooduks. (Stimbol K° tiahistab hulga K sise-
must. Margime, et K° # () parajasti siis, kui leidub hulknurksumma, mis sisaldub
hulgas K.)

Mirkus 1.1. Alternatiivne voimalus Jordani sise- ja vilism6odu defineerimiseks on asendada
definitsioonis hulknurksummad koordinaatristkiliksummadega (koordinaatristkiiliksumma on
niisuguste ristkiilikute 16plik ihend, mille kiiljed on paralleelsed koordinaattelgedega) voi diaadiliste

ruutude 10plike {ihenditega (vt. § IV.4). Jordani sise- ja vilismoddu moistete sisu jadb seejuures
samaks.

Kui S(K) = S(K), siis 6eldakse, et kujund K on Jordani mottes mootuv. Arvu
S(K) = S(K) = S(K)
nimetatakse sel juhul kujundi K pindalaks ehk Jordani maooduks.

Jordani moodu moistel on iiks oluline puudus: Jordant mottes mootuvard hulki on
litga vihe. Vajadus omistada pindala ka Jordani mottes mittemootuvatele hulkadele
motiveerib meid Jordani moodu moistet iildistama.

!Marie Ennemond Camille Jordan (1838-1922) — prantsuse matemaatik.
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Maérkus 1.2. Jordani m66t ruumi R™ (m € N) alamhulkade jaoks defineeritakse analoogiliselt
juhuga m = 2. Seejuures voib Jordani sise- ja vilim6odu definitsiooni iildistuses juhu m € N
jaoks kasutada hulktehuksummasid (hulktahuksumma on hulknurksumma loomulik tldistus juhu
m > 2 jaoks), koordinaatristtahuksummasid (koordinaatristtahuksumma on koordinaatristkiilik-
summa loomulik iildistus juhu m € N jaoks) voi diaadiliste kuupide iihendeid (vt. § II1.4).

1.1.2. Riemann integraali moiste

Vajadus rehkendada konkreetsetel juhtudel vilja tasandilise kujundi pindala viib
meid Riemanni integraali moisteni. Riemanni integraal on tohus matemaatiline t66-
riist kovertrapetsi pindala arvutamiseks. Meenutame, et kui f on 16igus [a, b] maa-
ratud mittenegatiivne funktsioon, siis tasandi punktihulka

{(z,9): a<z<b0<y < fa)}

nimetatakse kovertrapetsiks.

Meenutame, kuidas defineeritakse Riemanni integraal.

Olgu f: [a,b] — R tokestatud funktsioon. Téhistame siimboliga T 16igu |a, b]
jaotusviisi punktidega

a=20<T1 <Py < <Tp1<z,=0b (n€EN)

ning
M; =sup{f(2): z € [zj_1,7j]}, j=1,....n, S(T) = ZMj(xj — T 1),
j=1
m; =inf{f(2): z € [zj_1,25]}, j=1,...,n, s(T) = ij(xj — Tj_1).
j=1

Summasid S(7') ja s(T) nimetatakse (loigu [a,b] jaotusviisile T vastavateks)
funktsiooni f Darbouz[f] iilemsummaks ja funktsiooni f Darbous’ alamsummaks.

Matemaatilise analiitisi kursusest teame, et
e 10igu [a, b] mis tahes jaotusviiside ja T ja T" korral
S(T) = s(T"),
s.t. tkski Darbouzx’ ilemsumma pole vdiksem thestki Darboux’ alamsummast.
Siit jareldub, et

e funktsiooni f koikvoimalike Darboux’ iilemsummade hulk 16igus [a, b] on alt
tokestatud (alumiseks tokkeks on funktsiooni f suvaline Darboux’ alamsumma
selles 16igus);

2Georg Friedrich Bernhard Riemann (1826-1866) — saksa matemaatik.
3Jean Gaston Darboux (1842-1917) — prantsuse matemaatik.
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e funktsiooni f koikvoimalike Darboux’ alamsummade hulk 16igus [a, b] on {ilalt
tokestatud (iilemiseks tokkeks on funktsiooni f suvaline Darboux’ {ilemsumma
selles 16igus).

Definitsioon 1.3. Téhistame
— b . .. . .
D- [ f:=inf{S(T): T on I5igu [a,b] jaotusviis},
D- fo := sup{s(T): T on l6igu [a,b] jaotusviis}.
Mairkus 1.3. Rohutame, et pidevuse aksioomi pohjal on need inf ja sup 16plikud.

Arvusid D- i Z fijaD-[ Z f nimetatakse vastavalt Darbouz’ ilemiseks integraaliks ja
Darbouz’ alumiseks integraaliks funktsioonist f (iile 16igu [a, b]).

Niisiis,
e Darboux’ iilemine integraal funktsioonist f iile 16igu [a,b] on funktsiooni f

koikvoimalike (16igu [a, b] jaotusviisidele vastavate) Darboux’ iilemsummade
hulga alumine raja;

e Darboux’ alumine integraal funktsioonist f iile 16igu [a,b] on funktsiooni f
koikvoimalike (16igu [a,b] jaotusviisidele vastavate) Darboux’ alamsummade
hulga iilemine raja.

On ilmne, et loigu [a,b] mis tahes jaotusviisi T korral
S(T) > D-[if > D-['f > s(T).

Definitsioon 1.4. Kui D- fl;f =D- fo, siis 0eldakse, et funktsioon f on Riemanni

mottes integreeruv 15igus [a, b]. Darboux’ integraalide D- [ Z fijaD-[ Z f iihist viir-
tust nimetatakse sel juhul Riemanni integraaliks funktsioonist f (iile 16igu [a, b]) ja
tahistatakse siimboliga

b b b b
R—/ f(z)dx voi R—/ f voi lihtsalt /f(m)dx Vol /f

Niisiis, kui funktsioon f on Riemanni méttes integreeruv 16igus [a, b], siis

b
— b b
B[ §=D-[if =D-[s
Lihtne on veenduda, et

o kui funktsioon f on mittenegatiione loigus [a,b], siis [ on Riemanni mottes
integreeruv loigus |a, b] parajasti siis, kui kovertrapets

D={(z,y): a<z<b0<y< fz)}

on Jordani mottes mootuv. Sellisel juhul R-fab f=5(D), s.t. R-fab f on kone-
aluse kovertrapetsi pindala.
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Riemanni integraalil on kaks olulist puudust.

e Riemanni mottes integreeruvaid funktsioone on liiga vihe — Riemanni in-
tegraal on defineeritud vaid loigus tokestatud funktsioonide jaoks. Samas lei-
dub ka loigus tokestatud funktsioone, mis pole Riemanni mottes integreeruvad
selles 16igus. (Klassikaline néide niisugusest funktsioonist on Dirichlet’lﬂ funk-
tsioon.)

e Riemanni integraal kiitub piirviidrtuste suhtes ebastabiilselt. Uldjuhul, isegi

siis, kul piirvddrtus lim R- [ f, ja piirfunktsioon lim f, eksisteerivad
’ n—00 a n—00 ’

b b
lim R- / fn # R- / lim f,
n—oo a a n—oo

s.t. iildjuhul me ei saa Riemanni integraalis piirvddrtusega integraali margi alla
minna.

Mairkus 1.4. Kui me oskaksime “moéistlikul viisil” defineerida iga alamhulga F C R jaoks tema
“pikkuse” A(E), s.t. me oskaksime defineerida hulgafunktsiooni A: P(R) — [0, 00|, mis rahuldab
tingimust

Ei,...,E,CR (neN), EiNE; =0,i#j, = )\(O Ej) :zn:A(Ej),
=1

J=1

siis saaksime me defineerida 16igus [a, b] tokestatud funktsiooni f Darboux’ summad mitte ainult
selle 16igu jaotusviiside jaoks osaldikudeks, vaid 16igu [a, b] mis tahes jaotusviisi jaoks: kui 7" on 16igu
[a, b] jaotusviis (suvalisteks) alamhulkadeks F,..., F, C [a,b] (n € N) (s.t. Ey,..., E, C [a,b] on
paarikaupa 16ikumatud alamhulgad, mille ithend on [a,b]), siis saaksime defineerida “Darboux’

summad”
n n

S(T) =Zzs§]gf(z) AE;) ja s(T) =Zzi€nEfjf(Z) A(E;).-

j=1
“Darboux’ integraalid” ja funktsiooni f “integreeruvuse” defineeriksime siis analoogiliselt traditsiooni-
lise juhuga:

D- fo :=inf{S(T): T on Idigu [a, b] jaotusviis (suvalisteks alamhulkadeks)},
D- fo :=sup{s(T): T on Idigu [a, ] jaotusviis (suvalisteks alamhulkadeks) };

funktsiooni f loeksime “integreeruvaks”, kui D- [ Z f=D-f Z f; “integraali” funktsioonist f iile
16igu [a, b] defineeriksime sel juhul kui tema “Darboux’ integraalide” {ihise vadrtuse. (Et niisugusel
“integraalil” oleks vihegi moistlik geomeetriline sisu, tuleks “hulga pikkus” A defineerida nii, et iga
16igu [o, B] C R korral A([e, B]) = B — «).

Pseudoteoreem. Iga loigus [a,b] tokestatud funktsioon on mdrkuses defineeritud integreeruvuse
mattes integreeruv.

Moraal eelnevast pseudoteoreemist on jirgmine: mida rohkem hulga R alamhulki me oskame
moistlikul viisil “m66ta”, seda paremate omadustega integraali me saaksime defineerida.

4Johann Peter Gustav Lejeune Dirichlet (1805-1859) — prantsuse matemaatik.
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Miks me kasutame siin eesliidet “pseudo™ Aga sellepérast, et selle teoreemi iiks oluline eeldus
— voimalikkus defineerida “moistlikul viisil” reaalarvude alamhulkade “pikkust” — on meil toesta-
mata. Kuigi selline hulga “pikkuse” “méistlik” defineerimine on voimalik (sellel kiisimusel peatume
pogusalt kiiesoleva peatiiki paragrahvis 5), ei kasutata Riemanni integraali {ildistamisel eespool
kirjeldatud skeemi. Pohjus on siin selles, et soovitav oleks saada integraali defineerimiseks skeem,
mille loomulik iildistus voimaldaks defineerida integraali ka ruumides R™, kus m > 2. Juhul m = 2
illaltoodud skeem rakendub — hulga pindala on voimalik “piisavalt moistlikul viisil” defineerida
koigi alamhulkade E C R? jaoks; niisiis saab loomulikul viisil defineerida ka tasandi tokestatud
alamhulgal méaratud tokestatud funktsiooni “Darboux’ summad” ning seega ka integraal — juhul
m > 3 see skeem aga enam ei rakendu: m > 3 korral pole ruumi R™ alamhulkade “ruumala”
voimalik “piisavalt moistlikul viisil” defineerida (see jareldub kéesoleva paragrahvi teoreemist
— Banach—Tarski paradoksist).

PSEUDOTEOREEMI TOESTUS. Olgu f: [a,b] — R tdkestatud funktsioon. Lihtne on veenduda, et
D- fl;f > D- fo (“Darboux’ integraalid” D- fl;f ja D- fo on siin defineeritud nii, nagu méirku-
ses.)

Ulesanne 1.1. Veenduda, et D- fo > D- fo

Seega jadb funktsiooni f integreeruvuseks niidata, et D- [ Z [ < D-f Z f. Selleks valime arvud
m, M € R selliselt, et iga = € [a,b] korral m < f(x) < M. Defineerime iga n € N korral hulgad

B} = {z €la,b]: m+(j—1) M—m <f(x)<m+jM*m}, i=1,...,n,

n n

ning tdhistame siimboliga T}, 16igu [a, b] jaotusviisi hulkadeks E7, ..., E”. Siis mis tahes n € N ja
jeA{l,...,n} korral

D-[of = D-[0f < S(T) = s(T) =3 supf(2) A(E}) = 3 inf £() ME})
j=1 z i j=1 J

j=1 j=1 Jj=1
M—-m M—-m
= A b)) = b—
n ([a’ ]) n ( a)a
millest protsessis n — oo jireldub, et D- fl;f - D- fo < 0, nagu soovitud. O

1.2. Jordani moodu moiste laiendamise mittevoimalikkus
ruumi R koigile alamhulkadele

Olgu m € N. Selles punktis seame endale eesmirgiks iildistada Jordani moodu
moiste ruumi R™ koigile alamhulkadele. Mérgime, et

e juhul m = 1 tdhendab see hulga “pikkuse” moiste {ildistamist sirge koigile
alamhulkadele;

e juhul m = 2 tdhendab see kujundi pindala moiste iildistamist koigile tasandi-
listele kujunditele;
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e juhul m = 3 tdhendab see keha ruumala moiste iildistamist koigile ruumilistele
kehadele.

Teisisonu, meie eesmérk on defineerida hulgafunktsioon p: P(R™) — [0, oo selliselt,
et

(1) iga Jordani mottes mootuva hulga £ C R™ korral oleks p(F) hulga E Jordani
moot (s.t. p on Jordani moodu jatk koigi alamhulkade kogumile P(R™));

(2) hulgafunktsiooni ;1 omadused vastaksid voimalikult tdpselt meie eelmatemaati-
lisele ettekujutusele hulga “pikkuse”/pindala/ruumala omadustest.

Milline on meie eelmatemaatiline ettekujutus neist omadustest? Igati loomulik on
nouda, et hulgafunktsioon p rahuldaks jargmisi tingimusi:

1° p on loenduvalt aditiivne (ehk o-aditiivne), s.t.

=1

j=1
2° p on invariantne nihete, pédrete ja peegelduste suhtes, s.t.
E,FCR" E=F = wFE)=uF)

(siin valem E = F tihendab, et hulgad E ja F on kongruentsed, s.t. hulk F
on teisendatav hulgaks F' nihete, poorete ja peegelduste abil);

3 u([O,l) X o [0,12) ~1.

~
m tegurit

m tegurit

Miérkus 1.5. Poollahtine Ghikkuup [0,1) x --- x [0,1) on Jordani mottes mootuv, kusjuures tema
Jordani mo6t on 1; niisiis, kui p: P(R™) — [0, 00] on Jordani moddu jétk, siis kehtib 3°. Teiselt
poolt, pole raske téestada, et kui p: P(R™) — [0, 00] rahuldab tingimusi 1° ja 3° ning on nihke
suhtes invariantne (s.t. rahuldab teoreemi tingimust 2°°), siis p on Jordani méodu jétk.

Unistada on tore, aga elu on karm. Jargnev teoreem purustab meie unelmad.

Teoreem 1.1. Fi eksisteeri niisugust hulgafunktsiooni p: P(R™) — [0, 00|, mis
rahuldab tingimusi 1°, 3° ja

2°° 1 on invariantne nihete suhtes, s.t.

wW(E+z)=p(E) mis tahes E CR™ ja x € R™ korral.

Meenutame, et kui £ C R™ ja x € R™, siis hulga E nihe E + x on defineeritud
vordusega £+ :={z+z: z € E} C R™.
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TEOREEMI TOESTUS. Jilgitavuse huvides esitame teoreemi toestuse vaid juhu
m = 1 jaoks. Juhtudel m > 2 on toestus analoogiline.
Defineerime hulgas [0, 1) ekvivalentsiseose ~ jargmiselt:

T~y = z-—yeQ (z,y €[0,1)).

Ulesanne 1.2. Téestada, et ~ on ekvivalentsiseos hulgas [0, 1).

Vaatleme faktorhulka [0,1)/ ~. Olgu N C [0,1) mingi selline hulk, mis sisaldab
faktorhulga [0, 1)/~ igast ekvivalentsiklassist iihe ja ainult tihe elemendi (mérgime,
et valikuaksioomi pohjal niisugune hulk N eksisteerib). Téhistame iga ¢ € [0,1)NQ
korral

Nq:{x+q: xENﬂ[O,l—q)}U{x—i—q—l: xeNﬂ[l—q,l)}.

(Piltlikult véljendudes saame hulga N, jirgmiselt: koigepealt nihutame hulga N
arvteljel ¢ ihiku vorra paremale; seejérel aga nihutame selle osa hulgast N, mis
esialgse nihutamise jérel jai véljapoole poolldiku [0, 1), {ihe iithiku vorra vasakule
tagasi.) Paneme tihele, et

© U N=01)

q€[0,1)NQ
2) ¢.re[0,1)NQ, g#r = N,NN,=0.

Ulesanne 1.3. Téestada viited (1) ja (2).

Oletame niiiid vastuvéiteliselt, et eksisteerib funktsioon p: P(R) — [0, 00|, mis
rahuldab tingimusi 1°, 2°° ja 3°. Paneme téhele, et sel juhul

n(Ny) = p(N) iga g€ [0,1)NQ korral.

Toepoolest, mis tahes ¢ € [0,1) N Q korral

M(Nq):u<{x+q: reENNO01-q}U{z+q—1: xENﬂ[l—q,l)}U@U@U---)
:,u({x—i—q: a:ENﬂ[O,l—q)})—i—u({x—i—q—l: ,xeNﬂ[l—q,l)}>
+p(0) + () + -

:u(Nﬂ[O,l—q))+u(Nﬂ[1—q,1)>+u(®)+u(®)+~-
(Nnp.1-g)u(VnL-g1)ududu--)

Ulesanne 1.4. Toestada, et u(f) = 0. (Mirgime, et kiiesoleva tdestuse seisukohalt on see iilesanne
tarbetu.)
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Seega
0, kuip(N)=0;
1:“([0’1)>:“ U M= > N(Nq):{ kui f4(N) > 0
q€[0,1)NQ q€[0,1)NQ o0, ur p
Saadud vastuolu toestab teoreemi. 0

Niisiis, meie maksimuprogramm — defineerida tingimusi 1°-3° rahuldav Jordani
moodu jatk p: P(R™) — [0,00] — jadb (objektiivsetel asjaoludel) taitmata. Kuna
Jordani méodu voimaliku jatku p: P(R™) — [0, 00| puhul me omadustest 2° ja 3°
loobuda ei raatsi, siis ei jai meil ilmselt muud iile, kui norgendada tingimust 1°,
néiteks noudes, et see jatk rahuldaks jirgmist tingimust:

1°° u on aditiivne, s.t.

E,FCR™ ENF=0 = wEUF)=uE)+ uF).

Mairkus 1.6. Jargmises peatiikis integraali omadusi uurides moistame, et idee asen-
dada siin tingimus 1° norgema tingimusega 1°° pole eriti hea — selle arvelt kanna-
taksid integraali omadused. See on iiks pohjusi, miks me selle idee varsti hiilgame.

Osutub, et juhtudel m = 1 ja m = 2 niisugune Jordani méodu jatk p: P(R™) —
[0, 00, mis rahuldab tingimusi 1°°, 2° ja 3°, toepoolest eksisteerib (pogusalt peatu-
me me sel teemal kiiesoleva peatiiki paragrahvis 5), kuid, nagu jareldub jargnevast
teoreemist, juhtudel m > 3 mitte.

Teoreem 1.2 (BanachP| Tarski®| paradoks, 1924). Olgu m > 3 ning olgu tokestatud
hulgad A, B C R™ sellised, et A°, B® # () (s.t. hulkadel A ja B leidub sisepunkte).
Siis leiduvad naturaalarv n € N ja alamhulgad

Ay,..., A, CA ja By,...,B,CB
selliselt, et
(1) AinA;=0,i#37, U, Aj=4;
(2) BiNB; =0, i#j, U, B;=B;
(3) A; =By, j=1,...,n (s.t. hulgad A; ja B; on omavahel kongruentsed).

BANACH-TARSKI PARADOKSI TOESTUS on siin esitamiseks liiga pikk ja algebraline.
O

Banach—Tarski paradoksi sobib iseloomustama sona kontraintuitiivne. Naiteks,
kui votta A rolli mingi viiike kera ja B rolli mingi suur kera ruumis R3, siis teoreem
iitleb, et me saame lohkuda A — véikese kera — 1oplikuks arvuks tiikkideks,
millest (vajaduse korral asendades mone tiiki tema peegeldusega) on voimalik kokku

Stefan Banach (1892-1945) — poola matemaatik.
6 Alfred Tarski (1902-1983) — poola matemaatik.
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laduda B — suur kera! Vastuolu meie eelmatemaatiliste ootustega ruumi R3 struk-
tuuri suhtes tekib siin ilmselt sellest, et viikese kera tiikkidest suurt kera kokku
ladudes tekiks meile justkui ei tea kust ruumala juurde. Tegelikult siin aga mingit
vastuolu ei ole: osal tiikkidest ei tarvitse ruumala olla. Nimelt, ruumala pole mitte
ruumi R? alamhulkade meist soltumatult eksisteeriv omadus, vaid hulgafunktsioon
ruumi R? alamhulkadel, mille me ise peame defineerima. Banach-Tarski paradoks
iitleb meile, et sellise hulgafunktsiooni, mis vastaks meie ootustele ruumala oma-
duste suhtes, midramispiirkond ei saa olla ruumi R? koigi alamhulkade kogum: kui
me tahame, et ruumala omadused vastaksid meie eelmatemaatilistele ootustele, siis
tuleb osa ruumi R? alamhulki jétta ilma ruumalata.

Ulesanne 1.5. Jireldada teoreemist et kui m > 3, siis ei eksisteeri niisugust Jordani moodu
jatku p: P(R™) — [0, 00], mis rahuldab tingimusi 1°°, 2°° ja 3°.

Olukord tekitab noutust. Mida teha? Ei jad muud iile, kui

o tuleb loobuda noudest, et tingimusi 1°-3° rahuldav Jordani moodu jdtk oleks
defineeritud ruumi R™ koigi alamhulkade kogumil P(R™) ning piirduda Jor-
dani moodu jitkamisega kogumi P(R™) mingile alamkogumile, mis sisaldaks
olulisemaid praktikas ettetulevaid ruumi R™ alamhulki.

Selliselt piisitatud eesmirgini me ka jouame. Kéesoleva loengukursuse T peatiikis
konstrueerime Jordani méodu soovitud omadustega jatku kogumi P(R™) kiillalt
suurele alamkogumile juhul m = 1, III peatiikis konstrueerime ta juhul m > 2.
Seejuures holmab meie teooriaarendus hoopis laiemat konteksti kui ruum R™ — me
vaatleme hulgafunktsioone abstraktsetel hulkadel (seda eelkdige toendosusteooria,
aga ka mitmete teiste matemaatika valdkondade, niiteks funktsionaalanaliiiisi vaja-
dusi silmas pidades). Loengukursuse II peatiikis defineerime Riemanni integraali
iildistuse (samuti hoopis laiemas kontekstis kui ruum R™) — Lebesgue {7| integraali,
mille omadused on oluliselt paremad, kui Riemanni integraalil.

"Henri Léon Lebesgue (1875-1941) — prantsuse matemaatik.



§ 2. o-algebrad

Selles paragrahvis tutvume teatavat tiilipi kogumitega — algebrate ja o-algebratega.
Mairgime, et meie teooriaarenduses alates jargmisest paragrahvist keskset rolli méangi-
vate hulgafunktsioonide — mootude — méiadramispiirkonnaks on just nimelt seda
tiitipi kogumid.

2.1. o-algebra moiste
Olgu X mingi hulk.

Definitsioon 2.1. Oeldakse, et kogum 2 C P(X) on (hulga X alamhulkade) algeb-
ra, kui

Al° 0, X e ;
A2° Aed = Ae,
A3° ABel — AUBeX

Jérgnevalt loetleme moned algebrate pohiomadused.
Olgu 20 C P(X) algebra. Siis

Ad° A Bed — ANBe;

A5 AABed — A\ Bex;

A6° Aj, A €A (neN) = Ui, A€, N A €L

Omaduste A4° ja A5° toestuseks mirgime, et De Morganif| valemite pohjal
ANB=((ANB)°)" = (A°UB°)° ja A\B=ANB"

Omadus A6° jareldub omadustest A3° ja A4° induktsiooni teel.

Definitsioon 2.2. Oecldakse, et kogum A C P(X) on (hulga X alamhulkade)
o-algebra, kui

Al° 0, X e,
A2° Aed — A e
A3* Ajed j=1,2,... = U A4

Ulesanne 2.1. Téestada, et iga o-algebra on algebra.

Olgu 2 C P(X) o-algebra. Kuna iga o-algebra on algebra, siis rahuldab 2
tingimusi A4°-A6°. Lisaks sellele

8 Augustus De Morgan (1806-1871) — inglise matemaatik.

11
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A6°° Aj eA,1=12,... = ﬂ;ilAj e

Omaduse A6°° toestuseks méargime, et De Morgani valemite pohjal

Ae-[(@)] -0

Ulesanne 2.2. Olgu 2 algebra. Toestada, et

C

(a) kui kehtib implikatisoon

Ajed j=1,2,..., AinA;=0i#j = [|J4;¢e

Jj=1
siis 2 on o-algebra;

(b) kui kehtib implikatisoon

Aje,j=1,2,..., Ay CAyCA3C- = UAjte,
j=1

siis 2 on o-algebra.

Definitsioon 2.3. Paari (X, %), kus X on mingi hulk ning kogum 2 C P(X) on
o-algebra, nimetatakse mootuvaks ruumiks. o-algebra 2 hulki nimetatakse 2A-mootu-

vateks hulkadeks (voi, kui o-algebra 2A roll on kontekstist selge, ka lihtsalt madtuva-
teks hulkadeks).

Jargnevalt toome moned lihtsad néited algebratest ja o-algebratest.
Naide 2.1. Olgu X mingi hulk. Siis
(a) kogum {0, X} on hulga X alamhulkade o-algebra;
(b) kogum P(X) on hulga X alamhulkade o-algebra;
(c) hulga X koigi loplike ja kooloplike alamhulkade kogum
F(X)={A e P(X): Aon loplik voi A° on loplik}
on hulga X alamhulkade algebra.

Ulesanne 2.3. Téestada, et hulga X 16plike ja kooloplike alamhulkade kogum F(X) on o-algebra
parajasti siis, kui hulk X on loplik.

NAPUNAIDE. Iga lopmatu hulk sisaldab loenduva alamhulga.
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2.2. Alamhulkade kogumi poolt genereeritud o-algebra

Olgu X mingi hulk ning olgu & C P(X).

Definitsioon 2.4. Vihimat hulga X alamhulkade o-algebrat, mis sisaldab kogu-
mit &£, nimetatakse kogumi € poolt genereeritud o-algebraks.

Kogumi £ poolt genereeritud o-algebrat tihistame edaspidi siimboliga o(&).

Siinkohal kerkib loomulik kiisimus o-algebra definitsiooni korrektsusest. Tépse-
malt:

(1) Kas niisuguseid hulga X alamhulkade o-algebraid, mis sisaldavad kogumit &,
iiletildse leidub?

(2) Kas kogumit & sisaldavate hulga X alamhulkade o-algebrate hulgas on olemas
vihim, s.t. niisugune, mis sisaldub igas kogumit & sisaldavas o-algebras?

Vastus neile molemale kiisimusele on jaatav:
(1) Hulga X koéigi alamhulkade kogum P(X) on o-algebra, kusjuures £ C P(X).

(2) Koigi kogumit & sisaldavate hulga X alamhulkade o-algebrate iihisosa on o-
algebra, mis sisaldab kogumit £. See iihisosa on vdhim kogumit & sisaldav
o-algebra, sest ta sisaldub igas kogumit & sisaldavas hulga X alamhulkade
o-algebras.

Ulesanne 2.4. Tdestada, et kdigi kogumit & sisaldavate hulga X alamhulkade o-algebrate ithisosa
on o-algebra, mis sisaldab kogumit &.
Niisiis,

o&)= [«

2 on o-algebra
ECACP(X)

Edasises kasutame me korduvalt jargmist lihtsat lemmat.

Lemma 2.1. Olgu X mingi hulk ning olgu A hulga X alamhulkade o-algebra. Kui
kogum € C P(X) rahuldab tingimust £ C U, siis ka o(E) C 2.

TOESTUS. Olgu € C P(X) selline, et £ C A. Kuna 2l on o-algebra, siis o(A) = 2,
seega 0(&) C o(A) = A. O



NB! Seda “kédes-

oleva paragrahvi li-
sa” pole olemas!
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2.3. Boreliﬂ o-algebra

Definitsioon 2.5. Topoloogilise ruumi X lahtiste hulkade kogumi poolt genereeri-
tud o-algebrat nimetatakse ruumi X Boreli o-algebraks. Ruumi X Boreli o-algebra
hulki nimetatakse selle ruumi Boreli hulkadeks.

Ruumi X Boreli o-algebrat tdhistame edaspidi siimboliga Bx. Ruumi X koigi
lahtiste hulkade kogumit tidhistame edaspidi siimboliga 7x; niisiis definitsiooni ko-
haselt Bx = o(7x).

Ulesanne 2.5. Téestada, et topoloogilise ruumi X kinniste alamhulkade kogum Fy genereerib
ruumi X Boreli o-algebra, s.t. o(Fx) = Bx.

Jargnevalt tutvustame topoloogilise ruumi Boreli hulkade hierarhiat kirjeldavat
terminoloogiat.

Definitsioon 2.6. Olgu X topoloogiline ruum.

Oeldakse, et hulk A € P(X) on hulk tidipi Gs (ehk Gs-titipi hulk ehk lihtsalt
Gs), kui ta on esitatav ruumi X lahtiste alamhulkade loenduva iihisosana, s.t.

A= ﬂ U;, kus U; € P(X), j € N, on ruumi X lahtised alamhulgad.
j=1

Oeldakse, et hulk A € P(X) on hulk tiiipi F, (ehk F,-tiiiipi hulk ehk lihtsalt
F,), kui ta on esitatav ruumi X kinniste alamhulkade loenduva iithendina, s.t.

A= U Hj, kus H; € P(X), j € N, on ruumi X kinnised alamhulgad.
j=1

Mairkus 2.1. Terminid G5 ja F, vottis kasutusele juba Hausdorﬂm tdhtedega “G” ja “F” téhis-

tas ta vastavalt lahtiseid ja kinniseid hulki (tahed “G” ja “F” tulenevad vastavalt saksakeelsest

terminist “Gebiet” (piirkond) ja prantsuskeelsest terminist “fermé” (kinnine)); indeksid “§” ja “o”

aga viitavad vastavalt saksakeelsetele terminitele “Durchschnitt” (ithisosa) ja “Summe” (summa).

Boreli hulkade edasine klassifikatsioon jérgib sama printsiipi:
G5, on Gs-de loenduv iihend,
F,s5 on F,-de loenduv iihisosa jne.
Rohutame, et see klassifikatsioon ei ole ammendav. (Selle ammendavuse kiisimusega tegeleme me

kiesoleva paragrahvi lisas ).

Selles punktis kirjeldame me ruumi R Boreli o-algebrat. Selleks on aga otstar-
bekas esmalt oppida veidi paremini tundma ruumi R lahtiste hulkade struktuuri.

Edasises moistame me moiste “vahemik” all lisaks tokestatud vahemikele ka
tokestamata vahemikke, s.t. vahemikeks nimetame me hulkasid

(a,b), (c,00), (—o00,d), (—o0,00), kus a,b,c,d € R, a < b.

9Félix Edouard Justin Emile Borel (1871-1956) — prantsuse matemaatik.
0Felix Hausdorff (1868-1942) — saksa matemaatik.
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Teoreem 2.2. Ruumi R mis tahes mittetihi lahtine hulk esitub paarikaupa loiku-
matute vahemike tlimalt loenduva thendina.

Kuna iga vahemik on esitatav tokestatud vahemike loenduva iithendina, siis jérel-
dub teoreemist

Jareldus 2.3. Ruumi R mus tahes mitietihi lahtine hulk esitub tokestatud vahemaike
loenduva thendina.

TEOREEMI 2.2] TOESTUS. Olgu 4 C R mittetiihi lahtine hulk. Defineerime iga
x € U korral

ax:inf{aeR: (a,x]CU} ja bzzsup{bGR: [x,b)CZ/l}.

Mérgime, et a, ja b, on korrektselt defineeeritud, sest niisugused a,b € R, a < x < b, mille
korral (a,b) C U, eksisteerivad (tdepoolest, hulga U lahtisuse tottu on z hulga U sisepunkt ning
seega leidub € > 0 selliselt, et (z — e,z + &) C U). Seejuures voib juhtuda, et a, = —oo ja/voi
by = co.

Paneme tdhele, et iga x € U korral
(1) (az,b:) CU,;
(2) (ag,b,) on suurim punkti x sisaldav vahemik, mis sisaldub hulgas U.

Ulesanne 2.6. Toestada, viited (1) ja (2).

Téhistame I, = (ag, b,), © € U. Paneme tihele, et mis tahes x,y € U korral kas
I, =1,voi I,NI,=0.

Toepoolest, olgu x,y € U sellised, et I, # I,. Oletame vastuvditeliselt, et I, N I, # (. Siis
kehtib vihemalt {iks jargmistest rangetest sisalduvustest:

I,cl,ul, voi I,CIl,UlI,.
- y Y3 y

Kuna I, U, kui loikuvate vahemike {ihend on vahemik, siis esimesel juhul poleks I, suurim punkti
x sisaldav hulgas U sisalduv vahemik, teisel juhul aga poleks I, suurim punkti y sisaldav hulgas U/
sisalduv vahemik.

Kuna iga x € U korral sisaldab vahemik [, mingi ratsionaalarvu, siis

Uu=Jrn={J L

zeU reldNQ
Defineerime hulgas U N Q ekvivalentsiseose p jargmiselt:
zpy = I,=1, r,y eUNQ.

Ulesanne 2.7. Tdestada, et p on ekvivalentsiseos hulgas ¢ N Q.
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Olgu N C U N Q mingi selline hulk, mis sisaldab faktorhulga (U N Q)/p igast
ekvivalentsiklassist iihe ja ainult iihe elemendi (mérgime, et valikuaksioomi p&hjal
niisugune hulk N eksisteerib). Siis

Olemegi esitanud hulga U/ paarikaupa loikumatute vahemike iilimalt loenduva iihen-
dina (sest kogumi {I,: z € N} vahemikud on paarikaupa loikumatud ja hulga N
voimsus on iilimalt loenduv). O

*Ulesanne 2.8. Tdestada, et separaablis meetrilises ruumis on iga mittetiihi lahtine hulk esitatav
lahtiste kerade iilimalt loenduva iihendina.

Teoreem 2.4. [qaiiks jairgmistest ruumi R alamhulkade kogumitest genereerib ruu-
mi R Boreli o-algebra Bg:

b): —oco<a<b<oo};
a,b): —oo<a<b<oo};
0]

& =1

&= {

53:{[a, —oo<a<b<oo};
Er={(a,b]: —o0o<a<b<oo};
Es = {(—oo,b]: bGR};
56:{(—oo,b) bER};

& ={la,0): a € R};

Teoreemi [2.4] toestus tugineb jéreldusele 2.3 ja lemmale

TEOREEMI TOESTUSEKS piisab niidata, et

1) (2 (3) 4) (5) (6) (M (8) )
Br C 0'(51) C U(gg) C 0’(83) C 0'(54) C 0'(55) C 0'(56) C 0'(57) C 0'(58) C Bg.

(1). Kuna jérelduse pohjal on ruumi R iga mittetiihi lahtine hulk esitatav
tokestatud vahemike loenduva iihendina, siis 7 C (&) (siimbol 7r tdhistab ruumi
R lahtiste alamhulkade kogumit) ning jarelikult lemma pohjal ka Bg = o(1r) C
a(&).

(2). Lemma [2.1] pohjal piisab sisalduvuse (2) toestuseks ndidata, et & C o(&s).
Viimane sisalduvus aga kehtib, sest mis tahes a,b € R, a < b, korral

[e.9]

(a,0) = | [a+%2,b) € 0(&).

n=1

(4). Lemma 2.1 pohjal piisab sisalduvuse (4) toestuseks niidata, et £3 C o(&y).
Viimane sisalduvus aga kehtib, sest mis tahes a,b € R, a < b, korral

oo

[a,b] = () (a— 1,0] € o(&).

n=1
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(5). Lemma [2.1] pohjal piisab sisalduvuse (5) toestuseks naidata, et £ C o(Es).
Viimane sisalduvus aga kehtib, sest mis tahes a,b € R, a < b, korral

(a,b] = (—00,b] \ (—o0,a] € o(&;).

Ulesanne 2.9. Toestada sisalduvused (3) ja (6)—(9).

2.4. Uks edasise teooriaarenduse seisukohalt oluline naide
ithest ruumi R alamhulkade algebrast

Kiesoleva paragrahvi lopetame néitega iithest ruumi R alamhulkade algebrast, mis
etendab olulist osa meie edasises teooriaarenduses.

Niide 2.2. Tahistame

H= {@, [a,b), [¢,00), (=00, d), (—00,00) : a,b,c,d € R, a < b} c P(R)

ning
B:{UA] TLGN, Al,...,ARG”H, AZQAJZQ,Z#‘]} CP(R),
j=1

s.t. B on kogumi H paarikaupa mitteldikuvate hulkade loplike {ihendite kogum.

Niitame, et B on algebra. Seda voib teha algebra aksioomide A1°-A3° vahetu
kontrollimise teel, mis on aga kiillaltki tiilikas (kuigi lihtne). Seepérast on otstarbe-
kam toestada eelnevalt iiks abitulemus, mida me vajame ka kéesoleva konspekti I11
peatiikis.

Definitsioon 2.7. Olgu X mingi hulk ning olgu G C P(X).
Oeldakse, et kogum G on poolalgebra, kui

SAl1° 0 € G;
SA2° ABeG—=— ANBEeg;

SA3° iga A € G korral leiduvad paarikaupa loikumatud hulgad Bi,...,B, € G
(n € N) selliselt, et

n

s.t. kogumi G iga hulga tdiend esitub kogumi G paarikaupa loikumatute hulkade
lopliku iihendina.

Lihtne on veenduda, et kogum H on poolalgebra.
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Teoreem 2.5. Olgu X mingi hulk ning olgu kogum G C P(X) poolalgebra. Siis
kogum

j=1

on algebra.
Teisisonu, poolalgebra paarikaupa loitkumatule hulkade [oplike tihendite kogum on
algebra.

Kuna kogum H on poolalgebra, siis jéreldub teoreemist 2.5 et kogum B on
algebra. Seejuures o(B) = Bg.
TEOREEMI TOESTUS.
Ulesanne 2.10. Tdestada teoreem [2.5]
NAPUNAIDE. Kobigepealt veenduda, et kui A, B € A, siis ka AN B € A.

2.5. Harjutusiilesandeid

Ulesanne 2.11. Olgu X,Y # () ning olgu f: X — Y.
[A] Olgu B,B; CY, j=1,2,.... Toestada, et

(a) f7H(B) = (F71(B))%
(b) (U By) = Ui, £7(B)):
[B]
(a) Olgu kogumid % C P(X) ja B C P(Y) o-algebrad. Tdestada, et kogumid
C:={f"'[B]: BEB} ja D:={Be®B: f !B e}
on g-algebrad;
(b) Olgu F C P(Y). Tahistame
E:={f"'Bl: BeF} ja C:={f'[B]: Beo(F)}.
Toestada, et o(£) = C.

UKS VEIDI ULDISEM NAPUNAIDE 0SA [B], (b), SISALDUVUSE C C o(£) TOESTUSEKS. Sageli on
meil vaja néidata, et igal hulgal mingist (mingi hulga Y alamhulkade) o-algebrast & on teatav
omadus (P), s.t. tdhistades D := {B € &: hulgal B on omadus (P)}, on vaja niidata, et & C D.
Selleks piisab niidata, et

(1) kogum D on (hulga Y alamhulkade) o-algebra;

(2) leidub alamkogum F C D nii, et o(F) = & (s.t. kogum D sisaldab mingi o-algebrat &
genereeriva alamkogumi F),

sest viidete (1) ja (2) kehtides & = o(F) C D. (Loomulikult sobib kirjeldatud toestusskeem
ainult viga spetsiifiliste olukordade jaoks, sest iildjuhul ei tarvitse vaadeldud {ilesandepiistituses ei
tingimus (1) ega ka tingimus (2) kehtida.)

Kuidas rakendada eelnevat toestusskeemi iilesande [B], (b), sisalduvuse C C o(&) toes-
tuseks? Aga, nimelt, sisalduvuse C C o(€) tdestuseks tuleb ndidata, et iga B € o(F) korral
f7Y[B] € 0(€), s.t. tihistades D := {B € o(F): f~1[B] € ¢(€)}, tuleb niidata, et o(F) C D.
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Ulesanne 2.12. Olgu X mingi hulk ning olgu Y C X.
(a) Olgu kogumid 2 C P(X) ja B C P(Y) o-algebrad. Toestada, et kogumid
C:={AecA: ANY €eB}CP(X) ja D:={ANY:AcA} CP()
on o-algebrad.
(b) Olgu £ C P(X). Téhistame
F={ANY: Ac&}cPY) ja D:={ANY: A€o} CP().
Toestada, et o(F) = D.

Ulesanne 2.13. Olgu (X, 7x) topoloogiline ruum ning olgu Y ¢ X. Uldise topoloogia kursusest
teame, et siis Y on topoloogine ruum nn. alamruumi topoloogia

v ={UNY: Uce€rx}

suhtes. Toestada, et
By ={ENY: E € Bx}.

(Stimbolid Bx ja By téhistavad vastavalt ruumide X ja Y Boreli o-algebraid, s.t. Bx = o(7x) ja
By = U(Ty)).
NAPUNAIDE. Kasutada iilesannet [2.12} (b).

Ulesanne 2.14. Olgu X ja Y mingid hulgad. Meenutame, et hulkade X ja Y otsekorrutis X x Y
on defineeritud vordusega
XxY:={(z,y): ze€X,yeY},

s.t. X x Y on kéikvoimalike jirjestatud paaride (x,y) hulk, kus z € X jay € Y.
Kui E € P(X xY) jax € X, siis hulga E z-16ige E,, on defineeritud vordusega

E,={yeY: (x,y) € E} CPY).

[A] Olgu E,E; e P(X xY), j=1,2,..., ning olgu =z € X. Tdestada, et

[B] Olgu z € X.
(a) Olgu kogumid € C P(X xY) ja B C P(Y) o-algebrad. Tdestada, et kogumid
G={Ee€C: E,eB}CP(XxY) ja D:={E,: E€c¢}CP®Y)

on o-algebrad.

(b) Olgu & C P(X x Y). Téhistame
F={E,;: E€E}CPY) ja D:={E,: E€o(&)} CPY).
Toestada, et o(F) = D.

Ulesanne 2.15. Olgu A C R ning olgu r € R. Meenutame, et hulga A nihe A + r ja kordne rA
on defineeritud vastavalt vordustega

A+r:={a+r: ac€ A} ja rA:={ra: ac A}
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[A] Olgu A,A; CR, j=1,2,..., ning olgu r € R. Tdestada, et

(a) N N
(A4+r)=A°+r ja <U Aj> +r= U(AjJrr)
j=1 j=1
(NAPUNAIDE: x € A + r parajasti siis, kui © — r € A);
(b) kui r # 0, siis
(rA)*=rA° ja r([j Aj> = [j (rd;)
j=1 j=1

(NAPUNAIDE: r # 0 korral z € rA parajasti siis, kui = € A).

[B] Téestada, et ruumis R iga Boreli hulga nihe ja kordne on Boreli hulgad.

NAPUNAIDE. Veenduda, et kogum & = {E € Bg: E+r € Bg jarE € Bg iga r € R korral} on
o-algebra, kusjuures £ sisaldab o-algebrat Bg genereeriva kogumi & = {(a,b): a,b € R,a < b}.



§ 3. Moodud

3.1. Moodu moiste ja pohiomadused

Olgu X mingi hulk ning olgu A C P(X) algebra.

Definitsioon 3.1. Oeldakse, et hulgafunktsioon p: 2 — [0, 00] on aditiivne, kui
MI° AABe2A, ANB=0 = u(AUB)=pu(A) + uB).

Aditiivse hulgafunktsiooni olulisemad omadused on formuleeritud jargnevas teo-
reemis.

Teoreem 3.1. Olgu p: A — [0, 00] adititune hulgafunktsioon. Siis
MO°  kui leidub hulk A € A selliselt, et p(A) < oo (s.t. u ei ole samaselt vordne
lopmatusega), siis
vastasel korral
1(0) = oo;
M1°" kui hulgad Ay, ..., A, € A (n € N) on paarikaupa loikumatud, siis

p (U Aj) =>4y

M2° p on monotoonne, s.t.

ABeA, ACB = u(A) < uB);

M3° u on subtraktiivne, s.t.

ABeA ACB, u(A) <o = u(B\A)=uB)—pulA):;

M4° p on subaditiivne, s.t.

A, A €A (meN) = u(OA]) giumj).

j=1 j=1

TOESTUS. MO0°. Eksisteerigu hulk A € 2, mille korral p(A) < oco. Kuna hulgafunk-
tsioon 1 on aditiivne, siis

w(A) = p(AU0) = p(A) + (),

millest vorratuse p(A) < oo tottu jireldub, et u(f) = 0.
Omadus M1°” jareldub hulgafunktsiooni p aditiivsusest induktsiooni teel.

21
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M2°. Olgu A, B € A, A C B. Siis
H(A) < p(A) + p(B\ 4) = p(AU (B 4)) = u(B).
M3°. Olgu A, B €2, AC B, u(A) < co. Siis

#(A) + u(B\ A) = 4(AU (B\ 4)) = u(B),
jarelikult
p(B\ A) = u(B) — u(A).
M4°. Olgu Ay, ..., A, € A (n € N). Téhistame

j—1
Blel ja B]:A]\<UAk>,]:2,,n

k=1

Siis Uj_, A; = Uj_, Bj, kusjuures hulgad By, ..., B, on paarikaupa ldikumatud
ning B; C A;, 7 =1,...,n. Seega

f (U Aj) = p (U Bj) = Zﬂ(Bj) < Zu(Aj)-

]

Ulesanne 3.1. Tdestada, et kui hulgafunktsioon p: 2 — [0,00] on aditiivne ning paarikaupa
16ikumatud hulgad A; € 2, j =1,2,..., on sellised, et U;’;l A; € U, siis

plUA ) =2 w4
j=1 j=1

Definitsioon 3.2. Oeldakse, et hulgafunktsioon : 21 — [0, 00] on o-aditiivne (ehk
loenduvalt aditiivne), kui

MI® A; e j=1,2,..., AnA; =0,i#j, | JA4 e = u(UA]) => u(4)).
j=1

j=1 j=1

Margime, et kui algebra 2 on o-algebra, siis tdhendab tingimus “x on g-aditiivne”,
et kehtib implikatsioon

AeA =12, AnA=0i#t; = u(UAj) = ulAy),
j=1 =1

sest sel juhul mis tahes A; € R, j = 1,2,..., korral alati |J72, A; € 2L.
Ulesanne 3.2. Tdestada, et o-aditiivne hulgafunktsioon on aditiivne.

