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I peatükk.

Mõõduga ruumid

� 1. Sissejuhatus

Hulkasid, mille elementideks on mingi etteantud hulga alamhulgad, nimetame edas-
pidi ((alam)hulkade) kogumiteks. Hulga X kõigi alamhulkade kogumit tähistame
sümboliga P(X). Funktsioone, mille määramispiirkonnaks on mingi alamhulkade
kogum, nimetame hulgafunktsioonideks.

1.1. Hulkade �mõõtmine�

Mõõduteooria (ja integraaliteooria) teke oli motiveeritud vajadusega �mõõta� ette-
antud hulga alamhulki. Toome mõned esimesena pähetulevad näited niisuguse �mõõt-
mise� kohta:

• tasandilise kujundi pindala leidmine � hulga R2 alamhulkade �mõõtmine�;

• ruumilise keha ruumala leidmine � hulga R3 alamhulkade �mõõtmine�;

• ruumilise keha massi leidmine � hulga R3 alamhulkade �mõõtmine�;

• antud juhusliku katse puhul mingi sündmuse tõenäosuse leidmine � selle ju-
husliku katse elementaarsündmuste hulga alamhulkade �mõõtmine�.

Kõigi näitena toodud �mõõtmiste� puhul tuleb meil lahendada kaks ülesannet.
Kui meil on vaja �mõõta� hulga X alamhulki, siis me peame

(1) de�neerima, mida antud kontekstis �mõõtmine� tähendab, s.t. eraldama välja
teatava alamhulkade kogumi A ⊂ P(X) � niisuguste alamhulkade kogumi,
mida me oskame �mõõta� (nn. �mõõtuvate� alamhulkade kogumi) � ning de-
�neerima hulgafunktsiooni µ : A → [0,∞], mis seab igale alamhulgale A ∈ A
vastavusse tema �mõõdu� µ(A);

(2) leidma tõhusad vahendid �mõõtuvate� alamhulkade �mõõtude� väljarehkenda-
miseks konkreetsetel juhtudel.

1



2 I. Mõõduga ruumid

Sündmuste käigust ette rutates olgu öeldud, et esimene ülesanne sunnib meid sisse
tooma mõõdu mõiste, teine aga integraali mõiste.

Illustreerime kirjeldatud kahest etapist koosnevat �mõõtmisprotseduuri� tasandi-
lise kujundi pindala leidmise ülesande varal.

1.1.1. Tasandilise kujundi pindala mõiste

Meenutame, kuidas matemaatilise analüüsi kursuses de�neeritakse tasandilise kujun-
di pindala. Mõisteid �tasand� ja �ruum R2�, samuti mõisteid �tasandiline kujund� ja
�ruumi R2 alamhulk� kasutame me järgnevas sünonüümidena.

De�nitsioon 1.1. Hulkkülikuks nimetatakse kinnist lihtsat murdjoont. Hulknurgaks
nimetatakse tasandi osa, mida piirab hulkkülik. Hulknurksummaks nimetatakse lõp-
liku arvu hulknurkade ühendit.

Hulknurksumma pindala saab de�neerida loomulikul viisil: hulknurksumma on
esitatav lõpliku arvu paarikaupa lõikumatute sisemustega kolmnurkade ühendina,
tema pindala de�neeritakse kui nende kolmnurkade pindalade summa. (Kolmnurga
pindala de�neeritakse nagu elementaargeomeetrias: �alus korda kõrgus jagatud kahe-
ga�.) Hulknurksumma Q ⊂ R2 pindala tähistame me sümboliga S(Q).

Tasandilise kujundi pindala de�neeritakse hulknurksumma pindala kaudu.

De�nitsioon 1.2. Olgu K ⊂ R2 tõkestatud hulk. Arvu

S(K) = inf {S(Q) : Q on hulknurksumma, Q ⊃ K}

nimetatatakse kujundi K Jordani1 välismõõduks . Arvu

S(K) =

{
sup
{
S(Q) : Q on hulknurksumma, Q ⊂ K

}
, kui K◦ ̸= ∅;

0, kui K◦ = ∅,

nimetatakse kujundi K Jordani sisemõõduks . (Sümbol K◦ tähistab hulga K sise-
must. Märgime, et K◦ ̸= ∅ parajasti siis, kui leidub hulknurksumma, mis sisaldub
hulgas K.)

Märkus 1.1. Alternatiivne võimalus Jordani sise- ja välismõõdu de�neerimiseks on asendada
de�nitsioonis 1.2 hulknurksummad koordinaatristküliksummadega (koordinaatristküliksumma on
niisuguste ristkülikute lõplik ühend, mille küljed on paralleelsed koordinaattelgedega) või diaadiliste
ruutude lõplike ühenditega (vt. � IV.4). Jordani sise- ja välismõõdu mõistete sisu jääb seejuures
samaks.

Kui S(K) = S(K), siis öeldakse, et kujund K on Jordani mõttes mõõtuv . Arvu

S(K) = S(K) = S(K)

nimetatakse sel juhul kujundi K pindalaks ehk Jordani mõõduks .

Jordani mõõdu mõistel on üks oluline puudus: Jordani mõttes mõõtuvaid hulki on
liiga vähe. Vajadus omistada pindala ka Jordani mõttes mittemõõtuvatele hulkadele
motiveerib meid Jordani mõõdu mõistet üldistama.

1Marie Ennemond Camille Jordan (1838�1922) � prantsuse matemaatik.
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Märkus 1.2. Jordani mõõt ruumi Rm (m ∈ N) alamhulkade jaoks de�neeritakse analoogiliselt
juhuga m = 2. Seejuures võib Jordani sise- ja välimõõdu de�nitsiooni 1.2 üldistuses juhu m ∈ N
jaoks kasutada hulktahuksummasid (hulktahuksumma on hulknurksumma loomulik üldistus juhu
m ⩾ 2 jaoks), koordinaatristtahuksummasid (koordinaatristtahuksumma on koordinaatristkülik-
summa loomulik üldistus juhu m ∈ N jaoks) või diaadiliste kuupide ühendeid (vt. � III.4).

1.1.2. Riemanni2 integraali mõiste

Vajadus rehkendada konkreetsetel juhtudel välja tasandilise kujundi pindala viib
meid Riemanni integraali mõisteni. Riemanni integraal on tõhus matemaatiline töö-
riist kõvertrapetsi pindala arvutamiseks. Meenutame, et kui f on lõigus [a, b] mää-
ratud mittenegatiivne funktsioon, siis tasandi punktihulka{

(x, y) : a ⩽ x ⩽ b, 0 ⩽ y ⩽ f(x)
}

nimetatakse kõvertrapetsiks.

Meenutame, kuidas de�neeritakse Riemanni integraal.

Olgu f : [a, b] → R tõkestatud funktsioon. Tähistame sümboliga T lõigu [a, b]
jaotusviisi punktidega

a = x0 < x1 < x2 < · · · < xn−1 < xn = b (n ∈ N)

ning

Mj = sup
{
f(z) : z ∈ [xj−1, xj]

}
, j = 1, . . . , n, S(T ) =

n∑
j=1

Mj(xj − xj−1),

mj = inf
{
f(z) : z ∈ [xj−1, xj]

}
, j = 1, . . . , n, s(T ) =

n∑
j=1

mj(xj − xj−1).

Summasid S(T ) ja s(T ) nimetatakse (lõigu [a, b] jaotusviisile T vastavateks)
funktsiooni f Darboux'3 ülemsummaks ja funktsiooni f Darboux' alamsummaks.

Matemaatilise analüüsi kursusest teame, et

• lõigu [a, b] mis tahes jaotusviiside ja T ja T ′ korral

S(T ) ⩾ s(T ′),

s.t. ükski Darboux' ülemsumma pole väiksem ühestki Darboux' alamsummast.

Siit järeldub, et

• funktsiooni f kõikvõimalike Darboux' ülemsummade hulk lõigus [a, b] on alt
tõkestatud (alumiseks tõkkeks on funktsiooni f suvaline Darboux' alamsumma
selles lõigus);

2Georg Friedrich Bernhard Riemann (1826�1866) � saksa matemaatik.
3Jean Gaston Darboux (1842�1917) � prantsuse matemaatik.
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• funktsiooni f kõikvõimalike Darboux' alamsummade hulk lõigus [a, b] on ülalt
tõkestatud (ülemiseks tõkkeks on funktsiooni f suvaline Darboux' ülemsumma
selles lõigus).

De�nitsioon 1.3. Tähistame

D-
∫ b

a
f := inf

{
S(T ) : T on lõigu [a, b] jaotusviis

}
,

D-
∫ b

a
f := sup{s(T ) : T on lõigu [a, b] jaotusviis

}
.

Märkus 1.3. Rõhutame, et pidevuse aksioomi põhjal on need inf ja sup lõplikud.

Arvusid D-
∫ b

a
f ja D-

∫ b

a
f nimetatakse vastavalt Darboux' ülemiseks integraaliks ja

Darboux' alumiseks integraaliks funktsioonist f (üle lõigu [a, b]).

Niisiis,

• Darboux' ülemine integraal funktsioonist f üle lõigu [a, b] on funktsiooni f
kõikvõimalike (lõigu [a, b] jaotusviisidele vastavate) Darboux' ülemsummade
hulga alumine raja;

• Darboux' alumine integraal funktsioonist f üle lõigu [a, b] on funktsiooni f
kõikvõimalike (lõigu [a, b] jaotusviisidele vastavate) Darboux' alamsummade
hulga ülemine raja.

On ilmne, et lõigu [a, b] mis tahes jaotusviisi T korral

S(T ) ⩾ D-
∫ b

a
f ⩾ D-

∫ b

a
f ⩾ s(T ).

De�nitsioon 1.4. KuiD-
∫ b

a
f = D-

∫ b

a
f , siis öeldakse, et funktsioon f on Riemanni

mõttes integreeruv lõigus [a, b]. Darboux' integraalide D-
∫ b

a
f ja D-

∫ b

a
f ühist väär-

tust nimetatakse sel juhul Riemanni integraaliks funktsioonist f (üle lõigu [a, b]) ja
tähistatakse sümboliga

R-
∫ b

a

f(x) dx või R-
∫ b

a

f või lihtsalt
∫ b

a

f(x) dx või
∫ b

a

f.

Niisiis, kui funktsioon f on Riemanni mõttes integreeruv lõigus [a, b], siis

R-
∫ b

a

f = D-
∫ b

a
f = D-

∫ b

a
f.

Lihtne on veenduda, et

• kui funktsioon f on mittenegatiivne lõigus [a, b], siis f on Riemanni mõttes
integreeruv lõigus [a, b] parajasti siis, kui kõvertrapets

D =
{
(x, y) : a ⩽ x ⩽ b, 0 ⩽ y ⩽ f(x)

}
on Jordani mõttes mõõtuv. Sellisel juhul R-

∫ b

a
f = S(D), s.t. R-

∫ b

a
f on kõne-

aluse kõvertrapetsi pindala.
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Riemanni integraalil on kaks olulist puudust.

• Riemanni mõttes integreeruvaid funktsioone on liiga vähe � Riemanni in-
tegraal on de�neeritud vaid lõigus tõkestatud funktsioonide jaoks. Samas lei-
dub ka lõigus tõkestatud funktsioone, mis pole Riemanni mõttes integreeruvad
selles lõigus. (Klassikaline näide niisugusest funktsioonist on Dirichlet'4 funk-
tsioon.)

• Riemanni integraal käitub piirväärtuste suhtes ebastabiilselt. Üldjuhul, isegi
siis, kui piirväärtus lim

n→∞
R-
∫ b

a
fn ja piirfunktsioon lim

n→∞
fn eksisteerivad,

lim
n→∞

R-
∫ b

a

fn ̸= R-
∫ b

a

lim
n→∞

fn

s.t. üldjuhul me ei saa Riemanni integraalis piirväärtusega integraali märgi alla
minna.

Märkus 1.4. Kui me oskaksime �mõistlikul viisil� de�neerida iga alamhulga E ⊂ R jaoks tema
�pikkuse� λ(E), s.t. me oskaksime de�neerida hulgafunktsiooni λ : P(R) → [0,∞], mis rahuldab
tingimust

E1, . . . , En ⊂ R (n ∈ N), Ei ∩ Ej = ∅, i ̸= j, =⇒ λ
( n⋃
j=1

Ej

)
=

n∑
j=1

λ(Ej),

siis saaksime me de�neerida lõigus [a, b] tõkestatud funktsiooni f Darboux' summad mitte ainult
selle lõigu jaotusviiside jaoks osalõikudeks, vaid lõigu [a, b]mis tahes jaotusviisi jaoks: kui T on lõigu
[a, b] jaotusviis (suvalisteks) alamhulkadeks E1, . . . , En ⊂ [a, b] (n ∈ N) (s.t. E1, . . . , En ⊂ [a, b] on
paarikaupa lõikumatud alamhulgad, mille ühend on [a, b]), siis saaksime de�neerida �Darboux'
summad�

S(T ) =

n∑
j=1

sup
z∈Ej

f(z) λ(Ej) ja s(T ) =

n∑
j=1

inf
z∈Ej

f(z) λ(Ej).

�Darboux' integraalid� ja funktsiooni f �integreeruvuse� de�neeriksime siis analoogiliselt traditsiooni-
lise juhuga:

D-
∫ b

a
f := inf

{
S(T ) : T on lõigu [a, b] jaotusviis (suvalisteks alamhulkadeks)

}
,

D-
∫ b

a
f := sup{s(T ) : T on lõigu [a, b] jaotusviis (suvalisteks alamhulkadeks)

}
;

funktsiooni f loeksime �integreeruvaks�, kui D-
∫ b

a
f = D-

∫ b

a
f ; �integraali� funktsioonist f üle

lõigu [a, b] de�neeriksime sel juhul kui tema �Darboux' integraalide� ühise väärtuse. (Et niisugusel
�integraalil� oleks vähegi mõistlik geomeetriline sisu, tuleks �hulga pikkus� λ de�neerida nii, et iga
lõigu [α, β] ⊂ R korral λ([α, β]) = β − α).

Pseudoteoreem. Iga lõigus [a, b] tõkestatud funktsioon on märkuses de�neeritud integreeruvuse

mõttes integreeruv.

Moraal eelnevast pseudoteoreemist on järgmine: mida rohkem hulga R alamhulki me oskame
mõistlikul viisil �mõõta�, seda paremate omadustega integraali me saaksime de�neerida.

4Johann Peter Gustav Lejeune Dirichlet (1805�1859) � prantsuse matemaatik.
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Miks me kasutame siin eesliidet �pseudo�? Aga sellepärast, et selle teoreemi üks oluline eeldus
� võimalikkus de�neerida �mõistlikul viisil� reaalarvude alamhulkade �pikkust� � on meil tõesta-
mata. Kuigi selline hulga �pikkuse� �mõistlik� de�neerimine on võimalik (sellel küsimusel peatume
põgusalt käesoleva peatüki paragrahvis 5), ei kasutata Riemanni integraali üldistamisel eespool
kirjeldatud skeemi. Põhjus on siin selles, et soovitav oleks saada integraali de�neerimiseks skeem,
mille loomulik üldistus võimaldaks de�neerida integraali ka ruumides Rm, kus m ⩾ 2. Juhul m = 2
ülaltoodud skeem rakendub � hulga pindala on võimalik �piisavalt mõistlikul viisil� de�neerida
kõigi alamhulkade E ⊂ R2 jaoks; niisiis saab loomulikul viisil de�neerida ka tasandi tõkestatud
alamhulgal määratud tõkestatud funktsiooni �Darboux' summad� ning seega ka integraal � juhul
m ⩾ 3 see skeem aga enam ei rakendu: m ⩾ 3 korral pole ruumi Rm alamhulkade �ruumala�
võimalik �piisavalt mõistlikul viisil� de�neerida (see järeldub käesoleva paragrahvi teoreemist 1.2
� Banach�Tarski paradoksist).

Pseudoteoreemi tõestus. Olgu f : [a, b] → R tõkestatud funktsioon. Lihtne on veenduda, et

D-
∫ b

a
f ⩾ D-

∫ b

a
f . (�Darboux' integraalid� D-

∫ b

a
f ja D-

∫ b

a
f on siin de�neeritud nii, nagu märku-

ses.)

Ülesanne 1.1. Veenduda, et D-
∫ b

a
f ⩾ D-

∫ b

a
f .

Seega jääb funktsiooni f integreeruvuseks näidata, et D-
∫ b

a
f ⩽ D-

∫ b

a
f . Selleks valime arvud

m,M ∈ R selliselt, et iga x ∈ [a, b] korral m ⩽ f(x) < M . De�neerime iga n ∈ N korral hulgad

En
j :=

{
x ∈ [a, b] : m+ (j − 1) M−m

n ⩽ f(x) < m+ j M−m
n

}
, j = 1, . . . , n,

ning tähistame sümboliga Tn lõigu [a, b] jaotusviisi hulkadeks En
1 , . . . , E

n
n . Siis mis tahes n ∈ N ja

j ∈ {1, . . . , n} korral

D-
∫ b

a
f −D-

∫ b

a
f ⩽ S(Tn)− s(Tn) =

n∑
j=1

sup
z∈En

j

f(z) λ(En
j )−

n∑
j=1

inf
z∈En

j

f(z) λ(En
j )

⩽
n∑

j=1

(
m+ j

M −m

n

)
λ(En

j ) −
n∑

j=1

(
m+ (j − 1)

M −m

n

)
λ(En

j )

=

n∑
j=1

M −m

n
λ(En

j ) =
M −m

n

n∑
j=1

λ(En
j ) =

M −m

n
λ

 n⋃
j=1

En
j


=
M −m

n
λ
(
[a, b]

)
=
M −m

n
(b− a),

millest protsessis n→ ∞ järeldub, et D-
∫ b

a
f −D-

∫ b

a
f ⩽ 0, nagu soovitud.

1.2. Jordani mõõdu mõiste laiendamise mittevõimalikkus
ruumi Rm kõigile alamhulkadele

Olgu m ∈ N. Selles punktis seame endale eesmärgiks üldistada Jordani mõõdu
mõiste ruumi Rm kõigile alamhulkadele. Märgime, et

� juhul m = 1 tähendab see hulga �pikkuse� mõiste üldistamist sirge kõigile
alamhulkadele;

� juhul m = 2 tähendab see kujundi pindala mõiste üldistamist kõigile tasandi-
listele kujunditele;
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� juhulm = 3 tähendab see keha ruumala mõiste üldistamist kõigile ruumilistele
kehadele.

Teisisõnu, meie eesmärk on de�neerida hulgafunktsioon µ : P(Rm) → [0,∞] selliselt,
et

(1) iga Jordani mõttes mõõtuva hulga E ⊂ Rm korral oleks µ(E) hulga E Jordani
mõõt (s.t. µ on Jordani mõõdu jätk kõigi alamhulkade kogumile P(Rm));

(2) hulgafunktsiooni µ omadused vastaksid võimalikult täpselt meie eelmatemaati-
lisele ettekujutusele hulga �pikkuse�/pindala/ruumala omadustest.

Milline on meie eelmatemaatiline ettekujutus neist omadustest? Igati loomulik on
nõuda, et hulgafunktsioon µ rahuldaks järgmisi tingimusi:

1◦ µ on loenduvalt aditiivne (ehk σ-aditiivne), s.t.

Ej ⊂ Rm, j = 1, 2, . . . , Ei ∩ Ej = ∅, i ̸= j, =⇒ µ

(
∞⋃
j=1

Ej

)
=

∞∑
j=1

µ(Ej);

2◦ µ on invariantne nihete, pöörete ja peegelduste suhtes , s.t.

E,F ⊂ Rm, E ∼= F =⇒ µ(E) = µ(F )

(siin valem E ∼= F tähendab, et hulgad E ja F on kongruentsed, s.t. hulk E
on teisendatav hulgaks F nihete, pöörete ja peegelduste abil);

3◦ µ
(
[0, 1)× · · · × [0, 1)︸ ︷︷ ︸

m tegurit

)
= 1.

Märkus 1.5. Poollahtine ühikkuup

m tegurit︷ ︸︸ ︷
[0, 1)× · · · × [0, 1) on Jordani mõttes mõõtuv, kusjuures tema

Jordani mõõt on 1; niisiis, kui µ : P(Rm) → [0,∞] on Jordani mõõdu jätk, siis kehtib 3◦. Teiselt
poolt, pole raske tõestada, et kui µ : P(Rm) → [0,∞] rahuldab tingimusi 1◦ ja 3◦ ning on nihke
suhtes invariantne (s.t. rahuldab teoreemi 1.1 tingimust 2◦◦), siis µ on Jordani mõõdu jätk.

Unistada on tore, aga elu on karm. Järgnev teoreem purustab meie unelmad.

Teoreem 1.1. Ei eksisteeri niisugust hulgafunktsiooni µ : P(Rm) → [0,∞], mis
rahuldab tingimusi 1◦, 3◦ ja

2◦◦ µ on invariantne nihete suhtes, s.t.

µ(E + x) = µ(E) mis tahes E ⊂ Rm ja x ∈ Rm korral.

Meenutame, et kui E ⊂ Rm ja x ∈ Rm, siis hulga E nihe E + x on de�neeritud
võrdusega E + x := {z + x : z ∈ E} ⊂ Rm.
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Teoreemi 1.1 tõestus. Jälgitavuse huvides esitame teoreemi tõestuse vaid juhu
m = 1 jaoks. Juhtudel m ⩾ 2 on tõestus analoogiline.

De�neerime hulgas [0, 1) ekvivalentsiseose ∼ järgmiselt:

x ∼ y :⇐⇒ x− y ∈ Q
(
x, y ∈ [0, 1)

)
.

Ülesanne 1.2. Tõestada, et ∼ on ekvivalentsiseos hulgas [0, 1).

Vaatleme faktorhulka [0, 1)/ ∼. Olgu N ⊂ [0, 1) mingi selline hulk, mis sisaldab
faktorhulga [0, 1)/∼ igast ekvivalentsiklassist ühe ja ainult ühe elemendi (märgime,
et valikuaksioomi põhjal niisugune hulk N eksisteerib). Tähistame iga q ∈ [0, 1)∩Q
korral

Nq =
{
x+ q : x ∈ N ∩ [0, 1− q)

}
∪
{
x+ q − 1: x ∈ N ∩ [1− q, 1)

}
.

(Piltlikult väljendudes saame hulga Nq järgmiselt: kõigepealt nihutame hulga N
arvteljel q ühiku võrra paremale; seejärel aga nihutame selle osa hulgast N , mis
esialgse nihutamise järel jäi väljapoole poollõiku [0, 1), ühe ühiku võrra vasakule
tagasi.) Paneme tähele, et

(1)
⋃

q∈[0,1)∩Q

Nq = [0, 1);

(2) q, r ∈ [0, 1) ∩Q, q ̸= r =⇒ Nq ∩Nr = ∅.

Ülesanne 1.3. Tõestada väited (1) ja (2).

Oletame nüüd vastuväiteliselt, et eksisteerib funktsioon µ : P(R) → [0,∞], mis
rahuldab tingimusi 1◦, 2◦◦ ja 3◦. Paneme tähele, et sel juhul

µ(Nq) = µ(N) iga q ∈ [0, 1) ∩Q korral.

Tõepoolest, mis tahes q ∈ [0, 1) ∩Q korral

µ(Nq) = µ
({
x+ q : x ∈ N ∩ [0, 1− q)

}
∪
{
x+ q − 1: x ∈ N ∩ [1− q, 1)

}
∪ ∅ ∪ ∅ ∪ · · ·

)
= µ

({
x+ q : x ∈ N ∩ [0, 1− q)

})
+ µ
({
x+ q − 1: , x ∈ N ∩ [1− q, 1)

})
+ µ(∅) + µ(∅) + · · ·

= µ
(
N ∩ [0, 1− q)

)
+ µ
(
N ∩ [1− q, 1)

)
+ µ(∅) + µ(∅) + · · ·

= µ
((
N ∩ [0, 1− q)

)
∪
(
N ∩ [1− q, 1)

)
∪ ∅ ∪ ∅ ∪ · · ·

)
= µ(N).

Ülesanne 1.4. Tõestada, et µ(∅) = 0. (Märgime, et käesoleva tõestuse seisukohalt on see ülesanne
tarbetu.)
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Seega

1 = µ
(
[0, 1)

)
= µ

 ⋃
q∈[0,1)∩Q

Nq

 =
∑

q∈[0,1)∩Q

µ(Nq) =

{
0, kui µ(N) = 0;

∞, kui µ(N) > 0.

Saadud vastuolu tõestab teoreemi.

Niisiis, meie maksimuprogramm � de�neerida tingimusi 1◦�3◦ rahuldav Jordani
mõõdu jätk µ : P(Rm) → [0,∞] � jääb (objektiivsetel asjaoludel) täitmata. Kuna
Jordani mõõdu võimaliku jätku µ : P(Rm) → [0,∞] puhul me omadustest 2◦ ja 3◦

loobuda ei raatsi, siis ei jää meil ilmselt muud üle, kui nõrgendada tingimust 1◦,
näiteks nõudes, et see jätk rahuldaks järgmist tingimust:

1◦◦ µ on aditiivne, s.t.

E,F ⊂ Rm, E ∩ F = ∅ =⇒ µ(E ∪ F ) = µ(E) + µ(F ).

Märkus 1.6. Järgmises peatükis integraali omadusi uurides mõistame, et idee asen-
dada siin tingimus 1◦ nõrgema tingimusega 1◦◦ pole eriti hea � selle arvelt kanna-
taksid integraali omadused. See on üks põhjusi, miks me selle idee varsti hülgame.

Osutub, et juhtudel m = 1 ja m = 2 niisugune Jordani mõõdu jätk µ : P(Rm) →
[0,∞], mis rahuldab tingimusi 1◦◦, 2◦ ja 3◦, tõepoolest eksisteerib (põgusalt peatu-
me me sel teemal käesoleva peatüki paragrahvis 5), kuid, nagu järeldub järgnevast
teoreemist, juhtudel m ⩾ 3 mitte.

Teoreem 1.2 (Banach5�Tarski6 paradoks, 1924). Olgu m ⩾ 3 ning olgu tõkestatud
hulgad A,B ⊂ Rm sellised, et A◦, B◦ ̸= ∅ (s.t. hulkadel A ja B leidub sisepunkte).
Siis leiduvad naturaalarv n ∈ N ja alamhulgad

A1, . . . , An ⊂ A ja B1, . . . , Bn ⊂ B

selliselt, et

(1) Ai ∩ Aj = ∅, i ̸= j,
⋃n

j=1Aj = A;

(2) Bi ∩Bj = ∅, i ̸= j,
⋃n

j=1Bj = B;

(3) Aj
∼= Bj, j = 1, . . . , n (s.t. hulgad Aj ja Bj on omavahel kongruentsed).

Banach�Tarski paradoksi tõestus on siin esitamiseks liiga pikk ja algebraline.

Banach�Tarski paradoksi sobib iseloomustama sõna kontraintuitiivne. Näiteks,
kui võtta A rolli mingi väike kera ja B rolli mingi suur kera ruumis R3, siis teoreem
1.2 ütleb, et me saame lõhkuda A � väikese kera � lõplikuks arvuks tükkideks,
millest (vajaduse korral asendades mõne tüki tema peegeldusega) on võimalik kokku

5Stefan Banach (1892�1945) � poola matemaatik.
6Alfred Tarski (1902�1983) � poola matemaatik.
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laduda B � suur kera! Vastuolu meie eelmatemaatiliste ootustega ruumi R3 struk-
tuuri suhtes tekib siin ilmselt sellest, et väikese kera tükkidest suurt kera kokku
ladudes tekiks meile justkui ei tea kust ruumala juurde. Tegelikult siin aga mingit
vastuolu ei ole: osal tükkidest ei tarvitse ruumala olla. Nimelt, ruumala pole mitte
ruumi R3 alamhulkade meist sõltumatult eksisteeriv omadus, vaid hulgafunktsioon
ruumi R3 alamhulkadel, mille me ise peame de�neerima. Banach�Tarski paradoks
ütleb meile, et sellise hulgafunktsiooni, mis vastaks meie ootustele ruumala oma-
duste suhtes, määramispiirkond ei saa olla ruumi R3 kõigi alamhulkade kogum: kui
me tahame, et ruumala omadused vastaksid meie eelmatemaatilistele ootustele, siis
tuleb osa ruumi R3 alamhulki jätta ilma ruumalata.

Ülesanne 1.5. Järeldada teoreemist 1.2, et kui m ⩾ 3, siis ei eksisteeri niisugust Jordani mõõdu
jätku µ : P(Rm) → [0,∞], mis rahuldab tingimusi 1◦◦, 2◦◦ ja 3◦.

Olukord tekitab nõutust. Mida teha? Ei jää muud üle, kui

• tuleb loobuda nõudest, et tingimusi 1◦�3◦ rahuldav Jordani mõõdu jätk oleks
de�neeritud ruumi Rm kõigi alamhulkade kogumil P(Rm) ning piirduda Jor-
dani mõõdu jätkamisega kogumi P(Rm) mingile alamkogumile, mis sisaldaks
olulisemaid praktikas ettetulevaid ruumi Rm alamhulki.

Selliselt püsitatud eesmärgini me ka jõuame. Käesoleva loengukursuse I peatükis
konstrueerime Jordani mõõdu soovitud omadustega jätku kogumi P(Rm) küllalt
suurele alamkogumile juhul m = 1, III peatükis konstrueerime ta juhul m ⩾ 2.
Seejuures hõlmab meie teooriaarendus hoopis laiemat konteksti kui ruum Rm � me
vaatleme hulgafunktsioone abstraktsetel hulkadel (seda eelkõige tõenäosusteooria,
aga ka mitmete teiste matemaatika valdkondade, näiteks funktsionaalanalüüsi vaja-
dusi silmas pidades). Loengukursuse II peatükis de�neerime Riemanni integraali
üldistuse (samuti hoopis laiemas kontekstis kui ruum Rm) � Lebesgue'i7 integraali,
mille omadused on oluliselt paremad, kui Riemanni integraalil.

7Henri Léon Lebesgue (1875�1941) � prantsuse matemaatik.
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Selles paragrahvis tutvume teatavat tüüpi kogumitega � algebrate ja σ-algebratega.
Märgime, et meie teooriaarenduses alates järgmisest paragrahvist keskset rolli mängi-
vate hulgafunktsioonide � mõõtude � määramispiirkonnaks on just nimelt seda
tüüpi kogumid.

2.1. σ-algebra mõiste

Olgu X mingi hulk.

De�nitsioon 2.1. Öeldakse, et kogum A ⊂ P(X) on (hulga X alamhulkade) algeb-
ra, kui

A1◦ ∅, X ∈ A;

A2◦ A ∈ A =⇒ Ac ∈ A;

A3◦ A,B ∈ A =⇒ A ∪B ∈ A.

Järgnevalt loetleme mõned algebrate põhiomadused.

Olgu A ⊂ P(X) algebra. Siis

A4◦ A,B ∈ A =⇒ A ∩B ∈ A;

A5◦ A,B ∈ A =⇒ A \B ∈ A;

A6◦ A1, . . . , An ∈ A (n ∈ N) =⇒
⋃n

j=1Aj ∈ A,
⋂n

j=1Aj ∈ A.

Omaduste A4◦ ja A5◦ tõestuseks märgime, et De Morgani8 valemite põhjal

A ∩B =
(
(A ∩B)c

)c
= (Ac ∪Bc)c ja A \B = A ∩Bc.

Omadus A6◦ järeldub omadustest A3◦ ja A4◦ induktsiooni teel.

De�nitsioon 2.2. Öeldakse, et kogum A ⊂ P(X) on (hulga X alamhulkade)
σ-algebra, kui

A1◦ ∅, X ∈ A;

A2◦ A ∈ A =⇒ Ac ∈ A;

A3◦◦ Aj ∈ A, j = 1, 2, . . . =⇒
⋃∞

j=1Aj ∈ A.

Ülesanne 2.1. Tõestada, et iga σ-algebra on algebra.

Olgu A ⊂ P(X) σ-algebra. Kuna iga σ-algebra on algebra, siis rahuldab A
tingimusi A4◦�A6◦. Lisaks sellele

8Augustus De Morgan (1806�1871) � inglise matemaatik.

11
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A6◦◦ Aj ∈ A, j = 1, 2, . . . =⇒
⋂∞

j=1Aj ∈ A.

Omaduse A6◦◦ tõestuseks märgime, et De Morgani valemite põhjal

∞⋂
j=1

Aj =

[(
∞⋂
j=1

Aj

)c]c
=

[
∞⋃
j=1

Ac
j

]c
.

Ülesanne 2.2. Olgu A algebra. Tõestada, et

(a) kui kehtib implikatisoon

Aj ∈ A, j = 1, 2, . . . , Ai ∩Aj = ∅, i ̸= j =⇒
∞⋃
j=1

Aj ∈ A,

siis A on σ-algebra;

(b) kui kehtib implikatisoon

Aj ∈ A, j = 1, 2, . . . , A1 ⊂ A2 ⊂ A3 ⊂ · · · =⇒
∞⋃
j=1

Aj ∈ A,

siis A on σ-algebra.

De�nitsioon 2.3. Paari (X,A), kus X on mingi hulk ning kogum A ⊂ P(X) on
σ-algebra, nimetatakse mõõtuvaks ruumiks. σ-algebra A hulki nimetatakse A-mõõtu-
vateks hulkadeks (või, kui σ-algebra A roll on kontekstist selge, ka lihtsalt mõõtuva-
teks hulkadeks).

Järgnevalt toome mõned lihtsad näited algebratest ja σ-algebratest.

Näide 2.1. Olgu X mingi hulk. Siis

(a) kogum {∅, X} on hulga X alamhulkade σ-algebra;

(b) kogum P(X) on hulga X alamhulkade σ-algebra;

(c) hulga X kõigi lõplike ja koolõplike alamhulkade kogum

F(X) = {A ∈ P(X) : A on lõplik või Ac on lõplik}

on hulga X alamhulkade algebra.

Ülesanne 2.3. Tõestada, et hulga X lõplike ja koolõplike alamhulkade kogum F(X) on σ-algebra
parajasti siis, kui hulk X on lõplik.

Näpunäide. Iga lõpmatu hulk sisaldab loenduva alamhulga.
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2.2. Alamhulkade kogumi poolt genereeritud σ-algebra

Olgu X mingi hulk ning olgu E ⊂ P(X).

De�nitsioon 2.4. Vähimat hulga X alamhulkade σ-algebrat, mis sisaldab kogu-
mit E , nimetatakse kogumi E poolt genereeritud σ-algebraks.

Kogumi E poolt genereeritud σ-algebrat tähistame edaspidi sümboliga σ(E).

Siinkohal kerkib loomulik küsimus σ-algebra de�nitsiooni korrektsusest. Täpse-
malt:

(1) Kas niisuguseid hulga X alamhulkade σ-algebraid, mis sisaldavad kogumit E ,
üleüldse leidub?

(2) Kas kogumit E sisaldavate hulga X alamhulkade σ-algebrate hulgas on olemas
vähim, s.t. niisugune, mis sisaldub igas kogumit E sisaldavas σ-algebras?

Vastus neile mõlemale küsimusele on jaatav:

(1) Hulga X kõigi alamhulkade kogum P(X) on σ-algebra, kusjuures E ⊂ P(X).

(2) Kõigi kogumit E sisaldavate hulga X alamhulkade σ-algebrate ühisosa on σ-
algebra, mis sisaldab kogumit E . See ühisosa on vähim kogumit E sisaldav
σ-algebra, sest ta sisaldub igas kogumit E sisaldavas hulga X alamhulkade
σ-algebras.

Ülesanne 2.4. Tõestada, et kõigi kogumit E sisaldavate hulga X alamhulkade σ-algebrate ühisosa
on σ-algebra, mis sisaldab kogumit E .

Niisiis,

σ(E) =
⋂

A on σ-algebra
E⊂A⊂P(X)

A.

Edasises kasutame me korduvalt järgmist lihtsat lemmat.

Lemma 2.1. Olgu X mingi hulk ning olgu A hulga X alamhulkade σ-algebra. Kui
kogum E ⊂ P(X) rahuldab tingimust E ⊂ A, siis ka σ(E) ⊂ A.

Tõestus. Olgu E ⊂ P(X) selline, et E ⊂ A. Kuna A on σ-algebra, siis σ(A) = A,
seega σ(E) ⊂ σ(A) = A.
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2.3. Boreli9 σ-algebra

De�nitsioon 2.5. Topoloogilise ruumi X lahtiste hulkade kogumi poolt genereeri-
tud σ-algebrat nimetatakse ruumi X Boreli σ-algebraks. Ruumi X Boreli σ-algebra
hulki nimetatakse selle ruumi Boreli hulkadeks.

Ruumi X Boreli σ-algebrat tähistame edaspidi sümboliga BX . Ruumi X kõigi
lahtiste hulkade kogumit tähistame edaspidi sümboliga τX ; niisiis de�nitsiooni ko-
haselt BX = σ(τX).

Ülesanne 2.5. Tõestada, et topoloogilise ruumi X kinniste alamhulkade kogum FX genereerib
ruumi X Boreli σ-algebra, s.t. σ(FX) = BX .

Järgnevalt tutvustame topoloogilise ruumi Boreli hulkade hierarhiat kirjeldavat
terminoloogiat.

De�nitsioon 2.6. Olgu X topoloogiline ruum.

Öeldakse, et hulk A ∈ P(X) on hulk tüüpi Gδ (ehk Gδ-tüüpi hulk ehk lihtsalt
Gδ), kui ta on esitatav ruumi X lahtiste alamhulkade loenduva ühisosana, s.t.

A =
∞⋂
j=1

Uj, kus Uj ∈ P(X), j ∈ N, on ruumi X lahtised alamhulgad.

Öeldakse, et hulk A ∈ P(X) on hulk tüüpi Fσ (ehk Fσ-tüüpi hulk ehk lihtsalt
Fσ), kui ta on esitatav ruumi X kinniste alamhulkade loenduva ühendina, s.t.

A =
∞⋃
j=1

Hj, kus Hj ∈ P(X), j ∈ N, on ruumi X kinnised alamhulgad.

Märkus 2.1. Terminid Gδ ja Fσ võttis kasutusele juba Hausdor�10: tähtedega �G� ja �F � tähis-
tas ta vastavalt lahtiseid ja kinniseid hulki (tähed �G� ja �F � tulenevad vastavalt saksakeelsest
terminist �Gebiet� (piirkond) ja prantsuskeelsest terminist �fermé� (kinnine)); indeksid �δ� ja �σ�
aga viitavad vastavalt saksakeelsetele terminitele �Durchschnitt� (ühisosa) ja �Summe� (summa).

Boreli hulkade edasine klassi�katsioon järgib sama printsiipi:
Gδσ on Gδ-de loenduv ühend,
Fσδ on Fσ-de loenduv ühisosa jne.

Rõhutame, et see klassi�katsioon ei ole ammendav. (Selle ammendavuse küsimusega tegeleme meNB! Seda �käes-

oleva paragrahvi li-
sa� pole olemas! käesoleva paragrahvi lisas ).

Selles punktis kirjeldame me ruumi R Boreli σ-algebrat. Selleks on aga otstar-
bekas esmalt õppida veidi paremini tundma ruumi R lahtiste hulkade struktuuri.

Edasises mõistame me mõiste �vahemik� all lisaks tõkestatud vahemikele ka
tõkestamata vahemikke, s.t. vahemikeks nimetame me hulkasid

(a, b), (c,∞), (−∞, d), (−∞,∞), kus a, b, c, d ∈ R, a < b.
9Félix Edouard Justin Emile Borel (1871�1956) � prantsuse matemaatik.
10Felix Hausdor� (1868�1942) � saksa matemaatik.
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Teoreem 2.2. Ruumi R mis tahes mittetühi lahtine hulk esitub paarikaupa lõiku-
matute vahemike ülimalt loenduva ühendina.

Kuna iga vahemik on esitatav tõkestatud vahemike loenduva ühendina, siis järel-
dub teoreemist 2.2

Järeldus 2.3. Ruumi R mis tahes mittetühi lahtine hulk esitub tõkestatud vahemike
loenduva ühendina.

Teoreemi 2.2 tõestus. Olgu U ⊂ R mittetühi lahtine hulk. De�neerime iga
x ∈ U korral

ax = inf
{
a ∈ R : (a, x] ⊂ U

}
ja bx = sup

{
b ∈ R : [x, b) ⊂ U

}
.

Märgime, et ax ja bx on korrektselt de�neeeritud, sest niisugused a, b ∈ R, a < x < b, mille
korral (a, b) ⊂ U , eksisteerivad (tõepoolest, hulga U lahtisuse tõttu on x hulga U sisepunkt ning
seega leidub ε > 0 selliselt, et (x − ε, x + ε) ⊂ U). Seejuures võib juhtuda, et ax = −∞ ja/või
bx = ∞.

Paneme tähele, et iga x ∈ U korral

(1) (ax, bx) ⊂ U ;

(2) (ax, bx) on suurim punkti x sisaldav vahemik, mis sisaldub hulgas U .

Ülesanne 2.6. Tõestada, väited (1) ja (2).

Tähistame Ix = (ax, bx), x ∈ U . Paneme tähele, et mis tahes x, y ∈ U korral kas
Ix = Iy või Ix ∩ Iy = ∅.

Tõepoolest, olgu x, y ∈ U sellised, et Ix ̸= Iy. Oletame vastuväiteliselt, et Ix ∩ Iy ̸= ∅. Siis
kehtib vähemalt üks järgmistest rangetest sisalduvustest:

Ix ⊂
̸=
Ix ∪ Iy või Iy ⊂

̸=
Ix ∪ Iy.

Kuna Ix∪Iy kui lõikuvate vahemike ühend on vahemik, siis esimesel juhul poleks Ix suurim punkti
x sisaldav hulgas U sisalduv vahemik, teisel juhul aga poleks Iy suurim punkti y sisaldav hulgas U
sisalduv vahemik.

Kuna iga x ∈ U korral sisaldab vahemik Ix mingi ratsionaalarvu, siis

U =
⋃
x∈U

Ix =
⋃

x∈U∩Q

Ix.

De�neerime hulgas U ∩Q ekvivalentsiseose ρ järgmiselt:

x ρ y :⇐⇒ Ix = Iy, x, y ∈ U ∩Q.

Ülesanne 2.7. Tõestada, et ρ on ekvivalentsiseos hulgas U ∩Q.
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Olgu N ⊂ U ∩ Q mingi selline hulk, mis sisaldab faktorhulga (U ∩ Q)/ρ igast
ekvivalentsiklassist ühe ja ainult ühe elemendi (märgime, et valikuaksioomi põhjal
niisugune hulk N eksisteerib). Siis

U =
⋃

x∈U∩Q

Ix =
⋃
x∈N

Ix.

Olemegi esitanud hulga U paarikaupa lõikumatute vahemike ülimalt loenduva ühen-
dina (sest kogumi {Ix : x ∈ N} vahemikud on paarikaupa lõikumatud ja hulga N
võimsus on ülimalt loenduv).
∗Ülesanne 2.8. Tõestada, et separaablis meetrilises ruumis on iga mittetühi lahtine hulk esitatav
lahtiste kerade ülimalt loenduva ühendina.

Teoreem 2.4. Igaüks järgmistest ruumi R alamhulkade kogumitest genereerib ruu-
mi R Boreli σ-algebra BR:

E1 =
{
(a, b) : −∞ < a < b <∞

}
;

E2 =
{
[a, b) : −∞ < a < b <∞

}
;

E3 =
{
[a, b] : −∞ < a < b <∞

}
;

E4 =
{
(a, b] : −∞ < a < b <∞

}
;

E5 =
{
(−∞, b] : b ∈ R

}
;

E6 =
{
(−∞, b) : b ∈ R

}
;

E7 =
{
[a,∞) : a ∈ R

}
;

E8 =
{
(a,∞) : a ∈ R

}
.

Teoreemi 2.4 tõestus tugineb järeldusele 2.3 ja lemmale 2.1.

Teoreemi 2.4 tõestuseks piisab näidata, et

BR
(1)
⊂ σ(E1)

(2)
⊂ σ(E2)

(3)
⊂ σ(E3)

(4)
⊂ σ(E4)

(5)
⊂ σ(E5)

(6)
⊂ σ(E6)

(7)
⊂ σ(E7)

(8)
⊂ σ(E8)

(9)
⊂ BR.

(1). Kuna järelduse 2.3 põhjal on ruumi R iga mittetühi lahtine hulk esitatav
tõkestatud vahemike loenduva ühendina, siis τR ⊂ σ(E1) (sümbol τR tähistab ruumi
R lahtiste alamhulkade kogumit) ning järelikult lemma 2.1 põhjal ka BR = σ(τR) ⊂
σ(E1).

(2). Lemma 2.1 põhjal piisab sisalduvuse (2) tõestuseks näidata, et E1 ⊂ σ(E2).
Viimane sisalduvus aga kehtib, sest mis tahes a, b ∈ R, a < b, korral

(a, b) =
∞⋃
n=1

[a+ b−a
2n
, b) ∈ σ(E2).

(4). Lemma 2.1 põhjal piisab sisalduvuse (4) tõestuseks näidata, et E3 ⊂ σ(E4).
Viimane sisalduvus aga kehtib, sest mis tahes a, b ∈ R, a < b, korral

[a, b] =
∞⋂
n=1

(a− 1
n
, b] ∈ σ(E4).
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(5). Lemma 2.1 põhjal piisab sisalduvuse (5) tõestuseks näidata, et E4 ⊂ σ(E5).
Viimane sisalduvus aga kehtib, sest mis tahes a, b ∈ R, a < b, korral

(a, b] = (−∞, b] \ (−∞, a] ∈ σ(E5).

Ülesanne 2.9. Tõestada sisalduvused (3) ja (6)�(9).

2.4. Üks edasise teooriaarenduse seisukohalt oluline näide
ühest ruumi R alamhulkade algebrast

Käesoleva paragrahvi lõpetame näitega ühest ruumi R alamhulkade algebrast, mis
etendab olulist osa meie edasises teooriaarenduses.

Näide 2.2. Tähistame

H =
{
∅, [a, b), [c,∞), (−∞, d), (−∞,∞) : a, b, c, d ∈ R, a < b

}
⊂ P(R)

ning

B =

{
n⋃

j=1

Aj : n ∈ N, A1, . . . , An ∈ H, Ai ∩ Aj = ∅, i ̸= j

}
⊂ P(R),

s.t. B on kogumi H paarikaupa mittelõikuvate hulkade lõplike ühendite kogum.

Näitame, et B on algebra. Seda võib teha algebra aksioomide A1◦�A3◦ vahetu
kontrollimise teel, mis on aga küllaltki tülikas (kuigi lihtne). Seepärast on otstarbe-
kam tõestada eelnevalt üks abitulemus, mida me vajame ka käesoleva konspekti III
peatükis.

De�nitsioon 2.7. Olgu X mingi hulk ning olgu G ⊂ P(X).
Öeldakse, et kogum G on poolalgebra, kui

SA1◦ ∅ ∈ G;

SA2◦ A,B ∈ G =⇒ A ∩B ∈ G;

SA3◦ iga A ∈ G korral leiduvad paarikaupa lõikumatud hulgad B1, . . . , Bn ∈ G
(n ∈ N) selliselt, et

Ac =
n⋃

j=1

Bj,

s.t. kogumi G iga hulga täiend esitub kogumi G paarikaupa lõikumatute hulkade
lõpliku ühendina.

Lihtne on veenduda, et kogum H on poolalgebra.



18 I. Mõõduga ruumid

Teoreem 2.5. Olgu X mingi hulk ning olgu kogum G ⊂ P(X) poolalgebra. Siis
kogum

A =

{
n⋃

j=1

Aj : n ∈ N, A1, . . . , An ∈ G, Ai ∩ Aj = ∅, i ̸= j

}
on algebra.

Teisisõnu, poolalgebra paarikaupa lõikumatute hulkade lõplike ühendite kogum on
algebra.

Kuna kogum H on poolalgebra, siis järeldub teoreemist 2.5, et kogum B on
algebra. Seejuures σ(B) = BR.

Teoreemi 2.5 tõestus.

Ülesanne 2.10. Tõestada teoreem 2.5.

Näpunäide. Kõigepealt veenduda, et kui A,B ∈ A, siis ka A ∩B ∈ A.

2.5. Harjutusülesandeid

Ülesanne 2.11. Olgu X,Y ̸= ∅ ning olgu f : X → Y .

[A] Olgu B,Bj ⊂ Y , j = 1, 2, . . . . Tõestada, et

(a) f−1(Bc) =
(
f−1(B)

)c
;

(b) f−1
(⋃∞

j=1Bj

)
=
⋃∞

j=1 f
−1(Bj).

[B]

(a) Olgu kogumid A ⊂ P(X) ja B ⊂ P(Y ) σ-algebrad. Tõestada, et kogumid

C :=
{
f−1[B] : B ∈ B

}
ja D :=

{
B ∈ B : f−1[B] ∈ A

}
on σ-algebrad;

(b) Olgu F ⊂ P(Y ). Tähistame

E :=
{
f−1[B] : B ∈ F

}
ja C :=

{
f−1[B] : B ∈ σ(F)

}
.

Tõestada, et σ(E) = C.

Üks veidi üldisem näpunäide osa [B], (b), sisalduvuse C ⊂ σ(E) tõestuseks. Sageli on
meil vaja näidata, et igal hulgal mingist (mingi hulga Y alamhulkade) σ-algebrast S on teatav
omadus (P ), s.t. tähistades D := {B ∈ S : hulgal B on omadus (P )}, on vaja näidata, et S ⊂ D.
Selleks piisab näidata, et

(1) kogum D on (hulga Y alamhulkade) σ-algebra;

(2) leidub alamkogum F ⊂ D nii, et σ(F) = S (s.t. kogum D sisaldab mingi σ-algebrat S
genereeriva alamkogumi F),

sest väidete (1) ja (2) kehtides S = σ(F) ⊂ D. (Loomulikult sobib kirjeldatud tõestusskeem
ainult väga spetsii�liste olukordade jaoks, sest üldjuhul ei tarvitse vaadeldud ülesandepüstituses ei
tingimus (1) ega ka tingimus (2) kehtida.)

Kuidas rakendada eelnevat tõestusskeemi ülesande 2.11, [B], (b), sisalduvuse C ⊂ σ(E) tões-
tuseks? Aga, nimelt, sisalduvuse C ⊂ σ(E) tõestuseks tuleb näidata, et iga B ∈ σ(F) korral
f−1[B] ∈ σ(E), s.t. tähistades D := {B ∈ σ(F) : f−1[B] ∈ σ(E)}, tuleb näidata, et σ(F) ⊂ D.
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Ülesanne 2.12. Olgu X mingi hulk ning olgu Y ⊂ X.

(a) Olgu kogumid A ⊂ P(X) ja B ⊂ P(Y ) σ-algebrad. Tõestada, et kogumid

C :=
{
A ∈ A : A ∩ Y ∈ B

}
⊂ P(X) ja D :=

{
A ∩ Y : A ∈ A

}
⊂ P(Y )

on σ-algebrad.

(b) Olgu E ⊂ P(X). Tähistame

F :=
{
A ∩ Y : A ∈ E

}
⊂ P(Y ) ja D :=

{
A ∩ Y : A ∈ σ(E)

}
⊂ P(Y ).

Tõestada, et σ(F) = D.

Ülesanne 2.13. Olgu (X, τX) topoloogiline ruum ning olgu Y ⊂ X. Üldise topoloogia kursusest
teame, et siis Y on topoloogine ruum nn. alamruumi topoloogia

τY := {U ∩ Y : U ∈ τX}

suhtes. Tõestada, et
BY = {E ∩ Y : E ∈ BX}.

(Sümbolid BX ja BY tähistavad vastavalt ruumide X ja Y Boreli σ-algebraid, s.t. BX = σ(τX) ja
BY = σ(τY )).

Näpunäide. Kasutada ülesannet 2.12, (b).

Ülesanne 2.14. Olgu X ja Y mingid hulgad. Meenutame, et hulkade X ja Y otsekorrutis X × Y
on de�neeritud võrdusega

X × Y :=
{
(x, y) : x ∈ X, y ∈ Y

}
,

s.t. X × Y on kõikvõimalike järjestatud paaride (x, y) hulk, kus x ∈ X ja y ∈ Y .

Kui E ∈ P(X × Y ) ja x ∈ X, siis hulga E x-lõige Ex on de�neeritud võrdusega

Ex := {y ∈ Y : (x, y) ∈ E} ⊂ P(Y ).

[A] Olgu E,Ej ∈ P(X × Y ), j = 1, 2, . . . , ning olgu x ∈ X. Tõestada, et

(Ex)
c = (Ec)x ja

( ∞⋃
j=1

Ej

)
x
=

∞⋃
j=1

(Ej)x.

[B] Olgu x ∈ X.

(a) Olgu kogumid C ⊂ P(X × Y ) ja B ⊂ P(Y ) σ-algebrad. Tõestada, et kogumid

G :=
{
E ∈ C : Ex ∈ B

}
⊂ P(X × Y ) ja D :=

{
Ex : E ∈ C

}
⊂ P(Y )

on σ-algebrad.

(b) Olgu E ⊂ P(X × Y ). Tähistame

F :=
{
Ex : E ∈ E

}
⊂ P(Y ) ja D :=

{
Ex : E ∈ σ(E)

}
⊂ P(Y ).

Tõestada, et σ(F) = D.

Ülesanne 2.15. Olgu A ⊂ R ning olgu r ∈ R. Meenutame, et hulga A nihe A + r ja kordne rA
on de�neeritud vastavalt võrdustega

A+ r := {a+ r : a ∈ A} ja rA := {ra : a ∈ A}.
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[A] Olgu A,Aj ⊂ R, j = 1, 2, . . . , ning olgu r ∈ R. Tõestada, et

(a)

(A+ r)c = Ac + r ja

( ∞⋃
j=1

Aj

)
+ r =

∞⋃
j=1

(Aj + r)

(näpunäide: x ∈ A+ r parajasti siis, kui x− r ∈ A);

(b) kui r ̸= 0, siis

(rA)c = rAc ja r

( ∞⋃
j=1

Aj

)
=

∞⋃
j=1

(rAj)

(näpunäide: r ̸= 0 korral x ∈ rA parajasti siis, kui x
r ∈ A).

[B] Tõestada, et ruumis R iga Boreli hulga nihe ja kordne on Boreli hulgad.

Näpunäide. Veenduda, et kogum E = {E ∈ BR : E + r ∈ BR ja rE ∈ BR iga r ∈ R korral} on
σ-algebra, kusjuures E sisaldab σ-algebrat BR genereeriva kogumi E1 = {(a, b) : a, b ∈ R, a < b}.



� 3. Mõõdud

3.1. Mõõdu mõiste ja põhiomadused

Olgu X mingi hulk ning olgu A ⊂ P(X) algebra.

De�nitsioon 3.1. Öeldakse, et hulgafunktsioon µ : A → [0,∞] on aditiivne, kui

M1◦ A,B ∈ A, A ∩B = ∅ =⇒ µ(A ∪B) = µ(A) + µ(B).

Aditiivse hulgafunktsiooni olulisemad omadused on formuleeritud järgnevas teo-
reemis.

Teoreem 3.1. Olgu µ : A → [0,∞] aditiivne hulgafunktsioon. Siis

M0◦ kui leidub hulk A ∈ A selliselt, et µ(A) < ∞ (s.t. µ ei ole samaselt võrdne
lõpmatusega), siis

µ(∅) = 0;

vastasel korral
µ(∅) = ∞;

M1◦' kui hulgad A1, . . . , An ∈ A (n ∈ N) on paarikaupa lõikumatud, siis

µ

(
n⋃

j=1

Aj

)
=

n∑
j=1

µ(Aj);

M2◦ µ on monotoonne, s.t.

A,B ∈ A, A ⊂ B =⇒ µ(A) ⩽ µ(B);

M3◦ µ on subtraktiivne, s.t.

A,B ∈ A, A ⊂ B, µ(A) <∞ =⇒ µ(B \ A) = µ(B)− µ(A);

M4◦ µ on subaditiivne, s.t.

A1, . . . , An ∈ A (n ∈ N) =⇒ µ

(
n⋃

j=1

Aj

)
⩽

n∑
j=1

µ(Aj).

Tõestus. M0◦. Eksisteerigu hulk A ∈ A, mille korral µ(A) <∞. Kuna hulgafunk-
tsioon µ on aditiivne, siis

µ(A) = µ(A ∪ ∅) = µ(A) + µ(∅),

millest võrratuse µ(A) <∞ tõttu järeldub, et µ(∅) = 0.

Omadus M1◦' järeldub hulgafunktsiooni µ aditiivsusest induktsiooni teel.

21
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M2◦. Olgu A,B ∈ A, A ⊂ B. Siis

µ(A) ⩽ µ(A) + µ(B \ A) = µ
(
A ∪ (B \ A)

)
= µ(B).

