Institute of Mathematics and Statistics
Log in
  • Eesti keel
  • Courses
  • 2017/18 fall
  • Lattice theory (MTMM.00.039)

Lattice theory 2017/18 fall

  • Pealeht
  • Loengud
  • Viited

Preliminary schedule of lectures

  1. Ordered sets. The definition of a lattice. (19.09)
  2. Examples of lattices. Sublattices (22.09)
  3. Homomorphisms and congruences (26.09)
  4. Ideals and filters (29.09)
  5. Complete lattices (3.10)
  6. Tarski-Davis theorem about fixed points (6.10)
  7. Closure operators and complete lattices (10.10, Ülo Reimaa)
  8. Algebraic lattices (13.10, Ülo Reimaa)
  9. Algebraic lattices (17.10)
  10. Dedekind-Macneille completion (20.10)
  11. Dedekind-Macneille completion (24.10)
  12. Modular lattices (27.10)
  13. Modular lattices (31.10)
  14. Modular lattices (3.11)
  15. Distributive lattices (7.11)
  16. Distributive lattices (10.11)
  17. Distributive lattices (14.11)
  18. Distributive lattices (17.11)
  19. Distributive lattices (21.11)
  20. Congruences (24.11)
  21. Congruences (28.11)
  22. Congruences (1.12)
  23. Congruences (5.12)
  24. Boolean lattices (8.12)
  25. Semimodular lattices (12.12)
  26. Semimodular lattices (15.12)
  27. Geometric lattices (19.12)
  28. Geometric lattices (22.12)

Lecture notes

Here are the lecture notes. If you find any mistakes in them, please let the lecturer know by e-mail.

  • Institute of Mathematics and Statistics
  • Faculty of Science and Technology
  • University of Tartu
In case of technical problems or questions write to:

Contact the course organizers with the organizational and course content questions.