Kuna c-aditiivne hulgafunktsioon on aditiivne, siis on o-aditiivsel hulgafunk-
tsioonil p aditiivse hulgafunktsiooni omadused M0°-M4°. Ulejddnud o-aditiivse hul-
gafunktsiooni olulisemad omadused on formuleeritud jargnevas teoreemis.
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Teoreem 3.2. Olgu hulgafunktsioon p: A — [0, 00] o-aditiivne. Siis

M4°° 1 on loenduvalt subaditiivne, s.t.

AjGQl,jzl,Z...,UAjEQl — /L(UAJ>< ILL(AJ)7
j=1 j=1 j=1
M5°  kui hulgad A; €A, j =1,2,..., on sellised, et
Ay CAyCAsc- ja | JAj e, (3.1)
j=1
8418
7 (U Aj> = lim pu(Ay,); (3.2)
j=1
M6°  kut hulgad A; € A, j =1,2,..., on sellised, et
p(A) <oo, A1DADA;D - ja ()A€, (3.3)
j=1
§418
u (ﬂ Aj) = lim p(Ay). (3.4)
j=1

TOesTUs. M4*°. Olgu hulgad A; € A, j =1,2,..., sellised, et |J;Z, A; € 1. Téhis-
tame

j—1
Blel ja B]:Aj\<UAk>7]:273;
k=1
Siis U;2, A; = U,2, Bj, kusjuures hulgad B;, j = 1,2,..., on paarikaupa l6ikuma-
tud ning B; C A;, 5 =1,2,.... Seega

It (U Aj) = (U Bj) = Z#(Bj) < ZH(AJ‘)-

M5°. Rahuldagu hulgad A;, j = 1,2,..., tingimusi (3.1)). Tahistame
A():@ ja Bj:Aj\Aj_l,jzl,Q,....

Siis U;2, A; = U,2, Bj, kusjuures hulgad B;, j = 1,2,..., on paarikaupa l6ikuma-
tud; seega

17 (U Aj) =4 (U Bj) = Zu(Bj) = JH&Z“(BJ') = lim 4 (U Bj)

j=1

= lim u(A,).

n—00

M6°. Rahuldagu hulgad A;, j =1,2,..., eeldusi (3.3). Kuna
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(1) De Morgani valemite pohjal u(A; \ (72, A;) = p(U;Z, (A1 \ 47));

(2) sisalduvuste A1 D) AQ D) Ag D --- tottu Al\Al C Al\AQ C Al\Ag (@I
ning jarelikult omaduse M5° pohjal p (U;; A\ Aj> = lim,, 00 (A1 \ 4,),

I (ﬂ Aj> = p (Al \ (Al \ ﬂAj)) = p(Ay) — p (Al \ ﬂf‘b’)
= (A1) —p (U(Al \ Aj)) = p(Ar) = lim p(Ar\ Ay)
— pu(Ay) = Tim ((A) = p(Ay) ) = (A1) = (p(Ar) = Tim pu(A,))
= %, #lA)

]

Mirkus 3.1. On ilmne, et vordus jadab kehtima, kui asendada eeldustes
tingimus “p(A4;) < oo” norgema tingimusega “mingi jo € N korral p(A;,) < oo”.
Kaéesoleva punkti viimasest iilesandest ndeme, et selle tingimuse mitte kehtides ei
tarvitse enam kehtida ka vordus (3.4).
Ulesanne 3.3. Olgu pu: 2 — [0, 00] aditiivne hulgafunktsioon. Toestada, et

(a) kui g rahuldab tingimust M5°, siis p on o-aditiivne;

(b) kui u on 16plik ja rahuldab tingimust M6°, siis p on o-aditiivne;

(¢) kui p on 16plik ja rahuldab tingimust

M6°° AlDAQDAgD'”,ﬂ;ilAj:@ — u(An)—>O

n—oo
siis u on o-aditiivne;
Mirkus 3.2. Kui aditiivne hulgafunktsioon u: 2 — [0, co] on 10plik, siis tingimusest M6° jireldub

tingimus M6°°, seega jareldub iilesande véitest (c) tema vaide (b) (ning iihtlasi on tingimused M6°
ja M6°° samavédirsed).

Definitsioon 3.3. Hulgafunktsiooni p: 20 — [0, oo] nimetatakse maooduks, kui
MO p(f) = 0;
M1°° u on o-aditiivne.

Definitsioon 3.4. Kolmikut (X, 2L, 1), kus X on mingi hulk, 2l C P(X) on algebra
ning p: A — [0,00] on moéot, nimetatakse eelmooduga ruumiks. MéStu 1 nimeta-
takse seejuures ka eelmooduks.

Kolmikut (X, 2, ), kus X on mingi hulk, 20 C P(X) on o-algebra ning p: A —
[0, 00] on mo6ot, nimetatakse mooduga ruumiks.

Kui pu(X) = 1, siis nimetatakse mooduga ruumi (X, 2, u) téendosusruumiks.
Mootu p nimetatakse sel juhul toendosusmooduks.
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Kui p(X) < oo, siis deldakse, et (eel)mooduga ruum (X, 2, ) on loplik. Sel juhul
oeldakse ka, et moot p on loplik.

Oeldakse, et (eel)mooduga ruum (X, 2, i) on o-loplik, kui hulk X on esitatav
kujul
X = UAj, kus A; € Aja p(A;) <oo,j=1,2,....
j=1

Sel juhul 6eldakse ka, et moot p on o-loplik.

Ulesanne 3.4. Olgu (X, 2, p) o-16plik eelmodduga ruum. Tdestada, et
(a) leiduvad hulgad A; € A, p(A4;) <oo,j=1,2,..., A, NA; =0,4i%#j,nii, et X = U;’il Ajs
(b) leiduvad hulgad A; € 21, p(A;) < 00,5 =1,2,...,A; C Ay C A3 C -+, nil,et X = ]2, A;.

Ulesanne 3.5. Tuua niide modduga ruumist (X, 2L, ;1) ning hulkadest A; € A, j = 1,2,..., mis
rahuldavad tingimusi A; D Ay D A3 D -+ ja();2; A; € 2, kuid mitte tingimust |i

NAPUNAIDE. Tutvuda kdigepealt naitega

3.2. Naiiteid mooduga ruumidest

Niide 3.1. Olgu (X, ) modtuv ruum.
Defineeerime hulgafunktsiooni ¢: 20 — [0, co] seosega

0, kui A = 0;
c(A) = < hulga A elementide arv, kui hulk A on 1oplik; Aed
00, kui hulk A on l6pmatu,

Lihtne on kontrollida, et ¢ on maoot.

Ulesanne 3.6. Téestada, et hulgafunktsioon ¢ on moot.
Mootu ¢ nimetatakse loendamismooduks.

Naiide 3.2. Olgu (X,2l) moé6tuv ruum ning olgu = € X.
Defineeerime hulgafunktsiooni d,: 2 — [0, 00| seosega

1 kui A;
(A =4 SWEEA e
0, kui z ¢ A,

Lihtne on kontrollida, et J, on moot.

Ulesanne 3.7. Téestada, et hulgafunktsioon 4, on modt.

Mootu &, nimetatakse Dirac{!Y] mooduks (punktis x) voi ka punktmassiks (punktis ).

Jargnev ndide, mis méangib tdhtsat rolli ka edasises teooriaarenduses, on eelmis-
test juba oluliselt sisukam.

1Paul Adrien Maurice Dirac (1902-1984) — inglise matemaatik.
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Niide 3.3. Tihistame (nagu ka niites
H = {(Z), [a,b), [c,0), (—o0,d), (—00,00) : a,b,c,d €R, a< b} C P(R)

ning
B:{UAJ neN, Ay,..., A, e H, AlﬂAJ:@,Z#j} CP(R),
j=1

s.t. B on kogumi H paarikaupa mitteloikuvate hulkade loplike iihendite kogum. Néi-
tes [2.2) toestasime, et B on algebra.

Olgu F': R — R mittekahanev vasakult pidev funktsioon.
Selles néites konstrueerime ithe méodu pp: B — [0, oo selliselt, et

pr([a,b)) = F(b) — F(a) mis tahes a,b € R, a < b, korral. (3.5)
Niisiis, kui defineerida funktsioon F seosega F(z) = z, x € R, siis
pr(la, b)) =b—a.
Paneme tahele, et, tdhistades

F(oo) = lim F(z) ja F(—o0)= lim F(x)

T—00 T—r—00

(mérgime, et funktsiooni F' monotoonsuse tottu need piirvadrtused eksisteerivad),
peab tingimust (3.5 rahuldav mo6ot pp rahuldama tingimusi

pr(0) =0,
pr(la,b)) = F(b) — F(a), a,beR, a<b,
pr([c,0)) = F(oo) — F(c), c€R, (3.6)
ur((—o0,d)) = F(d) — F(=0), deR,
i ((—00,00)) = F(oc) — F(—o0)

Ulesanne 3.8. Tdestada, et kui 1 on moét algebral B, mis rahuldab tingmust li siis kehtivad

tingimused (3.6).
Defineerimegi koigepealt hulgafunktsiooni pp védrtused kogumi H hulkadel vordus-

tega. (3.6).

Ulesanne 3.9. Toestada, et kui paarikaupa léikumatud hulgad Ai,..., A, € H (n € N) on
sellised, et Jj_, A; € H, siis

HF (U Aj) = ZuF(Aj)-

Jatkame hulgafunktsiooni pp algebrale B (ja tdhistame selle jatku samuti siimboli-
ga pup), defineerides A € B korral

pr(A) = Z e (Aj),



§ 3. MOODUD 27

kus paarikaupa loikumatud hulgad Aq,..., A, € H (n € N) on sellised, et A =
U?:l A;j. Hulgafunktsiooni pp definitsiooni korrektsus ja pp aditiivsus jareldub va-
hetult jargnevast iilesandest. Veelgi enam, sealt jareldub ka, et yr on ainus tingimust
(3.5) rahuldav aditiivne hulgafunktsioon algebral B.

Ulesanne 3.10. Olgu S (mingi hulga X alamhulkade) poolalgebra ning rahuldagu hulgafunk-
tsioon v: & — [0, o0] tingimust

A, A €S (neN), AinA;=0,i#j |48 = V<UAj)=Zu(Aj).
j=1

j=1 j=1

Olgu A poolalgebra S paarikaupa l6ikumatute hulkade 16plike iihendite algebra, s.t.
A= {UAj: neN, A,..., A, €S, A;NA; :(Z)Jyéj} C P(X).
j=1

Defineerime hulgafunktsiooni p: A — [0, 00| seosega

wA) =Y v(4)), A=JA €A neN Ay, A, €8, AinA;=0,i#j).

j=1 j=1
(I) Toestada, et
(a) w on korrektselt defineeritud;
(b) w on aditiivne;

c¢) p on ainus aditiivne hulgafunktsioon algebral A, mille puhul u(A) = v(A) iga A € S korral.
(IT) Toestada, et kui

j=1 j=1

A;€8,§=1,2,..., AinA;=0,i#j, [ JA4 €S = V(UAj)_Zy(Aj),
j=1

siis u on o-aditiivne.
Teoreem 3.3. Hulgafunktsioon urp on moot.

Teoreemi toestus toetub oluliselt moodu regulaarsuse moistele; me esitame
ta kiesoleva paragrahvi jargmises punktis.

Definitsioon 3.5. Olgu X mingi hulk ning olgu kogumid A, B C P(X) sellised, et
A C 8.
Oeldakse, et hulgafunktsioon v: 8 — R on hulgafunktsiooni pu: A — R jditk
(kogumile B ), kui
v(A) = p(A) iga A € A korral.

Sel juhul 6eldakse ka, et hulgafunktsioon : 2 — R on hulgafunktsiooni v: B — R
ahend (kogumile ).

Hulgafunktsiooni v ahendit kogumile 2( tdhistatakse siimboliga v|y. Niisiis, kui
hulgafunktsioon v on hulgafunktsiooni p: 21 — R jiitk, siis kirjutatakse v|y = p.
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Jérgmises paragrahvis esitame skeemi, kuidas jatkata moot p algebral 2 teata-
vaks mooduks selle algebra poolt genereeritud o-algebral o(2). Mida see meile an-
nab? Néites lahtudes mittekahanevast vasakult pidevast funktsioonist F': R —
R, konstrueerisime teataval algebral B C P(R) moddu pp, mis rahuldab tingimust
(3-5). Kui me oskame jitkata moodu pp mingiks mooduks algebra B poolt gene-
reeritud o-algebrale o(B) = B, siis, tahistades selle jitku samuti siimboliga up,
saame moddu pp: Br — [0,00], mis rahuldab tingimust (3.5). Niisiis, kui de-
fineerida funktsioon G: R — R vordusega G(z) = z, € R, ning tdhistada
m = ug: Br — [0, 00], siis m on mé6t ruumi R Boreli o-algebral Bg, mis rahuldab
tingimust

m([a, b)) =b—a mis tahes a,b € R, a < b korral.

Pole paha, mis?

3.3. Moodu regulaarsus

Definitsioon 3.6. Olgu X topoloogiline ruum ning olgu £ C P(X). Oeldakse, et
monotoonne hulgafunktsioon p: €& — [0, 00| on

e vdljast requlaarne hulgal E € £, kui
p(E) = inf{p(D): hulga D € € sisemus D° D E}

(sel juhul Geldakse ka, et hulk £ on (hulgafunktsiooni p suhtes) wvaljast regu-
laarne ehk vdiljast p-regulaarne);

e seest requlaarne hulgal E € £, kui
p(E) = sup{p(C): hulga C € & sulund C on kompaktne ja C C E}

(sel juhul 6eldakse ka, et hulk E on (hulgafunktsiooni p suhtes) seest regulaarne
ehk seest p-requlaarne);

e requlaarne hulgal E € £, kui ta on hulgal E nii véljast kui ka seest regulaarne
(sel juhul Geldakse ka, et hulk E on (hulgafunktsiooni p suhtes) regulaarne ehk
p-requlaarne);

e requlaarne, kui ta on regulaarne kogumi & koikidel hulkadel.

Markus 3.3. Kompaktne hulk K Hausdorffi topoloogilises ruumis on kinnine; niisiis
K = K on Boreli hulk. Siit jireldub, et kui X on Hausdorffi topoloogiline ruum ning
kogum £ C P(X) sisaldab ruumi X Boreli o-algebrat (s.t. £ D By), siis monotoonne
hulgafunktsioon p: €& — [0, 00] on

(a) véljast regulaarne hulgal E € £ parajasti siis, kui

p(E) =inf{p(U): hulk U € £ on lahtine ja U D> E};
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(b) seest regulaarne hulgal E € £ parajasti siis, kui

p(E) = sup{p(K): hulk K € £ on kompaktne ja K C F}.

Mairgime, et iga meetriline ruum on Hausdorfhi topoloogiline ruum.
Teoreem [3.3] jareldub vahetult jirgnevast teoreemist.

Teoreem 3.4. Olgu X topoloogiline ruum, olgu A C P(X) algebra ning olgu pv: A —
[0, 0] aditiivne hulgafunktsioon. Kui hulgafunktsioon u on requlaarne, siis ta on o-
adititone.

TOESTUS.

*Ulesanne 3.11. Toestada teoreem
]

Jireldamaks teoreemist et hulgafunktsioon yp néites[3.3|(ja ka teoreemis

on moot, jidb vaid veenduda, et ur on regulaarne.

Ulesanne 3.12. Toestada, et hulgafunktsioon pp: B — [0, 00| niites on regulaarne.

3.4. Mooduga ruumi taield
Olgu (X, 2, 1) mooduga ruum.

Definitsioon 3.7. Oeldakse, et hulk N € P(X) on p-hiiljatav, kui leidub hulk
F € A selliselt, et u(F)=0ja N C F.

Kui moodu p roll on kontekstist selge, siis oeldakse p-hiiljatava hulga kohta ka
lihtsalt hiljatav hulk.

Ruumi X p-hiiljatavate hulkade kogumit téhistame stimboliga A(u) voi, kui
moodu p roll on kontekstist selge, siis ka lihtsalt A/, Niisiis

N =N(u)={NeP(X): leidub hulk F € 2, u(F) =0, nii, et N C F}.

Definitsiooni kohaselt hulk on hiiljatav parajasti siis, kui ta on mingi nullméoduga
hulga alamhulk. Seega on ka iga nullmooduga hulk hiiljatav. Juhime tdhelepanu, et
hulga hiljatavus ei tihenda tldjuhul, et tema moot on null, sest iildjuhul ei tarvitse
p-hiiljatav hulk kuuluda moodu g médramispiirkonda 2. Kiill aga jareldub moodu
monotoonsusest, et iga mootuva (s.t. o-algebrasse A kuuluva) hiljatava hulga maot
on null. Niisiis, hiljatava hulga moot kas ei ole mddratud voi on null.

Ulesanne 3.13. Toestada, et hiiljatavate hulkade iilimalt loenduv iihend on hiiljatav hulk.

Definitsioon 3.8. Oeldakse, et mooduga ruum (X, A, i) on tdielik, kui N'(u) C A
(s.t. koik p-hiiljatavad hulgad kuuluvad o-algebrasse 2A). Sel juhul 6eldakse ka, et
moot p on tdielik.

On ilmne, et kui ruum (X, 2, 1) on tdielik, siis hulga N C X hiljatavus tihendab,
et l(N) = 0.
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Teoreem 3.5. Olgu (X, A, ) mooduga ruum ning olgu N' = N () (s.t. N on hulga
X koikide p-hiljatavate alamhulkade kogum). Tdhistame

A={AUN: AeA NeN}
ning defineerime hulgafunktsiooni fi: A — [0, 0o] seosega
a(E)=u(A), Ee€A E=AUN,AcA NecN.
Siis
(a) kogum A on o-algebra,

(b) o-algebra A on vihim o-algebra, mis sisaldab nii o-algebrat A kui ka kogumit N

(teisisonu, A = c(AUN));
(¢) hulgafunktsioon T on maot;
(d) maéot @ méodu p ainus jitk o-algebrale 2A;
(e) modduga ruum (X, A, 71) on tdielik.

Definitsioon 3.9. Mooduga ruumi (_X, A, 71) teoreemist nimetatakse mooduga
ruumi (X, 2, p) tdieldiks. o-algebrat 20 nimetatakse seejuures o-algebra 2 tdieldiks
(moo6du p suhtes) ning modtu @ moodu p tdieldiks.

Teisisonu, mooduga ruumi (X, 2, i) tiieldiks nimetatakse mooduga ruumi (X, 2, 1),
kus

(1) A on vithim hulga X alamhulkade o-algebra, mis sisaldab nii o-algebrat 2/ kui
ka ruumi X koiki p-hiiljatavaid alamhulki;

(2) moot @ on moddu p jitk o-algebrale 2A (mirgime, et teoreemi pohjal on
niisugune moot 7 itheselt madratud).

TEOREEMI [3.3] TOESTUS. (a). Kéigepealt paneme tihele, et () € A (sest ) = O U,
kusjuures ) € 2 ja ) € N) ning X € A (sest X = X U0, kusjuures X € 2 ja
D eN).

Néitame niiiid, et suvalise ' € A korral ka E¢ € .

Olgu E € 2. Siis leiduvad hulgad A € 2 ja N € N selliselt, et £ = AUN. Kuna
hulk N on p-hiiljatav, siis leidub hulk F' € 2(, u(F) = 0, selliselt, et N C F. Paneme
tahele, et

E‘=(AUN) = (AUF)°U(F\E).
Mairkus 3.4. Viimase vorduse kirjapanekul on abiks joonise tegemine.
Ulesanne 3.14. Veenduda, et (AU N)° = (AUF)°U(F\ E).

Kuna (AUF)® € 2 ja F\E € N (sest '\ E on nullmdoduga hulga F' €  alamhulk),
siis /¢ € .

Viite (a) toestuseks jiib niidata, et kui E; € %, j = 1,2, ..., siiska U;’;l E; e 2.
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Ulesanne 3.15. Veenduda selles.

(b).
Ulesanne 3.16. Tdestada, et 2 = (A UN).
(c). Veendume koigepealt, et hulgafunktsioon zi on korrektselt defineeritud, s.t.

7i(E) ei soltu hulga E € A esitusest kujul E = AUN, kus A € 2 ja N € N. Selleks
peame veenduma, et kui A;, A, € A ja Ni, Ny € N on sellised, et A;UN; = Ay UNs,
siis (A1) = pu(As).

Olgu A, Ay € A ja Ny, Ny € N sellised, et A; U N; = Ay U N,. Siis leiduvad
hulgad Fi, F; € 2, selliselt, et pu(Fy) = pu(Fz) = 0 ning Ny C Fy ja Ny C Fy. Kuna

Al CA1UN1 :AQUNQ CAQUFQ,
siis moodu g monotoonsuse ja subaditiivsuse tottu

(A1) < p(A2 U F) < p(Az) + p(F2) = pu(As).

Analoogiliselt saame, et ka p1(As) < p(A1) ning seega pu(A;) = p(Asz).
Ulesanne 3.17. Tdestada, et hulgafunktsioon 7 on moot.
(d).
Ulesanne 3.18. Toestada, et 77 on moddu p jitk o-algebrale L.
Ulesanne 3.19. Tdestada, et 7 on mdddu g ainus jitk o-algebrale 2.
(e).

Ulesanne 3.20. Toestada, et N'= N (7), s.t. hulk N € P(X) on f-hiiljatav parajasti siis, kui ta
on p-hiiljatav.

Ulesanne 3.21. Tdestada, et médduga ruum (X, 21, 7) on tiielik.

3.5. Harjutusiilesandeid

Ulesanne 3.22. Olgu (X,2l) mostuv ruum ning olgu gy, p2: A — [0, 00] mé6dud. Toestada, et
(@) p1+pe: A A pr(A) + pa(A) € 10, 00] on modt;
(b) w1 + po on o-10plik parajasti siis, kui p; ja po on o-16plikud.

Ulesanne 3.23. Olgu (X, 2L, 4) mdoduga ruum ning olgu A;, B; € 2, j = 1,2,.... Toestada, et
(a) u((A1UA2)\ (B1UB2)) < (A1 \ Br) + (A2 \ Ba);

() (U 40) \ (Ui Bi) ) < 252 (4 \ By):
(¢) u((A1NA2)\ (BiNBy)) < p(Ar\ Br) + (A2 \ B);
(@ w1 (52 40\ (N2 By)) < 52 145\ By).

Ulesanne 3.24. Olgu (X,2) modtuv ruum, kus X on Hausdorffi topoloogiline ruum, ning olgu
1, o A — [0, 00] 1oplikud moddud. Toestada, et g + pe on regulaarne parajasti siis, kui pq ja
Lo on regulaarsed.

Lahendamisel voib piirduda juhuga, kus 2 D By, s.t. 2 sisaldab ruumi X Boreli o-algebrat.
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Ulesanne 3.25. Olgu (X, 2, w) 16pliku mé6duga ruum, kus X on Hausdorfli topoloogiline ruum,
ning olgu E € 2. Toestada, et

(a) kui g on hulgal E seest regulaarne, siis p on téiendil E° véljast regulaarne;

(b) kui X on kompaktne ja p on hulgal E viljast regulaarne, siis u on tdiendil E€ seest regu-
laarne;

(b’) kui p on hulgal X seest regulaarne ja hulgal E viljast regulaarne, siis p on téiendil E° seest
regulaarne.

Lahendamisel voib piirduda juhuga, kus 21 D By, s.t. 2 sisaldab ruumi X Boreli o-algebrat.

Ulesanne 3.26. Olgu (X, 2, 1) 16pliku modduga ruum, kus X on Hausdorffi topoloogiline ruum,
ning olgu A, B € 2. Toestada, et

(a) kui p on hulkadel A ja B viljast regulaarne, siis p on ka ithendil A U B ja iihisosal AN B
véljast regulaarne;

(b) kui g on hulkadel A ja B seest regulaarne, siis u on ka tihendil AU B ja iihisosal AN B seest
regulaarne.

Lahendamisel voib piirduda juhuga, kus 2l D By, s.t. 2 sisaldab ruumi X Boreli o-algebrat.

Ulesanne 3.27. Olgu (X, 2, 1) m6oduga ruum, kus X on o-kompaktne Hausdorffi topoloogiline
ruum (s.t. Hausdorffi topoloogiline ruum, mis esitub kompaktsete hulkade loenduva tihendina) ning
A O Bx. Toestada, et kui p on viljast regulaarne ning 16plik ruumi X kompaktsetel hulkadel, siis
1 on regulaarne.

NAprUNAIDE. Koigepealt veenduda, et kui K, E € 2, kus K on kompaktne, siis ¢ on hulgal K N E
seest regulaarne. Selleks kasutada moodu p véljast regulaarsust hulgal K N E°.

Ulesanne 3.28. Olgu (X, %, ) 16pliku mééduga ruum, kus X on Hausdorffi topoloogiline ruum.
Toestada, et

(a) kui g on hulgal X seest regulaarne, siis
R :={AeA: puon hulgal A regulaarne}

on o-algebra (selle viite toestamisel voib piirduda juhuga, kus 2% D Bx, s.t. 2 sisaldab ruumi
X Boreli o-algebrat);

(b) kui 2 = Bx (s.t. u on 10oplik Boreli méot) ja p on ruumi X igal lahtisel hulgal seest
regulaarne, siis u on regulaarne.

*Ulesanne 3.29. Tdestada, et iga 16plik Boreli moot tiielikus separaablis meetrilises ruumis on
regulaarne.

NApUNAIDE. Ulesande pohjal piisab niidata, et 16plik Boreli moot tiielikus separaablis meet-
rilises ruumis on igal lahtisel hulgal seest regulaarne. Selleks kasutada Hausdorthi teoreemi.

Ulesanne 3.30. Olgu (X, %A, 1) modduga ruumi (X, A, x) tiield. Toestada, et jirgmised viited
on samaviarsed:

(i) Ec;

(i) E=AUN, kus A€, Ny e N, ANN; = 0
ii) E =B\ Ny, kus Be A, Ny € N;

E=B\ N3, kus Be®, N3 e N, N3 C B;

(iii
(iv
(v

Ulesanne 3.31. Téestada, et méoduga ruum on o-16plik parajasti siis, kui tema tiield on o-16plik.

)
)
)
)

leiduvad A, B € 2 nii, et ACE C Bjau(B\A) =0.
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Ulesanne 3.32. Olgu (X, 2, 1) méoduga ruum ning olgu X O Y € 2. Téhistame
B:={ANY: AcA} CPY) ja v=ypuls,
s.t. v(B) = u(B), B € B, Ulesandest teame, et B on o-algebra, seega v on modt. Olgu
(X,2, 1) ja (Y,B,7) vastavalt mdoduga ruumide (X, 2, 1) ja (Y, B, v) tdieldid. Toestada, et
(a) Nv) = {NNY: N e Nk
(b) B={ENY: EcU};
(c) 7 =Tl

Ulesanne 3.33. Olgu (X, %A, 1) méoduga ruum, kus X on Hausdorffi topoloogiline ruum. Tdes-
tada, et p on regulaarne parajasti siis, kui tema téield & on regulaarne.

Lahendamisel voib piirduda juhuga, kus 21 D By, s.t. 2 sisaldab ruumi X Boreli o-algebrat.



§ 4. Valismoodud
Koikjal selles paragrahvis olgu X mingi hulk.

Definitsioon 4.1. Olgu py moot algebral 2 C P(X) ning olgu algebra B C P(X)
selline, et 21 C *B.

Oeldakse, et moot p: B — [0, 00] on méddu pu jitk algebrale 95 ja kirjutatakse
o = po (loetakse: p ahend algebrale 2 on 1), kui

pu(A) = po(A) iga A € A korral.

Selles paragrahvis esitame skeemi, kuidas jatkata algebral defineeritud moot sel-
le algebra poolt genereeritud o-algebrale. Selleks toome sisse jirgneva moistete-
aparatuuri.

Definitsioon 4.2. Hulgafunktsiooni A: P(X) — [0, co] nimetatakse vdlismooduks,
kui

OM1° A(0) = 0;
OM2° X on monotoonne, s.t.

A, BeP(X), AC B = MA) < \B);

OM3° X on loenduvalt subaditiivne, s.t.
A (U Ej> <Y ME), EeP(X), j=1,2,....
j=1 j=1

Lemma 4.1. Olgu kogum & C P(X) ja hulgafunktsioon p: € — [0, 00] sellised, et
0, X €& ja p®) =0.

Siis hulgafunktsioon p*: P(X) — [0, 00], mis on defineeritud seosega

p*(E):inf{Zp(Aj): Ae& j=12,..., ECUAJ}, E e P(X),
j=1 j=1

on valismodot.

TOESTUS. Koigepealt mérgime, et hulgafunktsiooni p* definitsioon on korrektne,
sest iga B € P(X) korral leiduvad hulgad A; € €, j = 1,2,..., nii, et £ C |2, A;.
(Me voime votta naiteks A; = X, j =1,2,....)

Vahetult on konrollitav, et p*() = 0 ning p* on monotoonne.

Ulesanne 4.1. Tdestada, et p*()) = 0 ning p* on monotoonne.

34



§ 4. VALISMOODUD 35

Olgu E; € P(X), j=1,2,.... Teoreemi toestuseks jadb ndidata, et
P (U Ej> <Y (E)
j=1 j=1
Selleks aga piisab néidata, et iga ¢ > 0 korral
p* (U Ej> <Y p(E)+e
j=1 J=1
Fikseerime vabalt ¢ > 0. Valime iga 7 € N korral hulgad Az e & 1=12,...,

selliselt, et
© ' 00 ' . c
E; C UAf ja E p(A]) < p*(Ej) + >

i=1

Imselt U2, B € U2, UiZ, Al = Urjz1 A ning seega

p* (GEj>:inf{Zp(Ak):AkEE,l{:zl,Q, UE CUAk}

keN keN
<Y (A =D p(Al Z( )
i,j=1 =1 i=1 j=1
= FE) Y5
j=1 j=1
= Z P (Ej) +e
j=1

Olgu \: P(X) — [0, oco] villismoot.

Definitsioon 4.3. Oeldakse, et hulk A € P(X) on A\-méotuv (ehk villismdddu A
suhtes mootuv), kui

AME)=XMENA) +ANENA®) iga E € P(X) korral.
On selge, et hulk A € P(X) on A\-mootuv parajasti siis, kui
MENA)+AMENA)SANE) dga EeP(X), M(F) < oo, korral

(sest vastupidine vorratus kehtib vilismoodu subaditiivsuse tottu alati ning juhul,
kui A(E) = oo, kehtib see vorratus triviaalselt).

Hulga X koigi A-mootuvate alamhulkade kogumit tdhistame edaspidi siimboliga

M(N).
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Teoreem 4.2 (Carathéodory™ teoreem). Olgu \: P(X) — [0, oc] vilismaot. Siis
(a) M(X) on o-algebra (s.t. kdigi \-mootuvate hulkade kogum on o-algebra);
(b) Amny (8.t vilismoodu A ahend koigi A\-mootuvate hulkade o-algebrale M(X))
on tdielik moot.
TOESTUS. (a). Toestamaks, et M()\) on o-algebra, piisab ndidata, et
(al) M(A) on algebra;

(a2) kui hulgad A; € M()), j =1,2,..., on paarikaupa loikumatud, siis [J;2, 4; €
M(N).

(al). Koigepealt paneme téhele, et ) € M(A) ning kui A € M(N), siis ka A° €
M(N).
Ulesanne 4.2. Téestada, et
(1) e M(X);
(2) kui A € M(N), siis ka A¢ € M(A).
Olgu A, B € M(A). Veendumaks, et M(\) on algebra, jadb niidata, et AU B €
M(N), s.t. iga E € P(X) korral

AMEN(AUB)) +MEN(AUB)) = A(E).
Olgu E € P(X). Arvestades, et hulgad A ja B on A-modtuvad, saame, et
AMEN(AUB)) +A(EN (AU B))
(EN(AUB)NA)+AEN(AUB)NA?) +MENA°N BY)
ENA)+ MNENA°NB)+ ANENA°N B°)

(
(ENA)+AENAY)
(E).

A
A
A
A

(a2). Olgu hulgad A; € M(X), j = 1,2,..., paarikaupa loikumatud. Viite (a)
toestuseks jédb niidata, et |J;Z, A; € M()), s.t. iga £ € P(X) korral

A (E N G Aj> + A (Em (G Aj>c> < \E).

Selleks paneme esmalt tihele, et kui hulgad A, B € M(\) on paarikaupa ldikumatud,
siis
MEN(AUB)) =ANENA)+ANENB) igaE € P(X) korral. (4.1)
Toepoolest, kui hulgad A, B € M()\) on paarikaupa léikumatud, siis
AMEN(AUB))=AEN(AUB)NA)+A(EN(AUB)N A°)
=ANENA)+ AENB).
12Constantin Carathéodory (1873-1950) — kreeka péritolu saksa matemaatik.
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Olgu £ € P(X). Kuna hulgad A;, j = 1,2,..., on paarikaupa léikumatud, siis
saame tingimusest (4.1]) induktsiooni teel, et

A (E N U Aj) = Z AMENA;) igan e N korral.
j=1 j=1

Seega
A(EOGAj) :)\<DEﬂAj> i)\ ENA;j)
j=1 = j=1
7}1_{{)102)\ EﬂA)—nh_)rrolo)\<EﬂUA>

7=1

Teiselt poolt
) (Em U Ajy) I (Em (UA>) (1)

Téepoolest, kuna EN (U2, 4;)° C EN (UnJr1 Aj)eCc En(Uj=, 45)¢,n=1,2,..., ning A on
monotoonne, siis iga n € N korral

\ (EQ(JQAj)C) (Em(”fjA) ) ) (EQ(JQAj)j;

niisiis piirvadrtus lim A (E N (U?:1 Aj) ) eksisteerib, kusjuures kehtib lh
n—oo
Seega

A(EmQAj)+ ( (@ ))

JLIEJ( “UA>+,}E£J<E“(CJAJ‘>C)

i=1
= lim
n—oo

( mjszlAj) +/\(Em (LUAj)C))
— lim A(E)

=1
n—o0

= ME),
sest kuna M(A) on algebra, siis iga n € N korral | J;_, A; € M(N).
(b). Veendumaks, et A[yq) on moot, paneme koigepealt téhele, et A|rqn) on

aditiivne hulgafunktsioon.

Tdepoolest, mis tahes A, B € M()\), AN B = {), korral jireldub A\-mddtuvuse definitsioonist,
et
MAUB)=X(AUB)NA) + M(AUB)NA) = A(A) + \(B).
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Kuna aditiivne hulgafunktsioon on o-aditiivne parajasti siis, kui ta on loenduvalt
subaditiivne, siis A|x(x) on Mmoot (sest A (ja seega ka A|rq(x)) on loenduvalt subadi-
tiivne ning A(0) = 0).

Veendumaks, et A|rqx) on téielik mo6t, paneme koigepealt téhele, et kehtib imp-
likatsioon

NeP(X),A(N)=0 = NecM(\.

Toepoolest, kui N € P(X) on selline, et A(N) = 0, siis A monotoonsuse tottu iga E € P(X)
korral A(ENN) + AENN®) <AN) + A(E) = A(E); jarelikult N € M(A).

Ulesanne 4.3. Toestada, et Alamny on téielik moot.

]

Teoreem 4.3. Olgu p maoot algebral A C P(X) ja olgu hulgafunktsioon p*: P(X) —
[0, 00] defineeritud seosega

W (E) :inf{z,u(Aj): Aed j=1,2,..., EC UAJ}’ E e P(X). (4.3)
=1 j=1

Siis
(a) hulgafunktsioon p* on vilismoot;
(b) A C M(u*) (s.t. koik algebra A hulgad on p*-méotuvad);
() pla=p (st u*(A) =pu(A) iga A €A korral).

Seosega (4.3) defineeritud vilismootu p* nimetatakse mooduga p assotsieeruvaks
vélismooduks.

TEOREEMI TOESTUS. Viide (a) jareldub vahetult lemmast

(b). Olgu A € 2. Viite toestuseks peame niitama, et A € M(u*), s.t. iga
E € P(X) korral

PHENA) +p (BN AT < i (E). (4.4)

Olgu E € P(X). Tingimuse (4.4 kehtivuseks piisab veenduda, et kui hulgad B; € 2,
j=12,..., sellised, et E C |J;Z, By, siis

P (ENA) +p (ENAY) <) u(B;).
j=1
Toepoolest, sel juhul

W (ENA) + p*(EnA°) ginf{Zu(Bj): Bjed, j=12,..., EC UB]} = u*(E).

j=1 j=1
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Olgu hulgad B; € A, j = 1,2,..., sellised, et E C |2, B;. Kuna AN By,
ANB; e, j=1,2,..., kusjuures ENA C U2, ANBjja ENA° C U2, A°N By,
siis

w(ENA) + p*(EnNA°) < Z (AN B)) +ZMACmB)

7j=1

Mg i

(1(AN B;) + u(A°N By))

= i ((ANB;)U(A°N By))

= Z ,U(BJ)

(c). Olgu A € 2. Viite toestuseks peame néitama, et u(A) = p*(A).
Veendumaks, et pu(A) > p*(A), tdhistame By = Aja B; =0, j =2,3,...; siis

=> B >inf{ZM(Aj)i Ajed, j=12..., AC UAj} = p*(A)
=1 =1 j=1

Teoreemi toestuseks jadb niidata, et pu(A) < p*(A). Selleks, fikseerides vabalt
hulgad 4; € A, j = 1,2,..., nil, et A C U=, 4;, piisab veenduda, et u(A4) <

S n(Ay): :

:HJ<AHGAJ> =M<DAQAJ'> <§:HJ(AQAJ')<§:M(A)

]

Niiiid me oleme voimelised esitama skeemi, kuidas jatkata algebral defineeritud
moot selle algebra poolt genereeritud o-algebrale.

Olgu pp moot algebral A € P(X) ning olgu ui: P(X) — [0, 00] modduga pg
assotsieeruv valismoot, s.t.

=1 j=1

Téhistame p1 = p1§|o ). Siis

(a) pu on moot (Carathéodory teoreemi pohjal on pf|aq(.;) mO0t; kuna teoreemi
pohjal A C M (), siis ka a(A) C M(ug) (sest M(pg) on Carathéodory
teoreemi pohjal o-algebra); seega on ka ji5|, ) moot);

(b) p on moddu po: A — [0, 00| jitk algebra A poolt genereeritud o-algebrale
o(2A) (sest teoreemi [4.3| pohjal iga A € A korral pu(A) = ui(A) = po(A)).
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Niisiis me oleme jitkanud moddu p algebralt 2 selle algebra poolt genereeritud
o-algebrale o(21).

Mootusid ] mz) @ 1oy nimetatakse moodu pig Camthe’odoryfﬂahnﬁ Jatku-
deks.

Ulalkirjeldatud skeemi (eel)mdddu i jitkamiseks algebralt 2 selle algebra poolt
genereeritud o-algebrale o(2() (ning ka pf-mootuvate hulkade o-algebrale M (1))
nimetame edaspidi Carathéodory—Hahni skeemiks.

Teoreem 4.4 (Hahni jatkamisteoreem). Olgu po maot algebral A C P(X). Tdhis-
tame p1 = pglo(). Siis

(a) w on moodu g jatk algebra A poolt genereeritud o-algebrale o(A);

(b) kui moot v: o(2A) — [0,00] on méodu g mingi jitk, siis iga A € o(21) korral
v(A) < p(A); seejuures, kui p(A) < oo, siis v(A) = u(A);

(¢) kui moot po on o-loplik, siis p on moodu py ainus jitk o-algebrale o(2A).

TOEsTUS. Viide (a) on toestatud teoreemile eelnevas arutelus.
(b). Olgu v: o(A) — [0, 00] méodu g mingi jatk.

Koigepealt nditame, et iga A € o(2() korral v(A) < p(A).
Olgu A € o(2). Kui hulgad A4; € 2, j = 1,2,..., on sellised, et A C U2, 4,

siis V (G Aj) i ) iﬂo

Jj=1

jérelikult ka

A)éinf{z,uo(Aj): Ajed, =1,2,.. ACUA }—,uo = u(A).
j=1

Olgu niiiid A € o() selline, et p(A) < oco. Viite toestuseks jadb niidata, et
f1(A) < v(A). Selleks valime hulgad A; € 2, j = 1,2,..., selliselt, et A C |J7Z, A;
ja

Z,u Z,uo ) < pp(A)+1=p(A)+1< .
j=1 =
Uldisust kitsendamata voime eeldada, et hulgad Aj, j = 1,2,..., on paarikaupa

loikumatud.

Téepoolest, kui tidhistada A7 = A; ja A = Aj\Uf;ll A, j=2,3,...,slis A, €A, j=1,2,...,
ja Ajn A% =0, kui i # j; seejuures

AcJ4 =4 i megzw A)+1.
j=1 J=1 j=1

13Hans Hahn (1879-1934) — austria matemaatik.
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Téhistame C' = |J72, A;. Kuna

= Z,J(Aj) = Z v(4;) =v(C),

S1is
p(A) + p(C\ A) = p(C) = v(C) = v(A) +v(C\ A)
Kuna eelnevalt toestatu pohjal u(C\A) > v(C\A), siis jareldub siit, et u(A) < v(A).

(c). Olgu moot po o-1oplik ning olgu v: o(A) — [0, 00] méodu pp mingi jatk.
Teoreemi toestuseks peame néitama, et v = p, s.t. v(A) = u(A) iga A € o() korral.

Olgu A € o(2A). Moodu py o-1oplikkuse tottu leiduvad hulgad A; € A, j =
1,2,..., selliselt, et puo(A4;) <oo,j=1,2,...,jaX = U;; A;. Uldisust kitsenda-
mata voime eeldada, et A; N A; =0, kui ¢ # j (s.t. hulgad 4; € A, j=1,2,..., on
paarikaupa 16ikumatud). Seega

V(A)zl/(AﬂX)zl/(AﬂGAj) :V<GAQAJ'> :iy(AﬁAj)

:i (AN A;) (UAQA)=M<AHGAJ->:M(AHX)=M(A),

sest iga j € N korral (AN A;) < p(A4;) = po(A;) < oo ning jérelikult véite (b)
pohjal (AN A;j) = (AﬂA)jzl,Q,.... O

Lause 4.5. Olgu (X, 2L, po) eelmooduga ruum ning olgu p1y = pgley ja pa = pglm)
(s.t. moodud py: o(A) — [0,00] ja pe: M(uy) — [0,00] on (eel)moodu wo Cara-
théodory—Hahni jatkud). Siis py = pi = us.

Olgu (X, 2, 1p) eelmddduga ruum. Carathéodory teoreemist ja teoreemist
teame, et (X, M(1g), 11| m(uz)) on modduga ruum, kusjuures p] v on (eel)moodu
1o jatk. Lausest jareldub, et Carathéodory-Hahni skeem ei voimalda mootu
1ol muz) (ning seega ka (eel)modtu ig) o-algebrast M (pg) enam “kaugemale” jétkata.

Lause ning ka jirgneva teoreemi toestusel on abiks, kui eelnevalt lahen-
dada

Ulesanne 4.4. Olgu (X, 2, ) méoduga ruum. Toestada, et
(a) iga E € P(X) korral
p*(E) =inf{u(A): AcA ADE}
= min{,u(A): AeA, AD E};
(b) hulk N € P(X) on p-hiiljatav parajasti siis, kui p*(N) = 0.

LLAUSE TOESTUS.
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Ulesanne 4.5. Téestada lause

NAPUNAIDE. Olgu E € P(X). Lause toestuseks piisab ndidata, et uy(E) = pi(E) > pus(E) >
pg(E). Siin esimese kahe vorratuse toestuseks kasutada vilismodtude uf, pf ja ps definitsioone
ning asjaolu, et po = pgla, 1 = polo() ja pr2 = pglm(us)- Vorratuse ps(E) > pg(E) toestuseks
kasutada tilesannet (a).

O

Olgu 19 mdot algebral 2 C P(X). Carathéodory teoreemist ja teoreemist [4.3) jé-
reldub, et moot pg on jatkatav mitte ainult algebra 2 poolt genereeritud o-algebrale
o(20), vaid ka pj-modtuvate hulkade o-algebrale M(pg), mis sisaldab c-algebrat
o(2A). Tekib loomulik kiisimus: milline on o-algebrate o(21) ja M(u) vahekord? Me
teame, et alati o(A) C M(pg), kuid kas on voimalik ka nende o-algebrate vordsus?
Osalise vastuse sellele kiisimusele annab jargnev teoreem.

Teoreem 4.6. Olgu p o-loplik maot o-algebral A C P(X). Siis mooduga ruum
(X, M(p*), 1| pm(ury) on mooduga ruumi (X, 2, ) tdield.

Teoreemist jareldub muuhulgas, et kui o-16plik modduga ruum (X, 2, ¢) on
taielik, siis M (p*) = A ning seega ei voimalda Carathéodory—Hahni skeem maotu p
o-algebralt 2 enam “kaugemale” jiatkata.

TEOREEMI [4.6] TOESTUS.

*Ulesanne 4.6. Toestada teoreem

NAPUNAIDE. Mugav on kasutada iilesannet

]

Jareldus 4.7. Olgu (X,2, o) o-loplik eelmdéoduga ruum. Siis mooduga ruum
(X, M), 15| muzy) on mooduga ruumi (X, o (), pglo@y) tdield.