M3◦. Olgu A,B ∈ A, A ⊂ B, µ(A) <∞. Siis

µ(A) + µ(B \ A) = µ
(
A ∪ (B \ A)

)
= µ(B),

järelikult
µ(B \ A) = µ(B)− µ(A).

M4◦. Olgu A1, . . . , An ∈ A (n ∈ N). Tähistame

B1 = A1 ja Bj = Aj \

(
j−1⋃
k=1

Ak

)
, j = 2, . . . , n.

Siis
⋃n

j=1Aj =
⋃n

j=1Bj, kusjuures hulgad B1, . . . , Bn on paarikaupa lõikumatud
ning Bj ⊂ Aj, j = 1, . . . , n. Seega

µ

(
n⋃

j=1

Aj

)
= µ

(
n⋃

j=1

Bj

)
=

n∑
j=1

µ(Bj) ⩽
n∑

j=1

µ(Aj).

Ülesanne 3.1. Tõestada, et kui hulgafunktsioon µ : A → [0,∞] on aditiivne ning paarikaupa
lõikumatud hulgad Aj ∈ A, j = 1, 2, . . . , on sellised, et

⋃∞
j=1Aj ∈ A, siis

µ

 ∞⋃
j=1

Aj

 ⩾
∞∑
j=1

µ(Aj).

De�nitsioon 3.2. Öeldakse, et hulgafunktsioon µ : A → [0,∞] on σ-aditiivne (ehk
loenduvalt aditiivne), kui

M1◦◦ Aj ∈ A, j = 1, 2, . . . ,Ai∩Aj = ∅, i ̸= j,
∞⋃
j=1

Aj ∈ A =⇒ µ

(
∞⋃
j=1

Aj

)
=

∞∑
j=1

µ(Aj).

Märgime, et kui algebra A on σ-algebra, siis tähendab tingimus �µ on σ-aditiivne�,
et kehtib implikatsioon

Aj ∈ A, j = 1, 2, . . . , Ai ∩ Aj = ∅, i ̸= j =⇒ µ

(
∞⋃
j=1

Aj

)
=

∞∑
j=1

µ(Aj),

sest sel juhul mis tahes Aj ∈ A, j = 1, 2, . . . , korral alati
⋃∞

j=1Aj ∈ A.

Ülesanne 3.2. Tõestada, et σ-aditiivne hulgafunktsioon on aditiivne.

Kuna σ-aditiivne hulgafunktsioon on aditiivne, siis on σ-aditiivsel hulgafunk-
tsioonil µ aditiivse hulgafunktsiooni omadused M0◦�M4◦. Ülejäänud σ-aditiivse hul-
gafunktsiooni olulisemad omadused on formuleeritud järgnevas teoreemis.
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Teoreem 3.2. Olgu hulgafunktsioon µ : A → [0,∞] σ-aditiivne. Siis

M4◦◦ µ on loenduvalt subaditiivne, s.t.

Aj ∈ A, j = 1, 2, . . . ,
∞⋃
j=1

Aj ∈ A =⇒ µ

(
∞⋃
j=1

Aj

)
⩽

∞∑
j=1

µ(Aj);

M5◦ kui hulgad Aj ∈ A, j = 1, 2, . . . , on sellised, et

A1 ⊂ A2 ⊂ A3 ⊂ · · · ja
∞⋃
j=1

Aj ∈ A, (3.1)

siis

µ

(
∞⋃
j=1

Aj

)
= lim

n→∞
µ(An); (3.2)

M6◦ kui hulgad Aj ∈ A, j = 1, 2, . . . , on sellised, et

µ(A1) <∞, A1 ⊃ A2 ⊃ A3 ⊃ · · · ja
∞⋂
j=1

Aj ∈ A, (3.3)

siis

µ

(
∞⋂
j=1

Aj

)
= lim

n→∞
µ(An). (3.4)

Tõestus. M4◦◦. Olgu hulgad Aj ∈ A, j = 1, 2, . . . , sellised, et
⋃∞

j=1Aj ∈ A. Tähis-
tame

B1 = A1 ja Bj = Aj \

(
j−1⋃
k=1

Ak

)
, j = 2, 3, . . . .

Siis
⋃∞

j=1Aj =
⋃∞

j=1Bj, kusjuures hulgad Bj, j = 1, 2, . . . , on paarikaupa lõikuma-
tud ning Bj ⊂ Aj, j = 1, 2, . . . . Seega

µ

(
∞⋃
j=1

Aj

)
= µ

(
∞⋃
j=1

Bj

)
=

∞∑
j=1

µ(Bj) ⩽
∞∑
j=1

µ(Aj).

M5◦. Rahuldagu hulgad Aj, j = 1, 2, . . . , tingimusi (3.1). Tähistame

A0 = ∅ ja Bj = Aj \ Aj−1, j = 1, 2, . . . .

Siis
⋃∞

j=1Aj =
⋃∞

j=1Bj, kusjuures hulgad Bj, j = 1, 2, . . . , on paarikaupa lõikuma-
tud; seega

µ

(
∞⋃
j=1

Aj

)
= µ

(
∞⋃
j=1

Bj

)
=

∞∑
j=1

µ(Bj) = lim
n→∞

n∑
j=1

µ(Bj) = lim
n→∞

µ

(
n⋃

j=1

Bj

)
= lim

n→∞
µ(An).

M6◦. Rahuldagu hulgad Aj, j = 1, 2, . . . , eeldusi (3.3). Kuna
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(1) De Morgani valemite põhjal µ
(
A1 \

⋂∞
j=1Aj

)
= µ

(⋃∞
j=1(A1 \ Aj)

)
;

(2) sisalduvuste A1 ⊃ A2 ⊃ A3 ⊃ · · · tõttu A1 \ A1 ⊂ A1 \ A2 ⊂ A1 \ A3 ⊂ · · ·
ning järelikult omaduse M5◦ põhjal µ

(⋃∞
j=1A1 \ Aj

)
= limn→∞ µ(A1 \ An),

siis

µ

(
∞⋂
j=1

Aj

)
= µ

(
A1 \

(
A1 \

∞⋂
j=1

Aj

))
= µ(A1)− µ

(
A1 \

∞⋂
j=1

Aj

)

= µ(A1)− µ

(
∞⋃
j=1

(A1 \ Aj)

)
= µ(A1)− lim

n→∞
µ(A1 \ An)

= µ(A1)− lim
n→∞

(
µ(A1)− µ(An)

)
= µ(A1)−

(
µ(A1)− lim

n→∞
µ(An)

)
= lim

n→∞
µ(An).

Märkus 3.1. On ilmne, et võrdus (3.4) jääb kehtima, kui asendada eeldustes (3.3)
tingimus �µ(A1) < ∞� nõrgema tingimusega �mingi j0 ∈ N korral µ(Aj0) < ∞�.
Käesoleva punkti viimasest ülesandest näeme, et selle tingimuse mitte kehtides ei
tarvitse enam kehtida ka võrdus (3.4).

Ülesanne 3.3. Olgu µ : A → [0,∞] aditiivne hulgafunktsioon. Tõestada, et

(a) kui µ rahuldab tingimust M5◦, siis µ on σ-aditiivne;

(b) kui µ on lõplik ja rahuldab tingimust M6◦, siis µ on σ-aditiivne;

(c) kui µ on lõplik ja rahuldab tingimust

M6◦◦ A1 ⊃ A2 ⊃ A3 ⊃ · · · ,
⋂∞

j=1Aj = ∅ =⇒ µ(An) −−−−→
n→∞

0.

siis µ on σ-aditiivne;

Märkus 3.2. Kui aditiivne hulgafunktsioon µ : A → [0,∞] on lõplik, siis tingimusest M6◦ järeldub
tingimus M6◦◦, seega järeldub ülesande väitest (c) tema väide (b) (ning ühtlasi on tingimused M6◦

ja M6◦◦ samaväärsed).

De�nitsioon 3.3. Hulgafunktsiooni µ : A → [0,∞] nimetatakse mõõduks, kui

M0◦◦ µ(∅) = 0;

M1◦◦ µ on σ-aditiivne.

De�nitsioon 3.4. Kolmikut (X,A, µ), kus X on mingi hulk, A ⊂ P(X) on algebra
ning µ : A → [0,∞] on mõõt, nimetatakse eelmõõduga ruumiks. Mõõtu µ nimeta-
takse seejuures ka eelmõõduks.

Kolmikut (X,A, µ), kus X on mingi hulk, A ⊂ P(X) on σ-algebra ning µ : A →
[0,∞] on mõõt, nimetatakse mõõduga ruumiks.

Kui µ(X) = 1, siis nimetatakse mõõduga ruumi (X,A, µ) tõenäosusruumiks.
Mõõtu µ nimetatakse sel juhul tõenäosusmõõduks.
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Kui µ(X) <∞, siis öeldakse, et (eel)mõõduga ruum (X,A, µ) on lõplik. Sel juhul
öeldakse ka, et mõõt µ on lõplik.

Öeldakse, et (eel)mõõduga ruum (X,A, µ) on σ-lõplik, kui hulk X on esitatav
kujul

X =
∞⋃
j=1

Aj, kus Aj ∈ A ja µ(Aj) <∞, j = 1, 2, . . . .

Sel juhul öeldakse ka, et mõõt µ on σ-lõplik.

Ülesanne 3.4. Olgu (X,A, µ) σ-lõplik eelmõõduga ruum. Tõestada, et

(a) leiduvad hulgad Aj ∈ A, µ(Aj) <∞, j = 1, 2, . . . , Ai ∩Aj = ∅, i ̸= j, nii, et X =
⋃∞

j=1Aj ;

(b) leiduvad hulgadAj ∈ A, µ(Aj) <∞, j = 1, 2, . . . ,A1 ⊂ A2 ⊂ A3 ⊂ · · · , nii, etX =
⋃∞

j=1Aj .

Ülesanne 3.5. Tuua näide mõõduga ruumist (X,A, µ) ning hulkadest Aj ∈ A, j = 1, 2, . . . , mis
rahuldavad tingimusi A1 ⊃ A2 ⊃ A3 ⊃ · · · ja

⋂∞
j=1Aj ∈ A, kuid mitte tingimust (3.4).

Näpunäide. Tutvuda kõigepealt näitega 3.1.

3.2. Näiteid mõõduga ruumidest

Näide 3.1. Olgu (X,A) mõõtuv ruum.
De�neeerime hulgafunktsiooni c : A → [0,∞] seosega

c(A) =


0, kui A = ∅;
hulga A elementide arv, kui hulk A on lõplik;

∞, kui hulk A on lõpmatu,

A ∈ A.

Lihtne on kontrollida, et c on mõõt.

Ülesanne 3.6. Tõestada, et hulgafunktsioon c on mõõt.

Mõõtu c nimetatakse loendamismõõduks.

Näide 3.2. Olgu (X,A) mõõtuv ruum ning olgu x ∈ X.
De�neeerime hulgafunktsiooni δx : A → [0,∞] seosega

δx(A) =

{
1, kui x ∈ A;

0, kui x ̸∈ A,
A ∈ A.

Lihtne on kontrollida, et δx on mõõt.

Ülesanne 3.7. Tõestada, et hulgafunktsioon δx on mõõt.

Mõõtu δx nimetatakse Diraci11 mõõduks (punktis x) või ka punktmassiks (punktis x).

Järgnev näide, mis mängib tähtsat rolli ka edasises teooriaarenduses, on eelmis-
test juba oluliselt sisukam.

11Paul Adrien Maurice Dirac (1902�1984) � inglise matemaatik.
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Näide 3.3. Tähistame (nagu ka näites 2.2)

H =
{
∅, [a, b), [c,∞), (−∞, d), (−∞,∞) : a, b, c, d ∈ R, a < b

}
⊂ P(R)

ning

B =

{
n⋃

j=1

Aj : n ∈ N, A1, . . . , An ∈ H, Ai ∩ Aj = ∅, i ̸= j

}
⊂ P(R),

s.t. B on kogumi H paarikaupa mittelõikuvate hulkade lõplike ühendite kogum. Näi-
tes 2.2 tõestasime, et B on algebra.

Olgu F : R → R mittekahanev vasakult pidev funktsioon.
Selles näites konstrueerime ühe mõõdu µF : B → [0,∞] selliselt, et

µF

(
[a, b)

)
= F (b)− F (a) mis tahes a, b ∈ R, a < b, korral. (3.5)

Niisiis, kui de�neerida funktsioon F seosega F (x) = x, x ∈ R, siis

µF

(
[a, b)

)
= b− a.

Paneme tähele, et, tähistades

F (∞) = lim
x→∞

F (x) ja F (−∞) = lim
x→−∞

F (x)

(märgime, et funktsiooni F monotoonsuse tõttu need piirväärtused eksisteerivad),
peab tingimust (3.5) rahuldav mõõt µF rahuldama tingimusi

µF (∅) = 0,

µF

(
[a, b)

)
= F (b)− F (a), a, b ∈ R, a < b,

µF

(
[c,∞)

)
= F (∞)− F (c), c ∈ R, (3.6)

µF

(
(−∞, d)

)
= F (d)− F (−∞), d ∈ R,

µF

(
(−∞,∞)

)
= F (∞)− F (−∞).

Ülesanne 3.8. Tõestada, et kui µF on mõõt algebral B, mis rahuldab tingmust (3.5), siis kehtivad
tingimused (3.6).

De�neerimegi kõigepealt hulgafunktsiooni µF väärtused kogumi H hulkadel võrdus-
tega (3.6).

Ülesanne 3.9. Tõestada, et kui paarikaupa lõikumatud hulgad A1, . . . , An ∈ H (n ∈ N) on
sellised, et

⋃n
j=1Aj ∈ H, siis

µF

 n⋃
j=1

Aj

 =

n∑
j=1

µF (Aj).

Jätkame hulgafunktsiooni µF algebrale B (ja tähistame selle jätku samuti sümboli-
ga µF ), de�neerides A ∈ B korral

µF (A) =
n∑

j=1

µF (Aj),
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kus paarikaupa lõikumatud hulgad A1, . . . , An ∈ H (n ∈ N) on sellised, et A =⋃n
j=1Aj. Hulgafunktsiooni µF de�nitsiooni korrektsus ja µF aditiivsus järeldub va-

hetult järgnevast ülesandest. Veelgi enam, sealt järeldub ka, et µF on ainus tingimust
(3.5) rahuldav aditiivne hulgafunktsioon algebral B.
Ülesanne 3.10. Olgu S (mingi hulga X alamhulkade) poolalgebra ning rahuldagu hulgafunk-
tsioon ν : S → [0,∞] tingimust

A1, . . . , An ∈ S (n ∈ N), Ai ∩Aj = ∅, i ̸= j,

n⋃
j=1

Aj ∈ S =⇒ ν

 n⋃
j=1

Aj

 =

n∑
j=1

ν(Aj).

Olgu A poolalgebra S paarikaupa lõikumatute hulkade lõplike ühendite algebra, s.t.

A =


n⋃

j=1

Aj : n ∈ N, A1, . . . , An ∈ S, Ai ∩Aj = ∅, i ̸= j

 ⊂ P(X).

De�neerime hulgafunktsiooni µ : A → [0,∞] seosega

µ(A) =

n∑
j=1

ν(Aj), A =

n⋃
j=1

Aj ∈ A (n ∈ N, A1, . . . , An ∈ S, Ai ∩Aj = ∅, i ̸= j).

(I) Tõestada, et

(a) µ on korrektselt de�neeritud;

(b) µ on aditiivne;

(c) µ on ainus aditiivne hulgafunktsioon algebral A, mille puhul µ(A) = ν(A) iga A ∈ S korral.

(II) Tõestada, et kui

Aj ∈ S, j = 1, 2, . . . , Ai ∩Aj = ∅, i ̸= j,

∞⋃
j=1

Aj ∈ S =⇒ ν

 ∞⋃
j=1

Aj

 =

∞∑
j=1

ν(Aj),

siis µ on σ-aditiivne.

Teoreem 3.3. Hulgafunktsioon µF on mõõt.

Teoreemi 3.3 tõestus toetub oluliselt mõõdu regulaarsuse mõistele; me esitame
ta käesoleva paragrahvi järgmises punktis.

De�nitsioon 3.5. Olgu X mingi hulk ning olgu kogumid A,B ⊂ P(X) sellised, et
A ⊂ B.

Öeldakse, et hulgafunktsioon ν : B → R on hulgafunktsiooni µ : A → R jätk
(kogumile B), kui

ν(A) = µ(A) iga A ∈ A korral.

Sel juhul öeldakse ka, et hulgafunktsioon µ : A → R on hulgafunktsiooni ν : B → R
ahend (kogumile A).

Hulgafunktsiooni ν ahendit kogumile A tähistatakse sümboliga ν|A. Niisiis, kui
hulgafunktsioon ν on hulgafunktsiooni µ : A → R jätk, siis kirjutatakse ν|A = µ.
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Järgmises paragrahvis esitame skeemi, kuidas jätkata mõõt µ algebral A teata-
vaks mõõduks selle algebra poolt genereeritud σ-algebral σ(A). Mida see meile an-
nab? Näites 3.3, lähtudes mittekahanevast vasakult pidevast funktsioonist F : R →
R, konstrueerisime teataval algebral B ⊂ P(R) mõõdu µF , mis rahuldab tingimust
(3.5). Kui me oskame jätkata mõõdu µF mingiks mõõduks algebra B poolt gene-
reeritud σ-algebrale σ(B) = BR, siis, tähistades selle jätku samuti sümboliga µF ,
saame mõõdu µF : BR → [0,∞], mis rahuldab tingimust (3.5). Niisiis, kui de-
�neerida funktsioon G : R → R võrdusega G(x) = x, x ∈ R, ning tähistada
m := µG : BR → [0,∞], siis m on mõõt ruumi R Boreli σ-algebral BR, mis rahuldab
tingimust

m
(
[a, b)

)
= b− a mis tahes a, b ∈ R, a < b korral.

Pole paha, mis?

3.3. Mõõdu regulaarsus

De�nitsioon 3.6. Olgu X topoloogiline ruum ning olgu E ⊂ P(X). Öeldakse, et
monotoonne hulgafunktsioon ρ : E → [0,∞] on

• väljast regulaarne hulgal E ∈ E , kui

ρ(E) = inf
{
ρ(D) : hulga D ∈ E sisemus D◦ ⊃ E

}
(sel juhul öeldakse ka, et hulk E on (hulgafunktsiooni ρ suhtes) väljast regu-
laarne ehk väljast ρ-regulaarne);

• seest regulaarne hulgal E ∈ E , kui

ρ(E) = sup
{
ρ(C) : hulga C ∈ E sulund C on kompaktne ja C ⊂ E

}
(sel juhul öeldakse ka, et hulk E on (hulgafunktsiooni ρ suhtes) seest regulaarne
ehk seest ρ-regulaarne);

• regulaarne hulgal E ∈ E , kui ta on hulgal E nii väljast kui ka seest regulaarne
(sel juhul öeldakse ka, et hulk E on (hulgafunktsiooni ρ suhtes) regulaarne ehk
ρ-regulaarne);

• regulaarne, kui ta on regulaarne kogumi E kõikidel hulkadel.

Märkus 3.3. Kompaktne hulkK Hausdor� topoloogilises ruumis on kinnine; niisiis
K = K on Boreli hulk. Siit järeldub, et kui X on Hausdor� topoloogiline ruum ning
kogum E ⊂ P(X) sisaldab ruumiX Boreli σ-algebrat (s.t. E ⊃ BX), siis monotoonne
hulgafunktsioon ρ : E → [0,∞] on

(a) väljast regulaarne hulgal E ∈ E parajasti siis, kui

ρ(E) = inf
{
ρ(U) : hulk U ∈ E on lahtine ja U ⊃ E

}
;
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(b) seest regulaarne hulgal E ∈ E parajasti siis, kui

ρ(E) = sup
{
ρ(K) : hulk K ∈ E on kompaktne ja K ⊂ E

}
.

Märgime, et iga meetriline ruum on Hausdor� topoloogiline ruum.

Teoreem 3.3 järeldub vahetult järgnevast teoreemist.

Teoreem 3.4. Olgu X topoloogiline ruum, olgu A ⊂ P(X) algebra ning olgu µ : A →
[0,∞] aditiivne hulgafunktsioon. Kui hulgafunktsioon µ on regulaarne, siis ta on σ-
aditiivne.

Tõestus.
∗Ülesanne 3.11. Tõestada teoreem 3.4.

Järeldamaks teoreemist 3.4, et hulgafunktsioon µF näites 3.3 (ja ka teoreemis 3.3)
on mõõt, jääb vaid veenduda, et µF on regulaarne.

Ülesanne 3.12. Tõestada, et hulgafunktsioon µF : B → [0,∞] näites 3.3 on regulaarne.

3.4. Mõõduga ruumi täield

Olgu (X,A, µ) mõõduga ruum.

De�nitsioon 3.7. Öeldakse, et hulk N ∈ P(X) on µ-hüljatav, kui leidub hulk
F ∈ A selliselt, et µ(F ) = 0 ja N ⊂ F .

Kui mõõdu µ roll on kontekstist selge, siis öeldakse µ-hüljatava hulga kohta ka
lihtsalt hüljatav hulk.

Ruumi X µ-hüljatavate hulkade kogumit tähistame sümboliga N (µ) või, kui
mõõdu µ roll on kontekstist selge, siis ka lihtsalt N . Niisiis

N = N (µ) =
{
N ∈ P(X) : leidub hulk F ∈ A, µ(F ) = 0, nii, et N ⊂ F

}
.

De�nitsiooni kohaselt hulk on hüljatav parajasti siis, kui ta on mingi nullmõõduga
hulga alamhulk. Seega on ka iga nullmõõduga hulk hüljatav. Juhime tähelepanu, et
hulga hüljatavus ei tähenda üldjuhul, et tema mõõt on null, sest üldjuhul ei tarvitse
µ-hüljatav hulk kuuluda mõõdu µ määramispiirkonda A. Küll aga järeldub mõõdu
monotoonsusest, et iga mõõtuva (s.t. σ-algebrasse A kuuluva) hüljatava hulga mõõt
on null. Niisiis, hüljatava hulga mõõt kas ei ole määratud või on null.

Ülesanne 3.13. Tõestada, et hüljatavate hulkade ülimalt loenduv ühend on hüljatav hulk.

De�nitsioon 3.8. Öeldakse, et mõõduga ruum (X,A, µ) on täielik, kui N (µ) ⊂ A
(s.t. kõik µ-hüljatavad hulgad kuuluvad σ-algebrasse A). Sel juhul öeldakse ka, et
mõõt µ on täielik.

On ilmne, et kui ruum (X,A, µ) on täielik, siis hulga N ⊂ X hüljatavus tähendab,
et µ(N) = 0.
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Teoreem 3.5. Olgu (X,A, µ) mõõduga ruum ning olgu N = N (µ) (s.t. N on hulga
X kõikide µ-hüljatavate alamhulkade kogum). Tähistame

A =
{
A ∪N : A ∈ A, N ∈ N

}
ning de�neerime hulgafunktsiooni µ : A → [0,∞] seosega

µ(E) = µ(A), E ∈ A, E = A ∪N, A ∈ A, N ∈ N .

Siis

(a) kogum A on σ-algebra,

(b) σ-algebra A on vähim σ-algebra, mis sisaldab nii σ-algebrat A kui ka kogumit N
(teisisõnu, A = σ(A ∪N ));

(c) hulgafunktsioon µ on mõõt;

(d) mõõt µ mõõdu µ ainus jätk σ-algebrale A;

(e) mõõduga ruum (X,A, µ) on täielik.

De�nitsioon 3.9. Mõõduga ruumi (X,A, µ) teoreemist 3.5 nimetatakse mõõduga
ruumi (X,A, µ) täieldiks. σ-algebrat A nimetatakse seejuures σ-algebra A täieldiks
(mõõdu µ suhtes) ning mõõtu µ mõõdu µ täieldiks.

Teisisõnu, mõõduga ruumi (X,A, µ) täieldiks nimetatakse mõõduga ruumi (X,A, µ),
kus

(1) A on vähim hulga X alamhulkade σ-algebra, mis sisaldab nii σ-algebrat A kui
ka ruumi X kõiki µ-hüljatavaid alamhulki;

(2) mõõt µ on mõõdu µ jätk σ-algebrale A (märgime, et teoreemi 3.5 põhjal on
niisugune mõõt µ üheselt määratud).

Teoreemi 3.5 tõestus. (a). Kõigepealt paneme tähele, et ∅ ∈ A (sest ∅ = ∅ ∪ ∅,
kusjuures ∅ ∈ A ja ∅ ∈ N ) ning X ∈ A (sest X = X ∪ ∅, kusjuures X ∈ A ja
∅ ∈ N ).

Näitame nüüd, et suvalise E ∈ A korral ka Ec ∈ A.
Olgu E ∈ A. Siis leiduvad hulgad A ∈ A ja N ∈ N selliselt, et E = A∪N . Kuna

hulk N on µ-hüljatav, siis leidub hulk F ∈ A, µ(F ) = 0, selliselt, et N ⊂ F . Paneme
tähele, et

Ec = (A ∪N)c = (A ∪ F )c ∪ (F \ E).
Märkus 3.4. Viimase võrduse kirjapanekul on abiks joonise tegemine.

Ülesanne 3.14. Veenduda, et (A ∪N)c = (A ∪ F )c ∪ (F \ E).

Kuna (A∪F )c ∈ A ja F \E ∈ N (sest F \E on nullmõõduga hulga F ∈ A alamhulk),
siis Ec ∈ A.

Väite (a) tõestuseks jääb näidata, et kuiEj ∈ A, j = 1, 2, . . . , siis ka
⋃∞

j=1Ej ∈ A.
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Ülesanne 3.15. Veenduda selles.

(b).

Ülesanne 3.16. Tõestada, et A = σ(A ∪N ).

(c). Veendume kõigepealt, et hulgafunktsioon µ on korrektselt de�neeritud, s.t.
µ(E) ei sõltu hulga E ∈ A esitusest kujul E = A∪N , kus A ∈ A ja N ∈ N . Selleks
peame veenduma, et kui A1, A2 ∈ A ja N1, N2 ∈ N on sellised, et A1∪N1 = A2∪N2,
siis µ(A1) = µ(A2).

Olgu A1, A2 ∈ A ja N1, N2 ∈ N sellised, et A1 ∪ N1 = A2 ∪ N2. Siis leiduvad
hulgad F1, F2 ∈ A, selliselt, et µ(F1) = µ(F2) = 0 ning N1 ⊂ F1 ja N2 ⊂ F2. Kuna

A1 ⊂ A1 ∪N1 = A2 ∪N2 ⊂ A2 ∪ F2,

siis mõõdu µ monotoonsuse ja subaditiivsuse tõttu

µ(A1) ⩽ µ(A2 ∪ F2) ⩽ µ(A2) + µ(F2) = µ(A2).

Analoogiliselt saame, et ka µ(A2) ⩽ µ(A1) ning seega µ(A1) = µ(A2).

Ülesanne 3.17. Tõestada, et hulgafunktsioon µ on mõõt.

(d).

Ülesanne 3.18. Tõestada, et µ on mõõdu µ jätk σ-algebrale A.

Ülesanne 3.19. Tõestada, et µ on mõõdu µ ainus jätk σ-algebrale A.

(e).

Ülesanne 3.20. Tõestada, et N = N (µ), s.t. hulk N ∈ P(X) on µ-hüljatav parajasti siis, kui ta
on µ-hüljatav.

Ülesanne 3.21. Tõestada, et mõõduga ruum (X,A, µ) on täielik.

3.5. Harjutusülesandeid

Ülesanne 3.22. Olgu (X,A) mõõtuv ruum ning olgu µ1, µ2 : A → [0,∞] mõõdud. Tõestada, et

(a) µ1 + µ2 : A ∋ A 7→ µ1(A) + µ2(A) ∈ [0,∞] on mõõt;

(b) µ1 + µ2 on σ-lõplik parajasti siis, kui µ1 ja µ2 on σ-lõplikud.

Ülesanne 3.23. Olgu (X,A, µ) mõõduga ruum ning olgu Aj , Bj ∈ A, j = 1, 2, . . . . Tõestada, et

(a) µ
(
(A1 ∪A2) \ (B1 ∪B2)

)
⩽ µ(A1 \B1) + µ(A2 \B2);

(b) µ
((⋃∞

j=1Aj

)
\
(⋃∞

j=1Bj

))
⩽
∑∞

j=1 µ(Aj \Bj);

(c) µ
(
(A1 ∩A2) \ (B1 ∩B2)

)
⩽ µ(A1 \B1) + µ(A2 \B2);

(d) µ
((⋂∞

j=1Aj

)
\
(⋂∞

j=1Bj

))
⩽
∑∞

j=1 µ(Aj \Bj).

Ülesanne 3.24. Olgu (X,A) mõõtuv ruum, kus X on Hausdor� topoloogiline ruum, ning olgu
µ1, µ2 : A → [0,∞] lõplikud mõõdud. Tõestada, et µ1 + µ2 on regulaarne parajasti siis, kui µ1 ja
µ2 on regulaarsed.

Lahendamisel võib piirduda juhuga, kus A ⊃ BX , s.t. A sisaldab ruumi X Boreli σ-algebrat.
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Ülesanne 3.25. Olgu (X,A, µ) lõpliku mõõduga ruum, kus X on Hausdor� topoloogiline ruum,
ning olgu E ∈ A. Tõestada, et

(a) kui µ on hulgal E seest regulaarne, siis µ on täiendil Ec väljast regulaarne;

(b) kui X on kompaktne ja µ on hulgal E väljast regulaarne, siis µ on täiendil Ec seest regu-
laarne;

(b') kui µ on hulgal X seest regulaarne ja hulgal E väljast regulaarne, siis µ on täiendil Ec seest
regulaarne.

Lahendamisel võib piirduda juhuga, kus A ⊃ BX , s.t. A sisaldab ruumi X Boreli σ-algebrat.

Ülesanne 3.26. Olgu (X,A, µ) lõpliku mõõduga ruum, kus X on Hausdor� topoloogiline ruum,
ning olgu A,B ∈ A. Tõestada, et

(a) kui µ on hulkadel A ja B väljast regulaarne, siis µ on ka ühendil A ∪ B ja ühisosal A ∩ B
väljast regulaarne;

(b) kui µ on hulkadel A ja B seest regulaarne, siis µ on ka ühendil A∪B ja ühisosal A∩B seest
regulaarne.

Lahendamisel võib piirduda juhuga, kus A ⊃ BX , s.t. A sisaldab ruumi X Boreli σ-algebrat.

Ülesanne 3.27. Olgu (X,A, µ) mõõduga ruum, kus X on σ-kompaktne Hausdor� topoloogiline
ruum (s.t. Hausdor� topoloogiline ruum, mis esitub kompaktsete hulkade loenduva ühendina) ning
A ⊃ BX . Tõestada, et kui µ on väljast regulaarne ning lõplik ruumi X kompaktsetel hulkadel, siis
µ on regulaarne.

Näpunäide. Kõigepealt veenduda, et kui K,E ∈ A, kus K on kompaktne, siis µ on hulgal K ∩E
seest regulaarne. Selleks kasutada mõõdu µ väljast regulaarsust hulgal K ∩ Ec.

Ülesanne 3.28. Olgu (X,A, µ) lõpliku mõõduga ruum, kus X on Hausdor� topoloogiline ruum.
Tõestada, et

(a) kui µ on hulgal X seest regulaarne, siis

R := {A ∈ A : µ on hulgal A regulaarne}

on σ-algebra (selle väite tõestamisel võib piirduda juhuga, kus A ⊃ BX , s.t. A sisaldab ruumi
X Boreli σ-algebrat);

(b) kui A = BX (s.t. µ on lõplik Boreli mõõt) ja µ on ruumi X igal lahtisel hulgal seest
regulaarne, siis µ on regulaarne.

∗Ülesanne 3.29. Tõestada, et iga lõplik Boreli mõõt täielikus separaablis meetrilises ruumis on
regulaarne.

Näpunäide. Ülesande 3.28 põhjal piisab näidata, et lõplik Boreli mõõt täielikus separaablis meet-
rilises ruumis on igal lahtisel hulgal seest regulaarne. Selleks kasutada Hausdor� teoreemi.

Ülesanne 3.30. Olgu (X,A, µ) mõõduga ruumi (X,A, µ) täield. Tõestada, et järgmised väited
on samaväärsed:

(i) E ∈ A;

(ii) E = A ∪N1, kus A ∈ A, N1 ∈ N , A ∩N1 = ∅;

(iii) E = B \N2, kus B ∈ A, N2 ∈ N ;

(iv) E = B \N3, kus B ∈ A, N3 ∈ N , N3 ⊂ B;

(v) leiduvad A,B ∈ A nii, et A ⊂ E ⊂ B ja µ(B \A) = 0.

Ülesanne 3.31. Tõestada, et mõõduga ruum on σ-lõplik parajasti siis, kui tema täield on σ-lõplik.
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Ülesanne 3.32. Olgu (X,A, µ) mõõduga ruum ning olgu X ⊃ Y ∈ A. Tähistame

B := {A ∩ Y : A ∈ A} ⊂ P(Y ) ja ν = µ|B,

s.t. ν(B) = µ(B), B ∈ B. Ülesandest 2.12 teame, et B on σ-algebra, seega ν on mõõt. Olgu
(X,A, µ) ja (Y,B, ν) vastavalt mõõduga ruumide (X,A, µ) ja (Y,B, ν) täieldid. Tõestada, et

(a) N (ν) = {N ∩ Y : N ∈ N (µ)};

(b) B = {E ∩ Y : E ∈ A};

(c) ν = µ|B.

Ülesanne 3.33. Olgu (X,A, µ) mõõduga ruum, kus X on Hausdor� topoloogiline ruum. Tões-
tada, et µ on regulaarne parajasti siis, kui tema täield µ on regulaarne.

Lahendamisel võib piirduda juhuga, kus A ⊃ BX , s.t. A sisaldab ruumi X Boreli σ-algebrat.
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Kõikjal selles paragrahvis olgu X mingi hulk.

De�nitsioon 4.1. Olgu µ0 mõõt algebral A ⊂ P(X) ning olgu algebra B⊂P(X)
selline, et A ⊂ B.

Öeldakse, et mõõt µ : B → [0,∞] on mõõdu µ0 jätk algebrale B ja kirjutatakse
µ|A = µ0 (loetakse: µ ahend algebrale A on µ0), kui

µ(A) = µ0(A) iga A ∈ A korral.

Selles paragrahvis esitame skeemi, kuidas jätkata algebral de�neeritud mõõt sel-
le algebra poolt genereeritud σ-algebrale. Selleks toome sisse järgneva mõistete-
aparatuuri.

De�nitsioon 4.2. Hulgafunktsiooni λ : P(X) → [0,∞] nimetatakse välismõõduks,
kui

OM1◦ λ(∅) = 0;

OM2◦ λ on monotoonne, s.t.

A,B ∈ P(X), A ⊂ B ⇒ λ(A) ⩽ λ(B);

OM3◦ λ on loenduvalt subaditiivne, s.t.

λ

(
∞⋃
j=1

Ej

)
⩽

∞∑
j=1

λ(Ej), Ej ∈ P(X), j = 1, 2, . . . .

Lemma 4.1. Olgu kogum E ⊂ P(X) ja hulgafunktsioon ρ : E → [0,∞] sellised, et

∅, X ∈ E ja ρ(∅) = 0.

Siis hulgafunktsioon ρ∗ : P(X) → [0,∞], mis on de�neeritud seosega

ρ∗(E) = inf

{
∞∑
j=1

ρ(Aj) : Aj ∈ E , j = 1, 2, . . . , E ⊂
∞⋃
j=1

Aj

}
, E ∈ P(X),

on välismõõt.

Tõestus. Kõigepealt märgime, et hulgafunktsiooni ρ∗ de�nitsioon on korrektne,
sest iga E ∈ P(X) korral leiduvad hulgad Aj ∈ E , j = 1, 2, . . . , nii, et E ⊂

⋃∞
j=1Aj.

(Me võime võtta näiteks Aj = X, j = 1, 2, . . . .)
Vahetult on konrollitav, et ρ∗(∅) = 0 ning ρ∗ on monotoonne.

Ülesanne 4.1. Tõestada, et ρ∗(∅) = 0 ning ρ∗ on monotoonne.

34
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Olgu Ej ∈ P(X), j = 1, 2, . . . . Teoreemi tõestuseks jääb näidata, et

ρ∗

(
∞⋃
j=1

Ej

)
⩽

∞∑
j=1

ρ∗(Ej).

Selleks aga piisab näidata, et iga ε > 0 korral

ρ∗

(
∞⋃
j=1

Ej

)
⩽

∞∑
j=1

ρ∗(Ej) + ε.

Fikseerime vabalt ε > 0. Valime iga j ∈ N korral hulgad Aj
i ∈ E , i = 1, 2, . . . ,

selliselt, et

Ej ⊂
∞⋃
i=1

Aj
i ja

∞∑
i=1

ρ(Aj
i ) ⩽ ρ∗(Ej) +

ε

2j
.

Ilmselt
⋃∞

j=1Ej ⊂
⋃∞

j=1

⋃∞
i=1A

j
i =

⋃∞
i,j=1A

j
i ning seega

ρ∗

(
∞⋃
j=1

Ej

)
= inf

{∑
k∈N

ρ(Ak) : Ak ∈ E , k = 1, 2, . . . ,
∞⋃
j=1

Ej ⊂
⋃
k∈N

Ak

}

⩽
∞∑

i,j=1

ρ(Aj
i ) =

∞∑
j=1

∞∑
i=1

ρ(Aj
i ) ⩽

∞∑
j=1

(
ρ∗(Ej) +

ε

2j

)
=

∞∑
j=1

ρ∗(Ej) +
∞∑
j=1

ε

2j

=
∞∑
j=1

ρ∗(Ej) + ε.

Olgu λ : P(X) → [0,∞] välismõõt.

De�nitsioon 4.3. Öeldakse, et hulk A ∈ P(X) on λ-mõõtuv (ehk välismõõdu λ
suhtes mõõtuv), kui

λ(E) = λ(E ∩ A) + λ(E ∩ Ac) iga E ∈ P(X) korral.

On selge, et hulk A ∈ P(X) on λ-mõõtuv parajasti siis, kui

λ(E ∩ A) + λ(E ∩ Ac) ⩽ λ(E) iga E ∈ P(X), λ(E) <∞, korral

(sest vastupidine võrratus kehtib välismõõdu subaditiivsuse tõttu alati ning juhul,
kui λ(E) = ∞, kehtib see võrratus triviaalselt).

Hulga X kõigi λ-mõõtuvate alamhulkade kogumit tähistame edaspidi sümboliga
M(λ).
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Teoreem 4.2 (Carathéodory12 teoreem). Olgu λ : P(X) → [0,∞] välismõõt. Siis

(a) M(λ) on σ-algebra (s.t. kõigi λ-mõõtuvate hulkade kogum on σ-algebra);

(b) λ|M(λ) (s.t. välismõõdu λ ahend kõigi λ-mõõtuvate hulkade σ-algebrale M(λ))
on täielik mõõt.

Tõestus. (a). Tõestamaks, et M(λ) on σ-algebra, piisab näidata, et

(a1) M(λ) on algebra;

(a2) kui hulgad Aj ∈ M(λ), j = 1, 2, . . . , on paarikaupa lõikumatud, siis
⋃∞

j=1Aj ∈
M(λ).

(a1). Kõigepealt paneme tähele, et ∅ ∈ M(λ) ning kui A ∈ M(λ), siis ka Ac ∈
M(λ).

Ülesanne 4.2. Tõestada, et

(1) ∅ ∈ M(λ);

(2) kui A ∈ M(λ), siis ka Ac ∈ M(λ).

Olgu A,B ∈ M(λ). Veendumaks, et M(λ) on algebra, jääb näidata, et A ∪ B ∈
M(λ), s.t. iga E ∈ P(X) korral

λ
(
E ∩ (A ∪B)

)
+ λ
(
E ∩ (A ∪B)c

)
= λ(E).

Olgu E ∈ P(X). Arvestades, et hulgad A ja B on λ-mõõtuvad, saame, et

λ
(
E ∩ (A∪B)

)
+ λ
(
E ∩ (A ∪B)c

)
= λ

(
E ∩ (A ∪B) ∩ A

)
+ λ
(
E ∩ (A ∪B) ∩ Ac

)
+ λ(E ∩ Ac ∩Bc)

= λ(E ∩ A) + λ(E ∩ Ac ∩B) + λ(E ∩ Ac ∩Bc)

= λ(E ∩ A) + λ(E ∩ Ac)

= λ(E).

(a2). Olgu hulgad Aj ∈ M(λ), j = 1, 2, . . . , paarikaupa lõikumatud. Väite (a)
tõestuseks jääb näidata, et

⋃∞
j=1Aj ∈ M(λ), s.t. iga E ∈ P(X) korral

λ

(
E ∩

∞⋃
j=1

Aj

)
+ λ

(
E ∩

( ∞⋃
j=1

Aj

)c)
⩽ λ(E).

Selleks paneme esmalt tähele, et kui hulgad A,B ∈ M(λ) on paarikaupa lõikumatud,
siis

λ
(
E ∩ (A ∪B)

)
= λ(E ∩ A) + λ(E ∩B) iga E ∈ P(X) korral. (4.1)

Tõepoolest, kui hulgad A,B ∈ M(λ) on paarikaupa lõikumatud, siis

λ
(
E ∩ (A ∪B)

)
= λ

(
E ∩ (A ∪B) ∩A

)
+ λ

(
E ∩ (A ∪B) ∩Ac

)
= λ(E ∩A) + λ(E ∩B).

12Constantin Carathéodory (1873�1950) � kreeka päritolu saksa matemaatik.
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Olgu E ∈ P(X). Kuna hulgad Aj, j = 1, 2, . . . , on paarikaupa lõikumatud, siis
saame tingimusest (4.1) induktsiooni teel, et

λ

(
E ∩

n⋃
j=1

Aj

)
=

n∑
j=1

λ(E ∩ Aj) iga n ∈ N korral.

Seega

λ

(
E ∩

∞⋃
j=1

Aj

)
= λ

(
∞⋃
j=1

E ∩ Aj

)
⩽

∞∑
j=1

λ(E ∩ Aj)

= lim
n→∞

n∑
j=1

λ(E ∩ Aj) = lim
n→∞

λ

(
E ∩

n⋃
j=1

Aj

)
.

Teiselt poolt

λ

(
E ∩

( ∞⋃
j=1

Aj

)c)
⩽ lim

n→∞
λ

(
E ∩

( n⋃
j=1

Aj

)c)
. (4.2)

Tõepoolest, kuna E ∩ (
⋃∞

j=1Aj)
c ⊂ E ∩ (

⋃n+1
j=1 Aj)

c ⊂ E ∩ (
⋃n

j=1Aj)
c, n = 1, 2, . . . , ning λ on

monotoonne, siis iga n ∈ N korral

λ

E ∩
( ∞⋃
j=1

Aj

)c ⩽ λ

E ∩
(n+1⋃
j=1

Aj

)c ⩽ λ

E ∩
( n⋃
j=1

Aj

)c ;

niisiis piirväärtus lim
n→∞

λ
(
E ∩

(⋃n
j=1Aj

)c)
eksisteerib, kusjuures kehtib (4.2).

Seega

λ

(
E ∩

∞⋃
j=1

Aj

)
+ λ

(
E ∩

( ∞⋃
j=1

Aj

)c)

⩽ lim
n→∞

λ

(
E ∩

n⋃
j=1

Aj

)
+ lim

n→∞
λ

(
E ∩

( n⋃
j=1

Aj

)c)

= lim
n→∞

(
λ

(
E ∩

n⋃
j=1

Aj

)
+ λ

(
E ∩

( n⋃
j=1

Aj

)c))
= lim

n→∞
λ(E)

= λ(E),

sest kuna M(λ) on algebra, siis iga n ∈ N korral
⋃n

j=1Aj ∈ M(λ).

(b). Veendumaks, et λ|M(λ) on mõõt, paneme kõigepealt tähele, et λ|M(λ) on
aditiivne hulgafunktsioon.

Tõepoolest, mis tahes A,B ∈ M(λ), A ∩ B = ∅, korral järeldub λ-mõõtuvuse de�nitsioonist,
et

λ(A ∪B) = λ
(
(A ∪B) ∩A

)
+ λ

(
(A ∪B) ∩Ac

)
= λ(A) + λ(B).
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Kuna aditiivne hulgafunktsioon on σ-aditiivne parajasti siis, kui ta on loenduvalt
subaditiivne, siis λ|M(λ) on mõõt (sest λ (ja seega ka λ|M(λ)) on loenduvalt subadi-
tiivne ning λ(∅) = 0).

Veendumaks, et λ|M(λ) on täielik mõõt, paneme kõigepealt tähele, et kehtib imp-
likatsioon

N ∈ P(X), λ(N) = 0 =⇒ N ∈ M(λ).

Tõepoolest, kui N ∈ P(X) on selline, et λ(N) = 0, siis λ monotoonsuse tõttu iga E ∈ P(X)
korral λ(E ∩N) + λ(E ∩N c) ⩽ λ(N) + λ(E) = λ(E); järelikult N ∈ M(λ).

Ülesanne 4.3. Tõestada, et λ|M(λ) on täielik mõõt.

Teoreem 4.3. Olgu µ mõõt algebral A ⊂ P(X) ja olgu hulgafunktsioon µ∗ : P(X) →
[0,∞] de�neeritud seosega

µ∗(E) = inf

{
∞∑
j=1

µ(Aj) : Aj ∈ A, j = 1, 2, . . . , E ⊂
∞⋃
j=1

Aj

}
, E ∈ P(X). (4.3)

Siis

(a) hulgafunktsioon µ∗ on välismõõt;

(b) A ⊂ M(µ∗) (s.t. kõik algebra A hulgad on µ∗-mõõtuvad);

(c) µ∗|A = µ (s.t. µ∗(A) = µ(A) iga A ∈ A korral).

Seosega (4.3) de�neeritud välismõõtu µ∗ nimetatakse mõõduga µ assotsieeruvaks
välismõõduks.

Teoreemi 4.3 tõestus. Väide (a) järeldub vahetult lemmast 4.1.

(b). Olgu A ∈ A. Väite tõestuseks peame näitama, et A ∈ M(µ∗), s.t. iga
E ∈ P(X) korral

µ∗(E ∩ A) + µ∗(E ∩ Ac) ⩽ µ∗(E). (4.4)

Olgu E ∈ P(X). Tingimuse (4.4) kehtivuseks piisab veenduda, et kui hulgad Bj ∈ A,
j = 1, 2, . . . , sellised, et E ⊂

⋃∞
j=1Bj, siis

µ∗(E ∩ A) + µ∗(E ∩ Ac) ⩽
∞∑
j=1

µ(Bj).

Tõepoolest, sel juhul

µ∗(E ∩A) + µ∗(E ∩Ac) ⩽ inf


∞∑
j=1

µ(Bj) : Bj ∈ A, j = 1, 2, . . . , E ⊂
∞⋃
j=1

Bj

 = µ∗(E).
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Olgu hulgad Bj ∈ A, j = 1, 2, . . . , sellised, et E ⊂
⋃∞

j=1Bj. Kuna A ∩ Bj,
Ac∩Bj ∈ A, j = 1, 2, . . . , kusjuures E ∩A ⊂

⋃∞
j=1A∩Bj ja E ∩Ac ⊂

⋃∞
j=1A

c∩Bj,
siis

µ∗(E ∩ A) + µ∗(E ∩ Ac) ⩽
∞∑
j=1

µ(A ∩Bj) +
∞∑
j=1

µ(Ac ∩Bj)

=
∞∑
j=1

(
µ(A ∩Bj) + µ(Ac ∩Bj)

)
=

∞∑
j=1

µ
(
(A ∩Bj) ∪ (Ac ∩Bj)

)
=

∞∑
j=1

µ(Bj).

(c). Olgu A ∈ A. Väite tõestuseks peame näitama, et µ(A) = µ∗(A).
Veendumaks, et µ(A) ⩾ µ∗(A), tähistame B1 = A ja Bj = ∅, j = 2, 3, . . . ; siis

µ(A) =
∞∑
j=1

µ(Bj) ⩾ inf

{
∞∑
j=1

µ(Aj) : Aj ∈ A, j = 1, 2, . . . , A ⊂
∞⋃
j=1

Aj

}
= µ∗(A).

Teoreemi tõestuseks jääb näidata, et µ(A) ⩽ µ∗(A). Selleks, �kseerides vabalt
hulgad Aj ∈ A, j = 1, 2, . . . , nii, et A ⊂

⋃∞
j=1Aj, piisab veenduda, et µ(A) ⩽∑∞

j=1 µ(Aj):

µ(A) = µ

(
A ∩

∞⋃
j=1

Aj

)
= µ

(
∞⋃
j=1

A ∩ Aj

)
⩽

∞∑
j=1

µ(A ∩ Aj) ⩽
∞∑
j=1

µ(Aj).

Nüüd me oleme võimelised esitama skeemi, kuidas jätkata algebral de�neeritud
mõõt selle algebra poolt genereeritud σ-algebrale.

Olgu µ0 mõõt algebral A ⊂ P(X) ning olgu µ∗
0 : P(X) → [0,∞] mõõduga µ0

assotsieeruv välismõõt, s.t.

µ∗
0(E) = inf

{
∞∑
j=1

µ0(Aj) : Aj ∈ A, j = 1, 2, . . . , E ⊂
∞⋃
j=1

Aj

}
, E ∈ P(X).

Tähistame µ = µ∗
0|σ(A). Siis

(a) µ on mõõt (Carathéodory teoreemi põhjal on µ∗
0|M(µ∗

0)
mõõt; kuna teoreemi

4.3 põhjal A ⊂ M(µ∗
0), siis ka σ(A) ⊂ M(µ∗

0) (sest M(µ∗
0) on Carathéodory

teoreemi põhjal σ-algebra); seega on ka µ∗
0|σ(A) mõõt);

(b) µ on mõõdu µ0 : A → [0,∞] jätk algebra A poolt genereeritud σ-algebrale
σ(A) (sest teoreemi 4.3 põhjal iga A ∈ A korral µ(A) = µ∗

0(A) = µ0(A)).
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Niisiis me oleme jätkanud mõõdu µ0 algebralt A selle algebra poolt genereeritud
σ-algebrale σ(A).

Mõõtusid µ∗
0|M(µ∗

0)
ja µ∗

0|σ(A) nimetatakse mõõdu µ0 Carathéodory�Hahni
13 jätku-

deks.
Ülalkirjeldatud skeemi (eel)mõõdu µ0 jätkamiseks algebralt A selle algebra poolt

genereeritud σ-algebrale σ(A) (ning ka µ∗
0-mõõtuvate hulkade σ-algebrale M(µ∗

0))
nimetame edaspidi Carathéodory�Hahni skeemiks.

Teoreem 4.4 (Hahni jätkamisteoreem). Olgu µ0 mõõt algebral A ⊂ P(X). Tähis-
tame µ = µ∗

0|σ(A). Siis

(a) µ on mõõdu µ0 jätk algebra A poolt genereeritud σ-algebrale σ(A);

(b) kui mõõt ν : σ(A) → [0,∞] on mõõdu µ0 mingi jätk, siis iga A ∈ σ(A) korral
ν(A) ⩽ µ(A); seejuures, kui µ(A) <∞, siis ν(A) = µ(A);

(c) kui mõõt µ0 on σ-lõplik, siis µ on mõõdu µ0 ainus jätk σ-algebrale σ(A).

Tõestus. Väide (a) on tõestatud teoreemile eelnevas arutelus.

(b). Olgu ν : σ(A) → [0,∞] mõõdu µ0 mingi jätk.

Kõigepealt näitame, et iga A ∈ σ(A) korral ν(A) ⩽ µ(A).
Olgu A ∈ σ(A). Kui hulgad Aj ∈ A, j = 1, 2, . . . , on sellised, et A ⊂

⋃∞
j=1Aj,

siis

ν(A) ⩽ ν

(
∞⋃
j=1

Aj

)
⩽

∞∑
j=1

ν(Aj) =
∞∑
j=1

µ0(Aj);

järelikult ka

ν(A) ⩽ inf

{
∞∑
j=1

µ0(Aj) : Aj ∈ A, = 1, 2, . . . , A ⊂
∞⋃
j=1

Aj

}
= µ∗

0(A) = µ(A).

Olgu nüüd A ∈ σ(A) selline, et µ(A) < ∞. Väite tõestuseks jääb näidata, et
µ(A) ⩽ ν(A). Selleks valime hulgad Aj ∈ A, j = 1, 2, . . . , selliselt, et A ⊂

⋃∞
j=1Aj

ja
∞∑
j=1

µ(Aj) =
∞∑
j=1

µ0(Aj) < µ∗
0(A) + 1 = µ(A) + 1 <∞.

Üldisust kitsendamata võime eeldada, et hulgad Aj, j = 1, 2, . . . , on paarikaupa
lõikumatud.

Tõepoolest, kui tähistada A′
1 = A1 ja A′

j = Aj\
⋃j−1

k=1Ak, j = 2, 3, . . . , siis A′
j ∈ A, j = 1, 2, . . . ,

ja A′
i ∩A′

j = ∅, kui i ̸= j; seejuures

A ⊂
∞⋃
j=1

Aj =

∞⋃
j=1

A′
j ja

∞∑
j=1

µ0(A
′
j) ⩽

∞∑
j=1

µ0(Aj) < µ(A) + 1.

13Hans Hahn (1879�1934) � austria matemaatik.
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Tähistame C =
⋃∞

j=1Aj. Kuna

µ(C) =
∞∑
j=1

µ(Aj) =
∞∑
j=1

ν(Aj) = ν(C),

siis
µ(A) + µ(C \ A) = µ(C) = ν(C) = ν(A) + ν(C \ A)

Kuna eelnevalt tõestatu põhjal µ(C\A) ⩾ ν(C\A), siis järeldub siit, et µ(A) ⩽ ν(A).

(c). Olgu mõõt µ0 σ-lõplik ning olgu ν : σ(A) → [0,∞] mõõdu µ0 mingi jätk.
Teoreemi tõestuseks peame näitama, et ν = µ, s.t. ν(A) = µ(A) iga A ∈ σ(A) korral.

Olgu A ∈ σ(A). Mõõdu µ0 σ-lõplikkuse tõttu leiduvad hulgad Aj ∈ A, j =
1, 2, . . . , selliselt, et µ0(Aj) < ∞, j = 1, 2, . . . , ja X =

⋃∞
j=1Aj. Üldisust kitsenda-

mata võime eeldada, et Ai ∩ Aj = ∅, kui i ̸= j (s.t. hulgad Aj ∈ A, j = 1, 2, . . . , on
paarikaupa lõikumatud). Seega

ν(A) = ν(A ∩X) = ν

(
A ∩

∞⋃
j=1

Aj

)
= ν

(
∞⋃
j=1

A ∩ Aj

)
=

∞∑
j=1

ν(A ∩ Aj)

=
∞∑
j=1

µ(A ∩ Aj) = µ

(
∞⋃
j=1

A ∩ Aj

)
= µ

(
A ∩

∞⋃
j=1

Aj

)
= µ(A ∩X) = µ(A),

sest iga j ∈ N korral µ(A ∩ Aj) ⩽ µ(Aj) = µ0(Aj) < ∞ ning järelikult väite (b)
põhjal ν(A ∩ Aj) = µ(A ∩ Aj), j = 1, 2, . . . .

Lause 4.5. Olgu (X,A, µ0) eelmõõduga ruum ning olgu µ1 = µ∗
0|σ(A) ja µ2 = µ∗

0|M(µ∗
0)

(s.t. mõõdud µ1 : σ(A) → [0,∞] ja µ2 : M(µ∗
0) → [0,∞] on (eel)mõõdu µ0 Cara-

théodory�Hahni jätkud). Siis µ∗
0 = µ∗

1 = µ∗
2.

Olgu (X,A, µ0) eelmõõduga ruum. Carathéodory teoreemist 4.2 ja teoreemist 4.3
teame, et

(
X,M(µ∗

0), µ
∗
0|M(µ∗

0)

)
on mõõduga ruum, kusjuures µ∗

0|M(µ∗
0)
on (eel)mõõdu

µ0 jätk. Lausest 4.5 järeldub, et Carathéodory�Hahni skeem ei võimalda mõõtu
µ∗
0|M(µ∗

0)
(ning seega ka (eel)mõõtu µ0) σ-algebrastM(µ∗

0) enam �kaugemale� jätkata.
Lause 4.5 ning ka järgneva teoreemi 4.6 tõestusel on abiks, kui eelnevalt lahen-

dada

Ülesanne 4.4. Olgu (X,A, µ) mõõduga ruum. Tõestada, et

(a) iga E ∈ P(X) korral

µ∗(E) = inf
{
µ(A) : A ∈ A, A ⊃ E

}
= min

{
µ(A) : A ∈ A, A ⊃ E

}
;

(b) hulk N ∈ P(X) on µ-hüljatav parajasti siis, kui µ∗(N) = 0.

Lause 4.5 tõestus.
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Ülesanne 4.5. Tõestada lause 4.5.

Näpunäide. Olgu E ∈ P(X). Lause tõestuseks piisab näidata, et µ∗
0(E) ⩾ µ∗

1(E) ⩾ µ∗
2(E) ⩾

µ∗
0(E). Siin esimese kahe võrratuse tõestuseks kasutada välismõõtude µ∗

0, µ
∗
1 ja µ∗

2 de�nitsioone
ning asjaolu, et µ0 = µ∗

0|A, µ1 = µ∗
0|σ(A) ja µ2 = µ∗

0|M(µ∗
0)
. Võrratuse µ∗

2(E) ⩾ µ∗
0(E) tõestuseks

kasutada ülesannet 4.4, (a).

Olgu µ0 mõõt algebral A ⊂ P(X). Carathéodory teoreemist ja teoreemist 4.3 jä-
reldub, et mõõt µ0 on jätkatav mitte ainult algebra A poolt genereeritud σ-algebrale
σ(A), vaid ka µ∗

0-mõõtuvate hulkade σ-algebrale M(µ∗
0), mis sisaldab σ-algebrat

σ(A). Tekib loomulik küsimus: milline on σ-algebrate σ(A) ja M(µ∗
0) vahekord? Me

teame, et alati σ(A) ⊂ M(µ∗
0), kuid kas on võimalik ka nende σ-algebrate võrdsus?

Osalise vastuse sellele küsimusele annab järgnev teoreem.

Teoreem 4.6. Olgu µ σ-lõplik mõõt σ-algebral A ⊂ P(X). Siis mõõduga ruum
(X,M(µ∗), µ∗|M(µ∗)) on mõõduga ruumi (X,A, µ) täield.

Teoreemist 4.6 järeldub muuhulgas, et kui σ-lõplik mõõduga ruum (X,A, µ) on
täielik, siis M(µ∗) = A ning seega ei võimalda Carathéodory�Hahni skeem mõõtu µ
σ-algebralt A enam �kaugemale� jätkata.

Teoreemi 4.6 tõestus.
∗Ülesanne 4.6. Tõestada teoreem 4.6.

Näpunäide. Mugav on kasutada ülesannet 4.4.

Järeldus 4.7. Olgu (X,A, µ0) σ-lõplik eelmõõduga ruum. Siis mõõduga ruum
(X,M(µ∗

0), µ
∗
0|M(µ∗

0)
) on mõõduga ruumi (X, σ(A), µ∗

0|σ(A)) täield.

Tõestus. Olgu µ : σ(A) → [0,∞] eelmõõdu µ0 Carathéodory�Hahni jätk. Kuna µ0

on σ-lõplik, siis ka µ on σ-lõplik, seega teoreemi 4.6 põhjal on (X,M(µ∗), µ∗|M(µ∗))
mõõduga ruumi (X, σ(A), µ) täield. Kuna µ = µ∗

0|σ(A) ning lause 4.5 põhjal µ∗ = µ∗
0,

siis (X,M(µ∗
0), µ

∗
0|M(µ∗

0)
) on ruumi (X, σ(A), µ∗

0|σ(A)) täield.

Ülesanne 4.7. Olgu X ̸= ∅ mingi hulk, olgu λ : P(X) → [0,∞] välismõõt ning olgu kogum
E ⊂ P(X) selline, et iga E ∈ P(X) korral

λ(E) = inf


∞∑
j=1

λ(Ej) : Ej ∈ E , j = 1, 2, . . . ,

∞⋃
j=1

Ej ⊃ E


Tõestada, et hulk A ⊂ X on λ-mõõtuv parajasti siis, kui iga E ∈ E korral

λ(E ∩A) + λ(E ∩Ac) = λ(E).

Ülesanne 4.8. Olgu A ⊂ P(X) algebra ning olgu µ lõplik mõõt σ-algebral σ(A). Tõestada, et kui
E ∈ σ(A), siis iga reaalarvu ε > 0 korral leidub hulk A ∈ A nii, et µ(A△E) < ε.
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5.1. Boreli mõõdud ruumis R. Lebesgue�Stieltjesi14 mõõdud

De�nitsioon 5.1. Boreli mõõtudeks topoloogilises ruumisX nimetatakse mõõtusid,
mille määramispiirkonnaks on selle ruumi Boreli σ-algebra BX .

Tähistame (nagu ka paragrahvides 2 ja 3)

H =
{
∅, [a, b), [c,∞), (−∞, d), (−∞,∞) : a, b, c, d ∈ R, a < b

}
⊂ P(R)

ning

B =

{
n⋃

j=1

Aj : n ∈ N, A1, . . . , An ∈ H, Ai ∩ Aj = ∅, i ̸= j

}
⊂ P(R),

s.t. B on kogumi H paarikaupa lõikumatute hulkade lõplike ühendite kogum. Näi-
tes 2.2 tõestasime, et B on algebra.

Olgu F : R → R mittekahanev vasakult pidev funktsioon. Tähistame

F (∞) = lim
x→∞

F (x) ja F (−∞) = lim
x→−∞

F (x)

(märgime, et funktsiooni F monotoonsuse tõttu need piirväärtused eksisteerivad).
De�neerime hulgafunktsiooni µ0

F : H → [0,∞] seostega

µ0
F (∅) = 0,

µ0
F

(
[a, b)

)
= F (b)− F (a), a, b ∈ R, a < b,

µ0
F

(
[c,∞)

)
= F (∞)− F (c), c ∈ R,

µ0
F

(
(−∞, d)

)
= F (d)− F (−∞), d ∈ R,

µ0
F

(
(−∞,∞)

)
= F (∞)− F (−∞)

ning jätkame selle hulgafunktsiooni algebrale B, de�neerides A ∈ B korral

µ0
F (A) =

n∑
j=1

µ0
F (Aj),

kus paarikaupa lõikumatud hulgad A1, . . . , An ∈ H (n ∈ N) on sellised, et A =⋃n
j=1Aj.
Näites 3.3 veendusime, et µ0

F on mõõt (selles näites kirjutasime lihtsuse mõttes
µ0
F asemel µF ).

Ülesanne 5.1. Tõestada, et mõõt µ0
F on σ-lõplik.

14Thomas Jan Stieltjes (1856�1894) � hollandi matemaatik (viimased kümme aastat oma elust
tegutses Prantsusmaal).
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Kuna mõõt µ0
F on σ-lõplik, siis Hahni teoreemi põhjal on tema Carathéodory�Hahni

jätk µF := µ0
F
∗|σ(B) tema ainus jätk σ-algebrale σ(B) = BR. Mõõtu µF : BR → [0,∞]

nimetatame edaspidi funktsioonile F vastavaks Boreli mõõduks ruumis R.
Täpse ülevaate mittekahanevate vasakult pidevate funktsioonide F : R → R ja

ruumi R Boreli mõõtude vahekorrast annab

Teoreem 5.1. (a) Olgu F : R → R mittekahanev vasakult pidev funktsioon. Siis
leidub parajasti üks mõõt µ : BR → [0,∞] selliselt, et mis tahes a, b ∈ R, a < b,
korral

µ
(
[a, b)

)
= F (b)− F (a).

Seejuures µ = µF . Kui G : R → R on mingi selline mittekahanev vasakult
pidev funktsioon, et µG = µF , siis leidub konstant C ∈ R nii, et

G(x) = F (x) + C, x ∈ R.

(b) Olgu mõõt µ : BR → [0,∞] selline, et iga tõkestatud hulga A ∈ BR korral
µ(A) <∞. Siis on funktsioon

F (x) =


µ
(
[0, x)

)
, kui x > 0;

0, kui x = 0;

−µ
(
[x, 0)

)
, kui x < 0,

mittekahanev ja vasakult pidev, kusjuures µ = µF .

Tõestus.

Ülesanne 5.2. Tõestada teoreem 5.1.

Carathéodory teoreemi kohaselt on µ0
F
∗|M(µ0

F
∗
) (s.t. mõõduga µ0

F assotsieeruva
välismõõdu µ0

F
∗ ahend ruumi R µ0

F
∗-mõõtuvate hulkade σ-algebrale M(µ0

F
∗
)) täie-

lik mõõt, s.t.
(
R,M(µ0

F
∗
), µ0

F
∗|M(µ0

F
∗
)

)
on täielik mõõduga ruum.

Tähistame

MF = M(µ0
F
∗
) ja µF = µ0

F
∗|M(µ0

F
∗
) = µ0

F
∗|MF

.

σ-algebrat MF nimetatakse (funktsioonile F vastavaks) Lebesgue�Stieltjesi σ-algeb-
raks ning selle σ-algebra hulki (funktsioonile F vastavateks) Lebesgue�Stieltjesi hul-
kadeks. Mõõtu µF nimetatakse (funktsioonile F vastavaks) Lebesgue�Stieltjesi mõõ-
duks.

Kuna mõõt µ0
F on σ-lõplik, siis järelduse 4.7 põhjal on mõõduga ruum (R,MF , µF )

mõõduga ruumi (R,BR, µF ) täield.

Saab näidata, et ruum (R,BR, µF ) pole kunagi täielik; niisiis alati BR ⫋ MF (vt.
märkust 5.7).

Kuna mõõt µF on Boreli mõõdu µF jätk ning seejuures ainus jätk σ-algebraleMF ,
siis kirjutame edaspidises lihtsuse mõttes µF asemel sageli ka µF .
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Kui F (x) = x, x ∈ R, siis tähistatakse Lebesgue�Stieltjesi mõõtu µF (ning
ka Boreli mõõtu µF = µF |BR) sümboliga m ning σ-algebrat MF sümboliga L. σ-
algebrat L nimetatakse (ruumi R) Lebesgue'i σ-algebraks ning selle σ-algebra hulki
(ruumi R) Lebesgue'i hulkadeks. Mõõtu m nimetatakse Lebesgue'i mõõduks (ruu-
mis R).

Märkus 5.1. Teoreemist 5.1, (a), järeldub, et Lebesgue'i mõõt m on ainus ruumi R
Boreli σ-algebral määratud mõõt, mis rahuldab mis tahes a, b ∈ R, a < b, korral
tingimust m

(
[a, b)

)
= b − a. Lebesgue'i mõõt on ka ainus Lebesgue'i σ-algebral

määratud mõõt, mis seda tingimust rahuldab (sest Lebesgue'i σ-algebra on Boreli
σ-algebra täield mõõdu m suhtes).

Ülesanne 5.3. Olgu a, b, c, d ∈ R, a < b. Tõestada, et

(a) {a} ∈ BR, kusjuuresm
(
{a}
)
= 0 (s.t. ühepunktiline hulk ruumis R on Boreli mõttes mõõtuv,

kusjuures tema Lebesgue'i mõõt on null);

(b) m
(
[a, b)

)
= m

(
(a, b)

)
= m

(
(a, b]

)
= m

(
[a, b]

)
= b− a;

(c) m
(
[c,∞)

)
= m

(
(c,∞)

)
= m

(
(−∞, d)

)
= m

(
(−∞, d]

)
= m

(
(−∞,−∞)

)
= ∞;

(d) kui hulk A ∈ P(R) on ülimalt loenduv, siis A ∈ BR, kusjuures m(A) = 0.

Vahetult Lebesgue�Stieltjesi mõõdu de�nitsioonist järeldub, et iga E ∈ P(R)
korral

µ0
F
∗
(E) = inf

{
∞∑
j=1

µ0
F (Bj) : Bj ∈ B, j = 1, 2, . . . ,

∞⋃
j=1

Bj ⊃ E

}

= inf

{
∞∑
k=1

µ0
F (Ak) : Ak ∈ H, k = 1, 2, . . . ,

∞⋃
k=1

Ak ⊃ E

}

= inf

{
∞∑
j=1

µ0
F

(
[aj, bj)

)
: aj, bj ∈ R, aj < bj, j = 1, 2, . . . ,

∞⋃
j=1

[aj, bj) ⊃ E

}

= inf

{
∞∑
j=1

µF

(
[aj, bj)

)
: aj, bj ∈ R, aj < bj, j = 1, 2, . . . ,

∞⋃
j=1

[aj, bj) ⊃ E

}
.

Lause 5.2. Olgu F : R → R mittekahanev vasakult pidev funktsioon. Siis iga E ∈
P(R) korral

µ0
F
∗
(E) = inf

{
∞∑
j=1

µF

(
(aj, bj)

)
: aj, bj ∈ R, aj < bj, j = 1, 2, . . . ,

∞⋃
j=1

(aj, bj) ⊃ E

}
=: νF (E).

Muuhulgas, iga E ∈ MF korral

µF (E) = inf

{
∞∑
j=1

µF

(
(aj, bj)

)
: aj, bj ∈ R, aj < bj, j = 1, 2, . . . ,

∞⋃
j=1

(aj, bj) ⊃ E

}
.

(5.1)
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Tõestus. Olgu E ∈ P(X). Lause tõestuseks piisab näidata, et µ0
F
∗
(E) = νF (E).

Kui tõkestatud vahemikud (aj, bj), j = 1, 2, . . . , on sellised, et
⋃∞

j=1(aj, bj) ⊃ E,
siis valides iga j ∈ N korral paarikaupa lõikumatud poollõigud [aij, b

i
j), i = 1, 2, . . . ,

nii, et (aj, bj) =
⋃∞

i=1[a
i
j, b

i
j) (sellised poollõigud ilmselt leiduvad), kehtib sisalduvus⋃∞

j=1

⋃∞
i=1[a

i
j, b

i
j) ⊃ E, seega teoreemile eelneva võrdusteahela põhjal

µ0
F
∗
(E) ⩽

∞∑
j,i=1

µF

(
[aij, b

i
j)
)
=

∞∑
j=1

∞∑
i=1

µF

(
[aij, b

i
j)
)
=

∞∑
j=1

µF

(
(aj, bj)

)
;

järelikult µ0
F
∗
(E) ⩽ νF (E).

Lause tõestuseks jääb näidata, et νF (E) ⩽ µ0
F
∗
(E), milleks, �kseerides vabalt

ε > 0, piisab näidata, et νF (E) ⩽ µ0
F
∗
(E) + 2ε. Teoreemile eelneva võrdusteahela

põhjal leiduvad poollõigud [aj, bj), j = 1, 2, . . . , nii, et

∞⋃
j=1

[aj, bj) ⊃ E ja
∞∑
j=1

µF

(
[aj, bj)

)
⩽ µ0

F
∗
(E) + ε.

Funktsiooni F vasakult pidevuse tõttu leidub iga j ∈ N korral cj < aj nii, et

F (cj) > F (aj)−
ε

2j
.

Nüüd
⋃∞

j=1(cj, bj) ⊃
⋃∞

j=1[aj, bj) ⊃ E ning järelikult

νF (E) ⩽
∞∑
j=1

µF

(
(cj, bj)

)
⩽

∞∑
j=1

µF

(
[cj, bj)

)
=

∞∑
j=1

(
F (bj)− F (cj)

)
⩽

∞∑
j=1

(
F (bj)− F (aj) +

ε

2j

)
=

∞∑
j=1

µF

(
[aj, bj)

)
+

∞∑
j=1

ε

2j
⩽ µ0

F
∗
(E) + 2ε.

Erijuhul F (x) = x, x ∈ R, saame lausest 5.2, et iga E ∈ P(X) korral

µ0
F
∗
(E) = inf

{
∞∑
j=1

(bj − aj) : aj, bj ∈ R, aj < bj, j = 1, 2, . . . ,
∞⋃
j=1

(aj, bj) ⊃ E

}
(5.2)

ning, muuhulgas, iga E ∈ L korral (sümbolid L ja m tähistavad vastavalt ruumi R
Lebesgue'i σ-algebrat ja Lebesgue'i mõõtu ruumis R)

m(E) = inf

{
∞∑
j=1

(bj − aj) : aj, bj ∈ R, aj < bj, j = 1, 2, . . . ,
∞⋃
j=1

(aj, bj) ⊃ E

}
.

(5.3)
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5.2. Lebesgue�Stieltjesi mõõtude regulaarsus

Meenutame (vt. � 3.3), et kui X on topoloogiline ruum ning A ⊂ P(X) on algebra,
siis öeldakse, et mõõt µ : A → [0,∞] on regulaarne, kui iga hulga E ∈ A korral

µ(E)
(1)
= inf

{
µ(D) : hulga D ∈ A sisemus D◦ ⊃ E

}
(2)
= sup

{
µ(C) : hulga C ∈ A sulund C on kompaktne ja C ⊂ E

}
.

Kui kehtib võrdus (1), siis öeldakse et µ on hulgal E väljast regulaarne. Kui kehtib võrdus (2),
siis öeldakse et µ on hulgal E seest regulaarne. Kui µ on igal hulgal E ∈ A väljast regulaarne, siis
öeldakse, et µ on väljast regulaarne. Kui µ on igal hulgal E ∈ A seest regulaarne, siis öeldakse, et
µ on seest regulaarne.

Märkus 5.2. Kompaktne hulk K Hausdor� topoloogilises ruumis on kinnine; niisiis K = K
on Boreli hulk. Siit järeldub, et kui X on Hausdor� topoloogiline ruum ning algebra A ⊂ P(X)
sisaldab kõiki ruumi X Boreli hulki, (s.t. A ⊃ BX), siis mõõt µ : A → [0,∞] on regulaarne parajasti
siis, kui suvalise E ∈ A korral

µ(E) = inf
{
µ(U) : hulk U ⊂ X on lahtine ja U ⊃ E

}
= sup

{
µ(K) : hulk K ⊂ X on kompaktne ja K ⊂ E

}
.

Märgime, et iga meetriline ruum on Hausdor� topoloogiline ruum.

Teoreem 5.3. Olgu F : R → R mittekahanev vasakult pidev funktsioon. Lebesgue�
Stieltjesi mõõt µF on regulaarne.

Teoreem 5.3 järeldub vahetult järgnevast teoreemist.

Teoreem 5.4. Olgu X Hausdor� topoloogiline ruum ning olgu A ⊂ P(X) algebra.
Kui σ-lõplik mõõt µ0 : A → [0,∞] on regulaarne, siis ka tema Carathéodory�Hahni
jätk µ : M(µ∗

0) → [0,∞] on regulaarne.

Märkus 5.3. Kirjeldame alternatiivseid mooduseid mõõtude µF regulaarsuse tõestuseks.
(I) Mõõdu µF väljast regulaarsus järeldub lausest 5.2 (täpsemalt, valemist (5.1)); µF regulaar-

sus järeldub ülesandest 3.27.

Ülesanne 5.4. Järeldada lausest 5.2 (täpsemalt, valemist (5.1)), et mõõt µF on väljast regulaarne.
Järeldamaks ülesandest 3.27 mõõdu µF regulaarsust, veenduda, et

(a) meetriline ruum R on σ-kompaktne;

(b) mõõt µF on lõplik ruumi R kompaktsetel hulkadel.

(II) Käesoleva õpiku teoreemis V.2.4 tõestame, et kui lokaalselt kompaktse Hausdor� ruumi X
iga lahtine hulk on σ-kompaktne (s.t. esitub kompaktsete hulkade loenduva ühendina), siis iga
Boreli mõõt ruumis X, mis on lõplik kompaktsetel hulkadel, on regulaarne. (Topoloogilist ruumi
nimetatakse lokaalselt kompaktseks, kui tema igal punktil leidub kompaktne ümbrus.) Teoreemist
V.2.4 järeldub ahendi µF |BR regulaarsus. Mõõdu µF regulaarsus järeldub nüüd ülesandest 3.33
(sest µF on µF |BR täield).

Ülesanne 5.5. Veenduda, et

(a) meetriline ruum R on lokaalselt kompaktne;

(b) iga lahtine hulk ruumis R on σ-kompaktne.

Näpunäide. Väite (b) tõestuseks kasutada teoreemi 2.2 või järeldust 2.3.
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Teoreemi 5.4 tõestus. Olgu σ-lõplik mõõt µ0 : A → [0,∞] regulaarne. Veen-
dumaks, et mõõdu µ0 Carathéodory�Hahni jätk µ : M(µ∗

0) → [0,∞] on regulaar-
ne, peame näitama, et µ on nii seest kui ka väljast regulaarne. Fikseerime vabalt
E ∈ M(µ∗

0).
(a) Veendumaks, et µ on väljast regulaarne, peame näitama, et iga ε > 0 korral

leidub hulk D ∈ M(µ∗
0) nii, et

D◦ ⊃ E ja µ(D) ⩽ µ(E) + ε.

Fikseerime vabalt reaalarvu ε > 0. Carathéodory�Hahni jätku de�nitsiooni põhjal
leiduvad hulgad Aj ∈ A, j = 1, 2, . . . , selliselt, et

∞⋃
j=1

Aj ⊃ E ja
∞∑
j=1

µ0(Aj) ⩽ µ(E) +
ε

2
.

Mõõdu µ0 regulaarsuse tõttu leiduvad hulgad Dj ∈ A, j = 1, 2, . . . , selliselt, et

D◦
j ⊃ Aj ja µ0(Dj) ⩽ µ0(Aj) +

ε

2j+1
iga j ∈ N korral.

Tähistame D :=
⋃∞

j=1Dj ∈ M(µ∗
0), siis D

◦ ⊃
⋃∞

j=1D
◦
j ⊃

⋃∞
j=1Aj ⊃ E ning

µ(D) ⩽
∞∑
j=1

µ(Dj) =
∞∑
j=1

µ0(Dj) ⩽
∞∑
j=1

(
µ0(Aj) +

ε

2j+1

)
=

∞∑
j=1

µ0(Aj) +
∞∑
j=1

ε

2j+1
⩽ µ(E) +

ε

2
+
ε

2
= µ(E) + ε.

(b) Veendumaks, et mõõt µ on seest regulaarne, peame näitama, et leiduvad
hulgad Cj ∈ M(µ∗

0), j = 1, 2, . . . , selliselt, et

iga j ∈ N korral on sulund Cj kompaktne ja Cj ⊂ E ning µ(Cj) −−−→
j→∞

µ(E). (5.4)

Selleks piisab näidata, et

(•) kui A ∈ A, kusjuures µ(A) < ∞, siis iga ε > 0 korral leidub hulk C ∈ M(µ∗
0)

nii, et

sulund C on kompaktne ja C ⊂ E ∩ A ning µ(C) > µ(E ∩ A)− ε.

Tõepoolest, mõõdu µ0 σ-lõplikkuse tõttu leiduvad hulgad Aj ∈ A, j = 1, 2, . . . , nii,
et

µ(Aj) <∞ iga j ∈ N korral, A1 ⊂ A2 ⊂ · · · ja X =
∞⋃
j=1

Aj.

Kui kehtib väide (•), siis saame iga j ∈ N korral leida hulga Cj ∈ M(µ∗
0) nii, et

sulund Cj on kompaktne ja Cj ⊂ E ∩ Aj ning µ(Cj) > µ(E ∩ Aj)−
1

j
.

Aga nüüd kehtivad tingimused (5.4).



� 5. Boreli mõõdud ruumis R 49

Tõepoolest, kontrollimist vajab vaid, et µ(Cj) −−−→
j→∞

µ(E), aga see järeldub koonduvusest

µ(E∩Aj) −−−→
j→∞

µ(E). Viimase koonduvuse põhjenduseks märgime, et E =
⋃∞

j=1E∩Aj , kusjuures

E ∩A1 ⊂ E ∩A2 ⊂ · · · .

Tõestame nüüd väite (•). Olgu hulk A ∈ A selline, et µ0(A) < ∞, ning olgu
ε > 0. Mõõdu µ0 seest regulaarsuse tõttu leidub hulk K ∈ A selliselt, et

sulund K on kompaktne ja K ⊂ A ning µ(K) > µ(A)− ε

2
.

Tõestuse osa (a) põhjal teame, et µ on väljast regulaarne, järelikult leidub hulk D ∈
M(µ∗

0) selliselt, et

D◦ ⊃ A \ E ja µ(D) ⩽ µ(A \ E) + ε

2
.

Tähistame C := K \ D; siis C ⊂ K \ D◦ ja seega C ⊂ K \ D◦, järelikult C
on kompaktne (sest C on kompaktse hulga K kinnine alamhulk), C ⊂ K \ D◦ ⊂
A \ (A \ E) = E ∩ A ning

µ(C) ⩾ µ(K)− µ(D)

> µ(A)− ε

2
−
(
µ(A \ E) + ε

2

)
= µ(A)− µ(A \ E)− ε

2
− ε

2

= µ(E ∩ A)− ε,

nagu soovitud.

Teoreem 5.5. Olgu F : R → R mittekahanev vasakult pidev funktsioon ning olgu
E ∈ MF . Siis iga ε > 0 korral leiduvad lahtine hulk U ⊃ E ja kinnine hulk H ⊂ E
selliselt, et µF (U \H) < ε.

Tõestus.

Ülesanne 5.6. Tõestada teoreem 5.5.

Näpunäide. Kasutades mõõdu µF σ-lõplikkust ning regulaarsust, konstrueerida kõigepealt lahtine
hulk U ⊃ E selliselt, et µF (U \ E) < ε

2 . Analoogiliselt saab leida lahtise hulga V ⊃ Ec selliselt, et
µF (V \ Ec) < ε

2 . Võtta H = V c.

Järgnev lihtne järeldus teoreemist 5.5 kirjeldab Lebesgue�Stieltjesi σ-algebra
MF hulki.

Meenutame, et kui X on topoloogiline ruum, siis öeldakse, et

• hulk D ∈ P(X) on Gδ, kui ta on esitatav ruumi X lahtiste alamhulkade
loenduva ühisosana;

• hulk C ∈ P(X) on Fσ, kui ta on esitatav ruumi X kinniste alamhulkade
loenduva ühendina.
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Teoreem 5.6. Olgu F : R → R mittekahanev vasakult pidev funktsioon. Järgmised
väited on samaväärsed:

(i) E ∈ MF ;

(ii) E = G \N1, kus G ∈ MF on Gδ ja N1 ∈ MF on selline, et µF (N1) = 0;

(iii) E = H ∪N2, kus H ∈ MF on Fσ ja N2 ∈ MF on selline, et µF (N2) = 0.

Tõestus. Implikatsioonide (ii)⇒(i) ja (iii)⇒(i) kehtivus on ilmne, sest MF on σ-
algebra ning seega kinnine hulgateoreetilise vahe ja ühendi võtmise operatsioonide
suhtes.

(i)⇒(iii) ja (i)⇒(ii). Olgu E ∈ MF . Teoreemi 5.5 põhjal leiduvad iga j ∈ N korral
lahtine hulk Uj ⊃ E ja kinnine hulk Hj ⊂ E nii, et µF (Uj \Hj) <

1
j
. Tähistame

G :=
∞⋂
j=1

Uj, N1 := G \ E, H :=
∞⋃
j=1

Hj, N2 := E \H;

siis G on Gδ, E = G \ N1, H on Fσ, E = H ∪ N2; seega jääb järelduse tõestuseks
näidata, et µF (N1) = µF (N2) = 0.

Ülesanne 5.7. Tõestada, et µF (N1) = µF (N2) = 0.

Teoreem 5.7. Olgu F : R → R mittekahanev vasakult pidev funktsioon ning olgu
hulk E ∈ MF selline, et µF (E) < ∞. Siis iga ε > 0 korral leiduvad paarikaupa
lõikumatud tõkestatud vahemikud (a1, b1), . . . , (an, bn) (n ∈ N) selliselt, et

µF

(
E△

n⋃
j=1

(aj, bj)

)
< ε.

Meenutame, et hulkade A ja B sümmeetriline vahe A△B on de�neeritud seosega

A△B = (A \B) ∪ (B \ A) = (A ∪B) \ (A ∩B).

Teoreemi 5.7 tõestus.

Ülesanne 5.8. Tõestada teoreem 5.7.

Näpunäide. Kasutada lauset 5.2 (täpsemalt, valemit (5.1)).

5.3. Lebesgue'i hulga nihke ja kordse Lebesgue'i mõõt.
Lebesgue'i mõttes mittemõõtuva hulga olemasolu

Olgu E ⊂ R ja r ∈ R. Meenutame, et hulga E nihe E+r ja kordne rE on de�neeritud
vastavalt seostega

E + r = {x+ r : x ∈ E} ja rE = {rx : x ∈ E}.
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Ülesanne 5.9. Tõestada, etm-hüljatava hulga nihe ja kordne onm-hüljatavad, s.t., kui E ∈ N (m)
ja r ∈ R, siis ka E + r, rE ∈ N (m).

Näpunäide. Kasutada fakti, et (ülesande 4.4, (b), ja teoreemi 4.5 põhjal) E ∈ N (m) parajasti
siis, kui µ0

F
∗
(E) = 0, kus F (x) = x, x ∈ R, ning võrdust (5.2).

Teoreem 5.8. Olgu E ∈ L ja r ∈ R. Siis

(a) E + r ∈ L, kusjuures m(E + r) = m(E);

(b) rE ∈ L, kusjuures m(rE) = |r|m(E).

Tõestus.

Ülesanne 5.10. Tõestada teoreem 5.8.

Näpunäide. Sisalduvuste E + r ∈ L ning rE ∈ L tõestuseks kasutada asjaolu, et L on Boreli
σ-algebra BR täield Lebesgue'i mõõdum suhtes, ning fakte, et ruumis R Boreli hulga nihe ja kordne
on Boreli hulgad ning m-hüljatava hulga nihe ja kordne on m-hüljatavad (vt. ülesandeid 2.15 ning
5.9).

Võrduste m(E + r) = m(E) ja m(rE) = |r|m(E) tõestamisel kasutada võrdust (5.3).

Kuna Lebesgue'i mõõt m on teoreemi 5.8 põhjal nihke suhtes invariantne ning
m
(
[0, 1)

)
= 1, siis järeldub teoreemist 1.1 Lebesgue'i mõttes mittemõõtuva hulga

olemasolu.

Järeldus 5.9. Eksisteerib Lebesgue'i mõttes mittemõõtuv hulk, s.t. L ⫋ P(R).

Ülesanne 5.11. Tõestada, et kui hulk E ∈ P(R) omab sisepunkte, s.t. E◦ ̸= ∅, siis hulk E sisaldab
mingi Lebesgue'i mõttes mittemõõtuva hulga.

Näpunäide. Kõigepealt näidata, et eksisteerib poollõik [a, b) (a, b ∈ R, a < b), mis sisaldab mingi
Lebesgue'i mõttes mittemõõtuva hulga, ning seejärel rakendada teoreemi 5.8.

Kehtib ülesande 5.11 väitest üldisem tulemus.

Lause 5.10. Olgu hulk A ∈ L selline, et m(A) > 0. Siis hulk A sisaldab mingi
Lebesgue'i mõttes mittemõõtuva hulga.

Lause 5.10 tõestuse skeem. Üldisust kitsendamata võimne eeldada, et mingi k ∈ Z korral
A ⊂ [k, k+1) (põhjendada!) ning, et, veelgi enam, A ⊂ [0, 1) (põhjendada!). Teoreemi 1.1 tõestuse
põhjal võib eeldada, et A ⊂ Nq mingi q ∈ Q∩ [0, 1) korral (põhjendada!), ning et A on kompaktne
(sest Lebesgue'i mõõdu regulaarsuse tõttu sisaldab A kompaktse hulga, mille Lebesgue'i mõõt on
> 0).

Lause tõestuseks piisab nüüd näidata, et

(•) leidub δ > 0 nii, et (−δ, δ) ⊂ A−A,

sest sel juhul ka (−δ, δ) ⊂ Nq−Nq, mis on võimatu (sest ainus hulgas Nq−Nq sisalduv ratsionaalarv
on null (põhjendada!)).

Väite (•) tõestuseks paneme tähele, et tingimus (−δ, δ) ⊂ A−A on samaväärne tingimusega

|x| < δ ⇒ (A+ x) ∩A ̸= ∅ (5.5)

(põhjendada!). Nüüd piisab väite (•) tõestuseks tõestada järgnev lemma.



52 I. Mõõduga ruumid

Lemma 5.11. Olgu X meetriline ruum ning olgu kompaktne hulk A ⊂ X ja lahtine hulk

U ⊂ X sellised, et A ⊂ U . Siis leidub δ > 0 nii, et

|x| < δ ⇒ A+ x ⊂ U. (5.6)

Tõepoolest, oletame, et lemma on tõestatud. Lebesgue'i mõõdu regulaarsuse tõttu leidub lahtine
hulk U ⊃ A nii, et m(U) < 2m(A). Olgu δ > 0 selline, et kehtib (5.6). Oletame vastuväiteliselt, et
väide (•) ei kehti. Siis ka (5.5) ei kehti, seega mingi x ∈ (−δ, δ) korral (A+ x) ∩A = ∅. Aga nüüd

2m(A) > m(U) ⩾ m
(
A ∪ (A+ x)

)
= m(A) +m(A+ x) = 2m(A),

vastuolu.

Ülesanne 5.12. Tõestada lemma 5.11.

5.4. Täiendavaid märkusi

Märkus 5.4. Meie de�neerisime oma käsitluses Lebesgue�Stieltjesi mõõdud läh-
tudes vasakult pidevatest mittekahanevatest funktsioonidest: kui F : R → R on
vasakult pidev mittekahanev funktsioon, siis me de�neerisime (üheselt määratud)
mõõdu µ0

F poolalgebra

H =
{
∅, [a, b), [c,∞), (−∞, d), (−∞,∞) : a, b, c, d ∈ R, a < b

}
⊂ P(R)

paarikaupa lõikumatute hulkade lõplike ühendite algebral, mis rahuldab tingimust
µ0
F

(
[a, b)

)
= F (b)− F (a), a, b ∈ R, a < b; Lebesgue�Stieltjesi mõõdud de�neerisime

kui selliste mõõtude µ0
F Carathéodory�Hahni jätkud (µ0

F
∗-mõõtuvate hulkade σ-

algebrale).
Alternatiivne skeem Lebesgue�Stieltjesi mõõtude de�neerimiseks lähtub pare-

malt pidevatest mittekahanevatest funktsioonidest: kui F : R → R on paremalt pi-
dev mittekahanev funktsioon, siis de�neeritakse (üheselt määratud) mõõt ν0F poolal-
gebra

H′ =
{
∅, (a, b], (c,∞), (−∞, d], (−∞,∞) : a, b, c, d ∈ R, a < b

}
⊂ P(R)

paarikaupa lõikumatute hulkade lõplike ühendite algebral, mis rahuldab tingimust
ν0F
(
(a, b]

)
= F (b) − F (a), a, b ∈ R, a < b; Lebesgue�Stieltjesi mõõdud de�neeri-

takse kui selliste mõõtude ν0F Carathéodory�Hahni jätkud (ν0F
∗-mõõtuvate hulkade

σ-algebrale).
Märgime, et kumbki skeem annab tulemuseks ühe ja sama Lebesgue�Stieltjesi

mõõtude klassi.

Märkus 5.5. Ajalooliselt de�neeris Lebesgue välismõõdu m∗ : P(R) → [0,∞] seo-
sega

m∗(E) = inf

{
∞∑
j=1

(bj − aj) : aj, bj ∈ R, aj < bj, j = 1, 2, . . . ,
∞⋃
j=1

(aj, bj) ⊃ E

}
, E ∈ P(R),
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(märgime, et tähistus m∗ mingeid vastuolusid endaga kaasa ei too, sest lause 4.5 ja
valemi (5.2) põhjal langeb Lebesgue'i poolt de�neeritud välismõõt m∗ kokku Lebes-
gue'i mõõduga m assotsieeruva välismõõduga m∗) ja luges hulga A ⊂ R mõõtuvaks,
kui iga tõkestatud vahemiku (a, b) ⊂ R korral

m∗
(
(a, b) ∩ A

)
+m∗

(
(a, b) \ A

)
= m∗

(
(a, b)

)
= b− a.

Meie lähtusime oma käsitluses Carathéodory poolt hiljem kasutusele võetud
mõistest �antud välismõõdu suhtes mõõtuv hulk�: kui X ̸= 0 on mingi hulk ja
λ : P(X) → [0,∞] on välismõõt, siis hulk A ⊂ X on λ-mõõtuv, kui iga E ⊂ X
korral

λ(E ∩ A) + λ(E ∩ Ac) = λ(E).

Lihtne on veenduda, et hulk A ⊂ R on Lebesgue'i de�nitsiooni järgi mõõtuv para-
jasti siis, kui ta on meie käsitluse järgi Lebesgue'i mõttes mõõtuv, s.t. A ∈ L, s.t. A
on m∗-mõõtuv (võrdus m∗ = µ0

F
∗, kus F (x) = x, x ∈ R, järeldub lausest 4.5): kuna

m∗((a, b)) = b − a, siis järeldub nende kahe mõõtuvuse de�nitsiooni samaväärsus
ülesandest 4.7.

Ülesanne 4.7. Olgu X ̸= ∅ mingi hulk, olgu λ : P(X) → [0,∞] välismõõt ning olgu kogum
E ⊂ P(X) selline, et iga E ∈ P(X) korral

λ(E) = inf


∞∑
j=1

λ(Ej) : Ej ∈ E , j = 1, 2, . . . ,

∞⋃
j=1

Ej ⊃ E

 .

Tõestada, et hulk A ⊂ X on λ-mõõtuv parajasti siis, kui iga E ∈ E korral

λ(E ∩A) + λ(E ∩Ac) = λ(E).

Märkus 5.6. Ülesandes 5.3 veendusime, et ruumi R iga loenduva alamhulga Lebes-
gue'i mõõt on null. Tekib loomulik küsimus: kas leidub ruumi R alamhulki, mille
Lebesgue'i mõõt on null ning mille võimsus ületab loenduva hulga võimsuse? Vastus
sellele küsimusele on jaatav, näide sellisest hulgast on Cantori15 hulk.

Näide 5.1. Tähistame

C1 = [0, 1],

C2 = [0, 1
3
] ∪ [2

3
, 1],

C3 = [0, 1
9
] ∪ [2

9
, 3
9
] ∪ [6

9
, 7
9
] ∪ [8

9
, 1],

. . .

jne. (Piltlikult väljendudes: kui on antud hulk Cj (j ∈ N), siis jagame kõik sel-
le hulga lõigud kolmeks pikkuselt võrdseks osaks; hulk Cj+1 saadakse hulga Cj

igast lõigust keskmise vahemiku väljajätmise tagajärjel.) Tähistame C :=
⋂∞

j=1Cj.
Hulka C nimetatakse Cantori hulgaks. Saab näidata, et

15Georg Ferdinand Ludwig Philipp Cantor (1845�1918) � saksa matemaatik (sündis Venemaal
Peterburis, kus elas kuni 11. eluaastani).
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• card(C) = c (s.t. hulga C võimsus on kontiinuumi võimsus);

• m(C) = 0 (s.t. Cantori hulga Lebesgue'i mõõt on null).

Märkus 5.7. Saab näidata, et iga vasakult pideva mittekahaneva funktsiooni F : R →
R korral BR ⫋ MF . Esitame selle väite tõestuse skeemi.

Lähtuvalt vasakult pidevast mittekahanevast funktsioonist F : R → R konst-
rueeritakse hulk CF ⊂ R nii, et

• card(CF ) = c (s.t. hulga CF võimsus on kontiinuumi võimsus);

• µF (CF ) = 0.

(Hulk CF on Cantori hulga modi�katsioon, tema konstrueerimisel lähtutakse samu-
ti teatavast lõigust, mida siis hakatakse teatava eeskirja järgi kolmeks jagama ja
�keskmisi kolmandikke välja viskama�.) Kuna µF on täielik mõõt, siis funktsioonile
F vastav Lebesgue�Stieltjesi σ-algebra MF sisaldab kõik hulga CF alamhulgad, s.t.
P(CF ) ⊂ MF . Seega card(MF ) = card

(
P(R)

)
, sest

card
(
P(R)

)
= card

(
P(CF )

)
⩽ card(MF ) ⩽ card

(
P(R)

)
.

Teiselt poolt, saab näidata, et card(BR) = c. Niisiis,

card(BR) = c = card(R) < card
(
P(R)

)
= card(MF ),

järelikult MF \ BR ̸= ∅.

Märkus 5.8. Ruumi R alamhulk võib olla �topoloogiliselt suur�, kuid �mõõduteoree-
tiliselt väike�, samuti ka vastupidi � �topoloogiliselt väike�, kuid �mõõduteoreetiliselt
suur�. Seda asjaolu illustreerib järgnev näide.

Näide 5.2. Iga reaalarvu ε > 0 korral leidub lahtine hulk E ⊂ [0, 1], mis on selles
lõigus kõikjal tihe ja m(E) < ε. Sellisel juhul hulk F = [0, 1] \ E on eikusagil tihe
(s.t. tal ei ole sisepunkte) ning m(F ) > 1− ε.

Tõepoolest, olgu ε > 0. Tähistame E0 = Q∩ (0, 1); siis E0 on loenduv hulk ning
seega me võime ta esitada kujul E0 = {ej : j ∈ N}. Tähistame iga j ∈ N korral
Ej = (ej − ε

2j+1 , ej +
ε

2j+1 ) ∩ (0, 1) ning E =
⋃∞

j=1Ej. Siis hulk E ⊂ [0, 1] on lahtine
ruumis R, ta on kõikjal tihe lõigus [0, 1] ja

m(E) <
∞∑
j=1

m
(
(ej −

ε

2j+1
, ej +

ε

2j+1
)
)
=

∞∑
j=1

ε

2j
= ε.

Ülesanne 5.13. Tõestada, et hulk F = [0, 1] \E on eikusagil tihe (s.t. tal ei ole sisepunkte) ning
m(F ) > 1− ε.

Märkus 5.9. Lebesgue'i mõttes mittemõõtuva hulga olemasolu (järelduse 5.9) tões-
tus tugineb valikuaksioomile (vt. teoreemi 1.1 tõestust). R. M. Solovay tõestas aas-
tal 1970, et (populaarselt väljendudes) ilma valikuaksioomi kasutamata pole Lebes-
gue'i mõttes mittemõõtuva hulga olemasolu võimalik tõestada (selle väite täpne mate-
maatiline formuleering nõuaks süvenemist aksiomaatilise hulgateooria tehnilistesse
nüanssidesse; seepärast me jätame ta siinkohal ära toomata).
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Märkus 5.10. Lebesgue'i mõõtu saab jätkata nihke suhtes invariantseks mõõduks
teatavale ruumi R alamhulkade σ-algebrale A ⫌ L. (Teoreemist 1.1 järeldub siiski,
et see σ-algebra A ⫋ P(R).)

Märkus 5.11. Lebesgue'i mõõtu saab jätkata ruumi R kõigi alamhulkade kogumil
määratud nihke suhtes invariantseks aditiivseks hulgafunktsiooniks. Teisisõnu, lei-
dub nihke suhtes invariantne aditiivne hulgafunktsioon µ : P(R) → [0,∞] nii, et
µ|L = m.
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II peatükk.

Lebesgue'i integraal

Kõikjal selles ja järgnevates peatükkides eeldame vaikimisi, et mõõtuva ruumi
(erijuhul mõõduga ruumi) aluseks olev hulk on mittetühi. Selline kokkulepe
võimaldab meil jätta vaatluse alt välja tühja funktsiooni (mille määramispiirkond
on tühi hulk ning mis on ühtlasi ainus tühjal hulgal määratud funktsioon), aidates
seega oluliselt säästa meie kõigi vaimset tervist.

� 1. Mõõtuvad funktsioonid

1.1. Mõõtuva funktsiooni mõiste. Lihtsamad
mõõtuvuskriteeriumid

De�nitsioon 1.1. Olgu (X,A) ja (Y,B) mõõtuvad ruumid.
Öeldakse, et funktsioon f : X → Y on (A,B)-mõõtuv, kui

f−1[B] ∈ A iga hulga B ∈ B korral.

(Meenutame, et f−1[B] = {x ∈ X : f(x) ∈ B}.)
Kui σ-algebrate A ja B roll on kontekstist selge, siis nimetatakse (A,B)-mõõtu-

vaid funktsioone ka lihtsalt mõõtuvateks funktsioonideks.

Ülesanne 1.1. Olgu (X,A), (Y,B) ja (Z,C) mõõtuvad ruumid. Tõestada, et kui funktsioon
f : X → Y on (A,B)-mõõtuv ning funktsioon g : Y → Z on (B,C)-mõõtuv, siis funktsioonide
f ja g kompositsioon gf : X → Z on (A,C)-mõõtuv.

Kontrollimaks, kas etteantud funktsioon f : X → Y on mõõtuv, tuleb de�ni-
tsiooni kohaselt testida, kas iga hulga B ∈ B originaal funktsiooni f suhtes kuulub
σ-algebrasse A. Järgmine teoreem näitab, et sellisel testimisel võib piirduda ka väik-
sema kogumiga kui B.

Teoreem 1.1. Olgu (X,A) ja (Y,B) mõõtuvad ruumid ning olgu kogum E ⊂ P(Y )
selline, et σ(E) = B (s.t. σ-algebra B on genereeritud kogumi E poolt). Järgmised
väited on samaväärsed:

(i) funktsioon f : X → Y on (A,B)-mõõtuv;

(ii) f−1[B] ∈ A iga B ∈ E korral.

57
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Tõestus. (i)⇒(ii) on ilmne, sest E ⊂ σ(E) = B.

(ii)⇒(i). Kehtigu tingimus (ii). Tähistame

D =
{
B ∈ B : f−1[B] ∈ A

}
.

Teoreemi tõestuseks piisab veenduda, et B ⊂ D. Selleks paneme kõigepealt tähele,
et D on σ-algebra (vt. ülesannet I.2.11, [B], (a)). Aga nüüd B = σ(E) ⊂ σ(D) = D
(sest tingimuse (ii) põhjal E ⊂ D).

De�nitsioon 1.2. Olgu X ja Y topoloogilised ruumid.
Öeldakse, et funktsioon f : X → Y on Boreli mõttes mõõtuv, kui ta on (BX ,BY )-

mõõtuv. (Meenutame, et sümbol BX tähistab ruumi X Boreli σ-algebrat.)

Teoreemist 1.1 järeldub

Teoreem 1.2. Olgu X ja Y topoloogilised ruumid. Iga pidev funktsioon f : X → Y
on Boreli mõttes mõõtuv.

Tõestus. Olgu funktsioon f : X → Y pidev. Tähistame

τX = {A ⊂ X : A on lahtine hulk} ja τY = {B ⊂ Y : B on lahtine hulk}.

Kuna funktsioon on pidev parajasti siis, kui kõigi lahtiste hulkade originaalid tema
suhtes on lahtised, siis

f−1[B] ∈ τX ⊂ BX iga B ∈ τY korral.

Et aga Boreli σ-algebra de�nitsiooni kohaselt BY = σ(τY ) (s.t. ruumi Y Boreli σ-
algebra on genereeritud ruumi Y kõigi lahtiste alamhulkade kogumi τY poolt), siis
järeldub siit teoreemi 1.1 põhjal, et funktsioon f on Boreli mõttes mõõtuv.

De�nitsioon 1.3. Öeldakse, et funktsioon f : R → R on Boreli mõttes mõõtuv, kui
ta on (BR,BR)-mõõtuv.

Öeldakse, et funktsioon f : R → R on Lebesgue'i mõttes mõõtuv, kui ta on
(L,BR)-mõõtuv. (Meenutame, et sümbol L tähistab ruumi R Lebesgue'i σ-algebrat.)

Ülesanne 1.2. Tõestada, et kui funktsioon f : R → R on Boreli mõttes mõõtuv, siis on ta ka
Lebesgue'i mõttes mõõtuv.

Kui (X,A) on mõõtuv ruum ja Y on topoloogiline ruum, siis öeldakse, et funk-
tsioon f : X → Y on Boreli mõttes A-mõõtuv, kui ta on (A,BY )-mõõtuv.

Kui σ-algebra A roll on kontekstist selge, siis nimetatakse Boreli mõttes A-mõõtu-
vaid funktsioone ka lihtsalt Boreli mõttes mõõtuvateks funktsioonideks või mõõtu-
vateks funktsioonideks.

Järeldus 1.3. Olgu (X,A) mõõtuv ruum ning olgu f : X → R. Järgmised väited on
samaväärsed:

(i) funktsioon f on mõõtuv;
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(ii) {x ∈ X : f(x) < a} ∈ A iga a ∈ R korral;

(iii) {x ∈ X : f(x) ⩽ a} ∈ A iga a ∈ R korral;

(iv) {x ∈ X : f(x) > a} ∈ A iga a ∈ R korral;

(v) {x ∈ X : f(x) ⩾ a} ∈ A iga a ∈ R korral.

Tõestus. Paneme kõigepealt tähele, et mis tahes a ∈ R korral{
x ∈ X : f(x) < a

}
= f−1

[
(−∞, a)

]
,{

x ∈ X : f(x) ⩽ a
}
= f−1

[
(−∞, a]

]
,{

x ∈ X : f(x) > a
}
= f−1

[
(a,∞)

]
,{

x ∈ X : f(x) ⩾ a
}
= f−1

[
[a,∞)

]
.

Igaüks kogumitest{
(−∞, a) : a ∈ R

}
,
{
(−∞, a] : a ∈ R

}
,
{
(a,∞) : a ∈ R

}
,
{
[a,∞) : a ∈ R

}
genereerib ruumi R Boreli σ-algebra (vt. teoreemi I.2.4). Seega järeldub väidete
(i)�(v) samaväärsus vahetult teoreemist 1.1.

1.2. Laiendatud reaalarvuliste väärtustega funktsioonid

Edasises hakkame vaatlema laiendatud reaalarvuliste väärtustega � R-väärtustega
� funktsioone, s.t. funktsioone, mis lisaks reaalarvulistele väärtustele võivad oman-
dada ka väärtusi −∞ ja ∞. (Meenutame, et R = R ∪ {−∞} ∪ {∞}.)

Teatavasti on R meetriline ruum kauguse

ρ(x, y) = | arctanx− arctan y|, x, y ∈ R

suhtes. Märgime, et kaugusega ρ ruumi R alamruumis R de�neeritud alamruumi
topoloogia τ(R,ρ) ja ruumi R loomulik (s.t. eukleidilise kaugusega d(x, y) = |x − y|,
x, y ∈ R, määratud) topoloogia τR langevad ühte, s.t. ruumis R on kauguste ρ ja d
suhtes ühed ja samad lahtised hulgad.

Ülesanne 1.3. Veenduda, et τR = τ(R,ρ).

Näpunäide. Veenduda, et formaalne ühikoperaator j : (R, d) → (R, ρ), jx = x, x ∈ R, ning tema
pöördoperaator on pidevad ning kasutada fakti, et lahtise hulga originaal pideva kujutuse suhtes
on lahtine.

Edasises tähistame sümbolitega τR ja BR vastavalt meetrilise ruumi (R, ρ) lahtiste
hulkade kogumit ja Boreli σ-algebrat. Osutub, et

BR = {E ∈ P(R) : E ∩ R ∈ BR} =
{
B ∪ I : B ∈ BR, I ∈ P

(
{−∞}, {∞}

)}
. (1.1)

Ülesanne 1.4. Tõestada võrdused (1.1).
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Näpunäide. Ülesannete 1.3 ja I.2.13 põhjal

BR = {E ∩ R : E ∈ BR}. (1.2)

Kuna {−∞} ja {∞} kui meetrilise ruumi R ühepunktilised hulgad on kinnised, siis {−∞}, {∞} ∈
BR ning seega ka R = R \

(
{−∞} ∪ {∞}

)
∈ BR. Seega järeldub võrdusest (1.2), et BR ⊂ BR.

Saab näidata, et igaüks hulga R alamhulkade kogumitest

E1 :=
{
[−∞, a) : a ∈ R

}
, E2 :=

{
[−∞, a] : a ∈ R

}
,

E3 :=
{
(a,∞] : a ∈ R

}
, E4 :=

{
[a,∞] : a ∈ R

}
genereerib ruumi (R, ρ) Boreli σ-algebra.
Ülesanne 1.5. Tõestada, et BR = σ(E1) = σ(E2) = σ(E3) = σ(E4).
Näpunäide. Näidata, et

BR
(•)
⊂ σ(E1) ⊂ σ(E2) ⊂ σ(E3) ⊂ σ(E4)

(••)
⊂ BR.

Sisalduvuse (•) tõestuseks piisab näidata, et τR ⊂ σ(E1) (põhjendada!), milleks omakorda, arves-
tades, et U ∈ τR korral U ∩R ∈ τR, piisab näidata, et τR ⊂ σ(E1) (selleks kasutada järeldust I.2.3)
ning {−∞}, {∞} ∈ σ(E1). Sisalduvuse (••) tõestuseks kasutada võrdusi (1.1).

Seega järeldub teoreemist 1.1 (analoogiliselt järelduse 1.3 tõestusega)

Järeldus 1.4. Olgu (X,A) mõõtuv ruum ning olgu f : X → R. Järgmised väited on
samaväärsed:

(i) funktsioon f on mõõtuv;

(ii) {x ∈ X : f(x) < a} ∈ A iga a ∈ R korral;

(iii) {x ∈ X : f(x) ⩽ a} ∈ A iga a ∈ R korral;

(iv) {x ∈ X : f(x) > a} ∈ A iga a ∈ R korral;

(v) {x ∈ X : f(x) ⩾ a} ∈ A iga a ∈ R korral.

Järeldusi 1.3 ja 1.4 võrreldes näeme, et funktsioon f : X → R on mõõtuv parajasti
siis, kui ta on mõõtuv tõlgendatuna funktsioonina X → R.
Ülesanne 1.6. Olgu (X,A) mõõtuv ruum ning olgu f : X → R mõõtuv funktsioon. Tõestada, et:

(a) {x ∈ X : a ⩽ f(x) < b} ∈ A mis tahes a, b ∈ R, a < b korral;

(b) {x ∈ X : a < f(x) < b} ∈ A mis tahes a, b ∈ R, a < b korral;

(c) {x ∈ X : a < f(x) ⩽ b} ∈ A mis tahes a, b ∈ R, a < b korral;

(d) {x ∈ X : a ⩽ f(x) ⩽ b} ∈ A mis tahes a, b ∈ R, a < b korral;

(e) {x ∈ X : f(x) = a} ∈ A iga a ∈ R korral;

(f) {x ∈ X : f(x) = ∞} ∈ A;

(g) {x ∈ X : f(x) = −∞} ∈ A.

Ülesanne 1.7. Olgu (X,A)mõõtuv ruum ning olgu f : X → R. Tõestada, et järgmised tingimused
on samaväärsed:
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(i) funktsioon f on mõõtuv;

(ii) {x ∈ X : f(x) < α} ∈ A iga α ∈ Q korral;

(iii) {x ∈ X : f(x) ⩽ α} ∈ A iga α ∈ Q korral;

(iv) {x ∈ X : f(x) > α} ∈ A iga α ∈ Q korral;

(v) {x ∈ X : f(x) ⩾ α} ∈ A iga a ∈ Q korral.

Aritmeetilised tehted funktsioonidega f, g : X → R de�neeritakse punktiviisi.
Täpsemalt, funktsioonide f ja g summa f + g, vahe f − g, korrutis fg ja jagatis f/g
on de�neeritud võrdustega

(f ± g)(x) = f(x)± g(x), x ∈ X,

(fg)(x) = f(x) g(x), x ∈ X,

(f/g)(x) = f(x)/g(x), x ∈ X.

Märgime, et funktsioonid f+g, f−g ja f/g ei tarvitse olla määratud kogu ruumisX.
(Näiteks summa f+g ei ole määratud parajasti nendes punktides x ∈ X, mille korral
f(x) = ∞ ja g(x) = −∞ või f(x) = −∞ ja g(x) = ∞.)

1.3. Tehted mõõtuvate funktsioonidega

Järgnevast teoreemist nähtub, et mõõtuvate R-väärtustega funktsioonide hulk on
aritmeetiliste tehete suhtes kinnine.

Teoreem 1.5. Olgu (X,A) mõõtuv ruum ning olgu f, g : X → R mõõtuvad funk-
tsioonid. Järgmised funktsioonid on mõõtuvad:

(a) cf (c ∈ R);

(b) f + g (eeldusel, et ta on määratud);

(c) f − g (eeldusel, et ta on määratud);

(d) f 2 (siin f 2 = ff);

(e) fg;

(f) 1/g (eeldusel, et ta on määratud);

(g) f/g (eeldusel, et ta on määratud).

Teoreemi 1.5 väite (e) tõestuse kirjapaneku lihtsustamise huvides on siinkohal
otstarbekas sisse tuua hulga karakteristliku funktsiooni mõiste.

De�nitsioon 1.4. Olgu X mingi mittetühi hulk ning olgu E ⊂ X.
Funktsiooni χE : X → R, mis on de�neeritud seosega

χE(x) =

{
1, kui x ∈ E;

0, kui x ̸∈ E,
x ∈ X,

nimetatakse hulga E karakteristlikuks funktsiooniks ehk (eriti tõenäosusteoorias) hul-
ga E indikaatorfunktsiooniks.
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Ülesanne 1.8. Tõestada, et kui (X,A) on mõõtuv ruum ja E ⊂ X, siis funktsioon χE on mõõtuv
parajasti siis, kui E ∈ A.