TOESTUS. Olgu p: o(A) — [0, 00| eelmb6du 1y Carathéodory—Hahni jatk. Kuna pug
on o-loplik, siis ka p on o-16plik, seega teoreemi pohjal on (X, M(u*), | m(ur))
mooduga ruumi (X, o(A), p) taield. Kuna p = pig]qey ning lause [4.5] pohjal p* =y,
sits (X, M(115), 15| muz)) on ruumi (X, o(RA), p5lo) téield. O
Ulesanne 4.7. Olgu X # () mingi hulk, olgu \: P(X) — [0,00] vilismoot ning olgu kogum
&€ C P(X) selline, et iga E € P(X) korral

\E) —inf{ZA(En: Ejeé j=12... |JE DE}
j=1 Jj=1

Toestada, et hulk A C X on A-md&otuv parajasti siis, kui iga E € & korral
MENA)+AMENA) =AE).

Ulesanne 4.8. Olgu 2 C P(X) algebra ning olgu p 16plik méot o-algebral o(2). Toestada, et kui
E € o(), siis iga reaalarvu € > 0 korral leidub hulk A € 2 nii, et u(AAFE) < ¢.
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5.1. Boreli moodud ruumis R. Lebesgue—Stieltjes moodud

Definitsioon 5.1. Boreli mootudeks topoloogilises ruumis X nimetatakse mootusid,
mille madramispiirkonnaks on selle ruumi Boreli o-algebra By.

Tahistame (nagu ka paragrahvides 2 ja 3)
H = {@, [a,b), [c,00), (—o0,d), (—00,00) : a,b,c,d €R, a< b} C P(R)

ning
B:{UAj: neN, A,.... A, € H, AiﬂAj:@,i#j} C P(R),
j=1

s.t. B on kogumi H paarikaupa loikumatute hulkade loplike iihendite kogum. Néi-
tes 2.2) toestasime, et BB on algebra.

Olgu F': R — R mittekahanev vasakult pidev funktsioon. Téhistame

F(oo) = lim F(z) ja F(—o0)= lim F(x)

T—00 T—r—00

(mérgime, et funktsiooni F' monotoonsuse tottu need piirvédrtused eksisteerivad).
Defineerime hulgafunktsiooni u%: H — [0, oo seostega

pp(0) =0,
,uOF([a, b)) = F(b) — F(a), a,beR, a<b,
u%([c, oo)) = F(x0) — F(c), cé€eR,
,uOF((—oo, d)) = F(d) — F(—x), deR,
pp((—00,00)) = F(00) — F(~00)

ning jatkame selle hulgafunktsiooni algebrale B, defineerides A € B korral
HE(A) = up(4y),
j=1

kus paarikaupa loikumatud hulgad Ay,..., A, € H (n € N) on sellised, et A =
U?=1 AJ"

Naites veendusime, et 4% on moot (selles niites kirjutasime lihtsuse mottes
1Y% asemel pip).

Ulesanne 5.1. Téestada, et moot 1Y% on o-16plik.

14Thomas Jan Stieltjes (1856-1894) — hollandi matemaatik (viimased kiimme aastat oma elust
tegutses Prantsusmaal).
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Kuna moot 4% on o-16plik, siis Hahni teoreemi pohjal on tema Carathéodory-Hahni
jatk pp = u%*]a(g) tema ainus jitk o-algebrale o(B) = Bg. Mootu pup: Bg — [0, 0]
nimetatame edaspidi funktsioonile F' vastavaks Boreli méoduks ruumis R.

Téapse iilevaate mittekahanevate vasakult pidevate funktsioonide F': R — R ja
ruumi R Boreli mootude vahekorrast annab

Teoreem 5.1. (a) Olgu F: R — R mittekahanev vasakult pidev funktsioon. Siis
leidub paragasti iks maot p: Bg — [0, 00] selliselt, et mis tahes a,b € R, a < b,
korral

u([a.)) = F(b) ~ F(a).

Seejuures p = pp. Kui G: R — R on mingi selline mittekahanev vasakult
pidev funktsioon, et ug = ur, sis leidub konstant C' € R nui, et

G(z)=F(z)+C, zeR,

(b) Olgu maoot u: Bg — [0,00] selline, et iga tokestatud hulga A € Br korral
p(A) < oco. Siis on funktsioon

,u([(),:v)), kui x > 0;
F(z) =140, kui x = 0;
—u([z,0)), kut x <0,

mattekahanev ja vasakult pidev, kusjuures = pp.

TOESTUS.

Ulesanne 5.2. Toestada teoreem
O

Carathéodory teoreemi kohaselt on u%*IM(M%*) (s.t. m6oduga ,LLOF assotsieeruva
vilismoodu %" ahend ruumi R 19 -médtuvate hulkade o-algebrale M (u%.")) tiie-
lik moot, s.t. (R, M(u%"), MOF*|M(M%*)) on téielik mooduga ruum.

Téahistame

Mp=Mp3") Ja e =ug T = 1% v
o-algebrat M nimetatakse (funktsioonile F' vastavaks) Lebesgque-Stieltjesi o-algeb-
raks ning selle o-algebra hulki (funktsioonile F' vastavateks) Lebesgue—Stieltjesi hul-
kadeks. Mootu Jip nimetatakse (funktsioonile F' vastavaks) Lebesgue—Stieltjesi moo-
duks.

Kuna moot p% on o-16plik, siis jéireldusep()hjal on moo6duga ruum (R, Mg, 7ip)
modduga ruumi (R, B, up) téield.

Saab niidata, et ruum (R, B, 1) pole kunagi téielik; niisiis alati By & Mp (vt,
mérkust .

Kuna moot iz, on Boreli moodu pp jatk ning seejuures ainus jatk o-algebrale Mg,
siis kirjutame edaspidises lihtsuse mottes i asemel sageli ka pp.
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Kui F(z) = z, z € R, siis tdhistatakse Lebesgue-Stieltjesi mootu iy (ning
ka Boreli mootu pp = Jig|p,) siimboliga m ning o-algebrat Mg siimboliga L. o-
algebrat £ nimetatakse (ruumi R) Lebesgue’i o-algebraks ning selle o-algebra hulki
(ruumi R) Lebesgue’s hulkadeks. Mootu m nimetatakse Lebesgue’i mooduks (ruu-
mis R).

Mirkus 5.1. Teoreemist (a), jareldub, et Lebesgue’i méot m on ainus ruumi R
Boreli o-algebral méiratud moot, mis rahuldab mis tahes a,b € R, a < b, korral
tingimust m([a,b)) = b — a. Lebesgue’i moot on ka ainus Lebesgue’i o-algebral
médratud moot, mis seda tingimust rahuldab (sest Lebesgue’i o-algebra on Boreli
o-algebra tdield mé6du m suhtes).

Ulesanne 5.3. Olgu a,b,c,d € R, a < b. Toestada, et

(a) {a} € B, kusjuures m({a}) = 0 (s.t. iihepunktiline hulk ruumis R on Boreli méttes mootuv,
kusjuures tema Lebesgue’i moot on null);

(b) m([a,b)) =m((a,b)) =m((a,b]) =m([a,b]) =b—a;
(¢) m([c,00)) =m((c,0)) = m((—o00,d)) = m((—o0,d]) = m((—o0, —00)) = o0;
(d) kui hulk A € P(R) on iilimalt loenduv, siis A € Bg, kusjuures m(A) = 0.

Vahetult Lebesgue-Stieltjesi moodu definitsioonist jareldub, et iga £ € P(R)
korral

1o (E) :inf{z,uOF(Bj): B;eB, j=12,..., UBj D E}
j=1

:inf{z,qu(Ak): AreH, k=1,2,..., UAk DE}

k=1 k=1

= mf{ZM%([ame)) CLj,bj € R, a; < bj, j = 172,..., U[aj,bj) > E}
j=1

J=1

= 1nf{z,up([aj,b])) CLj,bj S R, a; < bja J - 1,2,..., U[aj,bj) D E} .
j=1

J=1

Lause 5.2. Olgu F: R — R mittekahanev vasakult pidev funktsioon. Siis iga E €
P(R) korral

MOF*(E) = inf {Z,up((aj?bj)): aj,bj eR, a; < bj, j=12 ... U(a’jvbj) D) E} = VF(E)
=1

Jj=1

Muuhulgas, iga E € Mg korral

,uF(E) = inf {ZHF((ajybj)): aj,bj € R, a; < bj, ] = ]_,2,. cey U(aj,bj) D E} .
j=1 j=1
(5.1)
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TOESTUS. Olgu E € P(X). Lause toestuseks piisab niidata, et u%"(E) = vp(E).
Kui tokestatud vahemikud (a;,b;), 7 =1,2,..., on sellised, et‘U;?il(aj, bj) D E,

siis valides iga j € N korral paarikaupa ldikumatud poolloigud [a}, 05), i = 1,2, ...,

nii, et (a;,b;) = Uy, [a}, b5) (sellised poolldigud ilmselt leiduvad), kehtib sisalduvus

U2, U2, [a}, b5) O F, seega teoreemile eelneva vordusteahela pohjal

E) < ZMF a],b; :ZZ“F a],b; - ZMF((&j’bj))
ji=1 j=1 i=1 Jj=1

jarelikult p%"(F) < vp(E).

Lause toestuseks jiiib niidata, et vp(E) < pl'(E), milleks, fikseerides vabalt
e > 0, piisab niiidata, et vp(E) < pu%"(E) + 2¢. Teoreemile eelneva vordusteahela
pohjal leiduvad poolldigud [a;,b;), j = 1,2,..., nii, et

Ua], )DE ja Z,up (la;,0;)) < p% " (E) +=.

Funktsiooni I vasakult pidevuse tottu leidub iga j € N korral ¢; < a; nii, et

F(cj) > F(a;) — %.

Niitid U;Z, (¢j, b5) D U;2,[as,b5) O E ning jérelikult

Z,UF ¢j, by ZNF Cj» b Z ))
7=1
<Z<F(bj)— > Z,up aj,b; —|—Z2€j\uF ) + 2¢.
j=1

Erijuhul F(z) = z, € R, saame lausest [5.2] et iga E € P(X) korral

/JJ(}];*<E) = inf {Z(bj — CLJ')Z aj,bj S R, Q. < bj, ] = 1,2, ceey U(aj7bj> D) E}
j=1 j=1
(5.2)
ning, muuhulgas, iga £ € £ korral (siimbolid £ ja m tdhistavad vastavalt ruumi R
Lebesgue’i o-algebrat ja Lebesgue’i méotu ruumis R)

m(E) = inf{Z(bj —aj): aj,bj €R, a; <bj,j=1,2,..., U(a’j’bj) D E}

J=1 J=1

(5.3)
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5.2. Lebesgue—Stieltjesi mootude regulaarsus

Meenutame (vt. § 3.3), et kui X on topoloogiline ruum ning 2 C P(X) on algebra,
siis deldakse, et moot p: A — [0, 00] on regulaarne, kui iga hulga E € 2 korral

w(E) ginf{u(D): hulga D € A sisemus D° D E}

2)

® sup{,u(C’): hulga C' € 2 sulund C on kompaktne ja C' C E}

Kui kehtib vordus (1), siis 6eldakse et p on hulgal E vdljast requlaarne. Kui kehtib vordus (2),
siis 6eldakse et p on hulgal E seest requlaarne. Kui p on igal hulgal E' € 2 véljast regulaarne, siis
Oeldakse, et i on véljast regulaarne. Kui p on igal hulgal E € 2 seest regulaarne, siis deldakse, et
1 on seest regulaarne.

Mirkus 5.2. Kompaktne hulk K Hausdorffi topoloogilises ruumis on kinnine; niisiis K = K
on Boreli hulk. Siit jareldub, et kui X on Hausdorffi topoloogiline ruum ning algebra 2 C P(X)
sisaldab koiki ruumi X Boreli hulki, (s.t. % D Bx), siis moo6t p: 24 — [0, 0c] on regulaarne parajasti
siis, kui suvalise FF € 2 korral

W(E) = inf{,u(U): hulk U € X on lahtine ja U > E}
= sup{,u(K): hulk K C X on kompaktne ja K C E}
Margime, et iga meetriline ruum on Hausdorffi topoloogiline ruum.

Teoreem 5.3. Olgu F': R — R mittekahanev vasakult pidev funktsioon. Lebesgue—
Stieltjest moot pr on regulaarne.

Teoreem [5.3] jareldub vahetult jargnevast teoreemist.

Teoreem 5.4. Olgu X Hausdorffi topoloogiline ruum ning olgu A C P(X) algebra.
Kui o-loplik moot pg: A — [0, 00] on regulaarne, siis ka tema Carathéodory—Hahni
jatk p: M(ug) — [0, 00] on regulaarne.

Markus 5.3. Kirjeldame alternatiivseid mooduseid mootude pp regulaarsuse toestuseks.

(I) Mo6du pp valjast regulaarsus jareldub lausest (tdpsemalt, valemist (5.1)); pp regulaar-
sus jdreldub iilesandest

Ulesanne 5.4. Jireldada lausest [5.2| (tapsemalt, valemist (5.1)), et méot pp on viljast regulaarne.
Jareldamaks iilesandest moodu pp regulaarsust, veenduda, et

(a) meetriline ruum R on o-kompaktne;
(b) mo6ot pg on 1oplik ruumi R kompaktsetel hulkadel.

(IT) Kéesoleva Opiku teoreemis V.2.4 toestame, et kui lokaalselt kompaktse Hausdorffi ruumi X
iga lahtine hulk on o-kompaktne (s.t. esitub kompaktsete hulkade loenduva iihendina), siis iga
Boreli m66t ruumis X, mis on 16plik kompaktsetel hulkadel, on regulaarne. (Topoloogilist ruumi
nimetatakse lokaalselt kompaktseks, kui tema igal punktil leidub kompaktne iimbrus.) Teoreemist
V.2.4 jareldub ahendi pp|p. regulaarsus. Moodu pup regulaarsus jareldub niitid {ilesandest
(sest up on pr|p, taield).

Ulesanne 5.5. Veenduda, et
(a) meetriline ruum R on lokaalselt kompaktne;
(b) iga lahtine hulk ruumis R on o-kompaktne.

NAPUNAIDE. Viite (b) tdestuseks kasutada teoreemi [2.2] voi jireldust
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TEOREEMI [£.4] TOESTUS. Olgu o-1oplik moot pg: A — [0, 00] regulaarne. Veen-
dumaks, et moddu po Carathéodory-Hahni jatk u: M(us) — [0,00] on regulaar-
ne, peame niditama, et p on nii seest kui ka viljast regulaarne. Fikseerime vabalt
E e M(ug)-

(a) Veendumaks, et p on véljast regulaarne, peame néitama, et iga ¢ > 0 korral
leidub hulk D € M(uf) nii, et

D°DFE ja wuD)<puE)+e.

Fikseerime vabalt reaalarvu ¢ > 0. Carathéodory-Hahni jatku definitsiooni pohjal
leiduvad hulgad A; € /A, j =1,2,..., selliselt, et
o0 o0 e

UADE ja D (4 <u(B)+ 5

j=1 j=1

Moodu p regulaarsuse tottu leiduvad hulgad D; € A, j =1,2,.. ., selliselt, et

D; D A; ja po(Dj) < po(Aj) + iga j € N korral.

€
2i+1

Téhistame D := (J72, D; € M(y), siis D° D |2, D O U2, Aj O E ning

p(D) < 3 D) = D mo(Dy) < 3 (pol4) + 577)

i=1 j=1

<
Il

I
K

= ¢ £
H’O(A]')—{_Z% gM(E)+§+§ = pu(E) +e.
j=1

=1

<
Il

(b) Veendumaks, et moot p on seest regulaarne, peame néitama, et leiduvad
hulgad C; € M(uf), 7 =1,2,..., selliselt, et

iga j € N korral on sulund C; kompaktne ja C; C E ning u(C;) — p(E). (5.4)
j—00

Selleks piisab naidata, et
(o) kui A € A, kusjuures u(A) < oo, siis iga € > 0 korral leidub hulk C € M(p)

nit, et

sulund C on kompaktne ja C C ENA ning u(C) > pu(ENA) —¢.

Toepoolest, moodu fip o-loplikkuse tottu leiduvad hulgad A; € /A, 7 =1,2,..., nii,
et

p(A;) < oo iga j € N korral, Al C Ay C -+ ja X = UAJ"
j=1
Kui kehtib viide (e), siis saame iga j € N korral leida hulga C; € M) nii, et
S — 1
sulund C; on kompaktne ja C; C ENA; ning p(C;) > p(ENA;) — -,
J

Aga niiiid kehtivad tingimused ((5.4).
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Téepoolest, kontrollimist vajab vaid, et p(C;) —— w(E), aga see jéreldub koonduvusest
j—oo
p(ENA;j) —— p(E). Viimase koonduvuse pohjenduseks mirgime, et E' = (J;2, ENA;, kusjuures
j—oo
ENA i CENAy C---.

Toestame niitid viite (o). Olgu hulk A € A selline, et py(A) < oo, ning olgu
e > 0. Moodu g seest regulaarsuse tottu leidub hulk K € 2 selliselt, et

sulund K on kompaktne ja K C A ning u(K) > u(A) — %.

Toestuse osa (a) pohjal teame, et u on viljast regulaarne, jarelikult leidub hulk D €
M) selliselt, et

D°>A\E ja M(D)gu(A\E)Jrg

Téahistame C = K \ Dj siis C C K\ D° ja seega C c F\D_O, jarelikult C
on kompaktne (sest C' on kompaktse hulga K kinnine alamhulk), C' C K \ D° C
A\ (A\ E) = EN A ning

1(C) = W(K) — pu(D)
()= 5 = (AN E)+5) =) - n(A\ B - 5 - 5

Do ™

_8,

(ENA

~—

nagu soovitud. O]

Teoreem 5.5. Olgu F': R — R mittekahanev vasakult pidev funktsioon ning olgu
E e Mp. Sis iga € > 0 korral leiduvad lahtine hulk U D E ja kinnine hulk H C E
selliselt, et up(U\ H) < e.

TOESTUS.

Ulesanne 5.6. Téestada teoreem [5.51

NAPUNAIDE. Kasutades moodu pup o-1oplikkust ning regulaarsust, konstrueerida koigepealt lahtine
hulk U D E selliselt, et up(U \ E) < 5. Analoogiliselt saab leida lahtise hulga V' O E° selliselt, et
pr(V\ E¢) < 5. Votta H = V°,

]

Jargnev lihtne jareldus teoreemist kirjeldab Lebesgue-Stieltjesi o-algebra
Mg hulki.

Meenutame, et kui X on topoloogiline ruum, siis éeldakse, et

e hulk D € P(X) on G, kui ta on esitatav ruumi X lahtiste alamhulkade
loenduva iihisosana;

e hulk C € P(X) on F,, kui ta on esitatav ruumi X kinniste alamhulkade
loenduva iihendina.
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Teoreem 5.6. Olgu F': R — R mittekahanev vasakult pidev funktsioon. Jirgmised
vdited on samavddrsed:

(i) E e Mg;
(ii) =G\ Ny, kus G € Mg on Gs ja Ny € Mg on selline, et pp(Ny) = 0;
(ili) ¥ = HU Ny, kus H € Mg on F, ja Ny € Mg on selline, et pup(N2) = 0.

TOEsTUS. Implikatsioonide (ii)=-(i) ja (iii)=-(i) kehtivus on ilmne, sest Mg on o-
algebra ning seega kinnine hulgateoreetilise vahe ja iihendi votmise operatsioonide
suhtes.

(1)=(iii) ja (i)=-(ii). Olgu E € M. Teoreemil5.5|pohjal leiduvad iga j € N korral
lahtine hulk U; D E ja kinnine hulk H; C E nii, et up(U; \ H;) < % Tahistame

GZ:ﬂUj, N1::G\E, H::UHP NQ::E\H;
j=1

=1

siis G on Gs, E = G\ Ny, H on F,, E = H U Ns; seega jadb jirelduse toestuseks
néidata, et pup(Ni) = pp(N2) = 0.
Ulesanne 5.7. Téestada, et pp(Ny) = pur(N) = 0.

]

Teoreem 5.7. Olgu F: R — R mittekahanev vasakult pidev funktsioon ning olgu
hulk E € Mp selline, et up(E) < oco. Siis iga € > 0 korral leiduvad paarikaupa
loikumatud tokestatud vahemikud (a1,b1), ..., (an,by) (n € N) selliselt, et

HUr (EA U(a]’, b])) < €.

j=1

Meenutame, et hulkade A ja B simmeetriline vahe AAB on defineeritud seosega
AAB =(A\B)U(B\A)=(AUB)\ (AN B).

TEOREEMI [5.7] TOESTUS.
Ulesanne 5.8. Toestada teoreem @
NAPUNAIDE. Kasutada lauset [5.2] (tipsemalt, valemit (5.1))).

5.3. Lebesgue’i hulga nihke ja kordse Lebesgue’i moot.
Lebesgue’i mottes mittemootuva hulga olemasolu

Olgu E C Rjar € R. Meenutame, et hulga F nihe E+r ja kordne r E on defineeritud
vastavalt seostega

E+r={x+r:z€FE} ja rE={rx: z € E}.
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Ulesanne 5.9. Téestada, et m-hiiljatava hulga nihe ja kordne on m-hiiljatavad, s.t., kui F € N(m)
jar e R,siis ka E+r,rE € N(m).

NApPUNAIDE. Kasutada fakti, et (iilesande (b), ja teoreemi [£.5] pohjal) E € N(m) parajasti
siis, kui p%"(E) = 0, kus F(z) = z, « € R, ning vordust (5.2).
Teoreem 5.8. Olgu E € L jar € R. Sus

(a) E+r e L, kusjuures m(E + 1) =m(E);

(b) rE € L, kusjuures m(rE) = |r|m(E).

TOESTUS.
Ulesanne 5.10. Tdestada teoreem @

NAPUNAIDE. Sisalduvuste E + r € L ning rE € L tdestuseks kasutada asjaolu, et £ on Boreli
o-algebra By tiield Lebesgue’i mo6odu m suhtes, ning fakte, et ruumis R Boreli hulga nihe ja kordne
on Boreli hulgad ning m-hiiljatava hulga nihe ja kordne on m-hiiljatavad (vt. iilesandeid ning

5.9).
Vorduste m(E + 1) = m(E) ja m(rE) = |r| m(E) toestamisel kasutada vordust (5.3).

[]

Kuna Lebesgue’i moot m on teoreemi 5.8 pohjal nihke suhtes invariantne ning
m([O, 1)) = 1, siis jareldub teoreemist Lebesgue’i mottes mittemootuva hulga
olemasolu.

Jéreldus 5.9. Eksisteerib Lebesgue’i mottes mittemootuv hulk, s.t. LG P(R).

Ulesanne 5.11. Toestada, et kui hulk E € P(R) omab sisepunkte, s.t. E° # 0, siis hulk E sisaldab
mingi Lebesgue’i mottes mittemodtuva hulga.

NAPUNAIDE. Koigepealt niidata, et eksisteerib poolléik [a,d) (a,b € R, a < b), mis sisaldab mingi
Lebesgue’i mottes mittemdotuva hulga, ning seejarel rakendada teoreemi [5.8

Kehtib iilesande [5.11] viitest iildisem tulemus.

Lause 5.10. Olgu hulk A € L selline, et m(A) > 0. Siis hulk A sisaldab mingi
Lebesgue’s mottes mittemootuva hulga.

LAUSE [5.10] TOESTUSE SKEEM. Uldisust kitsendamata voimne eeldada, et mingi k € Z korral
A C [k, k+1) (pohjendadal) ning, et, veelgi enam, A C [0,1) (pohjendadal). Teoreemi toestuse
pohjal voib eeldada, et A C N, mingi ¢ € QN 0, 1) korral (pdhjendadal), ning et A on kompaktne
(sest Lebesgue’i moddu regulaarsuse tottu sisaldab A kompaktse hulga, mille Lebesgue’i mo6t on
> 0).

Lause toestuseks piisab niiiid ndidata, et

(o) leidub & > 0 nii, et (—8,8) C A — A,

sest sel juhul ka (—4,6) C N;— Ny, mis on véimatu (sest ainus hulgas N, — N, sisalduv ratsionaalarv
on null (pohjendadal)).
Viite (o) toestuseks paneme tihele, et tingimus (—d,0) C A — A on samaviirne tingimusega

2| <8 = (A+a)NA#0 (5.5)

(pOhjendadal). Niitid piisab vaite (o) toestuseks toestada jargnev lemma.
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Lemma 5.11. Olgu X meetriline ruum ning olgu kompaktne hulk A C X ja lahtine hulk
U C X sellised, et A C U. Siis leidub 6 > 0 nii, et

lz]<d = A+axcCU (5.6)

Toepoolest, oletame, et lemma on toestatud. Lebesgue’i moodu regulaarsuse tottu leidub lahtine
hulk U D A nii, et m(U) < 2m(A). Olgu ¢ > 0 selline, et kehtib (5.6). Oletame vastuvéiteliselt, et
véide (e) ei kehti. Siis ka (5.5)) ei kehti, seega mingi z € (=4, ) korral (A +z) N A = 0. Aga niiiid

2m(A) > m(U) = m(AU (A+z)) = m(A) + m(A+ z) = 2m(A),

vastuolu.

Ulesanne 5.12. Tdestada lemmam

5.4. Taiendavaid markusi

Markus 5.4. Meie defineerisime oma késitluses Lebesgue—Stieltjesi moodud lah-
tudes vasakult pidevatest mittekahanevatest funktsioonidest: kui F': R — R on
vasakult pidev mittekahanev funktsioon, siis me defineerisime (iitheselt médratud)
moodu pud poolalgebra

H = {@, [a,b), [c,00), (—00,d), (—00,00) : a,b,c,d €R, a< b} C P(R)

paarikaupa loikumatute hulkade 16plike iihendite algebral, mis rahuldab tingimust
1% ([a,b)) = F(b) — F(a), a,b € R, a < b; Lebesgue-Stieltjesi moddud defineerisime
kui selliste mootude p9 Carathéodory-Hahni jitkud (4% -mootuvate hulkade o-
algebrale).

Alternatiivne skeem Lebesgue-Stieltjesi mootude defineerimiseks lahtub pare-
malt pidevatest mittekahanevatest funktsioonidest: kui F': R — R on paremalt pi-
dev mittekahanev funktsioon, siis defineeritakse (iitheselt méidratud) moot v% poolal-
gebra

H = {(B, (a,b], (¢,00), (—00,d], (—00,0) : a,b,c,d € R, a< b} C P(R)

paarikaupa loikumatute hulkade 16plike iihendite algebral, mis rahuldab tingimust
V2 ((a,b]) = F(b) — F(a), a,b € R, a < b; Lebesgue-Stieltjesi moodud defineeri-
takse kui selliste mootude 1% Carathéodory—Hahni jétkud (v -mootuvate hulkade
o-algebrale).

Margime, et kumbki skeem annab tulemuseks iihe ja sama Lebesgue-Stieltjesi
mootude klassi.

Mairkus 5.5. Ajalooliselt defineeris Lebesgue vélismoodu m*: P(R) — [0, oo] seo-
sega
m*(E) = inf {Z(b] — CL]’)I aj,bj S ]R, Q. < bj, j = 1,2, ey U(aj,bj) D) E} s E e P(R),



§ 5. BORELI MOODUD RUUMIS R 53

(mérgime, et tahistus m* mingeid vastuolusid endaga kaasa ei too, sest lause ja
valemi pohjal langeb Lebesgue’i poolt defineeritud valismoot m* kokku Lebes-
gue’i mooduga m assotsieeruva vilismooduga m*) ja luges hulga A C R mootuvaks,
kui iga tokestatud vahemiku (a,b) C R korral

m* ((a, b) N A) +m* ((a, b)\ A) = m* ((a, b)) —b—a

Meie ldhtusime oma kasitluses Carathéodory poolt hiljem kasutusele voetud
moistest “antud vilisméodu suhtes modtuv hulk” kui X # 0 on mingi hulk ja
A: P(X) — [0,00] on vilismoot, siis hulk A € X on A-mootuv, kui iga £ C X
korral

AMENA)+ AENAS) = AE).

Lihtne on veenduda, et hulk A C R on Lebesgue’i definitsiooni jargi méotuv para-
jasti siis, kui ta on meie késitluse jargi Lebesgue’i mottes mootuv, s.t. A € L, s.t. A
on m*-modtuy (vordus m* = ul”, kus F(z) = 2, v € R, jireldub lausest : kuna
m*((a, b)) = b — a, siis jareldub nende kahe mootuvuse definitsiooni samavaérsus
iilesandest (1.7

Ulesanne Olgu X # () mingi hulk, olgu A: P(X) — [0,00] viillismdot ning olgu kogum
&€ C P(X) selline, et iga E € P(X) korral

i=1 =t

Toestada, et hulk A C X on A-modtuv parajasti siis, kui iga E € & korral
MENA)+AENA) =XE).

Mirkus 5.6. Ulesandes veendusime, et ruumi R iga loenduva alamhulga Lebes-
gue’i moot on null. Tekib loomulik kiisimus: kas leidub ruumi R alamhulki, mille
Lebesgue’i moot on null ning mille voimsus iiletab loenduva hulga voimsuse? Vastus
sellele kiisimusele on jaatav, nidide sellisest hulgast on Cantorff] hulk.

Naiide 5.1. Tahistame

Cl - [O, 1],
Cy = 1[0,3]U[3,1],

jne. (Piltlikult vdljendudes: kui on antud hulk C; (5 € N), siis jagame koik sel-
le hulga l6igud kolmeks pikkuselt vordseks osaks; hulk (', saadakse hulga Cj
igast 16igust keskmise vahemiku véljajiatmise tagajérjel.) Téhistame C' := ﬂ;’il Cj.
Hulka C' nimetatakse Cantor:i hulgaks. Saab ndidata, et

15Georg Ferdinand Ludwig Philipp Cantor (1845-1918) — saksa matemaatik (siindis Venemaal
Peterburis, kus elas kuni 11. eluaastani).



54 I. Mooduga ruumid

e card(C) = ¢ (s.t. hulga C voimsus on kontiinuumi voimsus);

e m(C) =0 (s.t. Cantori hulga Lebesgue’i moot on null).

Mairkus 5.7. Saab néidata, et iga vasakult pideva mittekahaneva funktsiooni F': R —
R korral Br ; M. Esitame selle viite toestuse skeemi.

Lahtuvalt vasakult pidevast mittekahanevast funktsioonist F': R — R konst-
rueeritakse hulk Cr C R nii, et

e card(Cr) = ¢ (s.t. hulga Cr voimsus on kontiinuumi voimsus);

e p(Cr) =0,

(Hulk Cr on Cantori hulga modifikatsioon, tema konstrueerimisel lihtutakse samu-
ti teatavast loigust, mida siis hakatakse teatava eeskirja jérgi kolmeks jagama ja
“keskmisi kolmandikke vélja viskama”.) Kuna pp on téielik moot, siis funktsioonile
F vastav Lebesgue—Stieltjesi o-algebra M sisaldab koik hulga C'r alamhulgad, s.t.
P(Cr) C Mp. Seega card(Mp) = card(P(R)), sest

card(P(R)) = card(P(Cp)) < card(Mp) < card(P(R)).
Teiselt poolt, saab niidata, et card(Bg) = c. Niisiis,
card(Bg) = ¢ = card(R) < card(P(R)) = card(Mp),
jarelikult Mg\ Br # 0.

Mairkus 5.8. Ruumi R alamhulk v6ib olla “topoloogiliselt suur”, kuid “moéoduteoree-
tiliselt viike”, samuti ka vastupidi — “topoloogiliselt viike”, kuid “mooduteoreetiliselt
suur”. Seda asjaolu illustreerib jargnev niide.

Niide 5.2. Iga reaalarvu ¢ > 0 korral leidub lahtine hulk E C [0, 1], mis on selles
loigus koikjal tihe ja m(E) < e. Sellisel juhul hulk F' = [0,1] \ E on eikusagil tihe
(s.t. tal ei ole sisepunkte) ning m(F) > 1 —e.

Toepoolest, olgu € > 0. Tahistame Ey = QN (0, 1); siis £y on loenduv hulk ning
seega me voime ta esitada kujul Ey = {e;: j € N}. Tdhistame iga j € N korral
Ej = (ej — 571, €5 + 571) N (0,1) ning E'= (J;Z, E;. Siis hulk £ C [0,1] on lahtine
ruumis R, ta on koikjal tihe 16igus [0, 1] ja

— £ € =~ ¢
m(E)<Zm((ej—2j+1,ej+2j+l)): 5 =c
j=1 1

J]=

Ulesanne 5.13. Toestada, et hulk F = [0,1]\ F on eikusagil tihe (s.t. tal ei ole sisepunkte) ning
m(F)>1—e.

Mirkus 5.9. Lebesgue’i mottes mittemootuva hulga olemasolu (jérelduse[5.9) toes-
tus tugineb valikuaksioomile (vt. teoreemi |1.1] toestust). R. M. Solovay toestas aas-
tal 1970, et (populaarselt viljendudes) ilma valikuaksioomi kasutamata pole Lebes-
gue’i mottes mittemootuva hulga olemasolu voimalik toestada (selle viite tdpne mate-
maatiline formuleering nouaks siivenemist aksiomaatilise hulgateooria tehnilistesse
nilanssidesse; seepérast me jitame ta siinkohal dra toomata).
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Mairkus 5.10. Lebesgue’i mootu saab jitkata nihke suhtes invariantseks mooduks
teatavale ruumi R alamhulkade o-algebrale A 2 L. (Teoreemist jareldub siiski,
et see o-algebra A & P(R).)

Markus 5.11. Lebesgue’i mootu saab jatkata ruumi R koigi alamhulkade kogumil
méaidratud nihke suhtes invariantseks aditiivseks hulgafunktsiooniks. Teisisonu, lei-
dub nihke suhtes invariantne aditiivne hulgafunktsioon p: P(R) — [0, o0] nii, et

pile = m.
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II peatiikk.
Lebesgue’l integraal

Kaoikjal selles ja jargnevates peatiikkides EELDAME VAIKIMISI, ET MOOTUVA RUUMI
(erijuhul m66duga ruumi) ALUSEKS OLEV HULK ON MITTETUHI. Selline kokkulepe
voimaldab meil jitta vaatluse alt vélja tiihja funktsiooni (mille méaramispiirkond
on tithi hulk ning mis on {ihtlasi ainus tiihjal hulgal méératud funktsioon), aidates
seega oluliselt siddsta meie koigi vaimset tervist.

§ 1. Mootuvad funktsioonid

1.1. Mootuva funktsiooni moiste. Lihtsamad
mootuvuskriteeriumid

Definitsioon 1.1. Olgu (X, ) ja (Y,B) mootuvad ruumid.
Oeldakse, et funktsioon f: X — Y on (2, B)-maéotuv, kui

f'[B] €A iga hulga B € B korral.

(Meenutame, et f~![B] = {z € X: f(z) € B}.)

Kui o-algebrate 2 ja B roll on kontekstist selge, siis nimetatakse (2, B)-mootu-
vaid funktsioone ka lihtsalt maootuvateks funktsioonideks.
Ulesanne 1.1. Olgu (X,2), (Y,B) ja (Z,¢) mootuvad ruumid. Téestada, et kui funktsioon

f: X = Y on (2,%)-mo66tuv ning funktsioon g: ¥ — Z on (B, €)-modtuv, siis funktsioonide
f ja g kompositsioon gf: X — Z on (U, €)-modtuv.

Kontrollimaks, kas etteantud funktsioon f: X — Y on mootuv, tuleb defini-
tsiooni kohaselt testida, kas iga hulga B € B originaal funktsiooni f suhtes kuulub
o-algebrasse 2. Jargmine teoreem néitab, et sellisel testimisel voib piirduda ka vaik-
sema kogumiga kui ‘B.

Teoreem 1.1. Olgu (X, ) ja (Y,B) mootuvad ruumid ning olgu kogum & C P(Y)
selline, et o(€) = B (s.t. o-algebra B on genereeritud kogumi E poolt). Jirgmised
vaited on samavadrsed:

(i) funktsioon f: X =Y on (A, B)-moctuv;
(ii) f~'[B] € 2 iga B € & korral.

o7
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TOESTUS. (i)=(ii) on ilmne, sest £ C (&) = B.
(ii)=-(i). Kehtigu tingimus (ii). Tdhistame

D={BeB: ['[Bl e}

Teoreemi toestuseks piisab veenduda, et B C D. Selleks paneme koigepealt tédhele,
et D on c-algebra (vt. tilesannet [[2.11] [B], (a)). Aga niiiid B = o(£) C 0(D) =D
(sest tingimuse (ii) pohjal € C D). O

Definitsioon 1.2. Olgu X ja Y topoloogilised ruumid.
Oeldakse, et funktsioon f: X — Y on Boreli madttes mootuv, kui ta on (Bx, By )-
mootuv. (Meenutame, et siimbol By téhistab ruumi X Boreli o-algebrat.)

Teoreemist jareldub

Teoreem 1.2. Olgu X ja Y topoloogilised ruumid. Iga pidev funktsioon f: X —Y
on Boreli mottes mootuv.

TOEsTUS. Olgu funktsioon f: X — Y pidev. Téhistame
7x = {A C X: A on lahtine hulk} ja 7v ={B CY: B on lahtine hulk}.

Kuna funktsioon on pidev parajasti siis, kui koigi lahtiste hulkade originaalid tema
suhtes on lahtised, siis

f'[B] € Tx C Bx iga B € 7y korral.

Et aga Boreli g-algebra definitsiooni kohaselt By = o(1y) (s.t. ruumi Y Boreli o-
algebra on genereeritud ruumi Y koigi lahtiste alamhulkade kogumi 7y poolt), siis
jareldub siit teoreemi pohjal, et funktsioon f on Boreli mottes mootuv. O

Definitsioon 1.3. Oeldakse, et funktsioon f: R — R on Boreli mottes méotuv, kui
ta on (Bg, Bg)-mootuv.

Oeldakse, et funktsioon f: R — R on Lebesgue’i méttes mootuv, kui ta on
(L, Bg)-mootuv. (Meenutame, et siimbol £ tahistab ruumi R Lebesgue’i o-algebrat.)

Ulesanne 1.2. Téestada, et kui funktsioon f: R — R on Boreli méttes mé6tuv, siis on ta ka
Lebesgue’i mottes mootuv.

Kui (X,2() on mé6tuv ruum ja Y on topoloogiline ruum, siis 6eldakse, et funk-
tsioon f: X — Y on Boreli méttes A-mootuv, kui ta on (A, By )-mootuv.

Kui o-algebra 2l roll on kontekstist selge, siis nimetatakse Boreli mottes 21-mootu-
vaid funktsioone ka lihtsalt Boreli mottes mootuvateks funktsioonideks voi mootu-
vateks funktsioonideks.

Jareldus 1.3. Olgu (X, 2d) mootuv ruum ning olgu f: X — R. Jargmised vdited on
samavddarsed:

(i) funktsioon f on madotuv;
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(i) {zr € X: f(zx) <a} €A igaa R korral;
(ili) {xr € X: f(x) <a} €A idga a € R korral;
(iv) {zr e X: f(z) >a} €A igaa <R korral;
(v) {x € X: f(z) > a} €U igaaecR korral.

TOESTUS. Paneme koigepealt tiahele, et mis tahes a € R korral

{zeX: fz) <a} = f"[(—00,a)],
{reX: f(z)<a}=f[(~o0a],
{zeX: flx)>a}=f"[(a,00)],
{zeX: flx)>a}=f"[a,0)]

Igaiiks kogumitest
{(-00,a): a€R}, {(-o0,a]: a€R}, {(a,00): a € R}, {[a,00): a € R}

genereerib ruumi R Boreli o-algebra (vt. teoreemi I12.4). Seega jéreldub viidete
(i)—(v) samavéérsus vahetult teoreemist O

1.2. Laiendatud reaalarvuliste vaartustega funktsioonid

Edasises hakkame vaatlema laiendatud reaalarvuliste viirtustega — R-viirtustega
— funktsioone, s.t. funktsioone, mis lisaks reaalarvulistele vaartustele voivad oman-
dada ka vddrtusi —oo ja co. (Meenutame, et R = R U {—o0} U {oc}.)

Teatavasti on R meetriline ruum kauguse
p(x,y) = |arctanx — arctany|, z,y €R

suhtes. Mirgime, et kaugusega p ruumi R alamruumis R defineeritud alamruumi
topoloogia T(g ) ja ruumi R loomulik (s.t. eukleidilise kaugusega d(x,y) = |z — y/,
z,y € R, midratud) topoloogia 7r langevad iihte, s.t. ruumis R on kauguste p ja d
suhtes iihed ja samad lahtised hulgad.

Ulesanne 1.3. Veenduda, et 7 = T(R,p)-

NAPUNAIDE. Veenduda, et formaalne iihikoperaator j: (R, d) — (R, p), jo = z, = € R, ning tema
poordoperaator on pidevad ning kasutada fakti, et lahtise hulga originaal pideva kujutuse suhtes
on lahtine.

Edasises tihistame siimbolitega 7z ja Bg vastavalt meetrilise ruumi (R, p) lahtiste
hulkade kogumit ja Boreli o-algebrat. Osutub, et

Br={Ee€PR): ENReBr} ={BUI: BeBg, [ €P({—o0c},{c0})}. (1.1)

Ulesanne 1.4. Téestada vordused (1.1)).
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NAPUNAIDE. Ulesannete ja I pohjal
Br ={ENR: E € Bg}. (1.2)

Kuna {—o0} ja {oo} kui meetrilise ruumi R iihepunktilised hulgad on kinnised, siis {—oo}, {oo} €
Bg ning seega ka R =R\ ({—o00} U {oo}) € Bg. Seega jireldub vordusest 1) et Br C Bg.

Saab niidata, et igaiiks hulga R alamhulkade kogumitest
& —{ —00,a) aeR}, 52::{[—oo,a]:a€R},
& = {(a,00]: a € R}, &= {la,00]: a € R}
genereerib ruumi (R, p) Boreli o-algebra.

Ulesanne 1.5. Toestada, et Bz = 0(€1) = (&) = 0(&3) = o(Ey).

NApPUNAIDE. Niidata, et

B & o(61) € 0(€5) € o(€s) C o(€2)'C Be.

Sisalduvuse (o) toestuseks piisab néidata, et 7z C o(&1) (pohjendadal), milleks omakorda, arves-
tades, et U € 73 korral U NR € 7g, piisab niidata, et 7z C o(&1) (selleks kasutada jareldust T[2.3)
ning {—oo}, {oo} € 0(&1). Sisalduvuse (ee) toestuseks kasutada vordusi ((1.1)).

Seega jareldub teoreemist (analoogiliselt jarelduse toestusega)

Jéareldus 1.4. Olgu (X, ) méotuv ruum ning olgu f: X — R. Jirgmised véited on
samavddrsed:

(i) funktsioon f on mdotuv;
(i) {zeX: f(z
(i) {zeX: f(z
)
)

) <a} €A igaa€R korral;

() <a} €A idgaa€R korral;
(iv) {zr e X: f(z) >a} €A igaa € R korral;
(v (

Jareldusi[l.3]ja[l.4]vorreldes ndeme, et funktsioon f: X — R on médtuv parajasti
siis, kui ta on mootuv tolgendatuna funktsioonina X — R.

{re X: f(x) 2 a} €A igaaecR korral.

Ulesanne 1.6. Olgu (X,2) mé6tuy ruum ning olgu f: X — R mosctuv funktsioon. Toestada, et:
(a) {x e X: a< f(x) <b} €A mis tahes a,b € R, a < b korral;
{r e X: a< f(z) <b} €2 mis tahes a,b € R, a < b korral;
{zreX: a<f(x)\b}621 mis tahes a,b € R, a < b korral,
f(z) < b} €2 mis tahes a,b € R, a < b korral;
{z e X: f(x) =a} €2 iga a € R korral;
{reX: f(x) =00} €2
(8) {reX: f(z) =—oo} e

Ulesanne 1.7. Olgu (X, 2A) mé6tuy ruum ning olgu f: X — R. Toestada, et jirgmised tingimused
on samavaarsed:
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(i) funktsioon f on mootuv;

(i) {r e X: f(z) <a} e iga o€ Q korral;

(iii) {ze X: f(z) <a} e iga a e Q korral;
) {x € X: f(z)>a} e igaac Q korral;
) {z € X: f(x) 2a} e igaac Q korral.

(iv
(v
Aritmeetilised tehted funktsioonidega f,g: X — R defineeritakse punktiviisi.

Tépsemalt, funktsioonide f ja g summa f+ g, vahe f — g, korrutis fg ja jagatis f/g
on defineeritud vordustega

(f £9)(x) = f(z) £ g(x), zeX,
(f9)(x) = f(z)g(x), z€X,
(f/9)(x) = f(x)/g(x), xe€X.

Margime, et funktsioonid f+g, f—g ja f/g ei tarvitse olla maaratud kogu ruumis X.
(Naiteks summa f+g¢ ei ole midratud parajasti nendes punktides z € X, mille korral

F(x) = o ja g(x) = —o0 voi f(x) = —o0 ja g() = o)

1.3. Tehted mootuvate funktsioonidega

Jirgnevast teoreemist nihtub, et mootuvate R-viidrtustega funktsioonide hulk on
aritmeetiliste tehete suhtes kinnine.

Teoreem 1.5. Olgu (X, ) mdotuv ruum ning olgu f,g: X — R méotuvad funk-
tsioonid. Jargmised funktsioonid on mootuvad:

(a) ¢f (ceR);

Teoreemi viite (e) toestuse kirjapaneku lihtsustamise huvides on siinkohal
otstarbekas sisse tuua hulga karakteristliku funktsiooni moiste.

Definitsioon 1.4. Olgu X mingi mittetiihi hulk ning olgu F C X.
Funktsiooni yg: X — R, mis on defineeritud seosega

{1, kui x € F;

. r e X,
0, kui z ¢ F,

xe(r) =

nimetatakse hulga F karakteristlikuks funktsiooniks ehk (eriti toendosusteoorias) hul-
ga E indikaatorfunktsiooniks.
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Ulesanne 1.8. Toestada, et kui (X, 2) on mbé6tuv ruum ja E C X, siis funktsioon x g on méotuv
parajasti siis, kui E € .