Ülesanne 1.9. Olgu (X,A) mõõtuv ruum, olgu A ∈ A ning olgu f : X → R A-mõõtuv funktsioon.
Tõestada, et siis ka funktsioon f χA on A-mõõtuv.

Teoreemi 1.5 tõestus. (a). Olgu c ∈ R. Fikseerime vabalt a ∈ R. Järelduse 1.4
põhjal piisab funktsiooni cf mõõtuvuseks näidata, et

A :=
{
x ∈ X : cf(x) < a

}
∈ A.

Kuna

A =


{
x ∈ X : f(x) < a/c

}
, kui c > 0;{

x ∈ X : f(x) > a/c
}
, kui c < 0;

X, kui c = 0 ja a > 0;

∅, kui c = 0 ja a ⩽ 0,

siis funktsiooni f mõõtuvuse tõttu järelduse 1.4 põhjal igal juhul A ∈ A.

(b). Olgu funktsioon f + g määratud, s.t.{
x ∈ X : f(x) = ∞ ja g(x) = −∞ või f(x) = −∞ ja g(x) = ∞

}
= ∅.

Fikseerime vabalt a ∈ R. Tõestamaks, et funktsioon f on mõõtuv, piisab näidata,
et

A :=
{
x ∈ X : f(x) + g(x) < a

}
∈ A.

Selleks aga piisab näidata, et

A = B :=
⋃
q∈Q

{
x ∈ X : f(x) < q

}
∩
{
x ∈ X : g(x) < a− q

}
(sest funktsioonide f ja g mõõtuvuse tõttu B ∈ A).

Sisalduvus B ⊂ A on ilmne, sest kui x ∈ B, siis mingi q ∈ Q korral f(x) < q ja
g(x) < a− q, seega f(x) + g(x) < q + a− q = a, s.t. x ∈ A.

Jääb veel veenduda, et A ⊂ B. Fikseerime vabalt x ∈ A. Näitame, et siis ka
x ∈ B, s.t. leidub q ∈ Q nii, et

f(x) < q ja g(x) < a− q.

Kuna f(x) + g(x) < a, siis f(x) < a− g(x), järelikult leidub arv q ∈ Q selliselt, et
f(x) < q < a− g(x). Kuna aga sel juhul g(x) < a− q, siis x ∈ B ning seega A ⊂ B.

(c). Olgu funktsioon f − g määratud, s.t.{
x ∈ X : f(x) = g(x) = ∞ või f(x) = g(x) = −∞

}
= ∅.

Siis f−g = f+(−1)g; seega järeldub funktsiooni f−g mõõtuvus vahetult väidetest
(a) ja (b).
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(d). Fikseerime vabalt a ∈ R. Tõestamaks, et funktsioon f 2 on mõõtuv, piisab
näidata, et

A :=
{
x ∈ X : f(x)2 < a

}
∈ A.

Kuna

A =

{
∅, kui a ⩽ 0;{
x ∈ X : −

√
a < f(x) <

√
a
}
, kui a > 0,

siis järelduse 1.4 põhjal igal juhul A ∈ A.

(e).

Märgime esmalt, et kui funktsioonid f ja g oleksid lõplikud, siis

fg =
1

2

(
(f + g)2 − f2 − g2

)
(1.3)

ning funktsiooni fg mõõtuvus järelduks vahetult väidetest (a), (b), (c) ja (d). Kui aga f ja/või g
ei ole lõplik, siis see mõttekäik läbi ei lähe, sest sel juhul pole võrduse (1.3) parem pool määratud.
Seepärast tuleb väite (e) tõestuseks üldjuhul seda mõttekäiku veidi modi�tseerida.

Tähistame

A =
{
x ∈ X : f(x), g(x) ∈ (−∞,∞)

}
,

B =
{
x ∈ X : f(x) g(x) = ∞

}
,

C =
{
x ∈ X : f(x) g(x) = −∞

}
,

D =
{
x ∈ X : f(x) = ±∞ ja g(x) = 0 või g(x) = ±∞ ja f(x) = 0

}
.

Ülesanne 1.10. Tõestada, et A,B,C,D,E ∈ A.

Paneme tähele, et hulgad A,B,C,D on paarikaupa lõikumatud, A∪B∪C ∪D = X
ning

f(x) g(x) =


1
2

((
f(x) + g(x)

)2 − f(x)2 − g(x)2
)
, kui x ∈ A;

∞, kui x ∈ B;

−∞, kui x ∈ C;

0, kui x ∈ D,

s.t.

f g =
1

2

(
(f χA + g χA)

2 − f 2 χA − g2 χA

)
+∞χB + (−∞)χC .

Väidete (a)�(d) ja ülesannete 1.8 ja 1.9 põhjal on funktsioon f g mõõtuv.

(f). Olgu funktsioon 1/g määratud, s.t. g(x) ̸= 0, x ∈ X.

Ülesanne 1.11. Tõestada, et funktsioon 1/g on mõõtuv.

(g). Olgu funktsioon f/g määratud, s.t.{
x ∈ X : g(x) = 0 või |f(x)| = |g(x)| = ∞

}
= ∅.

Siis f/g = f · 1/g, seega järeldub funktsiooni f/g mõõtuvus vahetult väidetest (f)
ja (e).
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Ülesanne 1.12. Olgu (X,A) mõõtuv ruum, olgu f, g : X → R mõõtuvad funktsioonid ning olgu
c ∈ R. Tõestada, et seostega

h1(x) =

{
f(x) + g(x), kui summa f(x) + g(x) on määratud:

c, kui summa f(x) + g(x) pole määratud,

ja

h2(x) =

{
f(x)
g(x) , kui jagatis f(x)

g(x) on määratud;

c, kui jagatis f(x)
g(x) pole määratud,

de�neeritud funktsioonid h1, h2 : X → R on mõõtuvad.

Olgu X mingi hulk ning olgu f, g, fn : X → R, n = 1, 2, . . . . De�neerime funk-
tsioonid

max{f, g} : X ∋ x 7−→ max{f(x), g(x)} ∈ R,
min{f, g} : X ∋ x 7−→ min{f(x), g(x)} ∈ R,

sup
n∈N

fn : X ∋ x 7−→ sup
n∈N

fn(x) ∈ R,

inf
n∈N

fn : X ∋ x 7−→ inf
n∈N

fn(x) ∈ R,

lim sup
n→∞

fn : X ∋ x 7−→ lim sup
n→∞

fn(x) ∈ R,

lim inf
n→∞

fn : X ∋ x 7−→ lim inf
n→∞

fn(x) ∈ R.

Kui iga x ∈ X korral eksisteerib piirväärtus limn→∞ fn(x), siis saame de�neerida ka
funktsiooni

lim
n→∞

fn : X ∋ x 7−→ lim
n→∞

fn(x) ∈ R.

Siinkohal on otstarbekas meenutada, et ruumi R elementide jada (an)
∞
n=1 ülemine piirväärtus

lim supn→∞ an ja alumine piirväärtus lim infn→∞ an de�neeritakse vastavalt võrdustega

lim sup
n→∞

an = lim
n→∞

sup
k⩾n

ak ja lim inf
n→∞

an = lim
n→∞

inf
k⩾n

ak.

Juhime tähelepanu, et need mõlemad piirväärtused eksisteerivad, sest jada (supk⩾n ak)
∞
n=1 on mit-

tekasvav ning jada (infk⩾n ak)
∞
n=1 on mittekahanev; niisiis

lim sup
n→∞

an = lim
n→∞

sup
k⩾n

ak = inf
n∈N

sup
k⩾n

ak ja lim inf
n→∞

an = lim
n→∞

inf
k⩾n

ak = sup
n∈N

inf
k⩾n

ak.

Meenutame, et ruumi R elementide jada (an)
∞
n=1 osajadade piirväärtusi nimetatakse selle jada

osapiirväärtusteks. Saab näidata, et

(1) jada (an) ülemine piirväärtus lim supn→∞ an on selle jada suurim osapiirväärtus;

(2) jada (an) alumine piirväärtus lim infn→∞ an on selle jada vähim osapiirväärtus.

Ülesanne 1.13. Tõestada väited (1) ja (2).

Väidetest (1) ja (2) järeldub, et ruumi R elementide jadal (an)
∞
n=1 eksisteerib piirväärtus pa-

rajasti siis, kui tema ülemine ja alumine piirväärtus on võrdsed, kusjuures sellisel juhul

lim
n→∞

an = lim sup
n→∞

an = lim inf
n→∞

an.

Ülesanne 1.14. Veenduda selles.

Märgime veel, et ruumi R elementide jada (an)
∞
n=1 ülemist piirväärtust ja alumist piirväärtust

tähistatakse ka vastavalt sümbolitega

lim
n→∞

an ja lim
n→∞

an.
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Teoreem 1.6. Olgu (X,A) mõõtuv ruum ning olgu f, g, fn : X → R, n = 1, 2, . . . ,
mõõtuvad funktsioonid. Siis ka funktsioonid

max{f, g}, min{f, g}, sup
n∈N

fn, inf
n∈N

fn, lim sup
n→∞

fn, lim inf
n→∞

fn

on mõõtuvad. Kui piirväärtus lim
n→∞

fn eksisteerib, siis ta on mõõtuv funktsioon.

Tõestus. (a) Tõestamaks, et funktsioon max{f, g} on mõõtuv, peame näitama, et
iga a ∈ R korral

A :=
{
x ∈ X : max{f, g}(x) ⩽ a

}
∈ A.

Fikseerime vabalt a ∈ R. Kuna

A =
{
x ∈ X : max{f(x), g(x)} ⩽ a

}
= {x ∈ X : f(x) ⩽ a} ∩ {x ∈ X : g(x) ⩽ a},

siis funktsioonide f ja g mõõtuvuse tõttu A ∈ A.

(b) Veendumaks, et funktsioon min{f, g} on mõõtuv, märgime, et

min{f, g} = −max{−f,−g}.

Teoreemi 1.5, (a), põhjal on funktsioonid −f ja −g mõõtuvad, seega tõestuse osas
(a) tõestatu põhjal ka funktsioon max{−f,−g} on mõõtuv ning järelikult teoreemi
1.5, (a), põhjal ka funktsioon −max{−f,−g} on mõõtuv, s.t. funktsioon min{f, g}
on mõõtuv.

(c) Tõestamaks, et funktsioon supn∈N fn on mõõtuv, peame näitama, et iga a ∈ R
korral

A := {x ∈ X : sup
n∈N

fn(x) ⩽ a} ∈ A.

Fikseerime vabalt a ∈ R. Kuna

A = {x ∈ X : sup
n∈N

fn(x) ⩽ a} =
∞⋂
n=1

{x ∈ X : fn(x) ⩽ a},

siis funktsioonide fn, n = 1, 2, . . . , mõõtuvuse tõttu A ∈ A.

(d)

Ülesanne 1.15. Tõestada, et funktsioon infn∈Nfn on mõõtuv.

(e) Veendumaks, et funktsioon lim supn→∞ fn on mõõtuv, meenutame, et

lim sup
n→∞

fn = inf
n∈N

sup
k⩾n

fk.

Kuna funktsioonid fk, k = 1, 2, . . . , on mõõtuvad, siis tõestuse osas (c) tõestatu
põhjal ka funktsioonid supk⩾n fk, n = 1, 2, . . . , on mõõtuvad ning järelikult tõestuse
osas (d) tõestatu põhjal ka funktsioon infn∈N supk⩾n fk on mõõtuv, s.t. funktsioon
lim supn→∞ fn on mõõtuv.
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(f)

Ülesanne 1.16. Tõestada, et funktsioon lim infn→∞fn on mõõtuv.

(g) Kui eksisteerib piirväärtus limn→∞ fn, siis

lim
n→∞

fn = lim sup
n→∞

fn = lim inf
n→∞

fn

ning funktsiooni limn→∞ fn mõõtuvus järeldub funktsiooni lim supn→∞ fn mõõtuvu-
sest (või ka funktsiooni lim infn→∞ fn mõõtuvusest).

1.4. Lihtsad mõõtuvad funktsioonid

Meenutame karakteristliku funktsiooni de�nitsiooni.

De�nitsioon 1.5. Olgu X mingi hulk ning olgu E ⊂ X.
Funktsiooni χE : X → R, kus

χE(x) =

{
1, kui x ∈ E;

0, kui x ̸∈ E,
x ∈ X,

nimetatakse hulga E karakteristlikuks funktsiooniks ehk (eriti tõenäosusteoorias) hul-
ga E indikaatorfunktsiooniks.

Ülesanne 1.17. Olgu X mingi hulk ning olgu A,B,Aj ⊂ X, j = 1, 2, . . . . Tõestada, et

(a) χA∩B = χAχB ;

(b) kui A ∩B = ∅, siis χA∪B = χA + χB .

(c) kui Ai ∩Aj = ∅, i ̸= j, siis χ⋃∞
j=1 Aj

=
∑∞

j=1 χAj
.

Ülesandes 1.8 veendusime, et kui (X,A) on mõõtuv ruum, siis hulga E ∈ P(X)
karakteristlik funktsioon χE on mõõtuv parajasti siis, kui hulk E on mõõtuv (s.t.
E ∈ A).

De�nitsioon 1.6. Olgu (X,A) mõõtuv ruum.

� Öeldakse, et funktsioon ϕ : X → R on lihtne mõõtuv funktsioon, kui ta on
esitatav kujul

ϕ =
n∑

j=1

αj χAj
, kus n ∈ N, α1, . . . , αn ∈ R ja A1, . . . , An ∈ A. (1.4)

Märgime, et teoreemi 1.5 põhjal on lihtne mõõtuv funktsioon tõepoolest mõõtuv. Juhime tähe-
lepanu, et vastavalt de�nitsioonile ei saa lihtne mõõtuv funktsioon omandada väärtusi ∞ ega −∞.

� Esitust (1.4) nimetatakse funktsiooni ϕ kanooniliseks esituseks, kui Ai∩Aj = ∅,
kui i ̸= j.

On ilmne, et lihtsa mõõtuva funktsiooni kanooniline esitus ei ole üheselt määratud.
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� Esitust (1.4) nimetatakse funksiooni ϕ standardesituseks, kui

(1) A1, . . . , An ̸= ∅, Ai ∩ Aj = ∅, kui i ̸= j, ning
⋃n

j=1Aj = X;

(2) αi ̸= αj, kui i ̸= j.

Märgime, et kui (1.4) on funktsiooni ϕ standardesitus, siis funktsiooni ϕ väärtuste
hulk on {α1, . . . , αn} ning iga j ∈ {1, . . . , n} korral Aj = {x ∈ X : ϕ(x) = αj}.

Edasises hakkame kasutama järgmisi tähistusi. Olgu X mingi hulk ning olgu
f, g, fn : X → R, n = 1, 2, . . . . Me kirjutame

• f ⩾ g (või g ⩽ f), kui f(x) ⩾ g(x) iga x ∈ X korral; sealhulgas, kui f(x) ⩾ 0
iga x ∈ X korral, siis kirjutame f ⩾ 0;

• fn → f , kui fn(x) → f(x) iga x ∈ X korral;

• fn ↗ f , kui fn(x) ↗ f(x) iga x ∈ X korral, s.t. fn → f , kusjuures f1(x) ⩽
f2(x) ⩽ f3(x) ⩽ · · · iga x ∈ X korral.

Teoreem 1.7. Olgu (X,A) mõõtuv ruum ning olgu f : X → R, f ⩾ 0, mõõtuv
funktsioon. Siis leiduvad lihtsad mõõtuvad funktsioonid ϕn : X → R, n = 1, 2, . . . ,
nii, et

(1) ϕn ⩾ 0 iga n ∈ N korral;

(2) ϕn ↗ f ;

(3) kui funktsioon f on tõkestatud hulgas B ⊂ X, siis ϕn → f ühtlaselt hulgas B.

Tõestus. Iga n ∈ N korral tähistame

En
k =

{
x ∈ X :

k

2n
⩽ f(x) <

k + 1

2n

}
, k = 0, 1, 2, . . . , 22n − 2, 22n − 1,

ja En
22n =

{
x ∈ X : f(x) ⩾ 2n

}
ning de�neerime

ϕn =
22n∑
k=0

k

2n
χEn

k
.

Siis iga n ∈ N korral on ϕn : X → R lihtne mõõtuv funktsioon, kusjuures ϕn ⩾ 0.

Selgitame veel funktsioonide ϕn, n = 1, 2, . . . , konstrueerimist. Olgu n ∈ N. Poollõik [0, 2n)
jaotatakse 22n võrdse pikkusega poollõiguks, igaüks pikkusega 1

2n :[
0,

1

2n

)
,

[
1

2n
,
2

2n

)
, . . . ,

[
22n − 2

2n
,
22n − 1

2n

)
,

[
22n − 1

2n
, 2n
)
.

Olgu x ∈ X. Kui f(x) < 2n, siis f(x) kuulub ühte nendest poollõikudest, ehk, täpsemalt, mingi
k ∈

{
0, 1, 2, . . . , 22n − 2, 22n − 1

}
korral k

2n ⩽ f(x) < k+1
2n . Sellisel juhul de�neeritakse ϕn(x) = k

2n .
Kui aga f(x) ⩾ 2n, siis de�neeritakse ϕn(x) = 2n.

On ilmne, et kui f(x) < 2n, siis |f(x)−ϕn(x)| = f(x)−ϕn(x) < 1
2n (vt. joonis ?.?, kus n = 1).

Ülesanne 1.18. Tõestada väited (2) ja (3).
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De�nitsioon 1.7. Olgu X ̸= ∅ ning olgu f : X → R. De�neerime funktsioonid

f+ = max{f, 0} ja f− = max{−f, 0}

ehk, teisisõnu,

f+(x) = max{f(x), 0} =

{
f(x), kui f(x) ⩾ 0;

0, kui f(x) < 0,
x ∈ X,

ja

f−(x) = max{−f(x), 0} =

{
0, kui f(x) ⩾ 0;

−f(x), kui f(x) < 0,
x ∈ X.

Funktsioone f+ ja f− nimetatakse vastavalt funktsiooni f positiivseks ja negatiivseks
osaks.

On selge, et
f = f+ − f− ja |f | = f+ + f−,

kus funktsiooni f absoluutväärtus (ehk moodul) |f | : X → R on de�neeritud seosega

|f |(x) = |f(x)|, x ∈ X.

Ülesanne 1.19. Tõestada, et f = f+ − f− ja |f | = f+ + f−.

On ilmne, et kui (X,A) on mõõduga ruum ja f : X → R, siis

f on mõõtuv ⇐⇒ f+ ja f− on mõõtuvad =⇒ |f | on mõõtuv.

Ülesanne 1.20. Tõestada, et

(a) f on mõõtuv ⇐⇒ f+ ja f− on mõõtuvad =⇒ |f | on mõõtuv;

(b) üldjuhul ei järeldu absoluutväärtuse |f | mõõtuvusest funktsiooni f mõõtuvus.

Järgmisest teoreemist nähtub, et funktsioon on mõõtuv parajasti siis, kui ta on
mingi lihtsate mõõtuvate funktsioonide jada piirväärtus.

Teoreem 1.8. Olgu (X,A) mõõtuv ruum. Funktsioon f : X → R on mõõtuv para-
jasti siis, kui leiduvad lihtsad mõõtuvad funktsioonid ϕn : X → R, n = 1, 2, . . . , nii,
et ϕn → f .

Tõestus. Piisavus on ilmne, sest teoreemi 1.6 põhjal on mõõtuvate funktsioonide
jada piirväärtus mõõtuv funktsioon.

Tarvilikkus. Olgu f : X → R mõõtuv funktsioon. Siis ka funktsioonid f+ ja f−

on mõõtuvad; järelikult teoreemi 1.7 põhjal leiduvad lihtsad mõõtuvad funktsioonid
ϕ′
n, ϕ

′′
n : X → R, n = 1, 2, . . . , selliselt, et ϕ′

n ↗ f+ ja ψ′′
n ↗ f−. Vahed ϕn = ϕ′

n−ϕ′′
n,

n = 1, 2, . . . , on lihtsad mõõtuvad funktsioonid; seejuures ϕn = ϕ′
n−ϕ′′

n → f+−f− =
f .

Ülesanne 1.21. Olgu (X,A) mõõtuv ruum. Tõestada, et f : X → R on tõkestatud mõõtuv
funktsioon parajasti siis, kui leiduvad lihtsad mõõtuvad funktsioonid ϕn : X → R, n = 1, 2, . . . ,
nii, et ϕn → f ühtlaselt.
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1.5. Mõiste �peaaegu kõikjal�

Olgu (X,A, µ) mõõduga ruum ning olgu V (x) mingi väide ruumi X punktide x
kohta.

De�nitsioon 1.8. Öeldakse, et väide V (x) kehtib µ-peaaegu kõikjal (ruumis X)
ehk, lühidalt, µ-p.k. (ruumis X), kui hulk

{x ∈ X : väide V (x) ei kehti}

s.t. nende elementide x ∈ X hulk, mille korral väide V (x) ei kehti, on hüljatav. Sel
juhul öeldakse ka, et väide V (x) kehtib µ-peaaegu kõikide x ∈ X korral ehk, lühidalt,
µ-p.k. x ∈ X korral. Kui seejuures mõõdu µ roll on kontekstist selge, siis öeldakse
�µ-peaaegu kõikjal� (ning �µ-peaaegu kõikide�) ja �µ-p.k.� asemel lihtsalt vastavalt
�peaaegu kõikjal� (ning �peaaegu kõikide�) ja �p.k.�.

Olgu f, g, fn : X → R, n = 1, 2, . . . . Vastavalt mõiste �peaaegu kõikjal� de�nit-
sioonile öeldakse, et

• f(x) = g(x) p.k., kui hulk {x ∈ X : f(x) ̸= g(x)} on hüljatav;

• f(x) ⩽ g(x) p.k., kui hulk {x ∈ X : f(x) > g(x)} on hüljatav;

• fn(x) → f(x) p.k. ehk lim
n→∞

fn(x) = f(x) p.k., kui hulk {x ∈ X : fn(x) ̸→
f(x)} on hüljatav

• fn(x) ↗ f(x) p.k., kui hulk {x ∈ X : fn(x) ↗̸ f(x)} on hüljatav.

Me kirjutame

• f = g p.k., kui f(x) = g(x) p.k.;

• f ⩽ g p.k., kui f(x) ⩽ g(x) p.k.;

• fn → f p.k., kui fn(x) → f(x) p.k.;

• fn ↗ f p.k., kui fn(x) ↗ f(x) p.k.

Ülesanne 1.22. Olgu (X,A, µ) mõõduga ruum. Tõestada, et järgmised väited on samaväärsed:

(i) väide V (x) kehtib p.k. ruumis X;

(ii) leidub hulk A ∈ A selliselt, et väide V (x) kehtib iga x ∈ A korral ja µ(Ac) = 0.

Teoreem 1.9. Olgu (X,A, µ) mõõduga ruum ning olgu f, g, fn : X → R, n =
1, 2, . . . . Järgmised väited kehtivad parajasti siis, kui ruum (X,A, µ) on täielik.

(a) Kui funktsioon f on mõõtuv ja f = g p.k., siis ka funktsioon g on mõõtuv.

(b) Kui funktsioonid fn, n = 1, 2, . . . , on mõõtuvad ja fn → g p.k., siis ka funk-
tsioon g on mõõtuv.
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Tõestus.

Ülesanne 1.23. Tõestada teoreem 1.9.

Teoreem 1.10. Olgu (X,A, µ) mõõduga ruum ning olgu (X,A, µ) tema täield. Kui
funktsioon f : X → R on A-mõõtuv, siis leidub A-mõõtuv funktsioon g : X → R
selliselt, et f = g p.k. Kui seejuures funktsioon f on p.k. lõplik (s.t. |f | <∞ p.k.),
siis saame funktsiooni g valida nii, et g : X → R (s.t. g on lõplik, s.t. |g| <∞).

Tõestus.

Ülesanne 1.24. Tõestada teoreem 1.10.

Näpunäide. Kasutada teoreemi 1.8. Teine võimalus (vist ökonoomsem?) on kasutada ülesannet 1.7.

1.6. Harjutusülesandeid

Ülesanne 1.25. Olgu X ̸= ∅ mingi hulk ning olgu f, g : X → R. Tõestada, et

(a) (−f)+ = f− ja (−f)− = f+;

(b) kui α ⩾ 0, siis (αf)+ = αf+ ja (αf)− = αf−;

(c) kui α ⩽ 0, siis (αf)+ = −αf− ja (αf)− = −αf+;

(d) kui A ⊂ X, siis (fχA)
+ = f+χA ja (fχA)

− = f−χA;

(e) f ⩾ g parajasti siis, kui f+ ⩾ g+ ja f− ⩽ g−.

Ülesanne 1.26. Olgu (X,A, µ) mõõduga ruum ning olgu f, g, h, fn, gn : X → R, n ∈ N. Tõestada,
et

(a) kui f = g p.k. ja g = h p.k., siis f = h p.k.;

(b) kui f on p.k. lõplik (s.t. |f | <∞ p.k.) ja g = f p.k., siis ka g on p.k. lõplik;

(c) kui f on p.k. lõplik ja g on p.k. lõplik, siis ka f + g on p.k. lõplik;

(d) kui fn → f p.k., gn → g p.k. ja iga n ∈ N korral fn = gn p.k., siis f = g p.k.;

(e) kui f1 = g1 p.k. ja f2 = g2 p.k., siis f1 + f2 = g1 + g2 p.k.;

(f) f = g p.k. parajasti siis, kui f+ = g+ p.k. ja f− = g− p.k.
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Olgu (X,A, µ) mõõduga ruum. Edaspidi tähistame mittenegatiivsete A-mõõtuvate
funktsioonide f : X → R klassi sümboliga L+(X,A, µ) või, kui ruumi (X,A, µ) roll
on kontekstist selge, siis ka lihtsalt sümboliga L+(µ) või L+. Niisiis,

L+ = L+(µ) = L+(X,A, µ) =
{
f : X → R

∣∣ f on A-mõõtuv ja f ⩾ 0
}
.

Kõikjal edaspidi kogu selle paragrahvi ulatuses on (X,A, µ) mõõduga ruum ning
L+ = L+(X,A, µ).

2.1. Integraal lihtsast mõõtuvast funktsioonist f ∈ L+(X,A, µ)

De�nitsioon 2.1. Olgu ϕ ∈ L+ lihtne mõõtuv funktsioon.

(Lebesgue'i) integraal funktsioonist ϕ (üle hulga X) (mõõdu µ järgi) de�neeri-
takse võrdusega ∫

X

ϕ(x) dµ(x) =
n∑

j=1

αj µ(Aj),

kus ϕ =
∑n

j=1 αjχAj
on funktsiooni ϕ kanooniline esitus.

Selle de�nitsiooni korrektsuses (s.t. sõltumatuses funktsiooni ϕ kanoonilisest esitusest) veen-
dume käsiloleva de�nitsiooni lõpus.

Seejuures kasutatakse ka tähistusi∫
X

ϕ(x) dµ(x) =

∫
X

ϕ(x)µ(dx) =

∫
X

ϕ dµ =

∫
X

ϕ.

Kui A ∈ A, siis (Lebesgue'i) integraal funktsioonist ϕ üle hulga A (mõõdu µ järgi)
de�neeritakse võrdusega ∫

A

ϕ(x) dµ(x) =

∫
X

ϕχA.

Ülesanne 2.1. Tõestada, et ϕχA on lihtne mõõtuv funktsioon.

Seejuures kasutatakse ka tähistusi∫
A

ϕ(x) dµ(x) =

∫
A

ϕ(x)µ(dx) =

∫
A

ϕ dµ =

∫
A

ϕ.

Kui ruumi X roll on kontekstist selge, kirjutatakse sümboli
∫
X
asemel ka lihtsalt

∫
.

Veendume integraali
∫
X
ϕ(x) dµ(x) de�nitsiooni korrektsuses. Selleks tuleb näidata, et kui

ϕ =
∑n

j=1 αj χAj
ja ϕ =

∑m
i=1 βi χBi

on funktsiooni ϕ kanoonilised esitused, siis

n∑
j=1

αj µ(Aj) =

m∑
i=1

βi µ(Bi).

71



72 II. Lebesgue'i integraal

Tähistades A0 = X \
⋃n

j=1Aj , α0 = 0, B0 = X \
⋃m

i=1Bi, β0 = 0, on eelnev võrdus samaväärne
võrdusega

n∑
j=0

αj µ(Aj) =

m∑
i=0

βi µ(Bi). (2.1)

Võrduse (2.1) tõestuseks märgime, et iga j ∈ {0, 1, . . . , n} korral

Aj = Aj ∩X = Aj ∩
m⋃
i=0

Bi =

m⋃
i=0

Aj ∩Bi;

kuna hulgad Aj ∩B0, Aj ∩B1, . . . , Aj ∩Bm on paarikaupa lõikumatud, siis

µ(Aj) = µ

( m⋃
i=0

Aj ∩Bi

)
=

m∑
i=0

µ(Aj ∩Bi);

niisiis
n∑

j=0

αj µ(Aj) =

n∑
j=0

αj

m∑
i=0

µ(Aj ∩Bi) =

n∑
j=0

m∑
i=0

αj µ(Aj ∩Bi).

Analoogiliselt saame, et

m∑
i=0

βi µ(Bi) =

m∑
i=0

n∑
j=0

βi µ(Bi ∩Aj) =

n∑
j=0

m∑
i=0

βi µ(Aj ∩Bi).

Fikseerides vabalt j ∈ {0, 1, . . . , n} ja i ∈ {0, 1, . . . ,m}, jääb võrduse (2.1) tõestuseks seega näidata,
et

αj µ(Aj ∩Bi) = βi µ(Aj ∩Bi). (2.2)

Selleks paneme tähele, et

� kui leidub x ∈ Aj ∩Bi, siis αj = ϕ(x) = βi, seega (2.2) kehtib;

� kui Aj ∩Bi = ∅, siis µ(Aj ∩Bi) = 0, seega (2.2) kehtib.

Teoreem 2.1. Olgu ϕ, ψ ∈ L+ lihtsad mõõtuvad funktsioonid. Siis

(a)
∫
cϕ = c

∫
ϕ iga c ⩾ 0 korral;

(b)
∫
(ϕ+ ψ) =

∫
ϕ+

∫
ψ;

(c) kui ϕ ⩽ ψ, siis ka
∫
ϕ ⩽

∫
ψ;

(d) hulgafunktsioon µϕ : A → [0,∞], mis on de�neeritud võrdusega

µϕ(A) =

∫
A

ϕ, A ∈ A,

on mõõt.

Tõestus. Olgu

ϕ =
n∑

j=1

αjχAj
ja ψ =

m∑
i=1

βiχBi

vastavalt funktsioonide ϕ ja ψ standardesitused.
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(a). Olgu c ⩾ 0. Siis cϕ =
∑n

j=1 c αj χAj
on funktsiooni cϕ kanooniline esitus,

seega ∫
cϕ =

n∑
j=1

c αj µ(Aj) = c

n∑
j=1

αj µ(Aj) = c

∫
ϕ.

(b) ja (c). Tähistame

Cij = Aj ∩Bi, j = 1, . . . , n, i = 1, . . . ,m.

Paneme tähele, et Cij ∩ Ckl = ∅, kui i ̸= k või j ̸= l, ehk, teisisõnu, hulgad Cij on
paarikaupa lõikumatud. Seejuures

Aj =
m⋃
i=1

Cij, j = 1, . . . , n, ja Bi =
n⋃

j=1

Cij, i = 1, . . . ,m.

Nüüd

ϕ =
n∑

j=1

αjχAj
=

n∑
j=1

αjχ⋃m
i=1 Cij

=
n∑

j=1

αj

m∑
i=1

χCij
=

n∑
j=1

m∑
i=1

αjχCij

ja, analoogiliselt,

ψ =
m∑
i=1

n∑
j=1

βiχCij
=

n∑
j=1

m∑
i=1

βiχCij

on vastavalt funktsioonide ϕ ja ψ kanoonilised esitused; seega∫
ϕ =

n∑
j=1

m∑
i=1

αjµ(Cij) ja
∫
ψ =

n∑
j=1

m∑
i=1

βiµ(Cij). (2.3)

Väite (b) tõestuseks paneme tähele, et

ϕ+ ψ =
n∑

j=1

m∑
i=1

αjχCij
+

n∑
j=1

m∑
i=1

βiχCij
=

n∑
j=1

m∑
i=1

(αj + βi)χCij

on funktsiooni ϕ+ ψ kanooniline esitus; seega∫
(ϕ+ψ) =

n∑
j=1

m∑
i=1

(αj+βi)µ(Cij) =
n∑

j=1

m∑
i=1

αjµ(Cij)+
n∑

j=1

m∑
i=1

βiµ(Cij) =

∫
ϕ+

∫
ψ.

Eeldame nüüd, et ϕ ⩽ ψ. Fikseerides vabalt j ∈ {1, . . . , n} ja i ∈ {1, . . . ,m},
piisab väite (c) tõestuseks (tänu võrdustele (2.3)) näidata, et

αj µ(Cij) ⩽ βi µ(Cij). (2.4)

Selleks märgime, et

� kui leidub x ∈ Cij, siis αj = ϕ(x) ⩽ ψ(x) = βi, seega (2.4) kehtib;
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� kui Cij = ∅, siis µ(Cij) = 0, seega (2.4) kehtib.

(d). Kõigepealt paneme tähele, et

µϕ(∅) =
∫
∅
ϕ =

∫
ϕχ∅ =

∫
0 = 0µ(X) = 0.

Olgu hulgad Ei ∈ A, i = 1, 2, . . . , sellised, et Ei ∩ Ej = ∅, kui i ̸= j. Teoreemi
tõestuseks jääb näidata, et

µϕ

(
∞⋃
i=1

Ei

)
=

∞∑
i=1

µϕ(Ei)

ehk, teisisõnu, ∫
⋃∞

i=1 Ei

ϕ =
∞∑
i=1

∫
Ei

ϕ.

Veendume selles:∫
⋃∞

i=1 Ei

ϕ =

∫
ϕχ⋃∞

i=1 Ei
=

∫ ( n∑
j=1

αjχAj

)
χ⋃∞

i=1 Ei
=

∫ n∑
j=1

αjχAj
χ⋃∞

i=1 Ei

=

∫ n∑
j=1

αjχAj∩
⋃∞

i=1 Ei
=

n∑
j=1

αjµ

(
Aj ∩

∞⋃
i=1

Ei

)
=

n∑
j=1

αjµ

(
∞⋃
i=1

Aj ∩ Ei

)

=
n∑

j=1

αj

∞∑
i=1

µ(Aj ∩ Ei) =
∞∑
i=1

n∑
j=1

αjµ(Aj ∩ Ei) =
∞∑
i=1

∫ n∑
j=1

αjχAj∩Ei

=
∞∑
i=1

∫ n∑
j=1

αjχAj
χEi

=
∞∑
i=1

∫ ( n∑
j=1

αjχAj

)
χEi

=
∞∑
i=1

∫
ϕχEi

=
∞∑
i=1

∫
Ei

ϕ.

Märkus 2.1. Teoreemi 2.1 väitest (b) järeldub muuhulgas, et kui ϕ ∈ L+ on lihtne
mõõtuv funktsioon, siis funktsiooni ϕ mis tahes esituse

ϕ =
n∑

j=1

αjχAj
(n ∈ N, α1, . . . , αn ⩾ 0, A1, . . . , An ∈ A)

korral ∫
ϕ =

∫ n∑
j=1

αjχAj
=

n∑
j=1

∫
αjχAj

=
n∑

j=1

αj µ(Aj).
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2.2. Integraal funktsioonist f ∈ L+(X,A, µ)

Toetudes mittenegatiivse lihtsa mõõtuva funktsiooni integraali mõistele, üldistame
nüüd integraali mõiste kogu klassile L+.

De�nitsioon 2.2. Olgu f ∈ L+(X,A, µ).

(Lebesgue'i) integraal funktsioonist f (üle hulga X) (mõõdu µ järgi) de�neeri-
takse võrdusega∫

X

f(x) dµ(x) = sup

{∫
ϕ

∣∣∣∣ ϕ ∈ L+ on lihtne mõõtuv funktsioon, ϕ ⩽ f

}
.

Seejuures kasutatakse ka tähistusi∫
X

f(x) dµ(x) =

∫
X

f(x)µ(dx) =

∫
X

f dµ =

∫
X

f.

Märgime, et lihtsa mõõtuva funktsiooni f ∈ L+ jaoks annab de�nitsioon 2.2 sama integraali,
mis de�nitsioon 2.1.

Kui A ∈ A, siis (Lebesgue'i) integraal funktsioonist f üle hulga A (mõõdu µ järgi)
de�neeritakse võrdusega ∫

A

f(x) dµ(x) =

∫
X

fχA.

Seejuures kasutatakse ka tähistusi∫
A

f(x) dµ(x) =

∫
A

f(x)µ(dx) =

∫
A

f dµ =

∫
A

f.

Kui ruumi X roll on kontekstist selge, kirjutatakse sümboli
∫
X
asemel ka lihtsalt

∫
.

Vahetult de�nitsioonist järeldub, et

(a) kui f ∈ L+, siis iga c ∈ R, c ⩾ 0, korral
∫
cf = c

∫
f ;

(b) kui f, g ∈ L+ on sellised, et f ⩽ g, siis ka
∫
f ⩽

∫
g.

Integraali omadust (b) nimetatakse integraali monotoonsuseks.

Ülesanne 2.2. Tõestada väited (a) ja (b).

Olgu fn ∈ L+, n = 1, 2, . . . . Märgime, et (isegi siis, kui piirväärtused lim
n→∞

fn ja

lim
n→∞

∫
fn eksisteerivad) võrdus

∫
lim
n→∞

fn = lim
n→∞

∫
fn ei tarvitse üldjuhul kehtida.

Näide 2.1. Olgu fn = χ[n−1,n) : R → R, n = 1, 2, . . . . Siis iga n ∈ N korral fn ∈
L+(R,L,m), kusjuures fn → 0. Kuna iga n ∈ N korral

∫
R fn = m

(
[n − 1, n)

)
= 1,

siis ∫
R
lim
n→∞

fn =

∫
R
0 = 0 ̸= 1 = lim

n→∞

∫
R
fn.
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Näide 2.2. Olgu fn := nχ(0, 1
n
) : R → R, n = 1, 2, . . . . Siis iga n ∈ N korral

fn ∈ L+(R,L,m), kusjuures fn → 0. Kuna iga n ∈ N korral
∫
R fn = nm

(
(0, 1

n
)
)
=

n 1
n
= 1, siis ∫

R
lim
n→∞

fn =

∫
R
0 = 0 ̸= 1 = lim

n→∞

∫
R
fn.

Järgnev teoreem on üks nn. Lebesgue'i koonduvusteoreemidest, mis annavad pii-
savad tingimused võrduse

∫
lim
n→∞

fn = lim
n→∞

∫
fn kehtivuseks.

Teoreem 2.2 ((Lebesgue'i) monotoonse koonduvuse teoreem e. Beppo Levi teo-
reem). Olgu funktsioonid f, fn ∈ L+, n = 1, 2, . . . , sellised, et fn ↗ f . Siis∫

f = lim
n→∞

∫
fn.

Niisiis, teoreemi 2.2 eeldustel kehtib võrdus
∫

lim
n→∞

fn = lim
n→∞

∫
fn.

Teoreemi 2.2 tõestus. Kuna iga n ∈ N korral fn ⩽ fn+1 ning seega integraali
monotoonsuse tõttu ka

∫
fn ⩽

∫
fn+1, siis eksisteerib piirväärtus lim

n→∞

∫
fn. Kuna

fn ↗ f , siis iga n ∈ N korral fn ⩽ f ning seega integraali monotoonsuse tõttu∫
fn ⩽

∫
f ; järelikult lim

n→∞

∫
fn ⩽

∫
f .

Teoreemi tõestuseks jääb veenduda, et lim
n→∞

∫
fn ⩾

∫
f . Selleks piisab näidata,

et iga lihtsa mõõtuva funktsiooni ϕ ∈ L+, ϕ ⩽ f , korral kehtib võrratus lim
n→∞

∫
fn ⩾∫

ϕ.

Tõepoolest, sel juhul

lim
n→∞

∫
fn ⩾ sup

{∫
ϕ

∣∣∣∣ ϕ ∈ L+ on lihtne mõõtuv funktsioon, ϕ ⩽ f

}
=

∫
f.

Olgu lihtne mõõtuv funksioon ϕ ∈ L+ selline, et ϕ ⩽ f . Võrratuse lim
n→∞

∫
fn ⩾∫

ϕ kehtivuseks piisab näidata, et iga reaalarvu α ∈ (0, 1) korral lim
n→∞

∫
fn ⩾

∫
αϕ.

Tõepoolest, sel juhul

lim
n→∞

∫
fn ⩾ lim

α→1−

∫
αϕ = lim

α→1−
α

∫
ϕ =

∫
ϕ.

Fikseerime vabalt α ∈ (0, 1). Tähistame iga n ∈ N korral

Xn :=
{
x ∈ X : fn(x) ⩾ αϕ(x)

}
.

Siis

Xn ∈ A, Xn ⊂ Xn+1, n = 1, 2, . . . , ja X =
∞⋃
n=1

Xn. (2.5)

Ülesanne 2.3. Tõestada väited (2.5).
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Paneme tähele, et iga n ∈ N korral∫
fn ⩾

∫
fnχXn ⩾

∫
αϕχXn =

∫
Xn

αϕ = µαϕ(Xn).

Kuna teoreemi 2.1 põhjal on hulgafunktsioon

µαϕ : A ∋ A 7−→
∫
A

αϕ ∈ [0,∞]

mõõt, siis järeldub viimasest võrratusteahelast ja tingimustest (2.5), et

lim
n→∞

∫
fn ⩾ lim

n→∞
µαϕ(Xn) = µαϕ(X) =

∫
αϕ.

Teoreem 2.3. Olgu f, g ∈ L+. Siis∫
(f + g) =

∫
f +

∫
g.

Tõestus. Kuna f ja g on mittenegatiivsed mõõtuvad funktsioonid, siis teoreemi 1.7
põhjal leiduvad lihtsad mõõtuvad funktsioonid ϕn, ψn ∈ L+, n = 1, 2, . . . , selliselt,
et

ϕn ↗ f ja ψn ↗ g.

Kuna (ϕn +ψn) ↗ (f + g), siis Lebesgue'i monotoonse koonduvuse teoreemi põhjal∫
(f + g) = lim

n→∞

∫
(ϕn + ψn) = lim

n→∞

(∫
ϕn +

∫
ψn

)
= lim

n→∞

∫
ϕn + lim

n→∞

∫
ψn

=

∫
f +

∫
g,

sest teoreemi 2.1 põhjal
∫
(ϕn + ψn) =

∫
ϕn +

∫
ψn.

Teoreem 2.4. Olgu f1, . . . , fn ∈ L+ (n ∈ N). Siis∫ n∑
j=1

fj =
n∑

j=1

∫
fj.

Tõestus. Väide järeldub vahetult teoreemist 2.3 induktsiooni teel.

Ülesanne 2.4. Tõestada, et kui ϕ, ψ ∈ L+, α, β ⩾ 0 ja A ∈ A, siis
∫
A
(αf +βg) = α

∫
A
f +β

∫
A
g.

Teoreem 2.5. Olgu fj ∈ L+, j = 1, 2, . . . . Siis∫ ∞∑
j=1

fj =
∞∑
j=1

∫
fj.
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Märkus 2.2. Ka teoreemile 2.5 (nagu ka teoreemile 2.2) viidatakse kirjanduses
tavaliselt kui Lebesgue'i monotoonse koonduvuse teoreemile ehk Beppo Levi teoree-
mile.

Teoreemi 2.5 tõestus. De�neerime iga n ∈ N korral funktsiooni

gn :=
n∑

j=1

fj;

siis gn ∈ L+, kusjuures gn ↗
∑∞

j=1 fj; seega Lebesgue'i monotoonse koonduvuse
teoreemi ja teoreemi 2.4 põhjal∫ ∞∑

j=1

fj = lim
n→∞

∫
gn = lim

n→∞

∫ n∑
j=1

fj = lim
n→∞

n∑
j=1

∫
fj =

∞∑
j=1

∫
fj.

Teoreem 2.6. Olgu f ∈ L+ ning olgu A,B ∈ A.

(a) Kui µ(A) = 0, siis ∫
A

f = 0.

(b) Kui µ(A ∩B) = 0, siis ∫
A∪B

f =

∫
A

f +

∫
B

f.

Tõestus. (a). Olgu µ(A) = 0. De�neerime funktsiooni g(x) = ∞, x ∈ X. Väite
tõestuseks piisab näidata, et

∫
A
g = 0, sest kuna f ⩽ g, siis integraali monotoonsuse

põhjal sel juhul ka 0 ⩽
∫
A
f ⩽

∫
A
g = 0, s.t.

∫
A
f = 0.

De�neerime iga n ∈ N korral funktsiooni

gn(x) = n, x ∈ X.

Kuna gn ↗ g, siis ka gnχA ↗ gχA; seega Lebesgue'i monotoonse koonduvuse teo-
reemi põhjal ∫

A

g =

∫
gχA = lim

n→∞

∫
gnχA = lim

n→∞

∫
A

gn.

Et aga iga n ∈ N korral∫
A

gn =

∫
gnχA =

∫
nχA = nµ(A) = 0,

siis ka
∫
A
g = 0.

(b). Olgu µ(A ∩ B) = 0. Kõigepealt paneme tähele, et kui A ∩ B = ∅, siis väide
kehtib, sest sel juhul∫

A∪B
f =

∫
fχA∪B =

∫
f(χA + χB) =

∫
fχA +

∫
fχB =

∫
A

f +

∫
B

f.
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Väite (b) tõestuseks üldjuhul märgime, et väite (a) põhjal
∫
A∩B f = 0; seega∫

A∪B
f

(1)
=

∫
A

f +

∫
B\A

f =

∫
A

f +

∫
B\A

f +

∫
A∩B

f
(2)
=

∫
A

f +

∫
B

f.

Siin

• võrdus (1) kehtib, sest A ∩ (B \A) = ∅ ja A ∪ (B \A) = A ∪B;
• võrdus (2) kehtib, sest (B \A) ∩ (A ∩B) = ∅ ja (B \A) ∪ (A ∩B) = B.

Teoreem 2.7. Olgu f, g ∈ L+ sellised, et f = g p.k. Siis∫
f =

∫
g.

Tõestus. Kuna f = g p.k., siis leidub hulk A ∈ A selliselt, et

f(x) = g(x) iga x ∈ A korral ja µ(Ac) = 0.

Arvestades, et fχA = gχA ning teoreemi 2.6 põhjal
∫
Ac f =

∫
Ac g = 0, saame, et∫

f =

∫
A

f +

∫
Ac

f =

∫
A

f =

∫
fχA

=

∫
gχA =

∫
A

g =

∫
A

g +

∫
Ac

g =

∫
g.

Teoreem 2.8. Olgu f ∈ L+. Siis∫
f = 0 ⇐⇒ f = 0 p.k.

Tõestus. �⇐�. Kui f = 0 p.k., siis teoreemi 2.7 põhjal
∫
f =

∫
0 = 0.

�⇒�. Olgu
∫
f = 0. Tähistame

A = {x ∈ X : f(x) > 0}.

Implikatsiooni tõestuseks piisab näidata, et µ(A) = 0. Selleks paneme tähele, et
A =

⋃∞
j=1Aj, kus

Aj :=
{
x ∈ X : f(x) ⩾ 1

j

}
, j = 1, 2, . . . .

Kuna A1 ⊂ A2 ⊂ · · · , siis µ(A) = limn→∞ µ(Aj), seega jääb implikatsiooni tões-
tuseks näidata, et

µ(Aj) = 0 iga j ∈ N korral. (2.6)

Mis tahes j ∈ N korral integraali monotoonsuse tõttu

1

j
µ(Aj) =

∫
1

j
χAj

⩽
∫
fχAj

⩽
∫
f = 0,

seega (2.6) kehtib.
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Teoreem 2.9. Olgu funktsioonid f, fn ∈ L+, n = 1, 2, . . . , sellised, et fn ↗ f p.k.
Siis

lim
n→∞

∫
fn =

∫
f.

Märkus 2.3. Teoreemi 2.9 nimetatakse (samuti nagu ka tema erijuhtu teoreemi 2.2)
Lebesgue'i monotoonse koonduvuse teoreemiks ehk Beppo Levi teoreemiks.

Teoreemi 2.9 tõestus. Kuna fn ↗ f p.k., siis leidub hulk A ∈ A selliselt, et

fn(x) ↗ f(x) iga x ∈ A korral ja µ(Ac) = 0.

Nüüd

fχA, fnχA ∈ L+, f = fχA p.k., fn = fnχA p.k., n = 1, 2, . . . , ja fnχA ↗ fχA;

seega Lebesgue'i monotoonse koonduvuse teoreemi 2.2 põhjal
∫
fχA = lim

n→∞

∫
fnχA.

Teoreemist 2.7 järeldub nüüd, et∫
f =

∫
fχA = lim

n→∞

∫
fnχA = lim

n→∞

∫
fn.

Teoreem 2.10 (Fatou1 lemma). Olgu fn ∈ L+, n = 1, 2, . . . . Siis∫
lim inf
n→∞

fn ⩽ lim inf
n→∞

∫
fn.

Tõestus. Teoreemi tõestuseks märgime, et∫
lim inf
n→∞

fn =

∫
lim
n→∞

inf
k⩾n

fk
(1)
= lim

n→∞

∫
inf
k⩾n

fk
(2)
= lim inf

n→∞

∫
inf
k⩾n

fk
(3)

⩽ lim inf
n→∞

∫
fn.

Siin

• võrdus (1) järeldub Lebesgue'i monotoonse koonduvuse teoreemist, sest

inf
k⩾n

fk ↗ lim
n→∞

inf
k⩾n

fn;

• võrdus (2) kehtib, sest piirväärtus lim
n→∞

∫
inf
k⩾n

fk eksisteerib;

• võrratus (3) järeldub alumise piirväärtuse monotoonsusest, sest iga n ∈ N korral inf
k⩾n

fk ⩽ fn

ning seega integraali monotoonsuse tõttu ka
∫

inf
k⩾n

fk ⩽
∫
fn.

Teoreem 2.11. Olgu funktsioonid f, fn ∈ L+, n = 1, 2, . . . , sellised, et fn → f p.k.
Siis ∫

f ⩽ lim inf
n→∞

∫
fn.

1Pierre Joseph Louis Fatou (1878�1929) � prantsuse matemaatik ja astronoom.
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Märkus 2.4. Teoreemile 2.11 (nagu ka teoreemile 2.10) viidatakse kirjanduses ta-
valiselt kui Fatou lemmale.

Teoreemi 2.11 tõestus. Kuna fn → f p.k., siis ka f = lim inf
n→∞

fn p.k.; seega

järeldub teoreemist 2.7 ja Fatou lemmast, et∫
f =

∫
lim inf
n→∞

fn ⩽ lim inf
n→∞

∫
fn.

Teoreem 2.12. Olgu funktsioon f ∈ L+ selline, et
∫
f <∞. Siis

(a) µ
(
{x ∈ X : f(x) = ∞}

)
= 0 (s.t. f <∞ p.k., s.t. f on p.k. lõplik);

(b) hulk {x ∈ X : f(x) ̸= 0} on σ-lõplik (s.t. leiduvad hulgad An ∈ A, µ(An) <∞,
n = 1, 2, . . . , nii, et {x ∈ X : f(x) ̸= 0} =

⋃∞
n=1An).

Tõestus. (a). Tähistame A = {x ∈ X : f(x) = ∞}. Paneme tähele, et iga n ∈ N
korral

f ⩾ fχA ⩾ nχA;

seega iga n ∈ N korral

M :=

∫
f ⩾

∫
nχA = nµ(A),

s.t. iga n ∈ N korral
nµ(A) ⩽M <∞,

mis on võimalik vaid siis, kui µ(A) = 0.

(b). Tähistame
A1 = {x ∈ X : f(x) ⩾ 1}

ja

An =

{
x ∈ X :

1

n
⩽ f(x) <

1

n− 1

}
, n = 2, 3, . . . ;

siis iga n ∈ N korral An ∈ A, kusjuures

{x ∈ X : f(x) ̸= 0} =
∞⋃
n=1

An.

Väite tõestuseks jääb näidata, et iga n ∈ N korral µ(An) <∞.

Ülesanne 2.5. Tõestada, et iga n ∈ N korral µ(An) <∞.
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2.3. Harjutusülesandeid ja täiendavaid märkusi

Ülesanne 2.6. Olgu µ(X) > 0 ning olgu f, g ∈ L+(X,A, µ) sellised, et f(x) < g(x) iga x ∈ X
korral ja

∫
f dµ <∞. Tõestada, et

∫
f dµ <

∫
g dµ.

Ülesanne 2.7. Olgu f ∈ L+(X,A, µ). Tõestada, et hulgafunktsioon

µf : A ∋ A 7−→
∫
A

f dµ ∈ [0,∞]

on mõõt, kusjuures iga g ∈ L+(X,A, µ) korral∫
g dµf =

∫
gf dµ. (2.7)

Näpunäide. Võrdus (2.7) tõestada kõigepealt lihtsa mõõtuva funktsiooni g ∈ L+ jaoks; võrduse
(2.7) tõestuseks üldjuhul kasutada teoreemi 1.7 ja monotoonse koonduvuse teoreemi.

Märkus 2.5. Ülesande 2.7 valguses tekib loomulik küsimus: kui (X,A) on mõõtuv
ruum ning hulgafunktsioonid µ, ν : X → [0,∞] on mõõdud, siis millistel tingimustel
leidub funktsioon f ∈ L+(X,A, µ) selliselt, et ν = µf , s.t.

ν(A) =

∫
A

f dµ, A ∈ A.

σ-lõplike mõõtude µ ja ν juhul annab vastuse sellele küsimusele üks mõõduteooria
olulisemaid tulemusi�Radon-Nikodými teoreem, mille me tõestame käesoleva kons-
pekti paragrahvis IV.2.
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Kõikjal selles paragrahvis on (X,A, µ) mõõduga ruum.

Meenutame, et funktsiooni f : X → R positiivne osa f+ : X → R ja negatiivne
osa f− : X → R on de�neeritud võrdustega

f+(x) =

{
f(x), kui f(x) ⩾ 0,

0, kui f(x) < 0,
x ∈ X,

ja

f−(x) =

{
0, kui f(x) ⩾ 0;

−f(x), kui f(x) < 0,
x ∈ X.

Seejuures f = f+ − f− ja |f | = f+ + f−.

3.1. Ruum L1(X,A, µ)

Olgu f : X → R (A-)mõõtuv funktsioon.

De�nitsioon 3.1. Öeldakse, et funktsioon f on (Lebesgue'i mõttes) integreeruv
(mõõdu µ järgi), kui ∫

X

f+ dµ <∞ ja
∫
X

f− dµ <∞.

Märgime, et f+, f− ∈ L+(µ) ning seega on integraalid nendest funktsioonidest de�neeritud.

Kui funktsioon f on integreeruv, siis (Lebesgue'i) integraal funktsioonist f (üle
hulga X) (mõõdu µ järgi) de�neeritakse võrdusega∫

X

f dµ :=

∫
X

f+ dµ−
∫
X

f− dµ.

Juhime tähelepanu, et integreeruvate funktsioonide f ∈ L+ jaoks annab see integraali de�nit-
sioon sama tulemuse, mis (mittenegatiivse mõõtuva funktsiooni integraali) de�nitsioon 2.2, sest
f ∈ L+ korral f+ = f ja f− = 0.

Kõigi mõõdu µ järgi integreeruvate funktsioonide f : X → R klassi tähistatakse
sümboliga L1(X,A, µ) või, kui ruumi (X,A, µ) roll on kontekstist selge, siis ka lihtsalt
L1(µ) või L1.

Rõhutame, et see klassi L1 de�nitsioon on �ajutine�: pärast teoreemide 3.1�3.3 tõestamist
me laiendame klassi L1 peaaegu kõikjal määratud R-väärtustega integreeruvate funktsioonidega
(muidugi eelnevalt selgitades, mida niisuguste funktsioonide puhul integreeruvus tähendab).

Paneme tähele, et

f ∈ L1 ⇐⇒
∫

|f | <∞ ⇐⇒ |f | ∈ L1.

Ülesanne 3.1. Tõestada need samaväärsused.
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Kui f ∈ L1 ja A ∈ A, siis (Lebesgue'i) integraal funktsioonist f (üle hulga A)
(mõõdu µ järgi) de�neeritakse võrdusega∫

A

f dµ :=

∫
X

fχA dµ.

Juhime tähelepanu, et fχA ∈ L1, sest kuna |fχA| ⩽ |f |, siis
∫
|fχA| ⩽

∫
|f | <∞.

Ülesanne 3.2. Olgu f ∈ L1 ja A ∈ A. Tõestada, et∫
A

f dµ =

∫
A

f+ dµ−
∫
A

f− dµ.

Kõik antud kontekstis kasutatavad alternatiivsed tähistused on analoogilised
juhuga, kus f ∈ L+. (Näiteks

∫
X
f dµ =

∫
X
f(x) dµ(x) =

∫
X
f =

∫
f jne.)

Ülesanne 3.3. Olgu f, g ∈ L1, A,B ∈ A. Tõestada, et

(a) hulk {x ∈ X : f(x) ̸= 0} on σ-lõplik (s.t. leiduvad hulgad An ∈ A, µ(An) <∞, n = 1, 2, . . . ,
nii, et {x ∈ X : f(x) ̸= 0} =

⋃∞
n=1An);

(b) kui f ⩽ g, siis ka
∫
f ⩽

∫
g;

(c) kui µ(A) = 0, siis
∫
A
f = 0;

(d) kui µ(A ∩B) = 0, siis
∫
A∪B

f =
∫
A
f +

∫
B
f .

Järgnev teoreem ütleb, et L1 on vektorruum, kusjuures integraal
∫
on lineaarne

funktsionaal ruumil L1.

Teoreem 3.1. Olgu f, g ∈ L1 ning olgu α ∈ R. Siis

(a) αf ∈ L1, kusjuures
∫
αf = α

∫
f ;

(b) f + g ∈ L1, kusjuures
∫
(f + g) =

∫
f +

∫
g.

Tõestus. (a). Kõigepealt paneme tähele, et∫
|αf | =

∫
|α||f | = |α|

∫
|f | <∞

(sest f ∈ L1 tõttu
∫
|f | <∞); järelikult αf ∈ L1.

Jääb näidata, et
∫
αf = α

∫
f .

Vaatleme esmalt juhtu, kus α ⩾ 0. Siis (αf)+ = αf+ ja (αf)− = αf−, seega∫
αf =

∫
(αf)+ −

∫
(αf)− =

∫
αf+ −

∫
αf−

= α

∫
f+ − α

∫
f− = α

(∫
f+ −

∫
f−
)

= α

∫
f.

Ülesanne 3.4. Tõestada võrduse
∫
αf = α

∫
f kehtivus juhul, kui α < 0.



� 3. Integraal R-väärtustega funktsioonist 85

(b). Kõigepealt märgime, et∫
|f + g| ⩽

∫
(|f |+ |g|) =

∫
|f |+

∫
|g| <∞

(sest f, g ∈ L1 tõttu
∫
|f | <∞ ja

∫
|g| <∞); järelikult f + g ∈ L1.

Tähistame h = f + g. Teoreemi tõestuseks jääb näidata, et
∫
h =

∫
f +

∫
g.

Selleks paneme tähele, et

h+ − h− = f+ − f− + g+ − g−

ehk, teisisõnu,
h+ + f− + g− = h− + f+ + g+

ning järelikult ka ∫
(h+ + f− + g−) =

∫
(h− + f+ + g+).

Kuna f+, f−, g+, g−, h+, h− ∈ L+, siis järeldub viimasest võrdusest, et∫
h+ +

∫
f− +

∫
g− =

∫
h− +

∫
f+ +

∫
g+

ehk, teisisõnu, ∫
h+ −

∫
h− =

∫
f+ −

∫
f− +

∫
g+ −

∫
g−,

s.t.
∫
h =

∫
f +

∫
g.

Ülesanne 3.5. Olgu f, g ∈ L1, α ∈ R ja A ∈ A. Tõestada, et

(a)
∫
A
(f + g) =

∫
A
f +

∫
A
g;

(b)
∫
A
αf = α

∫
A
f .

Teoreem 3.2. Olgu f ∈ L1. Siis
∣∣∫ f ∣∣ ⩽ ∫ |f |.

Tõestus. Teoreemi tõestuseks paneme tähele, et∣∣∣∣∫ f

∣∣∣∣ = ∣∣∣∣∫ f+ −
∫
f−
∣∣∣∣ ⩽ ∣∣∣∣∫ f+

∣∣∣∣+ ∣∣∣∣∫ f−
∣∣∣∣ = ∫ f+ +

∫
f− =

∫
(f+ + f−) =

∫
|f |,

sest kuna f+, f− ∈ L+, siis
∫
f+ ⩾ 0 ja

∫
f− ⩾ 0 ning järelikult

∣∣∫ f+
∣∣ = ∫ f+ ja∣∣∫ f−

∣∣ = ∫ f−.

Teoreem 3.3. Olgu f, g ∈ L1. Järgmised väited on samaväärsed:

(i) f = g p.k.;

(ii)
∫
|f − g| = 0;

(iii)
∫
E
f =

∫
E
g iga E ∈ A korral.
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Tõestus. (i)⇔(ii) on ilmne, sest kuna |f − g| ∈ L+, siis teoreemi 2.8 põhjal∫
|f − g| = 0 ⇐⇒ |f − g| = 0 p.k. ⇐⇒ f = g p.k.

(ii)⇒(iii). Kehtigu tingimus (ii) ning olgu E ∈ A. Siis∣∣∣∣∫
E

f −
∫
E

g

∣∣∣∣ = ∣∣∣∣∫
E

(f − g)

∣∣∣∣ ⩽ ∫
E

|f − g| =
∫

|f − g|χE ⩽
∫

|f − g| = 0;

järelikult
∫
E
f −

∫
E
g = 0 ehk, teisisõnu,

∫
E
f =

∫
E
g.

(iii)⇒(ii). Kehtigu tingimus (iii). Tähistame

A =
{
x ∈ X : f(x) ⩾ g(x)

}
ja B =

{
x ∈ X : f(x) < g(x)

}
.

Paneme tähele, et A,B ∈ A, kusjuures A ∩B = ∅ ja A ∪B = X. Seega∫
|f − g| =

∫
A

|f − g|+
∫
B

|f − g| =
∫
A

(f − g) +

∫
B

(g − f)

=

∫
A

f −
∫
A

g +

∫
B

g −
∫
B

f = 0,

sest tingimuse (iii) põhjal
∫
A
f =

∫
A
g ja

∫
B
f =

∫
B
g.

Järgnevalt laiendame klassi L1, andes ühtlasi tema elementidele uue tõlgenduse.

(I) Me ütleme, et (µ-)peaaegu kõikjal hulgas X määratud R-väärtustega funk-
tsioon f on (µ-)integreeruv, kui leidub (A-mõõtuv) (µ-)integreeruv funktsioon
g : X → R nii, et f = g p.k. Integraal (mõõdu µ järgi) niisugusest funk-
tsioonist f de�neeritakse võrdusega

∫
f dµ =

∫
g dµ.

Märgime, et see integraali de�nitsioon on korrektne: kui h : X → R on niisugune
µ-mõõtuv integreeruv funktsioon, et f = h p.k., siis ka h = g p.k. ning seega
teoreemi 3.3 põhjal

∫
h dµ =

∫
g dµ.

(II) Me loeme klassi L1 kuuluvateks (lisaks A-mõõtuvatele (µ-)integreeruvatele
funktsioonidele X → R) kõik peaaegu kõikjal hulgas X määratud (µ-)integ-
reeruvad funktsioonid.

On ilmne, et iga f ∈ L1 on p.k. lõplik (s.t. |f | <∞ p.k.). Samuti on lihtne veenduda,
et teoreemid 3.1�3.3 ja ülesanded 3.1�3.5 jäävad kehtima ka klassi L1 niisuguse inter-
pretatsiooni korral.

Ülesanne 3.6. Olgu f ∈ L1 ning olgu h peaaegu kõikjal hulgas X määratud R-väärtustega
funktsioon. Tõestada, et kui h = f p.k., siis ka h ∈ L1.

Lõpuks,

(III) Kaks funktsiooni klassist L1 loeme selle klassi elementidena võrdseks, kui nad
on võrdsed peaaegu kõikjal ruumis X.
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Selliselt tõlgendatuna on L1 vektorruum, kusjuures
∫
on lineaarne funktsionaal sellel

ruumil (rõhutame, et niisuguse tõlgenduse järgi on integraal klassi L1 elementide
jaoks teoreemi 3.3 põhjal korrektselt de�neeritud).

Ülesanne 3.7. Veenduda, et L1 vektorruum, kusjuures
∫

on lineaarne funktsionaal sellel ruu-
mil L1.

Veelgi enam, vektorruum L1 on normeeritud ruum järgneva võrdusega de�neeri-
tud normi suhtes:

∥f∥ =

∫
|f |, f ∈ L1.

Ülesanne 3.8. Veenduda selles.

Märkus 3.1. Sisuliselt tõlgendame me ruumina L1 faktorruumi L1/ ∼, kus ekvivalentsiseos ∼
klassis L1 on de�neeritud seosega

f ∼ g ⇐⇒ f = g p.k., f, g ∈ L1.

Seejuures tehted selle faktorruumi ekvivalentsiklassidega, integraal ekvivalentsiklassist, ning ekvi-
valentsiklassi norm on de�neeritud esindajate kaudu: kui f, g ∈ L1 ja α ∈ R, siis de�neeritakse

[f ] + [g] = [f + g], α[f ] = [αf ],

∫
[f ] =

∫
f,

∥∥[f ]∥∥ =

∫
|f |, (3.1)

kus [f ], [g], [f + g], [αf ] ∈ L1/ ∼ on vastavalt funktsioonide f, g, f + g, αf ∈ L1 ekvivalentsiklassid.

Ülesanne 3.9. Veenduda, et de�nitsioonid (3.1) ei sõltu esindajate f ja g valikust.

Olgu (X,A, µ) mõõduga ruumi (X,A, µ) täield. Paneme tähele, et

L1(X,A, µ) = L1(X,A, µ),

s.t. klassid L1(X,A, µ) ja L1(X,A, µ) koosnevad ühtedest ja samadest funktsioonidest,
kusjuures ka integraalid mõõtude µ ja µ järgi neil klassidel langevad kokku, s.t.∫

f dµ =

∫
f dµ iga f ∈ L1(X,A, µ) = L1(X,A, µ) korral.

Ülesanne 3.10. Veenduda selles.

Näpunäide. Ülesande lahenduseks

(a) tõestada, et kui f ∈ L+(X,A, µ), siis ka f ∈ L+(X,A, µ), kusjuures∫
X

f dµ =

∫
X

f dµ; (3.2)

(võrdus (3.2) tõestada esmalt lihtsate mõõtuvate funktsioonide f ∈ L+(X,A, µ) jaoks ning
seejärel, kasutades monotoonse koonduvuse teoreemi, suvaliste f ∈ L+(X,A, µ) jaoks);

(b) tõestada, et kui f : X → R on A-mõõtuv µ-integreeruv funktsioon, siis on ta ka µ-integreeruv,
kusjuures kehtib võrdus (3.2);

(c) tõestada, et kui f : X → R on µ-p.k. määratud µ-integreeruv funktsioon, siis ta on ka
µ-integreeruv, kusjuures kehtib võrdus (3.2);

(d) tõestada, et L1(X,A, µ) ⊂ L1(X,A, µ).

Niisiis, L1(X,A, µ) = L1(X,A, µ), kusjuures ka integraalid mõõtude µ ja µ järgi
neil klassidel langevad kokku. Järelikult, kõneldes klassist L1(X,A, µ), võime
alati eeldada (ja selles paragrahvis edaspidi eeldamegi), et mõõduga
ruum (X,A, µ) on täielik.
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3.2. Lebesgue'i koonduvusteoreemid

Teoreem 3.4 ((Lebesgue'i) domineeritud koonduvuse teoreem). Olgu funktsioo-
nid fn ∈ L1, n = 1, 2, . . . , ja f : X → R sellised, et

1◦ fn → f p.k.;

2◦ leidub funktsioon g ∈ L1 selliselt, et iga n ∈ N korral |fn| ⩽ g p.k.

Siis ka f ∈ L1, kusjuures ∫
f = lim

n→∞

∫
fn. (3.3)

Tõestus. Tõestame teoreemi väited kõigepealt eeldustel, et

iga x ∈ X korral fn(x) −−−→
n→∞

f(x) ja |fn(x)| ⩽ g(x) <∞, n = 1, 2, . . . . (3.4)

Sel juhul, kuna funktsioonid fn, n = 1, 2, . . . , on mõõtuvad, siis teoreemi 1.6 põhjal
ka f = lim

n→∞
fn on mõõtuv. Kuna iga x ∈ X korral |fn(x)| −−−→

n→∞
|f(x)|, siis ka

|f | ⩽ g, järelikult
∫
|f | ⩽

∫
g <∞, seega f ∈ L1.

Võrduse (3.3) tõestuseks piisab näidata, et
∫
|fn − f | −−−→

n→∞
0.

Tõepoolest, sel juhul ka
∣∣∫ fn −

∫
f
∣∣ ⩽ ∫ |fn − f | −−−−→

n→∞
0.

Selleks paneme tähele, et

• iga n ∈ N korral 2g − |fn − f | ∈ L+

(sest 2g − |fn − f | ⩾ 2g − (|fn|+ |f |) = g − |fn|+ g − |f | ⩾ 0);

• 2g − |fn − f | −−−→
n→∞

2g;

seega Fatou lemma põhjal∫
2g ⩽ lim inf

n→∞

∫ (
2g − |fn − f |

)
= lim inf

n→∞

(∫
2g −

∫
|fn − f |

)
=

∫
2g + lim inf

n→∞

(
−
∫

|fn − f |
)

=

∫
2g − lim sup

n→∞

∫
|fn − f |,

millest

lim sup
n→∞

∫
|fn − f | ⩽ 0;

järelikult lim
n→∞

∫
|fn − f | = 0, nagu soovitud.

Ülesanne 3.11. Järeldada teoreemi väidete kehtivusest lisatingimustel (3.4) nende kehtivus üld-
juhul.
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Järeldus 3.5 ((Lebesgue'i) tõkestatud koonduvuse teoreem.). Olgu µ(X) <∞ ning
olgu funktsioonid fn ∈ L1, n = 1, 2, . . . , ja f : X → R sellised, et

1◦ fn → f p.k.;

2◦ leidub reaalarv M ⩾ 0 selliselt, et iga n ∈ N korral |fn| ⩽M p.k.

Siis ka f ∈ L1, kusjuures ∫
f = lim

n→∞

∫
fn.

Tõestus. Kõigepealt paneme tähele, et funktsioon g(x) = M , x ∈ X, on integ-
reeruv.

Tõepoolest, g =M χX ning seega
∫
g =Mµ(X) <∞ (sest µ(X) <∞), s.t. g ∈ L1.

Järelduse 3.5 väide järeldub nüüd vahetult Lebesgue'i domineeritud koonduvuse
teoreemist 3.4.

Teoreem 3.6. Olgu funktsioonid fj ∈ L1, j = 1, 2, . . . , sellised, et

∞∑
j=1

∫
|fj| <∞. (3.5)

Siis rida
∑∞

j=1 fj koondub p.k., kusjuures
∑∞

j=1 fj ∈ L1 ja∫ ∞∑
j=1

fj =
∞∑
j=1

∫
fj.

Järeldus 3.7. Normeeritud ruum L1 on täielik (s.t. ta on Banachi ruum).

Tõestus. Kuna
∞∑
j=1

∫
|fj| =

∞∑
j=1

∥fj∥L1 ,

siis eeldus (3.5) tähendab, et rida
∑∞

j=1 fj ruumis L1 on absoluutselt koonduv. Kuna
normeeritud ruum on täielik parajasti siis, kui temas rea absoluutsest koonduvusest
järeldub selle rea koonduvus, siis piisab ruumi L1 täielikkuseks veenduda, et eel-
dusel (3.5) rida

∑∞
j=1 fj koondub ruumis L1; seejuures võib üldisust kitsendamata

eeldada, et funktsioonid fj, j = 1, 2, . . . , on määratud kõikjal hulgas X. Teoreemi
3.6 põhjal on funktsioon f(x) =

∑∞
j=1 fj(x) määratud p.k. kõikjal hulgas X, kus-

juures f ∈ L1. Ruumi L1 täielikkuseks piisab näidata, et
∑∞

j=1 fj = f ruumis L1,

s.t. limn→∞

∥∥∥f −
∑n

j=1 fj

∥∥∥ = 0. Veendume selles:∥∥∥∥∥f −
n∑

j=1

fj

∥∥∥∥∥ =

∫ ∣∣∣∣∣f −
n∑

j=1

fj

∣∣∣∣∣ =
∫ ∣∣∣∣∣

∞∑
j=n+1

fj

∣∣∣∣∣ (1)⩽
∫ ∞∑

j=n+1

|fj|
(2)
=

∞∑
j=n+1

∫
|fj| −→

n→∞
0

(siin võrratus (1) kehtib integraali monotoonsuse tõttu; võrdus (2) kehtib monotoon-
se koonduvuse teoreemi 2.5 põhjal).
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Teoreemi 3.6 tõestus. Üldisust kitsendamata võime eeldada, et funktsioonid fj,
j = 1, 2, . . . , on määratud kõikjal hulgas X. Siis

∑∞
j=1 |fj| ∈ L+. Kuna Lebesgue'i

monotoonse koonduvuse teoreemi (täpsemalt, teoreemi 2.5) põhjal∫ ∞∑
j=1

|fj| =
∞∑
j=1

∫
|fj| <∞,

siis
∑∞

j=1 |fj| ∈ L1 ning teoreemi 2.12, (a), põhjal
∑∞

j=1 |fj(x)| < ∞ p.k. x ∈ X
korral. Kuna arvrea absoluutsest koonduvusest järeldub tema koonduvus, siis saame
siit, et ka rida

∑∞
j=1 fj(x) koondub p.k. x ∈ X korral, s.t. rida

∑∞
j=1 fj koondub

p.k. ning seega on funktsioon
∑∞

j=1 fj määratud p.k.
Arvestades, et

n∑
j=1

fj −→
n→∞

∞∑
j=1

fj p.k.

ja ∣∣∣∣∣
n∑

j=1

fj

∣∣∣∣∣ ⩽
∞∑
j=1

|fj| ∈ L1 iga n ∈ N korral,

järeldub Lebesgue'i domineeritud koonduvuse teoreemist, et
∑∞

j=1 fj ∈ L1, kus-
juures ∫ ∞∑

j=1

fj = lim
n→∞

∫ n∑
j=1

fj = lim
n→∞

n∑
j=1

∫
fj =

∞∑
j=1

∫
fj.

3.3. Kõikjal tihedaid alamruume ruumis L1(X,A, µ)

Teoreem 3.8. Olgu f ∈ L1. Siis iga ε > 0 korral leidub lihtne mõõtuv funktsioon
ϕ ∈ L1 selliselt, et ∫

|f − ϕ| < ε.

Märgime, et üldjuhul ei tarvitse lihtne mõõtuv funktsioon olla integreeruv. Teo-
reem 3.8 väidab, et integreeruvate lihtsate mõõtuvate funktsioonide alamruum on
kõikjal tihe ruumis L1, sest

∫
|f − ϕ| = ∥f − ϕ∥L1 .

Teoreemi 3.8 tõestus. Üldisust kitsendamata võime eeldada, et funktsioon f
on määratud kõikjal hulgas X. Fikseerime vabalt ε > 0. Mittenegatiivse mõõtuva
funktsiooni integraali de�nitsiooni põhjal leiduvad lihtsad mõõtuvad funktsioonid
ϕ′, ϕ′′ ∈ L+ selliselt, et ϕ′ ⩽ f+ ja ϕ′′ ⩽ f− ja∫

ϕ′ >

∫
f+ − ε

2
ja

∫
ϕ′′ >

∫
f− − ε

2
.
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On selge, et ϕ = ϕ′ − ϕ′′ ∈ L1 on lihtne mõõtuv funktsioon; seejuures∫
|f − ϕ| =

∫ ∣∣(f+ − f−)− (ϕ′ − ϕ′′)
∣∣ ⩽ ∫ (|f+ − ϕ′|+ |f− − ϕ′′|

)
=

∫
(f+ − ϕ′ + f− − ϕ′′) =

(∫
f+ −

∫
ϕ′
)
+

(∫
f− −

∫
ϕ′′
)

<
ε

2
+
ε

2
= ε.

De�nitsioon 3.2. Olgu X topoloogiline ruum.
Funktsiooni g : X → R kandjaks nimetatakse hulka

supp g = {x ∈ X : g(x) ̸= 0}

(s.t. funktsiooni g kandja on hulga {x ∈ X : g(x) ̸= 0} sulund ruumis X).

Teoreem 3.9. Olgu F : R → R mittekahanev vasakult pidev funktsioon ning olgu
MF ⊂ P(R) ja µF : MF → [0,∞] funktsioonile F vastavad Lebesgue-Stieltjesi σ-
algebra ja Lebesgue-Stieltjesi mõõt. Olgu f ∈ L1(R,MF , µF ). Siis iga ε > 0 korral
leidub tõkestatud kandjaga pidev funktsioon g ∈ L1(R,MF , µF ) selliselt, et∫

R
|f − g| dµF < ε.

Ülesanne 3.12. Tõestada, et

(a) tõkestatud kandjaga pidev funktsioon g : R → R on Lebesgue'i�Stieljesi mõttes integreeruv,
s.t. g ∈ L1(R,MF , µF );

(b) tõkestatud kandjaga pidevad funktsioonid moodustavad alamruumi ruumis L1(R,MF , µF ).

Teoreem 3.9 väidab, et tõkestatud kandjaga pidevate funktsioonide g : R → R
alamruum on kõikjal tihe ruumis L1(R,MF , µF ), sest

∫
R |f−g| dµF = ∥f−g∥L1(R,MF ,µF ).

De�nitsioon 3.3. Öeldakse, et topoloogiline ruum X on lokaalselt kompaktne, kui
ruumi X igal punktil leidub kompaktne ümbrus (s.t. iga x ∈ X korral leiduvad
kompaktne hulk K ⊂ X ja lahtine hulk U ⊂ X selliselt, et x ∈ U ⊂ K).

On ilmne, et iga kompaktne topoloogiline ruum on lokaalselt kompaktne. Proto-
tüübiline näide lokaalselt kompaktsest topoloogilisest ruumist, mis pole kompaktne,
on ruum Rm.

Kehtib järgmine teoreemist 3.9 üldisem tulemus.

Teoreem 3.10. Olgu X lokaalselt kompaktne Hausdor� ruum, sisaldagu σ-algebra
A ⊂ P(X) ruumi X Boreli σ-algebrat ning olgu µ : A → [0,∞] regulaarne mõõt.
Siis iga f ∈ L1(X,A, µ) korral leidub kompaktse kandjaga pidev funktsioon g ∈
L1(X,A, µ) selliselt, et ∫

X

|f − g| dµ < ε.
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Niisiis, teoreemi 3.10 eeldustel on kompaktse kandjaga pidevate funktsioonide g ∈
L1(X,A, µ) hulk kõikjal tihe ruumis L1(X,A, µ), sest

∫
X
|f−g| dµ = ∥f−g∥L1(X,A,µ).

Ülesanne 3.13. Tõestada, et teoreemi 3.10 eeldustel moodustavad kompaktse kandjaga pidevad
funktsioonid g ∈ L1(X,A, µ) alamruumi ruumis L1(X,A, µ).

Märgime, et funktsiooni f : Rm → R kandja on kompaktne parajasti siis, kui ta
on tõkestatud, sest hulk ruumis Rm on kompaktne parajasti siis, kui ta on kinnine
ja tõkestatud.

Teoreemi 3.10 tõestus toetub järgnevale topoloogia kursusest tuttavale Urõsoni
lemma lokaalselt kompaktsele versioonile.

Teoreem 3.11 (Urõsoni lemma (lokaalselt kompaktne versioon)). Olgu X lokaalselt
kompaktne Hausdor� ruum ning olgu K ⊂ U ⊂ X, kus hulk K ⊂ X on kompaktne
ning hulk U ⊂ X on lahtine. Siis leidub pidev funktsioon g : X → R selliselt, et

(1) g[X] ⊂ [0, 1];

(2) funktsiooni g kandja supp g on kompaktne, kusjuures supp g ⊂ U ;

(3) g(x) = 1 iga x ∈ K korral.

Ülesanne 3.14. Tõestada teoreem 3.10.

Näpunäide. Kõigepealt näidata, et kui hulk A ∈ A on selline, et µ(A) < ∞, siis iga ε > 0 korral
leidub kompaktse kandjaga pidev funktsioon g ∈ L1(X,A, µ) selliselt, et

∫
X
|χA−g| dµ < ε. (Selleks

kasutada mõõdu µ regulaarsust ning Urõsoni lemmat 3.11.) Seejärel kasutada teoreemi 3.8.

Teoreemi 3.9 tõestus (ilma teoreemi 3.10 kasutamata). Olgu ε > 0. Teo-
reemi 3.8 põhjal leidub lihtne mõõtuv funktsioon ϕ ∈ L1(R,MF , µF ) selliselt, et∫

R
|f − ϕ| dµF <

ε

3
.

Olgu

ϕ =
n∑

j=1

αjχAj
(n ∈ N, αj ∈ R, Aj ∈ MF , j = 1, . . . , n)

funktsiooni mingi niisugune esitus, kus hulgad A1, . . . , An on paarikaupa lõikumatud
ning αj ̸= 0, j = 1, . . . , n. Kuna ϕ ∈ L1(R,MF , µF ), siis µF (Aj) <∞, j = 1, . . . , n.
Teoreemi I.5.7 põhjal leiduvad iga j ∈ {1, . . . , n} korral arv nj ∈ N ja paarikaupa
lõikumatud tõkestatud vahemikud Iji ⊂ R, i = 1, . . . , nj, selliselt, et

µF

(
Aj△

nj⋃
i=1

Iji

)
<

ε

3n |αj|
.

Tähistame

ψ =
n∑

j=1

αjχ⋃nj
i=1 I

j
i
=

n∑
j=1

αj

nj∑
i=1

χIji
=

n∑
j=1

nj∑
i=1

αjχIji
;
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siis ψ ∈ L1(R,MF , µF ), kusjuures∫
R
|ϕ− ψ| dµF =

∫
R

∣∣∣ n∑
j=1

αjχAj
−

n∑
j=1

αjχ⋃nj
i=1 I

j
i

∣∣∣ dµF

=

∫
R

∣∣∣ n∑
j=1

αj

(
χAj

− χ⋃nj
i=1 I

j
i

)∣∣∣ dµF

⩽
n∑

j=1

|αj|
∫
R

∣∣∣χAj
− χ⋃nj

i=1 I
j
i

∣∣∣ dµF =
n∑

j=1

|αj|
∫
R
χ
Aj△

⋃nj
i=1 I

j
i
dµF

=
n∑

j=1

|αj|µF

(
Aj△

nj⋃
i=1

Iji

)
<

n∑
j=1

|αj|
ε

3n |αj|
=
ε

3
.

Teoreemi tõestuseks piisab nüüd näidata, et

(•) kui (a, b) ⊂ R on tõkestatud vahemik, siis iga γ > 0 korral leidub tõkestatud
kandjaga pidev funktsioon h ∈ L1(R,MF , µF ) nii, et∫

R
|χ(a,b) − h| dµF < γ.

Tõepoolest, kui väide (•) kehtib, siis mis tahes j ∈ {1, . . . , n} ja i ∈ {1, . . . , nj} korral leidub
tõkestatud kandjaga pidev funktsioon hji ∈ L1(R,MF , µF ) nii, et∫

R
|χIj

i
− hji | dµF <

ε

3nnj |αj |
.

Tähistame

g =

n∑
j=1

nj∑
i=1

αjh
j
i ;

siis g on tõkestatud kandjaga pidev funktsioon, kusjuures∫
R
|ψ − g| dµF =

∫
R

∣∣∣ n∑
j=1

nj∑
i=1

αjχIj
i
−

n∑
j=1

nj∑
i=1

αjh
j
i

∣∣∣ dµF =

∫
R

∣∣∣ n∑
j=1

nj∑
i=1

αj(χIj
i
− hji )

∣∣∣ dµF

⩽
n∑

j=1

nj∑
i=1

|αj |
∫
R
|χIj

i
− hji | dµF <

n∑
j=1

nj∑
i=1

|αj |
ε

3nnj |αj |
=
ε

3
;

järelikult∫
R
|f − g| dµF ⩽

∫
R
|f − ϕ| dµF +

∫
R
|ϕ− ψ| dµF +

∫
R
|ψ − g| dµF <

ε

3
+
ε

3
+
ε

3
= ε.

Tõestame nüüd väite (•). Olgu (a, b) ⊂ R mingi tõkestatud vahemik ning olgu
γ > 0. Valime arvud c, d ∈ (a, b), c < d, selliselt, et

µF

(
(a, b) \ (c, d)

)
< γ.

Ülesanne 3.15. Veenduda, et sellised arvud c, d ∈ (a, b) eksisteerivad.
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De�neerime funktsiooni h : R → R seosega

h(x) =



0, kui x ∈ (−∞, a];
x−a
c−a

, kui x ∈ [a, c];

1, kui x ∈ [c, d];

1− x−d
b−d

, kui x ∈ [d, b];

0, kui x ∈ [b,∞),

siis h on tõkestatud kandjaga pidev funktsioon, kusjuures∫
R
|χ(a,b) − h| dµF ⩽

∫
R
χ(a,b)\(c,d) dµF = µF

(
(a, b) \ (c, d)

)
< γ.

3.4. Harjutusülesandeid

Olgu (X,A, µ) lõpliku mõõduga ruum ning olgu g : X → R (Boreli mõttes) mõõtuv
funktsioon. Siis hulgafunktsioon

µg−1(E) = µ
(
g−1[E]

)
, E ∈ BR.

on Boreli mõõt ruumis R. Kui µ on tõenäosusmõõt, siis mõõtu µg−1 nimetatakse
funktsiooni g jaotuseks.

Ülesanne 3.16. Tõestada, et µg−1 on mõõt.

De�neerime funktsiooni

G(t) = µ
({
x ∈ X : g(x) < t

})
= µ

(
g−1
[
(−∞, t)

])
= µg−1

(
(−∞, t)

)
, t ∈ R.

Kui µ on tõenäosusmõõt, siis funktsiooni G nimetatakse funktsiooni g jaotusfunkt-
siooniks.

Ülesanne 3.17. Tõestada, et

(a) funktsioon G on mittekahanev ja vasakult pidev;

(b) µg−1 = µG (s.t. µg−1 on funktsioonile G vastav Boreli mõõt, vt. � I.5, punkt 1).

Ülesanne 3.18. Tõestada, et kui f ∈ L1(µg
−1), siis funktsioonide g ja f kompositsioon f ◦ g ∈

L1(µ) kusjuures ∫
f dµg−1 =

∫
f ◦ g dµ.

Veelgi täpsemalt, mis tahes E ∈ BR korral∫
E

f dµg−1 =

∫
g−1[E]

f ◦ g dµ.
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vahekord

Meenutame kõigepealt Riemanni integraali mõistet.

Olgu f : [a, b] → R tõkestatud funktsioon ning olgu T lõigu [a, b] jaotusviis
punktidega

a = x0 < x1 < x2 < · · · < xn−1 < xn = b (n ∈ N).

Tähistame ∆(T ) := max
1⩽j⩽n

(xj − xj−1) (s.t. ∆(T ) on jaotusviisi T pikima osalõigu

pikkus) ning

Mj := sup
{
f(z) : z ∈ [xj−1, xj]

}
, mj := inf

{
f(z) : z ∈ [xj−1, xj]

}
, j = 1, . . . , n,

S(T ) :=
n∑

j=1

Mj(xj − xj−1), s(T ) :=
n∑

j=1

mj(xj − xj−1).

Summasid S(T ) ja s(T ) nimetatakse (lõigu [a, b] jaotusviisile T vastavateks) funk-
tsiooni f Darboux' ülemsummaks ja Darboux' alamsummaks.

Matemaatilise analüüsi kursusest teame, et

(a) kui lõigu [a, b] jaotusviis T ′ on saadud jaotusviisi T punktidele uute punktide
lisamise teel, siis

S(T ′) ⩽ S(T ) ja s(T ′) ⩾ s(T ),

s.t. jaotusviisi peenendamisel Darboux' ülemsumma ei kasva ja Darboux' alam-
summa ei kahane;

(b) lõigu [a, b] mis tahes jaotusviiside ja T ja T ′ korral

S(T ) ⩾ s(T ′),

s.t. ükski Darboux' ülemsumma pole väiksem ühestki Darboux' alamsummast.

Tähistame ∫ b

a

f = inf
{
S(T ) : T on lõigu [a, b] jaotusviis

}
,∫ b

a

f = sup{s(T ) : T on lõigu [a, b] jaotusviis
}
.

(Märgime, et need inf ja sup on lõplikud, sest funktsiooni f tõkestatuse tõttu on selle
funktsiooni Darboux' ülemsummade hulk ja Darboux' alamsummade hulk tõkesta-

tud.) Arvusid
∫ b

a
f ja

∫ b

a
f nimetatakse vastavalt funktsiooni f Darboux' ülemiseks

integraaliks ja Darboux' alumiseks integraaliks (üle lõigu [a, b]).

Järgnev teoreem on meile tuttav matemaatilise analüüsi kursusest.

95
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Teoreem 4.1 (Darboux' lemma). (a) lim
∆(T )→0

S(T ) =
∫ b

a
f , s.t. iga reaalarvu ε > 0

korral leidub reaalarv δ > 0 selliselt, et

∆(T ) < δ =⇒ 0 ⩽ S(T )−
∫ b

a

f < ε

(teisisõnu, piisavalt peentele jaotusviisidele vastavad Darboux' ülemsummad
erinevad Darboux' ülemisest integraalist kuitahes vähe);

(b) lim
∆(T )→0

s(T ) =
∫ b

a
f , s.t. iga reaalarvu ε > 0 korral leidub reaalarv δ > 0

selliselt, et

∆(T ) < δ =⇒ 0 ⩽
∫ b

a

f − s(T ) < ε

(teisisõnu, piisavalt peentele jaotusviisidele vastavad Darboux' alamsummad
erinevad Darboux' alumisest integraalist kuitahes vähe).

De�nitsioon 4.1. Kui
∫ b

a
f =

∫ b

a
f , siis öeldakse, et funktsioon f on Riemanni

mõttes integreeruv lõigus [a, b]. Darboux' integraalide
∫ b

a
f ja

∫ b

a
f ühist väärtust

nimetatakse sel juhul funktsiooni f Riemanni integraaliks (üle lõigu [a, b]) ja tähis-
tatakse sümboliga

R-
∫ b

a

f(x) dx või R-
∫ b

a

f või lihtsalt
∫ b

a

f(x) dx või
∫ b

a

f.

Niisiis, kui funktsioon f on Riemanni mõttes integreeruv lõigus [a, b], siis

R-
∫ b

a

f(x) dx =

∫ b

a

f =

∫ b

a

f.

Tähistame

L[a,b] =
{
E ∩ [a, b] : E ∈ L

}
ja m[a,b] = m|L[a,b]

,

kus L on ruumi R Lebesgue'i σ-algebra ja m on Lebesgue'i mõõt ruumis R. Kui see
ei põhjusta kaksipidimõistmist, siis kirjutame edaspidi m[a,b] asemel ka lihtsalt m.
Paneme tähele, et

(a) L[a,b] on σ-algebra (see fakt järeldub ülesandest I.2.12);

(b) L[a,b] on lõigu [a, b] Boreli σ-algebra täield (see fakt järeldub ülesannetest I.2.13
ja I.3.32).

σ-algebrat L[a,b] nimetatakse lõigu [a, b] Lebesgue'i σ-algebraks ning mõõtu m[a,b]

Lebesgue'i mõõduks lõigus [a, b].
Öeldakse, et lõigus [a, b] m-p.k. määratud R-väärtuseline funktsioon g on Le-

besgue'i mõttes integreeruv (lõigus [a, b]), kui g ∈ L1

(
[a, b],L[a,b],m[a,b]

)
. Ruumi
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L1

(
[a, b],L[a,b],m[a,b]

)
tähistatakse ka lihtsalt sümboliga L1[a, b]. Selle ruumi funkt-

sioonidest integraali märkimiseks (Lebesgue'i mõõdu m := m[a,b] järgi) kasutatakse

sümbolite dm ja dm(x) ning
∫
[c,d]

asemel sageli ka vastavalt sümboleid dx ning
∫ d

c
;

täpsemalt, kui g ∈ L1[a, b], E ∈ L[a,b] ja a ⩽ c < d ⩽ b, siis∫
E

g dx :=

∫
E

g(x) dx :=

∫
E

g(x) dm(x) =:

∫
E

g dm

ja∫ d

c

g dx :=

∫ d

c

g(x) dx :=

∫ d

c

g(x) dm(x) :=

∫ d

c

g dm :=

∫
[c,d]

g dm :=

∫
[c,d]

g(x) dm(x).

Teoreem 4.2. (a) Lõigus [a, b] tõkestatud funktsioon f : [a, b] → R on Riemanni
mõttes integreeruv selles lõigus parajasti siis, kui tema katkevuspunktide hulga
Lebesgue'i mõõt on null.

(b) Kui funktsioon f : [a, b] → R on Riemanni mõttes integreeruv lõigus [a, b], siis
ta on ka Lebesgue'i mõttes integreeruv lõigus [a, b], kusjuures∫

[a,b]

f(x) dm(x) = R-

∫ b

a

f(x) dx,

s.t. funktsiooni f Lebesgue'i integraal üle lõigu [a, b] on võrdne tema Riemanni
integraaliga üle selle lõigu.

Kõikjal järgnevas tähistame funktsiooni f : [a, b] → R Lebesgue'i integraali,
Riemanni integraali, Darboux' ülemist integraali ja Darboux' alumist integraali lõi-
gus [a, b] vastavalt sümbolitega∫

f, R-
∫
f,

∫
f ja

∫
f

(muidugi juhul, kui need integraalid eksisteerivad).

Olgu funktsioon f : [a, b] → R tõkestatud lõigus [a, b]. De�neerime funktsioonid
f, f : [a, b] → R võrdustega

f(x) = lim
δ→0+

sup
{
f(z) : z ∈ (x− δ, x+ δ)

}
, x ∈ [a, b],

f(x) = lim
δ→0+

inf
{
f(z) : z ∈ (x− δ, x+ δ)

}
, x ∈ [a, b].

Ülesanne 4.1. Veenduda, et funktsioonid f ja f on korrektselt de�neeritud, s.t. nende de�ni-
tsiooniavaldises olevad piirväärtused eksisteerivad.

Märgime, et funktsioon f on pidev punktis x ∈ [a, b] parajasti siis, kui f(x) = f(x).

Ülesanne 4.2. Veenduda selles.

Teoreemi 4.2 tõestus toetub järgnevale lemmale.
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Lemma 4.3. Funktsioonid f ja f on Lebesgue'i mõttes integreeruvad lõigus [a, b],
kusjuures ∫

f =

∫
f ja

∫
f =

∫
f.

Tõestus. Olgu

Tk : a = xk0 < xk1 < xk2 < · · · < xknk−1 < xknk
= b (nk ∈ N), k = 1, 2, . . . ,

sellised lõigu [a, b] jaotusviisid, et jaotusviisi Tk pikima osalõigu pikkus läheneb prot-
sessis k → ∞ nullile, s.t. lim

k→∞
max

1⩽j⩽nk

(xkj − xkj−1) = 0. Tähistame jaotusviisile Tk

vastavad funktsiooni f Darboux' ülemsumma ja alamsumma vastavalt sümbolitega
S(Tk) ja s(Tk); siis teoreemi 4.1 põhjal

lim
k→∞

S(Tk) =

∫
f ja lim

k→∞
s(Tk) =

∫
f.

Tähistame iga k ∈ N korral

Mk
j := sup

{
f(z) : z ∈ [xkj−1, x

k
j ]
}
, j = 1, . . . , nk,

mk
j := inf

{
f(z) : z ∈ [xkj−1, x

k
j ]
}
, j = 1, . . . , nk,

ning de�neerime lihtsad L-mõõtuvad funktsioonid fk, fk
: [a, b] → R võrdustega

fk :=

nk∑
j=1

Mk
j χ[xk

j−1,x
k
j ]
, f

k
:=

nk∑
j=1

mk
jχ[xk

j−1,x
k
j ]
.

Funktsioonid fk, fk
, k = 1, 2, . . . , on integreeruvad, kusjuures

lim
k→∞

∫
fk = lim

k→∞

nk∑
j=1

Mk
j (x

k
j−1 − xkj ) = lim

k→∞
S(Tk) =

∫
f,

lim
k→∞

∫
f
k
= lim

k→∞

nk∑
j=1

mk
j (x

k
j−1 − xkj ) = lim

k→∞
s(Tk) =

∫
f.

Paneme tähele, et mis tahes x ∈ [a, b] \
⋃∞

k=1{xk1, . . . , xknk−1} korral

lim
k→∞

fk(x) = f(x) ja lim
k→∞

f
k
(x) = f(x).

Ülesanne 4.3. Veenduda selles.

Niisiis
fk → f m-p.k. ja f

k
→ f m-p.k.,

sest hulk
⋃∞

k=1{xk1, . . . , xknk−1} on loenduv ning seega on tema Lebesgue'i mõõt null.
Funktsiooni f tõkestatuse tõttu leidub arv M ⩾ 0 selliselt, et |f(x)| ⩽ M iga
x ∈ [a, b] korral; järelikult iga k ∈ N korral

|Mk
j | ⩽M ja |mk

j | ⩽M, iga j ∈ {1, . . . , nk} korral
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ning seega

|fk(x)| ⩽M ja |f
k
(x)| ⩽M iga x ∈ [a, b] \

∞⋃
κ=1

{xκ1 , . . . , xκnκ−1} korral.

Lebesgue'i tõkestatud koonduvuse teoreemi põhjal on funktsioonid f ja f Lebesgue'i
mõttes integreeruvad lõigus [a,b], kusjuures∫

f = lim
k→∞

∫
fk =

∫
f ja

∫
f = lim

k→∞

∫
f
k
=

∫
f.

Teoreemi 4.2 tõestus. (a). Olgu funktsioon f : [a, b] → R tõkestatud lõigus
[a, b]. Kuna Lemma 4.3 põhjal

∫
f =

∫
f ja

∫
f =

∫
f , siis

funktsioon f on Riemanni mõttes integreeeruv lõigus [a, b]

⇐⇒
∫
f =

∫
f ⇐⇒

∫
f =

∫
f ⇐⇒

∫
(f − f) = 0.

Kuna f − f ⩾ 0, siis f − f ∈ L+
(
[a, b],L[a,b],m[a,b]

)
; järelikult teoreemi 2.8 põhjal∫

(f − f) = 0 ⇐⇒ f − f = 0 m-p.k. ⇐⇒ f = f m-p.k.

⇐⇒ f on pidev m-p.k.

⇐⇒ funktsiooni f katkevuspunktide hulga Lebesgue'i mõõt on null.

(b). Olgu funktsioon f : [a, b] → R Riemanni mõttes integreeruv lõigus [a, b]. Siis
on funktsioon f tõkestatud lõigus [a, b], järelikult väite (a) tõestuse ja Lemma 4.3
põhjal ∫

f =

∫
f =

∫
f =

∫
f = R-

∫
f ja f = f m-p.k.

Kuna f ⩽ f ⩽ f , siis järeldub viimasest võrdusest, et f = f = f m-p.k.; seega on
funktsioon f Lebesgue'i mõttes integreeruv lõigus [a, b], kusjuures∫

f =

∫
f = R-

∫
f.



� 5. Mõõtuvate funktsioonide koonduvustüüpe

Selles paragrahvis vaatleme erinevaid mõõtuvate funktsioonide koonduvustüüpe ning
uurime nende vahekordi.

Olgu X mittetühi hulk ning olgu f, fn : X → R, n = 1, 2, . . . .

De�nitsioon 5.1. Öeldakse, et jada (fn) koondub funktsiooniks f ühtlaselt hul-
gas X, kui iga reaalarvu ε > 0 korral leidub indeks N ∈ N selliselt, et

n ⩾ N =⇒ iga x ∈ X korral |fn(x)− f(x)| < ε.

De�nitsioon 5.2. Öeldakse, et jada (fn) koondub funktsiooniks f punktiviisi hul-
gas X, kui

iga x ∈ X korral lim
n→∞

fn(x) = f(x).

Eeldame nüüd täiendavalt, et (X,A, µ) on mõõduga ruum.

De�nitsioon 5.3. Öeldakse, et jada (fn) koondub funktsiooniks f µ-peaaegu kõikjal
ruumis X (ehk lihtsalt peaaegu kõikjal, kui ruumi X ja mõõdu µ roll on kontekstist
selge) ja kirjutatakse fn → f µ-p.k. või lim

n→∞
fn = f µ-p.k. (või ka lihtsalt fn → f

p.k. või lim
n→∞

fn = f p.k.), kui

leidub hulk A ∈ A selliselt, et µ(Ac) = 0 ja iga x ∈ A korral lim
n→∞

fn(x) = f(x).

Teisisõnu, fn → f µ-p.k. parajasti siis, kui hulk {x ∈ X : fn(x) ̸→ f(x)} on µ-
hüljatav.

Märgime, et peaaegu kõikjal koonduvuse de�nitsioon laieneb ka juhule, kus funk-
tsioonid f ja fn, n = 1, 2, . . . , pole määratud mingis ruumi X µ-hüljatavas alamhul-
gas.

Eeldame nüüd täiendavalt, et funktsioonid f ja fn, n = 1, 2, . . . , on mõõtuvad
ning µ-peaaegu kõikjal lõplikud.

De�nitsioon 5.4. Öeldakse, et jada (fn) koondub funktsiooniks f mõõdu µ järgi
ruumis X (ehk lihtsalt mõõdu järgi, kui ruumi X ja mõõdu µ roll on kontekstist
selge) ja kirjutatakse fn → f mõõdu järgi või µ-lim

n→∞
fn = f , kui

iga δ > 0 korral lim
n→∞

µ
({
x ∈ X : |fn(x)− f(x)| ⩾ δ

})
= 0.

(Juhime tähelepanu, et funktsioonide f ja fn, n = 1, 2, . . . , mõõtuvus garanteerib,
et
{
x ∈ X : |fn(x)− f(x)| ⩾ δ

}
∈ A.)

Ülesanne 5.1. Olgu (X,A, µ) mõõduga ruum ning olgu mõõtuvad funktsioonid f, g, fn : X → R,
n = 1, 2, . . . , sellised, et fn → f mõõdu järgi ja fn → g mõõdu järgi. Tõestada (ilma teoreemi 5.3
kasutamata), et f = g p.k.

Märgime, et mõõdu järgi koonduvuse de�nitsioon laieneb ka juhule, kus funk-
tsioonid f ja fn, n = 1, 2, . . . , pole määratud mingis ruumi X nullmõõduga alam-
hulgas.

100
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Eeldame nüüd täiendavalt, et f, fn ∈ L1(X,A, µ), n = 1, 2, . . . .

De�nitsioon 5.5. Öeldakse, et jada (fn) koondub funktsiooniks f ruumis L1 (ehk
1-keskmiselt e. lihtsalt keskmiselt), kui

lim
n→∞

∫
|fn − f | = 0.

Juhime tähelepanu, et
∫
|fn − f | = ∥fn − f∥L1 ; niisiis mõistetakse koonduvuse all

ruumis L1 (nagu nimetuse järgi oodata ongi) koonduvust Banachi ruumi L1 normi
järgi.

On ilmne, et (mõõduga ruumis)

ühtlane koonduvus =⇒ punktiviisi koonduvus =⇒ koonduvus p.k.

Samuti
ühtlane koonduvus =⇒ mõõdu järgi koonduvus.

Ülesanne 5.2. Olgu (X,A, µ) mõõduga ruum ning olgu f, fn : X → R, n = 1, 2, . . . , mõõtuvad
funktsioonid. Tõestada, et kui fn → f ühtlaselt ruumis X, siis ka fn → f mõõdu järgi.

Vastupidised implikatsioonid üldjuhul ei kehti.

Näide 5.1. Olgu X = R, A = L ja µ = m. (Meenutame, et sümbolid L ja m
tähistavad vastavalt ruumi R Lebesgue'i σ-algebrat ja Lebesgue'i mõõtu ruumis R.)

1. De�neerime funktsioonid fn : R → R, n = 1, 2, . . . , võrdustega

fn =
1

n
χ(0,n).

Siis fn → 0 ühtlaselt hulgas X.
2. De�neerime funktsioonid fn : R → R, n = 1, 2, . . . , võrdustega

fn = χ(n−1,n).

Siis fn → 0 punktiviisi, kuid mitte Lebesgue'i mõõdu järgi ruumis R, sest iga n ∈ N
korral

µ
(
{x ∈ R : |fn(x)− 0| ⩾ 1}

)
= µ

(
(n− 1, n)

)
= 1.

Niisiis, punktiviisi koonduvusest (ning seega ka p.k. koonduvusest) ei järeldu üldjuhul
koonduvust mõõdu järgi (ning seega ka ühtlast koonduvust).

3. De�neerime funktsioonid fn : R → R, n = 1, 2, . . . , võrdustega

fn = nχ[
0,

1
n

).
Siis fn → 0 p.k. (sest iga x ∈ R \ {0} korral fn(x) → 0), kuid mitte punktiviisi (sest
fn(0) → ∞). Niisiis, koonduvusest peaaegu kõikjal ei järeldu üldjuhul punktiviisi
koonduvust.
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Igaühes näidetest 1�3 ∫
R
|fn − 0| dm =

∫
R
|fn| dm = 1;

seega fn ̸→ 0 ruumis L1(R,L,m). Niisiis, ühtlasest koonduvusest (ning seega ka
punktiviisi koonduvusest ja koonduvusest peaaegu kõikjal) ei järeldu üldjuhul koon-
duvust ruumis L1.

Ülesanne 5.3. Olgu (X,A, µ) lõpliku mõõduga ruum ning olgu f, fn ∈ L1(X,A, µ), n = 1, 2, . . . .
Tõestada, et kui fn → f ühtlaselt ruumis X, siis ka fn → f ruumis L1.

4. De�neerime funktsioonid fn : R → R, n = 1, 2, . . . , võrdustega

f1 = χ[0, 1), f2 = χ[
0, 1

2

), f3 = χ[1
2
, 1
),

f4 = χ[
0, 1

4

), f5 = χ[1
4
, 1
2

), f6 = χ[1
2
, 3
4

), f7 = χ[3
4
, 1
),

f8 = χ[
0, 1

8

), f9 = χ[1
8
, 1
4

), . . . . . . .

Siis

lim
n→∞

∫
[a,b]

|fn| dm = 0,

s.t. fn → 0 ruumis L1(R,L,m). Samal ajal iga x ∈ [0, 1) korral fn(x) ̸→ 0. Niisiis,
koonduvusest ruumis L1 ei järeldu üldjuhul koonduvust peaaegu kõikjal.

Teoreem 5.1. Olgu (X,A, µ) mõõduga ruum ning olgu f, fn ∈ L1(X,A, µ), n =
1, 2, . . . . Kui

(1) fn → f p.k.;

(2) leidub funktsioon g ∈ L1 selliselt, et iga n ∈ N korral |fn| ⩽ g p.k.,

siis fn → f ruumis L1.

Tõestus. Kehtigu tingimused (1) ja (2). Piirprotsessis n → ∞ järeldub tingimu-
sest (2), et ka |f | ⩽ g p.k. ning seega

|fn − f | ⩽ |fn|+ |f | ⩽ 2g p.k.

Kuna 2g ∈ L1 ning |fn − f | → 0 p.k., siis Lebesgue'i domineeritud koonduvuse
teoreemi põhjal

lim
n→∞

∫
|fn − f | =

∫
0 = 0,

s.t. fn → f ruumis L1.

Teoreem 5.2. Olgu (X,A, µ) mõõduga ruum ning olgu f, fn ∈ L1(X,A, µ), n =
1, 2, . . . , sellised, et fn → f ruumis L1(X,A, µ). Siis ka fn → f mõõdu järgi.

Teoreem 5.2 väidab, et koonduvusest ruumis L1 järeldub koonduvus mõõdu järgi.
Näitest 5.1, 4, järeldub nüüd, et koonduvusest mõõdu järgi ei järeldu koonduvust p.k.
(sest selles näites fn → f ruumis L1, seega teoreemi 5.2 põhjal ka fn → f mõõdu
järgi; samas ei kehtinud fn → f p.k.).
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Teoreemi 5.2 tõestus. Fikseerime vabalt δ > 0 ja tähistame iga n ∈ N korral

En := {x ∈ X : |f(x)− fn(x)| ⩾ δ}.

Tõestamaks, et fn → f mõõdu järgi, peame näitama, et lim
n→∞

µ(En) = 0.

Iga n ∈ N korral |f − fn| ⩾ δ hulgas En, seega

µ(En) =

∫
χEn ⩽

∫
|f − fn|

δ
χEn =

1

δ

∫
|f − fn|χEn ⩽

1

δ

∫
|f − fn|.

Kuna fn → f ruumis L1, siis lim
n→∞

∫
|f−fn| = 0; seega järeldub viimasest võrratuste-

ahelast, et ka lim
n→∞

µ(En) = 0.

Teoreem 5.3. Olgu (X,A, µ) mõõduga ruum ning olgu mõõtuvad funktsioonid
f, fn : X → R, n = 1, 2, . . . , sellised, et fn → f mõõdu järgi. Siis

(a) leidub osajada (fkn) selliselt, et fkn → f p.k.;

(b) kui mingi mõõtuva funktsiooni g : X → R korral fn → g mõõdu järgi, siis
f = g p.k.

Tõestus. (a). Kuna fn → f mõõdu järgi, siis saame valida kasvava indeksite jada
(kn)

∞
n=1 selliselt, et

µ

({
x ∈ X : |fkn(x)− f(x)| ⩾ 1

n

})
<

1

2n
iga n ∈ N korral.

Tähistame

A :=
∞⋃

m=1

∞⋂
n=m

{
x ∈ X : |fkn(x)− f(x)| < 1

n

}
.

Kuna

µ(Ac) = µ

(
∞⋂

m=1

∞⋃
n=m

{
x ∈ X : |fkn(x)− f(x)| ⩾ 1

n

})

= lim
m→∞

µ

(
∞⋃

n=m

{
x ∈ X : |fkn(x)− f(x)| ⩾ 1

n

})

⩽ lim
m→∞

∞∑
n=m

µ

({
x ∈ X : |fkn(x)− f(x)| ⩾ 1

n

})
⩽ lim

m→∞

∞∑
n=m

1

2n
= 0

(sest rida
∞∑
n=1

1
2n

koondub ja koonduva rea jääkliige koondub nulliks), s.t. µ(Ac) = 0,

siis piisab väite (a) tõestuseks näidata, et iga x ∈ A korral fkn(x) → f(x).
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Olgu x ∈ A. Siis leidub m ∈ N nii, et iga n ⩾ m korral |fkn(x) − f(x)| < 1
n
.

Kuna 1
n
→ 0, siis ka |fkn(x)− f(x)| → 0.

(b). Olgu mõõtuv funktsioon g : X → R selline, et fn → g mõõdu järgi. Teoreemi
väite (a) põhjal leidub leidub jada (fn)

∞
n=1 osajada (fkn)

∞
n=1 selliselt, et fkn → g p.k.

Kuna mõõdu järgi koonduva jada osajada järgi koondub mõõdu järgi samaks funk-
tsiooniks, milleks esialgne jadagi, siis leidub teoreemi väite (a) põhjal jada (fkn)

∞
n=1

osajada (fkln )
∞
n=1 selliselt, et fkln → f p.k. Kuna ilmselt ka fkln → g p.k., siis f = g

p.k.

Järeldus 5.4. Olgu funktsioonid f, fn ∈ L1, n = 1, 2, . . . , sellised, et fn → f ruu-
mis L1. Siis leidub osajada (fkn) selliselt, et fkn → f p.k.

Tõestus. Väide järeldub vahetult teoreemidest 5.2 ja 5.3, (a).

Teoreem 5.5 (Jegorovi2 teoreem3). Olgu (X,A, µ) lõpliku mõõduga ruum (s.t.
µ(X) <∞) ning olgu peaaegu kõikjal lõplikud mõõtuvad funktsioonid f, fn : X → R,
n = 1, 2, . . . , sellised, et fn → f p.k. Siis iga ε > 0 korral leidub hulk A ∈ A selliselt,
et µ(Ac) < ε ning fn → f ühtlaselt hulgas A.

Tõestus. Fikseerime vabalt ε > 0. Olgu hulk B ∈ A selline, et µ(Bc) = 0 ning iga
x ∈ B korral |f(x)|, |fn(x)| < ∞, n = 1, 2, . . . , ja fn(x) → f(x). Tähistame kõikide
k,m ∈ N korral

Bk
m :=

∞⋂
n=m

{
x ∈ B : |fn(x)− f(x)| < 1

k

}
;

siis iga k ∈ N korral Bk
1 ⊂ Bk

2 ⊂ Bk
3 ⊂ · · · , kusjuures

⋃∞
m=1B

k
m = B.