Ulesanne 1.9. Olgu (X,2) mé6tuy ruum, olgu A € A ning olgu f: X — R A-md6tuv funktsioon.
Tdestada, et siis ka funktsioon f x4 on 2A-modtuv.

TEOREEMI TOESTUS. (a). Olgu ¢ € R. Fikseerime vabalt a € R. Jirelduse
pohjal piisab funktsiooni ¢f mootuvuseks néidata, et

A={zeX: cf(z)<a} e

Kuna

{z e X: f(z) <a/c}, kui ¢ > 0;
{zeX: f(z)>alc}, kui ¢ < 0;

X, kui c =0 ja a > 0;
0, kuic=0jaa <0,

A:

siis funktsiooni f mootuvuse tottu jarelduse pohjal igal juhul A € L.
(b). Olgu funktsioon f + g méiratud, s.t.

{zreX: flr)=o00jag(z)=—oco vdi f(z)=—00jag(z)=o00}=0.

Fikseerime vabalt a € R. Toestamaks, et funktsioon f on mootuv, piisab néidata,
et
A={zeX: fz)+g(x) <a} e

Selleks aga piisab niidata, et

A=B:=J{reX: fla) <q}n{re X: g(z) <a—q}
q€Q

(sest funktsioonide f ja g modtuvuse tottu B € 2A).

Sisalduvus B C A on ilmne, sest kui x € B, siis mingi ¢ € Q korral f(x) < ¢ ja
g(x) <a—gq,seega f(z)+g(x) <qg+a—q=a,st. xecA

Jaab veel veenduda, et A C B. Fikseerime vabalt x € A. Niitame, et siis ka
x € B, s.t. leidub ¢ € Q nii, et

fl@) <q ja g(z)<a-—q

Kuna f(z) + g(z) < a, siis f(z) < a — g(x), jirelikult leidub arv ¢ € Q selliselt, et
f(z) < ¢ < a—g(x). Kuna aga sel juhul g(z) < a — g, siis ¢ € B ning seega A C B.

(c). Olgu funktsioon f — g médratud, s.t.

{reX: flz)=g(x)=o00voi f(z)=g(x) =—0c0} =0.

Siis f —g = f+(—1)g; seega jareldub funktsiooni f —¢g modtuvus vahetult viidetest
(a) ja (b).
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(d). Fikseerime vabalt a € R. Toestamaks, et funktsioon f? on mootuv, piisab

niidata, et
A={zeX: f()’<a} e

Kuna

0, kui a < 0;
:{{$€X:—\/5<f(x)<\/5}, kui a > 0,
siis jarelduse pohjal igal juhul A € 2.
(e).
Miirgime esmalt, et kui funktsioonid f ja g oleksid 1plikud, siis
fg= % ((f+9)?—f—d°) (1.3)

ning funktsiooni fg mootuvus jarelduks vahetult véidetest (a), (b), (c) ja (d). Kui aga f ja/voi g
ei ole 16plik, siis see méttekiik 14bi ei ldhe, sest sel juhul pole vorduse (1.3) parem pool madratud.
Seepérast tuleb viite (e) toestuseks lildjuhul seda mottekiiku veidi modifitseerida.

Téahistame
A={zeX: f(x),g(x) € (—00,00)}.
B={zeX: f(z)g(z) = 00}»
C={reX: f(z)g(z) = —co},

D:{xGX: f(z) = fooja g(x) =0 voi g(m):j:oojaf(x):0}.

~— —

g
g

Ulesanne 1.10. Tdestada, et A, B,C,D,F € .

Paneme tédhele, et hulgad A, B, C, D on paarikaupa loikumatud, AUBUCUD = X
ning

(@) + )’ = f@) = g(@)?),  kuize A
s, o
0, kui x € D,

s.t.
f9= ((fo +gxa)’ = fxa — g* xa) + 00 xp + (—00) xc-
Viidete (a)—(d) ja iilesannete [L.8] ja [1.9] pohjal on funktsioon f g mootuv.
(f). Olgu funktsioon 1/¢g méératud, s.t. g(z) #0, x € X.

Ulesanne 1.11. Téestada, et funktsioon 1/g on méotuv.

(g). Olgu funktsioon f/g madratud, s.t.

{z € X: g(a) =0vdi |f(z)] = |g(z)| = 00} = 0.

Siis f/g = f - 1/g, seega jareldub funktsiooni f/g mootuvus vahetult viidetest (f)
ja (e). O
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Ulesanne 1.12. Olgu (X,2) mo6tuv ruum, olgu f,g: X — R moétuvad funktsioonid ning olgu
c € R. Toestada, et seostega

ha () f(x) + g(x), kui summa f(z) + g(x) on méiaratud:
) =

' ¢, kui summa f(z) + g(x) pole méidratud,

ja

f(z) kui jagatis 22 on médratud;
ho () { @) R TE)

Q

c, kui jagatis Exg pole méiratud,

defineeritud funktsioonid hi, he: X — R on méotuvad.
Olgu X mingi hulk ning olgu f, ¢, fn: X — R, n=1,2,.... Defineerime funk-
tsioonid
max{f,g}: X >z +— max{f(v),g(r)} €R,
min{f,¢}: X > 2 — min{f(z),9(2)} € R,

sup fn: X 3z sup fu(x) € R,

neN neN
inf fo: X 32— inf fu(z) €R,
limsup f,,: X 3 2 — limsup f,(z) € R,
n—o0 n—oo
liminf f,,: X > 2+ liminf f,(z) € R.
n—00 n—00

Kui iga € X korral eksisteerib piirvaartus lim,, .. f,(z), siis saame defineerida ka
funktsiooni

lim f,: X 32+ lim f,(z) €R.
n—oo

n—o0

Siinkohal on otstarbekas meenutada, et ruumi R elementide jada (a,, )3 ; dlemine piirvddirtus
lim sup,,_, . an ja alumine piirvidrtus liminf,,_, a, defineeritakse vastavalt vordustega

limsupa, = lim supai ja hmmfan— lim inf a.
n—00 n— X k>n n—oo k>n

Juhime tdhelepanu, et need molemad piirviirtused eksisteerivad, sest jada (supk>n ay)% , on mit-
tekasvav ning jada (infy>, ax)$2; on mittekahanev; niisiis

limsupa, = lim supa; = mf supax ja hm mf an, = lim inf aj = sup inf ag.
n—o0 N—=0 L>np Ng>n n—00 k>n neNkz2n

Meenutame, et ruumi R elementide jada (a,,)S°; osajadade piirviirtusi nimetatakse selle jada
osapiirvadrtusteks. Saab niidata, et

(1) jada (a,) iilemine piirvddrtus lim sup,,_, ., a, on selle jada suurim osapiirviirtus;
(2) jada (a,) alumine piirvdértus lim inf,_, - a, on selle jada vdhim osapiirviértus.
Ulesanne 1.13. Toestada viited (1) ja (2).

Viidetest (1) ja (2) jireldub, et ruumi R elementide jadal (a,)S, eksisteerib piirvidrtus pa-
rajasti siis, kui tema tlemine ja alumine piirvddrtus on vordsed, kusjuures sellisel juhul

lim a, =limsupa, = hm mf Q.-
n—00 n—00

Ulesanne 1.14. Veenduda selles.

Mirgime veel, et ruumi R elementide jada (a, )3, {ilemist piirviidirtust ja alumist piirvidrtust
tdhistatakse ka vastavalt stimbolitega

lim a, ja lim a,.
n—oo n—00
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Teoreem 1.6. Olgu (X,2) méotuv ruum ning olgu f,g, fn: X =R, n=1,2,...,
mootuvad funktsioonid. Siis ka funktsioonid

max{f,g}, min{f g}, supf,, inff, limsupf,, liminff,
neN neN n—0oo

n—oo

on mootuvad. Kui purvddartus lim f,, eksisteerib, sits ta on mootuv funktsioon.
n—oo

TOESTUS. (a) Toestamaks, et funktsioon max{f, g} on mootuv, peame niitama, et
iga a € R korral
A:={reX: max{f, g}(z) <a} €A

Fikseerime vabalt a € R. Kuna
A={z e X: max{f(z),9(z)} <a} ={r € X: f(z)<a}n{zeX: g(z) <a},

siis funktsioonide f ja g mootuvuse tottu A € 2.

(b) Veendumaks, et funktsioon min{f, g} on méotuv, margime, et

min{f, g} = - max{—f, _g}

Teoreemi , (a), pohjal on funktsioonid —f ja —g mootuvad, seega toestuse osas
(a) toestatu pohjal ka funktsioon max{—f, —g} on mootuv ning jérelikult teoreemi
1.5} (a), pohjal ka funktsioon — max{—f, —g} on mootuv, s.t. funktsioon min{ f, g}
on mootuv.

¢) Toestamaks, et funktsioon sup » On MOotuv, peame niitama, et iga a € R
neN g
korral
A:={z e X: supf,(x) <a} e

neN
Fikseerime vabalt a € R. Kuna
A={zx e X: sup fu(z) <a} = ﬂ{xeX: fo(z) < a},
neN n=1
siis funktsioonide f,,, n =1,2,..., mootuvuse tottu A € .

(d)

Ulesanne 1.15. Tdestada, et funktsioon inf,cyf, on mootuv.

(e) Veendumaks, et funktsioon limsup,,_,., f, on modtuv, meenutame, et

limsup f,, = inf sup fx.

n—00 n k>n
Kuna funktsioonid fi, &k = 1,2,..., on mootuvad, siis toestuse osas (c¢) toestatu
pohjal ka funktsioonid supy.,, frx, n =1,2,..., on mootuvad ning jarelikult toestuse

osas (d) toestatu pohjal ka funktsioon inf,cysup,., fr on moédtuv, s.t. funktsioon
lim sup,,_, ., fn on mootuv.
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(f)

Ulesanne 1.16. Toestada, et funktsioon liminf,, . f, on moédtuv.

(g) Kui eksisteerib piirviéartus lim,, . f,, siis

lim f, = limsup f, = liminf f,
n—oo n—o0o n—oo

ning funktsiooni lim,,_,, f, mootuvus jareldub funktsiooni limsup,, .. f, mootuvu-
sest (voi ka funktsiooni liminf,, . f, méotuvusest). O

1.4. Lihtsad mootuvad funktsioonid

Meenutame karakteristliku funktsiooni definitsiooni.

Definitsioon 1.5. Olgu X mingi hulk ning olgu £ C X.
Funktsiooni yg: X — R, kus

xe(r) = x € X,

1, kui x € F;
0, kuiz € F,

nimetatakse hulga F karakteristlikuks funktsiooniks ehk (eriti toendosusteoorias) hul-
ga E indikaatorfunktsiooniks.

Ulesanne 1.17. Olgu X mingi hulk ning olgu A, B, A; C X, j = 1,2,.... Téestada, et
(a) xanB = XAXB;
(b) kui AN B =1, siis xaup = xa + XB-
(c) kui A;NA; =0, 14 j, siis XUz, 4; = Do XA,

Ulesandes veendusime, et kui (X, 2() on moé6tuv ruum, siis hulga E € P(X)
karakteristlik funktsioon xg on mdotuv parajasti siis, kui hulk E on mdotuv (s.t.
Ee).

Definitsioon 1.6. Olgu (X, 2() mé6tuv ruum.

e Oecldakse, et funktsioon ¢: X — R on lihtne médtuv funktsioon, kui ta on
esitatav kujul

qb:ZanAj, kusn €N, aq,...,a, ERja Ay,... A, €2 (14)
j=1

Mérgime, et teoreemi[L.5] pohjal on lihtne modtuv funktsioon téepoolest mootuv. Juhime téhe-
lepanu, et vastavalt definitsioonile ei saa lihtne mootuv funktsioon omandada vadrtusi oo ega —oo.

e Esitust (1.4) nimetatakse funktsiooni ¢ kanooniliseks esituseks, kui A;NA; = 0,
kui ¢ # 7.

On ilmne, et lihtsa mootuva funktsiooni kanooniline esitus ei ole tiheselt méaratud.
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e Esitust (1.4) nimetatakse funksiooni ¢ standardesituseks, kui
(].) Al»---;An 7é @, AZﬂAJ = @, kui 2 7&]7 IliIlg U?:lAj :X,
(2) ai#ajaklni#j'

Mérgime, et kui ([1.4)) on funktsiooni ¢ standardesitus, siis funktsiooni ¢ viirtuste
hulk on {aq,...,a,} ningiga j € {1,...,n} korral A; = {x € X: ¢(x) = a;}.

Edasises hakkame kasutama jérgmisi tdhistusi. Olgu X mingi hulk ning olgu
fr0,fn: X >R, n=1,2,.... Me kirjutame

o f>g (voi g < f), kui f(z) > g(x) iga x € X korral; sealhulgas, kui f(z) > 0
iga x € X korral, siis kirjutame f > 0;
o f,— f,kui f,(z) = f(x) iga 2 € X korral;

o fn A f, kui fu(x) 7 f(z) iga o € X korral, s.t. f, — f, kusjuures fi(z) <
fo(z) < fa3(x) < --- iga x € X korral.

Teoreem 1.7. Olgu (X,21) moctuv ruum ning olgu f: X — R, f > 0, mootuv
n

funktsioon. Siis leiduvad lihtsad moéotuvad funktsioonid ¢p,: X — R, n=1,2,...,

nii, et

(1) ¢n =0 igan €N korral;

(2) ¢u /[

(3) kui funktsioon f on tokestatud hulgas B C X, siis ¢, — f thtlaselt hulgas B.
TOEesTUS. Iga n € N korral tdhistame

k k+1
E,?—{IEX: 2—n<f(x)< 2—:

}, k=0,1,2,...,2"" -2, 2" 1,

ja B, = {a: €eX: f(z) > 2"} ning defineerime

22n

k=0
Siis iga n € N korral on ¢,: X — R lihtne méétuv funktsioon, kusjuures ¢, > 0.

Selgitame veel funktsioonide ¢,, n = 1,2,..., konstrueerimist. Olgu n € N. Poolléik [0,2™)
jaotatakse 22" vordse pikkusega poolldiguks, igaiiks pikkusega 2%:

Oi ii 2271_2 2271_1 22n_12n
von ) |onrgn o on ) on ) on ) .

Olgu z € X. Kui f(x) < 2", siis f(x) kuulub ithte nendest poolldikudest, ehk, tipsemalt, mingi
ke {0, 1,2,...,22" —2 22" _ 1} korral 2% < flz) < % Sellisel juhul defineeritakse ¢, (x) = 2%
Kui aga f(z) > 2", siis defineeritakse ¢, (x) = 2".

On ilmne, et kui f(z) < 2", siis | f(z) — ¢n(x)| = f(z) — ¢n(x) < 3= (vt. joonis 7.7, kus n = 1).

Ulesanne 1.18. Tdestada viited (2) ja (3).

]
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Definitsioon 1.7. Olgu X # 0 ning olgu f: X — R. Defineerime funktsioonid
f+ :max{f,()} ja f_ :max{—f, 0}

ehk, teisisonu,

. [f@). ki f@) >0
fH(x) = max{f(x),0} = {O, kui f(x) < 0, x € X,
ja |
§ (@) = max{—f(x),0} = {0_ ol f2) 20 e x

f(z), kui f(x) <0,

Funktsioone f* ja f~ nimetatakse vastavalt funktsiooni [ positiivseks ja negatiivseks
osaks.

On selge, et
f=f=f ja [fl=f"+f,

kus funktsiooni f absoluutvidrtus (ehk moodul) |f|: X — R on defineeritud seosega

|fl(x) =[f(z)], z€X.
Ulesanne 1.19. Toestada, et f = fT — £~ ja |f] = 4

On ilmne, et kui (X, 2A) on modduga ruum ja f: X — R, siis
fonmootuy <= [T ja f~ on mootuvad = |f| on mootuv.

Ulesanne 1.20. Tdestada, et
(a) f on modtuv <= [T ja f~ on mootuvad = |f| on mostuv;
(b) {ildjuhul ei jareldu absoluutvéirtuse |f| méotuvusest funktsiooni f modtuvus.

Jargmisest teoreemist nahtub, et funktsioon on mootuv parajasti siis, kui ta on
mingi lihtsate mootuvate funktsioonide jada piirvddrtus.

Teoreem 1.8. Olgu (X, 1) maodtuv ruum. Funktsioon f: X —)_E on mootuv para-
jasti suis, kui leiduvad lihtsad mootuvad funktsioonid ¢,: X — R, n=1,2,..., nii,
et o, — f.

TOESTUS. Piisavus on ilmne, sest teoreemi pohjal on mootuvate funktsioonide
jada piirvdartus mootuv funktsioon.

Tarvilikkus. Olgu f: X — R mootuv funktsioon. Siis ka funktsioonid f+ ja f~

on mootuvad; jarelikult teoreemi pohjal leiduvad lihtsad mootuvad funktsioonid
Ll X wR,yn=1,2,..., selliselt, et ¢, & fFjay! 7 f~. Vahed ¢, = ¢!, — ¢/,
n=1,2,...,on lihtsad mootuvad funktsioonid; seejuures ¢, = ¢/, —¢!! — frH—f~ =
f. O]
Ulesanne 1.21. Olgu (X,2) modtuv ruum. Téestada, et f: X — R on tokestatud méotuv

funktsioon parajasti siis, kui leiduvad lihtsad mooétuvad funktsioonid ¢,: X — R, n =1,2,...,
nii, et ¢, — f thtlaselt.
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1.5. Moiste “peaaegu koikjal”

Olgu (X, 2, 1) mé6oduga ruum ning olgu V(z) mingi vdide ruumi X punktide x
kohta.

Definitsioon 1.8. Oeldakse, et viide V(x) kehtib u-peaaegu kdikjal (ruumis X)
ehk, lihidalt, p-p.k. (ruwmis X ), kui hulk

{z € X: viide V(x) ei kehti}

s.t. nende elementide € X hulk, mille korral viide V' (z) ei kehti, on hiiljatav. Sel
juhul Geldakse ka, et viide V(x) kehtib p-peaaegu kdikide x € X korral ehk, lithidalt,
w-p.k. x € X korral. Kui seejuures moodu p roll on kontekstist selge, siis 6eldakse
“p-peaaegu koikjal” (ning “p-peaaegu koikide”) ja “u-p.k.” asemel lihtsalt vastavalt
“peaaegu koikjal” (ning “peaaegu koikide”) ja “p.k.”.

Olgu f,q, fn: X = R, n=1,2,.... Vastavalt mdiste “peaaegu koikjal” definit-
sioonile 6eldakse, et

e f(z) =g(x) p.k., kui hulk {x € X: f(x) # g(x)} on hiiljatav;
o f(z) < g(x) pk., kui hulk {z € X: f(z) > g(z)} on hiiljatav;

e f.(x) = f(z) p.k. ehk ILm fux) = f(x) pk., kui hulk {z € X: f.(x) /4
f(z)} on hiiljatav

o fu(z) 7 f(z) pk., kui hulk {z € X: f,(z) / f(z)} on hiiljatav.
Me kirjutame

e f=gpk.,kui f(z) =g(x) pk

o f<gpk,kuif(z)<g(x)p

e fu— fpk, kui fu(z) = f(z) pks;

o fu /M [Pk, kul fu(z) 7 flz) pk

Ulesanne 1.22. Olgu (X, 2, 1) méoduga ruum. Toestada, et jéirgmised viited on samavésrsed:
(i) véide V(x) kehtib p.k. ruumis X;
(ii) leidub hulk A € 2 selliselt, et vdide V(z) kehtib iga = € A korral ja pu(A°) =

Teoreem 1.9. Olgu (X, u) mooduga ruum ning olgu f,g,fn: X — R, n =
1,2,.... Jargmised vdited kehtivad parajasti siis, kui ruum (X, A, p) on tdielik.

(a) Kui funktsioon f on mootuv ja f = g p.k., siis ka funktsioon g on mootuv.

(b) Kui funktsioonid f,, n = 1,2,..., on méotuvad ja f, — g p.k., siis ka funk-
tsioon g on mootuv.
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TOESTUS.

Ulesanne 1.23. Tdestada teoreem@l
]

Teoreem 1.10. Olgu (X, 2, n) mooduga ruum ning olgu (X, A, 71) tema tiield. Kui
funktsioon f: X — R on A-mootuv, sis leidub A-mootuv funktsioon g: X — R
selliselt, et f =g p.k. Kui seejuures funktsioon f on p.k. loplik (s.t. |f| < oo p.k.),
sits saame funktsiooni g valida nii, et g: X — R (s.t. g on loplik, s.t. |g] < o0).
TOESTUS.

Ulesanne 1.24. Toestada teoreem [1.10]

NAPUNAIDE. Kasutada teoreemil[l.8] Teine voimalus (vist Skonoomsem?) on kasutada iilesannet[1.7]

]

1.6. Harjutusiilesandeid

Ulesanne 1.25. Olgu X # () mingi hulk ning olgu f,¢: X — R. Toestada, et
@) (=HFr=f"ja (=" =14
(b) kui a > 0, siis (af)T = af " ja (af)” = af;
(c) kui @ <0, siis (af)T = —af ™ ja (af)” = —afT;
(d) kui A C X, siis (fxa)™ = fTxaja (fxa)” = f"xa;
(e) f > g parajasti siis, kui f* > g™ ja f~ <g~.

Ulesanne 1.26. Olgu (X, 2, 1) médduga ruum ning olgu £, g, h, fn, gn: X — R, n € N. Toestada,
et

(a) kui f=g¢gpk. jag=hpk,siis f=hpk;
(b
(c
(d

kui f on p.k. 16plik (s.t. | f| < oo p.k.) ja g = f p.k., siis ka ¢g on p.k. 16plik;
kui f on p.k. 16plik ja g on p.k. 16plik, siis ka f + g on p.k. 16plik;

kui f,, — f pk., g» — g p.k. jaiga n € N korral f,, = g, p.k., siis f =g p.k;;
kui fi = g1 pk. ja fo = g2 pk., siis fi + fo = g1+ 92 pk;

)
)
)
)
)
f)

(e
(

f = g pk. parajasti siis, kui fT =¢* pk.ja fT =g pk



§ 2. Integraal mittenegatiivsest funktsioonist

Olgu (X, %A, u) modduga ruum. Edaspidi tdhistame mittenegatiivsete 2-mootuvate
funktsioonide f: X — R klassi stimboliga L™ (X, 2L, x) voi, kui ruumi (X, 21, u) roll
on kontekstist selge, siis ka lihtsalt siimboliga Lt (u) voi L™. Niisiis,

Lt =L (p) = LT(X, 2% p) ={f: X > R| f on A-mdotuv ja f > 0}.
Koikjal edaspidi kogu selle paragrahvi ulatuses on (X, 2, ) médduga ruum ning

L+ = LT(X, 2, p).

2.1. Integraal lihtsast mootuvast funktsioonist f € LT (X, 2, u)

Definitsioon 2.1. Olgu ¢ € L™ lihtne mootuv funktsioon.
(Lebesque’i) integraal funktsioonist ¢ (ile hulga X ) (moodu p jirgi) defineeri-

takse vordusega
| o) duta Z%u

kus ¢ = > 77| ajxa, on funktsiooni ¢ kanooniline esitus.

Selle definitsiooni korrektsuses (s.t. soltumatuses funktsiooni ¢ kanoonilisest esitusest) veen-
dume kasiloleva definitsiooni 16pus.

Seejuures kasutatakse ka tdhistusi

[ o@yduta) = [ ota)utie) = [ odu= [ o

Kui A € 2, siis (Lebesgue’i) integraal funktsioonist ¢ ile hulga A (méédu p jirgi)

defineeritakse vordusega
[ dtwrduta) = [ oxa

Ulesanne 2.1. Téestada, et ¢y 4 on lihtne modtuy funktsioon.

Seejuures kasutatakse ka tahistusi

[ @ dnta) = [ o utaa) = [ odu= [ o

Kui ruumi X roll on kontekstist selge, kirjutatakse siimboli | « asemel ka lihtsalt [

Veendume integraali [, ¢(z)dp(x) definitsiooni korrektsuses. Selleks tuleb niidata, et kui
¢ =7 1 xa; jad=73" Bixs, on funktsiooni ¢ kanoonilised esitused, siis

Zagu Zﬁz

71
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Téhistades Ag = X \ Uj_, 4j, a0 = 0, Bo = X \ U;Z, Bi, Bo = 0, on eelnev vordus samaviirne

vordusega
Zaj n(A;) = ZﬁiM(Bi)~ (2.1)
=0 i=0

Vorduse (2.1) toestuseks mérgime, et iga j € {0,1,...,n} korral

m m
14]:14]ﬁ)(=14]mLJBZ:LJ14ijl7
=0 i=0

kuna hulgad A; N By, A; N B1,...,A; N By, on paarikaupa léikumatud, siis

=0 =0
niisiis

Z%ﬂ Za]. w(A;NB;) = ZajH(AjﬂBi)~

Analoogiliselt saame, et

Zﬁz’ w(B;) = Z Zﬁi u(BiNA;) = Zﬁi w(A; N B;).
i=0 =0 j=

Fikseerides vabalt 7 € {0,1,...,n}jai € {0,1,...,m}, jadb vorduse (2.1) tdestuseks seega niidata,
et
Q; LL(A]‘ n Bl) =0 [J,(A]‘ n Bl) (22)

Selleks paneme téhele, et
e kui leidub x € A; N By, siis o = ¢(x) = f;, seega (2.2)) kehtib;
o kui A; N B; =0, siis u(A; N B;) =0, seega (2.2) kehtib.

Teoreem 2.1. Olgu ¢,v € LT lihtsad mootuvad funktsioonid. Siis
a) [cp=c[¢ igac>0 korral;

Jo+v)=Jo+[d;

(c) kui ¢ <, siiskafgbéfw;

(d) hulgafunktsioon ps: 2A — [0,00], mis on defineeritud vordusega

=/¢Ae%
A

(
(b

)
)
)
)

on moot.
TOEsTUS. Olgu

6= ajxa, ja v=> Bixs
j=1 i=1

vastavalt funktsioonide ¢ ja 1) standardesitused.
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(a). Olgu ¢ > 0. Siis ¢ = > 7| ca; xa; on funktsiooni c¢ kanooniline esitus,

seega
n

/cgzﬁ:Zcozj,u _czow _c/¢.

j=1
(b) ja (c). Téhistame
Cij:Aijiv jzla"'an?i:l?"‘?m'

Paneme téhele, et C;; N Cy = 0, kui ¢ # k voi j # [, ehk, teisisonu, hulgad C;; on
paarikaupa loikumatud. Seejuures

m
U ij) oy, ja BZ:UCZJ, Z:1,7m
i=1 j=1
Niid
n n n m n m
¢= E :anAj - E :anU?LCU - § :O‘J'E :XCij - § :§ :anCij
j=1 j=1 j=1 i=1 j=1 i=1

ja, analoogiliselt,

1/) = Z Z 61’)(0”- - Z Z BiXCij

i=1 j=1 =1 i=1

on vastavalt funktsioonide ¢ ja 1 kanoonilised esitused; seega

/qzﬁ ZZ%M is) /¢ ZZ@ i7) (2.3)

Jj=1 =1 7=1 =1

Viite (b) toestuseks paneme téhele, et

o+ = Z Z ajXcy; T Z Z Bixc,; = Z Z(Oéj + Bi)xcy;
j=1 i=1 j=1 i=1 j=1 i=1
on funktsiooni ¢ + 1 kanooniline esitus; seega
J6r0) =3 > aan(c, S a3 S A ) ~ [o+[w.
j=1 i=1 7=1 i=1 7=1 i=1

Eeldame niiiid, et ¢ < 1. Fikseerides vabalt j € {1,...,n} jai € {1,...,m},
piisab viite (c¢) toestuseks (tdnu vordustele (2.3)) néidata, et

aj u(Ciz) < Bi p(Ciy). (2.4)

Selleks mérgime, et

e kui leidub z € Cjj, siis o = ¢(z) < Y(x) = f;, seega ([2.4]) kehtib;
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e kui Cj; =0, siis p(Cy;) = 0, seega (2.4)) kehtib.

(d). Koigepealt paneme tihele, et

uqs(@):/@cb:/@m:/ = 0u(X)=0.

Olgu hulgad E; € A, i = 1,2,..., sellised, et E; N E; = 0, kui i # j. Teoreemi
toestuseks jadb néidata, et

1o (U E) = Zuas(Ei)

/U&Eigb:f;/&gb.

ehk, teisisonu,

Veendume selles:

/ ¢ = /¢XU£’31E2~ = / (Z %‘XA]-) XU, B —/Z%‘XA]-XU;?I&
U2, B: j=1 j=1
Jj=1 Jj=1 i=1 j=1 i=1
SIDHWIERIED 3 VIEILEIED DY b SRR
J=1 i=1 =17 j=1

i=1 j=1

= i/ﬂi%mjx& = ;il/ (]il OéjXAj> XE; = i/@@
— E;[E .

O

Mirkus 2.1. Teoreemi [2.1| viitest (b) jareldub muuhulgas, et kui ¢ € L™ on lihtne
mootuv funktsioon, siis funktsiooni ¢ mis tahes esituse

¢:ZanAj meN ay,...,a, 20, Ay,...; A, €2)
j=1

korral
n n n
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2.2. Integraal funktsioonist f € LT (X, 2, u)

Toetudes mittenegatiivse lihtsa mootuva funktsiooni integraali moistele, iildistame
niiiid integraali moiste kogu klassile L+.

Definitsioon 2.2. Olgu f € LT (X, 2, p).

(Lebesque’i) integraal funktsioonist f (ile hulga X ) (moodu p jirgi) defineeri-
takse vordusega

/ f(x)dp(x) = sup {/gb ‘ ¢ € L' on lihtne mootuv funktsioon, ¢ < f} :
X

Seejuures kasutatakse ka tdhistusi

[ r@aute) = [ s@utao = [ ran= [ s

Miérgime, et lihtsa mootuva funktsiooni f € LT jaoks annab definitsioon sama integraali,
mis definitsioon

Kui A € 2, siis (Lebesgue’i) integraal funktsioonist f ile hulga A (moodu p jargi)

defineeritakse vordusega
[ @ du) = [ pa

Seejuures kasutatakse ka tdhistusi

[ 1@t = [ @ tan = [ rau= [

Kui ruumi X roll on kontekstist selge, kirjutatakse siimboli f + asemel ka lihtsalt f .
Vahetult definitsioonist jareldub, et
(a) kui f € L, siisigac € R, ¢ >0, korral [¢f =c [ f;
(b) kui f,g € L* on sellised, et f < g,siiska [ f < [g.

Integraali omadust (b) nimetatakse integraali monotoonsuseks.
Ulesanne 2.2. Tdestada viited (a) ja (b).

Olgu f, € L*t, n =1,2,.... Mérgime, et (isegi siis, kui piirvairtused lim f, ja
n—oo
lim [ f, eksisteerivad) vordus [ lim f, = lim [ f, ei tarvitse dldjuhul kehtida.

Niide 2.1. Olgu f, = Xjn—1m): R = R, n=1,2,.... Siis iga n € N korral f, €
LT (R, £, m), kusjuures f, — 0. Kuna iga n € N korral [, f, = m([n — 1,n)) =1,

siis
/limfn:/O—O#l—hm f-
Rn—ﬂ)o n—oo
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Néide 2.2. Olgu f, = nxp1y: R — R, n = 1,2,.... Siis iga n € N korral
fn € LT(R, £,m), kusjuures f, — 0. Kuna iga n € N korral [, f,, = nm((0,2)) =
nt =1, siis

/limfn:/O:O#lzlim fn-
RTL%OO R n—oo R

Jérgnev teoreem on iiks nn. Lebesgue’i koonduvusteoreemidest, mis annavad pii-
savad tingimused vorduse [ lim f, = lim [ f, kehtivuseks.
n—oo n—oo

Teoreem 2.2 ((Lebesgue’i) monotoonse koonduvuse teoreem e. Beppo Levi teo-
reem). Olgu funktsioonid f, f, € LY, n=1,2,..., sellised, et f, /" f. Siis

/ f=1im [ f.
n—oo
Niisiis, teoreemieeldustel kehtib vordus [ lim f, = lim [ f,.

TEOREEMI TOESTUS. Kuna iga n € N korral f, < f,41 ning seega integraali
monotoonsuse tottu ka [ f, < [ fo41, siis eksisteerib piirvidrtus lim [ f,. Kuna
n—oo

fo 7 f, siis iga n € N korral f, < f ning seega integraali monotoonsuse tottu
[ fo < [ f; jérelikult lim [ f, < [ f.
n—oo
Teoreemi toestuseks jadb veenduda, et lim [ f, > [ f. Selleks piisab ndidata,
n—oo

et iga lihtsa mootuva funktsiooni ¢ € L, ¢ < f, korral kehtib vorratus nh_g}o [ fo>

K2

Toepoolest, sel juhul

lim [ f, > sup { / gzﬁ‘ ¢ € L' on lihtne mootuv funktsioon, ¢ < f} = /f

n—oo

Olgu lihtne moodtuv funksioon ¢ € LT selline, et ¢ < f. Vorratuse lim [ f, >
n—oo
| ¢ kehtivuseks piisab niidata, et iga reaalarvu a € (0,1) korral lim [ f, > [ a¢.
n—oo

Téepoolest, sel juhul
dm [ > i fao= i afo=[o
Fikseerime vabalt o € (0, 1). Tahistame iga n € N korral
X, ={zeX: fulz)>ag(x)}.
Siis

Xp €U X C Xppr, n=12,..., ja X=[]JX, (2.5)

n=1

Ulesanne 2.3. Téestada viited 1'
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Paneme tihele, et iga n € N korral

[tz [ ez [aons, = | 6= pasl )

Kuna teoreemi pohjal on hulgafunktsioon
Hag: QlBAl—>/Oé¢E [0, o0]
A

moot, siis jareldub viimasest vorratusteahelast ja tingimustest ([2.5)), et

n—oo

i [ £ lim pool(X,) = ias(X) = [ 0
n—oo

Teoreem 2.3. Olgu f,g € L. Siis

/(f+g)=/f+/g.

TOESTUS. Kuna f ja g on mittenegatiivsed mootuvad funktsioonid, siis teoreemi[1.7]
pohjal leiduvad lihtsad mootuvad funktsioonid ¢,,1, € LT, n = 1,2,..., selliselt,
et

o S f Ja Un g
Kuna (¢, +v,) 7 (f + g), siis Lebesgue’i monotoonse koonduvuse teoreemi pohjal

Jur+a=tim i) = (ot [0.) = [o.+1m [o,
Z/f+/%

sest teoreemi pohjal [(¢n + ) = [ n + [ . =
Teoreem 2.4. Olgu f1,...,f, € LT (n € N). Siis

/jz:szg/fj-

TOEsTUS. Viide jidreldub vahetult teoreemist [2.3] induktsiooni teel. O

Ulesanne 2.4. Tdestada, et kui ¢,1) € L*, o, 8> 0ja A € U, siis [,(af +B9) =a [, f+B [,

Teoreem 2.5. Olgu f; € L™, j=1,2,.... Siis

/gfj_g/fj-
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Mirkus 2.2. Ka teoreemile (nagu ka teoreemile viidatakse kirjanduses
tavaliselt kui Lebesgue’i monotoonse koonduvuse teoreemile ehk Beppo Levi teoree-
mile.

TEOREEMI TOESTUS. Defineerime iga n € N korral funktsiooni
n
gn ‘= Z fj;
j=1

siis g, € L™, kusjuures g, Z;; fj; seega Lebesgue’i monotoonse koonduvuse
teoreemi ja teoreemi [2.4] pohjal

Teoreem 2.6. Olgu f € L™ ning olgu A, B € 2.

[i-0
Juu = L7515

TOEsTUS. (a). Olgu p(A) = 0. Defineerime funktsiooni g(z) = oo, z € X. Viite
toestuseks piisab niidata, et fA g = 0, sest kuna f < g, siis integraali monotoonsuse
pohjal sel juhul ka 0 < [, f < [,9=0,st. [, f=0.

Defineerime iga n € N korral funktsiooni

(a) Kui u(A) =0, siis

(b) Kui u(AN B) =0, siis

gn(z)=mn, z€X.

Kuna g, 7 g, siis ka g,xa " gxa; seega Lebesgue’i monotoonse koonduvuse teo-

reemi pohjal
/g=/9XA = lim /anA = lim /gn-
A n—oo n—oo A

Et aga iga n € N korral
/gn = /anA = /”XA = nu(A) =0,
A
siis ka ng:O.

(b). Olgu (AN B) = 0. Koigepealt paneme téhele, et kui AN B = (), siis véide
kehtib, sest sel juhul

AUsz/fouB:/f<xA+xB>=/fo+/fxB:/Af+/Bf.
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Viite (b) toestuseks iildjuhul mérgime, et viite (a) pohjal [, , f = 0; seega

IR Ra ARE KA ARAY RS RS K.
Siin

e vordus (1) kehtib, sest AN (B\ A)=0ja AU(B\ A) =AU B;
e vordus (2) kehtib, sest (B\ A)N(ANB)=0ja (B\A)U(ANB)=B8.

]
Teoreem 2.7. Olgu f,g € LT sellised, et f = g p.k. Siis
fi=]s
TOEsTUS. Kuna f = g p.k., siis leidub hulk A € 2 selliselt, et
f(z) =g(x) igaxz e Akorral ja  p(A°) =0.
Arvestades, et fxa = gxa ning teoreemi pohjal fAC f= fAC g = 0, saame, et
[i=[r+] 1= [1=[ru
A c A
:/QXA:/92/9+/9:/9-
A A e
]

Teoreem 2.8. Olgu f € L*. Siis
/ f=0 — f=0 pk

TOESTUS. “«<”. Kui f =0 p.k., siis teoreemip()hjal [f=/[0=0.

“=”. Olgu [ f =0. Tahistame

A={zreX: f(z) >0}
Implikatsiooni toestuseks piisab néidata, et u(A) = 0. Selleks paneme tdhele, et
A=U72, Aj, kus
A= {ZL‘EX: f(x) 2%}, j=1,2....

Kuna A; C Ay C ---, siis p(A) = lim, o 1(A;), seega jadb implikatsiooni toes-
tuseks naidata, et
pu(A;) =0 iga j € N korral. (2.6)

Mis tahes j € N korral integraali monotoonsuse tottu

%M(Aj):/%mj </foj </f=0,

seega ([2.6)) kehtib. O
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Teoreem 2.9. Olgu funktsioonid f, f, € LT, n=1,2,..., sellised, et f, /[ p.k.

Siis
lim fn:/f

Mérkus 2.3. Teoreemi 2.9 nimetatakse (samuti nagu ka tema erijuhtu teoreemi [2.2)
Lebesgue’i monotoonse koonduvuse teoreemiks ehk Beppo Levi teoreemiks.

TEOREEMI TOESTUS. Kuna f, / f p.k., siis leidub hulk A € 2 selliselt, et
fo(z) / f(x) igax € Akorral  ja u(A) =0
Niitid
fxa, faxa € LT, f=fxapk, fo=faxapk,n=12..., ja foxa /' fxa;

seega Lebesgue’l monotoonse koonduvuse teoreemi 2.2 pohjal [ fxa = lim [ f,xa.
n—oo
Teoreemist [2.7 jareldub niitid, et

[ = [ =t [fxa=tm [

Teoreem 2.10 (Fatou|lemma). Olgu f, € LY, n=1,2,.... Siis

/ liminf f,, < hmlnf / fn-
n—0o0

TOESTUS. Teoreemi toestuseks méargime, et
o (1) : S
liminf f, = [ lim inf f, = lim [ inf fk DNiminf [ inf fr <liminf [ f,.
n—o0 n—oo k>=n n—00 k>n n—00 k>n n—o00
Siin
e vordus (1) jireldub Lebesgue’i monotoonse koonduvuse teoreemist, sest

inf lim inf f,;
k>n fk /‘ n—oo k>n fn’

e vordus (2) kehtib, sest piirvéisirtus lim [ inf fj eksisteerib;
n—oo " k>n

e vorratus (3) jareldub alumise piirvaértuse monotoonsusest, sest iga n € N korral ’igf fr < fan
>n

ning seega integraali monotoonsuse tottu ka [ ]ir>1f T < [ fa
0
Teoreem 2.11. Olgu funktsioonid f, f, € LY, n=1,2,..., sellised, et f, — [ p.k.

Siis
/f hminf/fn.

!Pierre Joseph Louis Fatou (1878-1929) — prantsuse matemaatik ja astronoom.
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Mirkus 2.4. Teoreemile (nagu ka teoreemile [2.10) viidatakse kirjanduses ta-
valiselt kui Fatou lemmale.

TeEOREEMI 2.11] TOESTUS. Kuna f, — f p.k., siis ka f = liminf f, p.k.; seega
n—oo
jareldub teoreemist 2.7] ja Fatou lemmast, et

/ f= / lim inf £, < lim inf / .

Teoreem 2.12. Olgu funktsioon f € LT selline, et [ f < oco. Siis

(a) p({z € X: f(z) =00}) =0 (s.t. f < oo p.k., s.t. f on p.k. loplik);

(b) hulk{z € X: f(x)# 0} on o-loplik (s.t. leiduvad hulgad A,, € A, p(A,) < oo,
n=12,...,ni et {r e X: f(z)#0}=U,_,4,)

TOEsTUS. (a). Téhistame A = {x € X: f(z) = oo}. Paneme téhele, et igan € N
korral

[ = fxa=nxa;

M= [ 12 [ =nta)

npu(A) < M < oo,

seega iga n € N korral

s.t. iga n € N korral

mis on voimalik vaid siis, kui p(A) = 0.
(b). Tahistame
Ay ={zeX: f(x) 21}

ja

An:{xeX

3 I =
b
N
A

—_

—

S
I
o
w

siis iga n € N korral A,, € 2, kusjuures
{reX: f(x) £0} = U A,.

Viite toestuseks jadb néidata, et iga n € N korral p(A4,) < oo.
Ulesanne 2.5. Tdestada, et iga n € N korral u(A,,) < oco.
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2.3. Harjutusiilesandeid ja taiendavaid mérkusi

Ulesanne 2.6. Olgu p(X) > 0 ning olgu f,g € LT (X, A, ) sellised, et f(z) < g(x) iga z € X
korral ja [ fdp < co. Toestada, et [ fdu < [ gdpu.

Ulesanne 2.7. Olgu f € LT (X, 2, 1). Toestada, et hulgafunktsioon
pre QLBAH/ fdu € 0,00]
A

on moaot, kusjuures iga g € LT (X, 2, u) korral

/gduf = /gfdu- (2.7)

NAPUNAIDE. Vordus (2.7) toestada kdigepealt lihtsa mootuva funktsiooni g € LT jaoks; vorduse
(2.7) toestuseks tildjuhul kasutada teoreemi ja monotoonse koonduvuse teoreemi.

Mirkus 2.5. Ulesande valguses tekib loomulik kiisimus: kui (X,2() on mo6tuy
ruum ning hulgafunktsioonid p, v: X — [0, 0] on mdodud, siis millistel tingimustel
leidub funktsioon f € L*(X, 2, p) selliselt, et v = iy, s.t.

V(A):/Afdu, AeL

o-loplike mootude p ja v juhul annab vastuse sellele kiisimusele iiks mooduteooria
olulisemaid tulemusi— Radon-Nikodymi teoreem, mille me toestame kidesoleva kons-
pekti paragrahvis I'V.2.
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Koikjal selles paragrahvis on (X, %, u) méoduga ruum.

Meenutame, et funktsiooni f: X — R positiivne osa f*: X — R ja negatiivne
osa f~: X — R on defineeritud vordustega

oy [P0, gz
) = {O, kui f(z) <0, €4
ja
_ 0, kui f(z) > 0;
T) = r e X.
f(z) {—f(x), kui f(x) <0, ©

Seejuures f = ft— f~jal|fl=ft+ /.

3.1. Ruum L (X, 2, p)
Olgu f: X — R (2-)mootuv funktsioon.

Definitsioon 3.1. Oeldakse, et funktsioon f on (Lebesgue’i méttes) integreeruv
(maéodu p jirgi), kui

/f+d,u<oo ja /f_d,u<oo.
b'e X

Mirgime, et fT, f~ € L (u) ning seega on integraalid nendest funktsioonidest defineeritud.

Kui funktsioon f on integreeruv, siis (Lebesque’i) integraal funktsioonist f (ile
hulga X ) (moodu p jirgi) defineeritakse vordusega

/deu:/Xfwu—/Xf—du.

Juhime tihelepanu, et integreeruvate funktsioonide f € L jaoks annab see integraali definit-
sioon sama tulemuse, mis (mittenegatiivse mootuva funktsiooni integraali) definitsioon [2.2] sest
fe L* korral f+ = fja f~ =0.

Kobigi moodu p jirgi integreeruvate funktsioonide f: X — R klassi tdhistatakse
stimboliga Ly (X, 2, ) voi, kui ruumi (X, 2, ) roll on kontekstist selge, siis ka lihtsalt
Ll (,LL) voi Ll-

Rohutame, et see klassi L; definitsioon on “ajutine™ pérast teoreemide toestamist
me laiendame klassi L; peaaegu koikjal madratud R-vidrtustega integreeruvate funktsioonidega
(muidugi eelnevalt selgitades, mida niisuguste funktsioonide puhul integreeruvus tdhendab).

Paneme tdhele, et
ferL <« /\f|<oo — |fle L.

Ulesanne 3.1. Téestada need samaviirsused.