Ülesanne 5.4. Tõestada, et iga k ∈ N korral
⋃∞

m=1B
k
m = B.

Seega iga k ∈ N korral
µ(Bk

m) −−−→
m→∞

µ(B) = µ(X)

ning mõõdu µ lõplikkuse tõttu järelikult

µ
(
Bk

m

c)
= µ(X \Bk

m) = µ(X)− µ(Bk
m) −−−→

m→∞
0.

Seega iga k ∈ N korral leidub indeks m(k) ∈ N nii, et

µ
(
Bk

m(k)

c)
<

ε

2k
.

Tähistame

A :=
∞⋂
k=1

Bk
m(k) =

∞⋂
k=1

∞⋂
n=m(k)

{
x ∈ B : |fn(x)− f(x)| < 1

k

}
;

2Dmitri Jegorov /Dmitriĭ F�doroviq Egorov (1869�1931) � vene/nõukogude matemaatik.
3Itaalia matemaatik Carlo Severini (1872�1951) avaldas selle teoreemi tõestuse aasta varem kui

Jegorov ise (vastavalt 1910 ja 1911)!



� 5. Mõõtuvate funktsioonide koonduvustüüpe 105

siis

µ(Ac) = µ

(
∞⋃
k=1

Bk
m(k)

c

)
⩽

∞∑
k=1

µ
(
Bk

m(k)

c)
<

∞∑
k=1

ε

2k
= ε

ning seega jääb teoreemi tõestuseks näidata, et fn → f ühtlaselt hulgas A.

Ülesanne 5.5. Tõestada, et fn → f ühtlaselt hulgas A.

Olgu (X,A, µ) mõõduga ruum ning olgu f, fn : X → R, n = 1, 2, . . . , peaaegu
kõikjal lõplikud funktsioonid.

De�nitsioon 5.6. Öeldakse, et jada (fn) koondub funktsiooniks f µ-peaaegu ühtla-
selt ruumis X (või lihtsalt peaaegu ühtlaselt, kui ruumiX ja mõõdu µ roll on konteks-
tist selge), kui iga reaalarvu ε > 0 korral leidub hulk A ∈ A selliselt, et µ(Ac) < ε
ja fn → f ühtlaselt hulgas A.

Jegorovi teoreem väidab niisiis, et lõpliku mõõduga ruumis järeldub (peaaegu kõik-
jal lõplike mõõtuvate funktsioonide) peaaegu kõikjal koonduvusest peaaegu ühtlane
koonduvus.

Teoreem 5.6. Olgu (X,A, µ) lõpliku mõõduga ruum (s.t. µ(X) < ∞) ning olgu
peaaegu kõikjal lõplikud mõõtuvad funktsioonid f, fn : X → R, n = 1, 2, . . . , sellised,
et fn → f p.k. Siis ka fn → f mõõdu järgi.

Teoreem 5.6 väidab niisiis, et lõpliku mõõduga ruumis järeldub (peaaegu kõik-
jal lõplike mõõtuvate funktsioonide) peaaegu kõikjal koonduvusest koonduvus mõõdu
järgi.

Tõestus. Teoreemi tõestuseks peame näitama, et iga δ > 0 korral

lim
n→∞

µ
(
{x ∈ X : |fn(x)− f(x)| ⩾ δ}

)
= 0. (5.1)

Fikseerime vabalt δ > 0. Võrduse (5.1) kehtivuseks peame näitama, et iga ε > 0
korral leidub indeks N ∈ N nii, et

n ⩾ N =⇒ µ
(
{x ∈ X : |fn(x)− f(x)| ⩾ δ}

)
< ε.

Fikseerime vabalt ε > 0. Jegorovi teoreemi põhjal leidub hulk A ∈ A selliselt, et
µ(Ac) < ε ja fn → f ühtlaselt hulgas A. Valime indeksi N ∈ N nii, et

n ⩾ N =⇒ |fn(x)− f(x)| < δ iga x ∈ A korral.

Seega, kui n ⩾ N , siis {x ∈ X : |fn(x)− f(x)| ⩾ δ} ⊂ Ac ning järelikult

µ
(
{x ∈ X : |fn(x)− f(x)| ⩾ δ}

)
⩽ µ(Ac) < ε.
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Teoreem 5.7 (Luzini4 teoreem). Olgu funktsioon f : [a, b] → R Lebesgue'i mõttes
mõõtuv. Siis iga reaalarvu ε > 0 korral leidub kompaktne hulk K ⊂ [a, b] selliselt, et
m
(
[a, b] \K

)
< ε ja f |K on pidev.

Sümbol m tähistab siin Lebesgue'i mõõtu ruumis R.

Luzini teoreemi 5.7 tõestus.
∗Ülesanne 5.6. Tõestada Luzini teoreem 5.7.

Näpunäide. Kasutada teoreemi 3.10 (või teoreemi 3.9) ja Jegorovi teoreemi.

Harjutusülesandeid

Ülesanne 5.7. Olgu (X,A, µ) mõõduga ruum ning olgu funktsioonid f, g, fn, gn : X → R, n =
1, 2, . . . , p.k. lõplikud, kusjuures f = g p.k. ja iga n ∈ N korral fn = gn p.k. Tõestada, et kui
fn → f mõõdu järgi, siis ka gn → g mõõdu järgi.

Ülesanne 5.8. Olgu (X,A, µ) mõõduga ruum ning olgu funktsioonid f, g, fn : X → R, n =
1, 2, . . . , p.k. lõplikud. Tõestada, et kui fn → f p.k. ja fn → g mõõdu järgi, siis f = g p.k.

Ülesanne 5.9. Tähistagu sümbol m Lebesgue'i mõõtu ruumis R. Teha kindlaks, kas jada (fn)
∞
n=1

koondub

(1) m-p.k. ruumis R (või koguni punktiviisi ruumis R);

(2) mõõdu m järgi ruumis R,

kui funktsioonid fn : R → R, n = 1, 2, . . . , on de�neeritud võrdustega

(a) fn = χ(n,n+1);

(b) fn = (−1)n nχ[0, 1
n )
;

(c) fn = 1
n χ[ 1

n ,∞);

(d) fn =
(
2− 1

n

)
χ[n−1,n];

(e) fn = (−1)n nχ[n,2n];

(f) fn =
(
3− 1

n

)
χ[−n,n];

(g) fn = χ[n,n+ 1
n ].

4Nikolai Luzin / Nikolaĭ Nikolaeviq Luzin (1883�1950) � vene/nõukogude matemaatik.
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Olgu (X,A, µ)mõõduga ruum. Sümboliga L0(X,A, µ) tähistame kõigi hulgalX pea-
aegu kõikjal määratud p.k. lõplike funktsioonide vektorruumi, kus kaks funktsiooni
loetakse võrdseks, kui nad on võrdsed p.k. Kui ruumi (X,A, µ) roll on kontekstist
selge, kirjutatakse L0(X,A, µ) asemel ka lihtsalt L0(µ) või L0.

Selles punktis anname ruumile L0 meetrilise ruumi struktuuri: me de�neerime

d(f, g) = inf
{{

1
}
∪
{
δ > 0: µ({x ∈ X : |f(x)− g(x)| ⩾ δ}) < δ

}}
, f, g ∈ L0,

ning näitame, et

1◦ d on kaugus ruumis L0;

2◦ jada (fn)
∞
n=1 ⊂ L0 koonduvus funktsiooniks f ∈ L0 kauguse d suhtes on sama-

väärne koonduvusega fn → f mõõdu µ järgi;

3◦ meetriline ruum
(
L0, d

)
on täielik.

Ülesanne 6.1. Tõestada, et kui 0 < α < β ja µ({x ∈ X : |f(x)− g(x)| ⩾ α}) < α, siis ka

µ({x ∈ X : |f(x)− g(x)| ⩾ β}) < β.

Ülesanne 6.2. Tõestada väited 1◦ ja 2◦.

Lahendus. 1◦. Kui f = g ruumis L0, s.t. f = g p.k., siis iga δ > 0 korral

µ
({
x ∈ X : |f(x)− g(x)| ⩾ δ

})
= 0 < δ,

järelikult d(f, g) = 0. Teiselt poolt, kui d(f, g) = 0, siis iga δ > 0 korral

µ({x ∈ X : |f(x)− g(x)| ⩾ δ}) < δ,

aga siit järeldub, et f = g p.k. Tõepoolest, kui see nii, ei oleks, siis mingi β > 0 korral

µ
({
x ∈ X : |f(x)− g(x)| ⩾ β

})
=: α > 0.

Kui nüüd δ < min{α, β}, siis

µ
({
x ∈ X : |f(x)− g(x)| ⩾ δ

})
⩾ µ

({
x ∈ X : |f(x)− g(x)| ⩾ β

})
= α > δ,

vastuolu.
Kuna kauguse sümmeetria aksioon kehtib d puhul ilmsesti, siis jääb näidata, et d rahuldab

kolmnurga võrratust. Olgu f, g, h ∈ L0. Kui d(f, g) = 1 või d(g, h) = 1, siis on võrratuse d(f, h) ⩽
d(f, g) + d(g, h) kehtivus ilmne. Seepärst eeldame, et δ1 := d(f, g) < 1 ja δ2 := d(g, h) < 1.
Fikseerides vabalt ε > 0, piisab näidata, et d(f, h) < δ1 + δ2 + ε, milleks omakorda piisab näidata,
et

µ
({
x ∈ X : |f(x)− g(x)| ⩾ δ1 + δ2 + ε

})
⩽ δ1 + δ2 + ε.

Eeldades üldisust kitsendamata, et f, g, h on kõikjal määratud ja lõplikud, ning tähistades

A0 : = {x ∈ X : |f(x)− g(x)| ⩾ δ1 + δ2 + ε} ,

A1 : =
{
x ∈ X : |f(x)− g(x)| ⩾ δ1 +

ε

2

}
,

A2 : =
{
x ∈ X : |f(x)− g(x)| ⩾ δ2 +

ε

2

}
,

107
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kehtib A0 ⊂ A1 ∪A2, sest kui x ̸∈ A1 ∪A2, s.t. x ∈ Ac
1 ∩Ac

2, siis

|f(x)− h(x)| ⩽ |f(x)− h(x)|+ |f(x)− h(x)| < δ1 +
ε

2
+ δ2 +

ε

2
= δ1 + δ2 + ε,

s.t x ̸∈ A0. Seega

µ(A0) ⩽ µ(A1) + µ(A2) < δ1 +
ε

2
+ δ2 +

ε

2
= δ1 + δ2 + ε.

2◦. Olgu d(fn, f) → 0. Kui d(fn, f) < ε < 1, siis ilmselt

µ({x ∈ X : |fn(x)− f(x)| ⩾ ε}) < ε,

aga siit järeldub, et fn → f mõõdu järgi. Teiselt poolt, kui fn → f mõõdu järgi ja µ({x ∈
X : |fn(x)− f(x)| ⩾ ε}) < ε, siis d(fn, f) < ε, aga siit järeldub, et d(fn, f) → 0.

3◦. Veendumaks, et meetriline ruum (L0, d) on täielik, on otstarbekas tuua sisse
mõiste �mõõdu järgi Cauchy jada�.

De�nitsioon 6.1. Öeldakse et jada (fn)∞n=1 ruumis L0 on mõõdu järgi Cauchy jada,
kui mis tahes reaalarvude δ, ε > 0 korral leidub indeks N ∈ N nii, et

n,m ⩾ N =⇒ µ
(
{x ∈ X : |fn(x)− fm(x)| ⩾ δ}

)
< ε.

Ülesanne 6.3. Tõestada, et jada (fn)
∞
n=1 ⊂ L0 on mõõdu järgi Cauchy jada parajasti siis, kui

mis tahes reaalarvu ε > 0 korral leidub indeks N ∈ N nii, et

n,m ⩾ N =⇒ µ
(
{x ∈ X : |fn(x)− fm(x)| ⩾ ε}

)
< ε.

Paneme tähele, et

2◦◦ jada meetrilises ruumis (L0, d) on Cauchy jada parajasti siis, kui ta on mõõdu
järgi Cauchy jada.

Ülesanne 6.4. Veenduda selles.

Lahendus. Olgu (fn)
∞
n=1 Cauchy jada meetrilises ruumis (L0, d). Kui d(fn, fm) < ε < 1, siis

ilmselt
µ({x ∈ X : |fn(x)− fm(x)| ⩾ ε}) < ε,

aga siit järeldub, et (fn)
∞
n=1 on mõõdu järgi Cauchy jada. Teiselt poolt, kui (fn)∞n=1 on mõõdu

järgi Cauchy jada ja µ({x ∈ X : |fn(x)− fm(x)| ⩾ ε}) < ε, siis d(fn, fm) < ε, aga sellest järeldub,
et (fn)∞n=1 on Cauchy jada meetrilises ruumis (L0, d).

Ruumi (L0, d) täielikkus järeldub nüüd vahetult mõõdu järgi koonduvuse ja kauguse
d suhtes koonduvuse samaväärsusest ning järgnevast teoreemist.

Teoreem 6.1. Olgu jada (fn)
∞
n=1 ⊂ L0 mõõdu järgi Cauchy jada. Siis leidub funk-

tsioon f ∈ L0 nii, et fn → f mõõdu järgi.

Tõestus. Teoreemi tõestuseks piisab konstrueerida osajada (fkn)
∞
n=1 ja funktsioon

f ∈ L0 nii, et fkn → f mõõdu järgi.

Ülesanne 6.5. Koondugu mõõdu järgi Cauchy jada (fn)
∞
n=1 ⊂ L0 mingi osajada (fkn

)∞n=1 mõõdu
järgi funktsiooniks f ∈ L0. Tõestada, et siis ka fn → f mõõdu järgi.
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Lahendus. Üldisust kitsendamata võime eeldada, et f ja fn, n ∈ N, on kõikjal määratud ja
lõplikud. Fikseerime vabalt δ > 0 ja tähistame iga n ∈ N korral

An := {x ∈ X : |fn(x)− f(x)| ⩾ δ}.

Peame näitama, et limn→∞ µ(An) = 0. Selleks paneme tähele, et iga n ∈ N korral Ac
n ⊃ Bc

n ∩ Cc
n,

kus

Bn :=

{
x ∈ X : |fn(x)− fkn

(x)| ⩾ δ

2

}
, Cn :=

{
x ∈ X : |fkn

(x)− f(x)| ⩾ δ

2

}
,

seega An ⊂ Bn ∪ Cn ning järelikult

lim
n→∞

µ(An) ⩽ lim
n→∞

(
µ(Bn) + µ(Cn)

)
= lim

n→∞
µ(Bn) + lim

n→∞
µ(Cn) = 0.

Selleks valime kasvava indeksite jada (kn)
∞
n=1 nii, et iga n ∈ N korral

i, j ⩾ kn =⇒ µ

({
x ∈ X : |fi(x)− fj(x)| ⩾

1

2n

})
<

1

2n
.

Tähistame iga n ∈ N korral

An =

{
x ∈ X : |fkn+1(x)− fkn(x)| ⩾

1

2n

}
(siis µ(An) <

1
2n
) ning

A =
∞⋃

m=1

∞⋂
n=m

Ac
n,

siis

µ(Ac) = µ

(
∞⋂

m=1

∞⋃
n=m

An

)
= lim

m→∞
µ

(
∞⋃

n=m

An

)

⩽ lim
m→∞

∞∑
n=m

µ(An) ⩽ lim
m→∞

∞∑
n=m

1

2n
= 0.

Veendume nüüd, et
(
fkn(x)

)∞
n=1

on iga x ∈ X korral Cauchy jada. Fikseerime
vabalt x ∈ A ja ε > 0. Kui m ∈ N on selline, et x ∈

⋂∞
n=mA

c
n ja

∑∞
j=m

1
2j
< ε, siis

mis tahes n ⩾ m ja p ∈ N korral

∣∣fkn+p(x)− fkn
∣∣ ⩽ n+p−1∑

j=n

∣∣fkj+1
(x)− fkj

∣∣ ⩽ n+p−1∑
j=n

1

2j
<

∞∑
n=m

1

2j
< ε.

Niisiis
(
fkn(x)

)∞
n=1

on Cauchy jada, järelikult ta koondub. De�neerime nüüd funk-
tsiooni

f(x) =

{
limn→∞ fkn(x), x ∈ A;

0, x ̸∈ A,

s.t. f = limn→∞ χA fkn , ja näitame, et fkn → f mõõdu järgi. Fikseerides vabalt
ε > 0, piisab näidata, et leidub indeks m ∈ N nii, et

n ⩾ m =⇒ µ
({
x ∈ X : |fkn(x)− f(x)| ⩾ ε

})
< ε.
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Selleks paneme tähele, et kui x ∈
⋂∞

j=mA
c
j, siis iga n ⩾ m korral

|f(x)− fkn(x)| = lim
N→∞

|fkN (x)− fkn(x)| = lim
N→∞

∣∣∣∣∣
N−1∑
j=n

(
fkj+1

(x)− fkj(x)
)∣∣∣∣∣

⩽
∞∑
j=n

∣∣fkj+1
(x)− fkj(x)

∣∣ < ∞∑
j=n

1

2j
.

Niisiis kui valida m ∈ N nii, et
∑∞

j=m
1
2j
< ε, siis n ⩾ m korral

{
x ∈ X : |fkn(x)− f(x)| ⩾ ε

}
⊂

(
∞⋂

j=m

Ac
j

)c

=
∞⋃

j=m

Aj

ning järelikult

µ
({
x ∈ X : |fkn(x)− f(x)| ⩾ ε

})
⩽ µ

(
∞⋃

j=m

Aj

)
⩽

∞∑
j=m

µ(Aj) ⩽
∞∑

j=m

1

2j
< ε.

Märkus 6.1. Kui (X,A, µ) on lõpliku mõõduga ruum, siis saab ruumis L0(µ) de�-
neerida kauguse ka võrdusega

d(f, g) :=

∫
X

|f(x)− g(x)|
1 + |f(x)− g(x)|

dµ(x), f, g ∈ L0 (6.1)

või
d(f, g) := inf

δ>0

{
δ + µ

(
{x ∈ X : |f(x)− g(x)| ⩾ δ}

)}
, f, g ∈ L0. (6.2)

Osutub, et ka seostega (6.1) ja (6.2) de�neeritud funktsionaalide d puhul kehtivad
väited 1◦, 2◦, 2◦◦ ja 3◦.

Ülesanne 6.6. Tõestada, et seostega (6.1) ja (6.2) de�neeritud funktsionaalide d puhul kehtivad
väited 1◦, 2◦, 2◦◦ ja 3◦.

Lahendus. (6.1). 1◦. Kauguse samasuse ja sümmeetria aksioomide kehtivus on d puhul ilmne,
seega jääb näidata veel kolmnurga võrratuse kehtivus. Olgu f, g, h ∈ L0. Peame näitama, et∫

X

|f(x)− h(x)|
1 + |f(x)− h(x)|

dµ(x) ⩽
∫
X

|f(x)− g(x)|
1 + |f(x)− g(x)|

dµ(x) +

∫
X

|g(x)− h(x)|
1 + |g(x)− h(x)|

dµ(x). (6.3)

Selleks paneme tähele, et kui 0 ⩽ α ⩽ β, siis α + αβ ⩽ β + βα, s.t. α(1 + β) ⩽ β(1 + α), seega
α

1+α ⩽ β
1+β . Niisiis, peaaegu kõikide x ∈ X korral (näiteks alati, kui f(x), g(x) ja h(x) on lõplikud)

|f(x)− h(x)|
1 + |f(x)− h(x)|

⩽
|f(x)− g(x)|+ |g(x)− h(x)|

1 + |f(x)− g(x)|+ |g(x)− h(x)|

=
|f(x)− g(x)|

1 + |f(x)− g(x)|+ |g(x)− h(x)|
+

|g(x)− h(x)|
1 + |f(x)− g(x)|+ |g(x)− h(x)|

⩽
|f(x)− g(x)|

1 + |f(x)− g(x)|
+

|g(x)− h(x)|
1 + |g(x)− h(x)|

,
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järelikult kehtib ka (6.3).
2◦. Eeldame, et fn → f mõõdu järgi ning �kseerime vabalt ε > 0. Siis leidub N ∈ N nii, et

n ⩾ N korral µ(An) <
ε
2 , kus

An :=

{
x ∈ X : |fn(x)− f(x)| ⩾ ε

2µ(X) + 1
δ

}
.

Nüüd n ⩾ N korral

d(fn, f) =

∫
X

|fn(x)− f(x)|
1 + |fn(x)− f(x)|

dµ =

∫
An

|fn(x)− f(x)|
1 + |fn(x)− f(x)|

dµ+

∫
Ac

n

|fn(x)− f(x)|
1 + |fn(x)− f(x)|

dµ

⩽
∫
An

dµ+

∫
Ac

n

ε

2µ(X) + 1
dµ ⩽ µ(An) +

ε

2µ(X) + 1
µ(Ac

n) <
ε

2
+
ε

2
= ε.

Teiselt poolt, eeldame, et d(fn, f) → 0 ning oletame vastuväiteliselt, et fn ̸→ f mõõdu järgi. Siis
mingi ε > 0 korral leidub osajada (fkn

)∞n=1 nii, et iga n ∈ N korral µ(An) ⩾ ε, kus

An :=
{
x ∈ X : |fkn(x)− f(x)| ⩾ ε

}
.

Aga nüüd iga n ∈ N korral, arvestades, et x ∈ An korral |fkn(x)− f(x)| ⩾ ε ning seega

|fkn
(x)− f(x)|

1 + |fkn(x)− f(x)|
⩾

ε

1 + ε

(vt. väite 1◦ tõestus),

d(fkn , f) ⩾
∫
An

|fkn
(x)− f(x)|

1 + |fkn(x)− f(x)|
dµ ⩾

∫
An

ε

1 + ε
dµ =

ε

1 + ε
µ(An) ⩾

ε2

1 + ε
> 0,

vastuolu.
2◦◦. Eeldame, et (fn)∞n=1 on mõõdu järgi Cauchy jada ning �kseerime vabalt ε > 0. Siis leidub

N ∈ N nii, et n,m ⩾ N korral µ(An,m) < ε
2 , kus

An,m :=

{
x ∈ X : |fn(x)− fm(x)| ⩾ ε

2µ(X) + 1

}
.

Nüüd n,m ⩾ N korral

d(fn, fm) =

∫
X

|fn(x)− fm(x)|
1 + |fn(x)− fm(x)|

dµ

=

∫
An,m

|fn(x)− fm(x)|
1 + |fn(x)− fm(x)|

dµ+

∫
Ac

n,m

|fn(x)− fm(x)|
1 + |fn(x)− fm(x)|

dµ

⩽
∫
An,m

dµ+

∫
Ac

n,m

ε

2µ(X) + 1
dµ ⩽ µ(An,m) +

ε

2µ(X) + 1
µ(Ac

n,m) <
ε

2
+
ε

2
= ε.

Teiselt poolt, eeldame, et (fn)∞n=1 on Cauchy jada ruumis (L0, d) ning oletame vastuväiteliselt, et
ta pole mõõdu järgi Cauchy jada. Siis mingi ε > 0 korral leiduvad osajadad (fkn

)∞n=1 ja (fln)
∞
n=1

nii, et iga n ∈ N korral µ(An) ⩾ ε, kus

An :=
{
x ∈ X : |fkn

(x)− fln(x)| ⩾ ε
}
.

Aga nüüd iga n ∈ N korral, arvestades, et x ∈ An korral |fkn
(x)− fln(x)| ⩾ ε ning seega

|fkn(x)− fln(x)|
1 + |fkn

(x)− fln(x)|
⩾

ε

1 + ε
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(vt. väite 1◦ tõestus),

d(fkn
, fln) ⩾

∫
An

|fkn(x)− fln(x)|
1 + |fkn

(x)− fln(x)|
dµ ⩾

∫
An

ε

1 + ε
dµ =

ε

1 + ε
µ(An) ⩾

ε2

1 + ε
> 0,

vastuolu.
3◦. Meetrilise ruumi (L0, d) täielikkus järeldub vahetult väidetest 2◦◦ ja 2◦ teoreemi 6.1 kaudu.

(6.2). 1◦. Kõigepealt, kui f = g p.k., siis ilmselt d(f, g) = 0. Teiselt poolt, olgu d(f, g) = 0. Siis
iga ε > 0 korral leidub α > 0 nii, et

α+ µ
(
{x ∈ X : |f(x)− g(x)| ⩾ α}

)
< ε

ning järelikult (arvestades, et eelneva võrratuse põhjal α < ε)

µ
(
{x ∈ X : |f(x)− g(x)| ⩾ ε}

)
< ε iga ε > 0 korral, (6.4)

aga siit järeldub, et f = g p.k. Tõepoolest, kui see nii, ei oleks, siis mingi β > 0 korral

µ
({
x ∈ X : |f(x)− g(x)| ⩾ β

})
=: α > 0.

Kui nüüd ε < min{α, β}, siis

µ
({
x ∈ X : |f(x)− g(x)| ⩾ ε

})
⩾ µ

({
x ∈ X : |f(x)− g(x)| ⩾ β

})
= α > ε,

mis on vastuolus tingimusega (6.4).
Sümmeetria aksioomi kehtivus on d puhul ilmne, seega jääb näidata veel kolmnurga võrratuse

kehtivus. Olgu f, g, h ∈ L0 kõikjal lõplikud funktsioonid. Fikseerides vabalt ε > 0, piisab näidata,
et

d(f, h) < d(f, g) + d(g, h) + ε.

Selleks valime α, β > 0 nii, et

α+ µ
(
{x ∈ X : |f(x)− g(x)| ⩾ α}

)
< d(f, g) +

ε

2
,

β + µ
(
{x ∈ X : |f(x)− g(x)| ⩾ β}

)
< d(g, h) +

ε

2
.

Aga nüüd, arvestades, et

{x ∈ X : |f(x)− h(x)| ⩾ α+ β}c ⊃ {x ∈ X : |f(x)− g(x)| ⩾ α}c ∩ {x ∈ X : |f(x)− g(x)| ⩾ β}c,

kehtib

{x ∈ X : |f(x)− h(x)| ⩾ α+ β} ⊂ {x ∈ X : |f(x)− g(x)| ⩾ α} ∪ {x ∈ X : |f(x)− g(x)| ⩾ β}

ning järelikult

d(f, h) ⩽ α+ β + µ
(
{x ∈ X : |f(x)− h(x)| ⩾ α+ β}

)
⩽ α+ β + µ

(
{x ∈ X : |f(x)− g(x)| ⩾ α}

)
+ µ

(
{x ∈ X : |f(x)− g(x)| ⩾ β}

)
< d(f, g) +

ε

2
+ d(g, h) +

ε

2
= d(f, g) + d(g, h) + ε.

2◦. Kehtigu d(fn, f) → 0 ning olgu ε > 0. Siis leidub N ∈ N nii, et kui n ⩾ N , siis leidub α > 0
nii, et

α+ µ
(
{x ∈ X : |fn(x)− f(x)| ⩾ α}

)
< ε

ning järelikult kehtib ka (sest eelnevast võrratusest järeldub, et α < ε)

µ
(
{x ∈ X : |fn(x)− f(x)| ⩾ ε}

)
< ε. (6.5)
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Seega fn → f mõõdu järgi. Teiselt poolt, kehtigu fn → f mõõdu järgi ning olgu ε > 0. Siis leidub
N ∈ N nii, et n ⩾ N korral kehtib (6.5). Aga siit järeldub, et n ⩾ N korral d(fn, f) < 2ε. Niisiis,
d(fn, f) → 0.

2◦◦. Eeldame, et (fn)
∞
n=1 on Cauchy jada ruumis (L0, d) ning �kseerime vabalt ε > 0. Siis

leidub N ∈ N nii, et kui n,m ⩾ N , siis leidub α > 0 nii, et

α+ µ
(
{x ∈ X : |fn(x)− fm(x)| ⩾ α}

)
< ε

ning järelikult kehtib ka (sest eelnevast võrratusest järeldub, et α < ε)

µ
(
{x ∈ X : |fn(x)− fm(x)| ⩾ ε}

)
< ε. (6.6)

Seega (fn)
∞
n=1 on mõõdu järgi Cauchy jada. Teiselt poolt, eeldame, et (fn)

∞
n=1 on mõõdu järgi

Cauchy jada ning �kseerime vabalt ε > 0. Siis leidub N ∈ N nii, et n,m ⩾ N korral kehtib (6.6).
Aga siit järeldub, et n,m ⩾ N korral d(fn, fm) < 2ε. Niisiis, (fn)∞n=1 on Cauchy jada ruumis
(L0, d).

3◦. Meetrilise ruumi (L0, d) täielikkus järeldub vahetult väidetest 2◦◦ ja 2◦ teoreemi 6.1 kaudu.
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Kõikjal selles paragrahvis on (X,A, µ) mõõduga ruum.
Selles paragrahvis tutvustame veel mõningaid skeeme integraali de�neerimiseks.

7.1. L1 kui integreeruvate lihtsate mõõtuvate funktsioonide
ruumi täield

Selles skeemis de�neeritakse kõigepealt lihtsa mõõtuva funktsiooni integreeruvus:
lihtne mõõtuv funktsioon ϕ : X → R loetakse integreeruvaks, kui

n∑
j=1

|αj|µ(Aj) <∞,

kus ϕ =
∑n

j=1 αj χAj
(n ∈ N, αj ∈ R, Aj ∈ A, j = 1, . . . , n) on funktsiooni ϕ

standardesitus. Kui ϕ on integreeruv, siis integraal temast de�neeritakse võrdusega∫
X

ϕ dµ =
n∑

j=1

αj µ(Aj).

Märkus 7.1. Lebesgue'i integraali tähistava sümboli
∫
X
ϕ dµ kasutamine antud

kontekstis on õigustatud asjaoluga, et lihtsa mõõtuva funktsiooni integreeruvus ja
integraal ülaltoodud de�nitsiooni järgi langevad kokku tema integreeruvuse ja in-
tegraaliga Lebesgue'i mõttes.

Peaaegu kõikjal määratud funktsioon f : X → R loetakse selles skeemis integ-
reeruvaks, kui leidub integreeruvate lihtsate mõõtuvate funktsioonide jada (ϕn)

∞
n=1

nii, et

1◦ ϕn → f µ-p.k.;

2◦
∫
X
|ϕn − ϕm| dµ −−−−→

n,m→∞
0.

Integraal funktsioonist f de�neeritakse sel juhul võrdusega

If = lim
n→∞

∫
X

ϕn dµ. (7.1)

Märkus 7.2. Sümbolit If integraali tähisena kasutame siin eristamaks (ajutiselt)
ülaltoodud viisil de�neeritud integraali Lebesgue'i integraalist

∫
X
f dµ. Tegelikult,

nagu me ka kohe veendume, on funktsiooni f integreeruvus ülaltoodud mõttes sama-
väärne tema integreeruvusega Lebesgue'i mõttes, kusjuures ka vastavad integraalid
on võrdsed: If =

∫
X
f dµ.

114
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Veendumaks integraali If de�nitsiooni korrektsuses, tuleb näidata, et, esiteks, piirväärtus (7.1)
eksisteerib � selleks paneme tähele, et

(∫
X
ϕn dµ

)∞
n=1

on Cauchy jada ruumis R:∣∣∣∣∫
X

ϕn dµ−
∫
X

ϕm dµ

∣∣∣∣ ⩽ ∫
X

|ϕn − ϕm| dµ −→
n,m→∞

0;

ning, teiseks, piirväärtus (7.1) ei sõltu tingimusi 1◦ ja 2◦ rahuldava jada (ϕn) valikust. Selleks
vaatleme lihtsate mõõtuvate funktsioonide jadasid (ϕn)

∞
n=1 ja (ψn)

∞
n=1, mille korral

ϕn, ψn −→
n→∞

f µ-p.k. ja
∫
X

|ϕn − ϕm| dµ,
∫
X

|ψn − ψm| dµ −→
n,m→∞

0,

ning veendume, et

lim
n→∞

∫
X

ϕn dµ = lim
n→∞

∫
X

ψn dµ. (7.2)

Selleks paneme kõigepealt tähele, et (ϕn − ψn)
∞
n=1 on Cauchy jada ruumis L1(µ), sest∫

X

|(ϕn − ψn)− (ϕm − ψm)| dµ ⩽
∫
X

|ϕn − ϕm| dµ+

∫
X

|ψn − ψm| dµ −→
n,m→∞

0.

Ruumi L1(µ) täielikkuse tõttu leidub funktsioon g ∈ L1(µ) nii, et ϕn − ψn → g ruumis L1(µ).
Teoreemi 5.2 põhjal ka ϕn − ψn → g mõõdu järgi; niisiis teoreemi 5.3 põhjal leidub osajada
(ϕkn

−ψkn
)∞n=1 nii, et ϕkn

−ψkn
−−−−→
n→∞

g p.k. Teiselt poolt, ϕkn
−ψkn

= (ϕkn
−f)+(f−ψkn

) −−−−→
n→∞

0

p.k., järelikult g = 0 p.k., s.t. ϕn − ψn → 0 ruumis L1(µ); seega ka∣∣∣∣ limn→∞

∫
X

ϕn dµ− lim
n→∞

∫
X

ψn dµ

∣∣∣∣ ⩽ lim
n→∞

∫
X

|ϕn − ψn| dµ = 0,

s.t. (7.2) kehtib, nagu soovitud.

Osutub, et funktsioon f on integreeruv ülaltoodud mõttes parajasti siis, kui ta on
integreeruv Lebesgue'i mõttes, kusjuures sel juhul If =

∫
X
f dµ.

Ülesanne 7.1. Veenduda selles.

Lahendus. Olgu peaaegu kõikjal määratud funktsioon f : X → R integreeruv Lebesgue'i mõttes
(s.t. f ∈ L1(µ)). Kuna teoreemi 3.8 põhjal on integreeruvate lihtsate mõõtuvate funktsioonide
alamruum kõikjal tihe ruumis L1(µ), siis leidub integreeruvate lihtsate mõõtuvate funktsioonide
jada (ϕn)

∞
n=1 nii, et ϕn → f ruumis L1(µ), seega teoreemi 5.2 põhjal ka ϕn → f mõõdu järgi,

niisiis teoreemi 5.3 põhjal võime osajadale üle minnes eeldada, et ϕn → f p.k. Kuna (ϕn) kui
ruumis L1(µ) koonduv jada on Cauchy jada, siis ka

∫
X
|ϕn − ϕm| −−−−−→

n,m→∞
0. Niisiis on funktsioon

f integreeruv selles punktis antud de�nitsiooni mõttes. Veendumaks, et If =
∫
X
f dµ, paneme

tähele, et
∫
X
f dµ = limn→∞

∫
X
ϕn dµ, sest∣∣∣∣∫

X

f dµ−
∫
X

ϕn dµ

∣∣∣∣ ⩽ ∫
X

|f − ϕn| dµ −→
n→∞

0. (7.3)

Teiselt poolt, olgu peaaegu kõikjal määratud funktsioon f : X → R integreeruv käesolevas
punktis antud de�nitsiooni mõttes, s.t. leidugu integreeruvate lihtsate mõõtuvate funktsioonide
jada (ϕn)

∞
n=1, mis rahuldab tingimusi 1◦ ja 2◦. Tingimus 2◦ ütleb, et (ϕn) on Cauchy jada ruumis

L1(µ). Kuna ruum L1(µ) on täielik, siis jada (ϕn) koondub ruumis L1(µ) mingiks funktsiooniks
g ∈ L1(µ). Teoreemi 5.2 põhjal ka ϕn → g mõõdu järgi, niisiis teoreemi 5.3 põhjal leidub osajada
(ϕkn)

∞
n=1 nii, et ϕkn −−−−→

n→∞
g p.k. Kuna ilmselt ka ϕkn −−−−−→

n,m→∞
f p.k. (sest peaaegu kõikjal

koonduva jada osajada koondub peaaegu kõikjal samaks piirväärtuseks, milleks esialgne jadagi), siis
f = g p.k. Aga siit järeldub, et f ∈ L1(µ), kusjuures f = g ruumis L1(µ), niisiis ka ϕn → f ruumis
L1(µ), s.t.

∫
X
|f −ϕn| dµ→ 0. Seega kehtib ka seos (7.3), niisiis

∫
X
f dµ = limn→∞

∫
X
ϕn dµ = If .
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7.2. Lebesgue'i integraal kui �vahetatud telgedega
Riemanni integraal�

Olgu f lõigus [a, b] tõkestatud funktsioon.
Kui T tähistab lõigu [a, b] tükeldust punktidega a = x0 < x1 < x2 < · · · <

xn−1 < xn = b (n ∈ N), siis tükeldusele T vastavad funktsiooni f Darboux' ülem-
summa ja Darboux' alamsumma on de�neeritud võrdustega

S(T ) =
n∑

j=1

Mj (xj − xj−1) ja s(T ) =
n∑

j=1

mj (xj − xj−1),

kus

Mj = sup
{
f(z) : z ∈ [xj−1, xj]

}
ja mj = inf

{
f(z) : z ∈ [xj−1, xj]

}
, j ∈ {1, . . . , n}.

Teame, et funktsioon f on Riemanni mõttes integreeruv lõigus [a, b] parajasti siis,
kui tema Darboux' summade vahe

S(T )− s(T ) =
n∑

j=1

(Mj −mj) (xj − xj−1) =
n∑

j=1

ωj (xj − xj−1)

läheneb nullile tükelduse T pikima osalõigu pikkuse lähenemisel nullile. Siit nähtub,
et kui funktsioon f pole Riemanni mõttes integreeruv, siis selle põhjuseks on asjaolu,
et lõigu [a, b] kuitahes lühikestel osalõikudel [xj−1, xj] võib selle funktsiooni täisvõnge
ωj olla �liiga suur�. See tähelepanek viib mõttele Darboux' summade moodustamise
ideoloogiat muuta: tuleks vaadelda lõigu [a, b] niisugust tüüpi tükeldusi Lebesgue'i
mõttes mõõtuvateks hulkadeks, et kui seda tüüpi tükeldus on teatavas mõttes �piisa-
valt peen�, siis funktsiooni f täisvõnge neil hulkadel on soovitult väike. Lebesgue'i
mõttes mõõtuva funktsiooni korral võib sellised �modi�tseeritud Darboux' summad�
moodustada näiteks traditsiooniliste Darboux' summade moodustamise skeemis x-
telje ja y-telje rollide vahetamise teel. Viime selle idee ellu veidi üldisemas kontekstis,
vaadeldes lõigu [a, b] asemel suvalist lõpliku mõõduga ruumi.

Niisiis, olgu (X,A, µ) lõpliku mõõduga ruum ning olgu f : X → R tõkestatud
mõõtuv funktsioon. Olgu (a, b) ⊂ R selline (tõkestatud) vahemik, mis sisaldab funk-
tsiooni f väärtuste hulga. Tähistame tähega T vahemiku (a, b) tükelduse punktidega
a = y0 < y1 < y2 < · · · < yn−1 < yn = b (n ∈ N) ning

Aj := f−1
[
[yj−1, yj)

]
=
{
x ∈ X : f(x) ∈ [yj−1, yj)

}
, j ∈ {1, . . . , n}.

(Siin võib juhtuda ka, et Aj = ∅ mingi(te) j ∈ {1, . . . , n} korral.) Tükeldusele T
vastavad funktsiooni f Lebesgue'i ülemsumma S(T ) ja Lebesgue'i alamsumma s(T )
de�neeritakse võrdustega

S(T ) =
n∑

j=1

yj µ(Aj) ja s(T ) =
n∑

j=1

yj−1 µ(Aj).
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Märkus 7.3. Eeldus funktsiooni f mõõtuvuse kohta on vajalik selleks, et hulgad
Aj = f−1

[
[yj−1, yj)

]
kuuluksid mõõdu µ määramispiirkonda A.

Analoogiliselt Darboux' summadega on lihtne näidata, et

(1) kui funktsiooni f väärtuste hulka sisaldava vahemiku (a, b) tükeldus T ′ on
saadud tema tükelduse T punktidele uute punktide lisamise teel, siis

S(T ′) ⩽ S(T ) ja s(T ′) ⩾ s(T ),

s.t. tükelduse peenendamisel Lebesgue'i ülemsumma ei kasva ja Lebesgue'i alam-
summa ei kahane;

(2) suvaliste funktsiooni f väärtuste hulka sisaldavate vahemike (a, b) ja (a′, b′)
mis tahes tükelduste T ja T ′ korral

S(T ) ⩾ s(T ′),

s.t. ükski Lebesgue'i ülemsumma pole väiksem ühestki Lebesgue'i alamsummast.

Ülesanne 7.2. Tõestada väited (a) ja (b).

Siit järeldub, et

(a) funktsiooni f kõikvõimalike Lebesgue'i ülemsummade hulk on alt tõkestatud
(alumiseks tõkkeks on funktsiooni f suvaline Lebesgue'i alamsumma);

(b) funktsiooni f kõikvõimalike Lebesgue'i alamsummade hulk on ülalt tõkestatud
(ülemiseks tõkkeks on funktsiooni f suvaline Lebesgue'i ülemsumma).

Niisiis me saame de�neerida funktsiooni f ülemise integraali IXf ja alumise integ-
raali IXf võrdustega

IXf = inf{S : S on funktsiooni f Lebesgue'i ülemsumma}

ja
IXf = sup{s : s on funktsiooni f Lebesgue'i alamsumma}.

Funktsioon f loetakse integreeruvaks, kui tema ülemine integraal ja alumine in-
tegraal on võrdsed; integraal IXf funktsioonist f de�neeritakse sel juhul kui tema
ülemise ja alumise integraali ühine väärtus:

IXf = IXf = IXf.

Paneme tähele, et iga tõkestatud mõõtuv funktsioon f : X → R on ülaltoodud
de�nitsiooni mõttes integreeruv.
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Tõepoolest, �kseerime vabalt ε > 0. Veendumaks funktsiooni f integreeruvuses ülaltoodud
mõttes, piisab leida mingi funktsiooni f väärtuste hulka Y sisaldava vahemiku (a, b) tükeldus T ,
mille korral

S(T )− s(T ) < ε.

Kui (a, b) ⊃ Y on suvaline ning T on selle vahemiku tükeldus punktidega a = y0 < y1 < y2 < · · · <
yn−1 < yn = b (n ∈ N), mille korral

∆ = ∆(T ) := max
1⩽j⩽n

(yj − yj−1) <
ε

µ(X) + 1
,

siis, tähistades nagu ennegi Aj := f−1
[
[yj−1, yj)

]
, j ∈ {1, . . . , n},

S(T )− s(T ) =

n∑
j=1

yj µ(Aj)−
n∑

j=1

yj−1 µ(Aj) =

n∑
j=1

(yj − yj−1)µ(Aj)

⩽ ∆

n∑
j=1

µ(Aj) = ∆µ(X) ⩽
ε

µ(X) + 1
µ(X) < ε.

Ülesanne 7.3. Tõestada, et integraal IXf on funktsiooni f Lebesgue'i summade piirväärtus, s.t.
iga reaalarvu ε > 0 korral leidub reaalarv δ > 0 nii, et kui T on mingi funktsiooni f väärtuste
hulka sisaldava vahemiku (a, b) tükeldus punktidega a = y0 < y1 < y2 < · · · < yn−1 < yn = b
(n ∈ N), mille korral

∆(T ) = max
1⩽j⩽n

(yj − yj−1) < δ,

siis mis tahes ηj ∈ [yj−1, yj ], j ∈ {1, . . . , n}, korral∣∣∣∣∣∣
n∑

j=1

ηj µ(Aj)− IXf

∣∣∣∣∣∣ < ε,

kus, nagu ennegi, Aj := f−1
[
[yj−1, yj)

]
, j ∈ {1, . . . , n}.

Lahendus. Fikseerime vabalt ε > 0. Eelnevast näeme, et kui T on mingi f väärtuste hulka
sisaldava vahemiku (a, b) tükeldus punktidega a = y0 < y1 < y2 < · · · < yn−1 < yn = b (n ∈ N),
mille korral ∆(T ) < ε

µ(X)+1 , siis S(T )−s(T ) < ε, järelikult, arvestades, et mis tahes ηj ∈ [yj−1, yj ],
j ∈ {1, . . . , n}, korral

s(T ) ⩽
n∑

j=1

ηj µ(Aj) ⩽ S(T ), s(T ) ⩽ IXf ⩽ S(T ),

siis kehtib ka ∣∣∣∣∣∣
n∑

j=1

ηj µ(Aj)− IXf

∣∣∣∣∣∣ ⩽ S(T )− s(T ) < ε,

Veelgi enam, integraal IXf langeb kokku funktsiooni f Lebesgue'i integraaliga:

IXf =

∫
X

f dµ.

Ülesanne 7.4. Veenduda selles.

Lahendus. Olgu (a, b) mingi funktsiooni f väärtuste hulka sisaldav vahemik. Iga m ∈ N korral
valime selle vahemiku tükelduse Tm punktidega a = ym0 < ym1 < ym2 < · · · < ymnm−1 < ymnm

= b
(nm ∈ N), mille korral ∆(Tm) = max1⩽j⩽nm

(ymj − ymj−1) <
1
m , ning de�neerime funktsiooni

ϕm =

nm∑
j=1

ymj χAm
j
,
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kus Am
j := f−1

[
[ymj−1, y

m
j )
]
, j ∈ {1, . . . , nm}. Eelmise ülesande põhjal∫

X

ϕm dµ =

nm∑
j=1

ymj µ(Am
j ) −→

m→∞
IXf.

Teiselt poolt, kuna ϕm → f (isegi ühtlaselt), siis Lebesgue'i tõkestatud koonduvuse teoreemi põhjal∫
X

ϕm dµ −→
m→∞

∫
X

f dµ.

De�neerime nüüd integraali juhul, kui (X,A, µ) on suvaline (võimalik, et lõpma-
tu) mõõduga ruum ning f : X → R on mittenegatiivne mõõtuv funktsioon. Siin
eeldame täiendavalt, et funktsioon f on p.k. lõplik ning

(•) hulk {x ∈ X : f(x) ̸= 0} on σ-lõplik.

Tähistame
E :=

{
E ∈ A : µ(E) <∞ ja f |E on tõkestatud

}
.

Integraal funktsioonist f de�neeritakse võrdusega

IXf = sup
E∈E

IEf.

See de�nitsioon on korrektne, sest

(1) kogum E on mittetühi, sest ∅ ∈ E ;

(2) iga E ∈ E korral µ(E) <∞ ja f |E on tõkestatud, seega on integraal IEf selles
skeemis juba de�neeritud.

Märkus 7.4. Eeldus funktsiooni f peaaegu kõikjal lõplikkuse kohta on tehtud välis-
tamaks juhtu, kus mingi D ∈ A, µ(D) > 0, korral f |D = ∞, kuid IXf < ∞ �
olukord, mis ei vasta meie ootustele integraali suhtes. Eeldus (•) funktsiooni f jaoks
on tehtud välistamaks juhtu, kus µ

(
{x ∈ X : f(x) > 0}

)
> 0, kuid iga hulga E ∈ E

korral µ(E) = 0 (s.t. f saab olla tõkestatud ainult nullmõõduga hulkadel). Niisugusel
juhul tuleks funktsiooni f integraal 0, mis ei vasta ilmselt meie ootustele integraali
suhtes.

Ülesanne 7.5. Rahuldagu mittenegatiivne mõõtuv funktsioon f : X → R tingimusi (•) ja µ
(
{x ∈

X : f(x) > 0}
)
> 0. Tõestada, et leidub hulk E ∈ E nii, et µ(E) > 0.

Lahendus. Hulga A := {x ∈ X : 0 < f(x) < ∞} σ-lõplikkuse tõttu leiduvad hulgad Aj ∈ A,
j ∈ N, nii, et A1 ⊂ A2 ⊂ · · · , µ(Aj) <∞, j ∈ N, ja A =

⋃∞
j=1Aj . Kuna limj→∞ µ(Aj) = µ(A) > 0,

siis mingi i ∈ N korral µ(Ai) > 0. Tähistame Bk = Ai ∩ {x ∈ X : f(x) ⩽ k}, k ∈ N, siis
Ai =

⋃∞
k=1Bk, seega limk→∞ = µ(Ai) > 0, järelikult leidub l ∈ N nii, et µ(Bl) > 0. Nüüd Bl ∈ E ,

sest f |Bl
on tõkestatud (sest iga x ∈ Bl korral f(x) ⩽ l).

Osutub, et iga tingimust (•) rahuldava p.k. lõpliku mittenegatiivse mõõtuva
funktsiooni f korral langeb integraal IXf kokku tema Lebesgue'i integraaliga: IXf =∫
X
f dµ.

Ülesanne 7.6. Veenduda selles.
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Lahendus. Rahuldagu mittenegatiivne mõõtuv funktsioon f : X → R tingimust (•). Ühelt poolt,
kui E ∈ E , siis

∫
X
f dµ ⩾

∫
E
f dµ = IEf , seega ka∫

X

f dµ ⩾ sup
{
JEf : E ∈ A, µ(E) <∞

}
= IXf.

Teiselt poolt, olgu hulgad Am ∈ A, µ(Am) <∞, m ∈ N, A1 ⊂ A2 ⊂ · · · , sellised, et

{x ∈ X : f(x) > 0} =

∞⋃
j=1

Am.

Tähistame iga m ∈ N korral

Em := Am ∩ {x ∈ X : f(x) ⩽ m} ∈ E

siis f χEm
↗ f µ-p.k., seega monotoonse koonduvuse teoreemi põhjal∫

X

f dµ = lim
m→∞

∫
X

f χEm dµ = lim
m→∞

∫
Em

f dµ = lim
m→∞

IEmf ⩽ IXf.

Märkus 7.5. Selles punktis kirjeldatavas skeemis kasutatakse mittenegatiivse mõõ-
tuva (võimalik, et tõkestamata) funktsiooni f : X → R integraali de�neerimiseks
(juhul, kui µ(X) võib olla ka lõpmatu) sageli ka teistsugust moodust. Näiteks võib
kõigepealt de�neerida integraali (võimalik, et tõkestamata) mõõtuvast funktsioonist
f : X → R eeldusel, et X on lõpliku mõõduga ruum, s.t. µ(X) < ∞, järgmiselt:
kõigepealt de�neerime iga m ∈ N korral funktsiooni

fm(x) =

{
f(x), kui f(x) ⩽ m;

m, kui f(x) > m,
x ∈ X;

siis funktsioon fm on tõkestatud, seega on integraal IXfm selles skeemis juba de�-
neeritud. Niisiis me võime de�neerida integraali JXf funktsioonist f üle ruumi X
võrdusega

JXf = lim
m→∞

IXfm

(märgime, et see (lõplik või lõpmatu) piirväärtus eksisteerib, sest jada (IXfm)∞m=1 on
mittekahanev). Paneme tähele, et fm ↗ f , seega monotoonse koonduvuse teoreemi
põhjal

JXf = lim
m→∞

IXfm = lim
m→∞

∫
X

fm dµ =

∫
X

f dµ.

De�neerimaks integraali JXf juhul, kus (X,A, µ) on suvaline (võimalik, et lõp-
matu) mõõduga ruum, eeldame täiendavalt, et f rahuldab tingimust (•). Sellisel
juhul de�neerime

JXf = sup
{
JEf : E ∈ A, µ(E) <∞

}
.

(See de�nitsioon on korrektne, sest vähemalt üks niisugune lõpliku mõõduga hulk
E ∈ A on olemas � tühi hulk ∅ � ning iga niisuguse hulga E jaoks oleme integraali
JEf juba de�neerinud.)

Märgime, et eeldus (•) funktsiooni f jaoks on siin tehtud välistamaks juhtu, kus mingite
D ∈ A, µ(D) = ∞, ja M > 0 korral f |D ⩾ M , kuid JXf < ∞ � olukord, mis ilmselt ei vasta
meie ootustele integraali suhtes.
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Ülesanne 7.7. Rahuldagu mittenegatiivne mõõtuv funktsioon f : X → R tingimust (•) ning olgu
JXf <∞. Tõestada, et suvalise M > 0 korral µ

(
{x ∈ X : f(x) ⩾M}

)
<∞.

Lahendus. Oletame vastuväiteliselt, et mingi M > 0 korral

µ(A) = ∞, kus A := {x ∈ X : f(x) ⩾M}.

Eelduse (•) põhjal on hulk A σ-lõplik, seega leiduvad hulgad Aj ∈ A, µ(Aj) <∞, j ∈ N, A1 ⊂ A2

⊂ · · · , nii, et A =
⋃∞

j=1Aj . Nüüd limj→∞ µ(Aj) = µ(A) = ∞, seega

JXf ⩾ JBjf =

∫
Bj

f dµ ⩾M µ(Bj) −→
j→∞

∞,

s.t. JXf = ∞, mis on vastuolus eeldusega.

Osutub, et iga tingimust (•) rahuldava mittenegatiivse mõõtuva funktsiooni f
korral langeb integraal JXf kokku tema Lebesgue'i integraaliga: JXf =

∫
X
f dµ.

Ülesanne 7.8. Veenduda selles.

Lahendus. Rahuldagu mittenegatiivne mõõtuv funktsioon f : X → R tingimust (•). Ühelt poolt,
kui E ∈ A, µ(E) <∞, siis

∫
X
f dµ ⩾

∫
E
f dµ = JEf , seega ka∫

X

f dµ ⩾ sup
{
JEf : E ∈ A, µ(E) <∞

}
= JXf.

Teiselt poolt, kui hulgad Aj ∈ A, µ(Aj) <∞, j ∈ N, A1 ⊂ A2 ⊂ · · · , on sellised, et

{x ∈ X : f(x) > 0} =

∞⋃
j=1

Aj ;

siis f χAm
↗ f , seega monotoonse koonduvuse teoreemi põhjal∫

X

f dµ = lim
m→∞

∫
X

f χAm dµ = lim
m→∞

∫
Am

f dµ = lim
m→∞

JAmf ⩽ JXf.

Niisiis oleme vaadeldavas skeeemis de�neerinud mittenegatiivsete (mõõtuvate)
funktsioonide integreeruvuse ja integraali ning veendunud, et need mõisted lange-
vad kokku integreeruvuse ja integraaliga Lebesgue'i mõttes. Veelgi üldisemate funk-
tsioonide (kõigepealt mõõtuvate funktsioonide f : X → R ja seejärel peaaegu kõikjal
määratud funktsioonide f : X → R) integreeruvus ja integraal de�neeritakse selles
skeemis samuti nagu paragrahvis 3.

7.3. Danielli skeem

Kõikjal selles punktis on X mingi mittetühi hulk.

7.3.1. Elementaarsed funktsioonid ja elementaarne integraal

Olgu H mingi tõkestatud funktsioonide X → R vektorruum (kus tehted on de�-
neeritud loomulikul viisil, s.t. punktiviisi), mis rahuldab tingimust

h ∈ H =⇒ |h| ∈ H.

Vektorruumi H elemente nimetame edaspidi �elementaarfunktsioonideks�.
Märgime, et mis tahes h, k ∈ H korral
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(a) h+, h− ∈ H;

8b) max{h, k},min{h, k} ∈ H;

Tõepoolest,

Rahuldagu funktsionaal I : H → R tingimusi

I I(αh+ βk) = αIh+ βIk kõikide α, β ∈ R ja h, k ∈ H korral
(s.t. I on lineaarne funktsionaal);

II h ∈ H, h ⩾ 0 ⇒ Ih ⩾ 0
(s.t. I on positiivne funktsionaal); 5

III hn ∈ H, n ∈ N, hn ↘ 0 ⇒ Ihn → 0.

Funktsionaali I nimetame edaspidi elementaarintegraaliks.
Tingimustest I ja II järeldub, et mis tahes h, k ∈ H korral

(a) h ⩽ k ⇒ Ih ⩽ Ik;

(b) Ih ⩽ Ih+ ⩽ I|h|, Ih ⩾ I(−|h|) = −I(|h|), |Ih| ⩽ I(|h|).

7.3.2. Hüljatavad hulgad

De�nitsioon 7.1. Öeldakse, et hulk Z ⊂ X on hüljatav, kui iga ε > 0 korral leidub
mittenegatiivsete funktsioonide jada (hn) ⊂ H, hn ↗, nii, et

sup
n
hn(x) ⩾ 1 iga x ∈ Z korral,

kuid
sup
n
Ihn ⩽ ε.

On selge, et näiteks ∅ on hüljatav hulk � me võime võtta eelnevas de�nitsioonis
hn = 0, n ∈ N. Paneme tähele, et hüljatavate hulkade ülimalt loenduva kogumi ühend
on hüljatav hulk.

Tõepoolest, tühja hulga hüljatavuse tõttu piisab selleks näidata, et hüljatavate hulkade loenduv
ühend on hüljatav. Olgu Zi ⊂ X, i ∈ N, hüljatavad hulgad ning olgu ε > 0. Valime iga i ∈ N korral
jada (hin)

∞
n=1 ⊂ H, hin ↗, nii, et

sup
n
hin(x) ⩾ 1 iga x ∈ Zi korral ja sup

n
Ihin ⩽

ε

2i

ja tähistame hn = max1⩽i⩽n h
i
n. Kuna iga i ∈ N korral hin ↗, siis iga n ∈ N korral

hn = max
1⩽i⩽n

hin ⩽ max
1⩽i⩽n

hin+1 ⩽ max
1⩽i⩽n+1

hin+1 = hn+1,

s.t. hn ↗. Edasi, kui x ∈
⋃∞

i=1 Zi, kusjuures j ∈ N on selline, et x ∈ Aj , siis, arvestades, et hjn ↗,

sup
n∈N

hn(x) ⩾ sup
n⩾j

hn(x) ⩾ sup
n⩾j

hjn(x) = sup
n∈N

hjn(x) ⩾ 1.

Ning lõpuks, iga n ∈ N korral

Ihn = I

(
max
1⩽i⩽n

hin

)
= I

(
n∑

i=1

hin

)
=

n∑
i=1

Ihin ⩽
n∑

i=1

1

2i
< 1.

Siia vahele tuleb veel omadusi.....
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7.3.3. Klass L+

Sümboliga L+ tähistame selliste funktsioonide f : X → R∪{∞} klassi, mille korral
leidub jada (hn) ⊂ H nii, et

hn ↗ f p.k.

ning integraalide jada (Ihn) on ülalt tõkestatud, s.t. leidub C ∈ R nii, et

Ihn ⩽ C iga n korral.

Paneme tähele, et iga funktsioon f ∈ L+ on p.k. lõplik.

Tõepoolest,

Integraal funktsioonist f ∈ L+ de�neeritakse võrdusega

If = lim
n
Ihn,

kus jada (hn) ⊂ H on selline, et hn ↗ f , kusjuures jada (Ihn) on ülalt tõkestatud.

Veendumaks selle de�nitsiooni korrektsuses, paneme esmalt tähele, et kuna Ihn ↗, siis eksis-
teerib lõplik piirväärtus limn Ihn. Edasi, mis tahes jada (gn) ⊂ H, gn ↗ f , korral

|Ign − Ihn| = |I(gn − hn)| ⩽ I
(
|gn − hn|

)
;

kuna
|gn − hn| ⩽ |gn − fn|+ |fn − hn| = (fn − gn) + (fn − hn),

kusjuures fn − gn ↘ 0 ja fn − hn ↘ 0, siis ka I(fn − gn) ↘ 0 ja I(fn − hn) ↘ 0, niisiis

|Ign − Ihn| ⩽ I
(
|gn − hn|

)
⩽ I(fn − gn) + I(fn − hn) → 0,

s.t. limn→∞ Ign = limn→∞ Ihn.

Märgime, et
Märgime, et

(a) kui f, g ∈ L+, siis ka f + g ∈ L+, kusjuures

I(f + g) = If + Ig;

(b) kui f ∈ L+ ja α ⩾ 0, siis ka αf ∈ L+, kusjuures

I(αf) = αIf ;

(c) kui f ∈ L+, f ⩾ 0 p.k., siis ka
If ⩾ 0.

(d) kui f, g ∈ L+, siis ka max{f, g},min{f, g} ∈ L+.

Lause 7.1. Olgu jada (fn)
∞
n=1 ⊂ L+, fn ↗, kusjuures mingi C ∈ R korral

Ifn ⩽ C, n ∈ N.

Siis ka f := limn fn ∈ L+, kusjuures If = limn→∞ Ifn.

Tõestus.
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7.3.4. Klass L

Öeldakse, et (p.k. määratud) funktsioon f : X → R on integreeruv, kui leiduvad
funktsioonid g, h ∈ L+ selliselt, et

f = g − h p.k.

Integraal If funktsioonist f de�neeritakse sel juhul võrdusega

If = Ig − Ih.

Kõigi integreeruvate funktsioonide klassi tähistame sümboliga L.

Veendumaks selle integraali de�nitsiooni korrektsuses,

Märgime, et

(a) kui f, g ∈ L, siis ka f + g ∈ L, kusjuures

I(f + g) = If + Ig;

(b) kui f ∈ L ja α ∈ R, siis ka αf ∈ L, kusjuures

I(αf) = αIf ;

(c) kui f ∈ L, f ⩾ 0 p.k., siis ka
If ⩾ 0;

(d) kui f, g ∈ L, siis ka max{f, g},min{f, g} ∈ L.

Tõespoolest,

Lemma 7.2.

Tõestus.

Teoreem 7.3 (Beppo Levi teoreem). Olgu jada (fn)
∞
n=1 ⊂ L, fn ⩾ 0, n ∈ N, fn ↗,

kusjuures mingi C ∈ R korral

Ifn ⩽ C, n ∈ N.

Siis ka f := limn fn ∈ L, kusjuures If = limn→∞ Ifn.

Tõestus.

Teoreem 7.4 (Lebesgue'i teoreem).

Tõestus.

Teoreem 7.5 (Fatou lemma).

Tõestus.

7.3.5. Banachi ruum L

7.3.6. Fubini teoreem



III peatükk.

Korrutismõõdud

� 1. Korrutis-σ-algebrad

Olgu n ∈ N ning olgu X1, . . . , Xn mittetühjad hulgad. Meenutame, et hulkade
X1, . . . , Xn otsekorrutiseks nimetatakse hulka

X1 × · · · ×Xn :=
n∏

j=1

Xn :=
{
(xj)

n
j=1 : xj ∈ Xj, j = 1, . . . , n

}
=
{
(x1, . . . , xn) : xj ∈ Xj, j = 1, . . . , n

}
.

Otsekorrutis X1 × · · · × Xn on niisiis kõikvõimalike selliste n-komponendiliste jär-
jendite hulk, mille j-s komponent kuulub hulka Xj, j = 1, . . . , n.

Iga j ∈ {1, . . . , n} korral saame me de�neerida kujutuse

πj : X1 × · · · ×Xn ∋ (x1, . . . , xn) 7−→ xj ∈ Xj.

Seda kujutust nimetatakse otsekorrutise X1 × · · · × Xn j-ndaks koordinaatfunk-
tsiooniks. Otsekorrutise X1 × · · · × Xn j-s koordinaatfunktsioon seab niisiis selle
otsekorrutise igale järjendile vastavusse tema j-nda komponendi.

Olgu (X1,A1), . . . , (Xn,An) mõõtuvad ruumid (s.t. kogumid Aj ⊂ P(Xj) on
σ-algebrad).

De�nitsioon 1.1. Vähimat otsekorrutise X1 × · · · × Xn alamhulkade σ-algebrat,
mille suhtes kõik selle otsekorrutise koordinaatfunktsioonid on mõõtuvad, nimeta-
takse σ-algebrate A1, . . . ,An korrutis-σ-algebraks ja tähistatakse sümboliga

A1 ⊗ · · · ⊗ An või
n⊗

j=1

Aj.

Mõõtuvuse de�nitsioonist järeldub, et

n⊗
j=1

Aj = σ
({
π−1
j (A) : j ∈ {1, . . . , n}, A ∈ Aj

})
. (1.1)

125
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Tõepoolest, kui A ⊂ P(X1 × · · · × Xn) on σ-algebra ja j ∈ {1, . . . , n}, siis vastavalt de�-
nitsioonile tähendab koordinaatfunktsiooni πj mõõtuvus A suhtes (täpsemalt, (A,Aj)-mõõtuvus),
et

π−1
j (A) ∈ A iga A ∈ Aj korral.

Niisiis, kõik otsekorrutise X1×· · ·×Xn koordinaatfunktsioonid on σ-algebra A ⊂ P(X1×· · ·×Xn)
suhtes mõõtuvad parajasti siis, kui

A ⊃
{
π−1
j (A) : j ∈ {1, . . . , n}, A ∈ Aj

}
.

Siit järeldub, et vähim otsekorrutise X1 × · · · × Xn alamhulkade σ-algebra, mille suhtes kõik te-

ma koordinaatfunktsioonid on mõõtuvad, on vähim kogumit
{
π−1
j (A) : j ∈ {1, . . . , n}, A ∈ Aj

}
sisaldav σ-algebra ehk, teisisõnu, kehtib (1.1).

Kuna mis tahes j ∈ {1, . . . , n} ja A ∈ Aj korral

π−1
j (A) =

{
x = (xk)

n
k=1 ∈

n∏
k=1

Xk : πj(x) ∈ A
}
=
{
(xk)

n
k=1 ∈

n∏
k=1

Xk : xj ∈ A
}

= X1 × · · · ×Xj−1 × A×Xj+1 × · · · ×Xn,

siis võib valemi (1.1) esitada ka kujul

n⊗
j=1

Aj = σ
({
X1 × · · · ×Xj−1 × A×Xj+1 × · · · ×Xn : j ∈ {1, . . . , n}, A ∈ Aj

})
.

Teoreem 1.1. Olgu n ∈ N ning olgu (X1,A1), . . . , (Xn,An) mõõtuvad ruumid. Siis

n⊗
j=1

Aj = σ
({
A1 × · · · × An : Aj ∈ Aj, j = 1, . . . , n

})
.

Tõestus. Tähistame

F1 =
{
X1 × · · · ×Xj−1 × A×Xj+1 × · · · ×Xn : j ∈ {1, . . . , n}, A ∈ Aj

}
,

F2 =
{
A1 × · · · × An : Aj ∈ Aj, j = 1, . . . , n

}
.

Kuna
⊗n

j=1Aj = σ(F1), siis piisab teoreemi tõestuseks näidata, et σ(F1) = σ(F2).

Sisalduvus σ(F1) ⊂ σ(F2) on ilmne, sest F1 ⊂ F2.

Veendume, et ka σ(F2) ⊂ σ(F1). Kuna σ(F1) on σ-algebra, siis piisab selleks
veenduda, et F2 ⊂ σ(F1) (vt. lemmat I.2.1). Mis tahes A1×· · ·×An ∈ F2 (Aj ∈ Aj,
j = 1, . . . , n) korral

A1 × · · · × An =
n⋂

j=1

X1 × · · · ×Xj−1 × Aj ×Xj+1 × · · · ×Xn ∈ σ(F1);

järelikult F2 ⊂ σ(F1).
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Teoreem 1.2. Olgu n ∈ N, olgu (X1,A1), . . . , (Xn,An) mõõtuvad ruumid ning olgu
kogumid Ej ⊂ P(Xj), j = 1, . . . , n, sellised, et iga j ∈ {1, . . . , n} korral σ(Ej) = Aj

(s.t. kogum Ej genereerib σ-algebra Aj). Siis

(a)

n⊗
j=1

Aj = σ
({
π−1
j (A) : j ∈ {1, . . . , n}, A ∈ Ej

})
= σ

({
X1 × · · · ×Xj−1 × A×Xj+1 × · · · ×Xn : j ∈ {1, . . . , n}, A ∈ Ej

})
;

(b) kui Ej ∋ Xj, j = 1, . . . , n, siis

n⊗
j=1

Aj = σ
({
A1 × · · · × An : Aj ∈ Ej, j = 1, . . . , n

})
.

Tõestus. (a).

Ülesanne 1.1. Tõestada väide (a).

Näpunäide. Arutleda, nagu valemi (1.1) põhjenduses, rakendades seal funktsiooni mõõtuvuse
de�nitsiooni asemel teoreemi II.1.1.

(b). Olgu Ej ∋ Xj, j = 1, . . . , n. Tähistame

F2 =
{
A1 × · · · × An : Aj ∈ Aj, j = 1, . . . , n

}
,

F3 =
{
X1 × · · · ×Xj−1 × A×Xj+1 × · · · ×Xn : j ∈ {1, . . . , n}, A ∈ Ej

}
,

F4 =
{
A1 × · · · × An : Aj ∈ Ej, j = 1, . . . , n

}
.

Väite tõestuseks peame näitama, et
⊗n

j=1Aj = σ(F4). Kuna teoreemi 1.1 ja väite (a)
põhjal

⊗n
j=1Aj = σ(F2) = σ(F3), siis piisab näidata, et σ(F3) ⊂ σ(F4) ⊂ σ(F2),

mis on ilmne, sest F3 ⊂ F4 ⊂ F2.

Meenutame, et kui n ∈ N ning (X1, ρ1), . . . , (Xn, ρn) on meetrilised ruumid, siis
otsekorrutis X = X1×· · ·×Xn on meetriline ruum järgmise võrdusega de�neeritud
kauguse ρ � nn. korrutismeetrika suhtes:

ρ(x, y) = max
1⩽j⩽n

ρj(xj, yj), x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ X.

Ülesanne 1.2. Olgu (X1, ρ1), . . . , (Xn, ρn) (n ∈ N) meetrilised ruumid ning olgu (X, ρ) nende
korrutisruum. Tõestada, et

(a) kui x = (x1, . . . , xn) ∈ X ja r > 0, siis

B(x, r) =

n∏
j=1

B(xj , r)

(B(x, r) tähistab lahtist kera keskpunktiga x ja raadiusega r);

(b) kui ruumid (X1, ρ1), . . . , (Xn, ρn) on separaablid, siis ka korrutisruum X on separaabel.
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Teoreem 1.3. Olgu n ∈ N, olgu X1, . . . , Xn meetrilised ruumid ning olgu otsekor-
rutis X = X1 × · · · ×Xn varustatud korrutismeetrikaga. Siis

(a)

BX ⊃
n⊗

j=1

BXj

(sümbol BX tähistab ruumi X Boreli σ-algebrat);

(b) kui ruumid X1, . . . , Xn on separaablid, siis

BX =
n⊗

j=1

BXj
.

Tõestus. (a). Kuna Boreli σ-algebra de�nitsiooni põhjal BXj
= σ(τXj

), j = 1, . . . , n
(meenutame, et sümbol τXj

tähistab ruumi Xj lahtiste alamhulkade kogumit), siis
teoreemi 1.2, (a), põhjal

⊗n
j=1 BXj

= σ(E), kus

E =
{
X1 × · · · ×Xj−1 × U ×Xj+1 × · · · ×Xn : j ∈ {1, . . . , n}, U ∈ τXj

}
.

Seega piisab väite tõestuseks näidata, et E ⊂ τX , s.t. kogumi E iga hulk on lahtine
hulk ruumis X, sest sel juhul

⊗n
j=1 BXj

= σ(E) ⊂ σ(τX) = BX .

Ülesanne 1.3. Veenduda, et E ⊂ τX .

(b). Olgu ruumidX1, . . . , Xn separaablid. Kuna väite (a) põhjal BX ⊃
⊗n

j=1 BXj
,

siis jääb teoreemi tõestuseks näidata, et BX ⊂
⊗n

j=1 BXj
. Selleks aga piisab näidata,

et tähistades
G :=

{
U1 × · · · × Un : Uj ∈ τXj

, j = 1, . . . , n
}
,

kehtib sisalduvus τX ⊂ σ(G).
Tõepoolest, kuna Boreli σ-algebra de�nitsiooni põhjal σ(τXj

) = BXj
, j = 1, . . . , n, siis teoree-

mi 1.2, (b), põhjal σ(G) =
⊗n

j=1 BXj
ning järelikult sisalduvuse τX ⊂ σ(G) kehtides

BX = σ(τX) ⊂ σ(G) =
n⊗

j=1

BXj
.

Veendume, et τX ⊂ σ(G). Olgu U ∈ τX (s.t. U on ruumi X lahtine alamhulk).
Kuna ruumid X1, . . . , Xn on separaablid, siis ka korrutisruum X = X1 × · · · × Xn

on separaabel (vt. ülesannet 1.2, (b)). ∗Ülesande 2.8 põhjal esitub hulk U lahtiste
kerade loenduva ühendina, s.t.

U =
∞⋃
k=1

B(xk, rk), kus x
k = (xk1, . . . , x

k
n) ∈ X1 × · · · ×Xn = X, rk > 0, k = 1, 2, . . . .

Aga nüüd ülesande 1.2, (a), põhjal

U =
∞⋃
k=1

B(xk, rk) =
∞⋃
k=1

B(xk1, rk)× · · · ×B(xkn, rk) ∈ σ(G);

järelikult τX ⊂ σ(G).



� 1. Korrutis-σ-algebrad 129

Meenutame, et sümboliga Rn tähistame me meetrilist ruumi (R× · · · × R︸ ︷︷ ︸
n tegurit

, d),

kus kaugus d on de�neeritud võrdusega

d(x, y) =

√√√√ n∑
j=1

|xj − yj|2, x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ R× · · · × R︸ ︷︷ ︸
n tegurit

.

Teoreem 1.4. Olgu n ∈ N. Siis

BRn = BR ⊗ · · · ⊗ BR︸ ︷︷ ︸
n tegurit

.

Tõestus. Olgu ρ ruumi R× · · · × R︸ ︷︷ ︸
n tegurit

korrutismeetrika, s.t.

ρ(x, y) = max
1⩽j⩽n

|xj − yj|, x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ R× · · · × R︸ ︷︷ ︸
n tegurit

.

Teoreemi 1.3, (b), põhjal BR ⊗ · · · ⊗ BR︸ ︷︷ ︸
n tegurit

= B
(R× · · · × R︸ ︷︷ ︸

n tegurit

,ρ)
. Kuna

τ
(R× · · · × R︸ ︷︷ ︸

n tegurit

,ρ)
= τRn

(s.t. ruumides (R× · · · × R︸ ︷︷ ︸
n tegurit

, ρ) ja Rn on ühed ja samad lahtised hulgad), siis

BR ⊗ · · · ⊗ BR︸ ︷︷ ︸
n tegurit

= B
(R× · · · × R︸ ︷︷ ︸

n tegurit

,ρ)
= σ(τ

(R× · · · × R︸ ︷︷ ︸
n tegurit

,ρ)
) = σ(τRn) = BRn .

Ülesanne 1.4. Veenduda, et τ(R× · · · × R︸ ︷︷ ︸
n tegurit

,ρ) = τRn .

Ülesanne 1.5. Tõestada, et kui E ∈ BRn , z ∈ Rn ja r ∈ R, siis ka E + z ∈ BRn ja rE ∈ BRn .

Näpunäide. Veenduda, et kogum E = {E ∈ BR : E + r ∈ BR ja rE ∈ BR iga r ∈ R korral} on
σ-algebra, kusjuures E sisaldab mingi σ-algebrat BRn genereeriva kogumi E1.
Märkus 1.1. Kui X1, X2 ja X3 on mingid (mittetühjad) hulgad, siis me võime loomulikul viisil
samastada otsekorrutised

X1 ×X2 ×X3, (X1 ×X2)×X3 ja X1 × (X2 ×X3).

Üldisemalt, kui n ∈ N ja X1, . . . , Xn on mingid (mittetühjad) hulgad, siis me võime loomulikul
viisil samastada otsekorrutised

X1 ×X2 × · · · ×Xn, (X1 × · · · ×Xn−1)×Xn ja X1 × (X2 × · · · ×Xn).

Seda arvestades saab näidata, et σ-algebrate �korrutamine� on assotsiatiivne, s.t. kui (X1,A1),
(X2,A2) ja (X3,A3) on mõõtuvad ruumid, siis

A1 ⊗ A2 ⊗ A3 = (A1 ⊗ A2)⊗ A3 = A1 ⊗ (A2 ⊗ A3),

ning, üldisemalt, kui n ∈ N ja (X1,A1), . . . , (Xn,An) on mõõtuvad ruumid, siis

A1 ⊗ A2 ⊗ · · · ⊗ An = (A1 ⊗ · · · ⊗ An−1)⊗ An = A1 ⊗ (A2 ⊗ · · · ⊗ An).
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Olgu (X,A, µ) ja (Y,B, ν) mõõduga ruumid.

De�nitsioon 2.1. Olgu A ∈ A ja B ∈ B. Hulka

A×B =
{
(x, y) ∈ X × Y : x ∈ A, y ∈ B

}
nimetatakse A⊗B-mõõtuvaks ristkülikuks (ehk lihtsaltmõõtuvaks ristkülikuks). Hul-
ki A ja B nimetatakse selle ristküliku külgedeks.

Selles paragrahvis konstrueerime ühe mõõdu korrutis-σ-algebral A⊗B, mida me
hakkame nimetamamõõtude µ ja ν korrutismõõduks ning tähistama sümboliga µ×ν.
Nimetus �mõõtude µ ja ν korrutismõõt� on mõõdu µ×ν puhul igati õigustatud, sest
me konstrueerime ta selliselt, et iga mõõtuva ristküliku A×B ∈ A⊗B korral

µ× ν(A×B) = µ(A) ν(B),

s.t. mõõtuva ristküliku korrutismõõt on võrdne tema külgede mõõtude korrutisega.

Tähistame
A0 = {A×B : A ∈ A, B ∈ B},

s.t. A0 on kõigi A⊗B-mõõtuvate ristkülikute kogum, ning

A =

{
n⋃

j=1

Ej : n ∈ N, E1, . . . , En ∈ A0, Ei ∩ Ej = ∅, i ̸= j

}
,

s.t. A on kõigi paarikaupa lõikumatute A⊗B-mõõtuvate ristkülikute lõplike ühen-
dite kogum. Kuna A0 on poolalgebra, siis teoreemi I.2.5 põhjal on kogum A algebra.

Ülesanne 2.1. Tõestada, et kõigi A⊗B-mõõtuvate ristkülikute kogum A0 on poolalgebra.

De�neerime hulgafunktsiooni ρ : A → [0,∞] võrdusega

ρ(E) =
n∑

j=1

µ(Aj) ν(Bj), E ∈ A, (2.1)

kus paarikaupa lõikumatud A ⊗ B-mõõtuvad ristkülikud A1 × B1, . . . , An × Bn

(n ∈ N), on sellised, et

E =
n⋃

j=1

Aj ×Bj. (2.2)

Siis

(1) hulgafunktsioon ρ on korrektselt de�neeritud, s.t. tema de�nitsioon ei sõltu
hulga E esitusest kujul (2.2) � täpsemalt, kui paarikaupa lõikumatud A⊗B-
mõõtuvad ristkülikud A′

1 × B′
1, . . . , A

′
m × B′

m (m ∈ N), on sellised, et E =⋃m
i=1A

′
i ×B′

i, siis

m∑
i=1

µ(A′
i) ν(B

′
i) =

n∑
j=1

µ(Aj) ν(Bj);
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(2) hulgafunktsioon ρ on mõõt;

(3) mõõt ρ on ainus mõõt algebral A, mille puhul mõõtuva ristküliku mõõt on
tema külgede mõõtude korrutis.

Väited (1)�(3) järelduvad ülesandest I.3.10 ja järgnevast lemmast.

Lemma 2.1. Olgu A× B ∈ A⊗B mõõtuv ristkülik, olgu J mingi ülimalt loenduv
indeksite hulk ning olgu paarikaupa lõikumatud mõõtuvad ristkülikud Aj × Bj ∈
A⊗B, j ∈ J , sellised, et

A×B =
⋃
j∈J

Aj ×Bj.

Siis

µ(A)ν(B) =
∑
j∈J

µ(Aj)ν(Bj).

Ülesanne 2.2. Järeldada ülesandest I.3.10 ja lemmast 2.1 väited (1)�(3).

Lemma 2.1 tõestuseks piisab näidata, et

iga y ∈ Y korral µ(A)χB(y) =
∑
j∈J

µ(Aj)χBj
(y). (2.3)

Tõepoolest, kui väide (2.3) kehtib, siis Lebesgue'i monotoonse koonduvuse teoreemi põhjal
(täpsemalt, teoreemi II.2.5 põhjal)

µ(A)ν(B) = µ(A)

∫
Y

χB(y) dν(y) =

∫
Y

µ(A)χB(y) dν(y) =

∫
Y

∑
j∈J

µ(Aj)χBj
(y) dν(y)

=
∑
j∈J

∫
Y

µ(Aj)χBj
(y) dν(y) =

∑
j∈J

µ(Aj)

∫
Y

χBj
(y) dν(y) =

∑
j∈J

µ(Aj)ν(Bj).

Tõestame väite (2.3). Olgu y ∈ Y , siis monotoonse koonduvuse teoreemi põhjal

µ(A)χB(y) = χB(y)

∫
X

χA(x) dµ(x) =

∫
X

χA(x)χB(y) dµ(x)

=

∫
X

χA×B(x, y) dµ(x) =

∫
X

χ⋃
j∈J Aj×Bj

(x, y) dµ(x)

=

∫
X

∑
j∈J

χAj×Bj
(x, y) dµ(x) =

∫
X

∑
j∈J

χAj
(x)χBj

(y) dµ(x)

=
∑
j∈J

∫
X

χAj
(x)χBj

(y) dµ(x) =
∑
j∈J

χBj
(y)

∫
X

χAj
(x) dµ(x)

=
∑
j∈J

µ(Aj)χBj
(y).
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Olgu ρ∗ : P(X × Y ) → [0,∞] mõõduga ρ : A → [0,∞] assotsieeruv välismõõt,
s.t. E ∈ P(X × Y ) korral

ρ∗(E) = inf

{
∞∑
j=1

ρ(Ej) : Ej ∈ A, j = 1, 2, . . . , E ⊂
∞⋃
j=1

Ej

}

= inf

{
∞∑
j=1

µ(Aj)ν(Bj) : Aj ∈ A, Bj ∈ B, j = 1, 2, . . . , E ⊂
∞⋃
j=1

Aj ×Bj

}
.

Tähistame
µ× ν := ρ∗|σ(A) = ρ∗|A⊗B.

Ülesanne 2.3. Veenduda, et σ(A) = A⊗B.

Hahni teoreemi põhjal on hulgafunktsioon µ× ν : A⊗B → [0,∞] mõõt; seejuures
on µ× ν mõõdu ρ jätk σ-algebrale σ(A) = A⊗B.

Mõõtu µ× ν nimetatakse mõõtude µ ja ν korrutismõõduks. Mõõduga ruumi

(X × Y,A⊗B, µ× ν)

nimetatakse ruumide (X,A, µ) ja (Y,B, ν) korrutisruumiks.

Märgime, et kui A×B on A⊗B-mõõtuv ristkülik, siis A×B ∈ A ning järelikult

µ× ν(A×B) = ρ(A×B) = µ(A)ν(B),

s.t. mõõtuva ristküliku korrutismõõt on tema külgede mõõtude korrutis.

Paneme tähele, et kui ruumid (X,A, µ) ja (Y,B, ν) on σ-lõplikud, siis eelmõõdu-
ga ruum (X×Y,A, ρ) on σ-lõplik ning järelikult ka korrutisruum (X×Y,A⊗B, µ×ν)
on σ-lõplik.

Ülesanne 2.4. Tõestada, et kui ruumid (X,A, µ) ja (Y,B, ν) on σ-lõplikud, siis ka

(a) eelmõõduga ruum (X × Y,A, ρ) on σ-lõplik;

(b) korrutisruum (X × Y,A⊗B, µ× ν) on σ-lõplik.

Seega, kui ruumid (X,A, µ) ja (Y,B, ν) on σ-lõplikud, siis Hahni teoreemi põhjal
on korrutismõõt µ × ν mõõdu ρ ainus jätk korrutis-σ-algebrale A ⊗B. Mõõt ρ on
ainus selline mõõt algebral A, mille puhul iga A⊗B-mõõtuva ristküliku A×B mõõt
on tema külgede mõõtude korrutis. Niisis, kui ruumid (X,A, µ) ja (Y,B, ν) on σ-
lõplikud, siis korrutismõõt µ× ν on ainus selline mõõt korrutis-σ-algebral A⊗B, et
iga A⊗B-mõõtuva ristküliku A×B korral

µ× ν(A×B) = µ(A)ν(B).

Ülesanne 2.5. Olgu (X,A, µ) ja (Y,B, ν) σ-lõplikud mõõduga ruumid ning olgu kogumid C ⊂ A
ja D ⊂ B sellised, et

� leiduvad hulgad Cj ∈ C, j = 1, 2, . . . , nii, et
⋃∞

j=1 Cj ⊃ X;
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� µ = λ1|A, kus välismõõt λ1 : P(X) → [0,∞] on de�neeritud võrdusega

λ1(C) = inf


∞∑
j=1

µ(Aj) : Aj ∈ C, j = 1, 2, . . . ,

∞⋃
j=1

Aj ⊃ C

 , C ∈ P(X);

� leiduvad hulgad Dj ∈ D, j = 1, 2, . . . , nii, et
⋃∞

j=1Dj ⊃ Y ;

� ν = λ2|B, kus välismõõt λ2 : P(Y ) → [0,∞] on de�neeritud võrdusega

λ2(C) = inf


∞∑
j=1

ν(Bj) : Bj ∈ D, j = 1, 2, . . . ,

∞⋃
j=1

Bj ⊃ D

 , D ∈ P(Y ).

Olgu mõõt ρ de�neeritud võrdusega (2.1). Tõestada, et iga E ∈ P(X × Y ) korral

ρ∗(E) = inf


∞∑
j=1

µ(Aj)ν(Bj) : Aj ∈ C, Bj ∈ D, j = 1, 2, . . . ,

∞⋃
j=1

Aj ×Bj ⊃ E

 =: λ(E).

Märkus 2.1. Järgmise paragrahvi näites 3.1 veendume, et üldjuhul ei tarvitse mõõ-
duga ruum (X×Y,A⊗B, µ×ν) olla täielik isegi siis, kui ruumid (X,A, µ) ja (Y,B, ν)
on täielikud.

Ülesanne 2.6. Olgu (X,A, µ) ja (Y,B, ν) vastavalt mõõduga ruumide (X,A, µ) ja (Y,B, ν) täiel-
did. Tõestada, et

(a) korrutisruumide (X×Y,A⊗B, µ×ν) ja (X×Y,A⊗B, µ×ν) täieldid (X×Y,A⊗B, µ× ν)

ja (X × Y,A⊗B, µ× ν) on võrdsed;

(b) kui µ ja ν on σ-lõplikud, siis ruumi (X×Y,A⊗B, µ×ν) täield on (X×Y,M(ρ∗), ρ∗|M(ρ∗)),
kus mõõt ρ on de�neeritud võrdusega (2.1).

Näpunäide. Väite (b) tõestuseks kasutada järeldust I.4.7. Väite (a) tõestuseks on otstarbekas
kõigepealt veenduda, et

(1) iga A⊗B-mõõtuva ristküliku C ×D korral leidub A⊗B-mõõtuv ristkülik A×B ⊃ C ×D
nii, et µ(A) ν(B) = µ(C) ν(D);

(2) π∗ = ρ∗, kus mõõt ρ on de�neeritud võrdusega (2.1) ning mõõt π on mõõdu ρ analoog
paarikaupa lõikumatute A⊗B-mõõtuvate ristkülikute lõplike ühendite algebral;

(3) A⊗B ⊃ A⊗B, kusjuures µ× ν = µ× ν|A⊗B (siin kasutada teoreemi 1.1);

(4) N (µ × ν) = N (µ × ν), s.t. hulk N ∈ P(X × Y ) on µ × ν-hüljatav parajasti siis, kui ta on
µ× ν-hüljatav (siin kasutada ülesannet I.4.4, (b), ja lauset I.4.5);

(5) A⊗B ⊂ A⊗B (siin kasutada teoreemi 1.1 ja lemmat I.2.1).

Ülesanne 2.7. Olgu (X,A, µ) ja (Y,B, ν) σ-lõplikud mõõduga ruumid, kus X ja Y on Hausdor�
topoloogilised ruumid. Tõestada, et kui mõõdud µ ja ν on regulaarsed, siis ka korrutismõõt µ× ν
on (korrutistopoloogia suhtes) regulaarne.

Näpunäide. Korrutismõõdu µ×ν regulaarsuseks piisab ülesannete I.3.33 ja 2.6, (b), ning teoreemi
I.5.4 põhjal näidata, et võrdusega (2.1) de�neeritud mõõt ρ on regulaarne.
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Märkus 2.2. Kolme või enama mõõduga ruumi korrutisruum de�neeritakse analoogiliselt kahe
mõõduga ruumi juhuga.

Olgu n ∈ N ning olgu (X1,A1, µ1), . . . , (Xn,An, µn) mõõduga ruumid. Kui Aj ∈ Aj , j =
1, . . . , n, siis hulka

A1 × · · · ×An ∈ P(X1 × · · · ×Xn)

nimetatakse A1 ⊗ · · · ⊗ An-mõõtuvaks risttahukaks. Hulki Aj ∈ Aj , j = 1, . . . , n, nimetatakse selle
risttahuka servadeks.

Tähistame sümboliga A0 kõigi A1 ⊗ · · · ⊗ An-mõõtuvate risttahukate kogumi ning tähega A
kõigi kogumi A0 paarikaupa lõikumatute hulkade lõplike ühendite kogumi, s.t.

A =

{
m⋃
i=1

Ei : m ∈ N, Ei ∈ A0, i = 1, . . . ,m, Ei ∩ Ej = ∅, i ̸= j

}
.

Kuna kogum A0 on poolalgebra, siis teoreemi II.2.5 põhjal on kogum A algebra.

De�neerime hulgafunktsiooni ρ : A → [0,∞] võrdusega

ρ(E) =

m∑
i=1

µ1(A
i
1) · · ·µn(A

i
n), E ∈ A,

kus m ∈ N ning paarikaupa lõikumatud A1 ⊗ · · · ⊗ An-mõõtuvad ristkülikud Ei = Ai
1 × · · · × Ai

n,
i = 1, . . . ,m, on sellised, et

E =

m⋃
i=1

Ei. (2.4)

Sarnaselt kahe mõõduga ruumi juhuga saab näidata, et

(1) hulgafunktsioon ρ on korrektselt de�neeritud, s.t. tema de�nitsioon ei sõltu hulga E esitusest
kujul (2.4);

(2) hulgafunktsioon ρ on mõõt;

(3) mõõt ρ on ainus mõõt algebral A, mille puhul mõõtuva risttahuka mõõt on tema servade
mõõtude korrutis.

Olgu ρ∗ : P(X1 × · · · ×Xn) → [0,∞] mõõduga ρ : A → [0,∞] assotsieeruv välismõõt, s.t.

ρ∗(E) = inf


∞∑
j=1

ρ(Ej) : Ej ∈ A, j ∈ N, E ⊂
∞⋃
j=1

Ej

 , E ∈ P(X1 × · · · ×Xn).

Tähistame
µ1 × · · · × µn := ρ∗|σ(A) = ρ∗|A1⊗···⊗An

.

Hahni teoreemi põhjal on hulgafunktsioon µ1 × · · · × µn : A1 ⊗ · · · ⊗ An → [0,∞] mõõt; seejuures
on µ1 × · · · × µn mõõdu ρ jätk σ-algebrale σ(A) = A1 ⊗ · · · ⊗ An.

Mõõtu µ1 × · · · × µn nimetatakse mõõtude µ1, . . . , µn korrutismõõduks. Mõõduga ruumi

(X1 × · · · ×Xn,A1 ⊗ · · · ⊗ An, µ1 × · · · × µn)

nimetatakse ruumide (X1,A1, µ1), . . . , (Xn,An, µn) korrutisruumiks.

Märgime, et kui A1 × · · · ×An on A1 ⊗ · · · ⊗An-mõõtuv ristkülik, siis A1 × · · · ×An ∈ A ning
järelikult

µ1 × · · · × µn(A1 × · · · ×An) = ρ(A1 × · · · ×An) = µ1(A1) · · ·µn(An),

s.t. mõõtuva risttahuka korrutismõõt on tema servade mõõtude korrutis.

Analoogiliselt kahe mõõduga ruumi juhuga saab näidata, et kui mõõduga ruumid (X1,A1, µ1),
. . . , (Xn,An, µn) on σ-lõplikud, siis
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(a) korrutisruum (X1 × · · · ×Xn,A1 ⊗ · · · ⊗ An, µ1 × · · · × µn) on σ-lõplik;

(b) korrutismõõt µ1 × · · · × µn on ainus selline mõõt korrutis-σ-algebral A1 ⊗ · · · ⊗ An, et iga

A1 ⊗ · · · ⊗ An-mõõtuva ristküliku A1 × · · · ×An korral

µ1 × · · · × µn(A1 × · · · ×An) = µ1(A1) · · ·µn(An).

Märkus 2.3. Ülesannete 2.4�2.7 väidete analoogid jäävad kehtima, kui neis ülesannetes vaadelda
kahe mõõduga ruumi korrutisruumi asemel kolme või enama mõõduga ruumi korrutisruumi.

Märkus 2.4. Saab näidata, et mõõtude �korrutamine� on assotsiatiivne, s.t. kui (X1,A1, µ1),
(X2,A2, µ2) ja (X3,A3, µ3) on mõõduga ruumid, siis

µ1 × µ2 × µ3 = (µ1 × µ2)× µ3 = µ1 × (µ2 × µ3),

ning, üldisemalt, kui n ∈ N ja (X1,A1, µ1), . . . , (Xn,An, µn) on mõõduga ruumid, siis

µ1 × µ2 × · · · × µn = (µ1 × · · · × µn−1)× µn = µ1 × (µ2 × · · · × µn).
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3.1. Hulga lõiked. Funktsiooni lõiked

De�nitsioon 3.1. Olgu X, Y ja Z mittetühjad hulgad, olgu E ⊂ X × Y ning olgu
f : X × Y → Z.

Olgu x ∈ X. Hulka

Ex := {y ∈ Y : (x, y) ∈ E} ∈ P(Y )

nimetatakse hulga E x-lõikeks. Funktsiooni fx : Y → Z,

fx(y) = f(x, y), y ∈ Y,

nimetatakse funktsiooni f x-lõikeks.

Olgu y ∈ Y . Hulka

Ey := {x ∈ X : (x, y) ∈ E} ∈ P(X)

nimetatakse hulga E y-lõikeks. Funktsiooni f y : X → Z,

f y(x) = f(x, y), x ∈ X,

nimetatakse funktsiooni f y-lõikeks.

Ülesanne 3.1. Olgu X ja Y mittetühjad hulgad ning olgu x ∈ X. Tõestada, et

(a) kui E ∈ P(X × Y ), siis (Ec)x = (Ex)
c;

(b) kui J on mingi indeksite hulk ja Ej ∈ P(X × Y ), j ∈ J , siis(⋃
j∈J

Ej

)
x
=
⋃
j∈J

(Ej)x ja
(⋂
j∈J

Ej

)
x
=
⋂
j∈J

(Ej)x;

(c) kui E ∈ P(X × Y ), siis (χE)x = χEx
;

(d) kui f : X × Y → R, siis (f+)x = (fx)
+ ja (f−)x = (fx)

−;

(e) kui Z ̸= ∅ ja f : X × Y → Z, siis iga C ∈ P(Z) korral
(
f−1[C]

)
x
= f−1

x [C].

Teoreem 3.1. Olgu (X,A) ja (Y,B) mõõtuvad ruumid.

(a) Kui E ∈ A⊗B, siis

(1) Ex ∈ B iga x ∈ X korral;

(2) Ey ∈ A iga y ∈ Y korral.

(b) Olgu (Z,C) mõõtuv ruum ning olgu funktsioon f : X×Y → Z A⊗B-mõõtuv.
Siis

(1) funktsioon fx : Y → Z on B-mõõtuv iga x ∈ X korral;

(2) funktsioon f y : X → Z on A-mõõtuv iga y ∈ Y korral.

136
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Tõestus. (a). Tõestame ainult väite (1). Väide (2) tõestatakse analoogiliselt.

Fikseerime vabalt x ∈ X ja tähistame

D :=
{
E ∈ A⊗B : Ex ∈ B

}
.

Väite (1) tõestuseks piisab näidata, et A⊗B ⊂ D. Selleks piisab näidata, et

(A) D ⊃ {A×B : A ∈ A, B ∈ B} (s.t. D sisaldab kõik A⊗B-mõõtuvad ristküli-
kud);

(B) D on (hulga X × Y alamhulkade) σ-algebra.

Tõepoolest, kui kehtivad väited (A) ja (B), siis

A⊗B = σ({A×B : A ∈ A, B ∈ B}) ⊂ σ(D) = D.

(A). Kui A ∈ A ja B ∈ B, siis

(A×B)x = {y ∈ Y : (x, y) ∈ A×B} =

{
B, kui x ∈ A;

∅, kui x ̸∈ A.

Seega igal juhul (A×B)x ∈ B, s.t. A×B ∈ D.

(B). Kogum D on (hulga X×Y alamhulkade) σ-algebra ülesande I.2.14, [B], (a),
põhjal.

(b). Tõestame ainult väite (1). Väide (2) tõestatakse analoogiliselt.

Ülesanne 3.2. Tõestada väide (1).

Näpunäide. Kasutada ülesannet 3.1, (e).

Näide 3.1. Näitame, et mõõduga ruum (R×R,L⊗L,m×m) ei ole täielik. (Sümbo-
lid L ja m tähistavad vastavalt ruumi R Lebesgue'i σ-algebrat ja Lebesgue'i mõõtu
ruumis R.)

Olgu hulk N ∈ L \ {∅} selline, et m(N) = 0 (niisuguseid hulki leidub � me
võime hulgaks N võtta näiteks ruumi R mis tahes ühepunktilise alamhulga), ning
olgu B ∈ P(R) \ L (meenutame, et järelduse I.5.9 põhjal L ⫋ P(R)). Nüüd

N ×B ⊂ N × R ∈ L ⊗ L,

kusjuures
m×m (N × R) = m(N)m(R) = 0m(R) = 0,

seega hulk N ×B on m×m-hüljatav. Seejuures N ×B ̸∈ L ⊗ L.
Tõepoolest, oletame vastuväiteliselt, et N × B ∈ L ⊗ L. Siis, valides vabalt x ∈ N , järeldub

teoreemist 3.1, et B = (N ×B)x ∈ L, vastuolu.

Seega mõõduga ruum (R×R,L⊗L,m×m) ei ole täielik. Meenutame, et ruum
(R,L,m) on täielik.
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3.2. Lemma monotoonsest klassist

Olgu X mingi hulk.

De�nitsioon 3.2. Kogumit D ⊂ P(X) nimetakse (hulga X alamhulkade) mono-
toonseks klassiks, kui

1◦ Ej ∈ D, j = 1, 2, . . . , E1 ⊂ E2 ⊂ E3 ⊂ · · · =⇒
⋃∞

j=1Ej ∈ D;

2◦ Ej ∈ D, j = 1, 2, . . . , E1 ⊃ E2 ⊃ E3 ⊃ · · · =⇒
⋂∞

j=1Ej ∈ D

(s.t. D on kinnine oma hulkade monotoonsete loenduvate ühendite ja monotoonsete
loenduvate ühisosade suhtes).

De�nitsioon 3.3. Olgu E ⊂ P(X). Vähimat hulga X alamhulkade monotoonset
klassi, mis sisaldab kõiki kogumi E hulki, nimetatakse kogumi E poolt genereeritud
monotoonseks klassiks ja tähistatakse sümboliga M(E).

Ülesanne 3.3. Tõestada, et etteantud kogumi poolt genereeritud monotoonne klass on alati ole-
mas. Täpsemalt, tõestada, et kui E ⊂ P(X), siis leidub (vähemalt üks) kogumit E sisaldav hulga X
alamhulkade monotoonne klass ning et niisuguste monotoonsete klasside seas on olemas vähim (s.t.
leidub kogumit E sisaldav hulga X alamhulkade monotoonne klass, mis sisaldub igas kogumit E
sisaldavas hulga X alamhulkade monotoonses klassis).

Kuna iga σ-algebra on monotoonne klass, siis mis tahes kogumi E ⊂ P(X) korral
M(E) ⊂ σ(E). Järgnev teoreem näitab, et kui E on algebra, siis M(E) = σ(E).

Teoreem 3.2 (lemma monotoonsest klassist). Olgu X mingi mittetühi hulk ning
olgu A ⊂ P(X) algebra. Siis

σ(A) = M(A),

s.t. algebra poolt genereeritud σ-algebra on võrdne selle algebra poolt genereeritud
monotoonse klassiga.

Tõestus.
∗Ülesanne 3.4. Tõestada teoreem 3.2.

3.3. Fubini1�Tonelli2 teoreemid

Teoreem 3.3. Olgu (X,A, µ) ja (Y,B, ν) σ-lõplikud mõõduga ruumid. Siis iga hulga
E ∈ A⊗B korral

(a) funktsioon gE : X ∋ x 7→ ν(Ex) ∈ [0,∞] on A-mõõtuv (s.t. gE ∈ L+(X,A, µ));

(b) funktsioon hE : Y ∋ y 7→ µ(Ey) ∈ [0,∞] on B-mõõtuv (s.t. hE ∈ L+(Y,B, ν)).

Seejuures

µ× ν(E)
(A)
=

∫
X

ν(Ex) dµ(x) =

∫
Y

µ(Ey) dν(y).

1Guido Fubini (1879�1943) � itaalia matemaatik.
2Leonida Tonelli (1885�1946) � itaalia matemaatik.
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Tõestus. Tõestame vaid, et iga E ∈ A ⊗ B korral kehtivad väide (a) ja võrdus
(A). Väide (b) ja võrdus µ× ν(E) =

∫
Y
µ(Ey) dν(y) tõestatakse analoogiliselt.

(I) Vaatleme kõigepealt juhtu, kus mõõduga ruumid (X,A, µ) ja (Y,B, ν) on
lõplikud. Tähistame

D :=
{
E ∈ A⊗B : väide (a) ja võrdus (A) kehtivad

}
.

Veendumaks, et väide (a) ja võrdus (A) kehtivad iga hulga E ∈ A⊗B korral, piisab
näidata, et A⊗B ⊂ D. Selleks omakorda piisab näidata, et

(1) A ⊂ D, kus A on kõigi paarikaupa lõikumatute A⊗B-mõõtuvate ristkülikute
lõplike ühendite kogum;

(2) D on (hulga X × Y alamhulkade) monotoonne klass.

Tõepoolest, kui väited (1) ja (2) kehtivad, siis, arvestades, et A on algebra, järeldub lemma
põhjal monotoonsest klassist, et

A⊗B = σ(A) = M(A) ⊂ M(D) = D.

(1). Näitame, et A ⊂ D. Selleks paneme kõigepealt tähele, et A0 ∈ D, kus A0

on kõigi A⊗B-mõõtuvate ristkülikute kogum.

Tõepoolest, kui E = A×B ∈ A0 (A ∈ A, B ∈ B), siis

Ex = (A×B)x =

{
B, kui x ∈ A;

∅, kui x ̸∈ A,

järelikult

gE(x) = ν(Ex) =

{
ν(B), kui x ∈ A;

0, kui x ̸∈ A,
= ν(B)χA(x).

Seega gE = ν(B)χA ∈ L+(X,A, µ), kusjuures∫
X

gE dµ =

∫
X

ν(B)χA dµ = ν(B)µ(A) = µ× ν(A×B) = µ× ν(E),

s.t. E ∈ D.

Kui nüüd E ∈ A, s.t. E =
⋃n

j=1Ej, kus n ∈ N ja E1, . . . , En ∈ A0 on paarikaupa
lõikumatud, siis iga x ∈ X korral

gE(x) = ν

(( n⋃
j=1

Ej

)
x

)
= ν

(
n⋃

j=1

(Ej)x

)
=

n∑
j=1

ν
(
(Ej)x

)
=

n∑
j=1

gEj
(x)

(sest hulgad (E1)x, . . . , (En)x ∈ B on paarikaupa lõikumatud), s.t. gE =
∑n

j=1 gEj
∈

L+(X,A, µ) (sest kuna E1, . . . , En ∈ A0 ⊂ D, siis gE1 , . . . , gEn ∈ L+(X,A, µ));
seejuures∫

X

gE dµ =

∫
X

n∑
j=1

gEj
dµ =

n∑
j=1

∫
X

gEj
dµ =

n∑
j=1

µ× ν(Ej) = µ× ν(E).

Niisiis E ∈ D ja A ⊂ D.
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(2). Näitame, et D on monotoonne klass, s.t. kehtivad implikatsioonid

1◦ Ej ∈ D, j = 1, 2, . . . , E1 ⊂ E2 ⊂ E3 ⊂ · · · =⇒
⋃∞

j=1Ej ∈ D;

2◦ Ej ∈ D, j = 1, 2, . . . , E1 ⊃ E2 ⊃ E3 ⊃ · · · =⇒
⋂∞

j=1Ej ∈ D.

1◦. Olgu hulgad Ej ∈ D, j = 1, 2, . . . , sellised, et E1 ⊂ E2 ⊂ E3 ⊂ · · · . Peame
näitama, et siis ka E :=

⋃∞
j=1Ej ∈ D, s.t.

gE ∈ L+(X,A, µ) ja µ× ν(E) =

∫
X

gE dµ. (3.1)

Selleks paneme tähele, et iga x ∈ X korral

gE(x) = ν(Ex) = ν

(( ∞⋃
j=1

Ej

)
x

)
= ν

(
∞⋃
j=1

(Ej)x

)
= lim

j→∞
ν
(
(Ej)x

)
= lim

j→∞
gEj

(x)

(sest (E1)x ⊂ (E2)x ⊂ (E3)x ⊂ · · · ), niisiis mõõdu monotoonsuse tõttu gEj
↗ gE.

Iga j ∈ N korral Ej ∈ D, seega gEj
∈ L+(X,A, µ), järelikult teoreemi II.1.6 põhjal

ka gE ∈ L+(X,A, µ). Arvestades jälle, et iga j ∈ N korral Ej ∈ D, saame Lebesgue'i
monotoonse koonduvuse teoreemi põhjal, et

µ× ν(E) = lim
j→∞

µ× ν(Ej) = lim
j→∞

∫
X

gEj
dµ =

∫
X

gE dµ.

2◦. Olgu hulgad Ej ∈ D, j = 1, 2, . . . , sellised, et E1 ⊃ E2 ⊃ E3 ⊃ · · · . Peame
näitama, et siis ka E :=

⋂∞
j=1Ej ∈ D, s.t. kehtivad tingimused (3.1). Selleks paneme

tähele, et iga x ∈ X korral

gE(x) = ν(Ex) = ν

(( ∞⋂
j=1

Ej

)
x

)
= ν

(
∞⋂
j=1

(Ej)x

)
= lim

j→∞
ν
(
(Ej)x

)
= lim

j→∞
gEj

(x)

(sest (E1)x ⊃ (E2)x ⊃ (E3)x ⊃ · · · ja ν
(
(E1)x

)
< ν(Y ) < ∞), s.t. gEj

→ gE. Iga
j ∈ N korral Ej ∈ D, seega gEj

∈ L+(X,A, µ), järelikult teoreemi II.1.6 põhjal ka
gE ∈ L+(X,A, µ). Mõõdu monotoonsuse tõttu iga j ∈ N korral

|gEj
(x)| = ν

(
(Ej)x

)
⩽ ν(Y ) <∞ iga x ∈ X korral.

Arvestades jälle, et iga j ∈ N korral Ej ∈ D, saame Lebesgue'i tõkestatud koondu-
vuse teoreemi põhjal, et

µ× ν(E) = lim
j→∞

µ× ν(Ej) = lim
j→∞

∫
X

gEj
dµ =

∫
X

gE dµ.

(II) Vaatleme nüüd üldist juhtu (s.t. me ei eelda enam σ-lõplike mõõduga ruu-
mide (X,A, µ) ja (Y,B, ν) lõplikkust).
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Ruumide (X,A, µ) ja (Y,B, ν) σ-lõplikkuse tõttu leiduvad hulgad Xj ∈ A, Yj ∈
B, j = 1, 2, . . . , selliselt, et

µ(Xj) <∞, j= 1, 2, . . . ,
∞⋃
j=1

Xj = X, X1 ⊂ X2 ⊂ X3 ⊂ · · · ,

ν(Yj) <∞, j= 1, 2, . . . ,
∞⋃
j=1

Yj = Y, Y1 ⊂ Y2 ⊂ Y3 ⊂ · · · .

Tähistame iga j ∈ N korral

Aj :=
{
A ∩Xj : A ∈ A

}
, µj := µ|Aj

, Bj :=
{
B ∩ Yj : B ∈ B

}
, νj := ν|Bj

.

Paneme tähele, et iga j ∈ N korral

(1) (Xj,Aj, µj) ja (Yj,Bj, νj) on mõõduga ruumid;

(2) kui f ∈ L+(Xj,Aj, µj), siis, de�neerides

f̂(x) =

{
f(x), kui x ∈ Xj;

0, kui x ̸∈ Xj,
x ∈ X,

kehtib f̂ ∈ L+(X,A, µ), kusjuures
∫
X
f̂ dµ =

∫
Xj
f dµj;

(3) Aj ⊗Bj =
{
E ∩ (Xj × Yj) : E ∈ A⊗B

}
⊂ A⊗B;

(4) µj × νj = µ× ν|Aj⊗Bj
.

Ülesanne 3.5. Tõestada, et iga j ∈ N korral kehtivad väited (1)�(4).

Olgu E ∈ A⊗B. Tõestame väite (a) ja võrduse (A). Tähistame iga j ∈ N korral

Ej := E ∩ (Xj × Yj) ∈ Aj ⊗Bj ⊂ A⊗B.

Kuna ruumid (Xj,Aj, µj) ja (Yj,Bj, νj), j = 1, 2, . . . , on lõplikud, siis tõestuse osa
(I) põhjal iga j ∈ N korral

funktsioon Xj ∋ x 7→ νj
(
(Ej)x

)
∈ [0,∞] kuulub klassi L+(Xj,Aj, µj),

kusjuures

µj × νj(Ej) =

∫
Xj

νj
(
(Ej)x

)
dµj(x).

Siit järeldub väite (2) põhjal, et iga j ∈ N korral

funktsioon X ∋ x 7→ νj
(
(Ej)x

)
= ν

(
(Ej)x

)
∈ [0,∞] kuulub klassi L+(X,A, µ),

kusjuures

µ× ν(Ej) = µj × νj(Ej) =

∫
Xj

νj
(
(Ej)x

)
dµj(x) =

∫
X

ν
(
(Ej)x

)
dµ(x).

Paneme tähele, et iga x ∈ X korral
⋃∞

j=1(Ej)x = Ex, kusjuures (E1)x ⊂ (E2)x ⊂
(E3)x ⊂ · · · ; järelikult

ν
(
(Ej)x

)
↗ ν(Ex) = gE(x).

Seega gE ∈ L+(X,A, µ), kusjuures Lebesgue'i monotoonse koonduvuse teoreemi
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põhjal∫
X

ν(Ex) dµ(x) = lim
j→∞

∫
X

ν
(
(Ej)x

)
dµ(x) = lim

j→∞
µ× ν(Ej) = µ× ν(E).

Teoreem 3.4 (Tonelli teoreem). Olgu (X,A, µ) ja (Y,B, ν) σ-lõplikud mõõduga
ruumid ning olgu f ∈ L+(X × Y,A⊗B, µ× ν). Siis

(a) funktsioon g : X ∋ x 7→
∫
Y
fx dν ∈ [0,∞] on A-mõõtuv (s.t. g ∈ L+(X,A, µ));

(b) funktsioon h : Y ∋ y 7→
∫
X
f y dµ ∈ [0,∞] on B-mõõtuv (s.t. h ∈ L+(Y,B, ν)).

Seejuures∫
X×Y

f dµ× ν
(A)
=

∫
X

(∫
Y

fx dν

)
dµ(x) =

∫
Y

(∫
X

f y dµ

)
dν(y). (3.2)

Märkus 3.1. Sageli jäetakse valemis (3.2) sulud kirjutamata. Samuti eelistavad
mõned autorid kirjutada selles valemis sümbolid dµ ja dν vastupidises järjekorras.
Niisiis kirjutatakse valem (3.2) tihtipeale ka kujul∫

X×Y

f(x, y) dµ× ν(x, y) =

∫
X

∫
Y

f(x, y) dν(y) dµ(x) =

∫
Y

∫
X

f(x, y) dµ(x) dν(y)

=

∫
X

∫
Y

f(x, y) dµ(x) dν(y) =

∫
Y

∫
X

f(x, y) dν(y) dµ(x).

Tonelli teoreemi 3.4 tõestus. Tõestame ainult väite (a) ja võrduse (A). Väide
(b) ja võrdus

∫
X×Y

f dµ× ν =
∫
Y

(∫
X
f y dµ

)
dν(y) tõestatakse analoogiliselt.

(I) Tõestame väite (a) ja võrduse (A) kõigepealt juhul, kui f ∈ L+(X × Y,A ⊗
B, µ×ν) on lihtne mõõtuv funktsioon standardesitusega f =

∑n
j=1 αjχEj

. Sel juhul
iga x ∈ X korral

fx =
n∑

j=1

αj(χEj
)x =

n∑
j=1

αjχ(Ej)x ∈ L+(Y,B, ν),

järelikult

g(x) =

∫
Y

fx dν =
n∑

j=1

αjν
(
(Ej)x

)
.