83
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Kui f € Ly ja A € 2, siis (Lebesgue’i) integraal funktsioonist f (ile hulga A)
(maéodu p jirgi) defineeritakse vordusega

/Afdu :Z/Xfodu-

Juhime téhelepanu, et fxa € L, sest kuna | fxa| < |f], siis [ |fxa] < [|f] < o0.
Ulesanne 3.2. Olgu f € Ly ja A € 2. Toestada, et

/Afdu:/Aﬁdu*/Af’dw

Koik antud kontekstis kasutatavad alternatiivsed tdhistused on analoogilised
juhuga, kus f € L. (Néiteks [, fdu = [ f(z)du(z) = [, f = [ [ jne.)
Ulesanne 3.3. Olgu f,g € L, A, B € 2. Toestada, et

(a) hulk {z € X: f(x) # 0} on o-16plik (s.t. leiduvad hulgad A4, € A, u(A,) <co,n=1,2,...,
nii, et {z € X: f(z) #0} =2, 4,);

(b) kui f <g,siiska [f< [g;
(¢) kui p(A) =0, siis [, f=0;
(d) kui p(ANB)=0,siis [, zf= [, [+ [5].

Jéargnev teoreem iitleb, et L; on vektorruum, kusjuures integraal [ on lineaarne
funktsionaal ruumil L.

Teoreem 3.1. Olgu f,g € Ly ning olgu o € R. Siis
(a) af € Ly, kusjuures [af = o [ f;
(b) f+ g€ L, kusjuures [(f+9)= [f+ [ g

TOESTUS. (a). Kdigepealt paneme téhele, et

[las= [1allsi=lal [ 171 <o

(sest f € Ly tottu [|f| < oo); jarelikult aof € Ly.
Jadb niidata, et [af =a [ f.
Vaatleme esmalt juhtu, kus o > 0. Siis (af)T = af T ja (af)” = af, seega

[ar=[@nt = [@p = [ar = [ar
el [r)-efs

Ulesanne 3.4. Téestada vorduse [af = « [ f kehtivus juhul, kui a < 0.
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(b). Koigepealt mirgime, et

J1r+ai< [ustvio= [ 11+ [1ol <o

(sest f,g € Ly tottu [ |f| < oo ja [|g| < oo); jirelikult f+ g € Ly.
Téhistame h = f + g. Teoreemi toestuseks jidb niidata, et [h = [f+ [g.
Selleks paneme téhele, et

W —h™=f"—f"+g"—g°
ehk, teisisonu,

Wt +f +g =h +fT+g"
ning jarelikult ka

/ﬁﬁ+f‘+@d:/ﬁf+f++¢1

Kuna f*, f~, 9", g7, ht,h~ € L*, siis jareldub viimasest vordusest, et

fiosfrefo-frefrfs
[ =] [

st. [h=[Ff+[g O
Ulesanne 3.5. Olgu f,g € L1, a € R ja A € 2. Toestada, et

@) [u(f+a)=[sf+ 10

(b) [yaf=af,f
Teoreem 3.2. Olgu f € Ly. Siis | [ f| < [|f]-

ehk, teisisonu,

TOESTUS. Teoreemi toestuseks paneme téhele, et

Al |l g+ frfor - in
sest kuna f*,f~ € LT, siis [ f* > 0ja [ f~ > 0 ning jérelikult | [ f*| = [ /T ja
=01 O
Teoreem 3.3. Olgu f,g € Ly. Jirgmised vdited on samavddrsed:

(i) f=9 pk;

(ii) J1f—gl=0;

(iii) [, f = [,9 iga E €A korral.
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TOESTUS. (i)<>(ii) on ilmne, sest kuna |f — g| € L™, siis teoreemi [2.§| pohjal

/|f g=0 e |f-gl=0pk < f=g pk

(ii)=(iii). Kehtigu tingimus (ii) ning olgu £ € . Siis

/ /E(f—g)‘</E|f—g|=/|f—gl><E</|f—g|:0;

jarelikult fEf — [, 9 =0 ehk, teisisonu, [, f = [,g.
(iii)=(ii). Kehtigu tingimus (iii). Tdhistame

A={zeX: flz)2g(x)} ja B={zeX: f(z)<glx)}.
Paneme tihele, et A, B € 2, kusjuures AN B =0 ja AU B = X. Seega

Jir=d=[1r=a+ [11=al= [(F=a+ [5-1)
Z/Af—/Ang/Bg—/BfZO,

sest tingimuse (iii) pohjal [, f = [,g9ja [, f = [z 9. O

Jargnevalt laiendame klassi L;, andes iihtlasi tema elementidele uue tolgenduse.

(I) Me iitleme, et (u-)peaaegu koikjal hulgas X miiratud R-viirtustega funk-
tsioon f on (u-)integreeruv, kui leidub (A-mootuv) (p-)integreeruv funktsioon
g: X — R nii, et f = g p.k. Integraal (m6odu p jérgi) niisugusest funk-
tsioonist f defineeritakse vordusega [ fdu = [ gdpu.

Margime, et see integraali definitsioon on korrektne: kui h: X — R on niisugune
p-mootuv integreeruv funktsioon, et f = h p.k., siis ka h = ¢ p.k. ning seega
teoreemipéhjal Jhdu= [gdu.

(IT) Me loeme klassi L; kuuluvateks (lisaks 2i-modtuvatele (u-)integreeruvatele
funktsioonidele X — R) koik peaaegu koikjal hulgas X méadratud (u-)integ-
reeruvad funktsioonid.

On ilmne, et iga f € Ly on p.k. 16plik (s.t. | f| < oo p.k.). Samuti on lihtne veenduda,
et teoreemid ja iilesanded jadvad kehtima ka klassi L, niisuguse inter-
pretatsiooni korral.

Ulesanne 3.6. Olgu f € L; ning olgu h peaaegu kéikjal hulgas X misratud R-viidrtustega
funktsioon. Toestada, et kui h = f p.k., siis ka h € L.

Lopuks,

(ITT) Kaks funktsiooni klassist L; loeme selle klassi elementidena vordseks, kui nad
on vordsed peaaegu koikjal ruumis X.
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Selliselt tolgendatuna on L; vektorruum, kusjuures [ on lineaarne funktsionaal sellel
ruumil (rohutame, et niisuguse tolgenduse jérgi on integraal klassi L; elementide
jaoks teoreemi pohjal korrektselt defineeritud).

Ulesanne 3.7. Veenduda, et L, vektorruum, kusjuures j on lineaarne funktsionaal sellel ruu-

Veelgi enam, vektorruum L; on normeeritud ruum jérgneva vordusega defineeri-
tud normi suhtes:

T =/|fr, Feln

Ulesanne 3.8. Veenduda selles.

Miérkus 3.1. Sisuliselt tolgendame me ruumina L; faktorruumi L1/ ~, kus ekvivalentsiseos ~
klassis L7 on defineeritud seosega

f~g9g <= f=g pk, f.g€ L.

Seejuures tehted selle faktorruumi ekvivalentsiklassidega, integraal ekvivalentsiklassist, ning ekvi-
valentsiklassi norm on defineeritud esindajate kaudu: kui f,g € L1 ja a € R, siis defineeritakse

Atld=U+d  alfl= s, /m:/f, ||m||:/\f|, (3.1)

kus [f],[g], [f + g], [@f] € L1/ ~ on vastavalt funktsioonide f, g, f + g, af € L; ekvivalentsiklassid.
Ulesanne 3.9. Veenduda, et definitsioonid (3.1) ei séltu esindajate f ja g valikust.

Olgu (X, 2, 77) médduga ruumi (X, 2A, ) tiield. Paneme tihele, et
Ll(X7 2L, :u) = Ll(Xaﬁvﬁ)’

s.t. klassid Ly (X, 2, i) ja Li(X, A, 1) koosnevad iihtedest ja samadest funktsioonidest,
kusjuures ka integraalid mootude p ja @ jirgi neil klassidel langevad kokku, s.t.

/fdu:/fdﬁ iga f € Li(X, 2, 1) = Li(X,2A, ) korral.

Ulesanne 3.10. Veenduda selles.

NAPUNAIDE. Ulesande lahenduseks
(a) toestada, et kui f € Lt (X, p), siis ka f € LT (X, A, 1), kusjuures

/fdu /fcf (3:2)

(vordus (3.2) toestada esmalt lihtsate mootuvate funktsioonide f € L1 (X, 2, 1) jaoks ning
seejiirel, kasutades monotoonse koonduvuse teoreemi, suvaliste f € LT (X, 2, u) jaoks);

(b) toestada, et kui f: X — R on 2A-modtuv u-integreeruv funktsioon, siis on ta ka f-integreeruv,
kusjuures kehtib vordus (3.2));

(c) toestada, et kui f: X — R on p-p.k. méiratud p-integreeruv funktsioon, siis ta on ka
[i-integreeruv, kusjuures kehtib vordus (3.2));

(d) toestada, et Ly (X, A, 1) C L1 (X, A, p).
Niisiis, Li(X,2, 1) = Li(X,2, i), kusjuures ka integraalid méstude p ja 7z jirgi
neil klassidel langevad kokku. Jérelikult, KONELDES KLASSIST L;(X, 2, 1), VOIME
ALATI EELDADA (JA SELLES PARAGRAHVIS EDASPIDI EELDAMEGI), ET MOODUGA
RUUM (X, %, ) ON TAIELIK.




88 I1. Lebesgue’i integraal

3.2. Lebesgue’i koonduvusteoreemid

Teoreem 3.4 ((Lebesgue’i) domineeritud koonduvuse teoreem). Olgu funktsioo-
nid f, € Ly, n=1,2,..., 70 f: X — R sellised, et

1° fo—f pk;
2° leidub funktsioon g € Ly selliselt, et iga n € N korral |f,| < g p.k.
Siis ka f € Ly, kusjuures
/ f—tim [ f.. (3.3)

n—oo

TOESTUS. Toestame teoreemi viited koigepealt eeldustel, et
iga x € X korral f,(z) —— f(z) ja |fu(2)] <g(x)<oo,n=1,2,.... (34)
n— o0

Sel juhul, kuna funktsioonid f,, n =1,2,..., on mootuvad, siis teoreemi pohjal
ka f = lim f, on mootuv. Kuna iga z € X korral |f,(x)] —— |f(x)], siis ka
n—oo n—oo

|f] < g, jarelikult [|f] < [ g < oo, seega f € L.
Vorduse 1} toestuseks piisab niidata, et [ |f, — f| — 0.

Tdepoolest, sel juhul ka | [ fr — [ f| < [|fn = f| —— 0.

n—oQ

Selleks paneme téhele, et

e igan € N korral 2g — |f,, — f| € LT
(sest 29 — [fo — f| 2 29 = (Iful + [f]) =g = ful + 9 = |f1 = 0);

J 29—’fn—f|E>29;

seega Fatou lemma pohjal

/Qgghgglf/@g—lfn—fl) = lim inf (/29_/|fn_f|)
=/2g+h£gg)1f (—/!fn—f\) =/2g—lizr;sogp/!fn—f\,

limsup/|fn — f] <0;

n—oo

millest

jarelikult lim [ |f, — f| = 0, nagu soovitud.
n—oo

Ulesanne 3.11. Jireldada teoreemi viidete kehtivusest lisatingimustel (3.4) nende kehtivus iild-
juhul.

]
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Jéreldus 3.5 ((Lebesgue’i) tokestatud koonduvuse teoreem.). Olgu pu(X) < oo ning
olgu funktsioonid f, € L1, n=1,2,..., ja f: X — R sellised, et

1° fo—f pk;
2° leidub reaalarv M > 0 selliselt, et iga n € N korral |f,| < M p.k.
Siis ka f € Ly, kusjuures
/f = lim [ f,.
n—o0

TOESTUS. Kdigepealt paneme téhele, et funktsioon g(x) = M, x € X, on integ-
reeruv.

Tdepoolest, g = M x x ning seega [ g = Mu(X) < oo (sest u(X) < 00), s.t. g € Ly.

Jarelduse vaide jareldub niitid vahetult Lebesgue’i domineeritud koonduvuse
teoreemist 3.4] N

Teoreem 3.6. Olgu funktsioonid f; € Ly, j =1,2,..., sellised, et

Z/ym < 0. (3.5)

Siis rida Z;’il fj koondub p.k., kusjuures Z;’il fi € Ly ja

/]ilszgil/fj.

Jareldus 3.7. Normeeritud ruum Ly on tdielik (s.t. ta on Banachi ruum).

TOEsTUS. Kuna . -
Z/w =S 15l
j=1 j=1

siis eeldus (3.5) tahendab, et rida > 2% f; ruumis L, on absoluutselt koonduv. Kuna
normeeritud ruum on téielik parajasti siis, kui temas rea absoluutsest koonduvusest
jéreldub selle rea koonduvus, siis piisab ruumi L, téielikkuseks veenduda, et eel-
dusel (3.5) rida > 272, f; koondub ruumis L;; seejuures voib ildisust kitsendamata
eeldada, et funktsioonid f;, 7 = 1,2,..., on médratud koikjal hulgas X. Teoreemi
pohjal on funktsioon f(x) = Zj’;l fj(xz) madratud p.k. kéikjal hulgas X, kus-
juures f € L;. Ruumi L, tiielikkuseks piisab néidata, et Z;; fj = f ruumis Ly,

s.t. limy, o0 Hf — 2?21 fill = 0. Veendume selles:

. . o 1w o .
Hf_;fj :/‘f_;fj D RN DED S I

j=n+1 j=n+1 j=n+1
(siin vorratus (1) kehtib integraali monotoonsuse tottu; vordus (2) kehtib monotoon-
se koonduvuse teoreemi [2.5 pohjal). O
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TroREEMI [3.6] TOESTUS. Uldisust kitsendamata vdime eeldada, et funktsioonid f;,
j =1,2,..., on madratud koikjal hulgas X. Siis Z;; |fj| € LT. Kuna Lebesgue’i
monotoonse koonduvuse teoreemi (tédpsemalt, teoreemi pohjal

/§;|fj|:§;/|fj|<oo7

siis 77, [fj| € L1 ning teoreemi m (a), pohjal > 72 |fi(x)] < oo pk. z € X
korral. Kuna arvrea absoluutsest koonduvusest jéreldub tema koonduvus, siis saame
siit, et ka rida Y72, fj(z) koondub p.k. x € X korral, s.t. rida >°°, f; koondub
p.k. ning seega on funktsioon Zj; f; médratud p.k.

Arvestades, et

j=1 j=1

ja

ij

Jj=1

< Z |f;l € Ly igan € N korral,

Jj=1

jireldub Lebesgue’i domineeritud koonduvuse teoreemist, et Z;’il f; € Ly, kus-

juures
/g;fj:’}L%/gszy}gﬁog/fj:g/fj-

3.3. Koikjal tihedaid alamruume ruumis L;(X, 2, 1)

Teoreem 3.8. Olgu f € Lq. Siis iga € > 0 korral leidub lihtne mootuv funktsioon

¢ € Ly selliselt, et
[ie-ol <=

Margime, et {ildjuhul ei tarvitse lihtne mootuv funktsioon olla integreeruv. Teo-
reem viidab, et integreeruvate lihtsate mootuvate funktsioonide alamruum on

koikjal tihe ruwmis Ly, sest [ |f —¢| = ||f — ¢ll1,-

TrEOREEMI [3.8] TOESsTUS. Uldisust kitsendamata voime eeldada, et funktsioon f
on madratud koikjal hulgas X. Fikseerime vabalt ¢ > 0. Mittenegatiivse mootuva
funktsiooni integraali definitsiooni pohjal leiduvad lihtsad méotuvad funktsioonid

¢, ¢" € LT selliselt, et ¢/ < f+ja ¢’ < f~ ja

Jo>[r-5n [os][r-2
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On selge, et ¢ = ¢ — ¢” € Ly on lihtne mootuv funktsioon; seejuures

Ji=6=[lo=r)-@-ol< [(rr=s1+15 =)
~furaerea=(fr-fo)+ ([r-[#)

Definitsioon 3.2. Olgu X topoloogiline ruum.
Funktsiooni g: X — R kandjaks nimetatakse hulka

supp g = {z € X: g(z) # 0}

(s.t. funktsiooni ¢ kandja on hulga {x € X: g(x) # 0} sulund ruumis X).

Teoreem 3.9. Olgu F': R — R mittekahanev vasakult pidev funktsioon ning olgu
Mp C P(R) ja pp: Mp — [0,00] funktsioonile F vastavad Lebesgue-Stieltjesi o-
algebra ja Lebesque-Stieltjesi moot. Olgu f € Li(R, Mg, ur). Siis iga € > 0 korral
leidub tokestatud kandjaga pidev funktsioon g € Li(R, Mg, up) selliselt, et

/‘f—g|dﬂF<5-
R

Ulesanne 3.12. Tdestada, et

(a) tokestatud kandjaga pidev funktsioon g: R — R on Lebesgue’i-Stieljesi mottes integreeruv,
st. g€ Li(R,Mp, ur);

(b) tokestatud kandjaga pidevad funktsioonid moodustavad alamruumi ruumis Ly (R, Mg, up).

Teoreem viidab, et tokestatud kandjaga pidevate funktsioonide g: R — R
alamruum on koikjal tihe ruumis L1 (R, Mp, up), sest [o | f—gl dpr = | f=9ll i@ Mppr)-

Definitsioon 3.3. Oeldakse, et topoloogiline ruum X on lokaalselt kompaktne, kui
ruumi X igal punktil leidub kompaktne imbrus (s.t. iga € X korral leiduvad
kompaktne hulk K C X ja lahtine hulk U C X selliselt, et x € U C K).

On ilmne, et iga kompaktne topoloogiline ruum on lokaalselt kompaktne. Proto-
tiitibiline néide lokaalselt kompaktsest topoloogilisest ruumist, mis pole kompaktne,
on ruum R™.

Kehtib jirgmine teoreemist tildisem tulemus.

Teoreem 3.10. Olgu X lokaalselt kompaktne Hausdorffi ruum, sisaldagu o-algebra
A C P(X) ruumi X Boreli o-algebrat ning olgu p: A — [0, 00| regulaarne maoot.
Siis iga f € Li(X,, p) korral leidub kompaktse kandjaga pidev funktsioon g €
Li(X, 2, ) selliselt, et

J1r=glau<e
X
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Niisiis, teoreemi[3.10 eeldustel on kompaktse kandjaga pidevate funktsioonide g €
Ly (X, A, p) hulk koikjal tihe ruumis Ly (X, A, p), sest [ |f—g] dp = ||f—9llz,x20)-

Ulesanne 3.13. Téestada, et teoreemi eeldustel moodustavad kompaktse kandjaga pidevad
funktsioonid g € L1 (X, 2, 1) alamruumi ruumis Ly (X, A, p).

Mirgime, et funktsiooni f: R™ — R kandja on kompaktne parajasti siis, kui ta
on tokestatud, sest hulk ruumis R™ on kompaktne parajasti siis, kui ta on kinnine
ja tokestatud.

Teoreemi toestus toetub jargnevale topoloogia kursusest tuttavale Urosoni
lemma lokaalselt kompaktsele versioonile.

Teoreem 3.11 (Urdsoni lemma (lokaalselt kompaktne versioon)). Olgu X lokaalselt
kompaktne Hausdorffi ruum ning olgu K C U C X, kus hulk K C X on kompaktne
ning hulk U C X on lahtine. Siis leidub pidev funktsioon g: X — R selliselt, et

(1) g[X] C0,1];
(2) funktsiooni g kandja supp g on kompaktne, kusjuures suppg C U;

(3) g(x) =1 iga x € K korral.

Ulesanne 3.14. Tdestada teoreem m

NAPUNAIDE. Koigepealt nédidata, et kui hulk A € 2 on selline, et p(A) < oo, siis iga € > 0 korral
leidub kompaktse kandjaga pidev funktsioon g € Ly (X, 2, 1) selliselt, et [ [xa—g| dp < €. (Selleks
kasutada moodu p regulaarsust ning Urdsoni lemmat ) Seejérel kasutada teoreemi

TEOREEMI [3.9| TOESTUS (ILMA TEOREEMI [3.10] KASUTAMATA). Olgu ¢ > 0. Teo-
reemi [3.8| pohjal leidub lihtne mootuv funktsioon ¢ € Ly (R, Mp, ur) selliselt, et

€
17— ldur <5
R
Olgu
gb:ZanAj meN, o eR, Aj e Mp,j=1,...,n)
j=1
funktsiooni mingi niisugune esitus, kus hulgad Ay, ..., A, on paarikaupa loikumatud

ning o; #0, j=1,...,n. Kuna ¢ € L (R, Mp, up), siis pup(4;) < oo, j=1,...,n.
Teoreemi 1[5.7] pohjal leiduvad iga j € {1,...,n} korral arv n; € N ja paarikaupa
16ikumatud tokestatud vahemikud I} C R, ¢ =1,...,n;, selliselt, et

TLj . g
AN | ] < )
MF( ’ H Z) 3n ||

Tahistame

n n n; n Ny
Y= Z%XU:; 0= Z%' szz = Z ZO‘JXI%
j=1 j=1 i=1

j=1 i=1
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siis ¥ € L1 (R, Mp, ur), kusjuures

/R|¢—¢|duF=/R‘jZ:anAj—]z:ajxujgllg
B /R‘;O‘j (v, =, ) dor
<Z|Oéj|/R‘XAj — XU, 1
—Zlam AAUF <Z\%\3n|a‘ 5

Teoreemi toestuseks piisab niiiid naidata, et

dpp

dnr = 31 [ X,
>

(o) kui (a,b) C R on tokestatud vahemik, siis iga v > 0 korral leidub tokestatud
kandjaga pidev funktsioon h € Li(R, Mg, pup) nii, et

/ [X(ap) — bl dpr < 7.
R

Toepoolest, kui viide (o) kehtib, siis mis tahes j € {1,...,n} jai € {1,...,n;} korral leidub
tokestatud kandjaga pidev funktsioon h! € Li(R, M, pup) nii, et

— WY dpp < .
/R{'Xff ildpr 3nn;|ajl

Tahistame
n

S e

j=1i=1

siis g on tokestatud kandjaga pidev funktsioon, kusjuures

[ - gmw_/]zz%xﬂ —zz%hﬂ duF_/\zzaj X — )| dur

j=11i= =11i=1

ZZ|%|/|X“ hj‘d”F<ZZ|a3|3nn |ovj ] 5;

j=11i=1 j=11i=1

jarelikult

£ E £
/|f—g|duF</|f—¢|duF+/|¢—¢|duF+/|w—g|duF<f+f+f=s
R R R R 3 3 3

Toestame niitid véite (). Olgu (a,b) C R mingi tokestatud vahemik ning olgu
~v > 0. Valime arvud ¢, d € (a,b), ¢ < d, selliselt, et

r((a,0)\ (¢,d)) <

Ulesanne 3.15. Veenduda, et sellised arvud ¢, d € (a, b) eksisteerivad.
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Defineerime funktsiooni h: R — R seosega

/

0, kui z € (—o0,al;

= kui z € [a, cl;
h(z) = (1, kui z € [, d];

1—2=4 " kuize€ [db];

0, kui x € [b, 00),

\

siis h on tokestatud kandjaga pidev funktsioon, kusjuures

/ X(ap) — Pl dpr < /X(a,b)\(c,d) dur = pr((a,b)\ (c,d)) <
R R

3.4. Harjutusiilesandeid

Olgu (X, 2, u) 16pliku moéduga ruum ning olgu g: X — R (Boreli mottes) mootuv
funktsioon. Siis hulgafunktsioon

ng " (E) = (g '[E]), E € Bg.

1

on Boreli moot ruumis R. Kui g on tdoendosusmoot, siis mootu pug~" nimetatakse

funktsiooni g jaotuseks.

Ulesanne 3.16. Tdestada, et ug~! on mdot.

Defineerime funktsiooni
G(t) <{x € X: g(zx) < t}> = u(g [(—oo,t)]) =g ((—o0,t)), teR.

Kui p on toendosusmoot, siis funktsiooni G nimetatakse funktsiooni g jaotusfunkt-
stooniks.

Ulesanne 3.17. Toestada, et

(a) funktsioon G on mittekahanev ja vasakult pidev;

(b) pg~! = pg (s.t. pg~! on funktsioonile G vastav Boreli moot, vt. § 1.5, punkt 1).
Ulesanne 3.18. Toestada, et kui f € Li(ng™1), siis funktsioonide g ja f kompositsioon f o g €

L, () kusjuures
/fd/ig*1 = /fogdu~

Veelgi tdpsemalt, mis tahes E € By korral

/fdug‘1 =/ fogdpu.
E g tE]



§ 4. Riemanni integraali ja Lebesgue’i integraali
vahekord

Meenutame koigepealt Riemanni integraali moistet.

Olgu f: [a,b] — R tokestatud funktsioon ning olgu 7' 16igu [a,b] jaotusviis
punktidega
a=x0<x; <Ty<- -+ <Tp1<x,=0b (ne€N).
Téhistame A(T) := max (x; — zj—1) (s.t. A(T) on jaotusviisi 7' pikima osaldigu
<j<n

pikkus) ning
M; := sup{ f(z): ze[q:j L)}, my=inf{f(z): ze[:z:j 1,25} j=1,...,n,

ZM Tj— Tj— 1 Zm] — T 1

Summasid S(7T") ja s(T') nimetatakse (16igu [a, b] jaotusviisile T" vastavateks) funk-
tsiooni f Darbouz’ dlemsummaks ja Darboux’ alamsummaks.

Matemaatilise analiiiisi kursusest teame, et

(a) kui 16igu [a, b] jaotusviis 7" on saadud jaotusviisi 7' punktidele uute punktide
lisamise teel, siis

S(T") < S(T) ja s(T") = s(T),

s.t. jaotusviisi peenendamisel Darbouz’ tilemsumma et kasva ja Darboux’ alam-
summa ei kahane;

(b) 16igu [a, b] mis tahes jaotusviiside ja T ja T" korral
S(T) = s(T"),
s.t. dkski Darbouz’ tilemsumma pole vdiksem tihestki Darboux’ alamsummast.

Tahistame
—b
/ f=if{S(T): T on Idigu [a,b] jaotusviis},
b
/ f =sup{s(T): T on Idigu [a,b] jaotusviis}.

(Mérgime, et need inf ja sup on 16plikud, sest funktsiooni f tokestatuse tottu on selle
funktsiooni Darboux’ iilemsummade hulk ja Darboux’ alamsummade hulk tokesta-

—b
tud.) Arvusid [_f ja f f nimetatakse vastavalt funktsiooni f Darbouz’ dilemiseks
integraaliks ja Darboux’ " alumiseks integraaliks (iile 16igu [a, b]).

Jargnev teoreem on meile tuttav matemaatilise analiiiisi kursusest.

95
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—b
Teoreem 4.1 (Darboux’ lemma). (a) A(liTr)n OS(T) = [ [, st iga reaclarvu e > 0
—
korral leidub reaalarv & > 0 selliselt, et

—b

AT)<d = 0<S(T)—/f<e

a

(teisisonu, piisavalt peentele jaotusviisidele vastavad Darbouz’ ilemsummad
erinevad Darbouz’ dlemisest integraalist kuitahes vihe);

(b) lim s(T) = fbf, s.t. iga reaalarvu € > 0 korral leidub reaalarv 6 > 0
A(T)—0 —a

selliselt, et

b
AT)<éd = 0</f—s(T)<e

(teisisonu, piisavalt peentele jaotusviisidele vastavad Darbouz’ alamsummad
erinevad Darbouz’ alumisest integraalist kuitahes vihe).

—b
Definitsioon 4.1. Kui faf = fbf, siis 6eldakse, et funktsioon f on Riemanni

—b
mottes integreeruv 16igus [a,b]. Darboux’ integraalide [ f ja [ * ¢ iihist vadrtust
nimetatakse sel juhul funktsiooni f Riemanni integraaliks (ile loigu [a,b]) ja tdhis-
tatakse siimboliga

b b b b
R—/ f(z)dx voi R—/ f voi lihtsalt /f(a:)dx voi /f.

Niisiis, kui funktsioon f on Riemanni méttes integreeruv 16igus [a, b], siis
b b b
B[ swa= [ 1= [1

E[a,b] = {E N [a,b]: E e E} ja Miab] = mlﬁ[a75]7

Tahistame

kus £ on ruumi R Lebesgue’i g-algebra ja m on Lebesgue’i moot ruumis R. Kui see
ei pohjusta kaksipidimoistmist, siis kirjutame edaspidi m,; asemel ka lihtsalt m.
Paneme tihele, et

(a) Liqp on o-algebra (see fakt jireldub iilesandest 1)2.12));
(b) Lia on 16igu [a, b] Boreli o-algebra téield (see fakt jareldub iilesannetest 1/2.13]

ja 1j3.32).

o-algebrat L, ;) nimetatakse loigu [a,b] Lebesgue’i o-algebraks ning mootu migp)
Lebesgue’t mooduks loigus [a, b].

Oeldakse, et 16igus [a,b] m-p.k. méiratud R-viirtuseline funktsioon g on Le-
besgue’t mottes integreeruv (loigus [a,b]), kui g € Ll([a,b],ﬁ[a’b],m[avb]). Ruumi
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Ly ([a,b], Loy, mpap) téhistatakse ka lihtsalt siimboliga Li[a, b]. Selle ruumi funkt-
sioonidest integraali mérkimiseks (Lebesgue’i moodu m := my,y jérgi) kasutatakse
stimbolite dm ja dm(x) ning f[Q q asemel sageli ka vastavalt stimboleid dz ning fcd;
tapsemalt, kui g € Ly[a,b], E € L) jaa < c<d< b, siis

[ atri= [ gwyde = [ g@)dmi) = [ gam

/cdg dzx :—/cdg(x) dz :—/cdg(x) dm(z) 3—/Cdg dm = . gdm = g g(x) dm(z).

ja

Teoreem 4.2. (a) Loigus |a,b] tokestatud funktsioon f: [a,b] — R on Riemanni
mottes integreeruv selles loigus parajasti siis, kui tema katkevuspunktide hulga
Lebesgue’s moot on null.

(b) Kui funktsioon f: |a,b] — R on Riemanni mdttes integreeruv loigus |a,b|, siis
ta on ka Lebesgue’i mottes integreeruv loigus |a,b], kusjuures

b
f(x) dm(x) = R- / f(x) d.

[a,b]

s.t. funktsiooni f Lebesgue’i integraal dle 6igu [a,b] on vordne tema Riemanni
integraaliga tle selle loigu.

Koikjal jargnevas tidhistame funktsiooni f: [a,b] — R Lebesgue’i integraali,
Riemanni integraali, Darboux’ iilemist integraali ja Darboux’ alumist integraali 16i-
gus [a, b] vastavalt siimbolitega

[5 mfs [r i

(muidugi juhul, kui need integraalid eksisteerivad).

_ Olgu funktsioon f: [a,b] — R tokestatud 16igus [a, b]. Defineerime funktsioonid
f,f: la,b] — R vordustega

6—0+
(z) = lim inf{f(2): z€ (z—d,x+08)}, z¢€lab].

f(z) = lim sup{f(z): z€ (x =, 2 +0)}, =€ [a,b],

z 0—0+
Ulesanne 4.1. Veenduda, et funktsioonid f ja Jf on korrektselt defineeritud, s.t. nende defini-
tsiooniavaldises olevad piirviirtused eksisteerivad.

Mérgime, et funktsioon f on pidev punktis x € [a,b] parajasti siis, kui f(x) = f(x).

Ulesanne 4.2. Veenduda selles.

Teoreemi [£.2] toestus toetub jirgnevale lemmale.
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Lemma 4.3. Funktsioonid f ja f on Lebesgue’i mottes integreeruvad loigus [a, b],
kusjuures o
fi-i » i)

Ti: a=aj<af<al<--<af <zl =b (neN), k=12...,

TOEsTUS. Olgu

sellised 16igu [a, b] jaotusviisid, et jaotusviisi T}, pikima osaléigu pikkus liheneb prot-

sessis k — oo nullile, s.t. lim max (2% — 2% |) = 0. Téhistame jaotusviisile 7T},

k—oo 1<j<ng J i1
vastavad funktsiooni f Darboux’ iilemsumma ja alamsumma vastavalt siimbolitega

S(Ty.) ja s(Ty); siis teoreemi [4.1] pohjal

thTk /f ja llmSTk /f

Tahistame iga k € N korral

MJk _Sup{f : [I’?,DZL’?]}, J=1 ... ng,
f. 1nf{f : [x?ﬁl,xﬂ}, j=1,...,n,

ning defineerime lihtsad £-mdotuvad funktsioonid fy, f .o la,b] = R vordustega

Nk Tk

T k L k

Je = ZM]’ Xlak_y ah]s ik = ijX[x;tl,z?]'
j=1 j=1

Funktsioonid Tk,ik, k=1,2,..., on integreeruvad, kusjuures

nk —
tin [ 7= Jim S MKk~ o) = i S(T) = (1.
j=1

Nk

: b K, k Ky _ 1 _
i [ £, i > mbtaly—of) = fim o5 = [ .
- S
Paneme téhele, et mis tahes = € [a,b] \ Up—,{},..., 2} _,} korral
liw Tole) = Fa) o Jim £,(0) = f(a),
—00 k—ro0

Ulesanne 4.3. Veenduda selles.
Niisiis
fr—= [fmpk ja f — fmpk,

sest hulk (J,~ {«f,... .2 _;} on loenduv ning seega on tema Lebesgue’i mo6t null.
Funktsiooni f tokestatuse tottu leidub arv M > 0 selliselt, et |f(z)] < M iga
x € [a, b] korral; jarelikult iga k € N korral

‘Mjﬂ <M ja \m | < M, iga j € {1,...,nx} korral
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ning seega
fi@) <M ja |f (o) <M igaxelab)\ | J{af,. . 2]} korral.
»=1

Lebesgue’i tokestatud koonduvuse teoreemi pohjal on funktsioonid f ja S Lebesgue’i
mottes integreeruvad 16igus [a,b], kusjuures

[7=pm 7= 1o [r=pm 1= [s

TeOREEMI [£.2] TOESTUS. (a). Olgu funktsioon f: [a,b] — R tdkestatud loigus

[a,b]. Kuna Lemmap()hjal [f=[fia if = [ [, siis

[]

funktsioon f on Riemanni méttes integreeeruv 16igus [a, b]

e Jonfi = f1-fi = [a-

Kuna f — f =0, siis f— fe L*([a, bl, Lia), m[ab]); jarelikult teoreemi pohjal

/(7 f)=0 f—iZOm—p.k. = ?:im—p.k.

<= f on pidev m-p.k.
<= funktsiooni f katkevuspunktide hulga Lebesgue’i moot on null.

(b). Olgu funktsioon f: [a,b] — R Riemanni mottes integreeruv 16igus [a, b]. Siis
on funktsioon f tokestatud 1digus [a,b], jirelikult viite (a) toestuse ja Lemma

pohjal B
/TZ/i:Zf:/f:R'/f ja  f=[fmpk

Kuna f < f < f, siis jareldub viimasest vordusest, et f=f= f m-p.k.; seega on
funktsioon f Lebesgue’i mottes integreeruv 16igus [a, b], kusjuures

Ji=[5-2]s



§ 5. Mootuvate funktsioonide koonduvustiilipe

Selles paragrahvis vaatleme erinevaid mootuvate funktsioonide koonduvustiiiipe ning
uurime nende vahekordi.

Olgu X mittetiihi hulk ning olgu f, f,: X = R, n=1,2,....

Definitsioon 5.1. Oeldakse, et jada (f,) koondub funktsiooniks f dhtlaselt hul-
gas X, kui iga reaalarvu ¢ > 0 korral leidub indeks NV € N selliselt, et

n>N = iga z € X korral |f.(x) — f(x)] <e.

Definitsioon 5.2. Ocldakse, et jada (f,) koondub funktsiooniks f punktiviisi hul-
gas X, kui
iga z € X korral lim f,(x) = f(x).
n—oo

Eeldame niitid tdiendavalt, et (X,2(, 1) on modduga ruum.

Definitsioon 5.3. Oeldakse, et jada (f,) koondub funktsiooniks f p-peaaegu kdikjal
ruumis X (ehk lihtsalt peaaegu kdikjal, kui ruumi X ja moodu p roll on kontekstist
selge) ja kirjutatakse f, — f p-p.k. voi lim f, = f p-p.k. (voi ka lihtsalt f,, — f
n—oo
p.k. véi lim f, = f p.k.), kui
n—o0
leidub hulk A € A selliselt, et u(A°) =0 jaiga z € A korral lim f,(z) = f(z).

n—oo
Teisisonu, f, — f p-p.k. parajasti siis, kui hulk {x € X: f.(z) /& f(z)} on u-
hiiljatav.
Margime, et peaaegu koikjal koonduvuse definitsioon laieneb ka juhule, kus funk-
tsioonid f ja f,, n=1,2,..., pole miidratud mingis ruumi X p-hiiljatavas alamhul-
gas.

Eeldame niiiid tdiendavalt, et funktsioonid f ja f,, n = 1,2,..., on mootuvad
ning p-peaaegu koikjal 1oplikud.

Definitsioon 5.4. Oeldakse, et jada (f,) koondub funktsiooniks f mdodu p jirgi
ruumis X (ehk lihtsalt moodu jargi, kui ruumi X ja moodu p roll on kontekstist
selge) ja kirjutatakse f, — f moodu jargi voi p-lim f, = f, kui

n—oo
iga 0 > 0 korral lim u({x € X: |fulx)— f(z)| = 5}) = 0.
n—oo
(Juhime tdhelepanu, et funktsioonide f ja f,, n = 1,2,..., mo6tuvus garanteerib,
et {z € X: |fu(z) = flzx)] =6} eA)

Ulesanne 5.1. Olgu (X, 2, 1) médduga ruum ning olgu modtuvad funktsioonid £, g, f: X — R,
n=1,2,..., sellised, et f, — f moodu jargi ja f, — g mdodu jérgi. Toestada (ilma teoreemi
kasutamata), et f = g p.k.

Mairgime, et moodu jiargi koonduvuse definitsioon laieneb ka juhule, kus funk-
tsioonid f ja f,, n = 1,2,..., pole méidratud mingis ruumi X nullmooduga alam-
hulgas.

100
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Eeldame niitid tdiendavalt, et f, f, € Li(X, 24, u), n=1,2,....

Definitsioon 5.5. Oeldakse, et jada (f,) koondub funktsiooniks f ruumis L; (ehk
1-keskmiselt e. lihtsalt keskmiselt), kui

tiw 15, - 51 =0

Juhime t&helepanu, et [ |f, — f| = || fn — f|l1,; niisiis moistetakse koonduvuse all
ruumis L; (nagu nimetuse jargi oodata ongi) koonduvust Banachi ruumi L; normi
jargi.

On ilmne, et (modduga ruumis)
iihtlane koonduvus =  punktiviisi koonduvus == koonduvus p.k.

Samuti
iihtlane koonduvus == moodu jargi koonduvus.

Ulesanne 5.2. Olgu (X, 2, 1) méoduga ruum ning olgu f, f,: X — R, n = 1,2,..., modtuvad
funktsioonid. Tdestada, et kui f, — f iihtlaselt ruumis X, siis ka f,, — f m6odu jérgi.

Vastupidised implikatsioonid {ildjuhul ei kehti.

Niide 5.1. Olgu X = R, 2 = £ ja p = m. (Meenutame, et siimbolid £ ja m
tahistavad vastavalt ruumi R Lebesgue’i o-algebrat ja Lebesgue’i mootu ruumis R.)

1. Defineerime funktsioonid f,: R = R, n =1,2, ..., vordustega
1
fn - EX(O,’VL)
Siis f,, — 0 {ihtlaselt hulgas X. -
2. Defineerime funktsioonid f,: R - R, n=1,2,..., vordustega
fn = X(n—1,n)-

Siis f, — 0 punktiviisi, kuid mitte Lebesgue’i moodu jargi ruumis R, sest iga n € N
korral
,u({x eER: |fu(x)—0] > 1}) = ,u((n — 1,n)) =1.
Niisiis, punktiviisi koonduvusest (ning seega ka p.k. koonduvusest) ei jareldu tldjuhul
koonduvust moodu jirgi (ning seega ka tihtlast koonduvust).
3. Defineerime funktsioonid f,: R = R, n=1,2,..., vordustega

Jn=nx [O,l> .
Siis f,, — 0 p.k. (sest iga x € R\ {0} korral f,,(z) — 0), kuid mitte punktiviisi (sest

fn(0) — o0). Niisiis, koonduvusest peaaequ koikjal ei jareldu uldjuhul punktiviisi
koonduvust.
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Igaiihes néidetest 1-3

[ 1t =o0ldm = [ \g,1dm =1

seega f, # 0 ruumis L;(R, £, m). Niisiis, dhtlasest koonduvusest (ning seega ka
punktiviisi koonduvusest ja koonduvusest peaaegu kdikjal) ei jareldu dldjuhul koon-
duvust ruumis L.

Ulesanne 5.3. Olgu (X, 2, 1) 16pliku mééduga ruum ning olgu £, f, € Li(X, 2, p), n =1,2,....
Toestada, et kui f,, — f thtlaselt ruumis X, siis ka f, — f ruumis L;.

4. Defineerime funktsioonid f,,: R = R, n = 1,2, ..., vordustega
fi=X0,1) fQZX[O,%)’ fng[%’l),
f4:X[07%;)’ f5=X[}l’%>7 fGZX[%7%)7 f7—X[%71),
stX[O’%), f9—X[%’i), .......
Siis
lim | fr] dm =0,

n—o0 [a,b]

s.t. fn — 0 ruumis Ly (R, £,m). Samal ajal iga = € [0,1) korral f,(z) # 0. Niisiis,
koonduvusest ruumis Ly et jareldu tldjuhul koonduvust peaaegu koikjal.

Teoreem 5.1. Olgu (X, 2, u) méoduga ruum ning olgu f, f, € Li(X,2d,pn), n =
1,2,.... Kui

(1) fo—= [ pk;
(2) leidub funktsioon g € Ly selliselt, et igan € N korral |f,| < g p.k.,
sts fr — f ruumis Ly.

TOEsTUS. Kehtigu tingimused (1) ja (2). Piirprotsessis n — oo jareldub tingimu-
sest (2), et ka |f| < ¢ p.k. ning seega

1o — FI <|fal +1f] <29 pk

Kuna 2g € Ly ning |f, — f| — 0 p.k., siis Lebesgue’i domineeritud koonduvuse

teoreemi pohjal
lim/|fn—f|:/0:07
n— o0

s.t. f, = f ruumis L;. O

Teoreem 5.2. Olgu (X, 2, ) méoduga ruum ning olgu f, f, € Li(X, 2, p), n =
1,2,..., sellised, et f, — f ruumis Ly (X, 2, n). Siis ka f, — f moodu jirqgi.

Teoreem [5.2] viiidab, et koonduvusest ruumis Ly jireldub koonduvus moodu jirgi.
Naitest 4, jareldub niiiid, et koonduvusest moodu jéirgi er jareldu koonduvust p.k.
(sest selles néites f,, — f ruumis L;, seega teoreemi pohjal ka f,, — f moodu
jargi; samas ei kehtinud f, — f p.k.).
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TEOREEMI TOESTUS. Fikseerime vabalt § > 0 ja tahistame iga n € N korral
By = {r € X+ [f(x) — fule)] > 0.

Toestamaks, et f, — f moodu jargi, peame nditama, et lim p(E,) = 0.
n—oo

Iga n € N korral |f — f,| > ¢ hulgas E,,, seega

(B = [ o< [USle =5 =t <5 [ 171

Kuna f,, — f ruumis Ly, siis lim [ |f— f,| = 0; seega jéreldub viimasest vorratuste-
n—oo
ahelast, et ka lim p(E,) = 0. O
n—oo

Teoreem 5.3. Olgu (X, 2, u) maodduga ruum ning olgu modtuvad funktsioonid
fifo: X =R, n=1,2,..., sellised, et f, — f moodu jirgi. Siis

(a) leidub osajada (fy,) selliselt, et fr, — f p.k.;

(b) kui mingi mootuva funktsiooni g: X — R korral f, — g moodu jirgi, siis
f=g9 pk

TOESTUS. (a). Kuna f, — f mo6ddu jirgi, siis saame valida kasvava indeksite jada
(kn)se selliselt, et

1 <{x € X: |fy,(z)— flx)] > %}) < 2% iga n € N korral.

Tahistame
o0 o 1
A= U ﬂ {xeX: | fr, () — f(2)] <ﬁ}
m=1n=m
Kuna
oo oo 1
p(A%) = g (ﬂ U {oex: o) - )] > E})
m=1n=m
| U e x: o) - sl > L
m—00 - kn - n
G 1
< Jim Y {x € X+ |fu(x) — f(x)] > 5})
<1 io: i =0
mIHHIOO — on o
(sest rida ) 5= koondub ja koonduva rea jiskliige koondub nulliks), s.t. p(A¢) =0,
n=1

siis piisab viite (a) toestuseks niidata, et iga z € A korral fi, (z) — f(z).
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Olgu = € A. Siis leidub m € N nii, et iga n > m korral |f, (z) — f(z)| < L.
Kuna & — 0, siis ka |fx, (z) — f(x)] — 0.

(b). Olgu mé6tuv funktsioon g: X — R selline, et f,, — g mdddu jirgi. Teoreemi
véite (a) pohjal leidub leidub jada (f,)32, osajada (f, )22 selliselt, et fr, — g p.k.
Kuna moodu jargi koonduva jada osajada jargi koondub moodu jargi samaks funk-
tsiooniks, milleks esialgne jadagi, siis leidub teoreemi véite (a) pohjal jada (fx, )0,
osajada (fr, )po, selliselt, et fr, — f p.k. Kunailmselt ka f, — g p.k.,siis f =g
p.k. O

Jareldus 5.4. Olgu funktsioonid f, f, € Ly, n =1,2,..., sellised, et f, — [ ruu-
mis Ly. Siis leidub osajada (fy,) selliselt, et fr, — f p.k.

TOEsTUS. Viide jireldub vahetult teoreemidest [5.2] ja (a). O

Teoreem 5.5 (Jegorovi| teoreenf). Olgu (X, 2, u) lopliku mooduga ruum (s.t.
(X)) < 00) ning olgu peaaegu kdikjal loplikud moctuvad funktsioonid f, f,: X — R,
n=12,..., sellised, et f, — [ p.k. Siis iga € > 0 korral leidub hulk A € 2 selliselt,
et p(A°) < e ning f, — f dhtlaselt hulgas A.