Kuna teoreemi 3.3 põhjal kuuluvad funktsioonid X ∋ x 7→ ν
(
(Ej)x

)
, j = 1, . . . , n,

klassi L+(X,A, µ), siis ka g ∈ L+(X,A, µ); seejuures∫
X×Y

f dµ× ν =
n∑

j=1

αjµ× ν(Ej) =
n∑

j=1

αj

∫
X

ν
(
(Ej)x

)
dµ(x)

=

∫
X

n∑
j=1

αjν
(
(Ej)x

)
dµ(x) =

∫
X

(∫
Y

fx dν

)
dµ(x).
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(II) Vaatleme nüüd juhtu, kus f ∈ L+(X×Y,A⊗B, µ×ν) on suvaline. Teoreemi
II.1.7 põhjal leiduvad lihtsad mõõtuvad funktsioonid ϕn ∈ L+(X×Y,A⊗B, µ× ν),
n = 1, 2, . . . , nii, et ϕn ↗ f . Nüüd monotoonse koonduvuse teoreemi põhjal∫

X×Y

f dµ× ν = lim
n→∞

∫
X×Y

ϕn dµ× ν
(1)
= lim

n→∞

∫
X

(∫
Y

(ϕn)x dν

)
dµ(x)

(2)
=

∫
X

(∫
Y

fx dν

)
dµ(x).

Tõepoolest, tõestuse osa (I) põhjal iga n ∈ N korral funktsioon ψn : X ∋ x 7→
∫
Y
(ϕn)x dν

kuulub klassi L+(X,A, µ), kusjuures
∫
X×Y

ϕn dµ × ν =
∫
X

(∫
Y
(ϕn)x dν

)
dµ(x); niisiis kehtib (1).

Kuna ϕn ↗ f , siis iga x ∈ X korral (ϕn)x ↗ fx ning seega monotoonse koonduvuse teoreemi põhjal
ψn(x) =

∫
Y
(ϕn)x dν ↗

∫
Y
fx dν = g(x), järelikult g ∈ L+(X,A, µ), kusjuures jällegi monotoonse

koonduvuse teoreemi põhjal kehtib (2).

Järeldus 3.5. Olgu (X,A, µ) ja (Y,B, ν) σ-lõplikud mõõduga ruumid.

(a) Olgu E ∈ A⊗B selline, et µ× ν(E) = 0. Siis

(1) ν(Ex) = 0 µ-p.k. x ∈ X korral;

(2) µ(Ey) = 0 ν-p.k. y ∈ Y korral.

(b) Olgu µ × ν-p.k. määratud funktsioonid f, g : X × Y → R sellised, et f = g
µ× ν-p.k. Siis

(1) µ-p.k. x ∈ X korral

fx(y) = f(x, y) = g(x, y) = gx(y) ν-p.k. y ∈ Y korral;

(2) ν-p.k. y ∈ Y korral

f y(x) = f(x, y) = g(x, y) = gy(x) µ-p.k. x ∈ X korral.

Tõestus. (a). Teoreemi 3.3 põhjal kuuluvad funktsioonid

X ∋ x 7→ ν(Ex) ∈ [0,∞] ja Y ∋ y 7→ µ(Ey) ∈ [0,∞]

vastavalt klassidesse L+(X,A, µ) ja L+(Y,B, ν), kusjuures∫
X

ν(Ex) dµ(x) =

∫
Y

µ(Ey) dν(y) = µ× ν(E) = 0.

Väited (1) ja (2) järelduvad nüüd vahetult teoreemist II.2.8.

(b). Olgu hulk E ∈ A ⊗ B selline, et f(x, y) = g(x, y) iga (x, y) ∈ E korral ja
µ× ν(Ec) = 0.

Mis tahes x ∈ X korral

f(x, y) = g(x, y) iga y ∈ Ex korral.

Väite (a), (1), põhjal µ-p.k. x ∈ X korral ν
(
(Ex)

c
)
= ν

(
(Ec)x

)
= 0, järelikult

µ-p.k. x ∈ X korral f(x, y) = g(x, y) ν-p.k. y ∈ Y korral.
Väide (2) tõestatakse analoogiliselt.
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Teoreem 3.6 (Fubini teoreem). Olgu (X,A, µ) ja (Y,B, ν) σ-lõplikud mõõduga
ruumid ning olgu f ∈ L1(X × Y,A⊗B, µ× ν). Siis

(a) fx ∈ L1(Y,B, ν) µ-p.k. x ∈ X korral;

(b) f y ∈ L1(X,A, µ) ν-p.k. y ∈ Y korral;

(c) µ-p.k. määratud funktsioon g : X ∋ x 7→
∫
Y
fx dν ∈ R on integreeruv (s.t.

g ∈ L1(X,A, µ));

(d) ν-p.k. määratud funktsioon h : Y ∋ y 7→
∫
X
f y dµ ∈ R on integreeruv (s.t.

h ∈ L1(Y,B, ν)).

Seejuures∫
X×Y

f dµ× ν
(A)
=

∫
X

(∫
Y

fx dν

)
dµ(x) =

∫
Y

(∫
X

f y dµ

)
dν(y).

Fubini teoreemi 3.6 tõestus tugineb Tonelli teoreemile 3.4 ning järeldusele 3.5.

Fubini teoreemi 3.6 tõestus. Tõestame ainult väited (a) ja (c) ning võrdu-
se (A). Väited (b) ja (d) ning võrdus

∫
X×Y

f dµ × ν =
∫
Y

(∫
X
f y dµ

)
dν(y) tõesta-

takse analoogiliselt.

Kõigepealt vaatleme juhtu, kus f on kõikjal ruumis X ×Y määratud R-väärtus-
tega A⊗B mõõtuv funktsioon. Sel juhul teoreemi Tonelli teoreemi 3.4 põhjal∫

X×Y

f dµ× ν =

∫
X×Y

f+ dµ× ν −
∫
X×Y

f− dµ× ν

=

∫
X

(∫
Y

(f+)x dν

)
dµ(x)−

∫
X

(∫
Y

(f−)x dν

)
dµ(x)

=

∫
X

(∫
Y

(f+)x dν −
∫
Y

(f−)x dν

)
dµ(x)

=

∫
X

(∫
Y

(fx)
+ dν −

∫
Y

(fx)
− dν

)
dµ(x)

=

∫
X

(∫
Y

fx dν

)
dµ(x).

Muuhulgas kehtivad (a) ja (c).

Tõepoolest, (fx)± = (f±)x ∈ L+(Y,B, ν); seejuures Tonelli teoreemi 3.4 põhjal funktsioonid

g1 : X ∋ x 7−→
∫
Y

(fx)
+ dν ja g2 : X ∋ x 7−→

∫
Y

(fx)
− dν

kuuluvad klassi L+(X,A, µ), kusjuures∫
X

g1 dµ =

∫
X

(∫
Y

(fx)
+ dν

)
dµ(x) =

∫
X×Y

f+ dµ× ν <∞∫
X

g2 dµ =

∫
X

(∫
Y

(fx)
− dν

)
dµ(x) =

∫
X×Y

f− dµ× ν <∞,
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s.t. g1, g2 ∈ L1(X,A, µ). Siit järeldub ka (teoreemi II.2.8 põhjal), et∫
Y

(fx)
± dν <∞ µ-p.k. x ∈ X korral;

niisiis µ-p.k. x ∈ X korral fx ∈ L1(Y,B, ν). Samuti µ-p.k. x ∈ X korral

g(x) =

∫
X

fx dµ(x) =

∫
X

(fx)
+ dµ(x)−

∫
X

(fx)
− dµ(x) = g1(x)− g2(x),

s.t. g = g1 − g2, järelikult g ∈ L1(X,A, µ).

Olgu nüüd f ∈ L1(X×Y,A⊗B, µ×ν) suvaline. Siis leidub kõikjal ruumis X×Y
määratud R-väärtustega A⊗B-mõõtuv funktsioon f̂ ∈ L1(X×Y,A⊗B, µ×ν) nii,
et f = f̂ µ×ν-p.k. Järelduse 3.5 põhjal µ-p.k. x ∈ X korral fx = f̂x ν-p.k, järelikult
fx ∈ L1(Y,B, ν) µ-p.k. x ∈ X korral (sest eelnevalt tõestatu põhjal f̂x ∈ L1(Y,B, ν)
µ-p.k. x ∈ X korral), kusjuures

g(x) =

∫
X

fx dν =

∫
X

f̂x dν µ-p.k. x ∈ X korral.

Siit järeldub, et g ∈ L1(X,A, µ) (sest eelnevalt tõestatu põhjal funktsioon X ∋
x 7−→

∫
X
f̂x dν kuulub klassi L1(X,A, µ)), kusjuures∫

X×Y

f dµ× ν =

∫
X×Y

f̂ dµ× ν =

∫
X

(∫
Y

f̂x dν

)
dµ =

∫
X

(∫
Y

fx dν

)
dµ.
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Näites 3.1 veendusime, et mõõduga ruum

(R× R,L ⊗ L,m×m)

ei ole täielik (sümbolid L ja m tähistavad vastavalt ruumi R Lebesgue'i σ-algebrat
ja Lebesgue'i mõõtu ruumis R). Analoogiliselt saab näidata, et kui n ∈ N, n ⩾ 2,
siis korrutisruum

(Rn,L ⊗ · · · ⊗ L︸ ︷︷ ︸
n tegurit

,m× · · · ×m︸ ︷︷ ︸
n tegurit

)

pole täielik. Olgu (Rn,Ln,mn) selle ruumi täield. Kogumit Ln nimetatakse ruumi Rn

Lebesgue'i σ-algebraks. Selle kogumi hulki nimetatakse ruumi Rn Lebesgue'i hulka-
deks. Mõõtu mn nimetatakse Lebesgue'i mõõduks ruumis Rn. Edaspidi tähistame
Lebesgue'i mõõtu ruumis Rn ka lihtsalt sümboliga m.

Märkus 4.1. Ülesandest 2.6, (a), koos märkusega 2.3 järeldub, et (Rn,Ln,mn) on ka ruumi

(Rn,BR ⊗ · · · ⊗ BR︸ ︷︷ ︸
n tegurit

,m× · · · ×m︸ ︷︷ ︸
n tegurit

)

täield ehk, kuna teoreemi 1.4 põhjal BR ⊗ · · · ⊗ BR︸ ︷︷ ︸
n tegurit

= BRn , siis (Rn,Ln,mn) on ruumi (Rn,BRn ,

m× · · · ×m︸ ︷︷ ︸
n tegurit

) täield. (Sümbol BRn tähistab ruumi Rn Boreli σ-algebrat.)

Märkus 4.2. Ülesannetest 2.6, (b), ja 2.5 koos märkusega 2.3 ning valemist (I.5.3) järeldub, et
Ln = M(λ) ja mn = λ|Ln = λ|M(λ) (sümbol M(λ) tähistab hulga Rn λ-mõõtuvate alamhulkade
σ-algebrat), kus välismõõt λ : P(Rn) → [0,∞] on de�neeritud võrdusega

λ(E) = inf

{ ∞∑
j=1

(bj1 − aj1) · · · (bjn − ajn)︸ ︷︷ ︸
n tegurit

: aj1, b
j
1, . . . ,a

j
n, b

j
n ∈ R, aj1 < bj1, . . . , a

j
n < bjn, j = 1, 2, . . . ,

∞⋃
j=1

(aj1, b
j
1)× · · · × (ajn, b

j
n)︸ ︷︷ ︸

n vahemikku

⊃ E

}
, E ∈ P(Rn).

Seejuures lause I.4.5 põhjal m∗ = λ. (Sümbol m∗ tähistab siin mõõduga m := mn assotsieeruvat
välismõõtu.)

Integreerides Lebesgue'i mõõdu m järgi ruumis Rn, kirjutatakse sümboli dm või
dm(x) asemel tihti ka lihtsalt dx.

Teoreem 4.1. Olgu E ∈ Ln.

(a) m(E) = sup
{
m(K) : K ⊂ E,K on kompaktne

}
= inf

{
m(U) : U ⊃ E,U on lahtine

}
.

(b) E = G \N1, kus G ∈ Ln on Gδ ning N1 ∈ Ln on selline, et m(N1) = 0.

(c) E = H ∪N2, kus H ∈ Ln on Fσ ning N2 ∈ Ln on selline, et m(N2) = 0.
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Märkus 4.3. Teoreemi 4.1 väidet (c) kasutatakse hiljem teoreemi VI.2.2 tõestamisel.

Teoreemi 4.1 tõestus. Väide (a) � Lebesgue'i mõõdu regulaarsus � järeldub
ülesannetest I.3.33 ja 2.7 koos märkusega 2.3.

Ülesanne 4.1. Tõestada väited (b)�(c).

Näpunäide. Kõigepealt panna tähele, et Lebesgue'i mõõdu m jaoks ruumis Rn kehtib teoreemi
I.5.5 väite analoog. Edasi arutleda nagu teoreemi 5.6 implikatsioonide (i)⇒(ii) ja (i)⇒(iii) tõestuses.

Ülesanne 4.2. Tõestada, et ruumi Rn m-hüljatava alamhulga nihe ja kordne on m-hüljatavad
hulgad, s.t., kui E ∈ N (m), z ∈ Rn ja r ∈ R, siis ka E + z, rE ∈ N (m).

Näpunäide. Kasutada fakti, et E ∈ N (m) parajasti siis, kui λ(E) = 0, kus λ on välismõõt
märkusest 4.2. (See fakt järeldub ülesandest I.4.4, (b), koos märkuses 4.2 põhjendatud võrdusega
m∗ = λ.)

Teoreem 4.2. (a) Olgu E ∈ Ln ja z ∈ Rn. Siis E+z ∈ Ln, kusjuures m(E+z) =
m(E).

(b) Olgu E ∈ Ln ja r ∈ R. Siis rE ∈ Ln, kusjuures m(rE) = |r|nm(E).

(c) Olgu funktsioon f : Rn → R Lebesgue'i mõttes mõõtuv. Siis ka funktsioon
f( · + z) : Rn → R on Lebesgue'i mõttes mõõtuv. Seejuures, kui f ⩾ 0 või
f ∈ L1(m), siis ka vastavalt f( ·+ z) ⩾ 0 või f( ·+ z) ∈ L1(m), kusjuures∫

f(x+ z) dm(x) =

∫
f(x) dm(x).

Tõestus.

Ülesanne 4.3. Tõestada teoreem 4.2.

Näpunäide. (a) ja (b). Sisalduvuste E + z ∈ Ln ja rE ∈ Ln tõestamisel kasutada asjaolu, et
Ln on Boreli σ-algebra BRn täield Lebesgue'i mõõdu m suhtes, ning fakte, et ruumis Rn Boreli
hulga nihe ja kordne on Boreli hulgad ning m-hüljatava hulga nihe ja kordne on m-hüljatavad (vt.
ülesandeid 1.5 ja 4.2).

Võrduste m(E + z) = m(E) ja m(rE) = |r|nm(E) tõestamisel kasutada märkust 4.2.

Märkus 4.4. Teoreemi 4.2 väide (a) ütleb, et Lebesgue'i mõõt ruumis Rn on nihke
suhtes invariantne. Paragrahvis VI.2 näitame, et Lebesgue'i mõõt ruumis Rn on ka
pöörde suhtes invariantne.

De�nitsioon 4.1. Olgu g : Rn → R. Hulka

supp g := {x ∈ Rn : g(x) ̸= 0}

(s.t. hulga {x ∈ Rn : g(x) ̸= 0} sulundit ruumis Rn) nimetatakse funktsiooni g
kandjaks.

Järgnev teoreem on erijuht teoreemist II.3.10, kus X = Rn, A = Ln ja µ = m.
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Teoreem 4.3. Olgu f ∈ L1(Rn,Ln,m). Siis iga ε > 0 korral leidub tõkestatud
kandjaga pidev funktsioon g : Rn → R selliselt, et∫

Rn

|f − g| dm < ε.

Selle punkti ülejäänud osa pühendub Lebesgue'i mõõdu võrdlusele Jordani mõõ-
duga ruumis Rn. Termini �kuup (ruumis Rn)� all mõistame me edaspidi hulkasid
tüüpi

n∏
j=1

[aj, bj] := [a1, b1]× · · · × [an, bn],

kus aj, bj ∈ R, aj < bj, j = 1, . . . , n, b1 − a1 = · · · = bn − an.

Iga k ∈ Z korral tähistame

Qk =

{
n∏

j=1

[aj, bj] : 2kaj, 2
kbj ∈ Z, bj − aj =

1

2k
, j = 1, . . . , n

}
.

KogumiQk hulki nimetatakse diaadilisteks kuupideks (servapikkusega 1
2k
). Märgime,

et

(1) kogumi Qk mis tahes kahe kuubi sisemused on lõikumatud;

(2) kogumi Qk+1 kuubid saadakse kogumi Qk kuupide servade poolitamise teel.

Olgu E ⊂ Rn. Tähistame iga k ∈ N korral

Ak(E) =
⋃

Q∈Qk
Q⊂E

Q ja Ak(E) =
⋃

Q∈Qk
Q∩E ̸=∅

Q.

Siis

m (Ak(E)) =
1

2kn
× �kuupide arv Ak(E)-s�;

m
(
Ak(E)

)
=

1

2kn
× �kuupide arv Ak(E)-s�.

Kuna A1(E) ⊂ A2(E) ⊂ A3(E) ⊂ · · · ja A1(E) ⊃ A2(E) ⊃ A3(E) ⊃ · · · , siis
eksisteerivad piirväärtused

κ(E) := lim
k→∞

m (Ak(E)) ja κ(E) := lim
k→∞

m
(
Ak(E)

)
,

mida nimetatakse vastavalt hulga E Jordani sisemõõduks ja Jordani välismõõduks.
Kui κ(E) = κ(E) < ∞, siis öeldakse, et hulk E on Jordani mõttes mõõtuv; tema
Jordani sise- ja välismõõdu ühist väärtust nimetatakse sel juhul hulga E Jordani
mõõduks ja tähistatakse sümboliga κ(E).

Märkus 4.5. Kui hulk E ⊂ Rn on tõkestamata, siis κ(E) = ∞.
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Märkus 4.6. Jordani mõõdu de�neerimisel (ruumi Rn tõkestatud alamhulkade
jaoks) kasutatakse diaadiliste kuupide asemel tihti ka suvalisi (lõplikke) koordinaat-
risttahuksummasid või hulktahuksummasid. Mõiste sisu jääb seejuures samaks.

Tähistame

A(E) :=
∞⋃
k=0

Ak(E) ja A(E) :=
∞⋂
k=0

Ak(E).

Siis

(1) A(E) ⊂ E ⊂ A(E);

(2) A(E) ja A(E) on Boreli hulgad;

(3) κ(E) = m (A(E)) ja κ(E) = m
(
A(E)

)
.

Niisiis, tõkestatud hulk E ⊂ Rn on Jordani mõttes mõõtuv parajasti siis, kui

m
(
A(E) \ A(E)

)
= 0.

Siit järeldub, et kui E on Jordani mõttes mõõtuv, siis ta on ka Lebesgue'i mõttes
mõõtuv, kusjuures m(E) = κ(E).

Lause 4.4. Olgu U ⊂ Rn lahtine hulk. Siis

(a) U = A(U);

(b) U on paarikaupa lõikumatute sisemustega kuupide loenduv ühend;

(c) m(U) = κ(U).

Tõestus. Üldisust kitsendamata võime eeldada, et U ̸= Rn.
(a). Olgu x = (xj)

n
j=1 ∈ U . Näitame, et leiduvad k ∈ N ja Q ∈ Qk nii, et

x ∈ Q ⊂ U . Kui mingi diaadilise kuubi Q ∈ Qk (k ∈ N) korral x ∈ Q, siis suvalise
y = (yj)

n
j=1 ∈ Q korral

d(x, y) =

√√√√ n∑
j=1

|xj − yj|2 ⩽

√
n

(
1

2k

)2

=

√
n

2k
.

Hulga U lahtisuse tõttu δ := inf{d(x, z) : z ̸∈ U} > 0. Niisiis, kui valida k ∈ N nii,
et

√
n

2k
< δ, ja Q ∈ Qk nii, et x ∈ Q (niisugune Q leidub alati), siis Q ⊂ U . Seega

x ∈ Q ⊂ Ak(U) ⊂
⋃∞

i=0Ai(U) = A(U).

(b). Väite (a) põhjal

U = A(U) =
∞⋃
k=0

Ak(U) = A0 ∪
∞⋃
k=1

Ak(U) \ Ak−1(U) = A0 ∪
∞⋃
k=1

Ak(U) \ Ak−1(U).



Väite tõestuseks piisab nüüd vaid tähele panna, et iga k ∈ N korral esitub su-
lund Ak(U) \ Ak−1(U) paarikaupa lõikumatute sisemustega kuupide ülimalt loendu-
va ühendina.

(c). Kuna väite (a) põhjal U = A(U) =
⋃∞

k=0Ak(U), kusjuures A1(U) ⊂ A2(U) ⊂
A3(U) ⊂ · · · , siis

m(U) = lim
k→∞

m
(
Ak(U)

)
= κ(U).

Lause 4.5. Olgu F ⊂ Rn kompaktne hulk. Siis m(F ) = κ(F ).

Tõestus. Valime arvu N ∈ N nii, et intQ0 ⊃ F , kus

Q0 =
{
x = (x1, . . . , xn) : max

1⩽j⩽n
|xj| ⩽ N

}
.

Paneme tähele, et iga k ∈ N ∪ {0} korral

m(Q0) = m
(
Ak(F )

)
+m

(
Ak(Q0 \ F )

)
(sest kui Q0 ⊃ Q ∈ Qk, siis kas Q ∩ F = ∅ või Q ⊂ Q0 \ F ). Protsessis k → ∞
järeldub siit, et

m(Q0) = κ(F ) + κ(Q0 \ F ). (4.1)

Kuna lause 4.4 põhjal

κ(Q0 \ F ) = κ
(
(intQ0) \ F

)
= m

(
(intQ0) \ F

)
= m(Q0 \ F ) = m(Q0)−m(F ),

siis järeldub võrdusest (4.1), et m(F ) = κ(F ).

Laused 4.4 ja 4.5 võimaldavad meil piltlikult võrrelda mõõtuvust Jordani mõttes
ja mõõtuvust Lebesgue'i mõttes. Tõkestatud hulga E ⊂ Rn Jordani mõõdu arvu-
tamisel lähendame me teda seest- ja väljastpoolt diaadiliste kuupide ühenditega;
hulk E on Jordani mõttes mõõtuv parajasti siis, kui need kaks lähendust (�seest�
ja �väljast�) annavad ühesuguse mõõdu. Tõkestatud hulga E ⊂ Rn Lebesgue'i mõõ-
du arvutamisel lähendame me teda seestpoolt kompaktsete hulkadega ja väljast-
poolt lahtiste hulkadega; neid kompaktseid ja lahtisi hulki lähendame me omakorda
vastavalt väljast- ja seestpoolt diaadiliste kuupidega. Hulk E on Lebesgue'i mõttes
mõõtuv parajasti siis, kui need kaks kahesammulist (�seest-väljast� ja �väljast-seest�)
lähendust annavad ühesuguse mõõdu.



IV peatükk.

Märgiga ja kompleksmõõdud.

Radon�Nikodými teoreem

� 1. Märgiga mõõdu mõiste. Hahni ja Jordani

lahutused

Kõikjal selles paragrahvis on (X,A) mõõtuv ruum.

1.1. Märgiga mõõdu mõiste

De�nitsioon 1.1. Öeldakse, et hulgafunktsioon µ : A → [−∞,∞] on märgiga
mõõt, kui

SM1◦ µ(∅) = 0;

SM2◦ µ väärtuste hulgas on ülimalt üks väärtustest ∞ ja −∞;

SM3◦ kui hulgad Aj ∈ A, j = 1, 2, . . . , on paarikaupa lõikumatud, siis

µ

(
∞⋃
j=1

Aj

)
=

∞∑
j=1

µ(Aj).

Näide 1.1. Olgu µ1 ja µ2 mõõdud σ-algebral A, kusjuures vähemalt üks neist
mõõtudest on lõplik. Siis hulgafunktsioon µ1 − µ2 on märgiga mõõt. (Hulgafunkt-
sioon µ1 − µ2 on de�neeritud võrdusega (µ1 − µ2)(A) = µ1(A)− µ2(A), A ∈ A.)

Ülesanne 1.1. Veenduda, et µ1 − µ2 on märgiga mõõt.

Näide 1.2. Olgu µ mõõt σ-algebral A ning olgu f : X → R mõõtuv funktsioon,
kusjuures vähemalt üks integraalidest

∫
X
f+ dµ ja

∫
X
f− dµ on lõplik. (Niisugusel

juhul öeldakse, et f on laiemas mõttes µ-integreeruv funktsioon.) De�neerime hul-
gafunktsiooni ν : A → R võrdusega

ν(A) =

∫
A

f dµ : =

∫
A

f+ dµ−
∫
A

f− dµ, A ∈ A.

Siis ν on märgiga mõõt. Sellisel viisil de�neeritud märgiga mõõtu ν nimetatakse
määramata integraaliks funktsioonist f (mõõdu µ järgi) ja kirjutatakse dν = f dµ.

401
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Ülesanne 1.2. Veenduda, et ν on märgiga mõõt.

Toodud prototüübilised näited märgiga mõõtudest on ammendavad: iga märgiga
mõõt on esitatav nii näites 1.1 kui ka näites 1.2 kirjeldatud viisil. Selles paragrahvis
keskendume märgiga mõõtude esitamisele näite 1.1 eeskujul, järgmises � näite 1.2
eeskujul.

Kõikjal järgnevas kogu selle paragrahvi ulatuses on kõikide mõõtude (ja märgiga
mõõtude) määramispiirkond σ-algebra A.

1.2. Märgiga mõõdu Hahni lahutus

Kõigepealt üks abitulemus.

Lemma 1.1. Olgu µ märgiga mõõt ning olgu Aj ∈ A, j = 1, 2, . . . .

(a) Kui A1 ⊂ A2 ⊂ A3 ⊂ · · · , siis µ
( ∞⋃
j=1

Aj

)
= lim

n→∞
µ(An).

(b) Kui |µ(A1)| <∞ ja A1 ⊃ A2 ⊃ A3 ⊃ · · · , siis µ
( ∞⋂
j=1

Aj

)
= lim

n→∞
µ(An).

Tõestus.

Ülesanne 1.3. Tõestada lemma 1.1.

De�nitsioon 1.2. Olgu µ märgiga mõõt.
Öeldakse, et hulk A ∈ A on µ-positiivne (või µ suhtes positiivne), kui µ väärtused

kõigil hulga A mõõtuvatel alamhulkadel on mittenegatiivsed, s.t.

A ∋ B ⊂ A =⇒ µ(B) ⩾ 0.

Öeldakse, et hulk A ∈ A on µ-negatiivne (või µ suhtes negatiivne), kui µ väärtused
kõigil hulga A mõõtuvatel alamhulkadel on mittepositiivsed, s.t.

A ∋ B ⊂ A =⇒ µ(B) ⩽ 0.

Öeldakse, et hulk A ∈ A on µ-nullhulk (või µ suhtes nullhulk), kui µ väärtus kõigil
hulga A mõõtuvatel alamhulkadel on null, s.t.

A ∋ B ⊂ A =⇒ µ(B) = 0.

Kui märgiga mõõdu µ roll on kontekstist selge, siis nimetatakse µ-positiivseid, µ-
negatiivseid ja µ-nullhulki ka lihtsalt vastavalt positiivseteks, negatiivseteks ja null-
hulkadeks.

Teoreem 1.2 (Hahni lahutusteoreem). Olgu µ märgiga mõõt. Siis leiduvad hulgad
P,N ∈ A nii, et

1◦ P ∩N = ∅, P ∪N = X;
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2◦ hulk P on µ-positiivne;

3◦ hulk N on µ-negatiivne.

Seejuures, kui mingite µ-positiivse hulga P ′ ∈ A ja µ-negatiivse hulga N ′ ∈ A korral
P ′ ∩N ′ = ∅ ja P ′ ∪N ′ = X, siis P△P ′ = N△N ′ on µ-nullhulk.

De�nitsioon 1.3. Esitust X = P ∪ N Hahni lahutusteoreemist 1.2 nimetatakse
märgiga mõõdu µ Hahni lahutuseks (või ka ruumi X Hahni lahutuseks märgiga
mõõdu µ suhtes).

Märgime, et märgiga mõõdu µ Hahni lahutus pole üheselt määratud: µ-nullhulki
võib hulgast P hulka N (või vastupidi, hulgast N hulka P ) �üle tõsta�.

Hahni lahutusteoreemi tõestuses kasutame järgnevat lihtsat abitulemust.

Lemma 1.3. Olgu µ märgiga mõõt.

(a) Kui hulk A ∈ A on µ-positiivne [µ-negatiivne], siis ka mis tahes alamhulk
B ⊂ A, kus B ∈ A, on µ-positiivne [µ-negatiivne].

(b) Kui hulgad Aj ∈ A, j = 1, 2, . . . , on µ-positiivsed [µ-negatiivsed], siis ka nende

hulkade ühend
∞⋃
j=1

Aj on µ-positiivne [µ-negatiivne].

Tõestus. Väide (a) järeldub vahetult positiivse [negatiivse] hulga de�nitsioonist.

Ülesanne 1.4. Tõestada väide (b).

Hahni lahutusteoreemi 1.2 tõestus. Eeldame konkreetsuse mõttes, et µ ei
saavuta väärtust −∞.

Ülesanne 1.5. Järeldada väite kehtivusest tehtud eeldusel väite kehtivus juhul, kui µ ei saavuta
väärtust ∞.

Valime µ-negatiivse hulgaN ∈ A nii, et µ(N) = inf{µ(E) : E ∈ A on µ-negatiivne};
siis µ(N) > −∞.

Ülesanne 1.6. Tõestada, et niisugune hulk N ∈ A leidub, kusjuures µ(N) > −∞.

Näitame nüüd, et P := N c on µ-positiivne hulk. Oletame vastuväiteliselt, et
P pole µ-positiivne, s.t. leidub A-mõõtuv hulk A ⊂ P nii, et µ(A) < 0. Vastuolu
saamiseks piisab näidata, et leidub µ-negatiivne hulk B ⊂ A nii, et µ(B) < 0.

Tõepoolest, sellisel juhul on N ∪B µ-negatiivne; kuna N ∩B = ∅, siis

µ(N ∪B) = µ(N) + µ(B) < µ(N) = inf{µ(E) : E ∈ A on µ-negatiivne}.

Jõudsime vastuoluni.

Tähistame iga D ∈ A korral

β(D) := sup{µ(E) : A ∋ E ⊂ D}.

Märgime, et alati β(D) ⩾ 0, sest A ∋ ∅ ⊂ D ja µ(∅) = 0.
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Paneme tähele, et leidub A-mõõtuv alamhulk C ⊂ A selliselt, et µ(C) < 0 ja
β(C) <∞.

Tõepoolest, kui sellist hulka C ei leiduks, siis saaksime leida paarikaupa lõikumatud µ-
mõõtuvad hulgad Ej ⊂ A, j = 1, 2, . . . , nii, et iga j ∈ N korral µ(Ej) > 1 (põhjendada!) .

Nüüd, tähistades E :=
⋃∞

j=1Ej , kehtib µ(E) =
∑∞

j=1 µ(Ej) = ∞, mis viib vastuoluni:

0 > µ(A) = µ
(
(A \ E) ∪ E

)
= µ

(
A \ E

)
+ µ(E) = ∞.

Tähistame A0 := ∅ ning valime hulga C paarikaupa lõikumatud alamhulgad
Aj ∈ A, j = 1, 2, . . . , nii, et iga j ∈ N korral

µ(Aj) ⩾
β
(
C \ (

⋃j−1
i=1 Ai)

)
2

.

Siis µ(Aj)−→
j→∞

0.

Ülesanne 1.7. Veenduda selles.

Aga nüüd B := C \
(⋃∞

j=1Aj

)
⊂ A on µ-negatiivne hulk, kusjuures µ(B) < 0.

Ülesanne 1.8. Veenduda selles.

Olgu nüüd µ-positiivne hulk P ′ ∈ A ja µ-negatiivne hulk N ′ ∈ A sellised, et
X = P ′∪N ′. Teoreemi tõestuseks jääb näidata, et P△P ′ = N△N ′ on µ-nullhulgad.

Ülesanne 1.9. Veenduda selles.

1.3. Märgiga mõõdu Jordani lahutus

Hahni lahutus võimaldab anda märgiga mõõtudele kanoonilise esituse kahe mõõdu
vahena.

De�nitsioon 1.4. Öeldakse, et (märgiga) mõõdud µ ja ν on vastastikku singulaar-
sed (või µ on singulaarne ν suhtes või ν on singulaarne µ suhtes) ja kirjutatakse
µ ⊥ ν, kui leiduvad hulgad A,B ∈ A nii, et

1◦ A ∩B = ∅, A ∪B = X;

2◦ A on ν-nullhulk;

3◦ B on µ-nullhulk.

Teoreem 1.4 (Jordani lahutusteoreem). Olgu µ märgiga mõõt. Siis leiduvad üheselt
määratud mõõdud µ+ ja µ− nii, et µ+ ⊥ µ− ja µ = µ+ − µ−.

De�nitsioon 1.5. Mõõtusid µ+ ja µ− teoreemist 1.4 nimetatakse vastavalt märgiga
mõõdu µ positiivseks variatsiooniks ja negatiivseks variatsiooniks. Esitust µ = µ+ −
µ− nimetatakse märgiga mõõdu µ Jordani lahutuseks.
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Jordani lahutusteoreemi 1.4 tõestus. Olgu X = P ∪ N märgiga mõõdu
µ Hahni lahutus. De�neerime hulgafunktsioonid µ+(E) = µ(E ∩ P ) ja µ−(E) =
−µ(E ∩N), E ∈ A. Siis µ+ ja µ− on mõõdud, kusjuures µ+ ⊥ µ− ja µ = µ+ − µ−.

Ülesanne 1.10. Veenduda selles.

Olgu nüüd mõõdud µ′, µ′′ : A → [0,∞] sellised, et µ′ ⊥ µ′′ ja µ = µ′ − µ′′.
Teoreemi tõestuseks jääb näidata, et µ′ = µ+ ja µ′′ = µ−.

Ülesanne 1.11. Veenduda selles.

De�nitsioon 1.6. Olgu µ = µ+ − µ− märgiga mõõdu µ Jordani lahutus.
Mõõtu |µ| := µ+ + µ− nimetatakse märgiga mõõdu µ täisvariatsiooniks.

Ülesanne 1.12. Tõestada, et |µ| on mõõt.

Ülesanne 1.13. Olgu µ märgiga mõõt ning olgu A ∈ A. Tõestada, et

(a) µ+(A) = sup
{
µ(B) : A ∋ B ⊂ A

}
;

(b) µ−(A) = − inf
{
µ(B) : A ∋ B ⊂ A

}
;

(c) |µ|(A) = sup
{ n∑
j=1

|µ(Aj)| : n ∈ N, A1, . . . , An ∈ A, Ai ∩Aj = ∅, i ̸= j,
n⋃

j=1

Aj = A
}
;

(d) |µ|(A) = sup
{ ∞∑
j=1

|µ(Aj)| : Aj ∈ A, j = 1, 2, . . . , Ai ∩Aj = ∅, i ̸= j,
∞⋃
j=1

Aj = A
}
.

Märkus 1.1. Nagu lahendusest näeme, võib eelnevas ülesandes asendada kõikjal sup ja inf vas-
tavalt max ja min-ga.

Ülesanne 1.14. Olgu µ märgiga mõõt ning olgu A ∈ A. Tõestada, et

A on µ-nullhulk ⇐⇒ A on nii µ+- kui ka µ−-nullhulk ⇐⇒ A on |µ|-nullhulk.

Ülesanne 1.15. (I) Olgu ν märgiga mõõt ning olgu µ1 ja µ2 mõõdud. Tõestada, et

ν ⊥ µ1 ja ν ⊥ µ2 ⇐⇒ ν ⊥ (µ1 + µ2).

(II) Eeldame nüüd, et üks mõõtudest µ1 ja µ2 on lõplik. Siis on määratud ka mõõtude µ1 ja
µ2 vahe µ1 − µ2. Tõestada, et

ν ⊥ µ1 ja ν ⊥ µ2 =⇒ ν ⊥ (µ1 − µ2)

ning kui µ1 ⊥ µ2, siis
ν ⊥ µ1 ja ν ⊥ µ2 ⇐⇒ ν ⊥ (µ1 − µ2).

.

Ülesanne 1.16. Olgu µ = µ+ − µ− ja ν = ν+ − ν− vastavalt märgiga mõõtude µ ja ν Jordani
lahutused. Tõestada, et

µ ⊥ ν ⇐⇒ µ ⊥ ν+, µ ⊥ ν− ⇐⇒ µ+ ⊥ ν+, µ+ ⊥ ν−, µ− ⊥ ν+, µ− ⊥ ν− ⇐⇒ µ ⊥ |ν|
⇐⇒ |µ| ⊥ |ν|.

De�nitsioon 1.7. Öeldakse, et märgiga mõõt µ on lõplik, kui tema täisvariatsioon
|µ| on lõplik. Öeldakse, et märgiga mõõt µ on σ-lõplik, kui tema täisvariatsioon |µ|
on σ-lõplik.
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Ülesanne 1.17. Tõestada, et märgiga mõõt µ on

(a) lõplik parajasti siis, kui tema positiivne ja negatiivne variatsioonid µ+ ja µ− on lõplikud;

(b) σ-lõplik parajasti siis, kui tema tema positiivne ja negatiivne variatsioonid µ+ ja µ− on
σ-lõplikud.

De�nitsioon 1.8. Öeldakse, et märgiga mõõt µ on täielik, kui tema täisvariatsioon
|µ| on täielik.

Ülesanne 1.18. Olgu X = P ∪N märgiga mõõdu µ Hahni lahutus. Tähistame

AP := {A ∩ P : A ∈ A} ⊂ P(P ) ja AN := {A ∩N : A ∈ A} ⊂ P(N).

Tõestada, et µ on täielik parajasti siis, kui ruumid (P,AP , µ
+|AP

) ja (N,AN , µ
−|AN

) on täielikud.

De�nitsioon 1.9. Olgu µ märgiga mõõt.
Öeldakse, et funktsioon f : X → R on integreeruv (märgiga mõõdu µ järgi) (või

µ-integreeruv), kui f ∈ L1(µ
+) ∩ L1(µ

−). Integraal funktsioonist f üle ruumi X
mõõdu µ järgi de�neeritakse võrdusega∫

X

f(x) dµ(x) =

∫
X

f dµ :=

∫
X

f dµ+ −
∫
X

f dµ−.

Sümboli
∫
X
asemel kirjutatakse seejuures ka lihtsalt

∫
. Kõigi µ-integreeruvate funkt-

sioonide X → R klassi tähistatakse sümboliga L1(X,A, µ) või lihtsalt L1(µ).

Paneme tähele, et kui µ on märgiga mõõt ja f : X → R, siis

f ∈ L1(µ) ⇔ f ∈ L1(µ
+) ∩ L1(µ

−) ⇔ |f | ∈ L1(µ
+) ∩ L1(µ

−) ⇔ |f | ∈ L1(|µ|).

Ülesanne 1.19. Olgu funktsioonid f, g : X → R µ-integreeruvad ning olgu α ∈ R. Tõestada, et
siis ka f + g, αf ∈ L1(µ), kusjuures∫

(f + g) dµ =

∫
f dµ+

∫
g dµ ja

∫
αf dµ = α

∫
f dµ.

Ülesanne 1.20. Olgu µ märgiga mõõt ning olgu f ∈ L1(µ). Tõestada, et∣∣∣∣∫ f dµ

∣∣∣∣ ⩽ ∫ |f | d|µ|.

1.4. Täiendavaid ülesandeid

Ülesanne 1.21. Olgu µ märgiga mõõt. Tõestada, et kui mõõdud µ1 ja µ2 on sellised, et µ =
µ1 − µ2, siis µ+ ⩽ µ1 ja µ− ⩽ µ2, s.t.

µ+(E) ⩽ µ1(E) ja µ−(E) ⩽ µ2(E) iga E ∈ A korral.

Ülesanne 1.22. Olgu µ1 ja µ2 lõplikud mõõdud ning olgu µ := µ1 − µ2 (juhime tähelepanu, et
µ on märgiga mõõt). Siis iga f ∈ L1(µ1) ∩ L1(µ2) korral f ∈ L1(µ), kusjuures∫

f dµ =

∫
f dµ1 −

∫
f dµ2.

Näpunäide. Kasutada ülesandeid 1.21 ja 3.17.
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Kõikjal selles paragrahvis on (X,A) mõõtuv ruum. Kõikide mõõtude (ja märgiga
mõõtude) määramispiirkond on σ-algebra A, välja arvatud muidugi juhul, kui (kon)-
tekstis on sedastatud teisiti.

2.1. Märgiga mõõdu absoluutne pidevus

De�nitsioon 2.1. Öeldakse, et märgiga mõõt ν on absoluutselt pidev mõõdu µ
suhtes ja kirjutatakse ν ≪ µ, kui

A ∈ A, µ(A) = 0 =⇒ ν(A) = 0.

Ülesanne 2.1. Tõestada, et

(a) ν ≪ µ ⇐⇒ [ν+ ≪ µ ja ν− ≪ µ] ⇐⇒ |ν| ≪ µ;

(b) ν ≪ µ, ν ⊥ µ =⇒ ν = 0.

Järgnev teoreem näitab, et lõpliku märgiga mõõdu absoluutne pidevus ühtib
meie tavapärase ettekujutusega pidevusest.

Teoreem 2.1. Olgu ν lõplik märgiga mõõt ning olgu µ mõõt. Järgmised väited on
samaväärsed:

(i) ν ≪ µ;

(ii) iga reaalarvu ε > 0 korral leidub reaalarv δ > 0 nii, et

E ∈ A, µ(E) < δ =⇒ |ν|(E) < ε;

(iii) iga reaalarvu ε > 0 korral leidub reaalarv δ > 0 nii, et

E ∈ A, µ(E) < δ =⇒ |ν(E)| < ε.

Märkus 2.1. Kui teoreemis 2.1 loobuda eeldusest, et ν on lõplik, lubades tal olla σ-lõplik, siis
implikatsioon (i)⇒(ii) enam ei kehti. Tõepoolest, kui de�neerida

ν(E) =

∞∑
j=1

j m
(
E ∩ [j − 1, j)

)
, E ∈ BR,

siis ν on σ-lõplik Boreli mõõt ruumis R, kusjuures ν ≪ m. Veendumaks, et (ii) ei kehti, piisab
iga n ∈ N korral leida En ∈ BR, m(En) <

1
n , mille korral ν(En) = 1. Sellise hulga En rolli sobib

En = [2n− 1
2n , 2n), sest niisugusel juhul m(En) =

1
2n , kuid ν(En) = 2nm(En) = 1.

Teoreemi 2.1 tõestus. (i)⇒(ii). Olgu ν ≪ µ. Oletame vastuväiteliselt, et (ii) ei
kehti. Siis leidub selline reaalarv ε > 0, et iga n ∈ N korral leidub hulk En ∈ A nii,
et

µ(En) <
1

2n
ja |ν|(En) ⩾ ε.

407
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Tähistame E =
⋂∞

m=1

⋃∞
n=mEn. Kuna

⋃∞
n=1En ⊃

⋃∞
n=2En ⊃

⋃∞
n=3En ⊃ · · · , kus-

juures iga m ∈ N korral

µ

(
∞⋃

n=m

En

)
⩽

∞∑
n=m

µ(En) ⩽
∞∑

n=m

1

2n
=

1

2m−1
,

siis

µ(E) = lim
m→∞

µ

(
∞⋃

n=m

En

)
⩽ lim

m→∞

1

2m−1
= 0,

s.t. µ(E) = 0. Samal ajal märgiga mõõdu ν lõplikkuse tõttu

|ν|(E) = lim
m→∞

|ν|

(
∞⋃

n=m

En

)
⩾ lim sup

m→∞
|ν|(Em) ⩾ ε,

seega |ν| ̸≪ µ, järelikult ka ν ̸≪ µ, mis on vastuolus eeldusega.

(ii)⇒(i) on ilmne, sest iga E ∈ A korral |ν(E)| ⩽ |ν|(E).

(iii)⇒(i).

Ülesanne 2.2. Tõestada implikatsioon (iii)⇒(i).

2.2. Märgiga mõõdu Lebesgue'i lahutus ja Radon�Nikodými
tuletis

De�nitsioon 2.2. Olgu ν märgiga mõõt ning olgu µ mõõt. Kui eksisteerivad mär-
giga mõõdud λ ja ρ nii, et

λ ⊥ µ, ρ≪ µ ja ν = λ+ ρ, (2.1)

siis esitust ν = λ + ρ nimetatakse märgiga mõõdu ν Lebesgue'i lahutuseks (mõõdu
µ suhtes).

Ülesanne 2.3. Tõestada, et Lebesgue'i lahutuses ν = λ+ ρ kehtib λ ⊥ ρ.

Märgime, et mõõdud λ ja ρ Lebesgue'i lahutuses ν = λ+ ρ on üheselt määratud.

Tõepoolest, olgu märgiga mõõdud λ′ ja ρ′ sellised, et λ′ ⊥ µ, ρ′ ≪ µ ja ν = λ′+ρ′. Veendume,
et λ′ = λ ja ρ′ = ρ.

Kuna λ ⊥ µ ja λ′ ⊥ µ, siis leiduvad hulgad A,B,A′, B′ ∈ A nii, et

A ∪B = A′ ∪B′ = X, A ∩B = A′ ∩B′ = ∅, µ(A) = µ(A′) = 0,

kusjuures B ja B′ on vastavalt λ- ja λ′-nullhulk. Siis A ∪ A′ on µ-nullhulk; kuna ρ, ρ′ ≪ µ,
siis A ∪A′ on ka ρ- ja ρ′-nullhulk. Kuna

(A ∪A′) ∪ (B ∩B′) = X ja (A ∪A′) ∩ (B ∩B′) = ∅,
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kusjuures B ∩B′ on nii λ- kui ka λ′-nullhulk, siis mis tahes E ∈ A korral

λ(E) = λ
(
E ∩ (A ∪A′)

)
+ λ

(
E ∩ (B ∩B′)

)
= λ

(
E ∩ (A ∪A′)

)
= λ

(
E ∩ (A ∪A′)

)
+ ρ
(
E ∩ (A ∪A′)

)
= ν

(
E ∩ (A ∪A′)

)
ning

ρ(E) = ρ
(
E ∩ (A ∪A′)

)
+ ρ
(
E ∩ (B ∩B′)

)
= ρ
(
E ∩ (B ∩B′)

)
= λ

(
E ∩ (B ∩B′)

)
+ ρ
(
E ∩ (B ∩B′)

)
= ν

(
E ∩ (B ∩B′)

)
.

Analoogiliselt saab näidata, et ka λ′(E) = ν
(
E ∩ (A∪A′)

)
ja ρ′(E) = ν

(
E ∩ (B∩B′)

)
; niisiis

λ(E) = λ′(E) ja ρ(E) = ρ′(E) ning järelikult λ′ = λ ja ρ′ = ρ.

Ülesanne 2.4. Olgu ν = λ + ρ (λ ⊥ µ, ρ ≪ µ) märgiga mõõdu ν Lebesgue'i lahutus mõõdu µ
suhtes. Tõestada, et positiivse, negatiivse ja täisvariatsiooni ν+, ν− ja |ν| Lebesgue'i lahutus µ
suhtes on vastavalt

ν+ = λ+ + ρ+, ν− = λ− + ρ− ja |ν| = |λ|+ |ρ|.

De�nitsioon 2.3. Olgu ν märgiga mõõt ning olgu µ mõõt. Kui leidub laiemas
mõttes µ-integreeruv funktsioon f nii, et dν = f dµ, siis funktsiooni f nimetatakse
märgiga mõõdu ν Radon�Nikodými tuletiseks (mõõdu µ järgi) ja tähistatakse süm-
boliga dν

dµ
.

Märkus 2.2. On ilmne, et Radon�Nikodými tuletis dν
dµ

on määratud üheselt täpsuse-

ga µ-p.k. (põhjendada!) . Seetõttu mõistetakse dν
dµ

all tihtipeale tingimust dν = f dµ
rahuldavate funktsioonide klassi.

On ilmne, et kui eksisteerib Radon�Nikodými tuletis dν
dµ
, siis ν ≪ µ.

Ülesanne 2.5. Veenduda selles.

Üldjuhul ei tarvitse Radon�Nikodými tuletis dν
dµ

eksisteerida.

Näide 2.1. Olgu x ∈ R suvaline ning olgu δx Diraci mõõt punktis x. Ilmselt δx ̸≪ m,
seega ei eksisteeri ka Radon�Nikodými tuletis dδx

dm
(m tähistab Lebesgue'i mõõtu

ruumis R).

Iga märgiga mõõdu ν korral eksisteerib Radon�Nikodými tuletis dν
d|ν| .

Ülesanne 2.6. Olgu ν märgiga mõõt. Veenduda, et eksisteerib Radon�Nikodými tuletis dν
d|ν| .

Kirjeldada seda tuletist!

Ülesanne 2.7. Olgu mõõt µ ja märgiga mõõdud ν1 ja ν2 sellised, et ν1 + ν2 on märgiga mõõt
ning eksisteerivad Radon�Nikodými tuletised dν1

dµ ja dν2

dµ . Tõestada, et siis eksiteerib ka d(ν1+ν2)
dµ ,

kusjuures d(ν1+ν2)
dµ = dν1

dµ + dν2

dµ µ-p.k.

Ülesanne 2.8. Olgu ν märgiga mõõt ning olgu µ mõõt, kusjuures eksisteerib Radon�Nikodými
tuletis dν

dµ . Tõestada, et siis eksisteerivad ka dν+

dµ , dν−

dµ ja d|ν|
dµ , kusjuures

dν+

dµ
=

(
dν

dµ

)+

,
dν−

dµ
=

(
dν

dµ

)−

ja
d|ν|
dµ

=

∣∣∣∣dνdµ
∣∣∣∣ .
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Lause 2.2. Olgu ν märgiga mõõt ning olgu µ mõõt, kusjuures eksisteerib Radon�
Nikodými tuletis dν

dµ
. Siis dν

dµ
∈ L1(µ) parajasti siis, kui ν on lõplik.

Tõestus.

Ülesanne 2.9. Tõestada lause 2.2.

Vahetult lausest 2.2 ja teoreemist 2.1 järeldub

Järeldus 2.3. Olgu f ∈ L1(µ). Siis iga reaalarvu ε > 0 korral leidub reaalarv δ > 0
selliselt, et

E ∈ A, µ(E) < δ =⇒
∣∣∣∣∫

E

f dµ

∣∣∣∣ < ε.

Teoreem 2.4. Olgu ν märgiga mõõt ning olgu µ mõõt, kusjuures eksisteerib Radon�
Nikod �mi tuletis dν

dµ
.

(a) Kui f ∈ L1(ν), siis f
dν
dµ

∈ L1(µ), kusjuures
∫
f dν =

∫
f dν

dµ
dµ.

(b) Kui λ on mõõt, kusjuures eksisteerib Radon�Nikod �mi tuletis dµ
dλ
, siis eksisteerib

ka dν
dλ
, kusjuures dν

dλ
= dν

dµ
dµ
dλ
.

Tõestus. (a). (I) Tõestame väite kõigepealt erijuhul, kui ν on mõõt. Sel juhul
võime üldisust kitsendamata eeldada, et dν

dµ
∈ L+(µ).

Kui ϕ ∈ L+(ν) on lihtne mõõtuv funktsioon standardesitusega ϕ =
∑n

j=1 αjχAj
,

siis ϕ dν
dµ

∈ L+(µ), kusjuures∫
ϕ dν =

n∑
j=1

αj ν(Aj) =
n∑

j=1

αj

∫
Aj

dν

dµ
dµ =

∫ n∑
j=1

αj χAj

dν

dµ
dµ =

∫
ϕ
dν

dµ
dµ.

Kui g ∈ L+(ν), siis leiduvad lihtsad mõõtuvad funktsioonid ϕn ∈ L+(ν), n =
1, 2, . . . , nii, et ϕn ↗ g. Ilmselt g dν

dµ
∈ L+(µ), kusjuures ϕn

dν
dµ

↗ g dν
dµ
, seega mono-

toonse koonduvuse teoreemi ja eelnevas lõigus tõestatu põhjal∫
g dν = lim

n→∞

∫
ϕn dν = lim

n→∞

∫
ϕn
dν

dµ
dµ =

∫
g
dν

dµ
dµ.

Olgu nüüd f ∈ L1(ν) kõikjal määratud A-mõõtuv funktsioon. Siis f+ ∈ L+(ν),

seega
(
f dν

dµ

)+
= f+ dν

dµ
∈ L+(µ), kusjuures eelnevas lõigus tõestatu põhjal∫ (
f
dν

dµ

)+

dµ =

∫
f+ dν

dµ
dµ =

∫
f+ dν <∞.

Analoogiliselt saame, et
(
f dν

dµ

)−
∈ L+(µ), kusjuures

∫ (
f dν

dµ

)−
dµ =

∫
f− dν < ∞.

Seega f dν
dµ

∈ L1(µ), kusjuures∫
f
dν

dµ
dµ =

∫ (
f
dν

dµ

)+

dµ−
∫ (

f
dν

dµ

)−

dµ =

∫
f+ dν −

∫
f− dν =

∫
f dν.
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Lõpetuseks, olgu f ∈ L1(ν) suvaline (ν-p.k. määratud R-väärtustega funktsioon).
Siis leidub A-mõõtuv ν-integreeruv funktsioon g : X → R nii, et f = g ν-p.k.
Eelnevas lõigus tõestatu põhjal g dν

dµ
∈ L1(µ), kusjuures∫

f dν =

∫
g dν =

∫
g
dν

dµ
dµ.

Seega piisab väite tõestuseks näidata, et g dν
dµ

= f dν
dµ
µ-p.k.

Kuna f = g ν-p.k., siis leidub hulk A ∈ A nii, et ν(Ac) = 0 ja f |A = g|A. Kuna∫
Ac

dν
dµ
dµ = ν(Ac) = 0, siis dν

dµ
= 0 µ-p.k. hulgas Ac, seega g dν

dµ
= f dν

dµ
µ-p.k., nagu

soovitud.
(II)

Ülesanne 2.10. Järeldada tõestuse osast (I) väite (a) kehtivus juhul, kui ν on märgiga mõõt.

(b).

Ülesanne 2.11. Tõestada väide (b).

Näpunäide. Panna tähele, et väite (a) tõestuses on implitsiitselt tõestatud järgmine väide: kui ν
ja µ on mõõdud, kusjuures eksisteerib dν

dµ , siis iga f ∈ L+(ν) = L+(µ) korral
∫
f dν =

∫
f dν

dµ dµ.

Järeldus 2.5. Olgu µ ja λ mõõdud, kusjuures eksisteerivad Radon�Nikodými tule-
tised dµ

dλ
ja dλ

dµ
. Siis dµ

dλ
dλ
dµ

= 1 µ-p.k. (ning ka λ-p.k.).

2.3. Lebesgue�Radon�Nikodými teoreem

Teoreem 2.6 (Lebesgue�Radon�Nikodými teoreem). Olgu ν σ-lõplik märgiga mõõt
ning olgu µ σ-lõplik mõõt.

(a) Leiduvad üheselt määratud märgiga mõõdud λ ja ρ selliselt, et

λ ⊥ µ, ρ≪ µ ja ν = λ+ ρ. (2.2)

(b) Leidub laiemas mõttes µ-integreeruv funktsioon f : X → R selliselt, et

dρ = f dµ.

Mistahes kaks seda tingimust rahuldavat funktsiooni on võrdsed µ.-p.k.

Teoreemi 2.6 väide (a) ütleb, et σ-lõplikul märgiga mõõdul eksisteerib σ-lõpliku
mõõdu suhtes alati Lebesgue'i lahutus.

Teoreemi 2.6 väidet (b) nimetatakse Radon�Nikodými teoreemiks. Kui mõõt µ
ja märgiga mõõt ν on σ-lõplikud, kusjuures ν ≪ µ, siis Radon�Nikodými teoreemi
põhjal eksisteerib Radon�Nikodými tuletis dν

dµ
. Lause 2.2 põhjal dν

dµ
∈ L1(µ) parajasti

siis, kui ν on lõplik.
Radon�Nikodými teoreemi olulisuse tõttu mõõduteoorias toome ta siinkohal veel

kord eraldi välja sageli esinevas sõnastuses.



412 IV. Märgiga ja kompleksmõõdud. Radon�Nikodými teoreem

Teoreem 2.7 (Radon�Nikodými teoreem). Olgu ν σ-lõplik märgiga mõõt ning ol-
gu µ σ-lõplik mõõt. Kui ν ≪ µ, siis leidub laiemas mõttes µ-integreeruv funktsioon f
nii, et

ν(E) =

∫
E

f dµ iga E ∈ A korral.

Seejuures f ∈ L1(µ) parajasti siis, kui ν on lõplik.
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