TOESTUS. Fikseerime vabalt € > 0. Olgu hulk B € 2 selline, et p(B¢) = 0 ning iga
x € B korral |f(x)|,|fa(2)] <00, n=1,2,...,ja f,(x) = f(x). Tédhistame koikide
k,m € N korral

B, = ﬁ{xeB: o) = f@l < };

siis iga k € N korral Bf C BY c By C -, kusjuures | J-_, B% = B.
Ulesanne 5.4. Toestada, et iga k € N korral |J°°_, BF, = B.
Seega iga k € N korral

w(By,) —— u(B) = p(X)

m— 00

ning moodu p loplikkuse tottu jarelikult

p(BE) = w(X\ B}) = (X) — u(By,) —— 0.

mM—00

Seega iga k € N korral leidub indeks m(k) € N nii, et

koc €
1 (Bugy ) < 55
Téhistame
(e} [e.e] o0 1
A= Bfn(k):ﬂ ﬂ {wEB: ]fn(x)—f(x)]<g};
k=1 k=1 n=m/(k)

2Dmitri Jegorov / Imurpuit Pénoposuu Eropos (1869-1931) — vene/ndukogude matemaatik.
3Itaalia matemaatik Carlo Severini (1872-1951) avaldas selle teoreemi toestuse aasta varem kui
Jegorov ise (vastavalt 1910 ja 1911)!
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siis
WA") = p (U Bfn(kf) <Y on(Baw) < % —°
k=1 k=1 k=1

ning seega jaab teoreemi toestuseks nididata, et f, — f iihtlaselt hulgas A.
Ulesanne 5.5. Téestada, et f, — f iihtlaselt hulgas A.

]

Olgu (X, A, 1) médduga ruum ning olgu f, f,: X — R, n = 1,2,..., peaaegu
koikjal 1oplikud funktsioonid.

Definitsioon 5.6. Oeldakse, et jada (f,) koondub funktsiooniks f u-peaaegu ihtla-
selt ruumis X (voi lihtsalt peaaegu tihtlaselt, kui ruumi X ja moodu p roll on konteks-
tist selge), kui iga reaalarvu ¢ > 0 korral leidub hulk A € 2 selliselt, et u(A¢) < ¢
ja f, — f iihtlaselt hulgas A.

Jegorovi teoreem viidab niisiis, et lopliku mooduga ruumis jareldub (peaaequ koik-
jal loplike mootuvate funktsioonide) peaaegu koéikjal koonduvusest peaaegu thtlane
koonduvus.

Teoreem 5.6. Olgu (X, 2, 1) lopliku mooduga ruum (s.t. u(X) < oo) ning olgu
peaaeqgu koikjal loplikud mootuvad funktsioonid f, f,: X — R, n=1,2,..., sellised,
et f, = [ p.k. Sus ka f, = f moodu jdrgi.

Teoreem viidab niisiis, et [opliku mooduga ruumis jareldub (peaaegu koik-
jal loplike moctuvate funktsioonide) peaaegu koikjal koonduvusest koonduvus maoodu
jargs.

TOESTUS. Teoreemi toestuseks peame naitama, et iga 6 > 0 korral

Tim p({z € X: |fulx) = f(z)] = 6}) =0. (5.1)

Fikseerime vabalt 6 > 0. Vorduse (5.1) kehtivuseks peame néitama, et iga € > 0
korral leidub indeks N € N nii, et

n>N = p({zeX: |f.(z) - f(z)=6})<e.

Fikseerime vabalt ¢ > 0. Jegorovi teoreemi pohjal leidub hulk A € 2 selliselt, et
pu(A°) < e ja f, — f iihtlaselt hulgas A. Valime indeksi N € N nii, et

n>N = |f.(z)— f(x)] <diga z € A korral.
Seega, kui n > N, siis {z € X: |fu(x) — f(x)] = d} C A° ning jérelikult

u(fe € Xt [fule) = f(@)] 2 6}) < (A% <.
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Teoreem 5.7 (Luzini!| teoreem). Olgu funktsioon f: [a,b] — R Lebesque’i mottes
mootuv. Siis iga reaalarvu € > 0 korral leidub kompakine hulk K C [a,b] selliselt, et
m([a,b] \ K) < ¢ ja f|x on pidev.

Stimbol m téhistab siin Lebesgue’i mootu ruumis R.

LUZINI TEOREEMI [5.7] TOESTUS.
*Ulesanne 5.6. Toestada Luzini teoreem lﬁTZl
NAPUNAIDE. Kasutada teoreemi (voi teoreemi [3.9)) ja Jegorovi teoreemi.

Harjutusiilesandeid

Ulesanne 5.7. Olgu (X,2l, 1) méoduga ruum ning olgu funktsioonid f,g, fu,gn: X — R, n =
1,2,..., p.k. loplikud, kusjuures f = g p.k. ja iga n € N korral f,, = g, p.k. Toestada, et kui
fn — f moodu jargi, siis ka g, — g moodu jargi.

Ulesanne 5.8. Olgu (X, 2, 1) mo6oduga ruum ning olgu funktsioonid f,g, fn,: X — R, n =
1,2,..., p.k. 1oplikud. Toestada, et kui f,, — f p.k. ja f,, = g mo6odu jargi, siis f = g p.k.

Ulesanne 5.9. Tihistagu siimbol m Lebesgue’i méotu ruumis R. Teha kindlaks, kas jada (f,,)22,
koondub

(1) m-p.k. ruumis R (vo6i koguni punktiviisi ruumis R);
(2) moodu m jargi ruumis R,
kui funktsioonid f,: R — R, n =1,2,..., on defineeritud vérdustega
(a) fo= X(n,n+1)3
(b) fn=(=1)"nX[p1y;

(d) ( - 7) X[n—1,n]3
(e) ( ) nX[n 2n]3
)

4Nikolai Luzin / Huronait Hukomaesua Jlyswmm (1883-1950) — vene/noukogude matemaatik.



§ 6. Meetriline ruum Ly(u)

Olgu (X, 2, 1) modduga ruum. Siimboliga Lo(X, 2, ) tdhistame koigi hulgal X pea-
aegu koikjal médratud p.k. 16plike funktsioonide vektorruumi, kus kaks funktsiooni
loetakse vordseks, kui nad on vordsed p.k. Kui ruumi (X, %, 1) roll on kontekstist
selge, kirjutatakse Lo(X, 2, 1) asemel ka lihtsalt Lo(p) voi Lo.

Selles punktis anname ruumile Ly meetrilise ruumi struktuuri: me defineerime

cﬂﬂg):iM{{l}U{5>(k/A{xGQY:Lﬂx)—g@d >5})<5}}, f.9 € Lo,

ning naitame, et

1° d on kaugus ruumis Lg;

2° jada (f,)22; C Lo koonduvus funktsiooniks f € Ly kauguse d suhtes on sama-
vidrne koonduvusega f,, — f moodu p jargi;

3° meetriline ruum (Lo,d) on tiielik.

Ulesanne 6.1. Tdestada, et kui 0 < a < Bja u({z € X: |f(z) — g(x)| > a}) < a, siis ka
pfz e X [f(x) —g(z)| = B}) < B.

Ulesanne 6.2. Toestada viited 1° ja 2°.

LAHENDUS. 1°. Kui f = ¢ ruumis Ly, s.t. f = g p.k., siis iga § > 0 korral
u({x eX:|f(z)—gx)| = 5}) =0<§,
jarelikult d(f, g) = 0. Teiselt poolt, kui d(f,g) = 0, siis iga § > 0 korral

pfz e Xt |f(z) —g(@)| = 6}) <6,

aga siit jareldub, et f = g p.k. Toepoolest, kui see nii, ei oleks, siis mingi 5 > 0 korral
u({x eX:|f(z)—gx)| = 5}) =:a>0.

Kui niiid § < min{a, 8}, siis

u({z e X:1f(@) — g@)| = 0}) = u({o € X: /(@) — g(@)| > B}) = a >4,

vastuolu.

Kuna kauguse siimmeetria aksioon kehtib d puhul ilmsesti, siis jadb néidata, et d rahuldab
kolmnurga vorratust. Olgu f,g,h € Lo. Kui d(f,g) = 1 voi d(g,h) = 1, siis on vorratuse d(f, h) <
d(f,g) + d(g,h) kehtivus ilmne. Seepéarst eeldame, et §; := d(f,g) < 1 ja do := d(g,h) < 1.
Fikseerides vabalt € > 0, piisab ndidata, et d(f,h) < 01 + d2 + £, milleks omakorda piisab néidata,
et

u({m eX:|f(z)—g(x)| =01 +(52—|—6}) <01+ 09 + €.

Eeldades ildisust kitsendamata, et f, g, h on koikjal madratud ja loplikud, ning tdhistades
Ao: ={z € X:|f(z) —g(z)| = 01 +d2 + ¢},

A ={rex (@) = g@)| > 61+ 5},

Ay :{:L“EX:|f(x)—g(I)\>52+g}’

107
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kehtib Ag C A; U Ao, sest kui z € Ay U Ag, s.t. x € Af N AS, siis
F(@) = h(@)| < (@) = h@)| + | f(2) = h@)| < 0+ 5+ + 5 =1+ +e,
s.t x & Ag. Seega
p(Ao) < p(Ar) + (A2 <01+ 5 403+ 5 = i+ by + e
2°. Olgu d(fn, f) = 0. Kui d(fn, f) <& < 1, siis ilmselt

pfz e X [fulz) - f(2)| 2 €}) <e,

aga siit jareldub, et f, — f mdodu jargi. Teiselt poolt, kui f, — f mdodu jargi ja p({z €
X: |fu(z) = f(2)| = €}) < e, siis d(fn, f) < €, aga siit jareldub, et d(f,, f) — 0.

3°. Veendumaks, et meetriline ruum (Lg, d) on téielik, on otstarbekas tuua sisse
moiste “moddu jargi Cauchy jada”.

Definitsioon 6.1. Ocldakse et jada (fn)o2, ruumis Ly on maéodu jiargi Cauchy jada,
kui mis tahes reaalarvude 9, > 0 korral leidub indeks N € N nii, et

nm>=2N = p({zeX: |fulz)— fnlz)=6}) <e.

Ulesanne 6.3. Toestada, et jada (f,)2%, C Lo on méddu jirgi Cauchy jada parajasti siis, kui
mis tahes reaalarvu € > 0 korral leidub indeks NV € N nii, et

nm>=N = p({zeX: |fu(z)— fm(z)|=c}) <e.

Paneme tahele, et

2°° jada meetrilises ruumis (Lo, d) on Cauchy jada parajasti siis, kui ta on méodu
jargi Cauchy jada.

Ulesanne 6.4. Veenduda selles.

LAHENDUS. Olgu (f,)22, Cauchy jada meetrilises ruumis (Lo, d). Kui d(fp, fm) < € < 1, siis
ilmselt

p{r e X |fu(z) — fm(z)| 2 €}) <e,
aga siit jireldub, et (f,)2; on méodu jargi Cauchy jada. Teiselt poolt, kui (f,)22; on moddu
jargi Cauchy jada ja u({z € X: |fn(x) — fm(2)| = €}) < e, siis d(fn, fm) < €, aga sellest jareldub,
et ()52, on Cauchy jada meetrilises ruumis (Lo, d).
Ruumi (Lg, d) taielikkus jareldub niiiid vahetult moddu jirgi koonduvuse ja kauguse
d suhtes koonduvuse samaviérsusest ning jargnevast teoreemist.

Teoreem 6.1. Olgu jada ()52, C Ly maoodu jirgi Cauchy jada. Siis leidub funk-
tsioon f € Lo nui, et f, — f moodu jirgi.

TOESTUS. Teoreemi toestuseks piisab konstrueerida osajada (fx, )2, ja funktsioon
f € Lo nii, et fr, — f moodu jargi.

Ulesanne 6.5. Koondugu moddu jirgi Cauchy jada (f,)S, C Lo mingi osajada (fy, )22, mdddu
jargi funktsiooniks f € Lg. Toestada, et siis ka f,, — f moodu jargi.
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LaHENDUS. Uldisust kitsendamata voime eeldada, et f ja f., n € N, on koikjal médratud ja
loplikud. Fikseerime vabalt § > 0 ja tidhistame iga n € N korral

Ani={z € X |fulw) - f(2)] > 6},

Peame néitama, et lim,, o u(Ay) = 0. Selleks paneme téhele, et iga n € N korral A D BS N C¢,
kus

B, = {x € X: |fu(z) = fr,(2)] > g}, Cy = {a: €X: |fi, () — flx)] > g}’

seega A,, C By, U C, ning jarelikult

lim p(Ay) < li_}rn (1(Bn) 4+ p(Cy)) = li_}rn w(Bp) + lim p(Cp) =0.

Selleks valime kasvava indeksite jada (k)5 nii, et iga n € N korral
o 1 1
ij =2k, = ,u({xeX: \fi(x)—fj(x)]>2—n}) <o

Téahistame iga n € N korral

(siis pu(A,) < 5+) ning
o o0

a=UN 4

m=1n=m

siis

M(Ac)=u<ﬁ Gz‘%) :Af},oﬁ‘([j An)

m=1n=m n=m
. - L =1
< dim, D ldn) < i D 50 =0

Veendume niiiid, et (fy, (a:))zozl
vabalt © € A jae > 0. Kui m € N on selline, et z € ()7 A% ja )y
mis tahes n > m ja p € N korral

on iga x € X korral Cauchy jada. Fikseerime

o0 1 .s
j=m 27 < g, s1s

n+p—1 n+p—1

1 1
< Z ‘fk]+1(x)_fk7‘< Z §<22_j<5
j=n j=n n=m

Niisiis ( fkn(m))zo:l on Cauchy jada, jirelikult ta koondub. Defineerime niiid funk-
tsiooni

| frniy (@) = fr,

1My, 00 ) A;
flx) = {1) i ) i ZA

s.t. f = lim, o0 X4 fr,, ja nditame, et fr, — f moodu jargi. Fikseerides vabalt
e > 0, piisab néidata, et leidub indeks m € N nii, et

n>m = u<{$ € X: | fu(z) — f(z)] > g}) <e
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Selleks paneme téhele, et kui z € ﬂ;’im , siis iga n > m korral
N-1
76) = fin )] = B Vo) = fon (@] = Jim |3 (foyn (o) = i (0)
j=n
<V le) - fiy @) <3 4
S : kji1 kj : 2j'
j=n j=n
Niisiis kui valida m € N nii, et Z] i 27 < g, siis n > m korral
{z e X:|f(2) s}C(ﬂAC> :UAj
j=m

ning jarelikult

p({z € X: | finle) = (@) > e}) < (U Aj> < DAy < Z% <e.

j=m

Mérkus 6.1. Kui (X, 2, 1) on 16pliku modduga ruum, siis saab ruumis Lo(u) defi-
neerida kauguse ka vordusega

[ @@l
i.0) = | S dula). S € L (6.1)

a(f,g) = inf{a ¥ u({fc e X: |f0)—g@) =)} foelo  (62)

Osutub, et ka seostega (6.1) ja ) defineeritud funktsionaalide d puhul kehtivad
viited 1°, 2°, 2°° ja 3°.

Ulesanne 6.6. Toestada, et seostega ( ) ja ( . defineeritud funktsionaalide d puhul kehtivad
véited 1°, 2°, 2°° ja 3°.

LaneENDUS. (6.1). 1°. Kauguse samasuse ja siimmeetria aksioomide kehtivus on d puhul ilmne,
seega jadb ndidata veel kolmnurga vorratuse kehtivus. Olgu f, g, h € Lg. Peame niitama, et

£(2) — o) () — o(a) o(a) — h(z)
o Tt 949 < [ T ot 0+ [, Tt — ey ) (69

Selleks paneme tahele, et kui 0 < a < B3, siis a + af < B+ Ba, s.t. a(l + B) < B(1 + a), seega
Niisiis, peaaegu ko1k1de x € X korral (néiteks alati, kui f(z), g(x) ja h(z) on loplikud)

1+a < 1+[3

[f(@) —h@)] _ _|f(z) = g(@)| + |g(x) — h(z)|
L+[f(x) = h(z)] = 1+ |f(2) — g(x)| + |g(x) — h(z)]
_ [f(x) = g(=)] n l9(z) = h(z)]
L+ [f(z) —g(@)| + lg(x) = (z)] ~ 1+ [f(2) - g(2)| + [g(x) — h(z)]
(@) —g(@)] . lg(x) = h(z)
S 1+[f(@) —g(@)]  1+]g(@) = h(2)]

—~
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jarelikult kehtib ka (6.3]).
2°. Eeldame, et f,, — f moddu jargi ning fikseerime vabalt ¢ > 0. Siis leidub N € N nii, et

n > N korral u(A,) < §, kus

Ay = {x €X: |fulz) - fla) > MXE)Hé}

Niiiid n > N korral

@) F@] [ e - f(@) fule) — 1)
(hJj/q1+Un)—f@HmL.An1+UA@—f@Ndﬂ+Lml+fA@—f@)ml

e g 1>
((Ap) + ————— p(AS) < = + = =
/d;w/t < (n)+2H(X)+1M( W<yt =¢

Teiselt poolt, eeldame, et d(f,, f) — 0 ning oletame vastuvéiteliselt, et f, / f moddu jargi. Siis
mingi £ > 0 korral leidub osajada (f, )22, nii, et iga n € N korral u(A4,) > €, kus

A, = {x € X: |fr, () — f(x)| > E}.

Aga niiiid iga n € N korral, arvestades, et x € A,, korral |fx, (z) — f(z)| > € ning seega

a0 = f@) e
T+ [fen (@) — F@)] ~ T e

(vt. véite 1° tOestus),

o) — (2] - -
W) [ ST > [, Tre e e > 15> 0

vastuolu.
2°°. Eeldame, et (f,,)52; on mdo6du jargi Cauchy jada ning fikseerime vabalt € > 0. Siis leidub
N € N nii, et n,m > N korral pu(An,.,) < §, kus

Ay i {x € X: |fula) — fnla)] > MXg)H}

Niitid n,m > N korral

_ |fn(x) = frm ()|
d(fnafm)*/x 1+|fn<$)—fm($) d,LL

|
) () = fn(@) (@) = fun(a)
_Amlﬂh@—thW+Aml+nw—m@Wm
13

9
< d +/ A < p(An) e p(AC, ) < S+ S =
/A g m 2H(X) +1 b < pldnm) QM(X)+1“( <33

Teiselt poolt, eeldame, et (f,,)22; on Cauchy jada ruumis (Lg, d) ning oletame vastuviiteliselt, et
ta pole moddu jirgi Cauchy jada. Siis mingi € > 0 korral leiduvad osajadad (fx, )5, ja (f1,)5%,
nii, et iga n € N korral p(A4,) > €, kus

Api={zeX: |f, () - fi.(x)] = e}
Aga niiiid iga n € N korral, arvestades, et x € A,, korral |fi, () — fi, (x)] > € ning seega

@) = @] e
T4 1fon (@) = o, @]~ THe
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(vt. védite 1° toestus),

>0,

fiso) By, [ . &
An

d > dp = A,) >
(o i) > [ = A > T

A, L+ fe, (@) = fi, ()]

vastuolu.
3°. Meetrilise ruumi (Lo, d) taielikkus jareldub vahetult vdidetest 2°° ja 2° teoreemi kaudu.

(6.2)). 1°. Kdigepealt, kui f = g p.k., siis ilmselt d(f, g) = 0. Teiselt poolt, olgu d(f, g) = 0. Siis
iga € > 0 korral leidub « > 0 nii, et

a+p{zeX: [f(z)—g(x) > a}) <<
ning jarelikult (arvestades, et eelneva vorratuse pohjal a < €)
p({z e X: |f(x) —g(x)| > €}) <e igae> 0 korral, (6.4)

aga siit jareldub, et f = g p.k. Toepoolest, kui see nii, ei oleks, siis mingi S > 0 korral
,u({x eX:|f(z)—gx)| = ﬁ}) =:a>0.

Kui niitid € < min{a, S}, siis
p({oe X 1@ - 9@ 2 e}) > u({o € X: 1f(@) - g(2) > B}) =a >,

mis on vastuolus tingimusega (6.4)).

Stimmeetria aksioomi kehtivus on d puhul ilmne, seega jaib ndidata veel kolmnurga vorratuse
kehtivus. Olgu f, g, h € L¢ koikjal 16plikud funktsioonid. Fikseerides vabalt € > 0, piisab niidata,
et

d(f,h) <d(f,g)+d(g,h)+e.

Selleks valime «, 8 > 0 nii, et

a+pu({reX: |flx)—glx)]>a}) <d(f,9)+ =,

B+p({reX: |f(z)—glx)] > B}) <dlg,h)+

NN ™

Aga niiiid, arvestades, et
fo € Xt |f(@) = h(@)| 2 a+ B} 5 {z € X: |f(x) - g()] > a}* N {z € X: |f() - gla)] > B,
kehtib
fw € X: |f(@)—h(2)| > a+ B} C fo € X: |f(z) — g(a)| > a} U{z € X: |f(2) - g(a)] > B}
ning jérelikult
d(f,h)

a+pB+pu({reX: |f(z)—h(z)| > a+B})

>«
a+B+u({r e X: |f@) - g@)| > a}) +u({z € X: |f(2) - g(a)| > BY)
A(f,9) + 5 +d(g, ) + 5 = d(f,9) +d(g,h) +=.

<
<

A

2°. Kehtigu d(f,, f) — 0 ning olgu & > 0. Siis leidub N € N nii, et kui n > N, siis leidub a > 0
nii, et
o+ p({z € X+ |fule) — f@)] > a}) <<

ning jarelikult kehtib ka (sest eelnevast vorratusest jareldub, et a < €)

u({z € X+ |ful@) — f(@)| > €}) << (6.5)
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Seega f,, — f moodu jirgi. Teiselt poolt, kehtigu f, — f mdodu jirgi ning olgu £ > 0. Siis leidub
N € N nii, et n > N korral kehtib (6.5)). Aga siit jareldub, et n > N korral d(f,, f) < 2e. Niisiis,
d(fn, f) = 0.

2°°. Eeldame, et (f,)52; on Cauchy jada ruumis (Lg,d) ning fikseerime vabalt ¢ > 0. Siis
leidub N € N nii, et kui n,m > N, siis leidub « > 0 nii, et

ot pu({z € X: |fule) = fnl@)] > 0}) <<

ning jarelikult kehtib ka (sest eelnevast vorratusest jareldub, et « < €)

p({z € Xt |fu(z) = fm(2)] > €}) <e. (6.6)

Seega (f)52; on moddu jirgi Cauchy jada. Teiselt poolt, eeldame, et (f,)52; on moodu jirgi
Cauchy jada ning fikseerime vabalt £ > 0. Siis leidub N € N nii, et n,m > N korral kehtib (6.6).
Aga siit jareldub, et n,m > N korral d(f,, fm) < 2e. Niisiis, (f,)52; on Cauchy jada ruumis
(L07 d) .

3°. Meetrilise ruumi (Lg, d) téielikkus jireldub vahetult vdidetest 2°° ja 2° teoreemi kaudu.



§ 7. Teisi vaatenurki integraalile

Koikjal selles paragrahvis on (X, 2(, 1) mooduga ruum.
Selles paragrahvis tutvustame veel moningaid skeeme integraali defineerimiseks.

7.1. Ly kui integreeruvate lihtsate mootuvate funktsioonide
ruumi taield

Selles skeemis defineeritakse koigepealt lihtsa mootuva funktsiooni integreeruvus:
lihtne mootuv funktsioon ¢: X — R loetakse integreeruvaks, kui

> ol p(4)) < oo,
j=1

kus ¢ = 7" jajxa, (n € N, a; € R, Aj €, j = 1,...,n) on funktsiooni ¢
standardesitus. Kui ¢ on integreeruv, siis integraal temast defineeritakse vordusega

/ Sdp ="y a;u(4y).
X o

Markus 7.1. Lebesgue’i integraali tihistava stimboli fngdu kasutamine antud
kontekstis on oigustatud asjaoluga, et lihtsa mootuva funktsiooni integreeruvus ja
integraal {ilaltoodud definitsiooni jargi langevad kokku tema integreeruvuse ja in-
tegraaliga Lebesgue’i mottes.

Peaaegu kdikjal misratud funktsioon f: X — R loetakse selles skeemis integ-
reeruvaks, kui leidub integreeruvate lihtsate mootuvate funktsioonide jada (¢,)5°
nii, et

1° ¢n — f p-pky
2° [ |6 — bl dp — 0.

Integraal funktsioonist f defineeritakse sel juhul vordusega

If=1lim [ ¢,dp. (7.1)
X

n—o0

Mirkus 7.2. Siimbolit [ f integraali tdhisena kasutame siin eristamaks (ajutiselt)
iilaltoodud viisil defineeritud integraali Lebesgue’i integraalist [ « f dp. Tegelikult,
nagu me ka kohe veendume, on funktsiooni f integreeruvus iilaltoodud mottes sama-
vaarne tema integreeruvusega Lebesgue’i mottes, kusjuures ka vastavad integraalid
on vordsed: If = [, fdp.

114
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Veendumaks integraali I f definitsiooni korrektsuses, tuleb néidata, et, esiteks, piirvadrtus (7.1))
eksisteerib — selleks paneme téhele, et (fX On d/i) :;1 on Cauchy jada ruumis R:

[ ontn= [ bmda| < [ 16— onldn, 0
X X X n,m o0

ning, teiseks, piirvidrtus ([7.1) ei soltu tingimusi 1° ja 2° rahuldava jada (¢,) valikust. Selleks
vaatleme lihtsate mootuvate funktsioonide jadasid (¢,)22; ja (¥,)22;, mille korral

Gny n > [ ppk. ja / |6n — Ol dﬂ’/ [Un — m| dp > 0,
n— oo X X n,m—oQ
ning veendume, et

n—roo

lim On dp = lim / U, dit. (7.2)
X n—oo X
Selleks paneme kéigepealt téhele, et (¢, — 1,)22; on Cauchy jada ruumis Lq(u), sest
/ |(¢n - wn) o (¢m _’(/)m)|d/fb S / |¢n - (bm'd:u"i'/ ‘wn _wm|d,u —_>> 0.
X X X n,Mm—00
Ruumi Lq(p) téielikkuse tottu leidub funktsioon g € Lq(w) nii, et ¢, — ¥, — g ruumis L (u).
Teoreemi pohjal ka ¢, — ¥, — g moodu jérgi; niisiis teoreemi pohjal leidub osajada

(Pk,, =k, )z il et Gx, =k, —— g p.k. Teiselt poolt, ¢x, =k, = (Pr, =)+ (f=¥r,) ——0
p.k., jarelikult g = 0 p.k., s.t. ¢,, — ¥, — 0 ruumis L (p); seega ka

lim/¢nd,u— lim/%du‘g lim / |pr, — n| dp = 0,

s.t. (7.2) kehtib, nagu soovitud.

Osutub, et funktsioon f on integreeruv tlaltoodud mattes parajasti siis, kui ta on
integreeruv Lebesgue’s mottes, kusjuures sel juhul If = fX fdu.

Ulesanne 7.1. Veenduda selles.

LAHENDUS. Olgu peaaegu koikjal méératud funktsioon f: X — R integreeruv Lebesgue’i mottes
(s.t. f € Li(p)). Kuna teoreemi pohjal on integreeruvate lihtsate mootuvate funktsioonide
alamruum koéikjal tihe ruumis Ly (p), siis leidub integreeruvate lihtsate méotuvate funktsioonide
jada (¢,)52, nii, et ¢, — f ruumis L;i(u), seega teoreemi pohjal ka ¢,, — f moddu jargi,
niisiis teoreemi pohjal voime osajadale iile minnes eeldada, et ¢, — f p.k. Kuna (¢,) kui
ruumis Lj (u) koonduv jada on Cauchy jada, siis ka fX |on — G| — 0. Niisiis on funktsioon

[ integreeruv selles punktis antud definitsiooni méottes. Veendumaks, et If = [ « [ du, paneme
tahele, et [y fdp =lim, o [y ¢n dp, sest

‘/}(fdu—/)(¢ndu‘</)(f—¢n|dun:>>00. (7.3)

Teiselt poolt, olgu peaaegu koikjal méiratud funktsioon f: X — R integreeruv kiesolevas
punktis antud definitsiooni méttes, s.t. leidugu integreeruvate lihtsate mdotuvate funktsioonide
jada (¢,)52 1, mis rahuldab tingimusi 1° ja 2°. Tingimus 2° iitleb, et (¢,) on Cauchy jada ruumis
Li(p). Kuna ruum Ly (p) on tiielik, siis jada (¢,) koondub ruumis L;(p) mingiks funktsiooniks
g € Li(p). Teoreemi pohjal ka ¢, — g moéddu jargi, niisiis teoreemi pohjal leidub osajada
(Pk,, )2 nii, et ¢, — 9 p.k. Kuna ilmselt ka ¢y, p— f pk. (sest peaaegu koikjal

koonduva jada osajada koondub peaaegu koikjal samaks piirviadrtuseks, milleks esialgne jadagi), siis
f =g p-k. Agassiit jareldub, et f € Li(u), kusjuures f = g ruumis L (u), niisiis ka ¢,, — f ruumis
Li(p), st [y |f — dnldi — 0. Seega kehtib ka seos (7.3), niisiis [, fdp = limp o0 [ dndu=1If.
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7.2. Lebesgue’i integraal kui “vahetatud telgedega
Riemanni integraal”

Olgu f 16igus [a, b] tokestatud funktsioon.

Kui T téhistab 16igu [a,b] tiikeldust punktidega a = zp < 1 < T3 < -+ <
Tpo1 < x, = b (n € N), siis tiikkeldusele T vastavad funktsiooni f Darboux’ {ilem-
summa ja Darboux’ alamsumma on defineeritud vordustega

Z Mj(z;—xjm)  ja s(T) =Y my(x; —z-1),
=1
kus

M;=sup{f(2): z € [zjo1,2;]} ja my=inf{f(z): z € [xj_1,2;]}, je{l,....n

Teame, et funktsioon f on Riemanni mottes integreeruv 16igus [a,b] parajasti siis,
kui tema Darboux’ summade vahe

n

S(T) —s(T) = Z(M] —my) (zj — 1) ZWJ — Tj-1)

J=1

laheneb nullile tiikelduse T' pikima osaldigu pikkuse ldhenemisel nullile. Siit ndhtub,
et kui funktsioon f pole Riemanni mottes integreeruv, siis selle pohjuseks on asjaolu,
et 16igu [a, b] kuitahes lithikestel osaloikudel [x;_1, z;] vOib selle funktsiooni tdisvonge
w; olla “liiga suur”. See tahelepanek viib mottele Darboux’ summade moodustamise
ideoloogiat muuta: tuleks vaadelda 16igu [a, b] niisugust tiiiipi tiikeldusi Lebesgue’i
mottes mootuvateks hulkadeks, et kui seda tiiiipi tiikeldus on teatavas mottes “piisa-
valt peen”, siis funktsiooni f tdisvonge neil hulkadel on soovitult viike. Lebesgue’i
mottes mootuva funktsiooni korral voib sellised “modifitseeritud Darboux’ summad”
moodustada niiteks traditsiooniliste Darboux’ summade moodustamise skeemis x-
telje ja y-telje rollide vahetamise teel. Viime selle idee ellu veidi iildisemas kontekstis,
vaadeldes 16igu [a, b] asemel suvalist 16pliku médduga ruumi.

Niisiis, olgu (X, 2, u) 16pliku méoduga ruum ning olgu f: X — R tokestatud
mootuv funktsioon. Olgu (a,b) C R selline (tokestatud) vahemik, mis sisaldab funk-
tsiooni f vddrtuste hulga. Tahistame tédhega T' vahemiku (a, b) tiikelduse punktidega
a=Y <y <Y< <Y1 <Y, =>0 (n €N) ning

= [ )] ={z e X: fx) €lyi—y)},  je{l,....,n}
(Siin voib juhtuda ka, et A; = () mingi(te) j € {1,...,n} korral.) Tiikeldusele T

vastavad funktsiooni f Lebesgue’i ilemsumma S(T') ja Lebesgue’i alamsumma s(T')
defineeritakse vordustega

— Zyj 1(4;) ja s(T) = Zyjfl 1(A;)
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Mairkus 7.3. Eeldus funktsiooni f mootuvuse kohta on vajalik selleks, et hulgad
A=t [[yj,l, yj)] kuuluksid moédu p méadramispiirkonda 2A.

Analoogiliselt Darboux’ summadega on lihtne nédidata, et

(1) kui funktsiooni f védrtuste hulka sisaldava vahemiku (a,b) tiikeldus 7" on
saadud tema tiikelduse T punktidele uute punktide lisamise teel, siis

S(T) < S(T) ja s(T') = s(T),

s.t. tikelduse peenendamisel Lebesgue’s iilemsumma et kasva ja Lebesgue’ alam-
summa ei kahane;

(2) suvaliste funktsiooni f védrtuste hulka sisaldavate vahemike (a,b) ja (a’, V)
mis tahes tiikelduste T" ja T" korral

S(T) = s(17),
s.t. tikski Lebesque’ iilemsumma pole vdiksem thestki Lebesque’s alamsummoast.

Ulesanne 7.2. Tdestada viited (a) ja (b).
Siit jareldub, et

(a) funktsiooni f koikvoimalike Lebesgue’i iilemsummade hulk on alt tokestatud
(alumiseks tokkeks on funktsiooni f suvaline Lebesgue’i alamsumma));

(b) funktsiooni f kéikvoimalike Lebesgue’i alamsummade hulk on iilalt tokestatud
(iillemiseks tokkeks on funktsiooni f suvaline Lebesgue’i iilemsumma).

Niisiis me saame defineerida funktsiooni f dilemise integraali Ix f ja alumise integ-
raali I f vordustega

Ixf=inf{S: S on funktsiooni f Lebesgue’i iilemsumma}
ja
I f =sup{s: s on funktsiooni f Lebesgue’i alamsumma}.

Funktsioon f loetakse integreeruvaks, kui tema iilemine integraal ja alumine in-
tegraal on vordsed; integraal Ix f funktsioonist f defineeritakse sel juhul kui tema
iilemise ja alumise integraali iihine vaértus:

Ixf=1Ixf=1Ixf

Paneme tahele, et iga tokestatud mootuv funktsioon f: X — R on dlaltoodud
definitsiooni mottes integreeruv.
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Téepoolest, fikseerime vabalt € > 0. Veendumaks funktsiooni f integreeruvuses iilaltoodud
mottes, piisab leida mingi funktsiooni f véartuste hulka Y sisaldava vahemiku (a,b) tiikeldus T,
mille korral

S(T)—s(T) < e.
Kui (a,b) D Y on suvaline ning T on selle vahemiku tiikeldus punktidega a = yg < y1 < ya < -+ <
Yn—1 < Yn = b (n € N), mille korral

A = A(T) = 1I£1Ja<xn(y y] 1) M(X) + 1’

siis, téhistades nagu ennegi A; := f~'[[y;-1,y;)], j € {1,...,n},

S(T Zygﬂ Zy] 1 (A Z —yj-1) k(4;)

Jj=1

< A;mm = Ap(X) < mum <e.

Ulesanne 7.3. Téestada, et integraal Ix f on funktsiooni f Lebesgue’i summade piirvidrtus, s.t.
iga reaalarvu € > 0 korral leidub reaalarv § > 0 nii, et kui 7" on mingi funktsiooni f vairtuste
hulka sisaldava vahemiku (a,b) tikeldus punktidega a = yo < y1 < y2 <+ < Ypn—1 < Yn = b
(n € N), mille korral

A(T) = max (y; —yj—1) <9,

1<isn

siis mis tahes 7; € [y;_1,¥;], j € {1,...,n}, korral
n
Y omnl(Ay) = Ixf| <e,
=

kus, nagu ennegi, 4; := f~'([y;-1,9;)], j € {1,...,n}.

LAHENDUS. Fikseerime vabalt ¢ > 0. Eelnevast ndeme, et kui 7" on mingi f vdértuste hulka
sisaldava vahemiku (a, b) tiikeldus punktidega a = yo < y1 < y2 < -+ < Yn—1 < Yyn = b (n € N),
mille korral A(T') < W, siis S(T')—s(T') < ¢, jérelikult, arvestades, et mis tahes n; € [y;-1,y;],
j€{l,...,n}, korral

T) < Zn:’?j u(4;) < S(T), (7)< Ixf<S(T),
siis kehtib ka
Sy i(Ay) — Inf| < S(T) - s(T) < <,
=1
Veelgi enam, integraal Ix f langeb kokku funktsiooni f Lebesgque’s integraaliga:

fo:/deM-

Ulesanne 7.4. Veenduda selles.

LaHENDUS. Olgu (a,b) mingi funktsiooni f vdirtuste hulka sisaldav vahemik. Iga m € N korral
valime selle vahemiku tiikelduse 7, punktidega a = yg* < yi" < y3" < --- <y ; <y, =b
(7 € N), mille korral A(T,,) = maxigj<n,, ()" = ¥j"1) < 5, ning defineerime funktsiooni

MNm
_ m
b=y xar,
=1
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kus A7 = ft Uyz’il,y;”)}, j€{l,...,n,}. Eelmise iilesande pohjal

m—r o0

/X bmdi =Sy p(AT) — Ixf.
j=1

Teiselt poolt, kuna ¢, — f (isegi iihtlaselt), siis Lebesgue’i tokestatud koonduvuse teoreemi pohjal

/X¢mdﬂm:;/xfd/i~

Defineerime niiiid integraali juhul, kui (X, 2, 1) on suvaline (v6imalik, et 16pma-
tu) mooduga ruum ning f: X — R on mittenegatiivne mootuv funktsioon. Siin
eeldame tdiendavalt, et funktsioon f on p.k. loplik ning

(o) hulk {z € X: f(z) # 0} on o-16plik.

Téahistame
E:={EeU: u(E)<ooja f|g on tokestatud}.

Integraal funktsioonist f defineeritakse vordusega

Ixf=suplgf.
EeE

See definitsioon on korrektne, sest
(1) kogum & on mittetiihi, sest () € &;

(2) iga E € & korral u(F) < 0o ja f|g on tokestatud, seega on integraal I f selles
skeemis juba defineeritud.

Mairkus 7.4. Eeldus funktsiooni f peaaegu koikjal 1oplikkuse kohta on tehtud vilis-
tamaks juhtu, kus mingi D € 2, u(D) > 0, korral f|p = oo, kuid Ixf < oo —
olukord, mis ei vasta meie ootustele integraali suhtes. Eeldus (e) funktsiooni f jaoks
on tehtud vélistamaks juhtu, kus /L({.I e X: f(x) > O}) > 0, kuid iga hulga F € £
korral p(E) = 0 (s.t. f saab olla tokestatud ainult nullmdééduga hulkadel). Niisugusel
juhul tuleks funktsiooni f integraal 0, mis ei vasta ilmselt meie ootustele integraali
suhtes.

Ulesanne 7.5. Rahuldagu mittenegatiivne méotuv funktsioon f: X — R tingimusi (e) ja u({x €
X: f(z) >0}) > 0. Téestada, et leidub hulk E € & nii, et u(E) > 0.

LAHENDUS. Hulga A := {z € X: 0 < f(x) < oo} o-loplikkuse tottu leiduvad hulgad A; € 2,
j €N, nii,et Ay C Ay C -+, pu(A4;) <oo,j €N, jad =2, Aj. Kunalim; o u(A4;) = p(A) >0,
siis mingi ¢ € N korral p(4;) > 0. Tdhistame By = A; N {z € X: f(x) < k}, k € N, siis
A; = Ur—; Br, seega limy_, o = p(A;) > 0, jarelikult leidub [ € N nii, et p(B;) > 0. Niitid B; € €,
sest f|p, on tokestatud (sest iga z € By korral f(x) <1).

Osutub, et iga tingimust (e) rahuldava p.k. 1opliku mittenegatiivse mootuva
funktsiooni f korral langeb integraal Ix f kokku tema Lebesgue’i integraaliga: Ix f =

Jx fdp.

Ulesanne 7.6. Veenduda selles.
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LAHENDUS. Rahuldagu mittenegatiivne mostuv funktsioon f: X — R tingimust (e). Uhelt poolt,
kui E € &, siis [y fdu> [, fdu=Ipf, seega ka

/ fdu}sup{JEf: E e u(E)<oo}=IXf.
X

Teiselt poolt, olgu hulgad A,, € 2, u(A,) < oo, m €N, A C Ay C -+, sellised, et

{zeX: flx)>0} =] An.

j=1
Tahistame iga m € N korral
E, =A,n{zeX: f(x)y <m}eé&

siis f xg,, /* f npk., seega monotoonse koonduvuse teoreemi pohjal

/fdu: lim/fXEmd,u: lim/ fdu= lim Ig f<Ixf.

X m—r 00 X m—r oo Em m—0oQ

Markus 7.5. Selles punktis kirjeldatavas skeemis kasutatakse mittenegatiivse moo-
tuva (voimalik, et tokestamata) funktsiooni f: X — R integraali defineerimiseks
(juhul, kui (X)) voib olla ka lopmatu) sageli ka teistsugust moodust. Naiteks voib
koigepealt defineerida integraali (voimalik, et tokestamata) mootuvast funktsioonist
f: X — R eeldusel, et X on 1&pliku mééduga ruum, s.t. u(X) < oo, jirgmiselt:
koigepealt defineerime iga m € N korral funktsiooni

fm(z) = {f(x), kui f(z) < m;

i r € X,
m, kui f(z) > m,

siis funktsioon f,, on tokestatud, seega on integraal Iy f,, selles skeemis juba defi-
neeritud. Niisiis me voime defineerida integraali Jx f funktsioonist f iile ruumi X
vordusega
JXf = lim [Xfm
m—o0

(mérgime, et see (1oplik voi 16pmatu) piirvadrtus eksisteerib, sest jada (Iy f,,)5°_; on
mittekahanev). Paneme téhele, et f,, 7 f, seega monotoonse koonduvuse teoreemi
pohjal

Jxf= lim Ixf, = lim / fmd,u:/ fdpu.

Defineerimaks integraali Jx f juhul, kus (X, 2, 1) on suvaline (véimalik, et 16p-
matu) mooduga ruum, eeldame tédiendavalt, et f rahuldab tingimust (e). Sellisel

juhul defineerime
Ixf = sup{JEf: Eed uF)< oo}.

(See definitsioon on korrektne, sest vihemalt iiks niisugune 16pliku moéoduga hulk
E € 2 on olemas — tiihi hulk ) — ning iga niisuguse hulga F jaoks oleme integraali
Ji f juba defineerinud.)

Mérgime, et eeldus (e) funktsiooni f jaoks on siin tehtud vélistamaks juhtu, kus mingite

D e, u(D) =o00,ja M >0 korral f|p > M, kuid Jx f < co — olukord, mis ilmselt ei vasta
meie ootustele integraali suhtes.
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Ulesanne 7.7. Rahuldagu mittenegatiivne mostuv funktsioon f: X — R tingimust (e) ning olgu
Jx f < oo. Tdestada, et suvalise M > 0 korral p({z € X: f(z) > M}) < occ.

LAHENDUS. Oletame vastuviiteliselt, et mingi M > 0 korral
w(A) =00, kus A:={rxeX: f(z)> M}.

Eelduse (o) pohjal on hulk A o-16plik, seega leiduvad hulgad A; € A, p(A;) < o0, j €N, 41 C A
C -+, mil, et A =2, Ay Nitiid limj o0 p(A5) = p(A) = oo, seega

j—o0

Ixf > dnf= [ fdus M) — .
Bj
s.t. Jx f = 0o, mis on vastuolus eeldusega.

Osutub, et iga tingimust (e) rahuldava mittenegatiivse mootuva funktsiooni f
korral langeb integraal Jx f kokku tema Lebesgue’i integraaliga: Jx f = fX fdp.

Ulesanne 7.8. Veenduda selles.

LAHENDUS. Rahuldagu mittenegatiivne modtuv funktsioon f: X — R tingimust (e). Uhelt poolt,
kui E € 2, u(E) < oo, siis [ fdu > [, fdu= Jpf, seega ka

/)(fd,u}sup{JEf: E e, p(E) <oo} =Jxf.

Teiselt poolt, kui hulgad A; € A, p(A4;) < oo, j €N, Ay C Ay C ---, on sellised, et
{reX: f(x) >0} = UAj;
j=1

siis fxa,, /" f, seega monotoonse koonduvuse teoreemi pohjal
[ pau=Jim_ [ fxa,dn= tim [ fdu= lm Ja,f< It

Niisiis oleme vaadeldavas skeeemis defineerinud mittenegatiivsete (mootuvate)
funktsioonide integreeruvuse ja integraali ning veendunud, et need moisted lange-
vad kokku integreeruvuse ja integraaliga Lebesgue’i mottes. Veelgi iildisemate funk-
tsioonide (koigepealt modtuvate funktsioonide f: X — R ja seejdrel peaaegu koikjal
médratud funktsioonide f: X — R) integreeruvus ja integraal defineeritakse selles
skeemis samuti nagu paragrahvis 3.

7.3. Danielli skeem

Koikjal selles punktis on X mingi mittetiihi hulk.

7.3.1. Elementaarsed funktsioonid ja elementaarne integraal

Olgu H mingi tokestatud funktsioonide X — R vektorruum (kus tehted on defi-
neeritud loomulikul viisil, s.t. punktiviisi), mis rahuldab tingimust

he H = |h|e H.

Vektorruumi H elemente nimetame edaspidi “elementaarfunktsioonideks”.
Margime, et mis tahes h, k € H korral
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(a) hT,h™ € H,;
8b) max{h, k}, min{h, k} € H;

Toepoolest,
Rahuldagu funktsionaal /: H — R tingimusi

I I(ah + Bk) = alh + Ik koikide «, 5 € R ja h,k € H korral
(s.t. I on lineaarne funktsionaal);

MheH h>20 = ITh>0
(s.t. I on positiivne funktsionaal); 5

Il hy € H,neN, hy \\O = Ih, —0.

Funktsionaali I nimetame edaspidi elementaarintegraaliks.
Tingimustest I ja IT jareldub, et mis tahes h, k € H korral

) h<k = Ih<Ik
(b) Th < IR* <I|h|,  Ih > I(=|h]) = =I(|hl), [Ih] < I(|A]).

7.3.2. Hiiljatavad hulgad

Definitsioon 7.1. Oeldakse, et hulk Z C X on hiiljatav, kui iga ¢ > 0 korral leidub
mittenegatiivsete funktsioonide jada (h,) C H, h, , nii, et

sup hp(z) 21 iga x € Z korral,

kuid
sup lTh, < ¢

On selge, et néiteks () on hiiljatav hulk — me voime votta eelnevas definitsioonis
h, = 0, n € N. Paneme téhele, et hiiljatavate hulkade dilimalt loenduva kogumi ihend
on hiiljatav hulk.

Toepoolest, tithja hulga hiiljatavuse tottu piisab selleks ndidata, et hiiljatavate hulkade loenduv

ithend on hiiljatav. Olgu Z; C X, i € N, hiiljatavad hulgad ning olgu € > 0. Valime iga ¢ € N korral
jada (hi)> |, C H, hi , nii, et

n=1
€

suphl(z) > 1 iga x € Z; korral ja sup Iht 21

ja tahistame h,, = maxi<;<n hi Kuna iga ¢ € N korral hi A, siis iga n € N korral

h,, = max h < max hn+1 < max h = hpt1,
1<ign 1<ign 1<i<n+1

s.t. hy, /. Edasi, kui z € |J;2, Z;, kusjuures j € N on selline, et z € A;, siis, arvestades, et hi A
sup hy, () = sup hy,(z) > sup bl (x) = sup hf (z) > 1.
neN j j neN

nzj nzj

Ning lopuks, iga n € N korral

n

Ihn:I(rgaxh ) —I<Zh’> Zlhl Z*<1

1<ign

Siia vahele tuleb veel omadusi.....
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7.3.3. Klass Lt

Siimboliga L™ téhistame selliste funktsioonide f: X — RU{oo} klassi, mille korral
leidub jada (h,) C H nii, et
ho /' f pk.

ning integraalide jada (Ih,) on ilalt tokestatud, s.t. leidub C' € R nii, et
Ih, < C iga n korral.

Paneme téhele, et iga funktsioon f € Lt on p.k. loplik.

Toepoolest,

Integraal funktsioonist f € LT defineeritakse vordusega
If =lim/h,,

kus jada (h,) C H on selline, et h, 7 f, kusjuures jada (Ih,) on iilalt tokestatud.

Veendumaks selle definitsiooni korrektsuses, paneme esmalt tdhele, et kuna Ih, 7, siis eksis-
teerib 16plik piirvddrtus lim, I'h,. Edasi, mis tahes jada (¢g,) C H, g, / f, korral

‘Ign - Ihn| = |I(gn - hn)‘ < I(|gn - hn')?

kuna
|gn - hn' < |gn - fn| + |fn - hn| = (fn _gn) + (fn - hn)v

kusjuures f,, — g, \¢ 0 ja fr, — hy (0, siis ka I(f,, — gn) \¢ 0 ja I(fn — hy) N\ 0, niisiis
|Ign - [hn| < I(‘gn - hnl) < I(fn - gn) + I(fn - hn) — 0,
S.t. limy, oo [gn, = limy, oo Thy,.

Méargime, et
Margime, et

(a) kui f,g € L, siis ka f + g € Lt, kusjuures
I(f+9)=1f+1g;
(b) kui f € LT ja o > 0, siis ka of € L, kusjuures
I(af) = alf;

(c¢) kui f e LT, f >0 p.k., siis ka
If>o0.

(d) kui f,g € LT, siis ka max{f, g}, min{f,g} € L*.
Lause 7.1. Olgu jada (f,)32, C LY, f. 7, kusjuures mingi C' € R korral
If, <C, neN.
Siis ka f :=1lim,, f, € L, kusjuures If = lim,,_,o I f,,.

TOESTUS. []
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7.3.4. Klass L

Oeldakse, et (p.k. miiratud) funktsioon f: X — R on integreeruv, kui leiduvad
funktsioonid g, h € LT selliselt, et

f=g9g—h pk
Integraal I f funktsioonist f defineeritakse sel juhul vordusega
If=1g—1Ih.

Koigi integreeruvate funktsioonide klassi tdhistame siimboliga L.

Veendumaks selle integraali definitsiooni korrektsuses,
Maérgime, et
(a) kui f,g € L, siis ka f + g € L, kusjuures
I(f+9)=1f+1g;
(b) kui f € L ja o € R, siis ka aof € L, kusjuures
I(af) =alf;
(c) kui f e L, f >0 p.k., siis ka
If=0;
(d) kui f,g € L, siis ka max{f, g}, min{f, g} € L.
Tdespoolest,
Lemma 7.2.
TOESTUS. [

Teoreem 7.3 (Beppo Levi teoreem). Olgu jada (f,)22, C L, f, 20, n €N, f, 7,
kusjuures ming: C' € R korral

If, <C, mneN.
Siis ka f :=lim, f, € L, kusjuures I f = lim,,_,o I f,,.
TOESTUS. O
Teoreem 7.4 (Lebesgue’i teoreem).
TOESTUS. O
Teoreem 7.5 (Fatou lemma).

TOESTUS. []

7.3.5. Banachi ruum L

7.3.6. Fubini teoreem



III peatiikk.
Korrutismoodud

§ 1. Korrutis-o-algebrad

Olgu n € N ning olgu Xi,..., X, mittetiihjad hulgad. Meenutame, et hulkade
Xi,..., X, otsekorrutiseks nimetatakse hulka

Xy x - x X, ::HXn ={(z)]_: ;€ X;,j=1,...,n}
j=1
:{(xl,...,xn): x; EXj,j:L...,n}.

Otsekorrutis X; x --- x X,, on niisiis koikvoimalike selliste n-komponendiliste jér-
jendite hulk, mille j-s komponent kuulub hulka X;, j =1,... n.

Iga j € {1,...,n} korral saame me defineerida kujutuse
T Xy x---xX,> (.Il,...?.flfn)P—>.ij GX]'.

Seda kujutust nimetatakse otsekorrutise X; x --- x X,, j-ndaks koordinaatfunk-
tsiooniks. Otsekorrutise X; x --- x X, j-s koordinaatfunktsioon seab niisiis selle
otsekorrutise igale jirjendile vastavusse tema j-nda komponendi.

Olgu (X1,24),...,(X,,2,) mootuvad ruumid (s.t. kogumid A; C P(X;) on
o-algebrad).

Definitsioon 1.1. Vihimat otsekorrutise X; x --- x X, alamhulkade o-algebrat,
mille suhtes koik selle otsekorrutise koordinaatfunktsioonid on mootuvad, nimeta-
takse o-algebrate 214, ..., A, korrutis-o-algebraks ja tahistatakse siimboliga

W@ @A voi (XA
j=1
Mootuvuse definitsioonist jareldub, et
®21j:a<{7r;1(A): je{l,...,n},AEQlj}>. (1.1)
j=1

125
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Toepoolest, kui A C P(X; x --- x X,,) on o-algebra ja j € {1,...,n}, siis vastavalt defi-
nitsioonile tdhendab koordinaatfunktsiooni m; mootuvus 2 suhtes (tdpsemalt, (2, 2A;)-moédtuvus),
et

77]71(14) € Aiga A € 2, korral.

Niisiis, kdik otsekorrutise X; X - - - x X, koordinaatfunktsioonid on o-algebra 2 C P(X; x - - x X,,)
suhtes modtuvad parajasti siis, kui

A5 {W;I(A): jell,....n} Aemj}.

Siit jéreldub, et vdhim otsekorrutise X; x --- x X, alamhulkade o-algebra, mille suhtes koik te-
ma koordinaatfunktsioonid on moédtuvad, on vihim kogumit {W{l(A): je{l,....,n}, A€ Qlj}
sisaldav o-algebra ehk, teisisonu, kehtib (1.1).

Kuna mis tahes j € {1,...,n} ja A € 2; korral

1 (A) :{w = (@)jy € [[ X m(a) € A} - {(xkx;:l e [TXe: 2 € A}
k=1 k=1
=Xi XXX X Ax Xj x - x X,

siis voib valemi (|1.1]) esitada ka kujul
®Q(]:O'<{X1 X XXj_l XAXXj+1 X XXn: ]6{1,,’)7,}, AGQL]})
j=1
Teoreem 1.1. Olgu n € N ning olgu (X1,2,), ..., (X, ) moéotuvad ruumid. Siis
Q2= ({Arx - x Ay Aj e, j=1,....n}).
j=1

TOEsTUS. Tahistame

]:1:{X1X"'XXj_1><AXXj+1><"'><XnZ ]G{l,,n},AEQlj},
]:2:{141><~"><An3 AjEi’lj,jzl,...,n}.

Kuna @Q’_, ; = o(F1), siis piisab teoreemi toestuseks ndidata, et o(F;) = o(F).
Sisalduvus o(F;) C o(F2) on ilmne, sest Fy C Fo.

Veendume, et ka o(F2) C o(F;). Kuna o(F;) on o-algebra, siis piisab selleks
veenduda, et 7, C o(Fy) (vt. lemmat I2.1)). Mis tahes A; x - - x A, € Fp (A; € A,
j=1,...,n) korral

A1><"'XAn:ﬂX1X"'XXj,1XAjXXj+1X"'XXn€U(.F1);
J=1

jarelikult Fy C o(Fy). O
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Teoreem 1.2. Olgun € N, olgu (X1,201), ..., (X,,2A,) méctuvad ruumid ning olgu

kogumid & C P(X;), j =1,...,n, sellised, et iga j € {1,...,n} korral o(&;) =2,
(s.t. kogum &; genereerib o-algebra A;). Siis

Q=0 ({7 sl e}

a({Xlxu-ij,l><A><Xj+1><~-><Xn: je{l,...,n},AEEJ});
(b) kui &> X, j=1,...,n, sis

éﬂj:O’({th'“XAni Ajegj,jzl,...,n}>.
j=1

TOESTUS. (a).
Ulesanne 1.1. Toestada viide (a).

NAPUNAIDE. Arutleda, nagu valemi (1.1) pohjenduses, rakendades seal funktsiooni mootuvuse
definitsiooni asemel teoreemi I1[1.11

(b). Olgu &; 5 X, j = 1,...,n. Téhistame

.FQZ{A1><"'><AnZ Ajem],jzl,,n},
Fa={Xi x - x X1 x Ax Xjy1 x - x X0 j€{1,...,n}, A€ &},
F4:{A1X"'XAnZ Ajegj,jzl,...,n}.

Viite toestuseks peame nditama, et @7_, 2; = o(F4). Kuna teoreemija viite (a)

pohjal Q’_, /A; = o(F2) = o(F3), siis piisab néidata, et o(F3) C o(Fy) C o(F2),
mis on ilmne, sest F3 C Fy C Fo. O

Meenutame, et kui n € N ning (X1, p1), ..., (X, pn) on meetrilised ruumid, siis
otsekorrutis X = X; x --- x X, on meetriline ruum jiargmise vordusega defineeritud
kauguse p — nn. korrutismeetrika suhtes:

p(ﬂf,y) = Inax pj(‘rj?yj)a T = (xlw"axn)a Yy = (yla---ayn) € X.

1<j<n

Ulesanne 1.2. Olgu (X1,p1),...,(Xn, pn) (n € N) meetrilised ruumid ning olgu (X, p) nende
korrutisruum. Tdéestada, et

(a) kui z = (z1,...,2,) € X jar >0, siis

B(z,r) = HB(xj,r)

(B(z,r) tahistab lahtist kera keskpunktiga x ja raadiusega r);

(b) kui ruumid (X1, p1),. .., (Xn, pn) on separaablid, siis ka korrutisruum X on separaabel.
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Teoreem 1.3. Olgu n € N, olgu Xy, ..., X,, meetrilised ruumid ning olgu otsekor-
rutis X = X1 X - -+ X X, varustatud korrutismeetrikaga. Siis

@) n
Bx D ® ij
j=1

(simbol Bx tihistab ruumi X Boreli o-algebrat);

(b) kui ruumid X, ..., X, on separaablid, siis
Bx = (X Bx,.
j=1
TOESTUS. (a). Kuna Boreli o-algebra definitsiooni pohjal By, = o(7x;),j =1,...,n

(meenutame, et siimbol 7x, tdhistab ruumi X lahtiste alamhulkade kogumit), siis
teoreemi (a), pohjal @;_, Bx, = o(£), kus
&= {Xl XX Xy X U X Xjp1 X - x X j € {1,...,nl, UETXj}.

Seega piisab viite toestuseks néidata, et £ C 7x, s.t. kogumi £ iga hulk on lahtine
hulk ruumis X, sest sel juhul @7_, Bx;, = 0(£) C o(7x) = Bx.
Ulesanne 1.3. Veenduda, et £ C 7.

(b). Olgu ruumid X7, ..., X, separaablid. Kuna viite (a) pohjal Bx O @_, Bx;,
siis jadb teoreemi toestuseks néidata, et By C ®?:1 By ;. Selleks aga piisab néidata,

et tahistades
g;: {Ul X+ X Uni Uj ETXj,j:L"'7n}7

kehtib sisalduvus 7x C o(G).

Tdepoolest, kuna Boreli o-algebra definitsiooni pohjal o(7x,) = Bx,, j = 1,...,n, siis teoree-
mi (b), pohjal o(G) = ®?=1 By, ning jérelikult sisalduvuse 7x C 0(G) kehtides

Bx =o(tx) Co(G) = ®BX].

Veendume, et 7x C 0(G). Olgu U € 7x (s.t. U on ruumi X lahtine alamhulk).
Kuna ruumid X, ..., X,, on separaablid, siis ka korrutisruum X = X; x --- x X,
on separaabel (vt. iilesannet [1.2 (b)). *Ulesande pohjal esitub hulk U lahtiste
kerade loenduva iihendina, s.t.

U:UB(xk,rk),kusxk:(x’f,...,x’;)€X1><---xXn:X,rk>O,k:1,2,....
k=1

Aga niiiid iilesande [1.2] (a), pohjal

U= U B(x",ry) = U B(x%,r) x -+ x B(z* r) € 0(G);
k=1

k=1
jarelikult 7x C o(G). O
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Meenutame, et siimboliga R™ téhistame me meetrilist ruumi (R x --- x R, d),
—_———

n tegurit
kus kaugus d on defineeritud vordusega

Z]xj—yjP, r=(21,....20),y = (Y1, .., yn) ER X - xXR.
j=1

n tegurit

Teoreem 1.4. Olgu n € N. Sus
Brrn = Br ® - -+ ® Bg .
—_———
n tegurit

TOEsTUS. Olgu p ruumi R X - -+ x R korrutismeetrika, s.t.
—_——

n tegurit

= C— Y = e ), Y= (Y1, Yn) ER X - xXR.
p(r,y) = max [v; —y;, x=(r1,...,2,), y= (0 Yn) €] ,

1<y<n
n tegurit
Teoreemi [1.3] (b), pohjal B @ -+ - ® Br = B(]R X X Ry Kuna
_/_/ )
n tegurit m

T(RX"'XR,;)):TR”

n tegurit

(s.t. ruumides (R x --- x R, p) ja R™ on iihed ja samad lahtised hulgad), siis
———

n tegurit
BR@@BR:B(RX xRy :U(T(RX XR,p)) :U(TR”) :B]R"~
— —— ————
n tegurit n tegurit n tegurit

Ulesanne 1.4. Veenduda, et TR X --- x Rp) = TR
————

n tegurit
]
Ulesanne 1.5. Toestada, et kui E € Brn, 2 € R” jar € R, siis ka E + z € Bgn ja rE € Bgn.

NAPUNAIDE. Veenduda, et kogum & = {E € Bg: E+r € Bg jarFE € B iga r € R korral} on
o-algebra, kusjuures £ sisaldab mingi o-algebrat Bgr~ genereeriva kogumi &;.

Maérkus 1.1. Kui X3, X5 ja X3 on mingid (mittetiithjad) hulgad, siis me voime loomulikul viisil
samastada otsekorrutised

X1 X X2 X Xg, (Xl X XQ) X X3 ja X1 X (X2 X Xg)

Uldisemalt, kui n € N ja Xj,...,X,, on mingid (mittetiihjad) hulgad, siis me voime loomulikul
viisil samastada otsekorrutised

XixXox oo xX,, (Xix--xX,1)xX, ja Xix(Xgx-xXp,).

Seda arvestades saab nididata, et o-algebrate “korrutamine” on assotsiatiivne, s.t. kui (X7,2),
(X2,20) ja (X3,23) on mdotuvad ruumid, siis

A R Us QA3 = (Qh ®9[2) ® A3 = Ay ®(Q[2®Ql3),
ning, tldisemalt, kui n € N ja (X1,24),..., (X, ;) on modtuvad ruumid, siis

AR A, = Q- A, 1)U, =24 (A @ - - RAy,).
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Olgu (X, 2, 1) ja (Y,B,r) méoduga ruumid.
Definitsioon 2.1. Olgu A € 2 ja B € B. Hulka
AxB={(z,y) e X xY: z€ A,y B}

nimetatakse ARB-mootuvaks ristkilikuks (ehk lihtsalt mootuvaks ristkilikuks). Hul-
ki A ja B nimetatakse selle ristkiiliku kilgedeks.

Selles paragrahvis konstrueerime iithe méodu korrutis-o-algebral 2 ® 9B, mida me
hakkame nimetama mootude p ja v korrutismooduks ning tahistama stimboliga pxv.
Nimetus “mootude 4 ja v korrutismoot” on moodu p X v puhul igati oigustatud, sest
me konstrueerime ta selliselt, et iga mdootuva ristkiilliku A x B € 2l ® B korral

i x V(A x B) = u(A) v(B),
s.t. mootuva ristkiiliku korrutismoot on vordne tema kiilgede mootude korrutisega.

Tahistame
Ay={Ax B: Ac, B e B},

s.t. Ap on koigi 2 ® B-modtuvate ristkiilikute kogum, ning
A: {UEJ nEN, El,...,EnEA(), EZQEJIQ),Z#j},
j=1

s.t. A on koigi paarikaupa loikumatute 2 ® B-modtuvate ristkiilikute 16plike iihen-
dite kogum. Kuna Ay on poolalgebra, siis teoreemi 1[2.5 pohjal on kogum A algebra.

Ulesanne 2.1. Toestada, et koigi A ® B-modtuvate ristkiilikute kogum Ay on poolalgebra.

Defineerime hulgafunktsiooni p: A — [0, oo] vordusega
pE) =) n(A)v(By), EeA (2.1)
j=1

kus paarikaupa loikumatud 2 ® B-mootuvad ristkiilikud A; x By,..., A, X B,
(n € N), on sellised, et

E = U Aj X Bj. (22)
j=1
Siis
(1) hulgafunktsioon p on korrektselt defineeritud, s.t. tema definitsioon ei soltu
hulga E esitusest kujul (2.2) — tépsemalt, kui paarikaupa loikumatud 2 ® 8-

mootuvad ristkilikud A} x B,... A x B! (m € N), on sellised, et £ =
Uir, 4] x B, siis

m

> uA)v(B) = Z p(A;) v(B;);

i=1

130
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(2) hulgafunktsioon p on moat;

(3) moot p on ainus moot algebral A, mille puhul mootuva ristkiiliku moot on
tema kiilgede mootude korrutis.

Viited (1)—(3) jarelduvad iilesandest 1)3.10|ja jirgnevast lemmast.

Lemma 2.1. Olgu A x B € A ® B maootuv ristkilik, olgu J mingi dlimalt loenduv
indeksite hulk ning olgu paarikaupa lotkumatud mootuvad ristkilikud A; x B; €
A®B, j€J, sellised, et

jeJ

= Z ((A;)v(By)

jeJ

Siis

Ulesanne 2.2. Jireldada iilesandest 1}3.10|ja lemmast [2.1] viited (1)—(3).

LEMMA TOESTUSEKS piisab niidata, et

iga y €Y korral u(A) x(y) = D (45) X, (1) (2.3)

Toepoolest, kui viide (2.3 kehtib, siis Lebesgue’i monotoonse koonduvuse teoreemi pohjal
(tdpsemalt, teoreemi I1[2.5| pohjal)

(A)w(B) = w(A) | xB(y)dv(y) = | p(A)x ) dv(y)
! : / /YM /]EZJN ) xB; (
_Jze;]/ y) dv(y) ZJXE;I#(AJ')/YXBJ-(y) dv(y) :;IM(A])V(BJ)

Toestame viite . Olgu y € Y, siis monotoonse koonduvuse teoreemi pohjal
(A x(0) = x00) [ @) i) = [ xale) xolo) dito)
~ [ sl ) duta) = / XU,y Ay, (22 9) di()
/ZXAXB (,y) du(x /ZXA x) x5, (y) dp(x)

—Z / X4, () x5, (y) dp(x ZXB / Xa,(7) dp(z)
= ulA;) x5, (v)

jeJ
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Olgu p*: P(X xY) — [0,00] modduga p: A — [0, 00| assotsieeruv vilismoot,
s.t. B € P(X xY) korral

p*(E) :inf{Zp(Ej): E,eAj=12...,EC UEJ}
7=1 7j=1

:lnf{ZM(A])V(BJ) Aj GQ[,B]' eB,j=12..., FC UAJ X BJ}
j=1

J=1

Tahistame
pX V= p*laa) = plass.
Ulesanne 2.3. Veenduda, et o(A) = A ® B.

Hahni teoreemi pohjal on hulgafunktsioon p x v: A ® B — [0, co] moot; seejuures
on pu X v méodu p jiatk o-algebrale o(A) = A @ B.

Mootu p x v nimetatakse mootude p ja v korrutismooduks. Mooduga ruumi
(X XY, A®B, 1 xv)

nimetatakse ruumide (X, 2, 1) ja (Y,B,v) korrutisruumiks.

Maérgime, et kui A x B on 2A® B-mootuv ristkiilik, siis A x B € A ning jarelikult
i x V(A x B) = p(A x B) = u(A)(B),

s.t. mootuva ristkiiliku korrutismoot on tema kiilgede mootude korrutis.

Paneme téhele, et kui ruumid (X, 2L, 1) ja (Y, B, v) on o-16plikud, siis eelméodu-
garuum (X xY, A, p) on o-16plik ning jarelikult ka korrutisruum (X XY, A®RB, uxv)
on o-loplik.

Ulesanne 2.4. Tdestada, et kui ruumid (X, 2, 1) ja (Y,9B,v) on o-16plikud, siis ka
(a) eelmooduga ruum (X x Y, A, p) on o-16plik;
(b) korrutisruum (X x Y, 2 ® B, 1 X v) on o-16plik.

Seega, kui ruumid (X, 2, 1) ja (Y,9B,v) on o-loplikud, siis Hahni teoreemi pohjal
on korrutismoot p x v moodu p ainus jitk korrutis-o-algebrale 2 @ 8. Moot p on
ainus selline moot algebral A, mille puhul iga A ®B-mdotuva ristkiiliku A x B moot
on tema kiilgede mootude korrutis. Niisis, kui ruumid (X, 24, u) ja (Y,B,v) on o-
loplikud, siis korrutismoot X v on ainus selline moot korrutis-o-algebral A @B, et
190 A ® B-mootuva ristkiliku A x B korral

p X v(Ax B)=u(A)v(B).

Ulesanne 2.5. Olgu (X, 2, 1) ja (Y, B, v) o-16plikud mé6duga ruumid ning olgu kogumid C C 2A
ja D C ‘B sellised, et

e leiduvad hulgad C; € C, j =1,2,..., nii, et U]Oil C;DX;
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o 1= A1]x, kus vilismoot Ay P(X) — [0, 00] on defineeritud vordusega

M(C)=inf > u(A)): A;€Cj=12,...,(JA4;DCp, CePX);
Jj=1 j=1

o leiduvad hulgad D; € D, j = 1,2,..., nii, et U;Z, D; D Y;
e U = \g|wp, kus vilismoodt Ag: P(Y) — [0, 00] on defineeritud vordusega

Ao(C) =inf ¢ > w(B;): BjeD,j=12,...,JB;>Dy, DeP(Y).
j=1

Jj=1

Olgu moot p defineeritud vordusega (2.1). Toestada, et iga E € P(X x Y') korral

p*(E) =inf > p(Aj)v(B)): A;€C, B;€D,j=12,..., | J4; x B; D E p = A(E).
j=1

Jj=1

Markus 2.1. Jargmise paragrahvi naites |3.1| veendume, et iildjuhul ei tarvitse moo-
duga ruum (X x Y, A®B, uxv) olla tiielik isegi siis, kui ruumid (X, 2, ) ja (Y, B, v)
on téielikud.

Ulesanne 2.6. Olgu (X,2l,7) ja (Y,B, D) vastavalt mdoduga ruumide (X, A, u) ja (Y, B, v) tiiel-
did. Toestada, et
(a) korrutisruumide (X x Y, A®B, uxv) ja (X xY,ARB, 7 x ) tiieldid (X x Y, A @ B, u X v)
ja (X xY,A® B, 1 X 7) on vordsed;

(b) kui p ja v on o-16plikud, siis ruumi (X x Y, A®B, u x v) téield on (X x Y, M(p*), p*| pm(p)),
kus modt p on defineeritud vordusega ([2.1)).

NAPUNAIDE. Viite (b) toestuseks kasutada jireldust I[£7] Viite (a) toestuseks on otstarbekas
koigepealt veenduda, et

(1) iga A® B-mddtuva ristkiiliku C x D korral leidub 2 ®@ B-mdotuv ristkiilik A x B D C x D
nii, et p(A) v(B) = (C) 7(D);

(2) 7 = p*, kus moGt p on defineeritud vordusega (2.1) ning moot 7 on méddu p analoog
paarikaupa loikumatute 2 ® B-mootuvate ristkiilikute 16plike iihendite algebral;

(3) AR B D A® DB, kusjuures 1 X v = [i X V|gen (siin kasutada teoreemi ;

(4) Mpxv)=N(@mx7p),st hulk N € P(X xY) on p x v-hiiljatav parajasti siis, kui ta on
I x T-hiiljatav (siin kasutada iilesannet I (b), ja lauset I;

(5) A B C AR B (siin kasutada teoreemi ja lemmat I.

Ulesanne 2.7. Olgu (X,2, u) ja (Y,B,v) o-1oplikud mééduga ruumid, kus X ja Y on Hausdorffi
topoloogilised ruumid. Toestada, et kui méodud p ja v on regulaarsed, siis ka korrutismoot pu x v
on (korrutistopoloogia suhtes) regulaarne.

NAPUNAIDE. Korrutismdodu p x v regulaarsuseks piisab iilesannete 1[3.33]ja[2.6] (b), ning teoreemi
1/5.4 pohjal ndidata, et vordusega (2.1)) defineeritud most p on regulaarne.
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Mirkus 2.2. Kolme v6i enama mdoduga ruumi korrutisruum defineeritakse analoogiliselt kahe
mooduga ruumi juhuga.
Olgu n € N ning olgu (X1,2s, 1), ..., (Xn, A, ttn) modduga ruumid. Kui 4; € 2A;, j =
1,...,n, siis hulka
Ay x - x Ay € P(Xy x -+ x Xp)

nimetatakse 2, ® - - - ® U, -mootuvaks risttahukaks. Hulki A; € ;, j =1,...,n, nimetatakse selle
risttahuka servadeks.

Tahistame siimboliga A koigi 2; ® - -- ® A,,-modtuvate risttahukate kogumi ning tihega A
koigi kogumi Ay paarikaupa l6ikumatute hulkade 16plike iihendite kogumi, s.t.

A= {UEz m €N, EiEAo,izl,...,m, EZQE_]:@,Z#_]}
i=1
Kuna kogum A( on poolalgebra, siis teoreemi I1.2.5 pohjal on kogum A algebra.

Defineerime hulgafunktsiooni p: A — [0, co] vordusega
m . .
p(E) = m(A}) - pn(AL), E €A,
i=1

kus m € N ning paarikaupa likumatud 24 ® - - - ® 2,,-mootuvad ristkiilikud E; = A% x -+ x A%,
1 =1,...,m, on sellised, et

E= O E;. (2.4)
=1

Sarnaselt kahe modduga ruumi juhuga saab niidata, et
(1) hulgafunktsioon p on korrektselt defineeritud, s.t. tema definitsioon ei séltu hulga F esitusest
kujul ;
(2) hulgafunktsioon p on moot;
(3) mdot p on ainus modt algebral A, mille puhul mé6tuva risttahuka méot on tema servade

mootude korrutis.

Olgu p*: P(X1 x -+ x X)) = [0, 00] modduga p: A — [0, 00] assotsieeruv vélismoot, s.t.

p(E)=inf > p(Ej): Bje A, jeN, EC|JEjp, EeP(Xyx - xXp).
j=1 j=1

Tahistame
1 X X = p o a) = P @t, -
Hahni teoreemi pohjal on hulgafunktsioon pg X -+ X p: 2 ®@ -+~ ® A, — [0, 00] MOGt; seejuures
on g X -+ X pi, moddu p jitk o-algebrale o(A) =24 ® - - @ Asy,.
Mootu gy X - -+ X p, nimetatakse mootude puq, . .., p, korrutismooduks. Mooduga ruumi

(X1><"'><Xn,9[1®"'®2[m/11X"'Xun)

nimetatakse ruumide (X1,21, 1), ..., (X, An, un) korrutisruumiks.
Margime, et kui A; X -+ X A, on ™A1 @ - - - @ A,,-mbStuv ristkiilik, siis A; x -+ X A, € A ning
jarelikult
pr X X g (A X e X Ag) = p(Ar X X Ap) = pa(Ar) - pn(An),
s.t. mootuva risttahuka korrutismoot on tema servade mootude korrutis.

Analoogiliselt kahe m66duga ruumi juhuga saab néidata, et kui mooduga ruumid (Xq1,2, u1),
ooy (X, A, i) on o-loplikud, siis
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(a) korrutisruum (X1 X -+ X Xp, 01 @ - @ Wy pi1 X -+ X ) on o-loplik;

(b) korrutismoot py X -+ X py, on ainus selline moot korrutis-o-algebral A; @ - @ A, et iga
A1 ® - @A, -méotuva ristkiliku Ay x --- x A, korral

1 X - X Nn(Al X oo X An) :,ul(Al)/’Ln(An)

Miirkus 2.3. Ulesannete [2.4 véidete analoogid jadvad kehtima, kui neis iilesannetes vaadelda
kahe mooduga ruumi korrutisruumi asemel kolme v6i enama mooduga ruumi korrutisruumi.

Mairkus 2.4. Saab niidata, et mdotude “korrutamine” on assotsiatiivne, s.t. kui (Xi,20, p1),
(Xa,2s, uo) ja (Xs5,As, u3) on modduga ruumid, siis

P X 2 X piz = (p1 X p2) X pz = p1 X (2 X p3),
ning, tildisemalt, kui n € N ja (X1,204, 1), .., (Xn, A, ptrn) on moédduga ruumid, siis

B X g X X gy = (1 X X 1) X i = in X (fg X e X ).



§ 3. Fubini-Tonelli teoreemid

3.1. Hulga loiked. Funktsiooni loiked

Definitsioon 3.1. Olgu X, Y ja Z mittetiihjad hulgad, olgu £ C X X Y ning olgu
f: X xY —Z.

Olgu z € X. Hulka
E,={yeY: (x,y) € E} € P(Y)
nimetatakse hulga F x-loikeks. Funktsiooni f,: Y — Z,

f(y) = f(z,y), yeYy,

nimetatakse funktsiooni f x-loikeks.
Olgu y € Y. Hulka

EY:={rx e X: (z,y) € E} € P(X)
nimetatakse hulga E y-loikeks. Funktsiooni f¥: X — Z,

fUa)=fzy), z€X,
nimetatakse funktsiooni f y-loikeks.
Ulesanne 3.1. Olgu X ja Y mittetiihjad hulgad ning olgu 2 € X. Toestada, et
(a) kui E € P(X xY), siis (E°), = (E;)%
(b) kui J on mingi indeksite hulk ja E; € P(X xY), j € J, siis

(UE) -UEn i (N5) - NE.

jeJ jeJ jeJ jeJ

(c) kui F € P(X xY), siis (xg)z = XB,;
(d) kui f: X xY %@7 siis (er)a: = (fx)Jr ja (fi)r = (fm)ia
(e) kui Z#0ja f: X xY — Z,siis iga C € P(Z) korral (f~*[C]) = f[C].

Teoreem 3.1. Olgu (X, ) ja (Y,B) moctuvad ruumid.
(a) Kui E € A® B, siis

(1) E, € B iga x € X korral;
(2) EY €A igay €Y korral.

(b) Olgu (Z,€) méotuv ruum ning olgu funktsioon f: X XY — Z AR B-mootuv.
Stis

(1) funktsioon f,: Y — Z on B-méotuv iga x € X korral;
(2) funktsioon fY: X — Z on A-méotuv iga y € Y korral.

136
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TOESTUS. (a). Toestame ainult véite (1). Vaide (2) toestatakse analoogiliselt.

Fikseerime vabalt x € X ja tdhistame
D:={FeA®B: E, € B}.
Viite (1) toestuseks piisab ndidata, et 2 ® B C D. Selleks piisab niidata, et

(A) DO {AxB: Ac, Bec B} (s.t. D sisaldab koik A @ B-mootuvad ristkiili-
kud);

(B) D on (hulga X x Y alamhulkade) o-algebra.
Toepoolest, kui kehtivad vaited (A) ja (B), siis
ARXB=0({AxB: AecA, BeB})Co(D)=D.

(A). Kui A € A ja B € B, siis

B, kui z € A;

<AxB>x={y€Y:<x7y>6“3}:{@, kui = & A.

Seega igal juhul (A x B), € B, s.t. Ax Be€D.

(B). Kogum D on (hulga X x Y alamhulkade) o-algebra tilesande 1)2.14] [B], (a),
pohjal.

(b). Toestame ainult viite (1). Viide (2) toestatakse analoogiliselt.
Ulesanne 3.2. Tdestada viide (1).

NAPUNAIDE. Kasutada iilesannet (e).
[

Naiide 3.1. Niitame, et mooduga ruum (R xR, L& L, m xm) ei ole taielik. (Siimbo-
lid £ ja m tahistavad vastavalt ruumi R Lebesgue’i o-algebrat ja Lebesgue’i mootu
ruumis R.)

Olgu hulk N € £\ {0} selline, et m(N) = 0 (niisuguseid hulki leidub — me
voime hulgaks N vGtta néiteks ruumi R mis tahes iithepunktilise alamhulga), ning
olgnu B € P(R) \ £ (meenutame, et jirelduse 1[5.9) pohjal £ S P(R)). Niiiid

NxBCNxReLl®L,

kusjuures
mx m (N xR)=m(N)m(R) =0m(R) =0,
seega hulk N x B on m x m-hiiljatav. Seejuures N x B ¢ L ® L.

Toepoolest, oletame vastuvéiteliselt, et N x B € L ® L. Siis, valides vabalt z € N, jareldub
teoreemist [3.1) et B = (N x B), € L, vastuolu.

Seega mooduga ruum (R x R, £L® L, m x m) ei ole tiielik. Meenutame, et ruum
(R, £,m) on taielik.



138 1II. Korrutisméodud

3.2. Lemma monotoonsest klassist
Olgu X mingi hulk.

Definitsioon 3.2. Kogumit D C P(X) nimetakse (hulga X alamhulkade) mono-
toonseks klassiks, kui

1° EjED,jzl,Q,...,E1CE2CE3C"' :>U;.;1EJGD,
2° E;eD,j=12,..., By DFE;,DFE;3D - :ﬂﬁlEjeD

(s.t. D on kinnine oma hulkade monotoonsete loenduvate iihendite ja monotoonsete
loenduvate iihisosade suhtes).

Definitsioon 3.3. Olgu £ C P(X). Vihimat hulga X alamhulkade monotoonset
klassi, mis sisaldab koiki kogumi £ hulki, nimetatakse kogumi £ poolt genereeritud
monotoonseks klassiks ja tdhistatakse siimboliga M(E).

Ulesanne 3.3. Téestada, et etteantud kogumi poolt genereeritud monotoonne klass on alati ole-
mas. Tapsemalt, toestada, et kui £ C P(X), siis leidub (vdhemalt iiks) kogumit £ sisaldav hulga X
alamhulkade monotoonne klass ning et niisuguste monotoonsete klasside seas on olemas vihim (s.t.
leidub kogumit &£ sisaldav hulga X alamhulkade monotoonne klass, mis sisaldub igas kogumit &
sisaldavas hulga X alamhulkade monotoonses klassis).

Kuna iga o-algebra on monotoonne klass, siis mis tahes kogumi & C P(X) korral
M(E) C o(€). Jargnev teoreem néitab, et kui £ on algebra, siis M(E) = o ().

Teoreem 3.2 (lemma monotoonsest klassist). Olgu X mingi mittetihi hulk ning
olgu A C P(X) algebra. Siis
o(A) = M(A),

s.t. algebra poolt genereeritud o-algebra on wvordne selle algebra pooll genereeritud
monotoonse klassiga.

TOESTUS.
*Ulesanne 3.4. Tdestada teoreem @

3.3. FubinTonell teoreemid

Teoreem 3.3. Olgu (X, 2, u) ja (Y,B,v) o-loplikud méoduga ruumid. Siis iga hulga
Ec AR5 korral

(a) funktsioon gp: X 2 x— v(E,) € [0,00] on A-méotuv (s.t. g € LT(X, A, 1) );
(b) funktsioon hg: Y 3y~ u(EY) € [0,00] on B-méotuv (s.t. hg € LT(Y,B,v)).

Seejuures

px ()2 [ () duta) = [ w(E") dvty).

Y

!Guido Fubini (1879-1943) — itaalia matemaatik.
2Leonida Tonelli (1885-1946) — itaalia matemaatik.
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TOESTUS. Toestame vaid, et iga E € A ® B korral kehtivad viide (a) ja vordus
(A). Viide (b) ja vordus p x v(E) = [, p(EY) dv(y) toestatakse analoogiliselt.

(I) Vaatleme kdigepealt juhtu, kus modduga ruumid (X, 2, 1) ja (Y,B,r) on
loplikud. Tahistame
D:={FE € A®B: viide (a) ja vordus (A) kehtivad}.

Veendumaks, et viide (a) ja vordus (A) kehtivad iga hulga £ € 2A® 9B korral, piisab
nididata, et A ® B C D. Selleks omakorda piisab néidata, et

(1) A C D, kus A on koigi paarikaupa loikumatute 2 ® B-mooctuvate ristkiilikute
loplike iihendite kogum;

(2) D on (hulga X x Y alamhulkade) monotoonne klass.

Toepoolest, kui vdited (1) ja (2) kehtivad, siis, arvestades, et A on algebra, jireldub lemma
pohjal monotoonsest, klassist, et

AR B = o(A) = M(A) C M(D) =D.

(1). Néitame, et A C D. Selleks paneme koigepealt tihele, et Ay € D, kus Ay
on koigi 2 ® B-mootuvate ristkiilikute kogum.

Toepoolest, kui E = A x B € Ag (A €2, B € ), siis

B kui A;
Ey=(Ax B), =47 Wred
0, kui xz & A,
jarelikult
v(B), kui z € A;
=v(E,) = = v(B .
g5 (z) = v(E.) {07 S = B )

Seega gp = v(B) xa € LT(X, 2, ), kusjuures

/ gp dp = / v(B) xadp=v(B)u(A) = px v(Ax B) = px v(E),
X X
s.t. E € D.

Kuiniiiid F € A, s.t. E = U?Zl Ej,kusn € Nja Ey,..., E, € Ay on paarikaupa
loikumatud, siis iga x € X korral

ge(r) =v ((U Eg)gc) =v (U(Ej)””> = ZV((Ej)m) = ZQEJ-(DU)

(sest hulgad (E1),, ..., (En), € B on paarikaupa ldikumatud), s.t. gg = > 7, gp, €
LH(X, 2 p) (sest kuna Ey, ..., E, € Ay C D, siis gg,,...,98, € LT(X,2A n));
seejuures

/gEdN:/ZgEJ-dU:Z/gEjd,u:ZMXV(Ej):MXV<E)'
X X j=1 j=1 X j=1

Niisiis £ € D ja A C D.
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(2). Néitame, et D on monotoonne klass, s.t. kehtivad implikatsioonid
1° EjED,j:1,2,...,E1CE2CE3C"':U;.;IEJ‘ED;
2° Ej€D7j:1,2,...,ElDEQDEgD"':m;ilEjGD.

1°. Olgu hulgad E; € D, j = 1,2,..., sellised, et By C Ey C E3 C ---. Peame
niitama, et siis ka I := J;2, Fj € D, s.t.

gp € LY (X, %, p) ja pxv(E)= /XgE dp. (3.1)

Selleks paneme téihele, et iga © € X korral

gp(x) = v(E,) =v <(U Ey){ﬁ) =v (U(Ej)m> = lim v((Bj).) = Jim gz, (2)

=1

(sest (E1), C (F2), C (E3); C ---), niisiis moddu monotoonsuse tottu gg, 7 gg.
Iga j € N korral E; € D, seega gp, € Lt (X, 2, ), jérelikult teoreemi IL]1.6| pohjal
ka gp € LT(X, 2, p). Arvestades jélle, et iga j € N korral E; € D, saame Lebesgue’i
monotoonse koonduvuse teoreemi pohjal, et

J]—00 J—00

pXxv(E)=lim pxv(E;) = lim [ gg du= / g dp.
X X

2°. Olgu hulgad E; € D, j = 1,2,..., sellised, et £y D Ey D E3 D ---. Peame
niitama, et siis ka I := ()2, F; € D, s.t. kehtivad tingimused (3.1]). Selleks paneme
tahele, et iga x € X korral

ge(r) =v(E;) =v ((ﬂ EJ>I> =v (ﬂ(@h) = ]11{50 v((E)).) = jlglc}ogEj(fﬁ)

(sest (Eh)e D (E2)s D (E3)e D -+ ja v((E1)s) < v(Y) < 00), s.t. gg, = gp- Iga
j € Nkorral E; € D, seega g, € L*(X, 2, ), jarelikult teoreemi IT[1.6] pGhjal ka
g € LT(X, 2 1). Moodu monotoonsuse tottu iga j € N korral

98, (2)] = v((E))s) < v(Y) < oo igax € X korral.

Arvestades jille, et iga j € N korral £; € D, saame Lebesgue’i tokestatud koondu-
vuse teoreemi pohjal, et

pxv(E)=lim pxv(E;) = lim [ gg du= / ge du.
X X

Jj—00 Jj—00

(IT) Vaatleme niiiid iildist juhtu (s.t. me ei eelda enam o-16plike modduga ruu-
mide (X, 2 ) ja (Y, B, v) 1oplikkust).
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Ruumide (X, %, i) ja (Y,B,v) o-loplikkuse tottu leiduvad hulgad X; € 2, Y] €
B, j=1,2,..., selliselt, et

3
>
I

/L(Xj><OO7 j:1,2,..., X, X1CX2CX3C'-',

<.
Il
—

Y, icY,CYsC---

s

v(Y;) <oo, j=1,2,..., Y;

<
Il
—_

Tahistame iga 7 € N korral

A, = {AﬂXj: Ae Q(}, 1y = play, By = {BﬂYj: B e ‘B}, vj = Vs,
Paneme tdhele, et iga 7 € N korral

(1) (X;,2, 1) ja (Y;,B,,v;) on moédduga ruumid;

(2) kui f € LT(X;, 2, 11 ), siis, defineerides

B {f(:c), kui z € Xj;

] r e X,
0, kui z € X,

kehtib f € LH(X, 2, 1), kusjuures [ fdu = fXj [ dug;
3) A,®B;={EN(X; xY;): E€A®B} C AR B;
(4) pj x vy = p X Viem,.
Ulesanne 3.5. Téestada, et iga j € N korral kehtivad viited (1)—(4).
Olgu E € 2A®B. Toestame viite (a) ja vorduse (A). Téhistame iga j € N korral
B =EN(X;xY,) €A @B, CADB.
Kuna ruumid (X;,2A;, u;) ja (Y;,B;,v5), j = 1,2,..., on 16plikud, siis toestuse osa
(I) pohjal iga j € N korral
funktsioon  X; 3 z +— v;((E;)s) € [0,00]  kuulub klassi L™ (X}, 5, 1;),
kusjuures
py X vi(Ej) = /X vi((Ej)) dpj().
Siit jareldub véite (2) pohjal, et iga j € }\T korral
funktsioon X 3z — v;((E)).) = v((Ej).) € [0,00]  kuulub klassi L* (X, 2, p),

kusjuures

px v(Ej) = p; x vj(Ej) = / vi((Ej)s) dpj(z) = /XV((Ej)x) dp(x).

X;
Paneme téhele, et iga v € X korral ;2 (F)), = Ey, kusjuures (E), C (Ez), C
(E3), C ---; jarelikult
v((E)e) /S v(Ez) = gp(2).

Seega gp € L1(X,2, 1), kusjuures Lebesgue’i monotoonse koonduvuse teoreemi
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pohjal

/XV(Ex) du(z) = lim i v((E))z) du(z) = Jim o x v(Bj) = p x v(E).

O

Teoreem 3.4 (Tonelli teoreem). Olgu (X, A, ) ja (Y,B,v) o-loplikud mooduga
ruumid ning olgu f € LT(X XY, A ® B, u x v). Siis

(a) funktsioon g: X > x — [, fodv € [0,00] on A-méotuv (s.t. g € LT (X, A, p));
(b) funktsioon h: Y 3y [, f¥dp € [0,00] on B-mootuv (s.t. h € LT(Y,B,v)).

Xxyfdum_/ (/ fxdu) du(x /(/ fydﬂ) W), (32)

Mairkus 3.1. Sageli jdetakse valemis (3.2) sulud kirjutamata. Samuti eelistavad
moned autorid kirjutada selles valemis siimbolid du ja dv vastupidises jarjekorras.
Niisiis kirjutatakse valem (3.2)) tihtipeale ka kujul

Sy dexviey) = //fa:ydu ) dp(x //fxyd,u ) dv(y)

//f:vydu ) dv(y //fxydv ) dp().

TONELLI TEOREEMI B.4] TOESTUS. Toestame ainult viite (a) ja vorduse (A). Viide
(b) ja vordus [, , fduxv= [, ([ f'du) dv(y) toestatakse analoogiliselt.

(I) Toestame viite (a) ja vorduse (A) koigepealt juhul, kui f € LT(X X VA ®
B, 1 X v) on lihtne modtuv funktsioon standardesitusega f = 2?21 a;Xxg,- Sel juhul
iga x € X korral

Seejuures

Zaj XE Z%X €L+(Y7£B7V)7
jarelikult

:/fodV:ZZ;ajy((E])>

Kuna teoreemi pohjal kuuluvad funktsioonid X 3 z — y((Ej)x), j=1,...,n,
klassi LT (X, 2, u), siis ka g € L1 (X, 2, u); seejuures

/Xxyfd,uxu—z%uxy Za]/ (x)

7j=1

_ /X éajy(@j)x) dy(x) = /X ( /wad”) I
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(IT) Vaatleme niiiid juhtu, kus f € LT (X xY,2A®B, ux v) on suvaline. Teoreemi
H. pohjal leiduvad lihtsad moéotuvad funktsioonid ¢, € LT (X X Y, AR B, u x v),

n=1,2,...,nii, et ¢, 7 f. Niiiid monotoonse koonduvuse teoreemi pohjal
fduxv=lim On dpp X v D Jim (/ (Dn) dy) dp(x)
XxY n=o Jxxy n—=oo Jx \Jy

@ ( /s du) du().

Téepoolest, toestuse osa (I) pohjal iga n € N korral funktsioon t,: X 3 z — [ (¢n)edv
kuulub Klassi LT (X, 2, u), kusjuures [y v dndp x v = [y ([y(¢n)e dv) du(x); niisiis kehtib (1).
Kuna ¢, 7 f,siisigax € X korral (¢,,), * f. ning seega monotoonse koonduvuse teoreemi péhjal
Un(x) = [y (dn)edv 7 [y fodv = g(x), jarelikult g € LT (X, 2, 1), kusjuures jéllegi monotoonse
koonduvuse teoreemi pohjal kehtib (2).

[
Jareldus 3.5. Olgu (X, 2, 1) ja (Y,B,v) o-loplikud mooduga ruumid.
(a) Olgu E € AR B selline, et p x v(F) = 0. Siis
(1) v(E,) =0 p-p.k. v € X korral;
(2) w(Ey) =0v-pk. yeY korral

(b) Olgu p x v-p.k. midratud funktsioonid f,g: X x Y — R sellised, et f = g
X v-p.k. Sits

(1) p-p.k. € X korral

fo(y) = f(2,y) = g(x,y) = 9:(y) v-p.k. y €Y korral;
(2) v-p.k.y €Y korral

fUx) = flz,y) = g(z,y) = ¢"(x) p-p.k. z € X korral.
TOESTUS. (a). Teoreemi [3.3| pohjal kuuluvad funktsioonid
Xoz—v(E,) €000 ja Y 3y u(EY) €|0,0]
vastavalt klassidesse LT (X, 2, u) ja LT(Y,B,v), kusjuures
/ v(Ey) dp(x) = / u(EY) dv(y) = px v(E) = 0.
be

Y
Viited (1) ja (2) jirelduvad niiid vahetult teoreemist IT[2.8|
(b). Olgu hulk £ € A ® B selline, et f(z,y) = g(z,y) iga (z,y) € E korral ja
pux v(E) =0.
Mis tahes x € X korral
flx,y) =g(x,y) igay € E, korral.

Viite (a), (1), pohjal p-p.k. z € X korral v((E,)°) = v((E°),) = 0, jirelikult
p-p.k. x € X korral f(x,y) = g(z,y) v-p.k. y € Y korral.
Viide (2) toestatakse analoogiliselt. O
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Teoreem 3.6 (Fubini teoreem). Olgu (X, A, u) ja (Y,B,v) o-loplikud méoduga
ruumid ning olgu f € L1(X X Y, A ® B, u x v). Siis

(a) fo € L1(Y,B,v) u-p.k. x € X korral;

(b) fYe Li(X,A,u) v-pk. y €Y korral;

(¢) p-p.k. mddiratud funktsioon g: X > z — [, fodv € R on integreeruv (s.t.
gEELlLX;mWM)%

(d) v-p.k. médratud funktsioon h: Y > y — [, fYdu € R on integreeruv (s.t.
h e Li(Y,B,v)).

e ([ = )

Fubini teoreemi [3.6] toestus tugineb Tonelli teoreemile [3.4] ning jéreldusele

Seejuures

FUBINI TEOREEMI [3.6] TOESTUS. Toestame ainult viited (a) ja (c) ning vordu-
e (A). Viited (b) ja (d) ning vordus [, fduxv = [, ([ fYdun) dv(y) toesta-
takse analoogiliselt.

Koigepealt vaatleme juhtu, kus f on kéikjal ruumis X x Y madratud R-vaartus-
tega A ® B mootuv funktsioon. Sel juhul teoreemi Tonelli teoreemi pohjal

fduxv= frdpxv— fduxv

XxXY X XY X XY

= [ (L) auto~ [ ([ ) dutw
/ ( [ [ (f_)de) du(a)

([ - / (£ dv) du(o)
)

Muuhulgas kehtivad (a) ja (c).
Toepoolest, (f.)F = (f*). € LT(Y,B,v); seejuures Tonelli teoreemi [3.4] pohjal funktsioonid

g1t XSZ"—>/(fw)+dV ja  ga: ng.—>/(fw)*du
v %

kuuluvad klassi Lt (X, 2, i), kusjuures

/Xgld/i:/x(/y(fxﬁdl/) d,u(x)z/xxyf*duxy<oo
Jomtn= [ ([rrar)au@ = [ 5duxv <o
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s.t. 91,92 € L1(X, 2, ). Siit jareldub ka (teoreemi II pohjal), et
/Y(fw)i dv < oo p-pk. z e X korral;
niisiis p-p.k. € X korral f, € L1(Y,%,v). Samuti p-p.k. z € X korral
0= [ fedn@) = [ (1) dut@) = [ (1) dute) = 01@) ),

s.t. g = g1 — go, jarelikult g € L1 (X, 2, ).
Olgu niitid f € L1(X xY,A®B, u x v) suvaline. Siis leidub kéikjal ruumis X x Y’
misratud R-vidrtustega A © B-mootuv funktsioon f € L (X xY, A®B, px v) nii,

et = f X v-p.k. Jareldusepohjal u-p.k. x € X korral f, = fI/l{ p.k, jarelikult
fo € Li(Y,B,v) p-p.k. © € X korral (sest eelnevalt toestatu pohjal f, € Li1(Y,B,v)
p-p.k. x € X korral), kusjuures

x) = / fodv —/ f.dv pu-p.k. © € X korral.
X X

Siit jareldub, et g € Ly(X,2, 1) (sest eelnevalt toestatu pohjal funktsioon X >
& +— [y fodv kuulub klassi Ly (X, 2, 11)), kusjuures

XXdeMXV: XXdeMXV:/X(/Y};dV) du:/X(/fody) I



§ 4. Lebesgue’i moot ruumis R"
Niites [3.1] veendusime, et méoduga ruum
(RxR,L®L,mxm)

ei ole téielik (siimbolid £ ja m téhistavad vastavalt ruumi R Lebesgue’i o-algebrat
ja Lebesgue’i mootu ruumis R). Analoogiliselt saab nédidata, et kui n € N, n > 2,
siis korrutisruum

(]R"’g@)...@ﬁjznx x@)

Vv Vv
n tegurit n tegurit

pole téielik. Olgu (R™, £™, m™) selle ruumi téield. Kogumit £" nimetatakse ruumi R™
Lebesque’s o-algebraks. Selle kogumi hulki nimetatakse ruumi R" Lebesgue’ hulka-
deks. Mootu m™ nimetatakse Lebesque’ mooduks ruumis R™. Edaspidi tédhistame
Lebesgue’i mootu ruumis R” ka lihtsalt stimboliga m.

Mirkus 4.1. Ulesandest (a), koos méarkusega [2.3|jireldub, et (R™, L™, m™) on ka ruumi

(R"Br® - QBg,m X -+ xm)

n tegurit n tegurit

téield ehk, kuna teoreemi [1.4] pohjal Bg ® - -+ ® Bg = Bgn, siis (R, £™,m™) on ruumi (R™, Bgn,
—_——
n tegurit
m X --- x m) taield. (Stimbol Bg~ tdhistab ruumi R™ Boreli o-algebrat.)
—_————
n tegurit

Miirkus 4.2. Ulesannetest (b), ja koos méarkusega, ning valemist (I jareldub, et
L7 = M(X) jam™ = Mzn = A aq(n) (siimbol M(X) téhistab hulga R™ A-modtuvate alamhulkade
o-algebrat), kus vilismoot A: P(R™) — [0, co] on defineeritud vordusega

1nf{z bJ—a1 —al):al,bl, .0l eR a) <V, al <b,j=1,2,...,
=1

n tegurit

1C3

(al, b)) x -+ x (al, b)) D E} E e P(R").

n vahemikku

Seejuures lause I pohjal m* = A. (Stimbol m* tdhistab siin méoduga m := m™ assotsieeruvat
valismodtu.)

Integreerides Lebesgue’i moodu m jargi ruumis R”, kirjutatakse siimboli dm voi
dm(zx) asemel tihti ka lihtsalt dz.

Teoreem 4.1. Olgu F € L".

(a) m(E) =sup{m(K): K C E, K on kompaktne}
=inf{m(U): U D E,U on lahtine}.

(b) E =G\ Ny, kus G € L" on Gs ning Ny € L™ on selline, et m(Ny) = 0.

(¢) E=HUN,, kus H € L™ on F, ning Ny € L™ on selline, et m(Ny) = 0.
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Mirkus 4.3. Teoreemi véidet (c) kasutatakse hiljem teoreemi VI.2.2 toestamisel.

TeEOREEMI [4.1] TOESTUS. Viide (a) — Lebesgue’i moodu regulaarsus — jireldub

tilesannetest 1/3.33] ja koos méarkusega

Ulesanne 4.1. Toestada viited (b)—(c).

NAPUNAIDE. Koigepealt panna téhele, et Lebesgue’i moodu m jaoks ruumis R™ kehtib teoreemi
1[5.5]viiite analoog. Edasi arutleda nagu teoreemil.6/implikatsioonide (i)=>(ii) ja (i)=-(iii) tGestuses.

O
Ulesanne 4.2. Téestada, et ruumi R™ m-hiiljatava alamhulga nihe ja kordne on m-hiiljatavad
hulgad, s.t., kui £ € N(m), z € R" jar € R, siis ka E+ z,7F € N(m).

NAPUNAIDE. Kasutada fakti, et £ € N(m) parajasti siis, kui A(E) = 0, kus A on vilismoot
mérkusest (See fakt jareldub iilesandest I (b), koos mérkuses pohjendatud vordusega
m* = \.)

Teoreem 4.2. (a) Olgu E € L" ja z € R™. Siis E+2z € L", kusjuures m(E+z) =

(b) Olgu E € L" jar € R. Sits rE € L, kusjuures m(rE) = |r|" m(E).

(c¢) Olgu funktsioon f: R™ — R Lebesgue’i mottes méootuv. Siis ka funktsioon
f(-4+ 2): R" — R on Lebesgue’t mottes mootuv. Seejuures, kui f > 0 voi
f € Li(m), siis ka vastavalt f(-+ z) =0 voi f(-+ z) € Li(m), kusjuures

[ a2 m@) = [ @) dmiz).

TOESTUS.
Ulesanne 4.3. Toestada teoreem @

NAPUNAIDE. (a) ja (b). Sisalduvuste E + z € L™ ja rE € L™ toestamisel kasutada asjaolu, et
L™ on Boreli o-algebra Bg. tdield Lebesgue’i moodu m suhtes, ning fakte, et ruumis R™ Boreli
hulga nihe ja kordne on Boreli hulgad ning m-hiiljatava hulga nihe ja kordne on m-hiiljatavad (vt.

iilesandeid [L.5] ja [4.2).
Vorduste m(E + z) = m(E) ja m(rE) = |r|" m(E) toestamisel kasutada mérkust

]

Maérkus 4.4. Teoreemi viide (a) iitleb, et Lebesgue’i moot ruumis R™ on nihke
suhtes invariantne. Paragrahvis VI.2 néitame, et Lebesgue’i moot ruumis R” on ka
poorde suhtes invariantne.

Definitsioon 4.1. Olgu g: R® — R. Hulka

suppg = {z € R": g(z) # 0}

(s.t. hulga {x € R™: g(x) # 0} sulundit ruumis R") nimetatakse funktsiooni g
kandjaks.

Jérgnev teoreem on erijuht teoreemist I13.10] kus X = R"”, A = L" ja u = m.
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Teoreem 4.3. Olgu f € Li(R", L",m). Siis iga ¢ > 0 korral leidub tokestatud
kandjaga pidev funktsioon g: R™ — R selliselt, et

|f —gldm < e.
Rn

Selle punkti iilejadnud osa pithendub Lebesgue’i moodu vordlusele Jordani moo-
duga ruumis R™. Termini “kuup (ruumis R")” all moéistame me edaspidi hulkasid
tiilipi

[Tla;. 0] = lar, b1] x -+ x [a, by,

j=1
kus a;,0; €R, a; <bj, 7=1,...,n, by —ay =+ = b, — ay,.
Iga k € Z korral tdhistame

n 1
Q. = {H[aj7bj]: 2kaj72kbj € Z, bj_aj = Q_k’J = 1,...,77,}.

j=1

Kogumi Q. hulki nimetatakse diaadilisteks kuupideks (servapikkusega 2%) Margime,
et

(1) kogumi Q mis tahes kahe kuubi sisemused on l6ikumatud;
(2) kogumi Qy4y kuubid saadakse kogumi Qj kuupide servade poolitamise teel.

Olgu E C R™. Tahistame iga k € N korral

am=Ue i Awm-= e
QEQ QEQ
Qce QNE£0
Siis
1 : 7
m (AL(F)) = Sk “kuupide arv A, (F)-s”

_ 1 —
m (Ax(E)) = o % “kuupide arv Ay (FE)-s".

Kuna A,(F) C Ay(E) C Ay(E) C --- ja Ai(E) D Ay(E) D A3(E) D ---, siis
eksisteerivad piirviartused

K(FE) = lim m (A,(F)) ja R(E):= lim m (Zk(E)) ,

k—o00 k—o00

mida nimetatakse vastavalt hulga E Jordan:i sisemooduks ja Jordani vilismooduks.
Kui k(E) = R(E) < oo, siis deldakse, et hulk E on Jordani mottes mootuv; tema
Jordani sise- ja vilismoodu iihist vddrtust nimetatakse sel juhul hulga E Jordani
mooduks ja tahistatakse siimboliga x(E).

Mirkus 4.5. Kui hulk £ C R" on tokestamata, siis (E) = oo.
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Mairkus 4.6. Jordani moodu defineerimisel (ruumi R” tokestatud alamhulkade
jaoks) kasutatakse diaadiliste kuupide asemel tihti ka suvalisi (10plikke) koordinaat-
risttahuksummasid voi hulktahuksummasid. Moiste sisu jadb seejuures samaks.

Tahistame

o0

AE) = |JAWE) ja  AE):=[)AE

(1) A(E) C E C A(E);
(2) A(E) ja A(E) on Boreli hulgad;
(3) £(E) =m (A(E)) ja R(E) =m (A(E)).
Niisiis, tokestatud hulk £ C R™ on Jordani mottes mootuv parajasti siis, kui
m (A(E)\ A(E)) = 0.

Siit jéreldub, et kui £ on Jordani mottes mootuv, siis ta on ka Lebesgue’i mottes
mootuv, kusjuures m(E) = k(FE).

Lause 4.4. Olgu U C R" lahtine hulk. Siis
(a) U=A(U);
(b) U on paarikaupa loikumatute sisemustega kuupide loenduv ihend;
(c) m(U) = &(U).

ToOgsTUs. Uldisust kitsendamata véime eeldada, et U # R™.
(a). Olgu = = (z;)}_, € U. Néitame, et leiduvad k¥ € N ja Q € Qy nii, et
r €  C U. Kui mingi diaadilise kuubi @ € 9y (k € N) korral x € @Q, siis suvalise

y = (y;)j=1 € Q korral
3 2 1\* Vn
Z|mj_yj| < n ? :2_k
j=1

Hulga U lahtisuse tottu ¢ := inf{d(x, z): z ¢ U} > 0. Niisiis, kui valida k¥ € N nii,
et ‘2/—,? < 0,ja @Q € Q nii, et z € @ (niisugune @ leidub alati), siis @ C U. Seega
r€Q CAU) CUZ4(U) = A(U).

(b). Viite (a) pohjal

d(z,y) =

U=AU UA AuUA )\ A (U AuUA )\ A, (0).



Viite toestuseks piisab niiiid vaid tdhele panna, et iga & € N korral esitub su-
lund A, (U) \ A;_,(U) paarikaupa loikumatute sisemustega kuupide iilimalt loendu-
va iihendina.

(c). Kuna viite (a) pohjal U = A(U) = U= A,(U), kusjuures A,(U) C A,(U) C
As(U) C -+, siis

m(U) = lim m(A,(U)) = 6(U).

k—o00

Lause 4.5. Olgu F' C R"™ kompaktne hulk. Siis m(F) = R(F).

ToOEsTUS. Valime arvu N € N nii, et int Qg D F, kus

Qo = {x:(xl,...,xn): max || gN}.

1<j<n

Paneme tahele, et iga k € NU {0} korral

m(Qo) = m(Ak(F)) +m(A4,(Qo\ F))

(sest kui Qg D Q € Qy, siiskas QN F = ) voi Q C Qg \ F). Protsessis k — oo
jéreldub siit, et
m(Qo) = K(F) + £(Qo \ I). (4.1)

Kuna lause [4.4] pohjal

£(Qo \ F) = 6((int Q) \ F) = m((int Q) \ F) =m(Qo \ F) = m(Qo) — m(F),
siis jireldub vordusest (L.1), et m(F) = &(F). O

Laused [4.4]ja [4.5) vbimaldavad meil piltlikult vorrelda médtuvust Jordani méttes
ja mootuvust Lebesgue’i mottes. Tokestatud hulga £ C R™ Jordani moodu arvu-
tamisel ldhendame me teda seest- ja viljastpoolt diaadiliste kuupide iihenditega;
hulk £ on Jordani mottes mootuv parajasti siis, kui need kaks lihendust (“seest”
ja “viiljast”) annavad ithesuguse moddu. Tokestatud hulga E C R™ Lebesgue’i moo-
du arvutamisel ldhendame me teda seestpoolt kompaktsete hulkadega ja véljast-
poolt lahtiste hulkadega; neid kompaktseid ja lahtisi hulki [ihendame me omakorda
vastavalt valjast- ja seestpoolt diaadiliste kuupidega. Hulk £ on Lebesgue’i mottes
mootuv parajasti siis, kui need kaks kahesammulist (“seest-viljast” ja “viljast-seest”)
lahendust annavad iihesuguse moodu.



IV peatiikk.
Margiga ja kompleksmoodud.
Radon—Nikodymi teoreem

§ 1. Margiga moodu moiste. Hahni ja Jordani
lahutused

Koikjal selles paragrahvis on (X, ) mootuv ruum.

1.1. Margiga moodu moiste

Definitsioon 1.1. Oeldakse, et hulgafunktsioon u: %A — [—00,00] on mirgiga
moot, kui

SM1° u(0) = 0;

SM2° pu vadrtuste hulgas on iilimalt iiks vadrtustest co ja —oo;

SM3° kui hulgad A; € A, 7 =1,2,..., on paarikaupa loikumatud, siis
(U)o
j=1 j=1

Naide 1.1. Olgu p; ja po moodud o-algebral 2, kusjuures vihemalt {iks neist
mootudest on 10plik. Siis hulgafunktsioon p; — po on mérgiga moot. (Hulgafunkt-
sioon g1 — e on defineeritud vordusega (pg — p2)(A) = pi(A) — pa(A), A € )
Ulesanne 1.1. Veenduda, et y; — p2 on mirgiga moot.

Niide 1.2. Olgu p mddt o-algebral A ning olgu f: X — R méétuv funktsioon,
kusjuures vihemalt iiks integraalidest [, f*du ja [, f~ dp on loplik. (Niisugusel

juhul Geldakse, et f on L laiemas moltes pi-integreeruv funktsioon.) Defineerime hul-
gafunktsiooni v: A — R vordusega

V(A)—/Afdu: —/Af+du—/Af_du, Aei

Siis ¥ on margiga moot. Sellisel viisil defineeritud méirgiga mootu v nimetatakse
madramata integraaliks funktsioonist f (moodu u jargi) ja kirjutatakse dv = f dpu.

401
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Ulesanne 1.2. Veenduda, et v on mirgiga maot.

Toodud prototiiiibilised néited mérgiga mootudest on ammendavad: iga margiga
moot on esitatav nii néites [I.I] kui ka néites [I.2] kirjeldatud viisil. Selles paragrahvis
keskendume mérgiga mootude esitamisele néite [I.1] eeskujul, jirgmises — néite [1.2
eeskujul.

Koikjal jargnevas kogu selle paragrahvi ulatuses on koikide mootude (ja mérgiga
mootude) madramispiirkond o-algebra 2.
1.2. Margiga moodu Hahni lahutus
Koigepealt iiks abitulemus.

Lemma 1.1. Olgu p mdrgiga moot ning olgu A; € A, j =1,2,....

(a) Kui Ay C Ay C A3 C -+, siis ,u(U Aj> = lim p(A,).

(b) Kui |pu(Ar)] < oo ja Ay DAy D A3 D -+, siis u(ﬂ Aj> = li_>rn w(Ay).
j=1 n—00

TOESTUS.

Ulesanne 1.3. Toestada lemma
]

Definitsioon 1.2. Olgu px mérgiga moot.
Oeldakse, et hulk A € A on p-positiione (voi p suhtes positiivne), kui pu védrtused
koigil hulga A mootuvatel alamhulkadel on mittenegatiivsed, s.t.

A>5BCA = u(B)=0.

Oeldakse, et hulk A € 2 on u-negatiivne (voi pu suhtes negatiivne), kui p viirtused
koigil hulga A mootuvatel alamhulkadel on mittepositiivsed, s.t.

A>BCA = u(B)<O0.

Oeldakse, et hulk A € 2 on p-nullhulk (voi p suhtes nullhulk), kui p vidrtus kdigil
hulga A modtuvatel alamhulkadel on null, s.t.

A>BCA = u(B)=0.

Kui mérgiga moodu p roll on kontekstist selge, siis nimetatakse p-positiivseid, u-
negatiivseid ja p-nullhulki ka lihtsalt vastavalt positiivseteks, negatiivseteks ja null-
hulkadeks.

Teoreem 1.2 (Hahni lahutusteoreem). Olgu p mdargiga maoot. Siis leiduvad hulgad
P, N €% ni, et

1° PNN=(,PUN=X;
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2° hulk P on p-posititune;

3° hulk N on p-negatiivne.
Seejuures, kui mingite u-posititvse hulga P € A ja u-negatiivse hulga N' € A korral
P'NN =0 ja PUN =X, siis PAP' = NAN' on p-nullhulk.

Definitsioon 1.3. Esitust X = P U N Hahni lahutusteoreemist nimetatakse
mérgiga moodu pu Hahni lahutuseks (voi ka ruumi X Hahni lahutuseks mérgiga
moodu p suhtes).

Margime, et margiga moodu p Hahni lahutus pole iiheselt maaratud: pg-nullhulki
voib hulgast P hulka N (voi vastupidi, hulgast N hulka P) “ile tosta”.

Hahni lahutusteoreemi toestuses kasutame jérgnevat lihtsat abitulemust.
Lemma 1.3. Olgu p mdrgiga maoot.
(a) Kui hulk A € A on p-positiione [u-negatitune/, siis ka mis tahes alamhulk
B C A, kus B € A, on u-posititone [u-negatiivne/.
(b) Kui hulgad A; € A, j =1,2,..., on p-posititvsed [u-negatiivsed], siis ka nende

hulkade tihend \J A; on p-positiivne [p-negatiivne].
j=1

TOEsTUS. Viide (a) jareldub vahetult positiivse [negatiivse] hulga definitsioonist.
Ulesanne 1.4. Téestada viide (b).
[

HAHNI LAHUTUSTEOREEMI [1.2] TOESTUS. Eeldame konkreetsuse mottes, et u ei
saavuta vaartust —oo.

Ulesanne 1.5. Jireldada viite kehtivusest tehtud eeldusel viite kehtivus juhul, kui u ei saavuta
vadrtust oo.

Valime p-negatiivse hulga N € 2 nii, et u(N) = inf{u(E): E € 2A on p-negatiivne};
siis pu(N) > —o0.
Ulesanne 1.6. Téestada, et niisugune hulk N € 2 leidub, kusjuures w(N) > —oc.

Néitame niitid, et P := N¢ on p-positiivne hulk. Oletame vastuviiteliselt, et
P pole p-positiivne, s.t. leidub 2A-mootuv hulk A C P nii, et pu(A) < 0. Vastuolu
saamiseks piisab néidata, et leidub p-negatiivne hulk B C A nii, et u(B) < 0.

Toepoolest, sellisel juhul on N U B p-negatiivne; kuna N N B = (), siis
W(NUB) = u(N) + u(B) < u(N) = inf{u(E): E €2 on p-negatiivne}.
Joudsime vastuoluni.
Téahistame iga D € 2A korral
B(D) :=sup{u(E): A> E C D}.
Mérgime, et alati (D) >0, sest A > 0 C D ja u(0) = 0.
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Paneme téhele, et leidub 2A-mootuv alamhulk €' C A selliselt, et u(C) < 0 ja
B(C) < 0.

Toepoolest, kui sellist hulka C' ei leiduks, siis saaksime leida paarikaupa loikumatud u-
mootuvad hulgad E; C A, j =1,2,..., nii, et iga j € N korral p(E;) > 1 (POHJENDADA!) .
Niiiid, téhistades E := (J;2, Ej, kehtib u(E) = 372, u(E;) = oo, mis viib vastuoluni:

0> pu(A)=p((A\E)UE) = u(A\ E) + w(E) = occ.

Téhistame Ay := () ning valime hulga C' paarikaupa loikumatud alamhulgad
Ajed j=1,2,..., nii, et iga j € N korral

B(C\ U A)
pu(A;) = 5 :
Siis f1(A;) v 0.
Ulesanne 1.7. Veenduda selles.
Aga niiid B :=C'\ (U;; A;) C A on p-negatiivne hulk, kusjuures pu(B) < 0.

Ulesanne 1.8. Veenduda selles.

Olgu niitid p-positiivne hulk P’ € 2 ja p-negatiivne hulk N’ € 2 sellised, et
X = P'UN'. Teoreemi toestuseks jadb niidata, et PAP = NAN’ on p-nullhulgad.

Ulesanne 1.9. Veenduda selles.

]

1.3. Margiga moodu Jordani lahutus

Hahni lahutus voimaldab anda mérgiga mootudele kanoonilise esituse kahe moodu
vahena.

Definitsioon 1.4. Oeldakse, et (mirgiga) moddud yu ja v on vastastikku singulaar-
sed (voi p on singulaarne v suhtes voi v on singulaarne p suhtes) ja kirjutatakse
1 L v, kui leiduvad hulgad A, B € 2 nii, et

1° AnB=0,AUB = X;
2° A on v-nullhulk;
3° B on p-nullhulk.

Teoreem 1.4 (Jordani lahutusteoreem). Olgu p mdrgiga moot. Siis leiduvad theselt
mdédratud moodud p* jo = nii, et pt L opT ja p = pt —p.

Definitsioon 1.5. Mo6tusid u* ja u~ teoreemist 1.4 nimetatakse vastavalt méirgiga
moodu p posititvseks variatsiooniks ja negatiivseks variatsiooniks. Esitust p = put —
1~ nimetatakse méargiga moodu p Jordani lahutuseks.
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JORDANI LAHUTUSTEOREEMI TOESTUS. Olgu X = P U N méirgiga moodu
p Hahni lahutus. Defineerime hulgafunktsioonid p*(E) = pw(E N P) ja u=(E) =
—u(ENN), E €. Siis pu* ja p~ on méodud, kusjuures ™ Ly~ jap=pt —p”.

Ulesanne 1.10. Veenduda selles.

Olgu niitid méodud g/, p”: A — [0,00] sellised, et p/ L p” ja pu = u/ — p.
Teoreemi toestuseks jadb néaidata, et p/ = p™ ja p” = p~.

Ulesanne 1.11. Veenduda selles.

Definitsioon 1.6. Olgu = put — p~ mérgiga moddu p Jordani lahutus.
Mootu |pu] == pt 4 p~ nimetatakse mérgiga moodu pu tdisvariatsiooniks.

Ulesanne 1.12. Téestada, et |u| on moot.

Ulesanne 1.13. Olgu p mirgiga moot ning olgu A € 2. Toestada, et
(a) pt(A) =sup{u(B): A>3 B C A};
(b) p~(A) =—inf{u(B): A>BC A};

(C) |/’[/‘(A) :Sup{ 'Zl ‘/’L(Aj)l nENa Ala"'7An GQ[, AZmA] :®al7é]7 UlAJ :A}a
j= i

(@ Ju(4) = sup{ = (4] Ay €% i =120 AnA;=0.i#] U4 =4},
J= J=

Mairkus 1.1. Nagu lahendusest ndeme, voib eelnevas iilesandes asendada koikjal sup ja inf vas-
tavalt max ja min-ga.

Ulesanne 1.14. Olgu p mérgiga moot ning olgu A € 2. Toestada, et
A on p-nullhulk = A on nii p- kui ka g~ -nullhulk = A on |p|-nullhulk.
Ulesanne 1.15. (I) Olgu v mirgiga méot ning olgu g ja pe moodud. Toestada, et
v.®pjav L s = v L (u1 + p2).

(IT) Eeldame niiiid, et iiks mootudest py ja po on 16plik. Siis on méidratud ka moéotude py ja
weo vahe p; — po. Toestada, et

v>pjav L o E v (u1 — p2)

ning kui pq L po, siis
v.©p jav L g — vl (uy — p2).

Ulesanne 1.16. Olgu u = ut — p~ ja v = vt — v~ vastavalt mérgiga moéotude u ja v Jordani
lahutused. Téestada, et

ply = plvt pulyv <= ptlovtpt Lo, p Lot p Ly <= plly
== |y L]

Definitsioon 1.7. Oeldakse, et mirgiga méot 1 on loplik, kui tema tiisvariatsioon
|p| on 16plik. Oeldakse, et mérgiga moot pu on o-loplik, kui tema téisvariatsioon |u|
on o-loplik.
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Ulesanne 1.17. Tdestada, et mirgiga moot p on
(a) loplik parajasti siis, kui tema positiivne ja negatiivne variatsioonid p* ja g~ on 1oplikud;

(b) o-loplik parajasti siis, kui tema tema positiivne ja negatiivne variatsioonid p* ja p~ on
o-loplikud.

Definitsioon 1.8. Oeldakse, et mirgiga moot p on tdielik, kui tema tiisvariatsioon
|| on téielik.

Ulesanne 1.18. Olgu X = P U N mirgiga moodu p Hahni lahutus. Téhistame
Ap:={ANP: AcA} CP(P) ja Anv:={ANN: AecA} C P(N).
Toestada, et p on téielik parajasti siis, kui ruumid (P, Ap, ut o) ja (N, An, u~ |2y ) on téielikud.

Definitsioon 1.9. Olgu p mérgiga moot.

Oeldakse, et funktsioon f: X — R on integreeruv (mérgiga méodu p jirgi) (voi
p-integreeruv), kui f € Ly(u™) N Li(p™). Integraal funktsioonist f iile ruumi X
moodu p jargi defineeritakse vordusega

[ t@ante) = [ gau = [ faut~ [ fan

Stimboli [, asemel kirjutatakse seejuures ka lihtsalt [. Koigi y-integreeruvate funkt-
sioonide X — R klassi tiihistatakse siimboliga L (X, %A, i) voi lihtsalt Ly(u).

Paneme tihele, et kui  on mérgiga moot ja f: X — R, siis

felip) & feLi(w)NLip) < [fl€Li(p")NLi(p") < [f] € Li(|u).

Ulesanne 1.19. Olgu funktsioonid f,g: X — R p-integreeruvad ning olgu a € R. Téestada, et
siis ka f + g,af € L1(u), kusjuures

/(f+g)du:/‘fdu+/gdu ja /afdu:a/fdu.

Ulesanne 1.20. Olgu p mérgiga maéot ning olgu f € Ly (). Toestada, et

‘/fdu’ < [11dnl.

1.4. Taiendavaid iilesandeid

Ulesanne 1.21. Olgu u mirgiga moot. Toestada, et kui méddud gy ja pp on sellised, et p =
p1 — po, sits pt < pp japT < pg, sit

pt(BE) <pu(B) ja p (E) < po(E) iga I € 2 korral.

Ulesanne 1.22. Olgu s ja pso 16plikud moéddud ning olgu p := iy — pz (juhime tihelepanu, et
p on mérgiga moot). Siis iga f € Ly (1) N Li(ps) korral f € Ly(p), kusjuures

[tan= [ sdm~ [ saue

NAPUNAIDE. Kasutada iilesandeid ja
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Koikjal selles paragrahvis on (X,2() méotuv ruum. Koéikide modtude (ja mérgiga
mootude) médramispiirkond on o-algebra A, vélja arvatud muidugi juhul, kui (kon)-
tekstis on sedastatud teisiti.

2.1. Margiga moodu absoluutne pidevus

Definitsioon 2.1. Oeldakse, et mirgiga moot v on absoluutselt pidev mdddu p
suhtes ja kirjutatakse v < pu, kui

AeA, u(Ad) =0 — v(A) = 0.
Ulesanne 2.1. Téestada, et
(@) v <= [rgpjar <y <= <y
b) v, vlpy = v=0.

Jérgnev teoreem néiitab, et lopliku mérgiga moodu absoluutne pidevus iihtib
meie tavapirase ettekujutusega pidevusest.

Teoreem 2.1. Olgu v loplik mdrgiga moot ning olgu p moot. Jargmised vdited on
samavddrsed:
(i) v < p;

(ii) iga reaalarvu € > 0 korral leidub reaalarv 6 > 0 nii, et

Eed wk)<é = ||(E)<c¢g

(ili) ¢ga reaalarvu € > 0 korral leidub reaalarv § > 0 nii, et
EedA wk)<é = |v(B)|<e.

Markus 2.1. Kui teoreemis loobuda eeldusest, et v on 1oplik, lubades tal olla o-16plik, siis
implikatsioon (i)=-(ii) enam ei kehti. Toepoolest, kui defineerida

v(E)=> jm(EN[j—1j)), E € B,

j=1

siis v on o-16plik Boreli moot ruumis R, kusjuures v < m. Veendumaks, et (ii) ei kehti, piisab
iga n € N korral leida E,, € Bg, m(E,) < %, mille korral v(E,,) = 1. Sellise hulga FE,, rolli sobib
E, = [2n — 2=, 2n), sest niisugusel juhul m(E,) = ==, kuid v(E,) = 2nm(E,) = 1.

2n> 2n>

TEOREEMI TOESTUS. (i)=(ii). Olgu v < . Oletame vastuviiteliselt, et (ii) ei
kehti. Siis leidub selline reaalarv € > 0, et iga n € N korral leidub hulk E, € 2 nii,
et

r .
wE) < o o [V[(Ba) = e

407
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Téhistame E = (>_,U.—, E,. Kma |J>>E, D U~ E, DU, 3 E, D -+, kus-

juures iga m € N korral

siis

m—o0

“ 1
w(E) = lim g (U En> < lim =0,

n=m

s.t. p(E) = 0. Samal ajal méirgiga moodu v 16plikkuse t6ttu

v|(E) = lim |v| (U En> > limsup [v|(E,,) > €,
m—00 —m

m—0o0

seega |v| & p, jarelikult ka v & p, mis on vastuolus eeldusega.
(ii)=-(i) on ilmne, sest iga £ € A korral [v(E)| < |v|(E).
(iil)=(1).

Ulesanne 2.2. Téestada implikatsioon (iii)=(i).

]

2.2. Margiga moodu Lebesgue’i lahutus ja Radon—Nikodymi

tuletis

Definitsioon 2.2. Olgu v mérgiga moot ning olgu p moot. Kui eksisteerivad mér-

giga moodud A ja p nii, et

AL, p<<p ja v=~A+p,

(2.1)

siis esitust ¥ = X\ + p nimetatakse mérgiga moodu v Lebesgue’i lahutuseks (moodu

o suhtes).

Ulesanne 2.3. Tdestada, et Lebesgue’i lahutuses v = \ + p kehtib X L p.

Mirgime, et moodud A ja p Lebesgue’i lahutuses v = A + p on iiheselt mairatud.

Toepoolest, olgu méargiga méodud N ja p’ sellised, et N L p, p/ < pjav = N +p'. Veendume,

et N =M\jap =p.
Kuna A L uja X L p, siis leiduvad hulgad A, B, A’, B’ € 2 nii, et

AUB=AUB =X, AnB=ANB =0, pA) =und)=

kusjuures B ja B’ on vastavalt A- ja X-nullhulk. Siis AU A’ on p-nullhulk; kuna p, p’ < p,

siis AU A’ on ka p- ja p’-nullhulk. Kuna

(AUAYU(BNB)=X ja (AUA)N(BNB')=0,
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kusjuures BN B’ on nii M- kui ka \'-nullhulk, siis mis tahes E € 2 korral

ME)=XEN(AUA))+AMEN(BNB')) =XEN(AUA))
=ANEN(AUA)) +p(EN(AUA)) =v(En(AUA))

ning
p(E) = p(EN(AUA)) + p(EN (BN B)) = p(£0 (BN B)
=MENBNB))+p(En(BNB))=v(EN(BNB)).
Analoogiliselt saab niidata, et ka N (E) = v(EN(AUA")) ja p/(E) = v(EN(BNB’)); niisiis

AME)=XN(E) ja p(E) = p/(F) ning jarelikult X' = X ja p’ = p.

Ulesanne 2.4. Olgu v = A+ p (A L p, p < p) mirgiga moddu v Lebesgue’i lahutus moodu p
suhtes. Toestada, et positiivse, negatiivse ja téisvariatsiooni v, v~ ja |v| Lebesgue’i lahutus p
suhtes on vastavalt

vE=XT 4t v =M 4T ja =M+l

Definitsioon 2.3. Olgu v mérgiga moot ning olgu g moot. Kui leidub laiemas
mottes p-integreeruv funktsioon f nii, et dv = f du, siis funktsiooni f nimetatakse
mérgiga moodu v Radon—Nikodymi tuletiseks (moodu p jéirgi) ja tdhistatakse siim-
boliga g—”

Mairkus 2.2. On ilmne, et Radon—Nikodymi tuletls on maaratud iiheselt tdpsuse-

ga p-p.k. (POHIENDADA!) . Seetottu mmstetakse all tlhtlpeale tingimust dv = fdu
rahuldavate funktsioonide klassi.

On ilmne, et kui eksisteerib Radon—-Nikodymi tuletls 2 slis v L .
Ulesanne 2.5. Veenduda selles.

Uldjuhul ei tarvitse Radon-Nikodymi tuletis g—/‘: eksisteerida.

Niide 2.1. Olgu x € R suvaline ning olgu 9, Diraci moot punktis x. Ilmselt 9, & m,
seega ei eksisteeri ka Radon—Nikodymi tuletis % (m téhistab Lebesgue’i mootu
ruumis R).

Iga mirgiga méodu v korral eksisteerib Radon-Nikodymi tuletis -4 ol |

dv

Ulesanne 2.6. Olgu v mirgiga moot. Veenduda, et eksisteerib Radon-Nikodymi tuletis e

Kirjeldada seda tuletist!

Ulesanne 2.7. Olgu moot g ja mirgiga moodud vy ja vy sellised, et v + 15 on mirgiga moot

ning eksisteerivad Radon-Nikodymi tuletised M ja d"2 . Toestada, et siis eksiteerib ka (1’177;”2),

d(vitre) _ dvy dug
kusjuures =t u-p.k.

Ulesanne 2.8. Olgu v mirgiga md6t ning olgu 1 moot, kusjuures eksisteerib Radon—Nikodymi

tuletis d” Toestada, et siis eksisteerivad ka (Z;L , d”

dvt  (dv\" dv= _(dv\T ]
dep  \dp) dp  \dp ! dp

ja H , kusjuures

dv
du|’
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Lause 2.2. Olgu v mdrgiga moot ning olgu p moot, kusjuures eksisteerib Radon—
Nikodyms tuletis d” Sms E Li(p) paragasti siis, kui v on loplik.

TOESTUS.
Ulesanne 2.9. Téestada lause Iﬂ

Vahetult lausest [2.2] ja teoreemist [2.1] jareldub

Jareldus 2.3. Olgu f € Ly(u). Siis iga reaalarvu € > 0 korral leidub reaalarv 6 > 0

selliselt, et
/ fdp
E

Teoreem 2.4. Olgu v mdargiga moot ning olgu p moot, kusjuures eksisteerib Radon—
Nikodms tuletis fl—:

(a) Kui f € Ly(v), siis fg—” € Li(p), kusjuures [ fdv = ffﬁ—” dp

Eed wkE)<d = < e.

(b) Kui X on moot, kusjuures eksisteerib Radon—Nikodri tuletis %, siis cksisteerib

dv __ dv du
ka & ax — dp an-

d)\’

o5 kusjuures

TOEsTUS. (a). (I) Toestame viite kdigepealt erijuhul, kui v on moot. Sel juhul
voime iildisust kitsendamata eeldada, et d” € LT (p).

Kui ¢ € L™ (v) on lihtne mootuv funktswon standardesitusega ¢ = 2?21 QX A;
siis qbg—z € L*(u), kusjuures

/sﬁdV:jilajV(Aj):jilaj/Ajjy /Z%XA%Z dp = /cb—du

Kui g € L*(v), siis leiduvad lihtsad mootuvad funktsioonid qbn e LT(v), n =
1,2,..., nii, et ¢, 7 g. llmselt g Y ¢ L*(u), kusjuures ¢n Va gdu, seega MONO-
toonse koonduvuse teoreemi ja eelnevas loigus toestatu pohjal

d dv
/gduz lim [ ¢, dv = lim gbn—ydu:/ .
Olgu niitid f € Li(v) kéikjal mairatud 2A-moéotuv funktsioon. Siis fT € L1 (v),
Jr
seega <ffl—z> = f*g—; € LT (u), kusjuures eelnevas 16igus toestatu pohjal

/(fj_:)+d“:/f+§—:du=/f+du<m,

Analoogiliselt saame, et ( fl—:>_ € Lt (u), kusjuures [ (fg—’;>_ dp= [ f dv < oo,
Seega, fg—; € Ly(p), kusjuures

[t () ] (1) e o f e 10
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Lopetuseks, olgu f € Ly (v) suvaline (v-p.k. miisiratud R-vifirtustega funktsioon).
Siis leidub A-modtuv v- integreeruv funktsioon ¢g: X — R nii, et f = g v-p.k.
Eelnevas loigus toestatu pohjal g Y ¢ Lyi(p), kusjuures

/fdl/:/gdyz/gd—yd,u.
dp

Seega piisab viite toestuseks nédidata, et gg—z = j—; 1-p.k.

Kuna f = g v-p.k., siis leidub hulk A € 2 nii, et ¥(A°) =0 ja f|4 = g|a. Kuna
fA( L dp = v(A°) = 0 siis —Z = 0 p-p.k. hulgas A°, seega gd# fg—: u-p.k., nagu
soov1tud

(I1)

Ulesanne 2.10. Jireldada tdestuse osast (I) viite (a) kehtivus juhul, kui v on mérgiga modt.
(b).
Ulesanne 2.11. Téestada viide (b).

NAPUNAIDE. Panna téhele, et viite (a ) toestuses on implitsiitselt tOestatud jargmine véide: kui v
ja p on moodud, kusjuures eksisteerib - =, siis iga f € Lt (v) = LT (n) korral [ fdv = ff% du

]

Jéireldus 2 5 Olgu 1 ja A moodud, kusjuures eksisteerivad Radon-Nikodymi tule-

tised % ja L. Siis % Z’\ =1 p-p.k. (ning ka A\-p.k.).

2.3. Lebesgue—Radon—Nikodymi teoreem

Teoreem 2.6 (Lebesgue-Radon-Nikodymi teoreem). Olgu v o-loplik mdrgiga maot
ning olgu p o-loplik moot.

(a) Leiduvad theselt maaratud mdargiga moodud X ja p selliselt, et

AL, pLp ja v=XA+p. (2.2)

(b) Leidub laiemas mottes p-integreeruv funktsioon f: X — R selliselt, et

dp = fdpu.
Mistahes kaks seda tingimust rahuldavat funktsiooni on vordsed p.-p.k.

Teoreemi viide (a) iitleb, et o-16plikul mérgiga moodul eksisteerib o-16pliku
moodu suhtes alati Lebesgue’i lahutus.

Teoreemi viidet (b) nimetatakse Radon-Nikodgmi teoreemiks. Kui moot
ja mérgiga moot v on o-loplikud, kusjuures v < p, siis Radon—Nikodymi teoreemi
pohjal eksisteerib Radon—Nikodymi tuletls Lause.pohjal v e I,(n) parajasti
suis, kut v oon loplik.

Radon—Nikodymi teoreemi olulisuse tottu mooduteoorias toome ta siinkohal veel
kord eraldi vélja sageli esinevas sonastuses.
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Teoreem 2.7 (Radon—Nikodymi teoreem). Olgu v o-loplik mdirgiga maoot ning ol-
gu o o-loplik moot. Kui v < p, siis leidub latemas mottes p-integreeruv funktsioon f
ni, et
v(E) = / fdu iga E €2 korral.
E

Seejuures f € Ly(p) parajasti siis, kui v on loplik.
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